net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / neterion / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
926bd900 3 * Copyright(c) 2002-2010 Exar Corp.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
926930b2
SS
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
3a3d5756
SH
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
53 ************************************************************************/
54
6cef2b8e
JP
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
40239396 66#include <linux/mdio.h>
1da177e4
LT
67#include <linux/skbuff.h>
68#include <linux/init.h>
69#include <linux/delay.h>
70#include <linux/stddef.h>
71#include <linux/ioctl.h>
72#include <linux/timex.h>
1da177e4 73#include <linux/ethtool.h>
1da177e4 74#include <linux/workqueue.h>
be3a6b02 75#include <linux/if_vlan.h>
7d3d0439
RA
76#include <linux/ip.h>
77#include <linux/tcp.h>
d44570e4
JP
78#include <linux/uaccess.h>
79#include <linux/io.h>
5a0e3ad6 80#include <linux/slab.h>
70c71606 81#include <linux/prefetch.h>
7d3d0439 82#include <net/tcp.h>
9a18dd15 83#include <net/checksum.h>
1da177e4 84
fe931395 85#include <asm/div64.h>
330ce0de 86#include <asm/irq.h>
1da177e4
LT
87
88/* local include */
89#include "s2io.h"
90#include "s2io-regs.h"
91
11410b62 92#define DRV_VERSION "2.0.26.28"
6c1792f4 93
1da177e4 94/* S2io Driver name & version. */
c0dbf37e
JM
95static const char s2io_driver_name[] = "Neterion";
96static const char s2io_driver_version[] = DRV_VERSION;
1da177e4 97
c0dbf37e
JM
98static const int rxd_size[2] = {32, 48};
99static const int rxd_count[2] = {127, 85};
da6971d8 100
1ee6dd77 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 102{
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd 107
108 return ret;
109}
110
20346722 111/*
1da177e4
LT
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
d44570e4
JP
116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
120
121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 123
d44570e4 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
125{
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127}
128
1da177e4 129/* Ethtool related variables and Macros. */
6fce365d 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136};
137
6fce365d 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
1da177e4 148 {"tmac_any_err_frms"},
bd1034f0 149 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
bd1034f0 164 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
1da177e4 171 {"rmac_discarded_frms"},
bd1034f0
AR
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
1da177e4
LT
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
bd1034f0
AR
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
bd1034f0
AR
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
1da177e4 210 {"rmac_pause_cnt"},
bd1034f0
AR
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
bd1034f0
AR
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
fa1f0cb3
SS
232 {"rxf_wr_cnt"}
233};
234
6fce365d 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
251 {"link_fault_cnt"}
252};
253
6fce365d 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
bd1034f0
AR
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
8116f3cf
SS
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
43b7c451
SH
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
1da177e4
LT
327};
328
4c3616cd
AMR
329#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 332
d44570e4
JP
333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 335
d44570e4
JP
336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 338
4c3616cd 339#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 340#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 341
d44570e4
JP
342#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
25fff88e 347
2fd37688
SS
348/* copy mac addr to def_mac_addr array */
349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350{
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357}
04025095 358
20346722 359/*
1da177e4
LT
360 * Constants to be programmed into the Xena's registers, to configure
361 * the XAUI.
362 */
363
1da177e4 364#define END_SIGN 0x0
f71e1309 365static const u64 herc_act_dtx_cfg[] = {
541ae68f 366 /* Set address */
e960fc5c 367 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 368 /* Write data */
e960fc5c 369 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 370 /* Set address */
371 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 /* Write data */
373 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 /* Set address */
e960fc5c 375 0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 /* Write data */
377 0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 /* Set address */
541ae68f 379 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 /* Write data */
381 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 /* Done */
383 END_SIGN
384};
385
f71e1309 386static const u64 xena_dtx_cfg[] = {
c92ca04b 387 /* Set address */
1da177e4 388 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
389 /* Write data */
390 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 /* Set address */
392 0x8001051500000000ULL, 0x80010515000000E0ULL,
393 /* Write data */
394 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 /* Set address */
1da177e4 396 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
397 /* Write data */
398 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
399 END_SIGN
400};
401
20346722 402/*
1da177e4
LT
403 * Constants for Fixing the MacAddress problem seen mostly on
404 * Alpha machines.
405 */
f71e1309 406static const u64 fix_mac[] = {
1da177e4
LT
407 0x0060000000000000ULL, 0x0060600000000000ULL,
408 0x0040600000000000ULL, 0x0000600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0060600000000000ULL,
419 0x0020600000000000ULL, 0x0000600000000000ULL,
420 0x0040600000000000ULL, 0x0060600000000000ULL,
421 END_SIGN
422};
423
b41477f3
AR
424MODULE_LICENSE("GPL");
425MODULE_VERSION(DRV_VERSION);
426
427
1da177e4 428/* Module Loadable parameters. */
6cfc482b 429S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 430S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 431S2IO_PARM_INT(multiq, 0);
b41477f3
AR
432S2IO_PARM_INT(rx_ring_mode, 1);
433S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434S2IO_PARM_INT(rmac_pause_time, 0x100);
435S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437S2IO_PARM_INT(shared_splits, 0);
438S2IO_PARM_INT(tmac_util_period, 5);
439S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 440S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
441/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 443/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 444S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 445/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 446S2IO_PARM_INT(intr_type, 2);
7d3d0439 447/* Large receive offload feature */
43b7c451 448
7d3d0439
RA
449/* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
451 */
b41477f3 452S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 453S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
454
455S2IO_PARM_INT(napi, 1);
456S2IO_PARM_INT(ufo, 0);
926930b2 457S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
458
459static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 460{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 461static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 462{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 463static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 464{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
465
466module_param_array(tx_fifo_len, uint, NULL, 0);
467module_param_array(rx_ring_sz, uint, NULL, 0);
468module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 469
20346722 470/*
1da177e4 471 * S2IO device table.
20346722 472 * This table lists all the devices that this driver supports.
1da177e4 473 */
a3aa1884 474static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 PCI_ANY_ID, PCI_ANY_ID},
477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 PCI_ANY_ID, PCI_ANY_ID},
479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
480 PCI_ANY_ID, PCI_ANY_ID},
481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
483 {0,}
484};
485
486MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
3646f0e5 488static const struct pci_error_handlers s2io_err_handler = {
d796fdb7
LV
489 .error_detected = s2io_io_error_detected,
490 .slot_reset = s2io_io_slot_reset,
491 .resume = s2io_io_resume,
492};
493
1da177e4 494static struct pci_driver s2io_driver = {
d44570e4
JP
495 .name = "S2IO",
496 .id_table = s2io_tbl,
497 .probe = s2io_init_nic,
3a036ce5 498 .remove = s2io_rem_nic,
d44570e4 499 .err_handler = &s2io_err_handler,
1da177e4
LT
500};
501
502/* A simplifier macro used both by init and free shared_mem Fns(). */
503#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
3a3d5756
SH
505/* netqueue manipulation helper functions */
506static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507{
fd2ea0a7
DM
508 if (!sp->config.multiq) {
509 int i;
510
3a3d5756
SH
511 for (i = 0; i < sp->config.tx_fifo_num; i++)
512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 513 }
fd2ea0a7 514 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
515}
516
517static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518{
fd2ea0a7 519 if (!sp->config.multiq)
3a3d5756
SH
520 sp->mac_control.fifos[fifo_no].queue_state =
521 FIFO_QUEUE_STOP;
fd2ea0a7
DM
522
523 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
524}
525
526static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527{
fd2ea0a7
DM
528 if (!sp->config.multiq) {
529 int i;
530
3a3d5756
SH
531 for (i = 0; i < sp->config.tx_fifo_num; i++)
532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 533 }
fd2ea0a7 534 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
535}
536
537static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538{
fd2ea0a7 539 if (!sp->config.multiq)
3a3d5756
SH
540 sp->mac_control.fifos[fifo_no].queue_state =
541 FIFO_QUEUE_START;
fd2ea0a7
DM
542
543 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
544}
545
546static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547{
fd2ea0a7
DM
548 if (!sp->config.multiq) {
549 int i;
550
3a3d5756
SH
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 553 }
fd2ea0a7 554 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
555}
556
557static inline void s2io_wake_tx_queue(
558 struct fifo_info *fifo, int cnt, u8 multiq)
559{
560
3a3d5756
SH
561 if (multiq) {
562 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 564 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
565 if (netif_queue_stopped(fifo->dev)) {
566 fifo->queue_state = FIFO_QUEUE_START;
567 netif_wake_queue(fifo->dev);
568 }
569 }
570}
571
1da177e4
LT
572/**
573 * init_shared_mem - Allocation and Initialization of Memory
574 * @nic: Device private variable.
20346722 575 * Description: The function allocates all the memory areas shared
576 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
577 * Rx descriptors and the statistics block.
578 */
579
580static int init_shared_mem(struct s2io_nic *nic)
581{
582 u32 size;
583 void *tmp_v_addr, *tmp_v_addr_next;
584 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 585 struct RxD_block *pre_rxd_blk = NULL;
372cc597 586 int i, j, blk_cnt;
1da177e4
LT
587 int lst_size, lst_per_page;
588 struct net_device *dev = nic->dev;
8ae418cf 589 unsigned long tmp;
1ee6dd77 590 struct buffAdd *ba;
ffb5df6c
JP
591 struct config_param *config = &nic->config;
592 struct mac_info *mac_control = &nic->mac_control;
491976b2 593 unsigned long long mem_allocated = 0;
1da177e4 594
13d866a9 595 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
596 size = 0;
597 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
598 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599
600 size += tx_cfg->fifo_len;
1da177e4
LT
601 }
602 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
603 DBG_PRINT(ERR_DBG,
604 "Too many TxDs requested: %d, max supported: %d\n",
605 size, MAX_AVAILABLE_TXDS);
b41477f3 606 return -EINVAL;
1da177e4
LT
607 }
608
2fda096d
SR
609 size = 0;
610 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
611 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612
613 size = tx_cfg->fifo_len;
2fda096d
SR
614 /*
615 * Legal values are from 2 to 8192
616 */
617 if (size < 2) {
9e39f7c5
JP
618 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 "Valid lengths are 2 through 8192\n",
620 i, size);
2fda096d
SR
621 return -EINVAL;
622 }
623 }
624
1ee6dd77 625 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
626 lst_per_page = PAGE_SIZE / lst_size;
627
628 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
629 struct fifo_info *fifo = &mac_control->fifos[i];
630 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 632 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
633
634 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 if (!fifo->list_info) {
d44570e4 636 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
637 return -ENOMEM;
638 }
491976b2 639 mem_allocated += list_holder_size;
1da177e4
LT
640 }
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 lst_per_page);
13d866a9
JP
644 struct fifo_info *fifo = &mac_control->fifos[i];
645 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646
647 fifo->tx_curr_put_info.offset = 0;
648 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 fifo->tx_curr_get_info.offset = 0;
650 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 fifo->fifo_no = i;
652 fifo->nic = nic;
653 fifo->max_txds = MAX_SKB_FRAGS + 2;
654 fifo->dev = dev;
20346722 655
1da177e4
LT
656 for (j = 0; j < page_num; j++) {
657 int k = 0;
658 dma_addr_t tmp_p;
659 void *tmp_v;
660 tmp_v = pci_alloc_consistent(nic->pdev,
661 PAGE_SIZE, &tmp_p);
662 if (!tmp_v) {
9e39f7c5
JP
663 DBG_PRINT(INFO_DBG,
664 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
665 return -ENOMEM;
666 }
776bd20f 667 /* If we got a zero DMA address(can happen on
668 * certain platforms like PPC), reallocate.
669 * Store virtual address of page we don't want,
670 * to be freed later.
671 */
672 if (!tmp_p) {
673 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 674 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
675 "%s: Zero DMA address for TxDL. "
676 "Virtual address %p\n",
677 dev->name, tmp_v);
776bd20f 678 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 679 PAGE_SIZE, &tmp_p);
776bd20f 680 if (!tmp_v) {
0c61ed5f 681 DBG_PRINT(INFO_DBG,
9e39f7c5 682 "pci_alloc_consistent failed for TxDL\n");
776bd20f 683 return -ENOMEM;
684 }
491976b2 685 mem_allocated += PAGE_SIZE;
776bd20f 686 }
1da177e4
LT
687 while (k < lst_per_page) {
688 int l = (j * lst_per_page) + k;
13d866a9 689 if (l == tx_cfg->fifo_len)
20346722 690 break;
13d866a9 691 fifo->list_info[l].list_virt_addr =
d44570e4 692 tmp_v + (k * lst_size);
13d866a9 693 fifo->list_info[l].list_phy_addr =
d44570e4 694 tmp_p + (k * lst_size);
1da177e4
LT
695 k++;
696 }
697 }
698 }
1da177e4 699
2fda096d 700 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
701 struct fifo_info *fifo = &mac_control->fifos[i];
702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703
704 size = tx_cfg->fifo_len;
705 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 if (!fifo->ufo_in_band_v)
2fda096d
SR
707 return -ENOMEM;
708 mem_allocated += (size * sizeof(u64));
709 }
fed5eccd 710
1da177e4
LT
711 /* Allocation and initialization of RXDs in Rings */
712 size = 0;
713 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
714 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 struct ring_info *ring = &mac_control->rings[i];
716
717 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
718 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 "multiple of RxDs per Block\n",
720 dev->name, i);
1da177e4
LT
721 return FAILURE;
722 }
13d866a9
JP
723 size += rx_cfg->num_rxd;
724 ring->block_count = rx_cfg->num_rxd /
d44570e4 725 (rxd_count[nic->rxd_mode] + 1);
13d866a9 726 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 727 }
da6971d8 728 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 729 size = (size * (sizeof(struct RxD1)));
da6971d8 730 else
1ee6dd77 731 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
732
733 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
734 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 struct ring_info *ring = &mac_control->rings[i];
736
737 ring->rx_curr_get_info.block_index = 0;
738 ring->rx_curr_get_info.offset = 0;
739 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 ring->rx_curr_put_info.block_index = 0;
741 ring->rx_curr_put_info.offset = 0;
742 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 ring->nic = nic;
744 ring->ring_no = i;
13d866a9
JP
745
746 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
747 /* Allocating all the Rx blocks */
748 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 749 struct rx_block_info *rx_blocks;
da6971d8
AR
750 int l;
751
13d866a9 752 rx_blocks = &ring->rx_blocks[j];
d44570e4 753 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
754 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 &tmp_p_addr);
756 if (tmp_v_addr == NULL) {
757 /*
20346722 758 * In case of failure, free_shared_mem()
759 * is called, which should free any
760 * memory that was alloced till the
1da177e4
LT
761 * failure happened.
762 */
da6971d8 763 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
764 return -ENOMEM;
765 }
491976b2 766 mem_allocated += size;
1da177e4 767 memset(tmp_v_addr, 0, size);
4f870320
JP
768
769 size = sizeof(struct rxd_info) *
770 rxd_count[nic->rxd_mode];
da6971d8
AR
771 rx_blocks->block_virt_addr = tmp_v_addr;
772 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 773 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
774 if (!rx_blocks->rxds)
775 return -ENOMEM;
4f870320 776 mem_allocated += size;
d44570e4 777 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
778 rx_blocks->rxds[l].virt_addr =
779 rx_blocks->block_virt_addr +
780 (rxd_size[nic->rxd_mode] * l);
781 rx_blocks->rxds[l].dma_addr =
782 rx_blocks->block_dma_addr +
783 (rxd_size[nic->rxd_mode] * l);
784 }
1da177e4
LT
785 }
786 /* Interlinking all Rx Blocks */
787 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
788 int next = (j + 1) % blk_cnt;
789 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 793
43d620c8 794 pre_rxd_blk = tmp_v_addr;
1da177e4 795 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 796 (unsigned long)tmp_v_addr_next;
1da177e4 797 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 798 (u64)tmp_p_addr_next;
1da177e4
LT
799 }
800 }
6d517a27 801 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
802 /*
803 * Allocation of Storages for buffer addresses in 2BUFF mode
804 * and the buffers as well.
805 */
806 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
807 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 struct ring_info *ring = &mac_control->rings[i];
809
810 blk_cnt = rx_cfg->num_rxd /
d44570e4 811 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
812 size = sizeof(struct buffAdd *) * blk_cnt;
813 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 814 if (!ring->ba)
1da177e4 815 return -ENOMEM;
4f870320 816 mem_allocated += size;
da6971d8
AR
817 for (j = 0; j < blk_cnt; j++) {
818 int k = 0;
4f870320
JP
819
820 size = sizeof(struct buffAdd) *
821 (rxd_count[nic->rxd_mode] + 1);
822 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 823 if (!ring->ba[j])
1da177e4 824 return -ENOMEM;
4f870320 825 mem_allocated += size;
da6971d8 826 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 827 ba = &ring->ba[j][k];
4f870320
JP
828 size = BUF0_LEN + ALIGN_SIZE;
829 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
830 if (!ba->ba_0_org)
831 return -ENOMEM;
4f870320 832 mem_allocated += size;
da6971d8
AR
833 tmp = (unsigned long)ba->ba_0_org;
834 tmp += ALIGN_SIZE;
d44570e4
JP
835 tmp &= ~((unsigned long)ALIGN_SIZE);
836 ba->ba_0 = (void *)tmp;
da6971d8 837
4f870320
JP
838 size = BUF1_LEN + ALIGN_SIZE;
839 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
840 if (!ba->ba_1_org)
841 return -ENOMEM;
4f870320 842 mem_allocated += size;
d44570e4 843 tmp = (unsigned long)ba->ba_1_org;
da6971d8 844 tmp += ALIGN_SIZE;
d44570e4
JP
845 tmp &= ~((unsigned long)ALIGN_SIZE);
846 ba->ba_1 = (void *)tmp;
da6971d8
AR
847 k++;
848 }
1da177e4
LT
849 }
850 }
851 }
1da177e4
LT
852
853 /* Allocation and initialization of Statistics block */
1ee6dd77 854 size = sizeof(struct stat_block);
d44570e4
JP
855 mac_control->stats_mem =
856 pci_alloc_consistent(nic->pdev, size,
857 &mac_control->stats_mem_phy);
1da177e4
LT
858
859 if (!mac_control->stats_mem) {
20346722 860 /*
861 * In case of failure, free_shared_mem() is called, which
862 * should free any memory that was alloced till the
1da177e4
LT
863 * failure happened.
864 */
865 return -ENOMEM;
866 }
491976b2 867 mem_allocated += size;
1da177e4
LT
868 mac_control->stats_mem_sz = size;
869
870 tmp_v_addr = mac_control->stats_mem;
43d620c8 871 mac_control->stats_info = tmp_v_addr;
1da177e4 872 memset(tmp_v_addr, 0, size);
3a22813a
BL
873 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 875 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
876 return SUCCESS;
877}
878
20346722 879/**
880 * free_shared_mem - Free the allocated Memory
1da177e4
LT
881 * @nic: Device private variable.
882 * Description: This function is to free all memory locations allocated by
883 * the init_shared_mem() function and return it to the kernel.
884 */
885
886static void free_shared_mem(struct s2io_nic *nic)
887{
888 int i, j, blk_cnt, size;
889 void *tmp_v_addr;
890 dma_addr_t tmp_p_addr;
1da177e4 891 int lst_size, lst_per_page;
8910b49f 892 struct net_device *dev;
491976b2 893 int page_num = 0;
ffb5df6c
JP
894 struct config_param *config;
895 struct mac_info *mac_control;
896 struct stat_block *stats;
897 struct swStat *swstats;
1da177e4
LT
898
899 if (!nic)
900 return;
901
8910b49f
MG
902 dev = nic->dev;
903
1da177e4 904 config = &nic->config;
ffb5df6c
JP
905 mac_control = &nic->mac_control;
906 stats = mac_control->stats_info;
907 swstats = &stats->sw_stat;
1da177e4 908
d44570e4 909 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
910 lst_per_page = PAGE_SIZE / lst_size;
911
912 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
913 struct fifo_info *fifo = &mac_control->fifos[i];
914 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915
916 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
917 for (j = 0; j < page_num; j++) {
918 int mem_blks = (j * lst_per_page);
13d866a9
JP
919 struct list_info_hold *fli;
920
921 if (!fifo->list_info)
6aa20a22 922 return;
13d866a9
JP
923
924 fli = &fifo->list_info[mem_blks];
925 if (!fli->list_virt_addr)
1da177e4
LT
926 break;
927 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
928 fli->list_virt_addr,
929 fli->list_phy_addr);
ffb5df6c 930 swstats->mem_freed += PAGE_SIZE;
1da177e4 931 }
776bd20f 932 /* If we got a zero DMA address during allocation,
933 * free the page now
934 */
935 if (mac_control->zerodma_virt_addr) {
936 pci_free_consistent(nic->pdev, PAGE_SIZE,
937 mac_control->zerodma_virt_addr,
938 (dma_addr_t)0);
6aa20a22 939 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
940 "%s: Freeing TxDL with zero DMA address. "
941 "Virtual address %p\n",
942 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 943 swstats->mem_freed += PAGE_SIZE;
776bd20f 944 }
13d866a9 945 kfree(fifo->list_info);
82c2d023 946 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 947 sizeof(struct list_info_hold);
1da177e4
LT
948 }
949
1da177e4 950 size = SIZE_OF_BLOCK;
1da177e4 951 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
952 struct ring_info *ring = &mac_control->rings[i];
953
954 blk_cnt = ring->block_count;
1da177e4 955 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
956 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
958 if (tmp_v_addr == NULL)
959 break;
960 pci_free_consistent(nic->pdev, size,
961 tmp_v_addr, tmp_p_addr);
ffb5df6c 962 swstats->mem_freed += size;
13d866a9 963 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
964 swstats->mem_freed += sizeof(struct rxd_info) *
965 rxd_count[nic->rxd_mode];
1da177e4
LT
966 }
967 }
968
6d517a27 969 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
970 /* Freeing buffer storage addresses in 2BUFF mode. */
971 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
972 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 struct ring_info *ring = &mac_control->rings[i];
974
975 blk_cnt = rx_cfg->num_rxd /
976 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
977 for (j = 0; j < blk_cnt; j++) {
978 int k = 0;
13d866a9 979 if (!ring->ba[j])
da6971d8
AR
980 continue;
981 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 982 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 983 kfree(ba->ba_0_org);
ffb5df6c
JP
984 swstats->mem_freed +=
985 BUF0_LEN + ALIGN_SIZE;
da6971d8 986 kfree(ba->ba_1_org);
ffb5df6c
JP
987 swstats->mem_freed +=
988 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
989 k++;
990 }
13d866a9 991 kfree(ring->ba[j]);
ffb5df6c
JP
992 swstats->mem_freed += sizeof(struct buffAdd) *
993 (rxd_count[nic->rxd_mode] + 1);
1da177e4 994 }
13d866a9 995 kfree(ring->ba);
ffb5df6c
JP
996 swstats->mem_freed += sizeof(struct buffAdd *) *
997 blk_cnt;
1da177e4 998 }
1da177e4 999 }
1da177e4 1000
2fda096d 1001 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1002 struct fifo_info *fifo = &mac_control->fifos[i];
1003 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004
1005 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1006 swstats->mem_freed += tx_cfg->fifo_len *
1007 sizeof(u64);
13d866a9 1008 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1009 }
1010 }
1011
1da177e4 1012 if (mac_control->stats_mem) {
ffb5df6c 1013 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1014 pci_free_consistent(nic->pdev,
1015 mac_control->stats_mem_sz,
1016 mac_control->stats_mem,
1017 mac_control->stats_mem_phy);
491976b2 1018 }
1da177e4
LT
1019}
1020
541ae68f 1021/**
1022 * s2io_verify_pci_mode -
1023 */
1024
1ee6dd77 1025static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1026{
1ee6dd77 1027 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1028 register u64 val64 = 0;
1029 int mode;
1030
1031 val64 = readq(&bar0->pci_mode);
1032 mode = (u8)GET_PCI_MODE(val64);
1033
d44570e4 1034 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1035 return -1; /* Unknown PCI mode */
1036 return mode;
1037}
1038
c92ca04b
AR
1039#define NEC_VENID 0x1033
1040#define NEC_DEVID 0x0125
1041static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042{
1043 struct pci_dev *tdev = NULL;
008d845c 1044 for_each_pci_dev(tdev) {
26d36b64 1045 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1046 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1047 pci_dev_put(tdev);
c92ca04b 1048 return 1;
7ad62dbc 1049 }
c92ca04b
AR
1050 }
1051 }
1052 return 0;
1053}
541ae68f 1054
7b32a312 1055static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1056/**
1057 * s2io_print_pci_mode -
1058 */
1ee6dd77 1059static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1060{
1ee6dd77 1061 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1062 register u64 val64 = 0;
1063 int mode;
1064 struct config_param *config = &nic->config;
9e39f7c5 1065 const char *pcimode;
541ae68f 1066
1067 val64 = readq(&bar0->pci_mode);
1068 mode = (u8)GET_PCI_MODE(val64);
1069
d44570e4 1070 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1071 return -1; /* Unknown PCI mode */
1072
c92ca04b
AR
1073 config->bus_speed = bus_speed[mode];
1074
1075 if (s2io_on_nec_bridge(nic->pdev)) {
1076 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1077 nic->dev->name);
c92ca04b
AR
1078 return mode;
1079 }
1080
d44570e4
JP
1081 switch (mode) {
1082 case PCI_MODE_PCI_33:
9e39f7c5 1083 pcimode = "33MHz PCI bus";
d44570e4
JP
1084 break;
1085 case PCI_MODE_PCI_66:
9e39f7c5 1086 pcimode = "66MHz PCI bus";
d44570e4
JP
1087 break;
1088 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1089 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1090 break;
1091 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1092 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1093 break;
1094 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1095 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1096 break;
1097 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1098 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1099 break;
1100 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1101 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1102 break;
1103 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1104 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1105 break;
1106 default:
9e39f7c5
JP
1107 pcimode = "unsupported bus!";
1108 mode = -1;
541ae68f 1109 }
1110
9e39f7c5
JP
1111 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113
541ae68f 1114 return mode;
1115}
1116
b7c5678f
RV
1117/**
1118 * init_tti - Initialization transmit traffic interrupt scheme
1119 * @nic: device private variable
1120 * @link: link status (UP/DOWN) used to enable/disable continuous
1121 * transmit interrupts
1122 * Description: The function configures transmit traffic interrupts
1123 * Return Value: SUCCESS on success and
1124 * '-1' on failure
1125 */
1126
0d66afe7 1127static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1128{
1129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 register u64 val64 = 0;
1131 int i;
ffb5df6c 1132 struct config_param *config = &nic->config;
b7c5678f
RV
1133
1134 for (i = 0; i < config->tx_fifo_num; i++) {
1135 /*
1136 * TTI Initialization. Default Tx timer gets us about
1137 * 250 interrupts per sec. Continuous interrupts are enabled
1138 * by default.
1139 */
1140 if (nic->device_type == XFRAME_II_DEVICE) {
1141 int count = (nic->config.bus_speed * 125)/2;
1142 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 } else
1144 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145
1146 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1147 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1150 if (i == 0)
1151 if (use_continuous_tx_intrs && (link == LINK_UP))
1152 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1153 writeq(val64, &bar0->tti_data1_mem);
1154
ac731ab6
SH
1155 if (nic->config.intr_type == MSI_X) {
1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 } else {
1161 if ((nic->config.tx_steering_type ==
d44570e4
JP
1162 TX_DEFAULT_STEERING) &&
1163 (config->tx_fifo_num > 1) &&
1164 (i >= nic->udp_fifo_idx) &&
1165 (i < (nic->udp_fifo_idx +
1166 nic->total_udp_fifos)))
ac731ab6
SH
1167 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 else
1172 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 TTI_DATA2_MEM_TX_UFC_D(0x80);
1176 }
b7c5678f
RV
1177
1178 writeq(val64, &bar0->tti_data2_mem);
1179
d44570e4
JP
1180 val64 = TTI_CMD_MEM_WE |
1181 TTI_CMD_MEM_STROBE_NEW_CMD |
1182 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1183 writeq(val64, &bar0->tti_command_mem);
1184
1185 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1186 TTI_CMD_MEM_STROBE_NEW_CMD,
1187 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1188 return FAILURE;
1189 }
1190
1191 return SUCCESS;
1192}
1193
20346722 1194/**
1195 * init_nic - Initialization of hardware
b7c5678f 1196 * @nic: device private variable
20346722 1197 * Description: The function sequentially configures every block
1198 * of the H/W from their reset values.
1199 * Return Value: SUCCESS on success and
1da177e4
LT
1200 * '-1' on failure (endian settings incorrect).
1201 */
1202
1203static int init_nic(struct s2io_nic *nic)
1204{
1ee6dd77 1205 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1206 struct net_device *dev = nic->dev;
1207 register u64 val64 = 0;
1208 void __iomem *add;
1209 u32 time;
1210 int i, j;
c92ca04b 1211 int dtx_cnt = 0;
1da177e4 1212 unsigned long long mem_share;
20346722 1213 int mem_size;
ffb5df6c
JP
1214 struct config_param *config = &nic->config;
1215 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1216
5e25b9dd 1217 /* to set the swapper controle on the card */
d44570e4
JP
1218 if (s2io_set_swapper(nic)) {
1219 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1220 return -EIO;
1da177e4
LT
1221 }
1222
541ae68f 1223 /*
1224 * Herc requires EOI to be removed from reset before XGXS, so..
1225 */
1226 if (nic->device_type & XFRAME_II_DEVICE) {
1227 val64 = 0xA500000000ULL;
1228 writeq(val64, &bar0->sw_reset);
1229 msleep(500);
1230 val64 = readq(&bar0->sw_reset);
1231 }
1232
1da177e4
LT
1233 /* Remove XGXS from reset state */
1234 val64 = 0;
1235 writeq(val64, &bar0->sw_reset);
1da177e4 1236 msleep(500);
20346722 1237 val64 = readq(&bar0->sw_reset);
1da177e4 1238
7962024e
SH
1239 /* Ensure that it's safe to access registers by checking
1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 */
1242 if (nic->device_type == XFRAME_II_DEVICE) {
1243 for (i = 0; i < 50; i++) {
1244 val64 = readq(&bar0->adapter_status);
1245 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 break;
1247 msleep(10);
1248 }
1249 if (i == 50)
1250 return -ENODEV;
1251 }
1252
1da177e4
LT
1253 /* Enable Receiving broadcasts */
1254 add = &bar0->mac_cfg;
1255 val64 = readq(&bar0->mac_cfg);
1256 val64 |= MAC_RMAC_BCAST_ENABLE;
1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1258 writel((u32)val64, add);
1da177e4
LT
1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 writel((u32) (val64 >> 32), (add + 4));
1261
1262 /* Read registers in all blocks */
1263 val64 = readq(&bar0->mac_int_mask);
1264 val64 = readq(&bar0->mc_int_mask);
1265 val64 = readq(&bar0->xgxs_int_mask);
1266
1267 /* Set MTU */
1268 val64 = dev->mtu;
1269 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270
541ae68f 1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1274 &bar0->dtx_control, UF);
541ae68f 1275 if (dtx_cnt & 0x1)
1276 msleep(1); /* Necessary!! */
1da177e4
LT
1277 dtx_cnt++;
1278 }
541ae68f 1279 } else {
c92ca04b
AR
1280 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 &bar0->dtx_control, UF);
1283 val64 = readq(&bar0->dtx_control);
1284 dtx_cnt++;
1da177e4
LT
1285 }
1286 }
1287
1288 /* Tx DMA Initialization */
1289 val64 = 0;
1290 writeq(val64, &bar0->tx_fifo_partition_0);
1291 writeq(val64, &bar0->tx_fifo_partition_1);
1292 writeq(val64, &bar0->tx_fifo_partition_2);
1293 writeq(val64, &bar0->tx_fifo_partition_3);
1294
1da177e4 1295 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1296 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297
1298 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1300
1301 if (i == (config->tx_fifo_num - 1)) {
1302 if (i % 2 == 0)
1303 i++;
1304 }
1305
1306 switch (i) {
1307 case 1:
1308 writeq(val64, &bar0->tx_fifo_partition_0);
1309 val64 = 0;
b7c5678f 1310 j = 0;
1da177e4
LT
1311 break;
1312 case 3:
1313 writeq(val64, &bar0->tx_fifo_partition_1);
1314 val64 = 0;
b7c5678f 1315 j = 0;
1da177e4
LT
1316 break;
1317 case 5:
1318 writeq(val64, &bar0->tx_fifo_partition_2);
1319 val64 = 0;
b7c5678f 1320 j = 0;
1da177e4
LT
1321 break;
1322 case 7:
1323 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1324 val64 = 0;
1325 j = 0;
1326 break;
1327 default:
1328 j++;
1da177e4
LT
1329 break;
1330 }
1331 }
1332
5e25b9dd 1333 /*
1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 */
d44570e4 1337 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd 1338 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339
1da177e4
LT
1340 val64 = readq(&bar0->tx_fifo_partition_0);
1341 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1342 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1343
20346722 1344 /*
1345 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1346 * integrity checking.
1347 */
1348 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1349 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 TX_PA_CFG_IGNORE_SNAP_OUI |
1351 TX_PA_CFG_IGNORE_LLC_CTRL |
1352 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1353 writeq(val64, &bar0->tx_pa_cfg);
1354
1355 /* Rx DMA intialization. */
1356 val64 = 0;
1357 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1358 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359
1360 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1361 }
1362 writeq(val64, &bar0->rx_queue_priority);
1363
20346722 1364 /*
1365 * Allocating equal share of memory to all the
1da177e4
LT
1366 * configured Rings.
