Merge branch 'sctp-cleanups'
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
CommitLineData
e712d52b
YM
1/* QLogic qede NIC Driver
2* Copyright (c) 2015 QLogic Corporation
3*
4* This software is available under the terms of the GNU General Public License
5* (GPL) Version 2, available from the file COPYING in the main directory of
6* this source tree.
7*/
8
9#include <linux/module.h>
10#include <linux/pci.h>
11#include <linux/version.h>
12#include <linux/device.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/skbuff.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/string.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <asm/byteorder.h>
22#include <asm/param.h>
23#include <linux/io.h>
24#include <linux/netdev_features.h>
25#include <linux/udp.h>
26#include <linux/tcp.h>
27#include <net/vxlan.h>
28#include <linux/ip.h>
29#include <net/ipv6.h>
30#include <net/tcp.h>
31#include <linux/if_ether.h>
32#include <linux/if_vlan.h>
33#include <linux/pkt_sched.h>
34#include <linux/ethtool.h>
35#include <linux/in.h>
36#include <linux/random.h>
37#include <net/ip6_checksum.h>
38#include <linux/bitops.h>
39
40#include "qede.h"
41
42static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
43 DRV_MODULE_VERSION "\n";
44
45MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
46MODULE_LICENSE("GPL");
47MODULE_VERSION(DRV_MODULE_VERSION);
48
49static uint debug;
50module_param(debug, uint, 0);
51MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53static const struct qed_eth_ops *qed_ops;
54
55#define CHIP_NUM_57980S_40 0x1634
56#define CHIP_NUM_57980S_10 0x1635
57#define CHIP_NUM_57980S_MF 0x1636
58#define CHIP_NUM_57980S_100 0x1644
59#define CHIP_NUM_57980S_50 0x1654
60#define CHIP_NUM_57980S_25 0x1656
61
62#ifndef PCI_DEVICE_ID_NX2_57980E
63#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
64#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
65#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
66#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
67#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
68#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
69#endif
70
71static const struct pci_device_id qede_pci_tbl[] = {
72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78 { 0 }
79};
80
81MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
82
83static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
84
85#define TX_TIMEOUT (5 * HZ)
86
87static void qede_remove(struct pci_dev *pdev);
2950219d
YM
88static int qede_alloc_rx_buffer(struct qede_dev *edev,
89 struct qede_rx_queue *rxq);
a2ec6172 90static void qede_link_update(void *dev, struct qed_link_output *link);
e712d52b
YM
91
92static struct pci_driver qede_pci_driver = {
93 .name = "qede",
94 .id_table = qede_pci_tbl,
95 .probe = qede_probe,
96 .remove = qede_remove,
97};
98
a2ec6172
SK
99static struct qed_eth_cb_ops qede_ll_ops = {
100 {
101 .link_update = qede_link_update,
102 },
103};
104
2950219d
YM
105static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106 void *ptr)
107{
108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109 struct ethtool_drvinfo drvinfo;
110 struct qede_dev *edev;
111
112 /* Currently only support name change */
113 if (event != NETDEV_CHANGENAME)
114 goto done;
115
116 /* Check whether this is a qede device */
117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118 goto done;
119
120 memset(&drvinfo, 0, sizeof(drvinfo));
121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122 if (strcmp(drvinfo.driver, "qede"))
123 goto done;
124 edev = netdev_priv(ndev);
125
126 /* Notify qed of the name change */
127 if (!edev->ops || !edev->ops->common)
128 goto done;
129 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130 "qede");
131
132done:
133 return NOTIFY_DONE;
134}
135
136static struct notifier_block qede_netdev_notifier = {
137 .notifier_call = qede_netdev_event,
138};
139
e712d52b
YM
140static
141int __init qede_init(void)
142{
143 int ret;
144 u32 qed_ver;
145
146 pr_notice("qede_init: %s\n", version);
147
148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) {
150 pr_notice("Version mismatch [%08x != %08x]\n",
151 qed_ver,
152 QEDE_ETH_INTERFACE_VERSION);
153 return -EINVAL;
154 }
155
156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157 if (!qed_ops) {
158 pr_notice("Failed to get qed ethtool operations\n");
159 return -EINVAL;
160 }
161
2950219d
YM
162 /* Must register notifier before pci ops, since we might miss
163 * interface rename after pci probe and netdev registeration.
164 */
165 ret = register_netdevice_notifier(&qede_netdev_notifier);
166 if (ret) {
167 pr_notice("Failed to register netdevice_notifier\n");
168 qed_put_eth_ops();
169 return -EINVAL;
170 }
171
e712d52b
YM
172 ret = pci_register_driver(&qede_pci_driver);
173 if (ret) {
174 pr_notice("Failed to register driver\n");
2950219d 175 unregister_netdevice_notifier(&qede_netdev_notifier);
e712d52b
YM
176 qed_put_eth_ops();
177 return -EINVAL;
178 }
179
180 return 0;
181}
182
183static void __exit qede_cleanup(void)
184{
185 pr_notice("qede_cleanup called\n");
186
2950219d 187 unregister_netdevice_notifier(&qede_netdev_notifier);
e712d52b
YM
188 pci_unregister_driver(&qede_pci_driver);
189 qed_put_eth_ops();
190}
191
192module_init(qede_init);
193module_exit(qede_cleanup);
194
2950219d
YM
195/* -------------------------------------------------------------------------
196 * START OF FAST-PATH
197 * -------------------------------------------------------------------------
198 */
199
200/* Unmap the data and free skb */
201static int qede_free_tx_pkt(struct qede_dev *edev,
202 struct qede_tx_queue *txq,
203 int *len)
204{
205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207 struct eth_tx_1st_bd *first_bd;
208 struct eth_tx_bd *tx_data_bd;
209 int bds_consumed = 0;
210 int nbds;
211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212 int i, split_bd_len = 0;
213
214 if (unlikely(!skb)) {
215 DP_ERR(edev,
216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217 idx, txq->sw_tx_cons, txq->sw_tx_prod);
218 return -1;
219 }
220
221 *len = skb->len;
222
223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
224
225 bds_consumed++;
226
227 nbds = first_bd->data.nbds;
228
229 if (data_split) {
230 struct eth_tx_bd *split = (struct eth_tx_bd *)
231 qed_chain_consume(&txq->tx_pbl);
232 split_bd_len = BD_UNMAP_LEN(split);
233 bds_consumed++;
234 }
235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
237
238 /* Unmap the data of the skb frags */
239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240 tx_data_bd = (struct eth_tx_bd *)
241 qed_chain_consume(&txq->tx_pbl);
242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
244 }
245
246 while (bds_consumed++ < nbds)
247 qed_chain_consume(&txq->tx_pbl);