1367 */
1368 val64 = 0;
541ae68f 1369 if (nic->device_type & XFRAME_II_DEVICE)
1370 mem_size = 32;
1371 else
1372 mem_size = 64;
1373
1da177e4
LT
1374 for (i = 0; i < config->rx_ring_num; i++) {
1375 switch (i) {
1376 case 0:
20346722 1377 mem_share = (mem_size / config->rx_ring_num +
1378 mem_size % config->rx_ring_num);
1da177e4
LT
1379 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 continue;
1381 case 1:
20346722 1382 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1383 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 continue;
1385 case 2:
20346722 1386 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1387 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 continue;
1389 case 3:
20346722 1390 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1391 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 continue;
1393 case 4:
20346722 1394 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1395 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 continue;
1397 case 5:
20346722 1398 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1399 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 continue;
1401 case 6:
20346722 1402 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1403 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 continue;
1405 case 7:
20346722 1406 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1407 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 continue;
1409 }
1410 }
1411 writeq(val64, &bar0->rx_queue_cfg);
1412
20346722 1413 /*
5e25b9dd 1414 * Filling Tx round robin registers
b7c5678f 1415 * as per the number of FIFOs for equal scheduling priority
1da177e4 1416 */
5e25b9dd 1417 switch (config->tx_fifo_num) {
1418 case 1:
b7c5678f 1419 val64 = 0x0;
5e25b9dd 1420 writeq(val64, &bar0->tx_w_round_robin_0);
1421 writeq(val64, &bar0->tx_w_round_robin_1);
1422 writeq(val64, &bar0->tx_w_round_robin_2);
1423 writeq(val64, &bar0->tx_w_round_robin_3);
1424 writeq(val64, &bar0->tx_w_round_robin_4);
1425 break;
1426 case 2:
b7c5678f 1427 val64 = 0x0001000100010001ULL;
5e25b9dd 1428 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1429 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1430 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1431 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1432 val64 = 0x0001000100000000ULL;
5e25b9dd 1433 writeq(val64, &bar0->tx_w_round_robin_4);
1434 break;
1435 case 3:
b7c5678f 1436 val64 = 0x0001020001020001ULL;
5e25b9dd 1437 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1438 val64 = 0x0200010200010200ULL;
5e25b9dd 1439 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1440 val64 = 0x0102000102000102ULL;
5e25b9dd 1441 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1442 val64 = 0x0001020001020001ULL;
5e25b9dd 1443 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1444 val64 = 0x0200010200000000ULL;
5e25b9dd 1445 writeq(val64, &bar0->tx_w_round_robin_4);
1446 break;
1447 case 4:
b7c5678f 1448 val64 = 0x0001020300010203ULL;
5e25b9dd 1449 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1450 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1451 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1452 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1453 val64 = 0x0001020300000000ULL;
5e25b9dd 1454 writeq(val64, &bar0->tx_w_round_robin_4);
1455 break;
1456 case 5:
b7c5678f 1457 val64 = 0x0001020304000102ULL;
5e25b9dd 1458 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1459 val64 = 0x0304000102030400ULL;
5e25b9dd 1460 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1461 val64 = 0x0102030400010203ULL;
5e25b9dd 1462 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1463 val64 = 0x0400010203040001ULL;
5e25b9dd 1464 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1465 val64 = 0x0203040000000000ULL;
5e25b9dd 1466 writeq(val64, &bar0->tx_w_round_robin_4);
1467 break;
1468 case 6:
b7c5678f 1469 val64 = 0x0001020304050001ULL;
5e25b9dd 1470 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1471 val64 = 0x0203040500010203ULL;
5e25b9dd 1472 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1473 val64 = 0x0405000102030405ULL;
5e25b9dd 1474 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1475 val64 = 0x0001020304050001ULL;
5e25b9dd 1476 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1477 val64 = 0x0203040500000000ULL;
5e25b9dd 1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 7:
b7c5678f 1481 val64 = 0x0001020304050600ULL;
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1483 val64 = 0x0102030405060001ULL;
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1485 val64 = 0x0203040506000102ULL;
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1487 val64 = 0x0304050600010203ULL;
5e25b9dd 1488 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1489 val64 = 0x0405060000000000ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 8:
b7c5678f 1493 val64 = 0x0001020304050607ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1498 val64 = 0x0001020300000000ULL;
5e25b9dd 1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 }
1502
b41477f3 1503 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1504 val64 = readq(&bar0->tx_fifo_partition_0);
1505 val64 |= (TX_FIFO_PARTITION_EN);
1506 writeq(val64, &bar0->tx_fifo_partition_0);
1507
5e25b9dd 1508 /* Filling the Rx round robin registers as per the
0425b46a
SH
1509 * number of Rings and steering based on QoS with
1510 * equal priority.
1511 */
5e25b9dd 1512 switch (config->rx_ring_num) {
1513 case 1:
0425b46a
SH
1514 val64 = 0x0;
1515 writeq(val64, &bar0->rx_w_round_robin_0);
1516 writeq(val64, &bar0->rx_w_round_robin_1);
1517 writeq(val64, &bar0->rx_w_round_robin_2);
1518 writeq(val64, &bar0->rx_w_round_robin_3);
1519 writeq(val64, &bar0->rx_w_round_robin_4);
1520
5e25b9dd 1521 val64 = 0x8080808080808080ULL;
1522 writeq(val64, &bar0->rts_qos_steering);
1523 break;
1524 case 2:
0425b46a 1525 val64 = 0x0001000100010001ULL;
5e25b9dd 1526 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1527 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1528 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1529 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1530 val64 = 0x0001000100000000ULL;
5e25b9dd 1531 writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533 val64 = 0x8080808040404040ULL;
1534 writeq(val64, &bar0->rts_qos_steering);
1535 break;
1536 case 3:
0425b46a 1537 val64 = 0x0001020001020001ULL;
5e25b9dd 1538 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1539 val64 = 0x0200010200010200ULL;
5e25b9dd 1540 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1541 val64 = 0x0102000102000102ULL;
5e25b9dd 1542 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1543 val64 = 0x0001020001020001ULL;
5e25b9dd 1544 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1545 val64 = 0x0200010200000000ULL;
5e25b9dd 1546 writeq(val64, &bar0->rx_w_round_robin_4);
1547
1548 val64 = 0x8080804040402020ULL;
1549 writeq(val64, &bar0->rts_qos_steering);
1550 break;
1551 case 4:
0425b46a 1552 val64 = 0x0001020300010203ULL;
5e25b9dd 1553 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1554 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1555 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1556 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1557 val64 = 0x0001020300000000ULL;
5e25b9dd 1558 writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560 val64 = 0x8080404020201010ULL;
1561 writeq(val64, &bar0->rts_qos_steering);
1562 break;
1563 case 5:
0425b46a 1564 val64 = 0x0001020304000102ULL;
5e25b9dd 1565 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1566 val64 = 0x0304000102030400ULL;
5e25b9dd 1567 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1568 val64 = 0x0102030400010203ULL;
5e25b9dd 1569 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1570 val64 = 0x0400010203040001ULL;
5e25b9dd 1571 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1572 val64 = 0x0203040000000000ULL;
5e25b9dd 1573 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575 val64 = 0x8080404020201008ULL;
1576 writeq(val64, &bar0->rts_qos_steering);
1577 break;
1578 case 6:
0425b46a 1579 val64 = 0x0001020304050001ULL;
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1581 val64 = 0x0203040500010203ULL;
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1583 val64 = 0x0405000102030405ULL;
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1585 val64 = 0x0001020304050001ULL;
5e25b9dd 1586 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1587 val64 = 0x0203040500000000ULL;
5e25b9dd 1588 writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590 val64 = 0x8080404020100804ULL;
1591 writeq(val64, &bar0->rts_qos_steering);
1592 break;
1593 case 7:
0425b46a 1594 val64 = 0x0001020304050600ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1596 val64 = 0x0102030405060001ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1598 val64 = 0x0203040506000102ULL;
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1600 val64 = 0x0304050600010203ULL;
5e25b9dd 1601 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1602 val64 = 0x0405060000000000ULL;
5e25b9dd 1603 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605 val64 = 0x8080402010080402ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1607 break;
1608 case 8:
0425b46a 1609 val64 = 0x0001020304050607ULL;
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1613 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1614 val64 = 0x0001020300000000ULL;
5e25b9dd 1615 writeq(val64, &bar0->rx_w_round_robin_4);
1616
1617 val64 = 0x8040201008040201ULL;
1618 writeq(val64, &bar0->rts_qos_steering);
1619 break;
1620 }
1da177e4
LT
1621
1622 /* UDP Fix */
1623 val64 = 0;
20346722 1624 for (i = 0; i < 8; i++)
1da177e4
LT
1625 writeq(val64, &bar0->rts_frm_len_n[i]);
1626
5e25b9dd 1627 /* Set the default rts frame length for the rings configured */
1628 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 for (i = 0 ; i < config->rx_ring_num ; i++)
1630 writeq(val64, &bar0->rts_frm_len_n[i]);
1631
1632 /* Set the frame length for the configured rings
1633 * desired by the user
1634 */
1635 for (i = 0; i < config->rx_ring_num; i++) {
1636 /* If rts_frm_len[i] == 0 then it is assumed that user not
1637 * specified frame length steering.
1638 * If the user provides the frame length then program
1639 * the rts_frm_len register for those values or else
1640 * leave it as it is.
1641 */
1642 if (rts_frm_len[i] != 0) {
1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1644 &bar0->rts_frm_len_n[i]);
5e25b9dd 1645 }
1646 }
8a4bdbaa 1647
9fc93a41
SS
1648 /* Disable differentiated services steering logic */
1649 for (i = 0; i < 64; i++) {
1650 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1651 DBG_PRINT(ERR_DBG,
1652 "%s: rts_ds_steer failed on codepoint %d\n",
1653 dev->name, i);
9f74ffde 1654 return -ENODEV;
9fc93a41
SS
1655 }
1656 }
1657
20346722 1658 /* Program statistics memory */
1da177e4 1659 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1660
541ae68f 1661 if (nic->device_type == XFRAME_II_DEVICE) {
1662 val64 = STAT_BC(0x320);
1663 writeq(val64, &bar0->stat_byte_cnt);
1664 }
1665
20346722 1666 /*
1da177e4
LT
1667 * Initializing the sampling rate for the device to calculate the
1668 * bandwidth utilization.
1669 */
1670 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1672 writeq(val64, &bar0->mac_link_util);
1673
20346722 1674 /*
1675 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1676 * Scheme.
1677 */
1da177e4 1678
b7c5678f
RV
1679 /* Initialize TTI */
1680 if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 return -ENODEV;
1da177e4 1682
8a4bdbaa
SS
1683 /* RTI Initialization */
1684 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1685 /*
8a4bdbaa
SS
1686 * Programmed to generate Apprx 500 Intrs per
1687 * second
1688 */
1689 int count = (nic->config.bus_speed * 125)/4;
1690 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 } else
1692 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1694 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1697
1698 writeq(val64, &bar0->rti_data1_mem);
1699
1700 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1703 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1705 else
d44570e4
JP
1706 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1708 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1709
8a4bdbaa 1710 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1711 val64 = RTI_CMD_MEM_WE |
1712 RTI_CMD_MEM_STROBE_NEW_CMD |
1713 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1714 writeq(val64, &bar0->rti_command_mem);
1da177e4 1715
8a4bdbaa
SS
1716 /*
1717 * Once the operation completes, the Strobe bit of the
1718 * command register will be reset. We poll for this
1719 * particular condition. We wait for a maximum of 500ms
1720 * for the operation to complete, if it's not complete
1721 * by then we return error.
1722 */
1723 time = 0;
f957bcf0 1724 while (true) {
8a4bdbaa
SS
1725 val64 = readq(&bar0->rti_command_mem);
1726 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 break;
b6e3f982 1728
8a4bdbaa 1729 if (time > 10) {
9e39f7c5 1730 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1731 dev->name);
9f74ffde 1732 return -ENODEV;
b6e3f982 1733 }
8a4bdbaa
SS
1734 time++;
1735 msleep(50);
1da177e4 1736 }
1da177e4
LT
1737 }
1738
20346722 1739 /*
1740 * Initializing proper values as Pause threshold into all
1da177e4
LT
1741 * the 8 Queues on Rx side.
1742 */
1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745
1746 /* Disable RMAC PAD STRIPPING */
509a2671 1747 add = &bar0->mac_cfg;
1da177e4
LT
1748 val64 = readq(&bar0->mac_cfg);
1749 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 writel((u32) (val64), add);
1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 writel((u32) (val64 >> 32), (add + 4));
1754 val64 = readq(&bar0->mac_cfg);
1755
7d3d0439
RA
1756 /* Enable FCS stripping by adapter */
1757 add = &bar0->mac_cfg;
1758 val64 = readq(&bar0->mac_cfg);
1759 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 if (nic->device_type == XFRAME_II_DEVICE)
1761 writeq(val64, &bar0->mac_cfg);
1762 else {
1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 writel((u32) (val64), add);
1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 writel((u32) (val64 >> 32), (add + 4));
1767 }
1768
20346722 1769 /*
1770 * Set the time value to be inserted in the pause frame
1da177e4
LT
1771 * generated by xena.
1772 */
1773 val64 = readq(&bar0->rmac_pause_cfg);
1774 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 writeq(val64, &bar0->rmac_pause_cfg);
1777
20346722 1778 /*
1da177e4
LT
1779 * Set the Threshold Limit for Generating the pause frame
1780 * If the amount of data in any Queue exceeds ratio of
1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 * pause frame is generated
1783 */
1784 val64 = 0;
1785 for (i = 0; i < 4; i++) {
d44570e4
JP
1786 val64 |= (((u64)0xFF00 |
1787 nic->mac_control.mc_pause_threshold_q0q3)
1788 << (i * 2 * 8));
1da177e4
LT
1789 }
1790 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791
1792 val64 = 0;
1793 for (i = 0; i < 4; i++) {
d44570e4
JP
1794 val64 |= (((u64)0xFF00 |
1795 nic->mac_control.mc_pause_threshold_q4q7)
1796 << (i * 2 * 8));
1da177e4
LT
1797 }
1798 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799
20346722 1800 /*
1801 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1802 * exceeded the limit pointed by shared_splits
1803 */
1804 val64 = readq(&bar0->pic_control);
1805 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 writeq(val64, &bar0->pic_control);
1807
863c11a9
AR
1808 if (nic->config.bus_speed == 266) {
1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 writeq(0x0, &bar0->read_retry_delay);
1811 writeq(0x0, &bar0->write_retry_delay);
1812 }
1813
541ae68f 1814 /*
1815 * Programming the Herc to split every write transaction
1816 * that does not start on an ADB to reduce disconnects.
1817 */
1818 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1819 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1821 writeq(val64, &bar0->misc_control);
1822 val64 = readq(&bar0->pic_control2);
b7b5a128 1823 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1824 writeq(val64, &bar0->pic_control2);
541ae68f 1825 }
c92ca04b
AR
1826 if (strstr(nic->product_name, "CX4")) {
1827 val64 = TMAC_AVG_IPG(0x17);
1828 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1829 }
1830
1da177e4
LT
1831 return SUCCESS;
1832}
a371a07d 1833#define LINK_UP_DOWN_INTERRUPT 1
1834#define MAC_RMAC_ERR_TIMER 2
1835
1ee6dd77 1836static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1837{
1838 if (nic->device_type == XFRAME_II_DEVICE)
1839 return LINK_UP_DOWN_INTERRUPT;
1840 else
1841 return MAC_RMAC_ERR_TIMER;
1842}
8116f3cf 1843
9caab458
SS
1844/**
1845 * do_s2io_write_bits - update alarm bits in alarm register
1846 * @value: alarm bits
1847 * @flag: interrupt status
1848 * @addr: address value
1849 * Description: update alarm bits in alarm register
1850 * Return Value:
1851 * NONE.
1852 */
1853static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854{
1855 u64 temp64;
1856
1857 temp64 = readq(addr);
1858
d44570e4
JP
1859 if (flag == ENABLE_INTRS)
1860 temp64 &= ~((u64)value);
9caab458 1861 else
d44570e4 1862 temp64 |= ((u64)value);
9caab458
SS
1863 writeq(temp64, addr);
1864}
1da177e4 1865
43b7c451 1866static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1867{
1868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 register u64 gen_int_mask = 0;
01e16faa 1870 u64 interruptible;
9caab458 1871
01e16faa 1872 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1873 if (mask & TX_DMA_INTR) {
9caab458
SS
1874 gen_int_mask |= TXDMA_INT_M;
1875
1876 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1877 TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1880
1881 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1882 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 &bar0->pfc_err_mask);
9caab458
SS
1885
1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1887 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1889
1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1891 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 PCC_TXB_ECC_SG_ERR,
1896 flag, &bar0->pcc_err_mask);
9caab458
SS
1897
1898 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1899 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1900
1901 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1902 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 flag, &bar0->lso_err_mask);
9caab458
SS
1905
1906 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1907 flag, &bar0->tpa_err_mask);
9caab458
SS
1908
1909 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1910 }
1911
1912 if (mask & TX_MAC_INTR) {
1913 gen_int_mask |= TXMAC_INT_M;
1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1915 &bar0->mac_int_mask);
9caab458 1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1917 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1920 }
1921
1922 if (mask & TX_XGXS_INTR) {
1923 gen_int_mask |= TXXGXS_INT_M;
1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1925 &bar0->xgxs_int_mask);
9caab458 1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1927 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1929 }
1930
1931 if (mask & RX_DMA_INTR) {
1932 gen_int_mask |= RXDMA_INT_M;
1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1934 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 flag, &bar0->rxdma_int_mask);
9caab458 1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1937 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1941 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 &bar0->prc_pcix_err_mask);
9caab458 1944 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1945 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 &bar0->rpa_err_mask);
9caab458 1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
1948 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 RDA_FRM_ECC_SG_ERR |
1951 RDA_MISC_ERR|RDA_PCIX_ERR,
1952 flag, &bar0->rda_err_mask);
9caab458 1953 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
1954 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 flag, &bar0->rti_err_mask);
9caab458
SS
1956 }
1957
1958 if (mask & RX_MAC_INTR) {
1959 gen_int_mask |= RXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
1961 &bar0->mac_int_mask);
1962 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
1965 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 do_s2io_write_bits(interruptible,
d44570e4 1968 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
1969 }
1970
d44570e4 1971 if (mask & RX_XGXS_INTR) {
9caab458
SS
1972 gen_int_mask |= RXXGXS_INT_M;
1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 1974 &bar0->xgxs_int_mask);
9caab458 1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 1976 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
1977 }
1978
1979 if (mask & MC_INTR) {
1980 gen_int_mask |= MC_INT_M;
d44570e4
JP
1981 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 flag, &bar0->mc_int_mask);
9caab458 1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
1984 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 &bar0->mc_err_mask);
9caab458
SS
1986 }
1987 nic->general_int_mask = gen_int_mask;
1988
1989 /* Remove this line when alarm interrupts are enabled */
1990 nic->general_int_mask = 0;
1991}
d44570e4 1992
20346722 1993/**
1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1995 * @nic: device private variable,
1996 * @mask: A mask indicating which Intr block must be modified and,
1997 * @flag: A flag indicating whether to enable or disable the Intrs.
1998 * Description: This function will either disable or enable the interrupts
20346722 1999 * depending on the flag argument. The mask argument can be used to
2000 * enable/disable any Intr block.
1da177e4
LT
2001 * Return Value: NONE.
2002 */
2003
2004static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005{
1ee6dd77 2006 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2007 register u64 temp64 = 0, intr_mask = 0;
2008
2009 intr_mask = nic->general_int_mask;
1da177e4
LT
2010
2011 /* Top level interrupt classification */
2012 /* PIC Interrupts */
9caab458 2013 if (mask & TX_PIC_INTR) {
1da177e4 2014 /* Enable PIC Intrs in the general intr mask register */
9caab458 2015 intr_mask |= TXPIC_INT_M;
1da177e4 2016 if (flag == ENABLE_INTRS) {
20346722 2017 /*
a371a07d 2018 * If Hercules adapter enable GPIO otherwise
b41477f3 2019 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2020 * interrupts for now.
2021 * TODO
1da177e4 2022 */
a371a07d 2023 if (s2io_link_fault_indication(nic) ==
d44570e4 2024 LINK_UP_DOWN_INTERRUPT) {
9caab458 2025 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2026 &bar0->pic_int_mask);
9caab458 2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2028 &bar0->gpio_int_mask);
9caab458 2029 } else
a371a07d 2030 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2031 } else if (flag == DISABLE_INTRS) {
20346722 2032 /*
2033 * Disable PIC Intrs in the general
2034 * intr mask register
1da177e4
LT
2035 */
2036 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2037 }
2038 }
2039
1da177e4
LT
2040 /* Tx traffic interrupts */
2041 if (mask & TX_TRAFFIC_INTR) {
9caab458 2042 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2043 if (flag == ENABLE_INTRS) {
20346722 2044 /*
1da177e4 2045 * Enable all the Tx side interrupts
20346722 2046 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2047 */
2048 writeq(0x0, &bar0->tx_traffic_mask);
2049 } else if (flag == DISABLE_INTRS) {
20346722 2050 /*
2051 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2052 * register.
2053 */
2054 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2055 }
2056 }
2057
2058 /* Rx traffic interrupts */
2059 if (mask & RX_TRAFFIC_INTR) {
9caab458 2060 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2061 if (flag == ENABLE_INTRS) {
1da177e4
LT
2062 /* writing 0 Enables all 8 RX interrupt levels */
2063 writeq(0x0, &bar0->rx_traffic_mask);
2064 } else if (flag == DISABLE_INTRS) {
20346722 2065 /*
2066 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2067 * register.
2068 */
2069 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2070 }
2071 }
9caab458
SS
2072
2073 temp64 = readq(&bar0->general_int_mask);
2074 if (flag == ENABLE_INTRS)
d44570e4 2075 temp64 &= ~((u64)intr_mask);
9caab458
SS
2076 else
2077 temp64 = DISABLE_ALL_INTRS;
2078 writeq(temp64, &bar0->general_int_mask);
2079
2080 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2081}
2082
19a60522
SS
2083/**
2084 * verify_pcc_quiescent- Checks for PCC quiescent state
2085 * Return: 1 If PCC is quiescence
2086 * 0 If PCC is not quiescence
2087 */
1ee6dd77 2088static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2089{
19a60522 2090 int ret = 0, herc;
1ee6dd77 2091 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2092 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2093
19a60522 2094 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2095
f957bcf0 2096 if (flag == false) {
44c10138 2097 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2098 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2099 ret = 1;
19a60522
SS
2100 } else {
2101 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2102 ret = 1;
20346722 2103 }
2104 } else {
44c10138 2105 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2106 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2107 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2108 ret = 1;
5e25b9dd 2109 } else {
2110 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2112 ret = 1;
20346722 2113 }
2114 }
2115
2116 return ret;
2117}
2118/**
2119 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2120 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2121 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2122 * differs and the calling function passes the input argument flag to
2123 * indicate this.
20346722 2124 * Return: 1 If xena is quiescence
1da177e4
LT
2125 * 0 If Xena is not quiescence
2126 */
2127
1ee6dd77 2128static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2129{
19a60522 2130 int mode;
1ee6dd77 2131 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2132 u64 val64 = readq(&bar0->adapter_status);
2133 mode = s2io_verify_pci_mode(sp);
1da177e4 2134
19a60522 2135 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2136 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2137 return 0;
2138 }
2139 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2140 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2141 return 0;
2142 }
2143 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2144 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2145 return 0;
2146 }
2147 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2148 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2149 return 0;
2150 }
2151 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2152 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2153 return 0;
2154 }
2155 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2156 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2157 return 0;
2158 }
2159 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2160 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2161 return 0;
2162 }
2163 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2164 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2165 return 0;
1da177e4
LT
2166 }
2167
19a60522
SS
2168 /*
2169 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 * the the P_PLL_LOCK bit in the adapter_status register will
2171 * not be asserted.
2172 */
2173 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2174 sp->device_type == XFRAME_II_DEVICE &&
2175 mode != PCI_MODE_PCI_33) {
9e39f7c5 2176 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2177 return 0;
2178 }
2179 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2180 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2181 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2182 return 0;
2183 }
2184 return 1;
1da177e4
LT
2185}
2186
2187/**
2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
20346722 2190 * Description :
1da177e4
LT
2191 * New procedure to clear mac address reading problems on Alpha platforms
2192 *
2193 */
2194
d44570e4 2195static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2196{
1ee6dd77 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2198 int i = 0;
2199
2200 while (fix_mac[i] != END_SIGN) {
2201 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2202 udelay(10);
d83d282b 2203 (void) readq(&bar0->gpio_control);
1da177e4
LT
2204 }
2205}
2206
2207/**
20346722 2208 * start_nic - Turns the device on
1da177e4 2209 * @nic : device private variable.
20346722 2210 * Description:
2211 * This function actually turns the device on. Before this function is
2212 * called,all Registers are configured from their reset states
2213 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2214 * calling this function, the device interrupts are cleared and the NIC is
2215 * literally switched on by writing into the adapter control register.
20346722 2216 * Return Value:
1da177e4
LT
2217 * SUCCESS on success and -1 on failure.
2218 */
2219
2220static int start_nic(struct s2io_nic *nic)
2221{
1ee6dd77 2222 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2223 struct net_device *dev = nic->dev;
2224 register u64 val64 = 0;
20346722 2225 u16 subid, i;
ffb5df6c
JP
2226 struct config_param *config = &nic->config;
2227 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2228
2229 /* PRC Initialization and configuration */
2230 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2231 struct ring_info *ring = &mac_control->rings[i];
2232
d44570e4 2233 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2234 &bar0->prc_rxd0_n[i]);
2235
2236 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2237 if (nic->rxd_mode == RXD_MODE_1)
2238 val64 |= PRC_CTRL_RC_ENABLED;
2239 else
2240 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2241 if (nic->device_type == XFRAME_II_DEVICE)
2242 val64 |= PRC_CTRL_GROUP_READS;
2243 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2245 writeq(val64, &bar0->prc_ctrl_n[i]);
2246 }
2247
da6971d8
AR
2248 if (nic->rxd_mode == RXD_MODE_3B) {
2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 val64 = readq(&bar0->rx_pa_cfg);
2251 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 writeq(val64, &bar0->rx_pa_cfg);
2253 }
1da177e4 2254
926930b2
SS
2255 if (vlan_tag_strip == 0) {
2256 val64 = readq(&bar0->rx_pa_cfg);
2257 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2259 nic->vlan_strip_flag = 0;
926930b2
SS
2260 }
2261
20346722 2262 /*
1da177e4
LT
2263 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 * for around 100ms, which is approximately the time required
2265 * for the device to be ready for operation.
2266 */
2267 val64 = readq(&bar0->mc_rldram_mrs);
2268 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 val64 = readq(&bar0->mc_rldram_mrs);
2271
20346722 2272 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2273
2274 /* Enabling ECC Protection. */
2275 val64 = readq(&bar0->adapter_control);
2276 val64 &= ~ADAPTER_ECC_EN;
2277 writeq(val64, &bar0->adapter_control);
2278
20346722 2279 /*
2280 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2281 * it.
2282 */
2283 val64 = readq(&bar0->adapter_status);
19a60522 2284 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2285 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 "Adapter status reads: 0x%llx\n",
2287 dev->name, (unsigned long long)val64);
1da177e4
LT
2288 return FAILURE;
2289 }
2290
20346722 2291 /*
1da177e4 2292 * With some switches, link might be already up at this point.
20346722 2293 * Because of this weird behavior, when we enable laser,
2294 * we may not get link. We need to handle this. We cannot
2295 * figure out which switch is misbehaving. So we are forced to
2296 * make a global change.
1da177e4
LT
2297 */
2298
2299 /* Enabling Laser. */
2300 val64 = readq(&bar0->adapter_control);
2301 val64 |= ADAPTER_EOI_TX_ON;
2302 writeq(val64, &bar0->adapter_control);
2303
c92ca04b
AR
2304 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305 /*
25985edc 2306 * Dont see link state interrupts initially on some switches,
c92ca04b
AR
2307 * so directly scheduling the link state task here.
2308 */
2309 schedule_work(&nic->set_link_task);
2310 }
1da177e4
LT
2311 /* SXE-002: Initialize link and activity LED */
2312 subid = nic->pdev->subsystem_device;
541ae68f 2313 if (((subid & 0xFF) >= 0x07) &&
2314 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2315 val64 = readq(&bar0->gpio_control);
2316 val64 |= 0x0000800000000000ULL;
2317 writeq(val64, &bar0->gpio_control);
2318 val64 = 0x0411040400000000ULL;
509a2671 2319 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2320 }
2321
1da177e4
LT
2322 return SUCCESS;
2323}
fed5eccd
AR
2324/**
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326 */
d44570e4
JP
2327static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 struct TxD *txdlp, int get_off)
fed5eccd 2329{
1ee6dd77 2330 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2331 struct sk_buff *skb;
1ee6dd77 2332 struct TxD *txds;
fed5eccd
AR
2333 u16 j, frg_cnt;
2334
2335 txds = txdlp;
2fda096d 2336 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2337 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2339 txds++;
2340 }
2341
d44570e4 2342 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2343 if (!skb) {
1ee6dd77 2344 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2345 return NULL;
2346 }
d44570e4 2347 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
e743d313 2348 skb_headlen(skb), PCI_DMA_TODEVICE);
fed5eccd
AR
2349 frg_cnt = skb_shinfo(skb)->nr_frags;
2350 if (frg_cnt) {
2351 txds++;
2352 for (j = 0; j < frg_cnt; j++, txds++) {
9e903e08 2353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
fed5eccd
AR
2354 if (!txds->Buffer_Pointer)
2355 break;
d44570e4
JP
2356 pci_unmap_page(nic->pdev,
2357 (dma_addr_t)txds->Buffer_Pointer,
9e903e08 2358 skb_frag_size(frag), PCI_DMA_TODEVICE);
fed5eccd
AR
2359 }
2360 }
d44570e4
JP
2361 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 return skb;
fed5eccd 2363}
1da177e4 2364
20346722 2365/**
2366 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2367 * @nic : device private variable.
20346722 2368 * Description:
1da177e4 2369 * Free all queued Tx buffers.
20346722 2370 * Return Value: void
d44570e4 2371 */
1da177e4
LT
2372
2373static void free_tx_buffers(struct s2io_nic *nic)
2374{
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
1ee6dd77 2377 struct TxD *txdp;
1da177e4 2378 int i, j;
fed5eccd 2379 int cnt = 0;
ffb5df6c
JP
2380 struct config_param *config = &nic->config;
2381 struct mac_info *mac_control = &nic->mac_control;
2382 struct stat_block *stats = mac_control->stats_info;
2383 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2384
2385 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2386 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2388 unsigned long flags;
13d866a9
JP
2389
2390 spin_lock_irqsave(&fifo->tx_lock, flags);
2391 for (j = 0; j < tx_cfg->fifo_len; j++) {
43d620c8 2392 txdp = fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2393 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 if (skb) {
ffb5df6c 2395 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2396 dev_kfree_skb(skb);
2397 cnt++;
1da177e4 2398 }
1da177e4
LT
2399 }
2400 DBG_PRINT(INTR_DBG,
9e39f7c5 2401 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2402 dev->name, cnt, i);
13d866a9
JP
2403 fifo->tx_curr_get_info.offset = 0;
2404 fifo->tx_curr_put_info.offset = 0;
2405 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2406 }
2407}
2408
20346722 2409/**
2410 * stop_nic - To stop the nic
1da177e4 2411 * @nic ; device private variable.
20346722 2412 * Description:
2413 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2414 * function does. This function is called to stop the device.
2415 * Return Value:
2416 * void.
2417 */
2418
2419static void stop_nic(struct s2io_nic *nic)
2420{
1ee6dd77 2421 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2422 register u64 val64 = 0;
5d3213cc 2423 u16 interruptible;
1da177e4
LT
2424
2425 /* Disable all interrupts */
9caab458 2426 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2427 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2428 interruptible |= TX_PIC_INTR;
1da177e4
LT
2429 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430
5d3213cc
AR
2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 val64 = readq(&bar0->adapter_control);
2433 val64 &= ~(ADAPTER_CNTL_EN);
2434 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2435}
2436
20346722 2437/**
2438 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2439 * @ring_info: per ring structure
3f78d885
SH
2440 * @from_card_up: If this is true, we will map the buffer to get
2441 * the dma address for buf0 and buf1 to give it to the card.
2442 * Else we will sync the already mapped buffer to give it to the card.
20346722 2443 * Description:
1da177e4
LT
2444 * The function allocates Rx side skbs and puts the physical
2445 * address of these buffers into the RxD buffer pointers, so that the NIC
2446 * can DMA the received frame into these locations.
2447 * The NIC supports 3 receive modes, viz
2448 * 1. single buffer,
2449 * 2. three buffer and
2450 * 3. Five buffer modes.
20346722 2451 * Each mode defines how many fragments the received frame will be split
2452 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 * is split into 3 fragments. As of now only single buffer mode is
2455 * supported.
2456 * Return Value:
2457 * SUCCESS on success or an appropriate -ve value on failure.
2458 */
8d8bb39b 2459static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2460 int from_card_up)
1da177e4 2461{
1da177e4 2462 struct sk_buff *skb;
1ee6dd77 2463 struct RxD_t *rxdp;
0425b46a 2464 int off, size, block_no, block_no1;
1da177e4 2465 u32 alloc_tab = 0;
20346722 2466 u32 alloc_cnt;
20346722 2467 u64 tmp;
1ee6dd77 2468 struct buffAdd *ba;
1ee6dd77 2469 struct RxD_t *first_rxdp = NULL;
363dc367 2470 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2471 int rxd_index = 0;
6d517a27
VP
2472 struct RxD1 *rxdp1;
2473 struct RxD3 *rxdp3;
ffb5df6c 2474 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2475
0425b46a 2476 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2477
0425b46a 2478 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2479 while (alloc_tab < alloc_cnt) {
0425b46a 2480 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2481
0425b46a
SH
2482 off = ring->rx_curr_put_info.offset;
2483
2484 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485
2486 rxd_index = off + 1;
2487 if (block_no)
2488 rxd_index += (block_no * ring->rxd_count);
da6971d8 2489
7d2e3cb7 2490 if ((block_no == block_no1) &&
d44570e4
JP
2491 (off == ring->rx_curr_get_info.offset) &&
2492 (rxdp->Host_Control)) {
9e39f7c5
JP
2493 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 ring->dev->name);
1da177e4
LT
2495 goto end;
2496 }
0425b46a
SH
2497 if (off && (off == ring->rxd_count)) {
2498 ring->rx_curr_put_info.block_index++;
2499 if (ring->rx_curr_put_info.block_index ==
d44570e4 2500 ring->block_count)
0425b46a
SH
2501 ring->rx_curr_put_info.block_index = 0;
2502 block_no = ring->rx_curr_put_info.block_index;
2503 off = 0;
2504 ring->rx_curr_put_info.offset = off;
2505 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2506 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2507 ring->dev->name, rxdp);
2508
1da177e4 2509 }
c9fcbf47 2510
da6971d8 2511 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2512 ((ring->rxd_mode == RXD_MODE_3B) &&
2513 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2514 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2515 goto end;
2516 }
da6971d8 2517 /* calculate size of skb based on ring mode */
d44570e4
JP
2518 size = ring->mtu +
2519 HEADER_ETHERNET_II_802_3_SIZE +
2520 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2521 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2522 size += NET_IP_ALIGN;
da6971d8 2523 else
0425b46a 2524 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2525
da6971d8 2526 /* allocate skb */
c056b734 2527 skb = netdev_alloc_skb(nic->dev, size);
d44570e4 2528 if (!skb) {
9e39f7c5
JP
2529 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 ring->dev->name);
303bcb4b 2531 if (first_rxdp) {
2532 wmb();
2533 first_rxdp->Control_1 |= RXD_OWN_XENA;
2534 }
ffb5df6c 2535 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2536
da6971d8
AR
2537 return -ENOMEM ;
2538 }
ffb5df6c 2539 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2540
2541 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2542 /* 1 buffer mode - normal operation mode */
d44570e4 2543 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2544 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2545 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2546 rxdp1->Buffer0_ptr =
2547 pci_map_single(ring->pdev, skb->data,
2548 size - NET_IP_ALIGN,
2549 PCI_DMA_FROMDEVICE);
8d8bb39b 2550 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2551 rxdp1->Buffer0_ptr))
491abf25
VP
2552 goto pci_map_failed;
2553
8a4bdbaa 2554 rxdp->Control_2 =
491976b2 2555 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2556 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2557 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2558 /*
6d517a27
VP
2559 * 2 buffer mode -
2560 * 2 buffer mode provides 128
da6971d8 2561 * byte aligned receive buffers.
da6971d8
AR
2562 */
2563
d44570e4 2564 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2565 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2566 Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2568 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2569 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2570 rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2572
0425b46a 2573 ba = &ring->ba[block_no][off];
da6971d8 2574 skb_reserve(skb, BUF0_LEN);
d44570e4 2575 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2576 tmp += ALIGN_SIZE;
2577 tmp &= ~ALIGN_SIZE;
2578 skb->data = (void *) (unsigned long)tmp;
27a884dc 2579 skb_reset_tail_pointer(skb);
da6971d8 2580
3f78d885 2581 if (from_card_up) {
6d517a27 2582 rxdp3->Buffer0_ptr =
d44570e4
JP
2583 pci_map_single(ring->pdev, ba->ba_0,
2584 BUF0_LEN,
2585 PCI_DMA_FROMDEVICE);
2586 if (pci_dma_mapping_error(nic->pdev,
2587 rxdp3->Buffer0_ptr))
3f78d885
SH
2588 goto pci_map_failed;
2589 } else
0425b46a 2590 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2591 (dma_addr_t)rxdp3->Buffer0_ptr,
2592 BUF0_LEN,
2593 PCI_DMA_FROMDEVICE);
491abf25 2594
da6971d8 2595 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2596 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2597 /* Two buffer mode */
2598
2599 /*
6aa20a22 2600 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2601 * L4 payload
2602 */
d44570e4
JP
2603 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 skb->data,
2605 ring->mtu + 4,
2606 PCI_DMA_FROMDEVICE);
da6971d8 2607
8d8bb39b 2608 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2609 rxdp3->Buffer2_ptr))
491abf25
VP
2610 goto pci_map_failed;
2611
3f78d885 2612 if (from_card_up) {
0425b46a
SH
2613 rxdp3->Buffer1_ptr =
2614 pci_map_single(ring->pdev,
d44570e4
JP
2615 ba->ba_1,
2616 BUF1_LEN,
2617 PCI_DMA_FROMDEVICE);
0425b46a 2618
8d8bb39b 2619 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2620 rxdp3->Buffer1_ptr)) {
2621 pci_unmap_single(ring->pdev,
2622 (dma_addr_t)(unsigned long)
2623 skb->data,
2624 ring->mtu + 4,
2625 PCI_DMA_FROMDEVICE);
3f78d885
SH
2626 goto pci_map_failed;
2627 }
75c30b13 2628 }
da6971d8
AR
2629 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2631 (ring->mtu + 4);
da6971d8 2632 }
b7b5a128 2633 rxdp->Control_2 |= s2BIT(0);
0425b46a 2634 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2635 }
303bcb4b 2636 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2638 off++;
0425b46a 2639 if (off == (ring->rxd_count + 1))
da6971d8 2640 off = 0;
0425b46a 2641 ring->rx_curr_put_info.offset = off;
20346722 2642
da6971d8 2643 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2644 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 if (first_rxdp) {
2646 wmb();
2647 first_rxdp->Control_1 |= RXD_OWN_XENA;
2648 }
2649 first_rxdp = rxdp;
2650 }
0425b46a 2651 ring->rx_bufs_left += 1;
1da177e4
LT
2652 alloc_tab++;
2653 }
2654
d44570e4 2655end:
303bcb4b 2656 /* Transfer ownership of first descriptor to adapter just before
2657 * exiting. Before that, use memory barrier so that ownership
2658 * and other fields are seen by adapter correctly.
2659 */
2660 if (first_rxdp) {
2661 wmb();
2662 first_rxdp->Control_1 |= RXD_OWN_XENA;
2663 }
2664
1da177e4 2665 return SUCCESS;
d44570e4 2666
491abf25 2667pci_map_failed:
ffb5df6c
JP
2668 swstats->pci_map_fail_cnt++;
2669 swstats->mem_freed += skb->truesize;
491abf25
VP
2670 dev_kfree_skb_irq(skb);
2671 return -ENOMEM;
1da177e4
LT
2672}
2673
da6971d8
AR
2674static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675{
2676 struct net_device *dev = sp->dev;
2677 int j;
2678 struct sk_buff *skb;
1ee6dd77 2679 struct RxD_t *rxdp;
6d517a27
VP
2680 struct RxD1 *rxdp1;
2681 struct RxD3 *rxdp3;
ffb5df6c
JP
2682 struct mac_info *mac_control = &sp->mac_control;
2683 struct stat_block *stats = mac_control->stats_info;
2684 struct swStat *swstats = &stats->sw_stat;
da6971d8 2685
da6971d8
AR
2686 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2688 rx_blocks[blk].rxds[j].virt_addr;
2689 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 if (!skb)
da6971d8 2691 continue;
da6971d8 2692 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2693 rxdp1 = (struct RxD1 *)rxdp;
2694 pci_unmap_single(sp->pdev,
2695 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 dev->mtu +
2697 HEADER_ETHERNET_II_802_3_SIZE +
2698 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 PCI_DMA_FROMDEVICE);
1ee6dd77 2700 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2701 } else if (sp->rxd_mode == RXD_MODE_3B) {
2702 rxdp3 = (struct RxD3 *)rxdp;
d44570e4
JP
2703 pci_unmap_single(sp->pdev,
2704 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 BUF0_LEN,
2706 PCI_DMA_FROMDEVICE);
2707 pci_unmap_single(sp->pdev,
2708 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 BUF1_LEN,
2710 PCI_DMA_FROMDEVICE);
2711 pci_unmap_single(sp->pdev,
2712 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 dev->mtu + 4,
2714 PCI_DMA_FROMDEVICE);
1ee6dd77 2715 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2716 }
ffb5df6c 2717 swstats->mem_freed += skb->truesize;
da6971d8 2718 dev_kfree_skb(skb);
0425b46a 2719 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2720 }
2721}
2722
1da177e4 2723/**
20346722 2724 * free_rx_buffers - Frees all Rx buffers
1da177e4 2725 * @sp: device private variable.
20346722 2726 * Description:
1da177e4
LT
2727 * This function will free all Rx buffers allocated by host.
2728 * Return Value:
2729 * NONE.
2730 */
2731
2732static void free_rx_buffers(struct s2io_nic *sp)
2733{
2734 struct net_device *dev = sp->dev;
da6971d8 2735 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2736 struct config_param *config = &sp->config;
2737 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2738
2739 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2740 struct ring_info *ring = &mac_control->rings[i];
2741
da6971d8 2742 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2743 free_rxd_blk(sp, i, blk);
1da177e4 2744
13d866a9
JP
2745 ring->rx_curr_put_info.block_index = 0;
2746 ring->rx_curr_get_info.block_index = 0;
2747 ring->rx_curr_put_info.offset = 0;
2748 ring->rx_curr_get_info.offset = 0;
2749 ring->rx_bufs_left = 0;
9e39f7c5 2750 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2751 dev->name, buf_cnt, i);
2752 }
2753}
2754
8d8bb39b 2755static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2756{
8d8bb39b 2757 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2758 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 ring->dev->name);
f61e0a35
SH
2760 }
2761 return 0;
2762}
2763
1da177e4
LT
2764/**
2765 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2766 * @napi : pointer to the napi structure.
20346722 2767 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2768 * during one pass through the 'Poll" function.
2769 * Description:
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2773 * Return value:
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2775 */
2776
f61e0a35 2777static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2778{
f61e0a35
SH
2779 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 struct net_device *dev = ring->dev;
f61e0a35 2781 int pkts_processed = 0;
1a79d1c3
AV
2782 u8 __iomem *addr = NULL;
2783 u8 val8 = 0;
4cf1653a 2784 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2785 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2786 int budget_org = budget;
1da177e4 2787
f61e0a35
SH
2788 if (unlikely(!is_s2io_card_up(nic)))
2789 return 0;
1da177e4 2790
f61e0a35 2791 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2792 s2io_chk_rx_buffers(nic, ring);
1da177e4 2793
f61e0a35 2794 if (pkts_processed < budget_org) {
288379f0 2795 napi_complete(napi);
f61e0a35 2796 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2797 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2798 addr += 7 - ring->ring_no;
2799 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 writeb(val8, addr);
2801 val8 = readb(addr);
1da177e4 2802 }
f61e0a35
SH
2803 return pkts_processed;
2804}
d44570e4 2805
f61e0a35
SH
2806static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807{
2808 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2809 int pkts_processed = 0;
2810 int ring_pkts_processed, i;
2811 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 int budget_org = budget;
ffb5df6c
JP
2813 struct config_param *config = &nic->config;
2814 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2815
f61e0a35
SH
2816 if (unlikely(!is_s2io_card_up(nic)))
2817 return 0;
1da177e4 2818
1da177e4 2819 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2820 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2821 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2822 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2823 pkts_processed += ring_pkts_processed;
2824 budget -= ring_pkts_processed;
2825 if (budget <= 0)
1da177e4 2826 break;
1da177e4 2827 }
f61e0a35 2828 if (pkts_processed < budget_org) {
288379f0 2829 napi_complete(napi);
f61e0a35
SH
2830 /* Re enable the Rx interrupts for the ring */
2831 writeq(0, &bar0->rx_traffic_mask);
2832 readl(&bar0->rx_traffic_mask);
2833 }
2834 return pkts_processed;
1da177e4 2835}
20346722 2836
b41477f3 2837#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2838/**
b41477f3 2839 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2840 * @dev : pointer to the device structure.
2841 * Description:
b41477f3
AR
2842 * This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
612eff0e 2846 */
612eff0e
BH
2847static void s2io_netpoll(struct net_device *dev)
2848{
4cf1653a 2849 struct s2io_nic *nic = netdev_priv(dev);
80777c54 2850 const int irq = nic->pdev->irq;
1ee6dd77 2851 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2852 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2853 int i;
ffb5df6c
JP
2854 struct config_param *config = &nic->config;
2855 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2856
d796fdb7
LV
2857 if (pci_channel_offline(nic->pdev))
2858 return;
2859
80777c54 2860 disable_irq(irq);
612eff0e 2861
612eff0e 2862 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2863 writeq(val64, &bar0->tx_traffic_int);
2864
6aa20a22 2865 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2866 * run out of skbs and will fail and eventually netpoll application such
2867 * as netdump will fail.
2868 */
2869 for (i = 0; i < config->tx_fifo_num; i++)
2870 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2871
b41477f3 2872 /* check for received packet and indicate up to network */
13d866a9
JP
2873 for (i = 0; i < config->rx_ring_num; i++) {
2874 struct ring_info *ring = &mac_control->rings[i];
2875
2876 rx_intr_handler(ring, 0);
2877 }
612eff0e
BH
2878
2879 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2880 struct ring_info *ring = &mac_control->rings[i];
2881
2882 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2883 DBG_PRINT(INFO_DBG,
2884 "%s: Out of memory in Rx Netpoll!!\n",
2885 dev->name);
612eff0e
BH
2886 break;
2887 }
2888 }
80777c54 2889 enable_irq(irq);
612eff0e
BH
2890}
2891#endif
2892
20346722 2893/**
1da177e4 2894 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2895 * @ring_info: per ring structure.
2896 * @budget: budget for napi processing.
20346722 2897 * Description:
2898 * If the interrupt is because of a received frame or if the
1da177e4 2899 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2900 * called. It picks out the RxD at which place the last Rx processing had
2901 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2902 * the offset.
2903 * Return Value:
f61e0a35 2904 * No. of napi packets processed.
1da177e4 2905 */
f61e0a35 2906static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2907{
c9fcbf47 2908 int get_block, put_block;
1ee6dd77
RB
2909 struct rx_curr_get_info get_info, put_info;
2910 struct RxD_t *rxdp;
1da177e4 2911 struct sk_buff *skb;
f61e0a35 2912 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2913 int i;
d44570e4
JP
2914 struct RxD1 *rxdp1;
2915 struct RxD3 *rxdp3;
7d3d0439 2916
20346722 2917 get_info = ring_data->rx_curr_get_info;
2918 get_block = get_info.block_index;
1ee6dd77 2919 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2920 put_block = put_info.block_index;
da6971d8 2921 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2922
da6971d8 2923 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2924 /*
2925 * If your are next to put index then it's
2926 * FIFO full condition
2927 */
da6971d8
AR
2928 if ((get_block == put_block) &&
2929 (get_info.offset + 1) == put_info.offset) {
0425b46a 2930 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2931 ring_data->dev->name);
da6971d8
AR
2932 break;
2933 }
d44570e4 2934 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2935 if (skb == NULL) {
9e39f7c5 2936 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2937 ring_data->dev->name);
f61e0a35 2938 return 0;
1da177e4 2939 }
0425b46a 2940 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2941 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2942 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2943 rxdp1->Buffer0_ptr,
2944 ring_data->mtu +
2945 HEADER_ETHERNET_II_802_3_SIZE +
2946 HEADER_802_2_SIZE +
2947 HEADER_SNAP_SIZE,
2948 PCI_DMA_FROMDEVICE);
0425b46a 2949 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
2950 rxdp3 = (struct RxD3 *)rxdp;
2951 pci_dma_sync_single_for_cpu(ring_data->pdev,
2952 (dma_addr_t)rxdp3->Buffer0_ptr,
2953 BUF0_LEN,
2954 PCI_DMA_FROMDEVICE);
2955 pci_unmap_single(ring_data->pdev,
2956 (dma_addr_t)rxdp3->Buffer2_ptr,
2957 ring_data->mtu + 4,
2958 PCI_DMA_FROMDEVICE);
da6971d8 2959 }
863c11a9 2960 prefetch(skb->data);
20346722 2961 rx_osm_handler(ring_data, rxdp);
2962 get_info.offset++;
da6971d8
AR
2963 ring_data->rx_curr_get_info.offset = get_info.offset;
2964 rxdp = ring_data->rx_blocks[get_block].
d44570e4 2965 rxds[get_info.offset].virt_addr;
0425b46a 2966 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 2967 get_info.offset = 0;
da6971d8 2968 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2969 get_block++;
da6971d8
AR
2970 if (get_block == ring_data->block_count)
2971 get_block = 0;
2972 ring_data->rx_curr_get_info.block_index = get_block;
20346722 2973 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2974 }
1da177e4 2975
f61e0a35
SH
2976 if (ring_data->nic->config.napi) {
2977 budget--;
2978 napi_pkts++;
2979 if (!budget)
0425b46a
SH
2980 break;
2981 }
20346722 2982 pkt_cnt++;
1da177e4
LT
2983 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2984 break;
2985 }
0425b46a 2986 if (ring_data->lro) {
7d3d0439 2987 /* Clear all LRO sessions before exiting */
d44570e4 2988 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 2989 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 2990 if (lro->in_use) {
0425b46a 2991 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 2992 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
2993 clear_lro_session(lro);
2994 }
2995 }
2996 }
d44570e4 2997 return napi_pkts;
1da177e4 2998}
20346722 2999
3000/**
1da177e4
LT
3001 * tx_intr_handler - Transmit interrupt handler
3002 * @nic : device private variable
20346722 3003 * Description:
3004 * If an interrupt was raised to indicate DMA complete of the
3005 * Tx packet, this function is called. It identifies the last TxD
3006 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3007 * DMA'ed into the NICs internal memory.
3008 * Return Value:
3009 * NONE
3010 */
3011
1ee6dd77 3012static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3013{
1ee6dd77 3014 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3015 struct tx_curr_get_info get_info, put_info;
3a3d5756 3016 struct sk_buff *skb = NULL;
1ee6dd77 3017 struct TxD *txdlp;
3a3d5756 3018 int pkt_cnt = 0;
2fda096d 3019 unsigned long flags = 0;
f9046eb3 3020 u8 err_mask;
ffb5df6c
JP
3021 struct stat_block *stats = nic->mac_control.stats_info;
3022 struct swStat *swstats = &stats->sw_stat;
1da177e4 3023
2fda096d 3024 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3025 return;
2fda096d 3026
20346722 3027 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3028 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
43d620c8 3029 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
20346722 3030 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3031 (get_info.offset != put_info.offset) &&
3032 (txdlp->Host_Control)) {
3033 /* Check for TxD errors */
3034 if (txdlp->Control_1 & TXD_T_CODE) {
3035 unsigned long long err;
3036 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3037 if (err & 0x1) {
ffb5df6c 3038 swstats->parity_err_cnt++;
bd1034f0 3039 }
491976b2
SH
3040
3041 /* update t_code statistics */
f9046eb3 3042 err_mask = err >> 48;
d44570e4
JP
3043 switch (err_mask) {
3044 case 2:
ffb5df6c 3045 swstats->tx_buf_abort_cnt++;
491976b2
SH
3046 break;
3047
d44570e4 3048 case 3:
ffb5df6c 3049 swstats->tx_desc_abort_cnt++;
491976b2
SH
3050 break;
3051
d44570e4 3052 case 7:
ffb5df6c 3053 swstats->tx_parity_err_cnt++;
491976b2
SH
3054 break;
3055
d44570e4 3056 case 10:
ffb5df6c 3057 swstats->tx_link_loss_cnt++;
491976b2
SH
3058 break;
3059
d44570e4 3060 case 15:
ffb5df6c 3061 swstats->tx_list_proc_err_cnt++;
491976b2 3062 break;
d44570e4 3063 }
20346722 3064 }
1da177e4 3065
fed5eccd 3066 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3067 if (skb == NULL) {
2fda096d 3068 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3069 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3070 __func__);
20346722 3071 return;
3072 }
3a3d5756 3073 pkt_cnt++;
20346722 3074
20346722 3075 /* Updating the statistics block */
ffb5df6c 3076 swstats->mem_freed += skb->truesize;
20346722 3077 dev_kfree_skb_irq(skb);
3078
3079 get_info.offset++;
863c11a9
AR
3080 if (get_info.offset == get_info.fifo_len + 1)
3081 get_info.offset = 0;
43d620c8 3082 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
d44570e4 3083 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3084 }
3085
3a3d5756 3086 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3087
3088 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3089}
3090
bd1034f0
AR
3091/**
3092 * s2io_mdio_write - Function to write in to MDIO registers
3093 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3094 * @addr : address value
3095 * @value : data value
3096 * @dev : pointer to net_device structure
3097 * Description:
3098 * This function is used to write values to the MDIO registers
3099 * NONE
3100 */
d44570e4
JP
3101static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3102 struct net_device *dev)
bd1034f0 3103{
d44570e4 3104 u64 val64;
4cf1653a 3105 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3106 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3107
d44570e4
JP
3108 /* address transaction */
3109 val64 = MDIO_MMD_INDX_ADDR(addr) |
3110 MDIO_MMD_DEV_ADDR(mmd_type) |
3111 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3112 writeq(val64, &bar0->mdio_control);
3113 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3114 writeq(val64, &bar0->mdio_control);
3115 udelay(100);
3116
d44570e4
JP
3117 /* Data transaction */
3118 val64 = MDIO_MMD_INDX_ADDR(addr) |
3119 MDIO_MMD_DEV_ADDR(mmd_type) |
3120 MDIO_MMS_PRT_ADDR(0x0) |
3121 MDIO_MDIO_DATA(value) |
3122 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3123 writeq(val64, &bar0->mdio_control);
3124 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3125 writeq(val64, &bar0->mdio_control);
3126 udelay(100);
3127
d44570e4
JP
3128 val64 = MDIO_MMD_INDX_ADDR(addr) |
3129 MDIO_MMD_DEV_ADDR(mmd_type) |
3130 MDIO_MMS_PRT_ADDR(0x0) |
3131 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3132 writeq(val64, &bar0->mdio_control);
3133 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3134 writeq(val64, &bar0->mdio_control);
3135 udelay(100);
bd1034f0
AR
3136}
3137
3138/**
3139 * s2io_mdio_read - Function to write in to MDIO registers
3140 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3141 * @addr : address value
3142 * @dev : pointer to net_device structure
3143 * Description:
3144 * This function is used to read values to the MDIO registers
3145 * NONE
3146 */
3147static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3148{
3149 u64 val64 = 0x0;
3150 u64 rval64 = 0x0;
4cf1653a 3151 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3152 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3153
3154 /* address transaction */
d44570e4
JP
3155 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3156 | MDIO_MMD_DEV_ADDR(mmd_type)
3157 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3158 writeq(val64, &bar0->mdio_control);
3159 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3160 writeq(val64, &bar0->mdio_control);
3161 udelay(100);
3162
3163 /* Data transaction */
d44570e4
JP
3164 val64 = MDIO_MMD_INDX_ADDR(addr) |
3165 MDIO_MMD_DEV_ADDR(mmd_type) |
3166 MDIO_MMS_PRT_ADDR(0x0) |
3167 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3168 writeq(val64, &bar0->mdio_control);
3169 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3170 writeq(val64, &bar0->mdio_control);
3171 udelay(100);
3172
3173 /* Read the value from regs */
3174 rval64 = readq(&bar0->mdio_control);
3175 rval64 = rval64 & 0xFFFF0000;
3176 rval64 = rval64 >> 16;
3177 return rval64;
3178}
d44570e4 3179
bd1034f0
AR
3180/**
3181 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3182 * @counter : counter value to be updated
bd1034f0
AR
3183 * @flag : flag to indicate the status
3184 * @type : counter type
3185 * Description:
3186 * This function is to check the status of the xpak counters value
3187 * NONE
3188 */
3189
d44570e4
JP
3190static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3191 u16 flag, u16 type)
bd1034f0
AR
3192{
3193 u64 mask = 0x3;
3194 u64 val64;
3195 int i;
d44570e4 3196 for (i = 0; i < index; i++)
bd1034f0
AR
3197 mask = mask << 0x2;
3198
d44570e4 3199 if (flag > 0) {
bd1034f0
AR
3200 *counter = *counter + 1;
3201 val64 = *regs_stat & mask;
3202 val64 = val64 >> (index * 0x2);
3203 val64 = val64 + 1;
d44570e4
JP
3204 if (val64 == 3) {
3205 switch (type) {
bd1034f0 3206 case 1:
9e39f7c5
JP
3207 DBG_PRINT(ERR_DBG,
3208 "Take Xframe NIC out of service.\n");
3209 DBG_PRINT(ERR_DBG,
3210"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3211 break;
bd1034f0 3212 case 2:
9e39f7c5
JP
3213 DBG_PRINT(ERR_DBG,
3214 "Take Xframe NIC out of service.\n");
3215 DBG_PRINT(ERR_DBG,
3216"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3217 break;
bd1034f0 3218 case 3:
9e39f7c5
JP
3219 DBG_PRINT(ERR_DBG,
3220 "Take Xframe NIC out of service.\n");
3221 DBG_PRINT(ERR_DBG,
3222"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3223 break;
bd1034f0 3224 default:
d44570e4
JP
3225 DBG_PRINT(ERR_DBG,
3226 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3227 }
3228 val64 = 0x0;
3229 }
3230 val64 = val64 << (index * 0x2);
3231 *regs_stat = (*regs_stat & (~mask)) | (val64);
3232
3233 } else {
3234 *regs_stat = *regs_stat & (~mask);
3235 }
3236}
3237
3238/**
3239 * s2io_updt_xpak_counter - Function to update the xpak counters
3240 * @dev : pointer to net_device struct
3241 * Description:
3242 * This function is to upate the status of the xpak counters value
3243 * NONE
3244 */
3245static void s2io_updt_xpak_counter(struct net_device *dev)
3246{
3247 u16 flag = 0x0;
3248 u16 type = 0x0;
3249 u16 val16 = 0x0;
3250 u64 val64 = 0x0;
3251 u64 addr = 0x0;
3252
4cf1653a 3253 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3254 struct stat_block *stats = sp->mac_control.stats_info;
3255 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3256
3257 /* Check the communication with the MDIO slave */
40239396 3258 addr = MDIO_CTRL1;
bd1034f0 3259 val64 = 0x0;
40239396 3260 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3261 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3262 DBG_PRINT(ERR_DBG,
3263 "ERR: MDIO slave access failed - Returned %llx\n",
3264 (unsigned long long)val64);
bd1034f0
AR
3265 return;
3266 }
3267
40239396 3268 /* Check for the expected value of control reg 1 */
d44570e4 3269 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3270 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3271 "Returned: %llx- Expected: 0x%x\n",
40239396 3272 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3273 return;
3274 }
3275
3276 /* Loading the DOM register to MDIO register */
3277 addr = 0xA100;
40239396
BH
3278 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3279 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3280
3281 /* Reading the Alarm flags */
3282 addr = 0xA070;
3283 val64 = 0x0;
40239396 3284 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3285
3286 flag = CHECKBIT(val64, 0x7);
3287 type = 1;
ffb5df6c
JP
3288 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3289 &xstats->xpak_regs_stat,
d44570e4 3290 0x0, flag, type);
bd1034f0 3291
d44570e4 3292 if (CHECKBIT(val64, 0x6))
ffb5df6c 3293 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3294
3295 flag = CHECKBIT(val64, 0x3);
3296 type = 2;
ffb5df6c
JP
3297 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3298 &xstats->xpak_regs_stat,
d44570e4 3299 0x2, flag, type);
bd1034f0 3300
d44570e4 3301 if (CHECKBIT(val64, 0x2))
ffb5df6c 3302 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3303
3304 flag = CHECKBIT(val64, 0x1);
3305 type = 3;
ffb5df6c
JP
3306 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3307 &xstats->xpak_regs_stat,
d44570e4 3308 0x4, flag, type);
bd1034f0 3309
d44570e4 3310 if (CHECKBIT(val64, 0x0))
ffb5df6c 3311 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3312
3313 /* Reading the Warning flags */
3314 addr = 0xA074;
3315 val64 = 0x0;
40239396 3316 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3317
d44570e4 3318 if (CHECKBIT(val64, 0x7))
ffb5df6c 3319 xstats->warn_transceiver_temp_high++;
bd1034f0 3320
d44570e4 3321 if (CHECKBIT(val64, 0x6))
ffb5df6c 3322 xstats->warn_transceiver_temp_low++;
bd1034f0 3323
d44570e4 3324 if (CHECKBIT(val64, 0x3))
ffb5df6c 3325 xstats->warn_laser_bias_current_high++;
bd1034f0 3326
d44570e4 3327 if (CHECKBIT(val64, 0x2))
ffb5df6c 3328 xstats->warn_laser_bias_current_low++;
bd1034f0 3329
d44570e4 3330 if (CHECKBIT(val64, 0x1))
ffb5df6c 3331 xstats->warn_laser_output_power_high++;
bd1034f0 3332
d44570e4 3333 if (CHECKBIT(val64, 0x0))
ffb5df6c 3334 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3335}
3336
20346722 3337/**
1da177e4 3338 * wait_for_cmd_complete - waits for a command to complete.
20346722 3339 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3340 * s2io_nic structure.
20346722 3341 * Description: Function that waits for a command to Write into RMAC
3342 * ADDR DATA registers to be completed and returns either success or
3343 * error depending on whether the command was complete or not.
1da177e4
LT
3344 * Return value:
3345 * SUCCESS on success and FAILURE on failure.
3346 */
3347
9fc93a41 3348static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3349 int bit_state)
1da177e4 3350{
9fc93a41 3351 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3352 u64 val64;
3353
9fc93a41
SS
3354 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3355 return FAILURE;
3356
3357 do {
c92ca04b 3358 val64 = readq(addr);
9fc93a41
SS
3359 if (bit_state == S2IO_BIT_RESET) {
3360 if (!(val64 & busy_bit)) {
3361 ret = SUCCESS;
3362 break;
3363 }
3364 } else {
2d146eb1 3365 if (val64 & busy_bit) {
9fc93a41
SS
3366 ret = SUCCESS;
3367 break;
3368 }
1da177e4 3369 }
c92ca04b 3370
d44570e4 3371 if (in_interrupt())
9fc93a41 3372 mdelay(delay);
c92ca04b 3373 else
9fc93a41 3374 msleep(delay);
c92ca04b 3375
9fc93a41
SS
3376 if (++cnt >= 10)
3377 delay = 50;
3378 } while (cnt < 20);
1da177e4
LT
3379 return ret;
3380}
49ce9c2c 3381/**
19a60522
SS
3382 * check_pci_device_id - Checks if the device id is supported
3383 * @id : device id
3384 * Description: Function to check if the pci device id is supported by driver.
3385 * Return value: Actual device id if supported else PCI_ANY_ID
3386 */
3387static u16 check_pci_device_id(u16 id)
3388{
3389 switch (id) {
3390 case PCI_DEVICE_ID_HERC_WIN:
3391 case PCI_DEVICE_ID_HERC_UNI:
3392 return XFRAME_II_DEVICE;
3393 case PCI_DEVICE_ID_S2IO_UNI:
3394 case PCI_DEVICE_ID_S2IO_WIN:
3395 return XFRAME_I_DEVICE;
3396 default:
3397 return PCI_ANY_ID;
3398 }
3399}
1da177e4 3400
20346722 3401/**
3402 * s2io_reset - Resets the card.
1da177e4
LT
3403 * @sp : private member of the device structure.
3404 * Description: Function to Reset the card. This function then also
20346722 3405 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3406 * the card reset also resets the configuration space.
3407 * Return value:
3408 * void.