248
249 /* Free skb */
250 dev_kfree_skb_any(skb);
251 txq->sw_tx_ring[idx].skb = NULL;
252 txq->sw_tx_ring[idx].flags = 0;
253
254 return 0;
255}
256
257/* Unmap the data and free skb when mapping failed during start_xmit */
258static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259 struct qede_tx_queue *txq,
260 struct eth_tx_1st_bd *first_bd,
261 int nbd,
262 bool data_split)
263{
264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266 struct eth_tx_bd *tx_data_bd;
267 int i, split_bd_len = 0;
268
269 /* Return prod to its position before this skb was handled */
270 qed_chain_set_prod(&txq->tx_pbl,
271 le16_to_cpu(txq->tx_db.data.bd_prod),
272 first_bd);
273
274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
275
276 if (data_split) {
277 struct eth_tx_bd *split = (struct eth_tx_bd *)
278 qed_chain_produce(&txq->tx_pbl);
279 split_bd_len = BD_UNMAP_LEN(split);
280 nbd--;
281 }
282
283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
285
286 /* Unmap the data of the skb frags */
287 for (i = 0; i < nbd; i++) {
288 tx_data_bd = (struct eth_tx_bd *)
289 qed_chain_produce(&txq->tx_pbl);
290 if (tx_data_bd->nbytes)
291 dma_unmap_page(&edev->pdev->dev,
292 BD_UNMAP_ADDR(tx_data_bd),
293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
294 }
295
296 /* Return again prod to its position before this skb was handled */
297 qed_chain_set_prod(&txq->tx_pbl,
298 le16_to_cpu(txq->tx_db.data.bd_prod),
299 first_bd);
300
301 /* Free skb */
302 dev_kfree_skb_any(skb);
303 txq->sw_tx_ring[idx].skb = NULL;
304 txq->sw_tx_ring[idx].flags = 0;
305}
306
307static u32 qede_xmit_type(struct qede_dev *edev,
308 struct sk_buff *skb,
309 int *ipv6_ext)
310{
311 u32 rc = XMIT_L4_CSUM;
312 __be16 l3_proto;
313
314 if (skb->ip_summed != CHECKSUM_PARTIAL)
315 return XMIT_PLAIN;
316
317 l3_proto = vlan_get_protocol(skb);
318 if (l3_proto == htons(ETH_P_IPV6) &&
319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320 *ipv6_ext = 1;
321
322 if (skb_is_gso(skb))
323 rc |= XMIT_LSO;
324
325 return rc;
326}
327
328static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329 struct eth_tx_2nd_bd *second_bd,
330 struct eth_tx_3rd_bd *third_bd)
331{
332 u8 l4_proto;
333 u16 bd2_bits = 0, bd2_bits2 = 0;
334
335 bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
336
337 bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
340
341 bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
343
344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345 l4_proto = ipv6_hdr(skb)->nexthdr;
346 else
347 l4_proto = ip_hdr(skb)->protocol;
348
349 if (l4_proto == IPPROTO_UDP)
350 bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
351
352 if (third_bd) {
353 third_bd->data.bitfields |=
354 ((tcp_hdrlen(skb) / 4) &
355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT;
357 }
358
359 second_bd->data.bitfields = cpu_to_le16(bd2_bits);
360 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
361}
362
363static int map_frag_to_bd(struct qede_dev *edev,
364 skb_frag_t *frag,
365 struct eth_tx_bd *bd)
366{
367 dma_addr_t mapping;
368
369 /* Map skb non-linear frag data for DMA */
370 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
371 skb_frag_size(frag),
372 DMA_TO_DEVICE);
373 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
374 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
375 return -ENOMEM;
376 }
377
378 /* Setup the data pointer of the frag data */
379 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
380
381 return 0;
382}
383
384/* Main transmit function */
385static
386netdev_tx_t qede_start_xmit(struct sk_buff *skb,
387 struct net_device *ndev)
388{
389 struct qede_dev *edev = netdev_priv(ndev);
390 struct netdev_queue *netdev_txq;
391 struct qede_tx_queue *txq;
392 struct eth_tx_1st_bd *first_bd;
393 struct eth_tx_2nd_bd *second_bd = NULL;
394 struct eth_tx_3rd_bd *third_bd = NULL;
395 struct eth_tx_bd *tx_data_bd = NULL;
396 u16 txq_index;
397 u8 nbd = 0;
398 dma_addr_t mapping;
399 int rc, frag_idx = 0, ipv6_ext = 0;
400 u8 xmit_type;
401 u16 idx;
402 u16 hlen;
403 bool data_split;
404
405 /* Get tx-queue context and netdev index */
406 txq_index = skb_get_queue_mapping(skb);
407 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
408 txq = QEDE_TX_QUEUE(edev, txq_index);
409 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
410
411 /* Current code doesn't support SKB linearization, since the max number
412 * of skb frags can be passed in the FW HSI.
413 */
414 BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);
415
416 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
417 (MAX_SKB_FRAGS + 1));
418
419 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
420
421 /* Fill the entry in the SW ring and the BDs in the FW ring */
422 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
423 txq->sw_tx_ring[idx].skb = skb;
424 first_bd = (struct eth_tx_1st_bd *)
425 qed_chain_produce(&txq->tx_pbl);
426 memset(first_bd, 0, sizeof(*first_bd));
427 first_bd->data.bd_flags.bitfields =
428 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
429
430 /* Map skb linear data for DMA and set in the first BD */
431 mapping = dma_map_single(&edev->pdev->dev, skb->data,
432 skb_headlen(skb), DMA_TO_DEVICE);
433 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
434 DP_NOTICE(edev, "SKB mapping failed\n");
435 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
436 return NETDEV_TX_OK;
437 }
438 nbd++;
439 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
440
441 /* In case there is IPv6 with extension headers or LSO we need 2nd and
442 * 3rd BDs.
443 */
444 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
445 second_bd = (struct eth_tx_2nd_bd *)
446 qed_chain_produce(&txq->tx_pbl);
447 memset(second_bd, 0, sizeof(*second_bd));
448
449 nbd++;
450 third_bd = (struct eth_tx_3rd_bd *)
451 qed_chain_produce(&txq->tx_pbl);
452 memset(third_bd, 0, sizeof(*third_bd));
453
454 nbd++;
455 /* We need to fill in additional data in second_bd... */
456 tx_data_bd = (struct eth_tx_bd *)second_bd;
457 }
458
459 if (skb_vlan_tag_present(skb)) {
460 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
461 first_bd->data.bd_flags.bitfields |=
462 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
463 }
464
465 /* Fill the parsing flags & params according to the requested offload */
466 if (xmit_type & XMIT_L4_CSUM) {
467 /* We don't re-calculate IP checksum as it is already done by
468 * the upper stack
469 */
470 first_bd->data.bd_flags.bitfields |=
471 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
472
473 /* If the packet is IPv6 with extension header, indicate that
474 * to FW and pass few params, since the device cracker doesn't
475 * support parsing IPv6 with extension header/s.