3409 */
3410
d44570e4 3411static void s2io_reset(struct s2io_nic *sp)
1da177e4 3412{
1ee6dd77 3413 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3414 u64 val64;
5e25b9dd 3415 u16 subid, pci_cmd;
19a60522
SS
3416 int i;
3417 u16 val16;
491976b2
SH
3418 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3419 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3420 struct stat_block *stats;
3421 struct swStat *swstats;
491976b2 3422
9e39f7c5 3423 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3424 __func__, pci_name(sp->pdev));
1da177e4 3425
0b1f7ebe 3426 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3427 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3428
1da177e4
LT
3429 val64 = SW_RESET_ALL;
3430 writeq(val64, &bar0->sw_reset);
d44570e4 3431 if (strstr(sp->product_name, "CX4"))
c92ca04b 3432 msleep(750);
19a60522
SS
3433 msleep(250);
3434 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3435
19a60522
SS
3436 /* Restore the PCI state saved during initialization. */
3437 pci_restore_state(sp->pdev);
b8a623bf 3438 pci_save_state(sp->pdev);
19a60522
SS
3439 pci_read_config_word(sp->pdev, 0x2, &val16);
3440 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3441 break;
3442 msleep(200);
3443 }
1da177e4 3444
d44570e4
JP
3445 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3446 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3447
3448 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3449
3450 s2io_init_pci(sp);
1da177e4 3451
20346722 3452 /* Set swapper to enable I/O register access */
3453 s2io_set_swapper(sp);
3454
faa4f796
SH
3455 /* restore mac_addr entries */
3456 do_s2io_restore_unicast_mc(sp);
3457
cc6e7c44
RA
3458 /* Restore the MSIX table entries from local variables */
3459 restore_xmsi_data(sp);
3460
5e25b9dd 3461 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3462 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3463 /* Clear "detected parity error" bit */
303bcb4b 3464 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3465
303bcb4b 3466 /* Clearing PCIX Ecc status register */
3467 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3468
303bcb4b 3469 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3470 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3471 }
5e25b9dd 3472
20346722 3473 /* Reset device statistics maintained by OS */
d44570e4 3474 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3475
ffb5df6c
JP
3476 stats = sp->mac_control.stats_info;
3477 swstats = &stats->sw_stat;
3478
491976b2 3479 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3480 up_cnt = swstats->link_up_cnt;
3481 down_cnt = swstats->link_down_cnt;
3482 up_time = swstats->link_up_time;
3483 down_time = swstats->link_down_time;
3484 reset_cnt = swstats->soft_reset_cnt;
3485 mem_alloc_cnt = swstats->mem_allocated;
3486 mem_free_cnt = swstats->mem_freed;
3487 watchdog_cnt = swstats->watchdog_timer_cnt;
3488
3489 memset(stats, 0, sizeof(struct stat_block));
3490
491976b2 3491 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3492 swstats->link_up_cnt = up_cnt;
3493 swstats->link_down_cnt = down_cnt;
3494 swstats->link_up_time = up_time;
3495 swstats->link_down_time = down_time;
3496 swstats->soft_reset_cnt = reset_cnt;
3497 swstats->mem_allocated = mem_alloc_cnt;
3498 swstats->mem_freed = mem_free_cnt;
3499 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3500
1da177e4
LT
3501 /* SXE-002: Configure link and activity LED to turn it off */
3502 subid = sp->pdev->subsystem_device;
541ae68f 3503 if (((subid & 0xFF) >= 0x07) &&
3504 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3505 val64 = readq(&bar0->gpio_control);
3506 val64 |= 0x0000800000000000ULL;
3507 writeq(val64, &bar0->gpio_control);
3508 val64 = 0x0411040400000000ULL;
509a2671 3509 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3510 }
3511
541ae68f 3512 /*
25985edc 3513 * Clear spurious ECC interrupts that would have occurred on
541ae68f 3514 * XFRAME II cards after reset.
3515 */
3516 if (sp->device_type == XFRAME_II_DEVICE) {
3517 val64 = readq(&bar0->pcc_err_reg);
3518 writeq(val64, &bar0->pcc_err_reg);
3519 }
3520
f957bcf0 3521 sp->device_enabled_once = false;
1da177e4
LT
3522}
3523
3524/**
20346722 3525 * s2io_set_swapper - to set the swapper controle on the card
3526 * @sp : private member of the device structure,
1da177e4 3527 * pointer to the s2io_nic structure.
20346722 3528 * Description: Function to set the swapper control on the card
1da177e4
LT
3529 * correctly depending on the 'endianness' of the system.
3530 * Return value:
3531 * SUCCESS on success and FAILURE on failure.
3532 */
3533
d44570e4 3534static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3535{
3536 struct net_device *dev = sp->dev;
1ee6dd77 3537 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3538 u64 val64, valt, valr;
3539
20346722 3540 /*
1da177e4
LT
3541 * Set proper endian settings and verify the same by reading
3542 * the PIF Feed-back register.
3543 */
3544
3545 val64 = readq(&bar0->pif_rd_swapper_fb);
3546 if (val64 != 0x0123456789ABCDEFULL) {
3547 int i = 0;
85a56498
JM
3548 static const u64 value[] = {
3549 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3550 0x8100008181000081ULL, /* FE=1, SE=0 */
3551 0x4200004242000042ULL, /* FE=0, SE=1 */
3552 0 /* FE=0, SE=0 */
3553 };
1da177e4 3554
d44570e4 3555 while (i < 4) {
1da177e4
LT
3556 writeq(value[i], &bar0->swapper_ctrl);
3557 val64 = readq(&bar0->pif_rd_swapper_fb);
3558 if (val64 == 0x0123456789ABCDEFULL)
3559 break;
3560 i++;
3561 }
3562 if (i == 4) {
9e39f7c5
JP
3563 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3564 "feedback read %llx\n",
3565 dev->name, (unsigned long long)val64);
1da177e4
LT
3566 return FAILURE;
3567 }
3568 valr = value[i];
3569 } else {
3570 valr = readq(&bar0->swapper_ctrl);
3571 }
3572
3573 valt = 0x0123456789ABCDEFULL;
3574 writeq(valt, &bar0->xmsi_address);
3575 val64 = readq(&bar0->xmsi_address);
3576
d44570e4 3577 if (val64 != valt) {
1da177e4 3578 int i = 0;
85a56498
JM
3579 static const u64 value[] = {
3580 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3581 0x0081810000818100ULL, /* FE=1, SE=0 */
3582 0x0042420000424200ULL, /* FE=0, SE=1 */
3583 0 /* FE=0, SE=0 */
3584 };
1da177e4 3585
d44570e4 3586 while (i < 4) {
1da177e4
LT
3587 writeq((value[i] | valr), &bar0->swapper_ctrl);
3588 writeq(valt, &bar0->xmsi_address);
3589 val64 = readq(&bar0->xmsi_address);
d44570e4 3590 if (val64 == valt)
1da177e4
LT
3591 break;
3592 i++;
3593 }
d44570e4 3594 if (i == 4) {
20346722 3595 unsigned long long x = val64;
9e39f7c5
JP
3596 DBG_PRINT(ERR_DBG,
3597 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3598 return FAILURE;
3599 }
3600 }
3601 val64 = readq(&bar0->swapper_ctrl);
3602 val64 &= 0xFFFF000000000000ULL;
3603
d44570e4 3604#ifdef __BIG_ENDIAN
20346722 3605 /*
3606 * The device by default set to a big endian format, so a
1da177e4
LT
3607 * big endian driver need not set anything.
3608 */
3609 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3610 SWAPPER_CTRL_TXP_SE |
3611 SWAPPER_CTRL_TXD_R_FE |
3612 SWAPPER_CTRL_TXD_W_FE |
3613 SWAPPER_CTRL_TXF_R_FE |
3614 SWAPPER_CTRL_RXD_R_FE |
3615 SWAPPER_CTRL_RXD_W_FE |
3616 SWAPPER_CTRL_RXF_W_FE |
3617 SWAPPER_CTRL_XMSI_FE |
3618 SWAPPER_CTRL_STATS_FE |
3619 SWAPPER_CTRL_STATS_SE);
eaae7f72 3620 if (sp->config.intr_type == INTA)
cc6e7c44 3621 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3622 writeq(val64, &bar0->swapper_ctrl);
3623#else
20346722 3624 /*
1da177e4 3625 * Initially we enable all bits to make it accessible by the
20346722 3626 * driver, then we selectively enable only those bits that
1da177e4
LT
3627 * we want to set.
3628 */
3629 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3630 SWAPPER_CTRL_TXP_SE |
3631 SWAPPER_CTRL_TXD_R_FE |
3632 SWAPPER_CTRL_TXD_R_SE |
3633 SWAPPER_CTRL_TXD_W_FE |
3634 SWAPPER_CTRL_TXD_W_SE |
3635 SWAPPER_CTRL_TXF_R_FE |
3636 SWAPPER_CTRL_RXD_R_FE |
3637 SWAPPER_CTRL_RXD_R_SE |
3638 SWAPPER_CTRL_RXD_W_FE |
3639 SWAPPER_CTRL_RXD_W_SE |
3640 SWAPPER_CTRL_RXF_W_FE |
3641 SWAPPER_CTRL_XMSI_FE |
3642 SWAPPER_CTRL_STATS_FE |
3643 SWAPPER_CTRL_STATS_SE);
eaae7f72 3644 if (sp->config.intr_type == INTA)
cc6e7c44 3645 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3646 writeq(val64, &bar0->swapper_ctrl);
3647#endif
3648 val64 = readq(&bar0->swapper_ctrl);
3649
20346722 3650 /*
3651 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3652 * feedback register.
3653 */
3654 val64 = readq(&bar0->pif_rd_swapper_fb);
3655 if (val64 != 0x0123456789ABCDEFULL) {
3656 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3657 DBG_PRINT(ERR_DBG,
3658 "%s: Endian settings are wrong, feedback read %llx\n",
3659 dev->name, (unsigned long long)val64);
1da177e4
LT
3660 return FAILURE;
3661 }
3662
3663 return SUCCESS;
3664}
3665
1ee6dd77 3666static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3667{
1ee6dd77 3668 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3669 u64 val64;
3670 int ret = 0, cnt = 0;
3671
3672 do {
3673 val64 = readq(&bar0->xmsi_access);
b7b5a128 3674 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3675 break;
3676 mdelay(1);
3677 cnt++;
d44570e4 3678 } while (cnt < 5);
cc6e7c44
RA
3679 if (cnt == 5) {
3680 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3681 ret = 1;
3682 }
3683
3684 return ret;
3685}
3686
1ee6dd77 3687static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3688{
1ee6dd77 3689 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3690 u64 val64;
f61e0a35
SH
3691 int i, msix_index;
3692
f61e0a35
SH
3693 if (nic->device_type == XFRAME_I_DEVICE)
3694 return;
cc6e7c44 3695
d44570e4
JP
3696 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3697 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3698 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3699 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3700 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3701 writeq(val64, &bar0->xmsi_access);
f61e0a35 3702 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3703 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3704 __func__, msix_index);
cc6e7c44
RA
3705 continue;
3706 }
3707 }
3708}
3709
1ee6dd77 3710static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3711{
1ee6dd77 3712 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3713 u64 val64, addr, data;
f61e0a35
SH
3714 int i, msix_index;
3715
3716 if (nic->device_type == XFRAME_I_DEVICE)
3717 return;
cc6e7c44
RA
3718
3719 /* Store and display */
d44570e4
JP
3720 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3721 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3722 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3723 writeq(val64, &bar0->xmsi_access);
f61e0a35 3724 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3725 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3726 __func__, msix_index);
cc6e7c44
RA
3727 continue;
3728 }
3729 addr = readq(&bar0->xmsi_address);
3730 data = readq(&bar0->xmsi_data);
3731 if (addr && data) {
3732 nic->msix_info[i].addr = addr;
3733 nic->msix_info[i].data = data;
3734 }
3735 }
3736}
3737
1ee6dd77 3738static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3739{
1ee6dd77 3740 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3741 u64 rx_mat;
cc6e7c44
RA
3742 u16 msi_control; /* Temp variable */
3743 int ret, i, j, msix_indx = 1;
4f870320 3744 int size;
ffb5df6c
JP
3745 struct stat_block *stats = nic->mac_control.stats_info;
3746 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3747
4f870320 3748 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3749 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3750 if (!nic->entries) {
d44570e4
JP
3751 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3752 __func__);
ffb5df6c 3753 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3754 return -ENOMEM;
3755 }
ffb5df6c 3756 swstats->mem_allocated += size;
f61e0a35 3757
4f870320 3758 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3759 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3760 if (!nic->s2io_entries) {
8a4bdbaa 3761 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3762 __func__);
ffb5df6c 3763 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3764 kfree(nic->entries);
ffb5df6c 3765 swstats->mem_freed
f61e0a35 3766 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3767 return -ENOMEM;
3768 }
ffb5df6c 3769 swstats->mem_allocated += size;
cc6e7c44 3770
ac731ab6
SH
3771 nic->entries[0].entry = 0;
3772 nic->s2io_entries[0].entry = 0;
3773 nic->s2io_entries[0].in_use = MSIX_FLG;
3774 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3775 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3776
f61e0a35
SH
3777 for (i = 1; i < nic->num_entries; i++) {
3778 nic->entries[i].entry = ((i - 1) * 8) + 1;
3779 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3780 nic->s2io_entries[i].arg = NULL;
3781 nic->s2io_entries[i].in_use = 0;
3782 }
3783
8a4bdbaa 3784 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3785 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3786 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3787 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3788 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3789 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3790 msix_indx += 8;
cc6e7c44 3791 }
8a4bdbaa 3792 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3793 readq(&bar0->rx_mat);
cc6e7c44 3794
f61e0a35 3795 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3796 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3797 if (ret) {
9e39f7c5 3798 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3799 kfree(nic->entries);
ffb5df6c
JP
3800 swstats->mem_freed += nic->num_entries *
3801 sizeof(struct msix_entry);
cc6e7c44 3802 kfree(nic->s2io_entries);
ffb5df6c
JP
3803 swstats->mem_freed += nic->num_entries *
3804 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3805 nic->entries = NULL;
3806 nic->s2io_entries = NULL;
3807 return -ENOMEM;
3808 }
3809
3810 /*
3811 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3812 * in the herc NIC. (Temp change, needs to be removed later)
3813 */
3814 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3815 msi_control |= 0x1; /* Enable MSI */
3816 pci_write_config_word(nic->pdev, 0x42, msi_control);
3817
3818 return 0;
3819}
3820
8abc4d5b 3821/* Handle software interrupt used during MSI(X) test */
33390a70 3822static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3823{
3824 struct s2io_nic *sp = dev_id;
3825
3826 sp->msi_detected = 1;
3827 wake_up(&sp->msi_wait);
3828
3829 return IRQ_HANDLED;
3830}
3831
3832/* Test interrupt path by forcing a a software IRQ */
33390a70 3833static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3834{
3835 struct pci_dev *pdev = sp->pdev;
3836 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3837 int err;
3838 u64 val64, saved64;
3839
3840 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3841 sp->name, sp);
8abc4d5b
SS
3842 if (err) {
3843 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3844 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3845 return err;
3846 }
3847
d44570e4 3848 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3849 sp->msi_detected = 0;
3850
3851 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3852 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3853 val64 |= SCHED_INT_CTRL_TIMER_EN;
3854 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3855 writeq(val64, &bar0->scheduled_int_ctrl);
3856
3857 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3858
3859 if (!sp->msi_detected) {
3860 /* MSI(X) test failed, go back to INTx mode */
2450022a 3861 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3862 "using MSI(X) during test\n",
3863 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3864
3865 err = -EOPNOTSUPP;
3866 }
3867
3868 free_irq(sp->entries[1].vector, sp);
3869
3870 writeq(saved64, &bar0->scheduled_int_ctrl);
3871
3872 return err;
3873}
18b2b7bd
SH
3874
3875static void remove_msix_isr(struct s2io_nic *sp)
3876{
3877 int i;
3878 u16 msi_control;
3879
f61e0a35 3880 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3881 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3882 int vector = sp->entries[i].vector;
3883 void *arg = sp->s2io_entries[i].arg;
3884 free_irq(vector, arg);
3885 }
3886 }
3887
3888 kfree(sp->entries);
3889 kfree(sp->s2io_entries);
3890 sp->entries = NULL;
3891 sp->s2io_entries = NULL;
3892
3893 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3894 msi_control &= 0xFFFE; /* Disable MSI */
3895 pci_write_config_word(sp->pdev, 0x42, msi_control);
3896
3897 pci_disable_msix(sp->pdev);
3898}
3899
3900static void remove_inta_isr(struct s2io_nic *sp)
3901{
80777c54 3902 free_irq(sp->pdev->irq, sp->dev);
18b2b7bd
SH
3903}
3904
1da177e4
LT
3905/* ********************************************************* *
3906 * Functions defined below concern the OS part of the driver *
3907 * ********************************************************* */
3908
20346722 3909/**
1da177e4
LT
3910 * s2io_open - open entry point of the driver
3911 * @dev : pointer to the device structure.
3912 * Description:
3913 * This function is the open entry point of the driver. It mainly calls a
3914 * function to allocate Rx buffers and inserts them into the buffer
20346722 3915 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3916 * Return value:
3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3918 * file on failure.
3919 */
3920
ac1f60db 3921static int s2io_open(struct net_device *dev)
1da177e4 3922{
4cf1653a 3923 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3924 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3925 int err = 0;
3926
20346722 3927 /*
3928 * Make sure you have link off by default every time
1da177e4
LT
3929 * Nic is initialized
3930 */
3931 netif_carrier_off(dev);
0b1f7ebe 3932 sp->last_link_state = 0;
1da177e4
LT
3933
3934 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3935 err = s2io_card_up(sp);
3936 if (err) {
1da177e4
LT
3937 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3938 dev->name);
e6a8fee2 3939 goto hw_init_failed;
1da177e4
LT
3940 }
3941
2fd37688 3942 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3943 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3944 s2io_card_down(sp);
20346722 3945 err = -ENODEV;
e6a8fee2 3946 goto hw_init_failed;
1da177e4 3947 }
3a3d5756 3948 s2io_start_all_tx_queue(sp);
1da177e4 3949 return 0;
20346722 3950
20346722 3951hw_init_failed:
eaae7f72 3952 if (sp->config.intr_type == MSI_X) {
491976b2 3953 if (sp->entries) {
cc6e7c44 3954 kfree(sp->entries);
ffb5df6c
JP
3955 swstats->mem_freed += sp->num_entries *
3956 sizeof(struct msix_entry);
491976b2
SH
3957 }
3958 if (sp->s2io_entries) {
cc6e7c44 3959 kfree(sp->s2io_entries);
ffb5df6c
JP
3960 swstats->mem_freed += sp->num_entries *
3961 sizeof(struct s2io_msix_entry);
491976b2 3962 }
cc6e7c44 3963 }
20346722 3964 return err;
1da177e4
LT
3965}
3966
3967/**
3968 * s2io_close -close entry point of the driver
3969 * @dev : device pointer.
3970 * Description:
3971 * This is the stop entry point of the driver. It needs to undo exactly
3972 * whatever was done by the open entry point,thus it's usually referred to
3973 * as the close function.Among other things this function mainly stops the
3974 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3975 * Return value:
3976 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3977 * file on failure.
3978 */
3979
ac1f60db 3980static int s2io_close(struct net_device *dev)
1da177e4 3981{
4cf1653a 3982 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
3983 struct config_param *config = &sp->config;
3984 u64 tmp64;
3985 int offset;
cc6e7c44 3986
9f74ffde 3987 /* Return if the device is already closed *
d44570e4
JP
3988 * Can happen when s2io_card_up failed in change_mtu *
3989 */
9f74ffde
SH
3990 if (!is_s2io_card_up(sp))
3991 return 0;
3992
3a3d5756 3993 s2io_stop_all_tx_queue(sp);
faa4f796
SH
3994 /* delete all populated mac entries */
3995 for (offset = 1; offset < config->max_mc_addr; offset++) {
3996 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3997 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3998 do_s2io_delete_unicast_mc(sp, tmp64);
3999 }
4000
e6a8fee2 4001 s2io_card_down(sp);
cc6e7c44 4002
1da177e4
LT
4003 return 0;
4004}
4005
4006/**
4007 * s2io_xmit - Tx entry point of te driver
4008 * @skb : the socket buffer containing the Tx data.
4009 * @dev : device pointer.
4010 * Description :
4011 * This function is the Tx entry point of the driver. S2IO NIC supports
4012 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
25985edc 4013 * NOTE: when device can't queue the pkt,just the trans_start variable will
1da177e4
LT
4014 * not be upadted.
4015 * Return value:
4016 * 0 on success & 1 on failure.
4017 */
4018
61357325 4019static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4020{
4cf1653a 4021 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4022 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4023 register u64 val64;
1ee6dd77
RB
4024 struct TxD *txdp;
4025 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4026 unsigned long flags = 0;
be3a6b02 4027 u16 vlan_tag = 0;
2fda096d 4028 struct fifo_info *fifo = NULL;
6cfc482b 4029 int do_spin_lock = 1;
75c30b13 4030 int offload_type;
6cfc482b 4031 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4032 struct config_param *config = &sp->config;
4033 struct mac_info *mac_control = &sp->mac_control;
4034 struct stat_block *stats = mac_control->stats_info;
4035 struct swStat *swstats = &stats->sw_stat;
1da177e4 4036
20346722 4037 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4038
4039 if (unlikely(skb->len <= 0)) {
9e39f7c5 4040 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4041 dev_kfree_skb_any(skb);
6ed10654 4042 return NETDEV_TX_OK;
2fda096d 4043 }
491976b2 4044
92b84437 4045 if (!is_s2io_card_up(sp)) {
20346722 4046 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4047 dev->name);
20346722 4048 dev_kfree_skb(skb);
6ed10654 4049 return NETDEV_TX_OK;
1da177e4
LT
4050 }
4051
4052 queue = 0;
eab6d18d 4053 if (vlan_tx_tag_present(skb))
be3a6b02 4054 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4055 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4056 if (skb->protocol == htons(ETH_P_IP)) {
4057 struct iphdr *ip;
4058 struct tcphdr *th;
4059 ip = ip_hdr(skb);
4060
56f8a75c 4061 if (!ip_is_fragment(ip)) {
6cfc482b 4062 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4063 ip->ihl*4);
6cfc482b
SH
4064
4065 if (ip->protocol == IPPROTO_TCP) {
4066 queue_len = sp->total_tcp_fifos;
4067 queue = (ntohs(th->source) +
d44570e4
JP
4068 ntohs(th->dest)) &
4069 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4070 if (queue >= queue_len)
4071 queue = queue_len - 1;
4072 } else if (ip->protocol == IPPROTO_UDP) {
4073 queue_len = sp->total_udp_fifos;
4074 queue = (ntohs(th->source) +
d44570e4
JP
4075 ntohs(th->dest)) &
4076 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4077 if (queue >= queue_len)
4078 queue = queue_len - 1;
4079 queue += sp->udp_fifo_idx;
4080 if (skb->len > 1024)
4081 enable_per_list_interrupt = 1;
4082 do_spin_lock = 0;
4083 }
4084 }
4085 }
4086 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4087 /* get fifo number based on skb->priority value */
4088 queue = config->fifo_mapping
d44570e4 4089 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4090 fifo = &mac_control->fifos[queue];
3a3d5756 4091
6cfc482b
SH
4092 if (do_spin_lock)
4093 spin_lock_irqsave(&fifo->tx_lock, flags);
4094 else {
4095 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4096 return NETDEV_TX_LOCKED;
4097 }
be3a6b02 4098
3a3d5756
SH
4099 if (sp->config.multiq) {
4100 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4101 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102 return NETDEV_TX_BUSY;
4103 }
b19fa1fa 4104 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4105 if (netif_queue_stopped(dev)) {
4106 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4107 return NETDEV_TX_BUSY;
4108 }
4109 }
4110
d44570e4
JP
4111 put_off = (u16)fifo->tx_curr_put_info.offset;
4112 get_off = (u16)fifo->tx_curr_get_info.offset;
43d620c8 4113 txdp = fifo->list_info[put_off].list_virt_addr;
20346722 4114
2fda096d 4115 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4116 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4117 if (txdp->Host_Control ||
d44570e4 4118 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4119 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4120 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4121 dev_kfree_skb(skb);
2fda096d 4122 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4123 return NETDEV_TX_OK;
1da177e4 4124 }
0b1f7ebe 4125
75c30b13 4126 offload_type = s2io_offload_type(skb);
75c30b13 4127 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4128 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4129 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4130 }
84fa7933 4131 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4132 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4133 TXD_TX_CKO_TCP_EN |
4134 TXD_TX_CKO_UDP_EN);
1da177e4 4135 }
fed5eccd
AR
4136 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4137 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4138 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4139 if (enable_per_list_interrupt)
4140 if (put_off & (queue_len >> 5))
4141 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4142 if (vlan_tag) {
be3a6b02 4143 txdp->Control_2 |= TXD_VLAN_ENABLE;
4144 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4145 }
4146
e743d313 4147 frg_len = skb_headlen(skb);
75c30b13 4148 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4149 int ufo_size;
4150
75c30b13 4151 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4152 ufo_size &= ~7;
4153 txdp->Control_1 |= TXD_UFO_EN;
4154 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4155 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4156#ifdef __BIG_ENDIAN
3459feb8 4157 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4158 fifo->ufo_in_band_v[put_off] =
d44570e4 4159 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4160#else
2fda096d 4161 fifo->ufo_in_band_v[put_off] =
d44570e4 4162 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4163#endif
2fda096d 4164 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4165 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4166 fifo->ufo_in_band_v,
4167 sizeof(u64),
4168 PCI_DMA_TODEVICE);
8d8bb39b 4169 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4170 goto pci_map_failed;
fed5eccd 4171 txdp++;
fed5eccd 4172 }
1da177e4 4173
d44570e4
JP
4174 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4175 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4176 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4177 goto pci_map_failed;
4178
d44570e4 4179 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4180 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4181 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4182 txdp->Control_1 |= TXD_UFO_EN;
4183
4184 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4185 /* For fragmented SKB. */
4186 for (i = 0; i < frg_cnt; i++) {
9e903e08 4187 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4188 /* A '0' length fragment will be ignored */
9e903e08 4189 if (!skb_frag_size(frag))
0b1f7ebe 4190 continue;
1da177e4 4191 txdp++;
f0d06d82
IC
4192 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4193 frag, 0,
9e903e08 4194 skb_frag_size(frag),
5d6bcdfe 4195 DMA_TO_DEVICE);
9e903e08 4196 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
75c30b13 4197 if (offload_type == SKB_GSO_UDP)
fed5eccd 4198 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4199 }
4200 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4201
75c30b13 4202 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4203 frg_cnt++; /* as Txd0 was used for inband header */
4204
1da177e4 4205 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4206 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4207 writeq(val64, &tx_fifo->TxDL_Pointer);
4208
4209 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4210 TX_FIFO_LAST_LIST);
75c30b13 4211 if (offload_type)
fed5eccd 4212 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4213
1da177e4
LT
4214 writeq(val64, &tx_fifo->List_Control);
4215
303bcb4b 4216 mmiowb();
4217
1da177e4 4218 put_off++;
2fda096d 4219 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4220 put_off = 0;
2fda096d 4221 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4222
4223 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4224 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4225 swstats->fifo_full_cnt++;
1da177e4
LT
4226 DBG_PRINT(TX_DBG,
4227 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4228 put_off, get_off);
3a3d5756 4229 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4230 }
ffb5df6c 4231 swstats->mem_allocated += skb->truesize;
2fda096d 4232 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4233
f6f4bfa3
SH
4234 if (sp->config.intr_type == MSI_X)
4235 tx_intr_handler(fifo);
4236
6ed10654 4237 return NETDEV_TX_OK;
ffb5df6c 4238
491abf25 4239pci_map_failed:
ffb5df6c 4240 swstats->pci_map_fail_cnt++;
3a3d5756 4241 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4242 swstats->mem_freed += skb->truesize;
491abf25 4243 dev_kfree_skb(skb);
2fda096d 4244 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4245 return NETDEV_TX_OK;
1da177e4
LT
4246}
4247
25fff88e 4248static void
4249s2io_alarm_handle(unsigned long data)
4250{
1ee6dd77 4251 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4252 struct net_device *dev = sp->dev;
25fff88e 4253
8116f3cf 4254 s2io_handle_errors(dev);
25fff88e 4255 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4256}
4257
7d12e780 4258static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4259{
1ee6dd77
RB
4260 struct ring_info *ring = (struct ring_info *)dev_id;
4261 struct s2io_nic *sp = ring->nic;
f61e0a35 4262 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4263
f61e0a35 4264 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4265 return IRQ_HANDLED;
92b84437 4266
f61e0a35 4267 if (sp->config.napi) {
1a79d1c3
AV
4268 u8 __iomem *addr = NULL;
4269 u8 val8 = 0;
f61e0a35 4270
1a79d1c3 4271 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4272 addr += (7 - ring->ring_no);
4273 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4274 writeb(val8, addr);
4275 val8 = readb(addr);
288379f0 4276 napi_schedule(&ring->napi);
f61e0a35
SH
4277 } else {
4278 rx_intr_handler(ring, 0);
8d8bb39b 4279 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4280 }
7d3d0439 4281
cc6e7c44
RA
4282 return IRQ_HANDLED;
4283}
4284
7d12e780 4285static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4286{
ac731ab6
SH
4287 int i;
4288 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4289 struct s2io_nic *sp = fifos->nic;
4290 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4291 struct config_param *config = &sp->config;
4292 u64 reason;
cc6e7c44 4293
ac731ab6
SH
4294 if (unlikely(!is_s2io_card_up(sp)))
4295 return IRQ_NONE;
4296
4297 reason = readq(&bar0->general_int_status);
4298 if (unlikely(reason == S2IO_MINUS_ONE))
4299 /* Nothing much can be done. Get out */
92b84437 4300 return IRQ_HANDLED;
92b84437 4301
01e16faa
SH
4302 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4303 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4304
01e16faa
SH
4305 if (reason & GEN_INTR_TXPIC)
4306 s2io_txpic_intr_handle(sp);
ac731ab6 4307
01e16faa
SH
4308 if (reason & GEN_INTR_TXTRAFFIC)
4309 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4310
01e16faa
SH
4311 for (i = 0; i < config->tx_fifo_num; i++)
4312 tx_intr_handler(&fifos[i]);
ac731ab6 4313
01e16faa
SH
4314 writeq(sp->general_int_mask, &bar0->general_int_mask);
4315 readl(&bar0->general_int_status);
4316 return IRQ_HANDLED;
4317 }
4318 /* The interrupt was not raised by us */
4319 return IRQ_NONE;
cc6e7c44 4320}
ac731ab6 4321
1ee6dd77 4322static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4323{
1ee6dd77 4324 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4325 u64 val64;
4326
4327 val64 = readq(&bar0->pic_int_status);
4328 if (val64 & PIC_INT_GPIO) {
4329 val64 = readq(&bar0->gpio_int_reg);
4330 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4331 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4332 /*
4333 * This is unstable state so clear both up/down
4334 * interrupt and adapter to re-evaluate the link state.
4335 */
d44570e4 4336 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d 4337 val64 |= GPIO_INT_REG_LINK_UP;
4338 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4339 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4340 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4341 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4342 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4343 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4344 val64 = readq(&bar0->adapter_status);
d44570e4 4345 /* Enable Adapter */
19a60522
SS
4346 val64 = readq(&bar0->adapter_control);
4347 val64 |= ADAPTER_CNTL_EN;
4348 writeq(val64, &bar0->adapter_control);
4349 val64 |= ADAPTER_LED_ON;
4350 writeq(val64, &bar0->adapter_control);
4351 if (!sp->device_enabled_once)
4352 sp->device_enabled_once = 1;
c92ca04b 4353
19a60522
SS
4354 s2io_link(sp, LINK_UP);
4355 /*
4356 * unmask link down interrupt and mask link-up
4357 * intr
4358 */
4359 val64 = readq(&bar0->gpio_int_mask);
4360 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4361 val64 |= GPIO_INT_MASK_LINK_UP;
4362 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4363
d44570e4 4364 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4365 val64 = readq(&bar0->adapter_status);
19a60522
SS
4366 s2io_link(sp, LINK_DOWN);
4367 /* Link is down so unmaks link up interrupt */
4368 val64 = readq(&bar0->gpio_int_mask);
4369 val64 &= ~GPIO_INT_MASK_LINK_UP;
4370 val64 |= GPIO_INT_MASK_LINK_DOWN;
4371 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4372
4373 /* turn off LED */
4374 val64 = readq(&bar0->adapter_control);
d44570e4 4375 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4376 writeq(val64, &bar0->adapter_control);
a371a07d 4377 }
4378 }
c92ca04b 4379 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4380}
4381
8116f3cf
SS
4382/**
4383 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4384 * @value: alarm bits
4385 * @addr: address value
4386 * @cnt: counter variable
4387 * Description: Check for alarm and increment the counter
4388 * Return Value:
4389 * 1 - if alarm bit set
4390 * 0 - if alarm bit is not set
4391 */
d44570e4
JP
4392static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4393 unsigned long long *cnt)
8116f3cf
SS
4394{
4395 u64 val64;
4396 val64 = readq(addr);
d44570e4 4397 if (val64 & value) {
8116f3cf
SS
4398 writeq(val64, addr);
4399 (*cnt)++;
4400 return 1;
4401 }
4402 return 0;
4403
4404}
4405
4406/**
4407 * s2io_handle_errors - Xframe error indication handler
4408 * @nic: device private variable
4409 * Description: Handle alarms such as loss of link, single or
4410 * double ECC errors, critical and serious errors.