476 */
477 if (unlikely(ipv6_ext))
478 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
479 }
480
481 if (xmit_type & XMIT_LSO) {
482 first_bd->data.bd_flags.bitfields |=
483 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
484 third_bd->data.lso_mss =
485 cpu_to_le16(skb_shinfo(skb)->gso_size);
486
487 first_bd->data.bd_flags.bitfields |=
488 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
489 hlen = skb_transport_header(skb) +
490 tcp_hdrlen(skb) - skb->data;
491
492 /* @@@TBD - if will not be removed need to check */
493 third_bd->data.bitfields |=
494 (1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
495
496 /* Make life easier for FW guys who can't deal with header and
497 * data on same BD. If we need to split, use the second bd...
498 */
499 if (unlikely(skb_headlen(skb) > hlen)) {
500 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
501 "TSO split header size is %d (%x:%x)\n",
502 first_bd->nbytes, first_bd->addr.hi,
503 first_bd->addr.lo);
504
505 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
506 le32_to_cpu(first_bd->addr.lo)) +
507 hlen;
508
509 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
510 le16_to_cpu(first_bd->nbytes) -
511 hlen);
512
513 /* this marks the BD as one that has no
514 * individual mapping
515 */
516 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
517
518 first_bd->nbytes = cpu_to_le16(hlen);
519
520 tx_data_bd = (struct eth_tx_bd *)third_bd;
521 data_split = true;
522 }
523 }
524
525 /* Handle fragmented skb */
526 /* special handle for frags inside 2nd and 3rd bds.. */
527 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
528 rc = map_frag_to_bd(edev,
529 &skb_shinfo(skb)->frags[frag_idx],
530 tx_data_bd);
531 if (rc) {
532 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
533 data_split);
534 return NETDEV_TX_OK;
535 }
536
537 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
538 tx_data_bd = (struct eth_tx_bd *)third_bd;
539 else
540 tx_data_bd = NULL;
541
542 frag_idx++;
543 }
544
545 /* map last frags into 4th, 5th .... */
546 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
547 tx_data_bd = (struct eth_tx_bd *)
548 qed_chain_produce(&txq->tx_pbl);
549
550 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
551
552 rc = map_frag_to_bd(edev,
553 &skb_shinfo(skb)->frags[frag_idx],
554 tx_data_bd);
555 if (rc) {
556 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
557 data_split);
558 return NETDEV_TX_OK;
559 }
560 }
561
562 /* update the first BD with the actual num BDs */
563 first_bd->data.nbds = nbd;
564
565 netdev_tx_sent_queue(netdev_txq, skb->len);
566
567 skb_tx_timestamp(skb);
568
569 /* Advance packet producer only before sending the packet since mapping
570 * of pages may fail.
571 */
572 txq->sw_tx_prod++;
573
574 /* 'next page' entries are counted in the producer value */
575 txq->tx_db.data.bd_prod =
576 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
577
578 /* wmb makes sure that the BDs data is updated before updating the
579 * producer, otherwise FW may read old data from the BDs.
580 */
581 wmb();
582 barrier();
583 writel(txq->tx_db.raw, txq->doorbell_addr);
584
585 /* mmiowb is needed to synchronize doorbell writes from more than one
586 * processor. It guarantees that the write arrives to the device before
587 * the queue lock is released and another start_xmit is called (possibly
588 * on another CPU). Without this barrier, the next doorbell can bypass
589 * this doorbell. This is applicable to IA64/Altix systems.
590 */
591 mmiowb();
592
593 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
594 < (MAX_SKB_FRAGS + 1))) {
595 netif_tx_stop_queue(netdev_txq);
596 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
597 "Stop queue was called\n");
598 /* paired memory barrier is in qede_tx_int(), we have to keep
599 * ordering of set_bit() in netif_tx_stop_queue() and read of
600 * fp->bd_tx_cons
601 */
602 smp_mb();
603
604 if (qed_chain_get_elem_left(&txq->tx_pbl)
605 >= (MAX_SKB_FRAGS + 1) &&
606 (edev->state == QEDE_STATE_OPEN)) {
607 netif_tx_wake_queue(netdev_txq);
608 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
609 "Wake queue was called\n");
610 }
611 }
612
613 return NETDEV_TX_OK;
614}
615
616static int qede_txq_has_work(struct qede_tx_queue *txq)
617{
618 u16 hw_bd_cons;
619
620 /* Tell compiler that consumer and producer can change */
621 barrier();
622 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
623 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
624 return 0;
625
626 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
627}
628
629static int qede_tx_int(struct qede_dev *edev,
630 struct qede_tx_queue *txq)
631{
632 struct netdev_queue *netdev_txq;
633 u16 hw_bd_cons;
634 unsigned int pkts_compl = 0, bytes_compl = 0;
635 int rc;
636
637 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
638
639 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
640 barrier();
641
642 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
643 int len = 0;
644
645 rc = qede_free_tx_pkt(edev, txq, &len);
646 if (rc) {
647 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
648 hw_bd_cons,
649 qed_chain_get_cons_idx(&txq->tx_pbl));
650 break;
651 }
652
653 bytes_compl += len;
654 pkts_compl++;
655 txq->sw_tx_cons++;
656 }
657
658 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
659
660 /* Need to make the tx_bd_cons update visible to start_xmit()
661 * before checking for netif_tx_queue_stopped(). Without the
662 * memory barrier, there is a small possibility that
663 * start_xmit() will miss it and cause the queue to be stopped
664 * forever.
665 * On the other hand we need an rmb() here to ensure the proper
666 * ordering of bit testing in the following
667 * netif_tx_queue_stopped(txq) call.
668 */
669 smp_mb();
670
671 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
672 /* Taking tx_lock is needed to prevent reenabling the queue
673 * while it's empty. This could have happen if rx_action() gets
674 * suspended in qede_tx_int() after the condition before
675 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
676 *
677 * stops the queue->sees fresh tx_bd_cons->releases the queue->
678 * sends some packets consuming the whole queue again->
679 * stops the queue
680 */
681
682 __netif_tx_lock(netdev_txq, smp_processor_id());
683
684 if ((netif_tx_queue_stopped(netdev_txq)) &&
685 (edev->state == QEDE_STATE_OPEN) &&
686 (qed_chain_get_elem_left(&txq->tx_pbl)
687 >= (MAX_SKB_FRAGS + 1))) {
688 netif_tx_wake_queue(netdev_txq);
689 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
690 "Wake queue was called\n");
691 }
692
693 __netif_tx_unlock(netdev_txq);
694 }
695
696 return 0;
697}
698
699static bool qede_has_rx_work(struct qede_rx_queue *rxq)
700{
701 u16 hw_comp_cons, sw_comp_cons;
702
703 /* Tell compiler that status block fields can change */
704 barrier();
705
706 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
707 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
708
709 return hw_comp_cons != sw_comp_cons;
710}
711
712static bool qede_has_tx_work(struct qede_fastpath *fp)
713{
714 u8 tc;
715
716 for (tc = 0; tc < fp->edev->num_tc; tc++)
717 if (qede_txq_has_work(&fp->txqs[tc]))
718 return true;
719 return false;
720}
721
722/* This function copies the Rx buffer from the CONS position to the PROD
723 * position, since we failed to allocate a new Rx buffer.
724 */
725static void qede_reuse_rx_data(struct qede_rx_queue *rxq)
726{
727 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
728 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
729 struct sw_rx_data *sw_rx_data_cons =
730 &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
731 struct sw_rx_data *sw_rx_data_prod =
732 &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
733
734 dma_unmap_addr_set(sw_rx_data_prod, mapping,
735 dma_unmap_addr(sw_rx_data_cons, mapping));
736
737 sw_rx_data_prod->data = sw_rx_data_cons->data;
738 memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));
739
740 rxq->sw_rx_cons++;
741 rxq->sw_rx_prod++;
742}
743
744static inline void qede_update_rx_prod(struct qede_dev *edev,
745 struct qede_rx_queue *rxq)
746{
747 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
748 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
749 struct eth_rx_prod_data rx_prods = {0};
750
751 /* Update producers */
752 rx_prods.bd_prod = cpu_to_le16(bd_prod);
753 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
754
755 /* Make sure that the BD and SGE data is updated before updating the
756 * producers since FW might read the BD/SGE right after the producer
757 * is updated.
758 */
759 wmb();
760
761 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
762 (u32 *)&rx_prods);
763
764 /* mmiowb is needed to synchronize doorbell writes from more than one
765 * processor. It guarantees that the write arrives to the device before
766 * the napi lock is released and another qede_poll is called (possibly
767 * on another CPU). Without this barrier, the next doorbell can bypass
768 * this doorbell. This is applicable to IA64/Altix systems.
769 */
770 mmiowb();
771}
772
773static u32 qede_get_rxhash(struct qede_dev *edev,
774 u8 bitfields,
775 __le32 rss_hash,
776 enum pkt_hash_types *rxhash_type)
777{
778 enum rss_hash_type htype;
779
780 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
781
782 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
783 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
784 (htype == RSS_HASH_TYPE_IPV6)) ?
785 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
786 return le32_to_cpu(rss_hash);
787 }
788 *rxhash_type = PKT_HASH_TYPE_NONE;
789 return 0;
790}
791
792static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
793{
794 skb_checksum_none_assert(skb);
795
796 if (csum_flag & QEDE_CSUM_UNNECESSARY)
797 skb->ip_summed = CHECKSUM_UNNECESSARY;
798}
799
800static inline void qede_skb_receive(struct qede_dev *edev,
801 struct qede_fastpath *fp,
802 struct sk_buff *skb,
803 u16 vlan_tag)
804{
805 if (vlan_tag)
806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
807 vlan_tag);
808
809 napi_gro_receive(&fp->napi, skb);
810}
811
812static u8 qede_check_csum(u16 flag)
813{
814 u16 csum_flag = 0;
815 u8 csum = 0;
816
817 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
818 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
819 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
820 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
821 csum = QEDE_CSUM_UNNECESSARY;
822 }
823
824 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
825 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
826
827 if (csum_flag & flag)
828 return QEDE_CSUM_ERROR;
829
830 return csum;
831}
832
833static int qede_rx_int(struct qede_fastpath *fp, int budget)
834{
835 struct qede_dev *edev = fp->edev;
836 struct qede_rx_queue *rxq = fp->rxq;
837
838 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
839 int rx_pkt = 0;
840 u8 csum_flag;
841
842 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
843 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
844
845 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
846 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
847 * read before it is written by FW, then FW writes CQE and SB, and then
848 * the CPU reads the hw_comp_cons, it will use an old CQE.
849 */
850 rmb();
851
852 /* Loop to complete all indicated BDs */
853 while (sw_comp_cons != hw_comp_cons) {
854 struct eth_fast_path_rx_reg_cqe *fp_cqe;
855 enum pkt_hash_types rxhash_type;
856 enum eth_rx_cqe_type cqe_type;
857 struct sw_rx_data *sw_rx_data;
858 union eth_rx_cqe *cqe;
859 struct sk_buff *skb;
860 u16 len, pad;
861 u32 rx_hash;
862 u8 *data;
863
864 /* Get the CQE from the completion ring */
865 cqe = (union eth_rx_cqe *)
866 qed_chain_consume(&rxq->rx_comp_ring);
867 cqe_type = cqe->fast_path_regular.type;
868
869 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
870 edev->ops->eth_cqe_completion(
871 edev->cdev, fp->rss_id,
872 (struct eth_slow_path_rx_cqe *)cqe);
873 goto next_cqe;
874 }
875
876 /* Get the data from the SW ring */
877 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
878 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
879 data = sw_rx_data->data;
880
881 fp_cqe = &cqe->fast_path_regular;
882 len = le16_to_cpu(fp_cqe->pkt_len);
883 pad = fp_cqe->placement_offset;
884
885 /* For every Rx BD consumed, we allocate a new BD so the BD ring
886 * is always with a fixed size. If allocation fails, we take the
887 * consumed BD and return it to the ring in the PROD position.
888 * The packet that was received on that BD will be dropped (and
889 * not passed to the upper stack).