4411 * Return Value:
4412 * NONE
4413 */
d44570e4 4414static void s2io_handle_errors(void *dev_id)
8116f3cf 4415{
d44570e4 4416 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4417 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4418 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4419 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4420 int i = 0;
4421
4422 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4423 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4424
92b84437 4425 if (!is_s2io_card_up(sp))
8116f3cf
SS
4426 return;
4427
4428 if (pci_channel_offline(sp->pdev))
4429 return;
4430
4431 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4432 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4433
4434 /* Handling the XPAK counters update */
d44570e4 4435 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4436 /* waiting for an hour */
4437 stats->xpak_timer_count++;
4438 } else {
4439 s2io_updt_xpak_counter(dev);
4440 /* reset the count to zero */
4441 stats->xpak_timer_count = 0;
4442 }
4443
4444 /* Handling link status change error Intr */
4445 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4446 val64 = readq(&bar0->mac_rmac_err_reg);
4447 writeq(val64, &bar0->mac_rmac_err_reg);
4448 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4449 schedule_work(&sp->set_link_task);
4450 }
4451
4452 /* In case of a serious error, the device will be Reset. */
4453 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4454 &sw_stat->serious_err_cnt))
8116f3cf
SS
4455 goto reset;
4456
4457 /* Check for data parity error */
4458 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4459 &sw_stat->parity_err_cnt))
8116f3cf
SS
4460 goto reset;
4461
4462 /* Check for ring full counter */
4463 if (sp->device_type == XFRAME_II_DEVICE) {
4464 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4465 for (i = 0; i < 4; i++) {
4466 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4467 temp64 >>= 64 - ((i+1)*16);
4468 sw_stat->ring_full_cnt[i] += temp64;
4469 }
4470
4471 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4472 for (i = 0; i < 4; i++) {
4473 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4474 temp64 >>= 64 - ((i+1)*16);
d44570e4 4475 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4476 }
4477 }
4478
4479 val64 = readq(&bar0->txdma_int_status);
4480 /*check for pfc_err*/
4481 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4482 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4483 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4484 PFC_PCIX_ERR,
4485 &bar0->pfc_err_reg,
4486 &sw_stat->pfc_err_cnt))
8116f3cf 4487 goto reset;
d44570e4
JP
4488 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4489 &bar0->pfc_err_reg,
4490 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4491 }
4492
4493 /*check for tda_err*/
4494 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4495 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4496 TDA_SM0_ERR_ALARM |
4497 TDA_SM1_ERR_ALARM,
4498 &bar0->tda_err_reg,
4499 &sw_stat->tda_err_cnt))
8116f3cf
SS
4500 goto reset;
4501 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4502 &bar0->tda_err_reg,
4503 &sw_stat->tda_err_cnt);
8116f3cf
SS
4504 }
4505 /*check for pcc_err*/
4506 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4507 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4508 PCC_N_SERR | PCC_6_COF_OV_ERR |
4509 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4510 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4511 PCC_TXB_ECC_DB_ERR,
4512 &bar0->pcc_err_reg,
4513 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4514 goto reset;
4515 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4516 &bar0->pcc_err_reg,
4517 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4518 }
4519
4520 /*check for tti_err*/
4521 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4522 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4523 &bar0->tti_err_reg,
4524 &sw_stat->tti_err_cnt))
8116f3cf
SS
4525 goto reset;
4526 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4527 &bar0->tti_err_reg,
4528 &sw_stat->tti_err_cnt);
8116f3cf
SS
4529 }
4530
4531 /*check for lso_err*/
4532 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4533 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4534 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4535 &bar0->lso_err_reg,
4536 &sw_stat->lso_err_cnt))
8116f3cf
SS
4537 goto reset;
4538 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4539 &bar0->lso_err_reg,
4540 &sw_stat->lso_err_cnt);
8116f3cf
SS
4541 }
4542
4543 /*check for tpa_err*/
4544 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4545 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4546 &bar0->tpa_err_reg,
4547 &sw_stat->tpa_err_cnt))
8116f3cf 4548 goto reset;
d44570e4
JP
4549 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4550 &bar0->tpa_err_reg,
4551 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4552 }
4553
4554 /*check for sm_err*/
4555 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4556 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4557 &bar0->sm_err_reg,
4558 &sw_stat->sm_err_cnt))
8116f3cf
SS
4559 goto reset;
4560 }
4561
4562 val64 = readq(&bar0->mac_int_status);
4563 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4564 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4565 &bar0->mac_tmac_err_reg,
4566 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4567 goto reset;
d44570e4
JP
4568 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4569 TMAC_DESC_ECC_SG_ERR |
4570 TMAC_DESC_ECC_DB_ERR,
4571 &bar0->mac_tmac_err_reg,
4572 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4573 }
4574
4575 val64 = readq(&bar0->xgxs_int_status);
4576 if (val64 & XGXS_INT_STATUS_TXGXS) {
4577 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4578 &bar0->xgxs_txgxs_err_reg,
4579 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4580 goto reset;
4581 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4582 &bar0->xgxs_txgxs_err_reg,
4583 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4584 }
4585
4586 val64 = readq(&bar0->rxdma_int_status);
4587 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4588 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4589 RC_FTC_ECC_DB_ERR |
4590 RC_PRCn_SM_ERR_ALARM |
4591 RC_FTC_SM_ERR_ALARM,
4592 &bar0->rc_err_reg,
4593 &sw_stat->rc_err_cnt))
8116f3cf 4594 goto reset;
d44570e4
JP
4595 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4596 RC_FTC_ECC_SG_ERR |
4597 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4598 &sw_stat->rc_err_cnt);
4599 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4600 PRC_PCI_AB_WR_Rn |
4601 PRC_PCI_AB_F_WR_Rn,
4602 &bar0->prc_pcix_err_reg,
4603 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4604 goto reset;
d44570e4
JP
4605 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4606 PRC_PCI_DP_WR_Rn |
4607 PRC_PCI_DP_F_WR_Rn,
4608 &bar0->prc_pcix_err_reg,
4609 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4610 }
4611
4612 if (val64 & RXDMA_INT_RPA_INT_M) {
4613 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4614 &bar0->rpa_err_reg,
4615 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4616 goto reset;
4617 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4618 &bar0->rpa_err_reg,
4619 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4620 }
4621
4622 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4623 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4624 RDA_FRM_ECC_DB_N_AERR |
4625 RDA_SM1_ERR_ALARM |
4626 RDA_SM0_ERR_ALARM |
4627 RDA_RXD_ECC_DB_SERR,
4628 &bar0->rda_err_reg,
4629 &sw_stat->rda_err_cnt))
8116f3cf 4630 goto reset;
d44570e4
JP
4631 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4632 RDA_FRM_ECC_SG_ERR |
4633 RDA_MISC_ERR |
4634 RDA_PCIX_ERR,
4635 &bar0->rda_err_reg,
4636 &sw_stat->rda_err_cnt);
8116f3cf
SS
4637 }
4638
4639 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4640 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4641 &bar0->rti_err_reg,
4642 &sw_stat->rti_err_cnt))
8116f3cf
SS
4643 goto reset;
4644 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4645 &bar0->rti_err_reg,
4646 &sw_stat->rti_err_cnt);
8116f3cf
SS
4647 }
4648
4649 val64 = readq(&bar0->mac_int_status);
4650 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4651 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4652 &bar0->mac_rmac_err_reg,
4653 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4654 goto reset;
d44570e4
JP
4655 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4656 RMAC_SINGLE_ECC_ERR |
4657 RMAC_DOUBLE_ECC_ERR,
4658 &bar0->mac_rmac_err_reg,
4659 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4660 }
4661
4662 val64 = readq(&bar0->xgxs_int_status);
4663 if (val64 & XGXS_INT_STATUS_RXGXS) {
4664 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4665 &bar0->xgxs_rxgxs_err_reg,
4666 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4667 goto reset;
4668 }
4669
4670 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4671 if (val64 & MC_INT_STATUS_MC_INT) {
4672 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4673 &bar0->mc_err_reg,
4674 &sw_stat->mc_err_cnt))
8116f3cf
SS
4675 goto reset;
4676
4677 /* Handling Ecc errors */
4678 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4679 writeq(val64, &bar0->mc_err_reg);
4680 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4681 sw_stat->double_ecc_errs++;
4682 if (sp->device_type != XFRAME_II_DEVICE) {
4683 /*
4684 * Reset XframeI only if critical error
4685 */
4686 if (val64 &
d44570e4
JP
4687 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4688 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4689 goto reset;
4690 }
8116f3cf
SS
4691 } else
4692 sw_stat->single_ecc_errs++;
4693 }
4694 }
4695 return;
4696
4697reset:
3a3d5756 4698 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4699 schedule_work(&sp->rst_timer_task);
4700 sw_stat->soft_reset_cnt++;
8116f3cf
SS
4701}
4702
1da177e4
LT
4703/**
4704 * s2io_isr - ISR handler of the device .
4705 * @irq: the irq of the device.
4706 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4707 * Description: This function is the ISR handler of the device. It
4708 * identifies the reason for the interrupt and calls the relevant
4709 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4710 * recv buffers, if their numbers are below the panic value which is
4711 * presently set to 25% of the original number of rcv buffers allocated.
4712 * Return value:
20346722 4713 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4714 * IRQ_NONE: will be returned if interrupt is not from our device
4715 */
7d12e780 4716static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4717{
d44570e4 4718 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4719 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4720 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4721 int i;
19a60522 4722 u64 reason = 0;
1ee6dd77 4723 struct mac_info *mac_control;
1da177e4
LT
4724 struct config_param *config;
4725
d796fdb7
LV
4726 /* Pretend we handled any irq's from a disconnected card */
4727 if (pci_channel_offline(sp->pdev))
4728 return IRQ_NONE;
4729
596c5c97 4730 if (!is_s2io_card_up(sp))
92b84437 4731 return IRQ_NONE;
92b84437 4732
1da177e4 4733 config = &sp->config;
ffb5df6c 4734 mac_control = &sp->mac_control;
1da177e4 4735
20346722 4736 /*
1da177e4
LT
4737 * Identify the cause for interrupt and call the appropriate
4738 * interrupt handler. Causes for the interrupt could be;
4739 * 1. Rx of packet.
4740 * 2. Tx complete.
4741 * 3. Link down.
1da177e4
LT
4742 */
4743 reason = readq(&bar0->general_int_status);
4744
d44570e4
JP
4745 if (unlikely(reason == S2IO_MINUS_ONE))
4746 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4747
d44570e4
JP
4748 if (reason &
4749 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4750 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4751
4752 if (config->napi) {
4753 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4754 napi_schedule(&sp->napi);
f61e0a35
SH
4755 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4757 readl(&bar0->rx_traffic_int);
db874e65 4758 }
596c5c97
SS
4759 } else {
4760 /*
4761 * rx_traffic_int reg is an R1 register, writing all 1's
4762 * will ensure that the actual interrupt causing bit
4763 * get's cleared and hence a read can be avoided.
4764 */
4765 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4766 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4767
13d866a9
JP
4768 for (i = 0; i < config->rx_ring_num; i++) {
4769 struct ring_info *ring = &mac_control->rings[i];
4770
4771 rx_intr_handler(ring, 0);
4772 }
db874e65 4773 }
596c5c97 4774
db874e65 4775 /*
596c5c97 4776 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4777 * will ensure that the actual interrupt causing bit get's
4778 * cleared and hence a read can be avoided.
4779 */
596c5c97
SS
4780 if (reason & GEN_INTR_TXTRAFFIC)
4781 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4782
596c5c97
SS
4783 for (i = 0; i < config->tx_fifo_num; i++)
4784 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4785
596c5c97
SS
4786 if (reason & GEN_INTR_TXPIC)
4787 s2io_txpic_intr_handle(sp);
fe113638 4788
596c5c97
SS
4789 /*
4790 * Reallocate the buffers from the interrupt handler itself.
4791 */
4792 if (!config->napi) {
13d866a9
JP
4793 for (i = 0; i < config->rx_ring_num; i++) {
4794 struct ring_info *ring = &mac_control->rings[i];
4795
4796 s2io_chk_rx_buffers(sp, ring);
4797 }
596c5c97
SS
4798 }
4799 writeq(sp->general_int_mask, &bar0->general_int_mask);
4800 readl(&bar0->general_int_status);
20346722 4801
596c5c97 4802 return IRQ_HANDLED;
db874e65 4803
d44570e4 4804 } else if (!reason) {
596c5c97
SS
4805 /* The interrupt was not raised by us */
4806 return IRQ_NONE;
4807 }
db874e65 4808
1da177e4
LT
4809 return IRQ_HANDLED;
4810}
4811
7ba013ac 4812/**
4813 * s2io_updt_stats -
4814 */
1ee6dd77 4815static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4816{
1ee6dd77 4817 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4818 u64 val64;
4819 int cnt = 0;
4820
92b84437 4821 if (is_s2io_card_up(sp)) {
7ba013ac 4822 /* Apprx 30us on a 133 MHz bus */
4823 val64 = SET_UPDT_CLICKS(10) |
4824 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4825 writeq(val64, &bar0->stat_cfg);
4826 do {
4827 udelay(100);
4828 val64 = readq(&bar0->stat_cfg);
b7b5a128 4829 if (!(val64 & s2BIT(0)))
7ba013ac 4830 break;
4831 cnt++;
4832 if (cnt == 5)
4833 break; /* Updt failed */
d44570e4 4834 } while (1);
8a4bdbaa 4835 }
7ba013ac 4836}
4837
1da177e4 4838/**
20346722 4839 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4840 * @dev : pointer to the device structure.
4841 * Description:
20346722 4842 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4843 * structure and returns a pointer to the same.
4844 * Return value:
4845 * pointer to the updated net_device_stats structure.
4846 */
ac1f60db 4847static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4848{
4cf1653a 4849 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4850 struct mac_info *mac_control = &sp->mac_control;
4851 struct stat_block *stats = mac_control->stats_info;
4a490432 4852 u64 delta;
1da177e4 4853
7ba013ac 4854 /* Configure Stats for immediate updt */
4855 s2io_updt_stats(sp);
4856
4a490432
JM
4857 /* A device reset will cause the on-adapter statistics to be zero'ed.
4858 * This can be done while running by changing the MTU. To prevent the
4859 * system from having the stats zero'ed, the driver keeps a copy of the
4860 * last update to the system (which is also zero'ed on reset). This
4861 * enables the driver to accurately know the delta between the last
4862 * update and the current update.
4863 */
4864 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4865 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4866 sp->stats.rx_packets += delta;
4867 dev->stats.rx_packets += delta;
4868
4869 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4870 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4871 sp->stats.tx_packets += delta;
4872 dev->stats.tx_packets += delta;
4873
4874 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4875 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4876 sp->stats.rx_bytes += delta;
4877 dev->stats.rx_bytes += delta;
4878
4879 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4880 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4881 sp->stats.tx_bytes += delta;
4882 dev->stats.tx_bytes += delta;
4883
4884 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4885 sp->stats.rx_errors += delta;
4886 dev->stats.rx_errors += delta;
4887
4888 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4889 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4890 sp->stats.tx_errors += delta;
4891 dev->stats.tx_errors += delta;
4892
4893 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4894 sp->stats.rx_dropped += delta;
4895 dev->stats.rx_dropped += delta;
4896
4897 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4898 sp->stats.tx_dropped += delta;
4899 dev->stats.tx_dropped += delta;
4900
4901 /* The adapter MAC interprets pause frames as multicast packets, but
4902 * does not pass them up. This erroneously increases the multicast
4903 * packet count and needs to be deducted when the multicast frame count
4904 * is queried.
4905 */
4906 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4907 le32_to_cpu(stats->rmac_vld_mcst_frms);
4908 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4909 delta -= sp->stats.multicast;
4910 sp->stats.multicast += delta;
4911 dev->stats.multicast += delta;
1da177e4 4912
4a490432
JM
4913 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4914 le32_to_cpu(stats->rmac_usized_frms)) +
4915 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4916 sp->stats.rx_length_errors += delta;
4917 dev->stats.rx_length_errors += delta;
13d866a9 4918
4a490432
JM
4919 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4920 sp->stats.rx_crc_errors += delta;
4921 dev->stats.rx_crc_errors += delta;
0425b46a 4922
d44570e4 4923 return &dev->stats;
1da177e4
LT
4924}
4925
4926/**
4927 * s2io_set_multicast - entry point for multicast address enable/disable.
4928 * @dev : pointer to the device structure
4929 * Description:
20346722 4930 * This function is a driver entry point which gets called by the kernel
4931 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4932 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4933 * determine, if multicast address must be enabled or if promiscuous mode
4934 * is to be disabled etc.
4935 * Return value:
4936 * void.
4937 */
4938
4939static void s2io_set_multicast(struct net_device *dev)
4940{
4941 int i, j, prev_cnt;
22bedad3 4942 struct netdev_hw_addr *ha;
4cf1653a 4943 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4944 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4945 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4946 0xfeffffffffffULL;
faa4f796 4947 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4948 void __iomem *add;
faa4f796 4949 struct config_param *config = &sp->config;
1da177e4
LT
4950
4951 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4952 /* Enable all Multicast addresses */
4953 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4954 &bar0->rmac_addr_data0_mem);
4955 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4956 &bar0->rmac_addr_data1_mem);
4957 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4958 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4959 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4960 writeq(val64, &bar0->rmac_addr_cmd_mem);
4961 /* Wait till command completes */
c92ca04b 4962 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4963 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4964 S2IO_BIT_RESET);
1da177e4
LT
4965
4966 sp->m_cast_flg = 1;
faa4f796 4967 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4968 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4969 /* Disable all Multicast addresses */
4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4971 &bar0->rmac_addr_data0_mem);
5e25b9dd 4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4973 &bar0->rmac_addr_data1_mem);
1da177e4 4974 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4976 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
4977 writeq(val64, &bar0->rmac_addr_cmd_mem);
4978 /* Wait till command completes */
c92ca04b 4979 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4981 S2IO_BIT_RESET);
1da177e4
LT
4982
4983 sp->m_cast_flg = 0;
4984 sp->all_multi_pos = 0;
4985 }
4986
4987 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4988 /* Put the NIC into promiscuous mode */
4989 add = &bar0->mac_cfg;
4990 val64 = readq(&bar0->mac_cfg);
4991 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4992
4993 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 4994 writel((u32)val64, add);
1da177e4
LT
4995 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4996 writel((u32) (val64 >> 32), (add + 4));
4997
926930b2
SS
4998 if (vlan_tag_strip != 1) {
4999 val64 = readq(&bar0->rx_pa_cfg);
5000 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5001 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5002 sp->vlan_strip_flag = 0;
926930b2
SS
5003 }
5004
1da177e4
LT
5005 val64 = readq(&bar0->mac_cfg);
5006 sp->promisc_flg = 1;
776bd20f 5007 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5008 dev->name);
5009 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5010 /* Remove the NIC from promiscuous mode */
5011 add = &bar0->mac_cfg;
5012 val64 = readq(&bar0->mac_cfg);
5013 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5014
5015 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5016 writel((u32)val64, add);
1da177e4
LT
5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5018 writel((u32) (val64 >> 32), (add + 4));
5019
926930b2
SS
5020 if (vlan_tag_strip != 0) {
5021 val64 = readq(&bar0->rx_pa_cfg);
5022 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5023 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5024 sp->vlan_strip_flag = 1;
926930b2
SS
5025 }
5026
1da177e4
LT
5027 val64 = readq(&bar0->mac_cfg);
5028 sp->promisc_flg = 0;
9e39f7c5 5029 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5030 }
5031
5032 /* Update individual M_CAST address list */
4cd24eaf
JP
5033 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5034 if (netdev_mc_count(dev) >
faa4f796 5035 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5036 DBG_PRINT(ERR_DBG,
5037 "%s: No more Rx filters can be added - "
5038 "please enable ALL_MULTI instead\n",
1da177e4 5039 dev->name);
1da177e4
LT
5040 return;
5041 }
5042
5043 prev_cnt = sp->mc_addr_count;
4cd24eaf 5044 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5045
5046 /* Clear out the previous list of Mc in the H/W. */
5047 for (i = 0; i < prev_cnt; i++) {
5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5049 &bar0->rmac_addr_data0_mem);
5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5051 &bar0->rmac_addr_data1_mem);
1da177e4 5052 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5054 RMAC_ADDR_CMD_MEM_OFFSET
5055 (config->mc_start_offset + i);
1da177e4
LT
5056 writeq(val64, &bar0->rmac_addr_cmd_mem);
5057
5058 /* Wait for command completes */
c92ca04b 5059 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5061 S2IO_BIT_RESET)) {
9e39f7c5
JP
5062 DBG_PRINT(ERR_DBG,
5063 "%s: Adding Multicasts failed\n",
5064 dev->name);
1da177e4
LT
5065 return;
5066 }
5067 }
5068
5069 /* Create the new Rx filter list and update the same in H/W. */
5508590c 5070 i = 0;
22bedad3 5071 netdev_for_each_mc_addr(ha, dev) {
a7a80d5a 5072 mac_addr = 0;
1da177e4 5073 for (j = 0; j < ETH_ALEN; j++) {
22bedad3 5074 mac_addr |= ha->addr[j];
1da177e4
LT
5075 mac_addr <<= 8;
5076 }
5077 mac_addr >>= 8;
5078 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5079 &bar0->rmac_addr_data0_mem);
5080 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5081 &bar0->rmac_addr_data1_mem);
1da177e4 5082 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5083 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5084 RMAC_ADDR_CMD_MEM_OFFSET
5085 (i + config->mc_start_offset);
1da177e4
LT
5086 writeq(val64, &bar0->rmac_addr_cmd_mem);
5087
5088 /* Wait for command completes */
c92ca04b 5089 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5090 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5091 S2IO_BIT_RESET)) {
9e39f7c5
JP
5092 DBG_PRINT(ERR_DBG,
5093 "%s: Adding Multicasts failed\n",
5094 dev->name);
1da177e4
LT
5095 return;
5096 }
5508590c 5097 i++;
1da177e4
LT
5098 }
5099 }
5100}
5101
faa4f796
SH
5102/* read from CAM unicast & multicast addresses and store it in
5103 * def_mac_addr structure
5104 */
dac499f9 5105static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5106{
5107 int offset;
5108 u64 mac_addr = 0x0;
5109 struct config_param *config = &sp->config;
5110
5111 /* store unicast & multicast mac addresses */
5112 for (offset = 0; offset < config->max_mc_addr; offset++) {
5113 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5114 /* if read fails disable the entry */
5115 if (mac_addr == FAILURE)
5116 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5117 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5118 }
5119}
5120
5121/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5122static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5123{
5124 int offset;
5125 struct config_param *config = &sp->config;
5126 /* restore unicast mac address */
5127 for (offset = 0; offset < config->max_mac_addr; offset++)
5128 do_s2io_prog_unicast(sp->dev,
d44570e4 5129 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5130
5131 /* restore multicast mac address */
5132 for (offset = config->mc_start_offset;
d44570e4 5133 offset < config->max_mc_addr; offset++)
faa4f796
SH
5134 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5135}
5136
5137/* add a multicast MAC address to CAM */
5138static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5139{
5140 int i;
5141 u64 mac_addr = 0;
5142 struct config_param *config = &sp->config;
5143
5144 for (i = 0; i < ETH_ALEN; i++) {
5145 mac_addr <<= 8;
5146 mac_addr |= addr[i];
5147 }
5148 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5149 return SUCCESS;
5150
5151 /* check if the multicast mac already preset in CAM */
5152 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5153 u64 tmp64;
5154 tmp64 = do_s2io_read_unicast_mc(sp, i);
5155 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5156 break;
5157
5158 if (tmp64 == mac_addr)
5159 return SUCCESS;
5160 }
5161 if (i == config->max_mc_addr) {
5162 DBG_PRINT(ERR_DBG,
d44570e4 5163 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5164 return FAILURE;
5165 }
5166 /* Update the internal structure with this new mac address */
5167 do_s2io_copy_mac_addr(sp, i, mac_addr);
5168
d44570e4 5169 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5170}
5171
5172/* add MAC address to CAM */
5173static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5174{
5175 u64 val64;
5176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5177
5178 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5179 &bar0->rmac_addr_data0_mem);
2fd37688 5180
d44570e4 5181 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5182 RMAC_ADDR_CMD_MEM_OFFSET(off);
5183 writeq(val64, &bar0->rmac_addr_cmd_mem);
5184
5185 /* Wait till command completes */
5186 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5187 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5188 S2IO_BIT_RESET)) {
faa4f796 5189 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5190 return FAILURE;
5191 }
5192 return SUCCESS;
5193}
faa4f796
SH
5194/* deletes a specified unicast/multicast mac entry from CAM */
5195static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5196{
5197 int offset;
5198 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5199 struct config_param *config = &sp->config;
5200
5201 for (offset = 1;
d44570e4 5202 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5203 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5204 if (tmp64 == addr) {
5205 /* disable the entry by writing 0xffffffffffffULL */
5206 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5207 return FAILURE;
5208 /* store the new mac list from CAM */
5209 do_s2io_store_unicast_mc(sp);
5210 return SUCCESS;
5211 }
5212 }
5213 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5214 (unsigned long long)addr);
faa4f796
SH
5215 return FAILURE;
5216}
5217
5218/* read mac entries from CAM */
5219static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5220{
5221 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5222 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5223
5224 /* read mac addr */
d44570e4 5225 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5226 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5227 writeq(val64, &bar0->rmac_addr_cmd_mem);
5228
5229 /* Wait till command completes */
5230 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5231 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5232 S2IO_BIT_RESET)) {
faa4f796
SH
5233 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5234 return FAILURE;
5235 }
5236 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5237
5238 return tmp64 >> 16;
faa4f796 5239}
2fd37688
SS
5240
5241/**
49ce9c2c 5242 * s2io_set_mac_addr - driver entry point
2fd37688 5243 */
faa4f796 5244
2fd37688
SS
5245static int s2io_set_mac_addr(struct net_device *dev, void *p)
5246{
5247 struct sockaddr *addr = p;
5248
5249 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 5250 return -EADDRNOTAVAIL;
2fd37688
SS
5251
5252 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5253
5254 /* store the MAC address in CAM */
d44570e4 5255 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5256}
1da177e4 5257/**
2fd37688 5258 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5259 * @dev : pointer to the device structure.
5260 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5261 * Description : This procedure will program the Xframe to receive
1da177e4 5262 * frames with new Mac Address
20346722 5263 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5264 * as defined in errno.h file on failure.
5265 */
faa4f796 5266
2fd37688 5267static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5268{
4cf1653a 5269 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5270 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5271 int i;
faa4f796
SH
5272 u64 tmp64;
5273 struct config_param *config = &sp->config;
1da177e4 5274
20346722 5275 /*
d44570e4
JP
5276 * Set the new MAC address as the new unicast filter and reflect this
5277 * change on the device address registered with the OS. It will be
5278 * at offset 0.
5279 */
1da177e4
LT
5280 for (i = 0; i < ETH_ALEN; i++) {
5281 mac_addr <<= 8;
5282 mac_addr |= addr[i];
2fd37688
SS
5283 perm_addr <<= 8;
5284 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5285 }
5286
2fd37688
SS
5287 /* check if the dev_addr is different than perm_addr */
5288 if (mac_addr == perm_addr)
d8d70caf
SS
5289 return SUCCESS;
5290
faa4f796
SH
5291 /* check if the mac already preset in CAM */
5292 for (i = 1; i < config->max_mac_addr; i++) {
5293 tmp64 = do_s2io_read_unicast_mc(sp, i);
5294 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5295 break;
5296
5297 if (tmp64 == mac_addr) {
5298 DBG_PRINT(INFO_DBG,
d44570e4
JP
5299 "MAC addr:0x%llx already present in CAM\n",
5300 (unsigned long long)mac_addr);
faa4f796
SH
5301 return SUCCESS;
5302 }
5303 }
5304 if (i == config->max_mac_addr) {
5305 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5306 return FAILURE;
5307 }
d8d70caf 5308 /* Update the internal structure with this new mac address */
faa4f796 5309 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5310
5311 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5312}
5313
5314/**
20346722 5315 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5316 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5317 * @info: pointer to the structure with parameters given by ethtool to set
5318 * link information.
5319 * Description:
20346722 5320 * The function sets different link parameters provided by the user onto
1da177e4
LT
5321 * the NIC.
5322 * Return value:
5323 * 0 on success.
d44570e4 5324 */
1da177e4
LT
5325
5326static int s2io_ethtool_sset(struct net_device *dev,
5327 struct ethtool_cmd *info)
5328{
4cf1653a 5329 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5330 if ((info->autoneg == AUTONEG_ENABLE) ||
25db0338 5331 (ethtool_cmd_speed(info) != SPEED_10000) ||
d44570e4 5332 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5333 return -EINVAL;
5334 else {
5335 s2io_close(sp->dev);
5336 s2io_open(sp->dev);
5337 }
5338
5339 return 0;
5340}
5341
5342/**
20346722 5343 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5344 * @sp : private member of the device structure, pointer to the
5345 * s2io_nic structure.
5346 * @info : pointer to the structure with parameters given by ethtool
5347 * to return link information.
5348 * Description:
5349 * Returns link specific information like speed, duplex etc.. to ethtool.
5350 * Return value :
5351 * return 0 on success.
5352 */
5353
5354static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5355{
4cf1653a 5356 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5357 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359 info->port = PORT_FIBRE;
1a7eb72b
SS
5360
5361 /* info->transceiver */
5362 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5363
5364 if (netif_carrier_ok(sp->dev)) {
70739497 5365 ethtool_cmd_speed_set(info, SPEED_10000);
1da177e4
LT
5366 info->duplex = DUPLEX_FULL;
5367 } else {
70739497 5368 ethtool_cmd_speed_set(info, -1);
1da177e4
LT
5369 info->duplex = -1;
5370 }
5371
5372 info->autoneg = AUTONEG_DISABLE;
5373 return 0;
5374}
5375
5376/**
20346722 5377 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5378 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5379 * s2io_nic structure.
5380 * @info : pointer to the structure with parameters given by ethtool to
5381 * return driver information.
5382 * Description:
5383 * Returns driver specefic information like name, version etc.. to ethtool.
5384 * Return value:
5385 * void
5386 */
5387
5388static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5389 struct ethtool_drvinfo *info)
5390{
4cf1653a 5391 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5392
68aad78c
RJ
5393 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5394 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
68aad78c 5395 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5396 info->regdump_len = XENA_REG_SPACE;
5397 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5398}
5399
5400/**
5401 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5402 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5403 * s2io_nic structure.
20346722 5404 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5405 * dumping the registers.
5406 * @reg_space: The input argumnet into which all the registers are dumped.
5407 * Description:
5408 * Dumps the entire register space of xFrame NIC into the user given
5409 * buffer area.
5410 * Return value :
5411 * void .
d44570e4 5412 */
1da177e4
LT
5413
5414static void s2io_ethtool_gregs(struct net_device *dev,
5415 struct ethtool_regs *regs, void *space)
5416{
5417 int i;
5418 u64 reg;
d44570e4 5419 u8 *reg_space = (u8 *)space;
4cf1653a 5420 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5421
5422 regs->len = XENA_REG_SPACE;
5423 regs->version = sp->pdev->subsystem_device;
5424
5425 for (i = 0; i < regs->len; i += 8) {
5426 reg = readq(sp->bar0 + i);
5427 memcpy((reg_space + i), &reg, 8);
5428 }
5429}
5430
034e3450 5431/*
5432 * s2io_set_led - control NIC led
d44570e4 5433 */
034e3450 5434static void s2io_set_led(struct s2io_nic *sp, bool on)
1da177e4 5435{
1ee6dd77 5436 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5437 u16 subid = sp->pdev->subsystem_device;
5438 u64 val64;
1da177e4 5439
541ae68f 5440 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5441 ((subid & 0xFF) >= 0x07)) {
1da177e4 5442 val64 = readq(&bar0->gpio_control);
034e3450 5443 if (on)
5444 val64 |= GPIO_CTRL_GPIO_0;
5445 else
5446 val64 &= ~GPIO_CTRL_GPIO_0;
5447
1da177e4
LT
5448 writeq(val64, &bar0->gpio_control);
5449 } else {
5450 val64 = readq(&bar0->adapter_control);
034e3450 5451 if (on)
5452 val64 |= ADAPTER_LED_ON;
5453 else
5454 val64 &= ~ADAPTER_LED_ON;
5455
1da177e4
LT
5456 writeq(val64, &bar0->adapter_control);
5457 }
5458
1da177e4
LT
5459}
5460
5461/**
034e3450 5462 * s2io_ethtool_set_led - To physically identify the nic on the system.
5463 * @dev : network device
5464 * @state: led setting
5465 *
1da177e4 5466 * Description: Used to physically identify the NIC on the system.
20346722 5467 * The Link LED will blink for a time specified by the user for
1da177e4 5468 * identification.
20346722 5469 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4 5470 * identification is possible only if it's link is up.
1da177e4
LT
5471 */
5472
034e3450 5473static int s2io_ethtool_set_led(struct net_device *dev,
5474 enum ethtool_phys_id_state state)
1da177e4 5475{
4cf1653a 5476 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5478 u16 subid = sp->pdev->subsystem_device;
1da177e4 5479
d44570e4 5480 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
034e3450 5481 u64 val64 = readq(&bar0->adapter_control);
1da177e4 5482 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5483 pr_err("Adapter Link down, cannot blink LED\n");
034e3450 5484 return -EAGAIN;
1da177e4
LT
5485 }
5486 }
1da177e4 5487
034e3450 5488 switch (state) {
5489 case ETHTOOL_ID_ACTIVE:
5490 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
fce55922 5491 return 1; /* cycle on/off once per second */
034e3450 5492
5493 case ETHTOOL_ID_ON:
5494 s2io_set_led(sp, true);
5495 break;
5496
5497 case ETHTOOL_ID_OFF:
5498 s2io_set_led(sp, false);
5499 break;
5500
5501 case ETHTOOL_ID_INACTIVE:
5502 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5503 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
1da177e4
LT
5504 }
5505
5506 return 0;
5507}
5508
0cec35eb 5509static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5510 struct ethtool_ringparam *ering)
0cec35eb 5511{
4cf1653a 5512 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5513 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb 5514
1853e2e1 5515 if (sp->rxd_mode == RXD_MODE_1) {
0cec35eb 5516 ering->rx_max_pending = MAX_RX_DESC_1;
1853e2e1
JM
5517 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5518 } else {
0cec35eb 5519 ering->rx_max_pending = MAX_RX_DESC_2;
1853e2e1
JM
5520 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5521 }
0cec35eb
SH
5522
5523 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5524
1853e2e1 5525 for (i = 0; i < sp->config.rx_ring_num; i++)
0cec35eb 5526 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
0cec35eb 5527 ering->rx_pending = rx_desc_count;
0cec35eb 5528 ering->rx_jumbo_pending = rx_desc_count;
1853e2e1
JM
5529
5530 for (i = 0; i < sp->config.tx_fifo_num; i++)
5531 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5532 ering->tx_pending = tx_desc_count;
5533 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5534}
5535
1da177e4
LT
5536/**
5537 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5538 * @sp : private member of the device structure, which is a pointer to the
5539 * s2io_nic structure.