890 */
891 if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) {
892 dma_unmap_single(&edev->pdev->dev,
893 dma_unmap_addr(sw_rx_data, mapping),
894 rxq->rx_buf_size, DMA_FROM_DEVICE);
895
896 /* If this is an error packet then drop it */
897 parse_flag =
898 le16_to_cpu(cqe->fast_path_regular.pars_flags.flags);
899 csum_flag = qede_check_csum(parse_flag);
900 if (csum_flag == QEDE_CSUM_ERROR) {
901 DP_NOTICE(edev,
902 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
903 sw_comp_cons, parse_flag);
904 rxq->rx_hw_errors++;
905 kfree(data);
906 goto next_rx;
907 }
908
909 skb = build_skb(data, 0);
910
911 if (unlikely(!skb)) {
912 DP_NOTICE(edev,
913 "Build_skb failed, dropping incoming packet\n");
914 kfree(data);
915 rxq->rx_alloc_errors++;
916 goto next_rx;
917 }
918
919 skb_reserve(skb, pad);
920
921 } else {
922 DP_NOTICE(edev,
923 "New buffer allocation failed, dropping incoming packet and reusing its buffer\n");
924 qede_reuse_rx_data(rxq);
925 rxq->rx_alloc_errors++;
926 goto next_cqe;
927 }
928
929 sw_rx_data->data = NULL;
930
931 skb_put(skb, len);
932
933 skb->protocol = eth_type_trans(skb, edev->ndev);
934
935 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
936 fp_cqe->rss_hash,
937 &rxhash_type);
938
939 skb_set_hash(skb, rx_hash, rxhash_type);
940
941 qede_set_skb_csum(skb, csum_flag);
942
943 skb_record_rx_queue(skb, fp->rss_id);
944
945 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
946
947 qed_chain_consume(&rxq->rx_bd_ring);
948
949next_rx:
950 rxq->sw_rx_cons++;
951 rx_pkt++;
952
953next_cqe: /* don't consume bd rx buffer */
954 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
955 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
956 /* CR TPA - revisit how to handle budget in TPA perhaps
957 * increase on "end"
958 */
959 if (rx_pkt == budget)
960 break;
961 } /* repeat while sw_comp_cons != hw_comp_cons... */
962
963 /* Update producers */
964 qede_update_rx_prod(edev, rxq);
965
966 return rx_pkt;
967}
968
969static int qede_poll(struct napi_struct *napi, int budget)
970{
971 int work_done = 0;
972 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
973 napi);
974 struct qede_dev *edev = fp->edev;
975
976 while (1) {
977 u8 tc;
978
979 for (tc = 0; tc < edev->num_tc; tc++)
980 if (qede_txq_has_work(&fp->txqs[tc]))
981 qede_tx_int(edev, &fp->txqs[tc]);
982
983 if (qede_has_rx_work(fp->rxq)) {
984 work_done += qede_rx_int(fp, budget - work_done);
985
986 /* must not complete if we consumed full budget */
987 if (work_done >= budget)
988 break;
989 }
990
991 /* Fall out from the NAPI loop if needed */
992 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
993 qed_sb_update_sb_idx(fp->sb_info);
994 /* *_has_*_work() reads the status block,
995 * thus we need to ensure that status block indices
996 * have been actually read (qed_sb_update_sb_idx)
997 * prior to this check (*_has_*_work) so that
998 * we won't write the "newer" value of the status block
999 * to HW (if there was a DMA right after
1000 * qede_has_rx_work and if there is no rmb, the memory
1001 * reading (qed_sb_update_sb_idx) may be postponed
1002 * to right before *_ack_sb). In this case there
1003 * will never be another interrupt until there is
1004 * another update of the status block, while there
1005 * is still unhandled work.
1006 */
1007 rmb();
1008
1009 if (!(qede_has_rx_work(fp->rxq) ||
1010 qede_has_tx_work(fp))) {
1011 napi_complete(napi);
1012 /* Update and reenable interrupts */
1013 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1014 1 /*update*/);
1015 break;
1016 }
1017 }
1018 }
1019
1020 return work_done;
1021}
1022
1023static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1024{
1025 struct qede_fastpath *fp = fp_cookie;
1026
1027 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1028
1029 napi_schedule_irqoff(&fp->napi);
1030 return IRQ_HANDLED;
1031}
1032
1033/* -------------------------------------------------------------------------
1034 * END OF FAST-PATH
1035 * -------------------------------------------------------------------------
1036 */
1037
1038static int qede_open(struct net_device *ndev);
1039static int qede_close(struct net_device *ndev);
0d8e0aa0
SK
1040static int qede_set_mac_addr(struct net_device *ndev, void *p);
1041static void qede_set_rx_mode(struct net_device *ndev);
1042static void qede_config_rx_mode(struct net_device *ndev);
1043
1044static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1045 enum qed_filter_xcast_params_type opcode,
1046 unsigned char mac[ETH_ALEN])
1047{
1048 struct qed_filter_params filter_cmd;
1049
1050 memset(&filter_cmd, 0, sizeof(filter_cmd));
1051 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1052 filter_cmd.filter.ucast.type = opcode;
1053 filter_cmd.filter.ucast.mac_valid = 1;
1054 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1055
1056 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1057}
1058
133fac0e
SK
1059void qede_fill_by_demand_stats(struct qede_dev *edev)
1060{
1061 struct qed_eth_stats stats;
1062
1063 edev->ops->get_vport_stats(edev->cdev, &stats);
1064 edev->stats.no_buff_discards = stats.no_buff_discards;
1065 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1066 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1067 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1068 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1069 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1070 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1071 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1072 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1073
1074 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1075 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1076 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1077 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1078 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1079 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1080 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1081 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1082 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1083 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1084 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1085 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1086
1087 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1088 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1089 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1090 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1091 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1092 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1093 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1094 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1095 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1096 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1097 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1098 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1099 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1100 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1101 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1102 edev->stats.rx_align_errors = stats.rx_align_errors;
1103 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1104 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1105 edev->stats.rx_jabbers = stats.rx_jabbers;
1106 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1107 edev->stats.rx_fragments = stats.rx_fragments;
1108 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1109 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1110 edev->stats.tx_128_to_255_byte_packets =
1111 stats.tx_128_to_255_byte_packets;
1112 edev->stats.tx_256_to_511_byte_packets =
1113 stats.tx_256_to_511_byte_packets;
1114 edev->stats.tx_512_to_1023_byte_packets =
1115 stats.tx_512_to_1023_byte_packets;
1116 edev->stats.tx_1024_to_1518_byte_packets =
1117 stats.tx_1024_to_1518_byte_packets;
1118 edev->stats.tx_1519_to_2047_byte_packets =
1119 stats.tx_1519_to_2047_byte_packets;
1120 edev->stats.tx_2048_to_4095_byte_packets =
1121 stats.tx_2048_to_4095_byte_packets;
1122 edev->stats.tx_4096_to_9216_byte_packets =
1123 stats.tx_4096_to_9216_byte_packets;
1124 edev->stats.tx_9217_to_16383_byte_packets =
1125 stats.tx_9217_to_16383_byte_packets;
1126 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1127 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1128 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1129 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1130 edev->stats.brb_truncates = stats.brb_truncates;
1131 edev->stats.brb_discards = stats.brb_discards;
1132 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1133}
1134
1135static struct rtnl_link_stats64 *qede_get_stats64(
1136 struct net_device *dev,
1137 struct rtnl_link_stats64 *stats)
1138{
1139 struct qede_dev *edev = netdev_priv(dev);
1140
1141 qede_fill_by_demand_stats(edev);
1142
1143 stats->rx_packets = edev->stats.rx_ucast_pkts +
1144 edev->stats.rx_mcast_pkts +
1145 edev->stats.rx_bcast_pkts;
1146 stats->tx_packets = edev->stats.tx_ucast_pkts +
1147 edev->stats.tx_mcast_pkts +
1148 edev->stats.tx_bcast_pkts;
1149
1150 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1151 edev->stats.rx_mcast_bytes +
1152 edev->stats.rx_bcast_bytes;
1153
1154 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1155 edev->stats.tx_mcast_bytes +
1156 edev->stats.tx_bcast_bytes;
1157
1158 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1159 stats->multicast = edev->stats.rx_mcast_pkts +
1160 edev->stats.rx_bcast_pkts;
1161
1162 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1163
1164 stats->collisions = edev->stats.tx_total_collisions;
1165 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1166 stats->rx_frame_errors = edev->stats.rx_align_errors;
1167
1168 return stats;
1169}
1170
2950219d
YM
1171static const struct net_device_ops qede_netdev_ops = {
1172 .ndo_open = qede_open,
1173 .ndo_stop = qede_close,
1174 .ndo_start_xmit = qede_start_xmit,
0d8e0aa0
SK
1175 .ndo_set_rx_mode = qede_set_rx_mode,
1176 .ndo_set_mac_address = qede_set_mac_addr,
2950219d 1177 .ndo_validate_addr = eth_validate_addr,
133fac0e
SK
1178 .ndo_change_mtu = qede_change_mtu,
1179 .ndo_get_stats64 = qede_get_stats64,
2950219d
YM
1180};
1181
e712d52b
YM
1182/* -------------------------------------------------------------------------
1183 * START OF PROBE / REMOVE
1184 * -------------------------------------------------------------------------
1185 */
1186
1187static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1188 struct pci_dev *pdev,
1189 struct qed_dev_eth_info *info,
1190 u32 dp_module,
1191 u8 dp_level)
1192{
1193 struct net_device *ndev;
1194 struct qede_dev *edev;
1195
1196 ndev = alloc_etherdev_mqs(sizeof(*edev),
1197 info->num_queues,
1198 info->num_queues);
1199 if (!ndev) {
1200 pr_err("etherdev allocation failed\n");
1201 return NULL;
1202 }
1203
1204 edev = netdev_priv(ndev);
1205 edev->ndev = ndev;
1206 edev->cdev = cdev;
1207 edev->pdev = pdev;
1208 edev->dp_module = dp_module;
1209 edev->dp_level = dp_level;
1210 edev->ops = qed_ops;
2950219d
YM
1211 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1212 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
e712d52b
YM
1213
1214 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1215
1216 SET_NETDEV_DEV(ndev, &pdev->dev);
1217
133fac0e 1218 memset(&edev->stats, 0, sizeof(edev->stats));
e712d52b
YM
1219 memcpy(&edev->dev_info, info, sizeof(*info));
1220
1221 edev->num_tc = edev->dev_info.num_tc;
1222
1223 return edev;
1224}
1225
1226static void qede_init_ndev(struct qede_dev *edev)
1227{
1228 struct net_device *ndev = edev->ndev;
1229 struct pci_dev *pdev = edev->pdev;
1230 u32 hw_features;
1231
1232 pci_set_drvdata(pdev, ndev);
1233
1234 ndev->mem_start = edev->dev_info.common.pci_mem_start;
1235 ndev->base_addr = ndev->mem_start;
1236 ndev->mem_end = edev->dev_info.common.pci_mem_end;
1237 ndev->irq = edev->dev_info.common.pci_irq;
1238
1239 ndev->watchdog_timeo = TX_TIMEOUT;
1240
2950219d
YM
1241 ndev->netdev_ops = &qede_netdev_ops;
1242
133fac0e
SK
1243 qede_set_ethtool_ops(ndev);
1244
e712d52b
YM
1245 /* user-changeble features */
1246 hw_features = NETIF_F_GRO | NETIF_F_SG |
1247 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1248 NETIF_F_TSO | NETIF_F_TSO6;
1249
1250 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1251 NETIF_F_HIGHDMA;
1252 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1253 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1254 NETIF_F_HW_VLAN_CTAG_TX;
1255
1256 ndev->hw_features = hw_features;
1257
1258 /* Set network device HW mac */
1259 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1260}
1261
1262/* This function converts from 32b param to two params of level and module
1263 * Input 32b decoding:
1264 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1265 * 'happy' flow, e.g. memory allocation failed.
1266 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1267 * and provide important parameters.
1268 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1269 * module. VERBOSE prints are for tracking the specific flow in low level.
1270 *
1271 * Notice that the level should be that of the lowest required logs.
1272 */