1da177e4
LT
5540 * @ep : pointer to the structure with pause parameters given by ethtool.
5541 * Description:
5542 * Returns the Pause frame generation and reception capability of the NIC.
5543 * Return value:
5544 * void
5545 */
5546static void s2io_ethtool_getpause_data(struct net_device *dev,
5547 struct ethtool_pauseparam *ep)
5548{
5549 u64 val64;
4cf1653a 5550 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5551 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5552
5553 val64 = readq(&bar0->rmac_pause_cfg);
5554 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5555 ep->tx_pause = true;
1da177e4 5556 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5557 ep->rx_pause = true;
5558 ep->autoneg = false;
1da177e4
LT
5559}
5560
5561/**
5562 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5563 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5564 * s2io_nic structure.
5565 * @ep : pointer to the structure with pause parameters given by ethtool.
5566 * Description:
5567 * It can be used to set or reset Pause frame generation or reception
5568 * support of the NIC.
5569 * Return value:
5570 * int, returns 0 on Success
5571 */
5572
5573static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5574 struct ethtool_pauseparam *ep)
1da177e4
LT
5575{
5576 u64 val64;
4cf1653a 5577 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5578 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5579
5580 val64 = readq(&bar0->rmac_pause_cfg);
5581 if (ep->tx_pause)
5582 val64 |= RMAC_PAUSE_GEN_ENABLE;
5583 else
5584 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5585 if (ep->rx_pause)
5586 val64 |= RMAC_PAUSE_RX_ENABLE;
5587 else
5588 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5589 writeq(val64, &bar0->rmac_pause_cfg);
5590 return 0;
5591}
5592
5593/**
5594 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5595 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5596 * s2io_nic structure.
5597 * @off : offset at which the data must be written
5598 * @data : Its an output parameter where the data read at the given
20346722 5599 * offset is stored.
1da177e4 5600 * Description:
20346722 5601 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5602 * read data.
5603 * NOTE: Will allow to read only part of the EEPROM visible through the
5604 * I2C bus.
5605 * Return value:
5606 * -1 on failure and 0 on success.
5607 */
5608
5609#define S2IO_DEV_ID 5
d44570e4 5610static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5611{
5612 int ret = -1;
5613 u32 exit_cnt = 0;
5614 u64 val64;
1ee6dd77 5615 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5616
ad4ebed0 5617 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5618 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5619 I2C_CONTROL_ADDR(off) |
5620 I2C_CONTROL_BYTE_CNT(0x3) |
5621 I2C_CONTROL_READ |
5622 I2C_CONTROL_CNTL_START;
ad4ebed0 5623 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5624
ad4ebed0 5625 while (exit_cnt < 5) {
5626 val64 = readq(&bar0->i2c_control);
5627 if (I2C_CONTROL_CNTL_END(val64)) {
5628 *data = I2C_CONTROL_GET_DATA(val64);
5629 ret = 0;
5630 break;
5631 }
5632 msleep(50);
5633 exit_cnt++;
1da177e4 5634 }
1da177e4
LT
5635 }
5636
ad4ebed0 5637 if (sp->device_type == XFRAME_II_DEVICE) {
5638 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5639 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5640 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5641 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5642 val64 |= SPI_CONTROL_REQ;
5643 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5644 while (exit_cnt < 5) {
5645 val64 = readq(&bar0->spi_control);
5646 if (val64 & SPI_CONTROL_NACK) {
5647 ret = 1;
5648 break;
5649 } else if (val64 & SPI_CONTROL_DONE) {
5650 *data = readq(&bar0->spi_data);
5651 *data &= 0xffffff;
5652 ret = 0;
5653 break;
5654 }
5655 msleep(50);
5656 exit_cnt++;
5657 }
5658 }
1da177e4
LT
5659 return ret;
5660}
5661
5662/**
5663 * write_eeprom - actually writes the relevant part of the data value.
5664 * @sp : private member of the device structure, which is a pointer to the
5665 * s2io_nic structure.
5666 * @off : offset at which the data must be written
5667 * @data : The data that is to be written
20346722 5668 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5669 * the Eeprom. (max of 3)
5670 * Description:
5671 * Actually writes the relevant part of the data value into the Eeprom
5672 * through the I2C bus.
5673 * Return value:
5674 * 0 on success, -1 on failure.
5675 */
5676
d44570e4 5677static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5678{
5679 int exit_cnt = 0, ret = -1;
5680 u64 val64;
1ee6dd77 5681 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5682
ad4ebed0 5683 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5684 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5685 I2C_CONTROL_ADDR(off) |
5686 I2C_CONTROL_BYTE_CNT(cnt) |
5687 I2C_CONTROL_SET_DATA((u32)data) |
5688 I2C_CONTROL_CNTL_START;
ad4ebed0 5689 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5690
5691 while (exit_cnt < 5) {
5692 val64 = readq(&bar0->i2c_control);
5693 if (I2C_CONTROL_CNTL_END(val64)) {
5694 if (!(val64 & I2C_CONTROL_NACK))
5695 ret = 0;
5696 break;
5697 }
5698 msleep(50);
5699 exit_cnt++;
5700 }
5701 }
1da177e4 5702
ad4ebed0 5703 if (sp->device_type == XFRAME_II_DEVICE) {
5704 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5705 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5706
5707 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5708 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5709 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5710 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5711 val64 |= SPI_CONTROL_REQ;
5712 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5713 while (exit_cnt < 5) {
5714 val64 = readq(&bar0->spi_control);
5715 if (val64 & SPI_CONTROL_NACK) {
5716 ret = 1;
5717 break;
5718 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5719 ret = 0;
ad4ebed0 5720 break;
5721 }
5722 msleep(50);
5723 exit_cnt++;
1da177e4 5724 }
1da177e4 5725 }
1da177e4
LT
5726 return ret;
5727}
1ee6dd77 5728static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5729{
b41477f3
AR
5730 u8 *vpd_data;
5731 u8 data;
9c179780 5732 int i = 0, cnt, len, fail = 0;
9dc737a7 5733 int vpd_addr = 0x80;
ffb5df6c 5734 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5735
5736 if (nic->device_type == XFRAME_II_DEVICE) {
5737 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5738 vpd_addr = 0x80;
d44570e4 5739 } else {
9dc737a7
AR
5740 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5741 vpd_addr = 0x50;
5742 }
19a60522 5743 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5744
b41477f3 5745 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5746 if (!vpd_data) {
ffb5df6c 5747 swstats->mem_alloc_fail_cnt++;
b41477f3 5748 return;
c53d4945 5749 }
ffb5df6c 5750 swstats->mem_allocated += 256;
b41477f3 5751
d44570e4 5752 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5753 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5754 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5755 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5756 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5757 msleep(2);
5758 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5759 if (data == 0x80)
5760 break;
5761 }
5762 if (cnt >= 5) {
5763 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5764 fail = 1;
5765 break;
5766 }
5767 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5768 (u32 *)&vpd_data[i]);
5769 }
19a60522 5770
d44570e4 5771 if (!fail) {
19a60522 5772 /* read serial number of adapter */
9c179780 5773 for (cnt = 0; cnt < 252; cnt++) {
d44570e4 5774 if ((vpd_data[cnt] == 'S') &&
9c179780
KV
5775 (vpd_data[cnt+1] == 'N')) {
5776 len = vpd_data[cnt+2];
5777 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5778 memcpy(nic->serial_num,
5779 &vpd_data[cnt + 3],
5780 len);
5781 memset(nic->serial_num+len,
5782 0,
5783 VPD_STRING_LEN-len);
5784 break;
5785 }
19a60522
SS
5786 }
5787 }
5788 }
5789
9c179780
KV
5790 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5791 len = vpd_data[1];
5792 memcpy(nic->product_name, &vpd_data[3], len);
5793 nic->product_name[len] = 0;
5794 }
b41477f3 5795 kfree(vpd_data);
ffb5df6c 5796 swstats->mem_freed += 256;
9dc737a7
AR
5797}
5798
1da177e4
LT
5799/**
5800 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5801 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5802 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5803 * containing all relevant information.
5804 * @data_buf : user defined value to be written into Eeprom.
5805 * Description: Reads the values stored in the Eeprom at given offset
5806 * for a given length. Stores these values int the input argument data
5807 * buffer 'data_buf' and returns these to the caller (ethtool.)
5808 * Return value:
5809 * int 0 on success
5810 */
5811
5812static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5813 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5814{
ad4ebed0 5815 u32 i, valid;
5816 u64 data;
4cf1653a 5817 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5818
5819 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5820
5821 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5822 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5823
5824 for (i = 0; i < eeprom->len; i += 4) {
5825 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5826 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5827 return -EFAULT;
5828 }
5829 valid = INV(data);
5830 memcpy((data_buf + i), &valid, 4);
5831 }
5832 return 0;
5833}
5834
5835/**
5836 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5837 * @sp : private member of the device structure, which is a pointer to the
5838 * s2io_nic structure.
20346722 5839 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5840 * containing all relevant information.
5841 * @data_buf ; user defined value to be written into Eeprom.
5842 * Description:
5843 * Tries to write the user provided value in the Eeprom, at the offset
5844 * given by the user.
5845 * Return value:
5846 * 0 on success, -EFAULT on failure.
5847 */
5848
5849static int s2io_ethtool_seeprom(struct net_device *dev,
5850 struct ethtool_eeprom *eeprom,
d44570e4 5851 u8 *data_buf)
1da177e4
LT
5852{
5853 int len = eeprom->len, cnt = 0;
ad4ebed0 5854 u64 valid = 0, data;
4cf1653a 5855 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5856
5857 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5858 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5859 "ETHTOOL_WRITE_EEPROM Err: "
5860 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5861 (sp->pdev->vendor | (sp->pdev->device << 16)),
5862 eeprom->magic);
1da177e4
LT
5863 return -EFAULT;
5864 }
5865
5866 while (len) {
d44570e4
JP
5867 data = (u32)data_buf[cnt] & 0x000000FF;
5868 if (data)
5869 valid = (u32)(data << 24);
5870 else
1da177e4
LT
5871 valid = data;
5872
5873 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5874 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5875 "ETHTOOL_WRITE_EEPROM Err: "
5876 "Cannot write into the specified offset\n");
1da177e4
LT
5877 return -EFAULT;
5878 }
5879 cnt++;
5880 len--;
5881 }
5882
5883 return 0;
5884}
5885
5886/**
20346722 5887 * s2io_register_test - reads and writes into all clock domains.
5888 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5889 * s2io_nic structure.
5890 * @data : variable that returns the result of each of the test conducted b
5891 * by the driver.
5892 * Description:
5893 * Read and write into all clock domains. The NIC has 3 clock domains,
5894 * see that registers in all the three regions are accessible.
5895 * Return value:
5896 * 0 on success.
5897 */
5898
d44570e4 5899static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5900{
1ee6dd77 5901 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5902 u64 val64 = 0, exp_val;
1da177e4
LT
5903 int fail = 0;
5904
20346722 5905 val64 = readq(&bar0->pif_rd_swapper_fb);
5906 if (val64 != 0x123456789abcdefULL) {
1da177e4 5907 fail = 1;
9e39f7c5 5908 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5909 }
5910
5911 val64 = readq(&bar0->rmac_pause_cfg);
5912 if (val64 != 0xc000ffff00000000ULL) {
5913 fail = 1;
9e39f7c5 5914 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5915 }
5916
5917 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5918 if (sp->device_type == XFRAME_II_DEVICE)
5919 exp_val = 0x0404040404040404ULL;
5920 else
5921 exp_val = 0x0808080808080808ULL;
5922 if (val64 != exp_val) {
1da177e4 5923 fail = 1;
9e39f7c5 5924 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5925 }
5926
5927 val64 = readq(&bar0->xgxs_efifo_cfg);
5928 if (val64 != 0x000000001923141EULL) {
5929 fail = 1;
9e39f7c5 5930 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5931 }
5932
5933 val64 = 0x5A5A5A5A5A5A5A5AULL;
5934 writeq(val64, &bar0->xmsi_data);
5935 val64 = readq(&bar0->xmsi_data);
5936 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5937 fail = 1;
9e39f7c5 5938 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5939 }
5940
5941 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5942 writeq(val64, &bar0->xmsi_data);
5943 val64 = readq(&bar0->xmsi_data);
5944 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5945 fail = 1;
9e39f7c5 5946 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5947 }
5948
5949 *data = fail;
ad4ebed0 5950 return fail;
1da177e4
LT
5951}
5952
5953/**
20346722 5954 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5955 * @sp : private member of the device structure, which is a pointer to the
5956 * s2io_nic structure.
5957 * @data:variable that returns the result of each of the test conducted by
5958 * the driver.
5959 * Description:
20346722 5960 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5961 * register.
5962 * Return value:
5963 * 0 on success.
5964 */
5965
d44570e4 5966static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5967{
5968 int fail = 0;
ad4ebed0 5969 u64 ret_data, org_4F0, org_7F0;
5970 u8 saved_4F0 = 0, saved_7F0 = 0;
5971 struct net_device *dev = sp->dev;
1da177e4
LT
5972
5973 /* Test Write Error at offset 0 */
ad4ebed0 5974 /* Note that SPI interface allows write access to all areas
5975 * of EEPROM. Hence doing all negative testing only for Xframe I.
5976 */
5977 if (sp->device_type == XFRAME_I_DEVICE)
5978 if (!write_eeprom(sp, 0, 0, 3))
5979 fail = 1;
5980
5981 /* Save current values at offsets 0x4F0 and 0x7F0 */
5982 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5983 saved_4F0 = 1;
5984 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5985 saved_7F0 = 1;
1da177e4
LT
5986
5987 /* Test Write at offset 4f0 */
ad4ebed0 5988 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5989 fail = 1;
5990 if (read_eeprom(sp, 0x4F0, &ret_data))
5991 fail = 1;
5992
ad4ebed0 5993 if (ret_data != 0x012345) {
26b7625c 5994 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
5995 "Data written %llx Data read %llx\n",
5996 dev->name, (unsigned long long)0x12345,
5997 (unsigned long long)ret_data);
1da177e4 5998 fail = 1;
ad4ebed0 5999 }
1da177e4
LT
6000
6001 /* Reset the EEPROM data go FFFF */
ad4ebed0 6002 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6003
6004 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6005 if (sp->device_type == XFRAME_I_DEVICE)
6006 if (!write_eeprom(sp, 0x07C, 0, 3))
6007 fail = 1;
1da177e4 6008
ad4ebed0 6009 /* Test Write Request at offset 0x7f0 */
6010 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6011 fail = 1;
ad4ebed0 6012 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6013 fail = 1;
6014
ad4ebed0 6015 if (ret_data != 0x012345) {
26b7625c 6016 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6017 "Data written %llx Data read %llx\n",
6018 dev->name, (unsigned long long)0x12345,
6019 (unsigned long long)ret_data);
1da177e4 6020 fail = 1;
ad4ebed0 6021 }
1da177e4
LT
6022
6023 /* Reset the EEPROM data go FFFF */
ad4ebed0 6024 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6025
ad4ebed0 6026 if (sp->device_type == XFRAME_I_DEVICE) {
6027 /* Test Write Error at offset 0x80 */
6028 if (!write_eeprom(sp, 0x080, 0, 3))
6029 fail = 1;
1da177e4 6030
ad4ebed0 6031 /* Test Write Error at offset 0xfc */
6032 if (!write_eeprom(sp, 0x0FC, 0, 3))
6033 fail = 1;
1da177e4 6034
ad4ebed0 6035 /* Test Write Error at offset 0x100 */
6036 if (!write_eeprom(sp, 0x100, 0, 3))
6037 fail = 1;
1da177e4 6038
ad4ebed0 6039 /* Test Write Error at offset 4ec */
6040 if (!write_eeprom(sp, 0x4EC, 0, 3))
6041 fail = 1;
6042 }
6043
6044 /* Restore values at offsets 0x4F0 and 0x7F0 */
6045 if (saved_4F0)
6046 write_eeprom(sp, 0x4F0, org_4F0, 3);
6047 if (saved_7F0)
6048 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6049
6050 *data = fail;
ad4ebed0 6051 return fail;
1da177e4
LT
6052}
6053
6054/**
6055 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6056 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6057 * s2io_nic structure.
20346722 6058 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6059 * the driver.
6060 * Description:
6061 * This invokes the MemBist test of the card. We give around
6062 * 2 secs time for the Test to complete. If it's still not complete
20346722 6063 * within this peiod, we consider that the test failed.
1da177e4
LT
6064 * Return value:
6065 * 0 on success and -1 on failure.
6066 */
6067
d44570e4 6068static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6069{
6070 u8 bist = 0;
6071 int cnt = 0, ret = -1;
6072
6073 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6074 bist |= PCI_BIST_START;
6075 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6076
6077 while (cnt < 20) {
6078 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6079 if (!(bist & PCI_BIST_START)) {
6080 *data = (bist & PCI_BIST_CODE_MASK);
6081 ret = 0;
6082 break;
6083 }
6084 msleep(100);
6085 cnt++;
6086 }
6087
6088 return ret;
6089}
6090
6091/**
49ce9c2c 6092 * s2io_link_test - verifies the link state of the nic
20346722 6093 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6094 * s2io_nic structure.
6095 * @data: variable that returns the result of each of the test conducted by
6096 * the driver.
6097 * Description:
20346722 6098 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6099 * argument 'data' appropriately.
6100 * Return value:
6101 * 0 on success.
6102 */
6103
d44570e4 6104static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6105{
1ee6dd77 6106 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6107 u64 val64;
6108
6109 val64 = readq(&bar0->adapter_status);
d44570e4 6110 if (!(LINK_IS_UP(val64)))
1da177e4 6111 *data = 1;
c92ca04b
AR
6112 else
6113 *data = 0;
1da177e4 6114
b41477f3 6115 return *data;
1da177e4
LT
6116}
6117
6118/**
20346722 6119 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
49ce9c2c 6120 * @sp: private member of the device structure, which is a pointer to the
1da177e4 6121 * s2io_nic structure.
49ce9c2c 6122 * @data: variable that returns the result of each of the test
1da177e4
LT
6123 * conducted by the driver.
6124 * Description:
20346722 6125 * This is one of the offline test that tests the read and write
1da177e4
LT
6126 * access to the RldRam chip on the NIC.
6127 * Return value:
6128 * 0 on success.
6129 */
6130
d44570e4 6131static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6132{
1ee6dd77 6133 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6134 u64 val64;
ad4ebed0 6135 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6136
6137 val64 = readq(&bar0->adapter_control);
6138 val64 &= ~ADAPTER_ECC_EN;
6139 writeq(val64, &bar0->adapter_control);
6140
6141 val64 = readq(&bar0->mc_rldram_test_ctrl);
6142 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6143 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6144
6145 val64 = readq(&bar0->mc_rldram_mrs);
6146 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6148
6149 val64 |= MC_RLDRAM_MRS_ENABLE;
6150 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6151
6152 while (iteration < 2) {
6153 val64 = 0x55555555aaaa0000ULL;
d44570e4 6154 if (iteration == 1)
1da177e4 6155 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6156 writeq(val64, &bar0->mc_rldram_test_d0);
6157
6158 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6159 if (iteration == 1)
1da177e4 6160 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6161 writeq(val64, &bar0->mc_rldram_test_d1);
6162
6163 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6164 if (iteration == 1)
1da177e4 6165 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6166 writeq(val64, &bar0->mc_rldram_test_d2);
6167
ad4ebed0 6168 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6169 writeq(val64, &bar0->mc_rldram_test_add);
6170
d44570e4
JP
6171 val64 = MC_RLDRAM_TEST_MODE |
6172 MC_RLDRAM_TEST_WRITE |
6173 MC_RLDRAM_TEST_GO;
ad4ebed0 6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6175
6176 for (cnt = 0; cnt < 5; cnt++) {
6177 val64 = readq(&bar0->mc_rldram_test_ctrl);
6178 if (val64 & MC_RLDRAM_TEST_DONE)
6179 break;
6180 msleep(200);
6181 }
6182
6183 if (cnt == 5)
6184 break;
6185
ad4ebed0 6186 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6188
6189 for (cnt = 0; cnt < 5; cnt++) {
6190 val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 if (val64 & MC_RLDRAM_TEST_DONE)
6192 break;
6193 msleep(500);
6194 }
6195
6196 if (cnt == 5)
6197 break;
6198
6199 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6200 if (!(val64 & MC_RLDRAM_TEST_PASS))
6201 test_fail = 1;
1da177e4
LT
6202
6203 iteration++;
6204 }
6205
ad4ebed0 6206 *data = test_fail;
1da177e4 6207
ad4ebed0 6208 /* Bring the adapter out of test mode */
6209 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6210
6211 return test_fail;
1da177e4
LT
6212}
6213
6214/**
6215 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6216 * @sp : private member of the device structure, which is a pointer to the
6217 * s2io_nic structure.
6218 * @ethtest : pointer to a ethtool command specific structure that will be
6219 * returned to the user.
20346722 6220 * @data : variable that returns the result of each of the test
1da177e4
LT
6221 * conducted by the driver.
6222 * Description:
6223 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6224 * the health of the card.
6225 * Return value:
6226 * void
6227 */
6228
6229static void s2io_ethtool_test(struct net_device *dev,
6230 struct ethtool_test *ethtest,
d44570e4 6231 uint64_t *data)
1da177e4 6232{
4cf1653a 6233 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6234 int orig_state = netif_running(sp->dev);
6235
6236 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6237 /* Offline Tests. */
20346722 6238 if (orig_state)
1da177e4 6239 s2io_close(sp->dev);
1da177e4
LT
6240
6241 if (s2io_register_test(sp, &data[0]))
6242 ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244 s2io_reset(sp);
1da177e4
LT
6245
6246 if (s2io_rldram_test(sp, &data[3]))
6247 ethtest->flags |= ETH_TEST_FL_FAILED;
6248
6249 s2io_reset(sp);
1da177e4
LT
6250
6251 if (s2io_eeprom_test(sp, &data[1]))
6252 ethtest->flags |= ETH_TEST_FL_FAILED;
6253
6254 if (s2io_bist_test(sp, &data[4]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6256
6257 if (orig_state)
6258 s2io_open(sp->dev);
6259
6260 data[2] = 0;
6261 } else {
6262 /* Online Tests. */
6263 if (!orig_state) {
d44570e4 6264 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6265 dev->name);
6266 data[0] = -1;
6267 data[1] = -1;
6268 data[2] = -1;
6269 data[3] = -1;
6270 data[4] = -1;
6271 }
6272
6273 if (s2io_link_test(sp, &data[2]))
6274 ethtest->flags |= ETH_TEST_FL_FAILED;
6275
6276 data[0] = 0;
6277 data[1] = 0;
6278 data[3] = 0;
6279 data[4] = 0;
6280 }
6281}
6282
6283static void s2io_get_ethtool_stats(struct net_device *dev,
6284 struct ethtool_stats *estats,
d44570e4 6285 u64 *tmp_stats)
1da177e4 6286{
8116f3cf 6287 int i = 0, k;
4cf1653a 6288 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6289 struct stat_block *stats = sp->mac_control.stats_info;
6290 struct swStat *swstats = &stats->sw_stat;
6291 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6292
7ba013ac 6293 s2io_updt_stats(sp);
541ae68f 6294 tmp_stats[i++] =
ffb5df6c
JP
6295 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6296 le32_to_cpu(stats->tmac_frms);
541ae68f 6297 tmp_stats[i++] =
ffb5df6c
JP
6298 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6299 le32_to_cpu(stats->tmac_data_octets);
6300 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6301 tmp_stats[i++] =
ffb5df6c
JP
6302 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6303 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6304 tmp_stats[i++] =
ffb5df6c
JP
6305 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6306 le32_to_cpu(stats->tmac_bcst_frms);
6307 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6308 tmp_stats[i++] =
ffb5df6c
JP
6309 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6310 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6311 tmp_stats[i++] =
ffb5df6c
JP
6312 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6313 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6314 tmp_stats[i++] =
ffb5df6c
JP
6315 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6316 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6317 tmp_stats[i++] =
ffb5df6c
JP
6318 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6319 le32_to_cpu(stats->tmac_any_err_frms);
6320 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6321 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6322 tmp_stats[i++] =
ffb5df6c
JP
6323 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6324 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6325 tmp_stats[i++] =
ffb5df6c
JP
6326 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6327 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6328 tmp_stats[i++] =
ffb5df6c
JP
6329 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6330 le32_to_cpu(stats->tmac_icmp);
541ae68f 6331 tmp_stats[i++] =
ffb5df6c
JP
6332 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6333 le32_to_cpu(stats->tmac_rst_tcp);
6334 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6335 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6336 le32_to_cpu(stats->tmac_udp);
541ae68f 6337 tmp_stats[i++] =
ffb5df6c
JP
6338 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6339 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6340 tmp_stats[i++] =
ffb5df6c
JP
6341 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6342 le32_to_cpu(stats->rmac_data_octets);
6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6344 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6345 tmp_stats[i++] =
ffb5df6c
JP
6346 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6347 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6348 tmp_stats[i++] =
ffb5df6c
JP
6349 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6350 le32_to_cpu(stats->rmac_vld_bcst_frms);
6351 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6352 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6353 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6356 tmp_stats[i++] =
ffb5df6c
JP
6357 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6358 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6359 tmp_stats[i++] =
ffb5df6c
JP
6360 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6361 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6362 tmp_stats[i++] =
ffb5df6c
JP
6363 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6364 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6365 tmp_stats[i++] =
ffb5df6c
JP
6366 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6367 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6368 tmp_stats[i++] =
ffb5df6c
JP
6369 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6370 << 32 | le32_to_cpu(stats->rmac_drop_events);
6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6373 tmp_stats[i++] =
ffb5df6c
JP
6374 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6375 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6376 tmp_stats[i++] =
ffb5df6c
JP
6377 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6378 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6379 tmp_stats[i++] =
ffb5df6c
JP
6380 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6381 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6382 tmp_stats[i++] =
ffb5df6c
JP
6383 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6384 le32_to_cpu(stats->rmac_jabber_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6391 tmp_stats[i++] =
ffb5df6c
JP
6392 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6393 le32_to_cpu(stats->rmac_ip);
6394 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6395 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6396 tmp_stats[i++] =
ffb5df6c
JP
6397 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6398 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6399 tmp_stats[i++] =
ffb5df6c
JP
6400 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6401 le32_to_cpu(stats->rmac_icmp);
6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6403 tmp_stats[i++] =
ffb5df6c
JP
6404 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6405 le32_to_cpu(stats->rmac_udp);
541ae68f 6406 tmp_stats[i++] =
ffb5df6c
JP
6407 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6408 le32_to_cpu(stats->rmac_err_drp_udp);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6426 tmp_stats[i++] =
ffb5df6c
JP
6427 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6428 le32_to_cpu(stats->rmac_pause_cnt);
6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6430 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6431 tmp_stats[i++] =
ffb5df6c
JP
6432 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6433 le32_to_cpu(stats->rmac_accepted_ip);
6434 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6435 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6453
6454 /* Enhanced statistics exist only for Hercules */
d44570e4 6455 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6456 tmp_stats[i++] =
ffb5df6c 6457 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6458 tmp_stats[i++] =
ffb5df6c 6459 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6460 tmp_stats[i++] =
ffb5df6c
JP
6461 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6474 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6475 }
6476
7ba013ac 6477 tmp_stats[i++] = 0;
ffb5df6c
JP
6478 tmp_stats[i++] = swstats->single_ecc_errs;
6479 tmp_stats[i++] = swstats->double_ecc_errs;
6480 tmp_stats[i++] = swstats->parity_err_cnt;
6481 tmp_stats[i++] = swstats->serious_err_cnt;
6482 tmp_stats[i++] = swstats->soft_reset_cnt;
6483 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6484 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6485 tmp_stats[i++] = swstats->ring_full_cnt[k];
6486 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6487 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6488 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6489 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6490 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6491 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6492 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6493 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6494 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6495 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6496 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6497 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6498 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6499 tmp_stats[i++] = swstats->sending_both;
6500 tmp_stats[i++] = swstats->outof_sequence_pkts;
6501 tmp_stats[i++] = swstats->flush_max_pkts;
6502 if (swstats->num_aggregations) {
6503 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6504 int count = 0;
6aa20a22 6505 /*
bd1034f0
AR
6506 * Since 64-bit divide does not work on all platforms,
6507 * do repeated subtraction.
6508 */
ffb5df6c
JP
6509 while (tmp >= swstats->num_aggregations) {
6510 tmp -= swstats->num_aggregations;
bd1034f0
AR
6511 count++;
6512 }
6513 tmp_stats[i++] = count;
d44570e4 6514 } else
bd1034f0 6515 tmp_stats[i++] = 0;
ffb5df6c
JP
6516 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6517 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6518 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6519 tmp_stats[i++] = swstats->mem_allocated;
6520 tmp_stats[i++] = swstats->mem_freed;
6521 tmp_stats[i++] = swstats->link_up_cnt;
6522 tmp_stats[i++] = swstats->link_down_cnt;
6523 tmp_stats[i++] = swstats->link_up_time;
6524 tmp_stats[i++] = swstats->link_down_time;
6525
6526 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6527 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6528 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6529 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6530 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6531
6532 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6533 tmp_stats[i++] = swstats->rx_abort_cnt;
6534 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6535 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6536 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6537 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6538 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6539 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6540 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6541 tmp_stats[i++] = swstats->tda_err_cnt;
6542 tmp_stats[i++] = swstats->pfc_err_cnt;
6543 tmp_stats[i++] = swstats->pcc_err_cnt;
6544 tmp_stats[i++] = swstats->tti_err_cnt;
6545 tmp_stats[i++] = swstats->tpa_err_cnt;
6546 tmp_stats[i++] = swstats->sm_err_cnt;
6547 tmp_stats[i++] = swstats->lso_err_cnt;
6548 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6549 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6550 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6551 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6552 tmp_stats[i++] = swstats->rc_err_cnt;
6553 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6554 tmp_stats[i++] = swstats->rpa_err_cnt;
6555 tmp_stats[i++] = swstats->rda_err_cnt;
6556 tmp_stats[i++] = swstats->rti_err_cnt;
6557 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6558}
6559
ac1f60db 6560static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6561{
d44570e4 6562 return XENA_REG_SPACE;
1da177e4
LT
6563}
6564
6565
ac1f60db 6566static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6567{
d44570e4 6568 return XENA_EEPROM_SPACE;
1da177e4
LT
6569}
6570
b9f2c044 6571static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6572{
4cf1653a 6573 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6574
6575 switch (sset) {
6576 case ETH_SS_TEST:
6577 return S2IO_TEST_LEN;
6578 case ETH_SS_STATS:
d44570e4 6579 switch (sp->device_type) {
b9f2c044
JG
6580 case XFRAME_I_DEVICE:
6581 return XFRAME_I_STAT_LEN;
6582 case XFRAME_II_DEVICE:
6583 return XFRAME_II_STAT_LEN;
6584 default:
6585 return 0;
6586 }
6587 default:
6588 return -EOPNOTSUPP;
6589 }
1da177e4 6590}
ac1f60db
AB
6591
6592static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6593 u32 stringset, u8 *data)
1da177e4 6594{
fa1f0cb3 6595 int stat_size = 0;
4cf1653a 6596 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6597
1da177e4
LT
6598 switch (stringset) {
6599 case ETH_SS_TEST:
6600 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6601 break;
6602 case ETH_SS_STATS:
fa1f0cb3 6603 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6604 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6605 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6606 memcpy(data + stat_size,
d44570e4
JP
6607 &ethtool_enhanced_stats_keys,
6608 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6609 stat_size += sizeof(ethtool_enhanced_stats_keys);
6610 }
6611
6612 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6613 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6614 }
6615}
1da177e4 6616
c8f44aff 6617static int s2io_set_features(struct net_device *dev, netdev_features_t features)
958de193
JM
6618{
6619 struct s2io_nic *sp = netdev_priv(dev);
c8f44aff 6620 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
958de193
JM
6621
6622 if (changed && netif_running(dev)) {
b437a8cc
MM
6623 int rc;
6624
958de193
JM
6625 s2io_stop_all_tx_queue(sp);
6626 s2io_card_down(sp);
b437a8cc 6627 dev->features = features;
958de193
JM
6628 rc = s2io_card_up(sp);
6629 if (rc)
6630 s2io_reset(sp);
6631 else
6632 s2io_start_all_tx_queue(sp);
b437a8cc
MM
6633
6634 return rc ? rc : 1;
958de193
JM
6635 }
6636
b437a8cc 6637 return 0;
958de193
JM
6638}
6639
7282d491 6640static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6641 .get_settings = s2io_ethtool_gset,
6642 .set_settings = s2io_ethtool_sset,
6643 .get_drvinfo = s2io_ethtool_gdrvinfo,
6644 .get_regs_len = s2io_ethtool_get_regs_len,
6645 .get_regs = s2io_ethtool_gregs,
6646 .get_link = ethtool_op_get_link,
6647 .get_eeprom_len = s2io_get_eeprom_len,
6648 .get_eeprom = s2io_ethtool_geeprom,
6649 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6650 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6651 .get_pauseparam = s2io_ethtool_getpause_data,
6652 .set_pauseparam = s2io_ethtool_setpause_data,
1da177e4
LT
6653 .self_test = s2io_ethtool_test,
6654 .get_strings = s2io_ethtool_get_strings,
034e3450 6655 .set_phys_id = s2io_ethtool_set_led,
b9f2c044
JG
6656 .get_ethtool_stats = s2io_get_ethtool_stats,
6657 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6658};
6659
6660/**
20346722 6661 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6662 * @dev : Device pointer.