133fac0e 1273void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
e712d52b
YM
1274{
1275 *p_dp_level = QED_LEVEL_NOTICE;
1276 *p_dp_module = 0;
1277
1278 if (debug & QED_LOG_VERBOSE_MASK) {
1279 *p_dp_level = QED_LEVEL_VERBOSE;
1280 *p_dp_module = (debug & 0x3FFFFFFF);
1281 } else if (debug & QED_LOG_INFO_MASK) {
1282 *p_dp_level = QED_LEVEL_INFO;
1283 } else if (debug & QED_LOG_NOTICE_MASK) {
1284 *p_dp_level = QED_LEVEL_NOTICE;
1285 }
1286}
1287
2950219d
YM
1288static void qede_free_fp_array(struct qede_dev *edev)
1289{
1290 if (edev->fp_array) {
1291 struct qede_fastpath *fp;
1292 int i;
1293
1294 for_each_rss(i) {
1295 fp = &edev->fp_array[i];
1296
1297 kfree(fp->sb_info);
1298 kfree(fp->rxq);
1299 kfree(fp->txqs);
1300 }
1301 kfree(edev->fp_array);
1302 }
1303 edev->num_rss = 0;
1304}
1305
1306static int qede_alloc_fp_array(struct qede_dev *edev)
1307{
1308 struct qede_fastpath *fp;
1309 int i;
1310
1311 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1312 sizeof(*edev->fp_array), GFP_KERNEL);
1313 if (!edev->fp_array) {
1314 DP_NOTICE(edev, "fp array allocation failed\n");
1315 goto err;
1316 }
1317
1318 for_each_rss(i) {
1319 fp = &edev->fp_array[i];
1320
1321 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1322 if (!fp->sb_info) {
1323 DP_NOTICE(edev, "sb info struct allocation failed\n");
1324 goto err;
1325 }
1326
1327 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1328 if (!fp->rxq) {
1329 DP_NOTICE(edev, "RXQ struct allocation failed\n");
1330 goto err;
1331 }
1332
1333 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
1334 if (!fp->txqs) {
1335 DP_NOTICE(edev, "TXQ array allocation failed\n");
1336 goto err;
1337 }
1338 }
1339
1340 return 0;
1341err:
1342 qede_free_fp_array(edev);
1343 return -ENOMEM;
1344}
1345
0d8e0aa0
SK
1346static void qede_sp_task(struct work_struct *work)
1347{
1348 struct qede_dev *edev = container_of(work, struct qede_dev,
1349 sp_task.work);
1350 mutex_lock(&edev->qede_lock);
1351
1352 if (edev->state == QEDE_STATE_OPEN) {
1353 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1354 qede_config_rx_mode(edev->ndev);
1355 }
1356
1357 mutex_unlock(&edev->qede_lock);
1358}
1359
e712d52b
YM
1360static void qede_update_pf_params(struct qed_dev *cdev)
1361{
1362 struct qed_pf_params pf_params;
1363
1364 /* 16 rx + 16 tx */
1365 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1366 pf_params.eth_pf_params.num_cons = 32;
1367 qed_ops->common->update_pf_params(cdev, &pf_params);
1368}
1369
1370enum qede_probe_mode {
1371 QEDE_PROBE_NORMAL,
1372};
1373
1374static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1375 enum qede_probe_mode mode)
1376{
1377 struct qed_slowpath_params params;
1378 struct qed_dev_eth_info dev_info;
1379 struct qede_dev *edev;
1380 struct qed_dev *cdev;
1381 int rc;
1382
1383 if (unlikely(dp_level & QED_LEVEL_INFO))
1384 pr_notice("Starting qede probe\n");
1385
1386 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
1387 dp_module, dp_level);
1388 if (!cdev) {
1389 rc = -ENODEV;
1390 goto err0;
1391 }
1392
1393 qede_update_pf_params(cdev);
1394
1395 /* Start the Slowpath-process */
1396 memset(&params, 0, sizeof(struct qed_slowpath_params));
1397 params.int_mode = QED_INT_MODE_MSIX;
1398 params.drv_major = QEDE_MAJOR_VERSION;
1399 params.drv_minor = QEDE_MINOR_VERSION;
1400 params.drv_rev = QEDE_REVISION_VERSION;
1401 params.drv_eng = QEDE_ENGINEERING_VERSION;
1402 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1403 rc = qed_ops->common->slowpath_start(cdev, &params);
1404 if (rc) {
1405 pr_notice("Cannot start slowpath\n");
1406 goto err1;
1407 }
1408
1409 /* Learn information crucial for qede to progress */
1410 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1411 if (rc)
1412 goto err2;
1413
1414 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1415 dp_level);
1416 if (!edev) {
1417 rc = -ENOMEM;
1418 goto err2;
1419 }
1420
1421 qede_init_ndev(edev);
1422
2950219d
YM
1423 rc = register_netdev(edev->ndev);
1424 if (rc) {
1425 DP_NOTICE(edev, "Cannot register net-device\n");
1426 goto err3;
1427 }
1428
e712d52b
YM
1429 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
1430
a2ec6172
SK
1431 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1432
0d8e0aa0
SK
1433 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1434 mutex_init(&edev->qede_lock);
1435
e712d52b
YM
1436 DP_INFO(edev, "Ending successfully qede probe\n");
1437
1438 return 0;
1439
2950219d
YM
1440err3:
1441 free_netdev(edev->ndev);
e712d52b
YM
1442err2:
1443 qed_ops->common->slowpath_stop(cdev);
1444err1:
1445 qed_ops->common->remove(cdev);
1446err0:
1447 return rc;
1448}
1449
1450static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1451{
1452 u32 dp_module = 0;
1453 u8 dp_level = 0;
1454
1455 qede_config_debug(debug, &dp_module, &dp_level);
1456
1457 return __qede_probe(pdev, dp_module, dp_level,
1458 QEDE_PROBE_NORMAL);
1459}
1460
1461enum qede_remove_mode {
1462 QEDE_REMOVE_NORMAL,
1463};
1464
1465static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1466{
1467 struct net_device *ndev = pci_get_drvdata(pdev);
1468 struct qede_dev *edev = netdev_priv(ndev);
1469 struct qed_dev *cdev = edev->cdev;
1470
1471 DP_INFO(edev, "Starting qede_remove\n");
1472
0d8e0aa0 1473 cancel_delayed_work_sync(&edev->sp_task);
2950219d
YM
1474 unregister_netdev(ndev);
1475
e712d52b
YM
1476 edev->ops->common->set_power_state(cdev, PCI_D0);
1477
1478 pci_set_drvdata(pdev, NULL);
1479
1480 free_netdev(ndev);
1481
1482 /* Use global ops since we've freed edev */
1483 qed_ops->common->slowpath_stop(cdev);
1484 qed_ops->common->remove(cdev);
1485
1486 pr_notice("Ending successfully qede_remove\n");
1487}
1488
1489static void qede_remove(struct pci_dev *pdev)
1490{
1491 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1492}
2950219d
YM
1493
1494/* -------------------------------------------------------------------------
1495 * START OF LOAD / UNLOAD
1496 * -------------------------------------------------------------------------
1497 */
1498
1499static int qede_set_num_queues(struct qede_dev *edev)
1500{
1501 int rc;
1502 u16 rss_num;
1503
1504 /* Setup queues according to possible resources*/
8edf049d
SK
1505 if (edev->req_rss)
1506 rss_num = edev->req_rss;
1507 else
1508 rss_num = netif_get_num_default_rss_queues() *
1509 edev->dev_info.common.num_hwfns;
2950219d
YM
1510
1511 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1512
1513 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1514 if (rc > 0) {
1515 /* Managed to request interrupts for our queues */
1516 edev->num_rss = rc;
1517 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1518 QEDE_RSS_CNT(edev), rss_num);