6663 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6664 * a proprietary structure used to pass information to the driver.
6665 * @cmd : This is used to distinguish between the different commands that
6666 * can be passed to the IOCTL functions.
6667 * Description:
20346722 6668 * Currently there are no special functionality supported in IOCTL, hence
6669 * function always return EOPNOTSUPPORTED
1da177e4
LT
6670 */
6671
ac1f60db 6672static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6673{
6674 return -EOPNOTSUPP;
6675}
6676
6677/**
6678 * s2io_change_mtu - entry point to change MTU size for the device.
6679 * @dev : device pointer.
6680 * @new_mtu : the new MTU size for the device.
6681 * Description: A driver entry point to change MTU size for the device.
6682 * Before changing the MTU the device must be stopped.
6683 * Return value:
6684 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6685 * file on failure.
6686 */
6687
ac1f60db 6688static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6689{
4cf1653a 6690 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6691 int ret = 0;
1da177e4
LT
6692
6693 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6694 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6695 return -EPERM;
6696 }
6697
1da177e4 6698 dev->mtu = new_mtu;
d8892c6e 6699 if (netif_running(dev)) {
3a3d5756 6700 s2io_stop_all_tx_queue(sp);
e6a8fee2 6701 s2io_card_down(sp);
9f74ffde
SH
6702 ret = s2io_card_up(sp);
6703 if (ret) {
d8892c6e 6704 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6705 __func__);
9f74ffde 6706 return ret;
d8892c6e 6707 }
3a3d5756 6708 s2io_wake_all_tx_queue(sp);
d8892c6e 6709 } else { /* Device is down */
1ee6dd77 6710 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6711 u64 val64 = new_mtu;
6712
6713 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6714 }
1da177e4 6715
9f74ffde 6716 return ret;
1da177e4
LT
6717}
6718
1da177e4
LT
6719/**
6720 * s2io_set_link - Set the LInk status
6721 * @data: long pointer to device private structue
6722 * Description: Sets the link status for the adapter
6723 */
6724
c4028958 6725static void s2io_set_link(struct work_struct *work)
1da177e4 6726{
d44570e4
JP
6727 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6728 set_link_task);
1da177e4 6729 struct net_device *dev = nic->dev;
1ee6dd77 6730 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6731 register u64 val64;
6732 u16 subid;
6733
22747d6b
FR
6734 rtnl_lock();
6735
6736 if (!netif_running(dev))
6737 goto out_unlock;
6738
92b84437 6739 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6740 /* The card is being reset, no point doing anything */
22747d6b 6741 goto out_unlock;
1da177e4
LT
6742 }
6743
6744 subid = nic->pdev->subsystem_device;
a371a07d 6745 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746 /*
6747 * Allow a small delay for the NICs self initiated
6748 * cleanup to complete.
6749 */
6750 msleep(100);
6751 }
1da177e4
LT
6752
6753 val64 = readq(&bar0->adapter_status);
19a60522
SS
6754 if (LINK_IS_UP(val64)) {
6755 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6756 if (verify_xena_quiescence(nic)) {
6757 val64 = readq(&bar0->adapter_control);
6758 val64 |= ADAPTER_CNTL_EN;
1da177e4 6759 writeq(val64, &bar0->adapter_control);
19a60522 6760 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6761 nic->device_type, subid)) {
19a60522
SS
6762 val64 = readq(&bar0->gpio_control);
6763 val64 |= GPIO_CTRL_GPIO_0;
6764 writeq(val64, &bar0->gpio_control);
6765 val64 = readq(&bar0->gpio_control);
6766 } else {
6767 val64 |= ADAPTER_LED_ON;
6768 writeq(val64, &bar0->adapter_control);
a371a07d 6769 }
f957bcf0 6770 nic->device_enabled_once = true;
19a60522 6771 } else {
9e39f7c5
JP
6772 DBG_PRINT(ERR_DBG,
6773 "%s: Error: device is not Quiescent\n",
6774 dev->name);
3a3d5756 6775 s2io_stop_all_tx_queue(nic);
1da177e4 6776 }
19a60522 6777 }
92c48799
SS
6778 val64 = readq(&bar0->adapter_control);
6779 val64 |= ADAPTER_LED_ON;
6780 writeq(val64, &bar0->adapter_control);
6781 s2io_link(nic, LINK_UP);
19a60522
SS
6782 } else {
6783 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6784 subid)) {
6785 val64 = readq(&bar0->gpio_control);
6786 val64 &= ~GPIO_CTRL_GPIO_0;
6787 writeq(val64, &bar0->gpio_control);
6788 val64 = readq(&bar0->gpio_control);
1da177e4 6789 }
92c48799
SS
6790 /* turn off LED */
6791 val64 = readq(&bar0->adapter_control);
d44570e4 6792 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6793 writeq(val64, &bar0->adapter_control);
19a60522 6794 s2io_link(nic, LINK_DOWN);
1da177e4 6795 }
92b84437 6796 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6797
6798out_unlock:
d8d70caf 6799 rtnl_unlock();
1da177e4
LT
6800}
6801
1ee6dd77 6802static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6803 struct buffAdd *ba,
6804 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6805 u64 *temp2, int size)
5d3213cc
AR
6806{
6807 struct net_device *dev = sp->dev;
491abf25 6808 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6809
6810 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6811 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6812 /* allocate skb */
6813 if (*skb) {
6814 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6815 /*
6816 * As Rx frame are not going to be processed,
6817 * using same mapped address for the Rxd
6818 * buffer pointer
6819 */
6d517a27 6820 rxdp1->Buffer0_ptr = *temp0;
5d3213cc 6821 } else {
c056b734 6822 *skb = netdev_alloc_skb(dev, size);
5d3213cc 6823 if (!(*skb)) {
9e39f7c5
JP
6824 DBG_PRINT(INFO_DBG,
6825 "%s: Out of memory to allocate %s\n",
6826 dev->name, "1 buf mode SKBs");
ffb5df6c 6827 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6828 return -ENOMEM ;
6829 }
ffb5df6c 6830 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6831 /* storing the mapped addr in a temp variable
6832 * such it will be used for next rxd whose
6833 * Host Control is NULL
6834 */
6d517a27 6835 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6836 pci_map_single(sp->pdev, (*skb)->data,
6837 size - NET_IP_ALIGN,
6838 PCI_DMA_FROMDEVICE);
8d8bb39b 6839 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6840 goto memalloc_failed;
5d3213cc
AR
6841 rxdp->Host_Control = (unsigned long) (*skb);
6842 }
6843 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6844 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6845 /* Two buffer Mode */
6846 if (*skb) {
6d517a27
VP
6847 rxdp3->Buffer2_ptr = *temp2;
6848 rxdp3->Buffer0_ptr = *temp0;
6849 rxdp3->Buffer1_ptr = *temp1;
5d3213cc 6850 } else {
c056b734 6851 *skb = netdev_alloc_skb(dev, size);
2ceaac75 6852 if (!(*skb)) {
9e39f7c5
JP
6853 DBG_PRINT(INFO_DBG,
6854 "%s: Out of memory to allocate %s\n",
6855 dev->name,
6856 "2 buf mode SKBs");
ffb5df6c 6857 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6858 return -ENOMEM;
6859 }
ffb5df6c 6860 stats->mem_allocated += (*skb)->truesize;
6d517a27 6861 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6862 pci_map_single(sp->pdev, (*skb)->data,
6863 dev->mtu + 4,
6864 PCI_DMA_FROMDEVICE);
8d8bb39b 6865 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6866 goto memalloc_failed;
6d517a27 6867 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6868 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6869 PCI_DMA_FROMDEVICE);
8d8bb39b 6870 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6871 rxdp3->Buffer0_ptr)) {
6872 pci_unmap_single(sp->pdev,
6873 (dma_addr_t)rxdp3->Buffer2_ptr,
6874 dev->mtu + 4,
6875 PCI_DMA_FROMDEVICE);
491abf25
VP
6876 goto memalloc_failed;
6877 }
5d3213cc
AR
6878 rxdp->Host_Control = (unsigned long) (*skb);
6879
6880 /* Buffer-1 will be dummy buffer not used */
6d517a27 6881 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6882 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6883 PCI_DMA_FROMDEVICE);
8d8bb39b 6884 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6885 rxdp3->Buffer1_ptr)) {
6886 pci_unmap_single(sp->pdev,
6887 (dma_addr_t)rxdp3->Buffer0_ptr,
6888 BUF0_LEN, PCI_DMA_FROMDEVICE);
6889 pci_unmap_single(sp->pdev,
6890 (dma_addr_t)rxdp3->Buffer2_ptr,
6891 dev->mtu + 4,
6892 PCI_DMA_FROMDEVICE);
491abf25
VP
6893 goto memalloc_failed;
6894 }
5d3213cc
AR
6895 }
6896 }
6897 return 0;
d44570e4
JP
6898
6899memalloc_failed:
6900 stats->pci_map_fail_cnt++;
6901 stats->mem_freed += (*skb)->truesize;
6902 dev_kfree_skb(*skb);
6903 return -ENOMEM;
5d3213cc 6904}
491abf25 6905
1ee6dd77
RB
6906static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6907 int size)
5d3213cc
AR
6908{
6909 struct net_device *dev = sp->dev;
6910 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6911 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6912 } else if (sp->rxd_mode == RXD_MODE_3B) {
6913 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6914 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6915 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6916 }
6917}
6918
1ee6dd77 6919static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6920{
6921 int i, j, k, blk_cnt = 0, size;
5d3213cc 6922 struct config_param *config = &sp->config;
ffb5df6c 6923 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6924 struct net_device *dev = sp->dev;
1ee6dd77 6925 struct RxD_t *rxdp = NULL;
5d3213cc 6926 struct sk_buff *skb = NULL;
1ee6dd77 6927 struct buffAdd *ba = NULL;
5d3213cc
AR
6928 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6929
6930 /* Calculate the size based on ring mode */
6931 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6932 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6933 if (sp->rxd_mode == RXD_MODE_1)
6934 size += NET_IP_ALIGN;
6935 else if (sp->rxd_mode == RXD_MODE_3B)
6936 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6937
6938 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6939 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6940 struct ring_info *ring = &mac_control->rings[i];
6941
d44570e4 6942 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
6943
6944 for (j = 0; j < blk_cnt; j++) {
6945 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
6946 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6947 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 6948 ba = &ring->ba[j][k];
d44570e4 6949 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
64699336
JP
6950 &temp0_64,
6951 &temp1_64,
6952 &temp2_64,
d44570e4 6953 size) == -ENOMEM) {
ac1f90d6
SS
6954 return 0;
6955 }
5d3213cc
AR
6956
6957 set_rxd_buffer_size(sp, rxdp, size);
6958 wmb();
6959 /* flip the Ownership bit to Hardware */
6960 rxdp->Control_1 |= RXD_OWN_XENA;
6961 }
6962 }
6963 }
6964 return 0;
6965
6966}
6967
d44570e4 6968static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 6969{
e6a8fee2 6970 int ret = 0;
c92ca04b 6971 struct net_device *dev = sp->dev;
e6a8fee2 6972 int err = 0;
1da177e4 6973
eaae7f72 6974 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6975 ret = s2io_enable_msi_x(sp);
6976 if (ret) {
6977 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6978 sp->config.intr_type = INTA;
20346722 6979 }
1da177e4 6980
d44570e4
JP
6981 /*
6982 * Store the values of the MSIX table in
6983 * the struct s2io_nic structure
6984 */
e6a8fee2 6985 store_xmsi_data(sp);
c92ca04b 6986
e6a8fee2 6987 /* After proper initialization of H/W, register ISR */
eaae7f72 6988 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
6989 int i, msix_rx_cnt = 0;
6990
f61e0a35
SH
6991 for (i = 0; i < sp->num_entries; i++) {
6992 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6993 if (sp->s2io_entries[i].type ==
d44570e4 6994 MSIX_RING_TYPE) {
ac731ab6
SH
6995 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6996 dev->name, i);
6997 err = request_irq(sp->entries[i].vector,
d44570e4
JP
6998 s2io_msix_ring_handle,
6999 0,
7000 sp->desc[i],
7001 sp->s2io_entries[i].arg);
ac731ab6 7002 } else if (sp->s2io_entries[i].type ==
d44570e4 7003 MSIX_ALARM_TYPE) {
ac731ab6 7004 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7005 dev->name, i);
ac731ab6 7006 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7007 s2io_msix_fifo_handle,
7008 0,
7009 sp->desc[i],
7010 sp->s2io_entries[i].arg);
ac731ab6 7011
fb6a825b 7012 }
ac731ab6
SH
7013 /* if either data or addr is zero print it. */
7014 if (!(sp->msix_info[i].addr &&
d44570e4 7015 sp->msix_info[i].data)) {
ac731ab6 7016 DBG_PRINT(ERR_DBG,
d44570e4
JP
7017 "%s @Addr:0x%llx Data:0x%llx\n",
7018 sp->desc[i],
7019 (unsigned long long)
7020 sp->msix_info[i].addr,
7021 (unsigned long long)
7022 ntohl(sp->msix_info[i].data));
ac731ab6 7023 } else
fb6a825b 7024 msix_rx_cnt++;
ac731ab6
SH
7025 if (err) {
7026 remove_msix_isr(sp);
7027
7028 DBG_PRINT(ERR_DBG,
d44570e4
JP
7029 "%s:MSI-X-%d registration "
7030 "failed\n", dev->name, i);
ac731ab6
SH
7031
7032 DBG_PRINT(ERR_DBG,
d44570e4
JP
7033 "%s: Defaulting to INTA\n",
7034 dev->name);
ac731ab6
SH
7035 sp->config.intr_type = INTA;
7036 break;
fb6a825b 7037 }
ac731ab6
SH
7038 sp->s2io_entries[i].in_use =
7039 MSIX_REGISTERED_SUCCESS;
c92ca04b 7040 }
e6a8fee2 7041 }
18b2b7bd 7042 if (!err) {
6cef2b8e 7043 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7044 DBG_PRINT(INFO_DBG,
7045 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7046 }
e6a8fee2 7047 }
eaae7f72 7048 if (sp->config.intr_type == INTA) {
80777c54 7049 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
d44570e4 7050 sp->name, dev);
e6a8fee2
AR
7051 if (err) {
7052 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7053 dev->name);
7054 return -1;
7055 }
7056 }
7057 return 0;
7058}
d44570e4
JP
7059
7060static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7061{
18b2b7bd
SH
7062 if (sp->config.intr_type == MSI_X)
7063 remove_msix_isr(sp);
7064 else
7065 remove_inta_isr(sp);
e6a8fee2
AR
7066}
7067
d44570e4 7068static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7069{
7070 int cnt = 0;
1ee6dd77 7071 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7072 register u64 val64 = 0;
5f490c96
SH
7073 struct config_param *config;
7074 config = &sp->config;
e6a8fee2 7075
9f74ffde
SH
7076 if (!is_s2io_card_up(sp))
7077 return;
7078
e6a8fee2
AR
7079 del_timer_sync(&sp->alarm_timer);
7080 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7081 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7082 msleep(50);
92b84437 7083 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7084
5f490c96 7085 /* Disable napi */
f61e0a35
SH
7086 if (sp->config.napi) {
7087 int off = 0;
7088 if (config->intr_type == MSI_X) {
7089 for (; off < sp->config.rx_ring_num; off++)
7090 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7091 }
f61e0a35
SH
7092 else
7093 napi_disable(&sp->napi);
7094 }
5f490c96 7095
e6a8fee2 7096 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7097 if (do_io)
7098 stop_nic(sp);
e6a8fee2
AR
7099
7100 s2io_rem_isr(sp);
1da177e4 7101
01e16faa
SH
7102 /* stop the tx queue, indicate link down */
7103 s2io_link(sp, LINK_DOWN);
7104
1da177e4 7105 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7106 while (do_io) {
5d3213cc
AR
7107 /* As per the HW requirement we need to replenish the
7108 * receive buffer to avoid the ring bump. Since there is
7109 * no intention of processing the Rx frame at this pointwe are
70f23fd6 7110 * just setting the ownership bit of rxd in Each Rx
5d3213cc
AR
7111 * ring to HW and set the appropriate buffer size
7112 * based on the ring mode
7113 */
7114 rxd_owner_bit_reset(sp);
7115
1da177e4 7116 val64 = readq(&bar0->adapter_status);
19a60522 7117 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7118 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7119 break;
1da177e4
LT
7120 }
7121
7122 msleep(50);
7123 cnt++;
7124 if (cnt == 10) {
9e39f7c5
JP
7125 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7126 "adapter status reads 0x%llx\n",
d44570e4 7127 (unsigned long long)val64);
1da177e4
LT
7128 break;
7129 }
d796fdb7
LV
7130 }
7131 if (do_io)
7132 s2io_reset(sp);
1da177e4 7133
7ba013ac 7134 /* Free all Tx buffers */
1da177e4 7135 free_tx_buffers(sp);
7ba013ac 7136
7137 /* Free all Rx buffers */
1da177e4
LT
7138 free_rx_buffers(sp);
7139
92b84437 7140 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7141}
7142
d44570e4 7143static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7144{
7145 do_s2io_card_down(sp, 1);
7146}
7147
d44570e4 7148static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7149{
cc6e7c44 7150 int i, ret = 0;
1da177e4 7151 struct config_param *config;
ffb5df6c 7152 struct mac_info *mac_control;
64699336 7153 struct net_device *dev = sp->dev;
e6a8fee2 7154 u16 interruptible;
1da177e4
LT
7155
7156 /* Initialize the H/W I/O registers */
9f74ffde
SH
7157 ret = init_nic(sp);
7158 if (ret != 0) {
1da177e4
LT
7159 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7160 dev->name);
9f74ffde
SH
7161 if (ret != -EIO)
7162 s2io_reset(sp);
7163 return ret;
1da177e4
LT
7164 }
7165
20346722 7166 /*
7167 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7168 * Rx ring and initializing buffers into 30 Rx blocks
7169 */
1da177e4 7170 config = &sp->config;
ffb5df6c 7171 mac_control = &sp->mac_control;
1da177e4
LT
7172
7173 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7174 struct ring_info *ring = &mac_control->rings[i];
7175
7176 ring->mtu = dev->mtu;
f0c54ace 7177 ring->lro = !!(dev->features & NETIF_F_LRO);
13d866a9 7178 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7179 if (ret) {
1da177e4
LT
7180 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7181 dev->name);
7182 s2io_reset(sp);
7183 free_rx_buffers(sp);
7184 return -ENOMEM;
7185 }
7186 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7187 ring->rx_bufs_left);
1da177e4 7188 }
5f490c96
SH
7189
7190 /* Initialise napi */
f61e0a35 7191 if (config->napi) {
f61e0a35
SH
7192 if (config->intr_type == MSI_X) {
7193 for (i = 0; i < sp->config.rx_ring_num; i++)
7194 napi_enable(&sp->mac_control.rings[i].napi);
7195 } else {
7196 napi_enable(&sp->napi);
7197 }
7198 }
5f490c96 7199
19a60522
SS
7200 /* Maintain the state prior to the open */
7201 if (sp->promisc_flg)
7202 sp->promisc_flg = 0;
7203 if (sp->m_cast_flg) {
7204 sp->m_cast_flg = 0;
d44570e4 7205 sp->all_multi_pos = 0;
19a60522 7206 }
1da177e4
LT
7207
7208 /* Setting its receive mode */
7209 s2io_set_multicast(dev);
7210
f0c54ace 7211 if (dev->features & NETIF_F_LRO) {
b41477f3 7212 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7213 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7214 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7215 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7216 sp->lro_max_aggr_per_sess = lro_max_pkts;
7217 }
7218
1da177e4
LT
7219 /* Enable Rx Traffic and interrupts on the NIC */
7220 if (start_nic(sp)) {
7221 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7222 s2io_reset(sp);
e6a8fee2
AR
7223 free_rx_buffers(sp);
7224 return -ENODEV;
7225 }
7226
7227 /* Add interrupt service routine */
7228 if (s2io_add_isr(sp) != 0) {
eaae7f72 7229 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7230 s2io_rem_isr(sp);
7231 s2io_reset(sp);
1da177e4
LT
7232 free_rx_buffers(sp);
7233 return -ENODEV;
7234 }
7235
25fff88e 7236 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7237
01e16faa
SH
7238 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7239
e6a8fee2 7240 /* Enable select interrupts */
9caab458 7241 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7242 if (sp->config.intr_type != INTA) {
7243 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7244 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7245 } else {
e6a8fee2 7246 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7247 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7248 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249 }
7250
1da177e4
LT
7251 return 0;
7252}
7253
20346722 7254/**
1da177e4
LT
7255 * s2io_restart_nic - Resets the NIC.
7256 * @data : long pointer to the device private structure
7257 * Description:
7258 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7259 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7260 * the run time of the watch dog routine which is run holding a
7261 * spin lock.
7262 */
7263
c4028958 7264static void s2io_restart_nic(struct work_struct *work)
1da177e4 7265{
1ee6dd77 7266 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7267 struct net_device *dev = sp->dev;
1da177e4 7268
22747d6b
FR
7269 rtnl_lock();
7270
7271 if (!netif_running(dev))
7272 goto out_unlock;
7273
e6a8fee2 7274 s2io_card_down(sp);
1da177e4 7275 if (s2io_card_up(sp)) {
d44570e4 7276 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7277 }
3a3d5756 7278 s2io_wake_all_tx_queue(sp);
d44570e4 7279 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7280out_unlock:
7281 rtnl_unlock();
1da177e4
LT
7282}
7283
20346722 7284/**
7285 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7286 * @dev : Pointer to net device structure
7287 * Description:
7288 * This function is triggered if the Tx Queue is stopped
7289 * for a pre-defined amount of time when the Interface is still up.
7290 * If the Interface is jammed in such a situation, the hardware is
7291 * reset (by s2io_close) and restarted again (by s2io_open) to
7292 * overcome any problem that might have been caused in the hardware.
7293 * Return value:
7294 * void
7295 */
7296
7297static void s2io_tx_watchdog(struct net_device *dev)
7298{
4cf1653a 7299 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7300 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7301
7302 if (netif_carrier_ok(dev)) {
ffb5df6c 7303 swstats->watchdog_timer_cnt++;
1da177e4 7304 schedule_work(&sp->rst_timer_task);
ffb5df6c 7305 swstats->soft_reset_cnt++;
1da177e4
LT
7306 }
7307}
7308
7309/**
7310 * rx_osm_handler - To perform some OS related operations on SKB.
7311 * @sp: private member of the device structure,pointer to s2io_nic structure.
7312 * @skb : the socket buffer pointer.
7313 * @len : length of the packet
7314 * @cksum : FCS checksum of the frame.
7315 * @ring_no : the ring from which this RxD was extracted.
20346722 7316 * Description:
b41477f3 7317 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7318 * some OS related operations on the SKB before passing it to the upper
7319 * layers. It mainly checks if the checksum is OK, if so adds it to the
7320 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7321 * to the upper layer. If the checksum is wrong, it increments the Rx
7322 * packet error count, frees the SKB and returns error.
7323 * Return value:
7324 * SUCCESS on success and -1 on failure.
7325 */
1ee6dd77 7326static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7327{
1ee6dd77 7328 struct s2io_nic *sp = ring_data->nic;
64699336 7329 struct net_device *dev = ring_data->dev;
20346722 7330 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7331 ((unsigned long)rxdp->Host_Control);
20346722 7332 int ring_no = ring_data->ring_no;
1da177e4 7333 u16 l3_csum, l4_csum;
863c11a9 7334 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7335 struct lro *uninitialized_var(lro);
f9046eb3 7336 u8 err_mask;
ffb5df6c 7337 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7338
20346722 7339 skb->dev = dev;
c92ca04b 7340
863c11a9 7341 if (err) {
bd1034f0 7342 /* Check for parity error */
d44570e4 7343 if (err & 0x1)
ffb5df6c 7344 swstats->parity_err_cnt++;
d44570e4 7345
f9046eb3 7346 err_mask = err >> 48;
d44570e4
JP
7347 switch (err_mask) {
7348 case 1:
ffb5df6c 7349 swstats->rx_parity_err_cnt++;
491976b2
SH
7350 break;
7351
d44570e4 7352 case 2:
ffb5df6c 7353 swstats->rx_abort_cnt++;
491976b2
SH
7354 break;
7355
d44570e4 7356 case 3:
ffb5df6c 7357 swstats->rx_parity_abort_cnt++;
491976b2
SH
7358 break;
7359
d44570e4 7360 case 4:
ffb5df6c 7361 swstats->rx_rda_fail_cnt++;
491976b2
SH
7362 break;
7363
d44570e4 7364 case 5:
ffb5df6c 7365 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7366 break;
7367
d44570e4 7368 case 6:
ffb5df6c 7369 swstats->rx_fcs_err_cnt++;
491976b2 7370 break;
bd1034f0 7371
d44570e4 7372 case 7:
ffb5df6c 7373 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7374 break;
7375
d44570e4 7376 case 8:
ffb5df6c 7377 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7378 break;
7379
d44570e4 7380 case 15:
ffb5df6c 7381 swstats->rx_unkn_err_cnt++;
491976b2
SH
7382 break;
7383 }
863c11a9 7384 /*
d44570e4
JP
7385 * Drop the packet if bad transfer code. Exception being
7386 * 0x5, which could be due to unsupported IPv6 extension header.
7387 * In this case, we let stack handle the packet.
7388 * Note that in this case, since checksum will be incorrect,
7389 * stack will validate the same.
7390 */
f9046eb3
OH
7391 if (err_mask != 0x5) {
7392 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7393 dev->name, err_mask);
dc56e634 7394 dev->stats.rx_crc_errors++;
ffb5df6c 7395 swstats->mem_freed
491976b2 7396 += skb->truesize;
863c11a9 7397 dev_kfree_skb(skb);
0425b46a 7398 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7399 rxdp->Host_Control = 0;
7400 return 0;
7401 }
20346722 7402 }
1da177e4 7403
20346722 7404 rxdp->Host_Control = 0;
da6971d8
AR
7405 if (sp->rxd_mode == RXD_MODE_1) {
7406 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7407
da6971d8 7408 skb_put(skb, len);
6d517a27 7409 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7410 int get_block = ring_data->rx_curr_get_info.block_index;
7411 int get_off = ring_data->rx_curr_get_info.offset;
7412 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7413 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7414 unsigned char *buff = skb_push(skb, buf0_len);
7415
1ee6dd77 7416 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8 7417 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7418 skb_put(skb, buf2_len);
da6971d8 7419 }
20346722 7420
d44570e4
JP
7421 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7422 ((!ring_data->lro) ||
7423 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
b437a8cc 7424 (dev->features & NETIF_F_RXCSUM)) {
20346722 7425 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7426 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7427 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7428 /*
1da177e4
LT
7429 * NIC verifies if the Checksum of the received
7430 * frame is Ok or not and accordingly returns
7431 * a flag in the RxD.
7432 */
7433 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7434 if (ring_data->lro) {
06f0c139 7435 u32 tcp_len = 0;
7d3d0439
RA
7436 u8 *tcp;
7437 int ret = 0;
7438
0425b46a 7439 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7440 skb->data, &tcp,
7441 &tcp_len, &lro,
7442 rxdp, sp);
7d3d0439 7443 switch (ret) {
d44570e4
JP
7444 case 3: /* Begin anew */
7445 lro->parent = skb;
7446 goto aggregate;
7447 case 1: /* Aggregate */
7448 lro_append_pkt(sp, lro, skb, tcp_len);
7449 goto aggregate;
7450 case 4: /* Flush session */
7451 lro_append_pkt(sp, lro, skb, tcp_len);
7452 queue_rx_frame(lro->parent,
7453 lro->vlan_tag);
7454 clear_lro_session(lro);
ffb5df6c 7455 swstats->flush_max_pkts++;
d44570e4
JP
7456 goto aggregate;
7457 case 2: /* Flush both */
7458 lro->parent->data_len = lro->frags_len;
ffb5df6c 7459 swstats->sending_both++;
d44570e4
JP
7460 queue_rx_frame(lro->parent,
7461 lro->vlan_tag);
7462 clear_lro_session(lro);
7463 goto send_up;
7464 case 0: /* sessions exceeded */
7465 case -1: /* non-TCP or not L2 aggregatable */
7466 case 5: /*
7467 * First pkt in session not
7468 * L3/L4 aggregatable
7469 */
7470 break;
7471 default:
7472 DBG_PRINT(ERR_DBG,
7473 "%s: Samadhana!!\n",
7474 __func__);
7475 BUG();
7d3d0439
RA
7476 }
7477 }
1da177e4 7478 } else {
20346722 7479 /*
7480 * Packet with erroneous checksum, let the
1da177e4
LT
7481 * upper layers deal with it.
7482 */
bc8acf2c 7483 skb_checksum_none_assert(skb);
1da177e4 7484 }
cdb5bf02 7485 } else
bc8acf2c 7486 skb_checksum_none_assert(skb);
cdb5bf02 7487
ffb5df6c 7488 swstats->mem_freed += skb->truesize;
7d3d0439 7489send_up:
0c8dfc83 7490 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7491 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7492aggregate:
0425b46a 7493 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7494 return SUCCESS;
7495}
7496
7497/**
7498 * s2io_link - stops/starts the Tx queue.
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7501 * @link : inidicates whether link is UP/DOWN.
7502 * Description:
7503 * This function stops/starts the Tx queue depending on whether the link
20346722 7504 * status of the NIC is is down or up. This is called by the Alarm
7505 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7506 * Return value:
7507 * void.
7508 */
7509
d44570e4 7510static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7511{
64699336 7512 struct net_device *dev = sp->dev;
ffb5df6c 7513 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7514
7515 if (link != sp->last_link_state) {
b7c5678f 7516 init_tti(sp, link);
1da177e4
LT
7517 if (link == LINK_DOWN) {
7518 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7519 s2io_stop_all_tx_queue(sp);
1da177e4 7520 netif_carrier_off(dev);
ffb5df6c
JP
7521 if (swstats->link_up_cnt)
7522 swstats->link_up_time =
7523 jiffies - sp->start_time;
7524 swstats->link_down_cnt++;
1da177e4
LT
7525 } else {
7526 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7527 if (swstats->link_down_cnt)
7528 swstats->link_down_time =
d44570e4 7529 jiffies - sp->start_time;
ffb5df6c 7530 swstats->link_up_cnt++;
1da177e4 7531 netif_carrier_on(dev);
3a3d5756 7532 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7533 }
7534 }
7535 sp->last_link_state = link;
491976b2 7536 sp->start_time = jiffies;
1da177e4
LT
7537}
7538
20346722 7539/**
7540 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7541 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7542 * s2io_nic structure.
7543 * Description:
7544 * This function initializes a few of the PCI and PCI-X configuration registers
7545 * with recommended values.
7546 * Return value:
7547 * void
7548 */
7549
d44570e4 7550static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7551{
20346722 7552 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7553
7554 /* Enable Data Parity Error Recovery in PCI-X command register. */
7555 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7556 &(pcix_cmd));
1da177e4 7557 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7558 (pcix_cmd | 1));
1da177e4 7559 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7560 &(pcix_cmd));
1da177e4
LT
7561
7562 /* Set the PErr Response bit in PCI command register. */
7563 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7564 pci_write_config_word(sp->pdev, PCI_COMMAND,
7565 (pci_cmd | PCI_COMMAND_PARITY));
7566 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7567}
7568
3a3d5756 7569static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7570 u8 *dev_multiq)
9dc737a7 7571{
1853e2e1
JM
7572 int i;
7573
d44570e4 7574 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7575 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7576 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7577
7578 if (tx_fifo_num < 1)
7579 tx_fifo_num = 1;
7580 else
7581 tx_fifo_num = MAX_TX_FIFOS;
7582
9e39f7c5 7583 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7584 }
2fda096d 7585
6cfc482b 7586 if (multiq)
3a3d5756 7587 *dev_multiq = multiq;
6cfc482b
SH
7588
7589 if (tx_steering_type && (1 == tx_fifo_num)) {
7590 if (tx_steering_type != TX_DEFAULT_STEERING)
7591 DBG_PRINT(ERR_DBG,
9e39f7c5 7592 "Tx steering is not supported with "
d44570e4 7593 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7594 tx_steering_type = NO_STEERING;
7595 }
7596
7597 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7598 (tx_steering_type > TX_DEFAULT_STEERING)) {
7599 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7600 "Requested transmit steering not supported\n");
7601 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7602 tx_steering_type = NO_STEERING;
3a3d5756
SH
7603 }
7604
0425b46a 7605 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7606 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7607 "Requested number of rx rings not supported\n");
7608 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7609 MAX_RX_RINGS);
0425b46a 7610 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7611 }
0425b46a 7612
eccb8628 7613 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7614 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7615 "Defaulting to INTA\n");
7616 *dev_intr_type = INTA;
7617 }
596c5c97 7618
9dc737a7 7619 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7620 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7621 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7622 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7623 "Defaulting to INTA\n");
9dc737a7
AR
7624 *dev_intr_type = INTA;
7625 }
fb6a825b 7626
6d517a27 7627 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7628 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7629 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7630 rx_ring_mode = 1;
9dc737a7 7631 }
1853e2e1
JM
7632
7633 for (i = 0; i < MAX_RX_RINGS; i++)
7634 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7635 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7636 "supported\nDefaulting to %d\n",
7637 MAX_RX_BLOCKS_PER_RING);
7638 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7639 }
7640
9dc737a7
AR
7641 return SUCCESS;
7642}
7643
9fc93a41
SS
7644/**
7645 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7646 * or Traffic class respectively.
b7c5678f 7647 * @nic: device private variable
9fc93a41
SS
7648 * Description: The function configures the receive steering to
7649 * desired receive ring.
7650 * Return Value: SUCCESS on success and
7651 * '-1' on failure (endian settings incorrect).
7652 */
7653static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654{
7655 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7656 register u64 val64 = 0;
7657
7658 if (ds_codepoint > 63)
7659 return FAILURE;
7660
7661 val64 = RTS_DS_MEM_DATA(ring);
7662 writeq(val64, &bar0->rts_ds_mem_data);
7663
7664 val64 = RTS_DS_MEM_CTRL_WE |
7665 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7666 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667
7668 writeq(val64, &bar0->rts_ds_mem_ctrl);
7669
7670 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7671 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7672 S2IO_BIT_RESET);
9fc93a41
SS
7673}
7674
04025095
SH
7675static const struct net_device_ops s2io_netdev_ops = {
7676 .ndo_open = s2io_open,
7677 .ndo_stop = s2io_close,
7678 .ndo_get_stats = s2io_get_stats,
7679 .ndo_start_xmit = s2io_xmit,
7680 .ndo_validate_addr = eth_validate_addr,
afc4b13d 7681 .ndo_set_rx_mode = s2io_set_multicast,
04025095
SH
7682 .ndo_do_ioctl = s2io_ioctl,
7683 .ndo_set_mac_address = s2io_set_mac_addr,
7684 .ndo_change_mtu = s2io_change_mtu,
b437a8cc 7685 .ndo_set_features = s2io_set_features,
04025095
SH
7686 .ndo_tx_timeout = s2io_tx_watchdog,
7687#ifdef CONFIG_NET_POLL_CONTROLLER
7688 .ndo_poll_controller = s2io_netpoll,
7689#endif
7690};
7691
1da177e4 7692/**
20346722 7693 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7694 * @pdev : structure containing the PCI related information of the device.
7695 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7696 * Description:
7697 * The function initializes an adapter identified by the pci_dec structure.
20346722 7698 * All OS related initialization including memory and device structure and
7699 * initlaization of the device private variable is done. Also the swapper
7700 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7701 * registers of the device.
7702 * Return value:
7703 * returns 0 on success and negative on failure.
7704 */
7705
3a036ce5 7706static int
1da177e4
LT
7707s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7708{
1ee6dd77 7709 struct s2io_nic *sp;
1da177e4 7710 struct net_device *dev;
1da177e4 7711 int i, j, ret;
f957bcf0 7712 int dma_flag = false;
1da177e4
LT
7713 u32 mac_up, mac_down;
7714 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7715 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7716 u16 subid;
1da177e4 7717 struct config_param *config;
ffb5df6c 7718 struct mac_info *mac_control;
541ae68f 7719 int mode;
cc6e7c44 7720 u8 dev_intr_type = intr_type;
3a3d5756 7721 u8 dev_multiq = 0;
1da177e4 7722
3a3d5756
SH
7723 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7724 if (ret)
9dc737a7 7725 return ret;
1da177e4 7726
d44570e4
JP
7727 ret = pci_enable_device(pdev);
7728 if (ret) {
1da177e4 7729 DBG_PRINT(ERR_DBG,
9e39f7c5 7730 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7731 return ret;
7732 }
7733
6a35528a 7734 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7735 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7736 dma_flag = true;
d44570e4 7737 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7738 DBG_PRINT(ERR_DBG,
d44570e4
JP
7739 "Unable to obtain 64bit DMA "
7740 "for consistent allocations\n");
1da177e4
LT
7741 pci_disable_device(pdev);
7742 return -ENOMEM;
7743 }
284901a9 7744 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7745 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7746 } else {
7747 pci_disable_device(pdev);
7748 return -ENOMEM;
7749 }
d44570e4
JP
7750 ret = pci_request_regions(pdev, s2io_driver_name);
7751 if (ret) {
9e39f7c5 7752 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7753 __func__, ret);
eccb8628
VP
7754 pci_disable_device(pdev);
7755 return -ENODEV;
1da177e4 7756 }
3a3d5756 7757 if (dev_multiq)
6cfc482b 7758 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7759 else
b19fa1fa 7760 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4 7761 if (dev == NULL) {
1da177e4
LT
7762 pci_disable_device(pdev);
7763 pci_release_regions(pdev);
7764 return -ENODEV;
7765 }
7766
7767 pci_set_master(pdev);
7768 pci_set_drvdata(pdev, dev);
1da177e4
LT
7769 SET_NETDEV_DEV(dev, &pdev->dev);
7770
7771 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7772 sp = netdev_priv(dev);
1da177e4
LT
7773 sp->dev = dev;
7774 sp->pdev = pdev;
1da177e4 7775 sp->high_dma_flag = dma_flag;
f957bcf0 7776 sp->device_enabled_once = false;
da6971d8
AR
7777 if (rx_ring_mode == 1)
7778 sp->rxd_mode = RXD_MODE_1;
7779 if (rx_ring_mode == 2)
7780 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7781
eaae7f72 7782 sp->config.intr_type = dev_intr_type;
1da177e4 7783
541ae68f 7784 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7785 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f 7786 sp->device_type = XFRAME_II_DEVICE;
7787 else
7788 sp->device_type = XFRAME_I_DEVICE;
7789
6aa20a22 7790
1da177e4
LT
7791 /* Initialize some PCI/PCI-X fields of the NIC. */
7792 s2io_init_pci(sp);
7793
20346722 7794 /*
1da177e4 7795 * Setting the device configuration parameters.
20346722 7796 * Most of these parameters can be specified by the user during
7797 * module insertion as they are module loadable parameters. If
7798 * these parameters are not not specified during load time, they
1da177e4
LT
7799 * are initialized with default values.
7800 */
1da177e4 7801 config = &sp->config;
ffb5df6c 7802 mac_control = &sp->mac_control;
1da177e4 7803
596c5c97 7804 config->napi = napi;
6cfc482b 7805 config->tx_steering_type = tx_steering_type;
596c5c97 7806
1da177e4 7807 /* Tx side parameters. */
6cfc482b
SH
7808 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7809 config->tx_fifo_num = MAX_TX_FIFOS;
7810 else
7811 config->tx_fifo_num = tx_fifo_num;
7812
7813 /* Initialize the fifos used for tx steering */
7814 if (config->tx_fifo_num < 5) {
d44570e4
JP
7815 if (config->tx_fifo_num == 1)
7816 sp->total_tcp_fifos = 1;
7817 else
7818 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7819 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7820 sp->total_udp_fifos = 1;
7821 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7822 } else {
7823 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7824 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7825 sp->udp_fifo_idx = sp->total_tcp_fifos;
7826 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7827 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7828 }
7829
3a3d5756 7830 config->multiq = dev_multiq;
6cfc482b 7831 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7832 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7833
7834 tx_cfg->fifo_len = tx_fifo_len[i];
7835 tx_cfg->fifo_priority = i;
1da177e4
LT
7836 }
7837
20346722 7838 /* mapping the QoS priority to the configured fifos */
7839 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7840 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7841
6cfc482b
SH
7842 /* map the hashing selector table to the configured fifos */
7843 for (i = 0; i < config->tx_fifo_num; i++)
7844 sp->fifo_selector[i] = fifo_selector[i];
7845
7846
1da177e4
LT
7847 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7848 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7849 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7850
7851 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7852 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7853 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7854 break;
7855 }
7856 }
fed5eccd
AR
7857 /* + 2 because one Txd for skb->data and one Txd for UFO */
7858 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7859
7860 /* Rx side parameters. */
1da177e4 7861 config->rx_ring_num = rx_ring_num;
0425b46a 7862 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7863 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7864 struct ring_info *ring = &mac_control->rings[i];
7865
7866 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7867 rx_cfg->ring_priority = i;
7868 ring->rx_bufs_left = 0;
7869 ring->rxd_mode = sp->rxd_mode;
7870 ring->rxd_count = rxd_count[sp->rxd_mode];
7871 ring->pdev = sp->pdev;
7872 ring->dev = sp->dev;
1da177e4
LT
7873 }
7874
7875 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7876 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7877
7878 rx_cfg->ring_org = RING_ORG_BUFF1;
7879 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7880 }
7881
7882 /* Setting Mac Control parameters */
7883 mac_control->rmac_pause_time = rmac_pause_time;
7884 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7885 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7886
7887
1da177e4
LT
7888 /* initialize the shared memory used by the NIC and the host */
7889 if (init_shared_mem(sp)) {
d44570e4 7890 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7891 ret = -ENOMEM;
7892 goto mem_alloc_failed;
7893 }
7894
275f165f 7895 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7896 if (!sp->bar0) {
19a60522 7897 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7898 dev->name);
7899 ret = -ENOMEM;
7900 goto bar0_remap_failed;
7901 }
7902
275f165f 7903 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7904 if (!sp->bar1) {
19a60522 7905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7906 dev->name);
7907 ret = -ENOMEM;
7908 goto bar1_remap_failed;
7909 }
7910
1da177e4
LT
7911 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7912 for (j = 0; j < MAX_TX_FIFOS; j++) {
43d620c8 7913 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
1da177e4
LT
7914 }
7915
7916 /* Driver entry points */
04025095 7917 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7918 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
b437a8cc
MM
7919 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7920 NETIF_F_TSO | NETIF_F_TSO6 |
7921 NETIF_F_RXCSUM | NETIF_F_LRO;
7922 dev->features |= dev->hw_features |
f646968f 7923 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
b437a8cc
MM
7924 if (sp->device_type & XFRAME_II_DEVICE) {
7925 dev->hw_features |= NETIF_F_UFO;
7926 if (ufo)
7927 dev->features |= NETIF_F_UFO;
7928 }
f957bcf0 7929 if (sp->high_dma_flag == true)
1da177e4 7930 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7931 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7932 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7933 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7934
e960fc5c 7935 pci_save_state(sp->pdev);
1da177e4
LT
7936
7937 /* Setting swapper control on the NIC, for proper reset operation */
7938 if (s2io_set_swapper(sp)) {
9e39f7c5 7939 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7940 dev->name);
7941 ret = -EAGAIN;
7942 goto set_swap_failed;
7943 }
7944
541ae68f 7945 /* Verify if the Herc works on the slot its placed into */
7946 if (sp->device_type & XFRAME_II_DEVICE) {
7947 mode = s2io_verify_pci_mode(sp);
7948 if (mode < 0) {
9e39f7c5
JP
7949 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7950 __func__);
541ae68f 7951 ret = -EBADSLT;
7952 goto set_swap_failed;
7953 }
7954 }
7955
f61e0a35
SH
7956 if (sp->config.intr_type == MSI_X) {
7957 sp->num_entries = config->rx_ring_num + 1;
7958 ret = s2io_enable_msi_x(sp);
7959
7960 if (!ret) {
7961 ret = s2io_test_msi(sp);
7962 /* rollback MSI-X, will re-enable during add_isr() */
7963 remove_msix_isr(sp);
7964 }
7965 if (ret) {
7966
7967 DBG_PRINT(ERR_DBG,
9e39f7c5 7968 "MSI-X requested but failed to enable\n");
f61e0a35
SH
7969 sp->config.intr_type = INTA;
7970 }
7971 }
7972
7973 if (config->intr_type == MSI_X) {
13d866a9
JP
7974 for (i = 0; i < config->rx_ring_num ; i++) {
7975 struct ring_info *ring = &mac_control->rings[i];
7976
7977 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7978 }
f61e0a35
SH
7979 } else {
7980 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7981 }
7982
541ae68f 7983 /* Not needed for Herc */
7984 if (sp->device_type & XFRAME_I_DEVICE) {
7985 /*
7986 * Fix for all "FFs" MAC address problems observed on
7987 * Alpha platforms
7988 */
7989 fix_mac_address(sp);
7990 s2io_reset(sp);
7991 }
1da177e4
LT
7992
7993 /*
1da177e4
LT
7994 * MAC address initialization.
7995 * For now only one mac address will be read and used.
7996 */
7997 bar0 = sp->bar0;
7998 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 7999 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8000 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8001 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8002 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8003 S2IO_BIT_RESET);
1da177e4 8004 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8005 mac_down = (u32)tmp64;
1da177e4
LT
8006 mac_up = (u32) (tmp64 >> 32);
8007
1da177e4
LT
8008 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8009 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8010 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8011 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8012 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8013 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8014
1da177e4
LT
8015 /* Set the factory defined MAC address initially */
8016 dev->addr_len = ETH_ALEN;
8017 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8018
faa4f796
SH
8019 /* initialize number of multicast & unicast MAC entries variables */
8020 if (sp->device_type == XFRAME_I_DEVICE) {
8021 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8022 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8023 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8024 } else if (sp->device_type == XFRAME_II_DEVICE) {
8025 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8026 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8027 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8028 }
8029
8030 /* store mac addresses from CAM to s2io_nic structure */
8031 do_s2io_store_unicast_mc(sp);
8032
f61e0a35
SH
8033 /* Configure MSIX vector for number of rings configured plus one */
8034 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8035 (config->intr_type == MSI_X))
f61e0a35
SH
8036 sp->num_entries = config->rx_ring_num + 1;
8037
d44570e4 8038 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8039 store_xmsi_data(sp);
b41477f3
AR
8040 /* reset Nic and bring it to known state */
8041 s2io_reset(sp);
8042
1da177e4 8043 /*
99993af6 8044 * Initialize link state flags
541ae68f 8045 * and the card state parameter
1da177e4 8046 */
92b84437 8047 sp->state = 0;
1da177e4 8048
1da177e4 8049 /* Initialize spinlocks */
13d866a9
JP
8050 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8051 struct fifo_info *fifo = &mac_control->fifos[i];
8052
8053 spin_lock_init(&fifo->tx_lock);
8054 }
db874e65 8055
20346722 8056 /*
8057 * SXE-002: Configure link and activity LED to init state
8058 * on driver load.
1da177e4
LT
8059 */
8060 subid = sp->pdev->subsystem_device;
8061 if ((subid & 0xFF) >= 0x07) {
8062 val64 = readq(&bar0->gpio_control);
8063 val64 |= 0x0000800000000000ULL;
8064 writeq(val64, &bar0->gpio_control);
8065 val64 = 0x0411040400000000ULL;
d44570e4 8066 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8067 val64 = readq(&bar0->gpio_control);
8068 }
8069
8070 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8071
8072 if (register_netdev(dev)) {
8073 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8074 ret = -ENODEV;
8075 goto register_failed;
8076 }
9dc737a7 8077 s2io_vpd_read(sp);
926bd900 8078 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
d44570e4 8079 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8080 sp->product_name, pdev->revision);
b41477f3
AR
8081 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8082 s2io_driver_version);
9e39f7c5
JP
8083 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8084 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8085 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8086 mode = s2io_print_pci_mode(sp);
541ae68f 8087 if (mode < 0) {
541ae68f 8088 ret = -EBADSLT;
9dc737a7 8089 unregister_netdev(dev);
541ae68f 8090 goto set_swap_failed;
8091 }
541ae68f 8092 }
d44570e4
JP
8093 switch (sp->rxd_mode) {
8094 case RXD_MODE_1:
8095 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8096 dev->name);
8097 break;
8098 case RXD_MODE_3B:
8099 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8100 dev->name);
8101 break;
9dc737a7 8102 }
db874e65 8103
f61e0a35
SH
8104 switch (sp->config.napi) {
8105 case 0:
8106 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8107 break;
8108 case 1:
db874e65 8109 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8110 break;
8111 }
3a3d5756
SH
8112
8113 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8114 sp->config.tx_fifo_num);
3a3d5756 8115
0425b46a
SH
8116 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8117 sp->config.rx_ring_num);
8118
d44570e4
JP
8119 switch (sp->config.intr_type) {
8120 case INTA:
8121 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8122 break;
8123 case MSI_X:
8124 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8125 break;
9dc737a7 8126 }
3a3d5756 8127 if (sp->config.multiq) {
13d866a9
JP
8128 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8129 struct fifo_info *fifo = &mac_control->fifos[i];
8130
8131 fifo->multiq = config->multiq;
8132 }
3a3d5756 8133 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8134 dev->name);
3a3d5756
SH
8135 } else
8136 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8137 dev->name);
3a3d5756 8138
6cfc482b
SH
8139 switch (sp->config.tx_steering_type) {
8140 case NO_STEERING:
d44570e4
JP
8141 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8142 dev->name);
8143 break;
6cfc482b 8144 case TX_PRIORITY_STEERING:
d44570e4
JP
8145 DBG_PRINT(ERR_DBG,
8146 "%s: Priority steering enabled for transmit\n",
8147 dev->name);
6cfc482b
SH
8148 break;
8149 case TX_DEFAULT_STEERING:
d44570e4
JP
8150 DBG_PRINT(ERR_DBG,
8151 "%s: Default steering enabled for transmit\n",
8152 dev->name);
6cfc482b
SH
8153 }
8154
f0c54ace
AW
8155 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8156 dev->name);
db874e65 8157 if (ufo)
d44570e4
JP
8158 DBG_PRINT(ERR_DBG,
8159 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8160 dev->name);
7ba013ac 8161 /* Initialize device name */
9dc737a7 8162 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8163
cd0fce03
BL
8164 if (vlan_tag_strip)
8165 sp->vlan_strip_flag = 1;
8166 else
8167 sp->vlan_strip_flag = 0;
8168
20346722 8169 /*
8170 * Make Link state as off at this point, when the Link change
8171 * interrupt comes the state will be automatically changed to
1da177e4
LT
8172 * the right state.
8173 */
8174 netif_carrier_off(dev);
1da177e4
LT
8175
8176 return 0;
8177
d44570e4
JP
8178register_failed:
8179set_swap_failed:
1da177e4 8180 iounmap(sp->bar1);
d44570e4 8181bar1_remap_failed:
1da177e4 8182 iounmap(sp->bar0);
d44570e4
JP
8183bar0_remap_failed:
8184mem_alloc_failed:
1da177e4
LT
8185 free_shared_mem(sp);
8186 pci_disable_device(pdev);
eccb8628 8187 pci_release_regions(pdev);
1da177e4
LT
8188 pci_set_drvdata(pdev, NULL);
8189 free_netdev(dev);
8190
8191 return ret;
8192}
8193
8194/**
20346722 8195 * s2io_rem_nic - Free the PCI device
1da177e4 8196 * @pdev: structure containing the PCI related information of the device.
20346722 8197 * Description: This function is called by the Pci subsystem to release a
1da177e4 8198 * PCI device and free up all resource held up by the device. This could
20346722 8199 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8200 * from memory.
8201 */
8202
3a036ce5 8203static void s2io_rem_nic(struct pci_dev *pdev)
1da177e4 8204{
a31ff388 8205 struct net_device *dev = pci_get_drvdata(pdev);
1ee6dd77 8206 struct s2io_nic *sp;
1da177e4
LT
8207
8208 if (dev == NULL) {
8209 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8210 return;
8211 }
8212
4cf1653a 8213 sp = netdev_priv(dev);
23f333a2
TH
8214
8215 cancel_work_sync(&sp->rst_timer_task);
8216 cancel_work_sync(&sp->set_link_task);
8217
1da177e4
LT
8218 unregister_netdev(dev);
8219
8220 free_shared_mem(sp);
8221 iounmap(sp->bar0);
8222 iounmap(sp->bar1);
eccb8628 8223 pci_release_regions(pdev);
1da177e4 8224 pci_set_drvdata(pdev, NULL);
1da177e4 8225 free_netdev(dev);
19a60522 8226 pci_disable_device(pdev);
1da177e4
LT
8227}
8228
8229/**
8230 * s2io_starter - Entry point for the driver
8231 * Description: This function is the entry point for the driver. It verifies
8232 * the module loadable parameters and initializes PCI configuration space.
8233 */
8234
43b7c451 8235static int __init s2io_starter(void)
1da177e4 8236{
29917620 8237 return pci_register_driver(&s2io_driver);
1da177e4
LT
8238}
8239
8240/**
20346722 8241 * s2io_closer - Cleanup routine for the driver
7f2cd328
YH
8242 * Description: This function is the cleanup routine for the driver. It
8243 * unregisters the driver.
1da177e4
LT
8244 */
8245
372cc597 8246static __exit void s2io_closer(void)
1da177e4
LT
8247{
8248 pci_unregister_driver(&s2io_driver);
8249 DBG_PRINT(INIT_DBG, "cleanup done\n");
8250}
8251
8252module_init(s2io_starter);
8253module_exit(s2io_closer);
7d3d0439 8254
6aa20a22 8255static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8256 struct tcphdr **tcp, struct RxD_t *rxdp,
8257 struct s2io_nic *sp)
7d3d0439
RA
8258{
8259 int ip_off;
8260 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8261
8262 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8263 DBG_PRINT(INIT_DBG,
8264 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8265 __func__);
7d3d0439
RA
8266 return -1;
8267 }
8268
cdb5bf02 8269 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8270 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8271 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8272 /*
8273 * If vlan stripping is disabled and the frame is VLAN tagged,
8274 * shift the offset by the VLAN header size bytes.
8275 */
cd0fce03 8276 if ((!sp->vlan_strip_flag) &&
d44570e4 8277 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8278 ip_off += HEADER_VLAN_SIZE;
8279 } else {
7d3d0439 8280 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8281 return -1;
7d3d0439
RA
8282 }
8283
64699336 8284 *ip = (struct iphdr *)(buffer + ip_off);
7d3d0439
RA
8285 ip_len = (u8)((*ip)->ihl);
8286 ip_len <<= 2;
8287 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8288
8289 return 0;
8290}
8291
1ee6dd77 8292static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8293 struct tcphdr *tcp)
8294{
d44570e4
JP
8295 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8296 if ((lro->iph->saddr != ip->saddr) ||
8297 (lro->iph->daddr != ip->daddr) ||
8298 (lro->tcph->source != tcp->source) ||
8299 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8300 return -1;
8301 return 0;
8302}
8303
8304static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8305{
d44570e4 8306 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8307}
8308
1ee6dd77 8309static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8310 struct iphdr *ip, struct tcphdr *tcp,
8311 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8312{
d44570e4 8313 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8314 lro->l2h = l2h;
8315 lro->iph = ip;
8316 lro->tcph = tcp;
8317 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8318 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8319 lro->sg_num = 1;
8320 lro->total_len = ntohs(ip->tot_len);
8321 lro->frags_len = 0;
cdb5bf02 8322 lro->vlan_tag = vlan_tag;
6aa20a22 8323 /*
d44570e4
JP
8324 * Check if we saw TCP timestamp.
8325 * Other consistency checks have already been done.
8326 */
7d3d0439 8327 if (tcp->doff == 8) {
c8855953
SR
8328 __be32 *ptr;
8329 ptr = (__be32 *)(tcp+1);
7d3d0439 8330 lro->saw_ts = 1;
c8855953 8331 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8332 lro->cur_tsecr = *(ptr+2);
8333 }
8334 lro->in_use = 1;
8335}
8336
1ee6dd77 8337static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8338{
8339 struct iphdr *ip = lro->iph;
8340 struct tcphdr *tcp = lro->tcph;
ffb5df6c
JP
8341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8342
d44570e4 8343 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8344
8345 /* Update L3 header */
9a18dd15 8346 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
7d3d0439 8347 ip->tot_len = htons(lro->total_len);
7d3d0439
RA
8348
8349 /* Update L4 header */
8350 tcp->ack_seq = lro->tcp_ack;
8351 tcp->window = lro->window;
8352
8353 /* Update tsecr field if this session has timestamps enabled */
8354 if (lro->saw_ts) {
c8855953 8355 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8356 *(ptr+2) = lro->cur_tsecr;
8357 }
8358
8359 /* Update counters required for calculation of
8360 * average no. of packets aggregated.
8361 */
ffb5df6c
JP
8362 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8363 swstats->num_aggregations++;
7d3d0439
RA
8364}
8365
1ee6dd77 8366static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8367 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8368{
d44570e4 8369 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8370 lro->total_len += l4_pyld;
8371 lro->frags_len += l4_pyld;
8372 lro->tcp_next_seq += l4_pyld;
8373 lro->sg_num++;
8374
8375 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8376 lro->tcp_ack = tcp->ack_seq;
8377 lro->window = tcp->window;
6aa20a22 8378
7d3d0439 8379 if (lro->saw_ts) {
c8855953 8380 __be32 *ptr;
7d3d0439 8381 /* Update tsecr and tsval from this packet */
c8855953
SR
8382 ptr = (__be32 *)(tcp+1);
8383 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8384 lro->cur_tsecr = *(ptr + 2);
8385 }
8386}
8387
1ee6dd77 8388static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8389 struct tcphdr *tcp, u32 tcp_pyld_len)
8390{
7d3d0439
RA
8391 u8 *ptr;
8392
d44570e4 8393 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8394
7d3d0439
RA
8395 if (!tcp_pyld_len) {
8396 /* Runt frame or a pure ack */
8397 return -1;
8398 }
8399
8400 if (ip->ihl != 5) /* IP has options */
8401 return -1;
8402
75c30b13
AR
8403 /* If we see CE codepoint in IP header, packet is not mergeable */
8404 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8405 return -1;
8406
8407 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8408 if (tcp->urg || tcp->psh || tcp->rst ||
8409 tcp->syn || tcp->fin ||
8410 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8411 /*
8412 * Currently recognize only the ack control word and
8413 * any other control field being set would result in
8414 * flushing the LRO session
8415 */
8416 return -1;
8417 }
8418
6aa20a22 8419 /*
7d3d0439
RA
8420 * Allow only one TCP timestamp option. Don't aggregate if
8421 * any other options are detected.
8422 */
8423 if (tcp->doff != 5 && tcp->doff != 8)
8424 return -1;
8425
8426 if (tcp->doff == 8) {
6aa20a22 8427 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8428 while (*ptr == TCPOPT_NOP)
8429 ptr++;
8430 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8431 return -1;
8432
8433 /* Ensure timestamp value increases monotonically */
8434 if (l_lro)
c8855953 8435 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8436 return -1;
8437
8438 /* timestamp echo reply should be non-zero */
c8855953 8439 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8440 return -1;
8441 }
8442
8443 return 0;
8444}
8445
d44570e4
JP
8446static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8447 u8 **tcp, u32 *tcp_len, struct lro **lro,
8448 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8449{
8450 struct iphdr *ip;
8451 struct tcphdr *tcph;
8452 int ret = 0, i;
cdb5bf02 8453 u16 vlan_tag = 0;
ffb5df6c 8454 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8455
d44570e4
JP
8456 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8457 rxdp, sp);
8458 if (ret)
7d3d0439 8459 return ret;
7d3d0439 8460
d44570e4
JP
8461 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8462
cdb5bf02 8463 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8464 tcph = (struct tcphdr *)*tcp;
8465 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8466 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8467 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8468 if (l_lro->in_use) {
8469 if (check_for_socket_match(l_lro, ip, tcph))
8470 continue;
8471 /* Sock pair matched */
8472 *lro = l_lro;
8473
8474 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8475 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8476 "expected 0x%x, actual 0x%x\n",
8477 __func__,
7d3d0439
RA
8478 (*lro)->tcp_next_seq,
8479 ntohl(tcph->seq));
8480
ffb5df6c 8481 swstats->outof_sequence_pkts++;
7d3d0439
RA
8482 ret = 2;
8483 break;
8484 }
8485
d44570e4
JP
8486 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8487 *tcp_len))
7d3d0439
RA
8488 ret = 1; /* Aggregate */
8489 else
8490 ret = 2; /* Flush both */
8491 break;
8492 }
8493 }
8494
8495 if (ret == 0) {
8496 /* Before searching for available LRO objects,
8497 * check if the pkt is L3/L4 aggregatable. If not
8498 * don't create new LRO session. Just send this
8499 * packet up.
8500 */
d44570e4 8501 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8502 return 5;
7d3d0439 8503
d44570e4 8504 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8505 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8506 if (!(l_lro->in_use)) {
8507 *lro = l_lro;
8508 ret = 3; /* Begin anew */
8509 break;
8510 }
8511 }
8512 }
8513
8514 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8515 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8516 __func__);
7d3d0439
RA
8517 *lro = NULL;
8518 return ret;
8519 }
8520
8521 switch (ret) {
d44570e4
JP
8522 case 3:
8523 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8524 vlan_tag);
8525 break;
8526 case 2:
8527 update_L3L4_header(sp, *lro);
8528 break;
8529 case 1:
8530 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8531 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8532 update_L3L4_header(sp, *lro);
d44570e4
JP
8533 ret = 4; /* Flush the LRO */
8534 }
8535 break;
8536 default:
9e39f7c5 8537 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8538 break;
7d3d0439
RA
8539 }
8540
8541 return ret;
8542}
8543
1ee6dd77 8544static void clear_lro_session(struct lro *lro)
7d3d0439 8545{
1ee6dd77 8546 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8547
8548 memset(lro, 0, lro_struct_size);
8549}
8550
cdb5bf02 8551static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8552{
8553 struct net_device *dev = skb->dev;
4cf1653a 8554 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8555
8556 skb->protocol = eth_type_trans(skb, dev);
b85da2c0
JP
8557 if (vlan_tag && sp->vlan_strip_flag)
8558 __vlan_hwaccel_put_tag(skb, vlan_tag);
8559 if (sp->config.napi)
8560 netif_receive_skb(skb);
8561 else
8562 netif_rx(skb);
7d3d0439
RA
8563}
8564
1ee6dd77 8565static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8566 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8567{
75c30b13 8568 struct sk_buff *first = lro->parent;
ffb5df6c 8569 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8570
8571 first->len += tcp_len;
8572 first->data_len = lro->frags_len;
8573 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8574 if (skb_shinfo(first)->frag_list)
8575 lro->last_frag->next = skb;
7d3d0439
RA
8576 else
8577 skb_shinfo(first)->frag_list = skb;
372cc597 8578 first->truesize += skb->truesize;
75c30b13 8579 lro->last_frag = skb;
ffb5df6c 8580 swstats->clubbed_frms_cnt++;
7d3d0439 8581}
d796fdb7
LV
8582
8583/**
8584 * s2io_io_error_detected - called when PCI error is detected
8585 * @pdev: Pointer to PCI device
8453d43f 8586 * @state: The current pci connection state
d796fdb7
LV
8587 *
8588 * This function is called after a PCI bus error affecting
8589 * this device has been detected.
8590 */
8591static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8592 pci_channel_state_t state)
d796fdb7
LV
8593{
8594 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8595 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8596
8597 netif_device_detach(netdev);
8598
1e3c8bd6
DN
8599 if (state == pci_channel_io_perm_failure)
8600 return PCI_ERS_RESULT_DISCONNECT;
8601
d796fdb7
LV
8602 if (netif_running(netdev)) {
8603 /* Bring down the card, while avoiding PCI I/O */
8604 do_s2io_card_down(sp, 0);
d796fdb7
LV
8605 }
8606 pci_disable_device(pdev);
8607
8608 return PCI_ERS_RESULT_NEED_RESET;
8609}
8610
8611/**
8612 * s2io_io_slot_reset - called after the pci bus has been reset.
8613 * @pdev: Pointer to PCI device
8614 *
8615 * Restart the card from scratch, as if from a cold-boot.
8616 * At this point, the card has exprienced a hard reset,
8617 * followed by fixups by BIOS, and has its config space
8618 * set up identically to what it was at cold boot.
8619 */
8620static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8621{
8622 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8623 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8624
8625 if (pci_enable_device(pdev)) {
6cef2b8e 8626 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8627 return PCI_ERS_RESULT_DISCONNECT;
8628 }
8629
8630 pci_set_master(pdev);
8631 s2io_reset(sp);
8632
8633 return PCI_ERS_RESULT_RECOVERED;
8634}
8635
8636/**
8637 * s2io_io_resume - called when traffic can start flowing again.
8638 * @pdev: Pointer to PCI device
8639 *
8640 * This callback is called when the error recovery driver tells
8641 * us that its OK to resume normal operation.
8642 */
8643static void s2io_io_resume(struct pci_dev *pdev)
8644{
8645 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8646 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8647
8648 if (netif_running(netdev)) {
8649 if (s2io_card_up(sp)) {
6cef2b8e 8650 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8651 return;
8652 }
8653
8654 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8655 s2io_card_down(sp);
6cef2b8e 8656 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8657 return;
8658 }
8659 }
8660
8661 netif_device_attach(netdev);
fd2ea0a7 8662 netif_tx_wake_all_queues(netdev);
d796fdb7 8663}
This page took 1.826642 seconds and 5 git commands to generate.