1519 rc = 0;
1520 }
1521 return rc;
1522}
1523
1524static void qede_free_mem_sb(struct qede_dev *edev,
1525 struct qed_sb_info *sb_info)
1526{
1527 if (sb_info->sb_virt)
1528 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1529 (void *)sb_info->sb_virt, sb_info->sb_phys);
1530}
1531
1532/* This function allocates fast-path status block memory */
1533static int qede_alloc_mem_sb(struct qede_dev *edev,
1534 struct qed_sb_info *sb_info,
1535 u16 sb_id)
1536{
1537 struct status_block *sb_virt;
1538 dma_addr_t sb_phys;
1539 int rc;
1540
1541 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1542 sizeof(*sb_virt),
1543 &sb_phys, GFP_KERNEL);
1544 if (!sb_virt) {
1545 DP_ERR(edev, "Status block allocation failed\n");
1546 return -ENOMEM;
1547 }
1548
1549 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1550 sb_virt, sb_phys, sb_id,
1551 QED_SB_TYPE_L2_QUEUE);
1552 if (rc) {
1553 DP_ERR(edev, "Status block initialization failed\n");
1554 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1555 sb_virt, sb_phys);
1556 return rc;
1557 }
1558
1559 return 0;
1560}
1561
1562static void qede_free_rx_buffers(struct qede_dev *edev,
1563 struct qede_rx_queue *rxq)
1564{
1565 u16 i;
1566
1567 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1568 struct sw_rx_data *rx_buf;
1569 u8 *data;
1570
1571 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1572 data = rx_buf->data;
1573
1574 dma_unmap_single(&edev->pdev->dev,
1575 dma_unmap_addr(rx_buf, mapping),
1576 rxq->rx_buf_size, DMA_FROM_DEVICE);
1577
1578 rx_buf->data = NULL;
1579 kfree(data);
1580 }
1581}
1582
1583static void qede_free_mem_rxq(struct qede_dev *edev,
1584 struct qede_rx_queue *rxq)
1585{
1586 /* Free rx buffers */
1587 qede_free_rx_buffers(edev, rxq);
1588
1589 /* Free the parallel SW ring */
1590 kfree(rxq->sw_rx_ring);
1591
1592 /* Free the real RQ ring used by FW */
1593 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1594 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1595}
1596
1597static int qede_alloc_rx_buffer(struct qede_dev *edev,
1598 struct qede_rx_queue *rxq)
1599{
1600 struct sw_rx_data *sw_rx_data;
1601 struct eth_rx_bd *rx_bd;
1602 dma_addr_t mapping;
1603 u16 rx_buf_size;
1604 u8 *data;
1605
1606 rx_buf_size = rxq->rx_buf_size;
1607
1608 data = kmalloc(rx_buf_size, GFP_ATOMIC);
1609 if (unlikely(!data)) {
1610 DP_NOTICE(edev, "Failed to allocate Rx data\n");
1611 return -ENOMEM;
1612 }
1613
1614 mapping = dma_map_single(&edev->pdev->dev, data,
1615 rx_buf_size, DMA_FROM_DEVICE);
1616 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1617 kfree(data);
1618 DP_NOTICE(edev, "Failed to map Rx buffer\n");
1619 return -ENOMEM;
1620 }
1621
1622 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1623 sw_rx_data->data = data;
1624
1625 dma_unmap_addr_set(sw_rx_data, mapping, mapping);
1626
1627 /* Advance PROD and get BD pointer */
1628 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1629 WARN_ON(!rx_bd);
1630 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1631 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1632
1633 rxq->sw_rx_prod++;
1634
1635 return 0;
1636}
1637
1638/* This function allocates all memory needed per Rx queue */
1639static int qede_alloc_mem_rxq(struct qede_dev *edev,
1640 struct qede_rx_queue *rxq)
1641{
1642 int i, rc, size, num_allocated;
1643
1644 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1645
1646 rxq->rx_buf_size = NET_IP_ALIGN +
1647 ETH_OVERHEAD +
1648 edev->ndev->mtu +
1649 QEDE_FW_RX_ALIGN_END;
1650
1651 /* Allocate the parallel driver ring for Rx buffers */
1652 size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX;
1653 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1654 if (!rxq->sw_rx_ring) {
1655 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1656 goto err;
1657 }
1658
1659 /* Allocate FW Rx ring */
1660 rc = edev->ops->common->chain_alloc(edev->cdev,
1661 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1662 QED_CHAIN_MODE_NEXT_PTR,
1663 NUM_RX_BDS_MAX,
1664 sizeof(struct eth_rx_bd),
1665 &rxq->rx_bd_ring);
1666
1667 if (rc)
1668 goto err;
1669
1670 /* Allocate FW completion ring */
1671 rc = edev->ops->common->chain_alloc(edev->cdev,
1672 QED_CHAIN_USE_TO_CONSUME,
1673 QED_CHAIN_MODE_PBL,
1674 NUM_RX_BDS_MAX,
1675 sizeof(union eth_rx_cqe),
1676 &rxq->rx_comp_ring);
1677 if (rc)
1678 goto err;
1679
1680 /* Allocate buffers for the Rx ring */
1681 for (i = 0; i < rxq->num_rx_buffers; i++) {
1682 rc = qede_alloc_rx_buffer(edev, rxq);
1683 if (rc)
1684 break;
1685 }
1686 num_allocated = i;
1687 if (!num_allocated) {
1688 DP_ERR(edev, "Rx buffers allocation failed\n");
1689 goto err;
1690 } else if (num_allocated < rxq->num_rx_buffers) {
1691 DP_NOTICE(edev,
1692 "Allocated less buffers than desired (%d allocated)\n",
1693 num_allocated);
1694 }
1695
1696 return 0;
1697
1698err:
1699 qede_free_mem_rxq(edev, rxq);
1700 return -ENOMEM;
1701}
1702
1703static void qede_free_mem_txq(struct qede_dev *edev,
1704 struct qede_tx_queue *txq)
1705{
1706 /* Free the parallel SW ring */
1707 kfree(txq->sw_tx_ring);
1708
1709 /* Free the real RQ ring used by FW */
1710 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1711}
1712
1713/* This function allocates all memory needed per Tx queue */
1714static int qede_alloc_mem_txq(struct qede_dev *edev,
1715 struct qede_tx_queue *txq)
1716{
1717 int size, rc;
1718 union eth_tx_bd_types *p_virt;
1719
1720 txq->num_tx_buffers = edev->q_num_tx_buffers;
1721
1722 /* Allocate the parallel driver ring for Tx buffers */
1723 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
1724 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
1725 if (!txq->sw_tx_ring) {
1726 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
1727 goto err;
1728 }
1729
1730 rc = edev->ops->common->chain_alloc(edev->cdev,
1731 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1732 QED_CHAIN_MODE_PBL,
1733 NUM_TX_BDS_MAX,
1734 sizeof(*p_virt),
1735 &txq->tx_pbl);
1736 if (rc)
1737 goto err;
1738
1739 return 0;
1740
1741err:
1742 qede_free_mem_txq(edev, txq);
1743 return -ENOMEM;
1744}
1745
1746/* This function frees all memory of a single fp */
1747static void qede_free_mem_fp(struct qede_dev *edev,
1748 struct qede_fastpath *fp)
1749{
1750 int tc;
1751
1752 qede_free_mem_sb(edev, fp->sb_info);
1753
1754 qede_free_mem_rxq(edev, fp->rxq);
1755
1756 for (tc = 0; tc < edev->num_tc; tc++)
1757 qede_free_mem_txq(edev, &fp->txqs[tc]);
1758}
1759
1760/* This function allocates all memory needed for a single fp (i.e. an entity
1761 * which contains status block, one rx queue and multiple per-TC tx queues.
1762 */
1763static int qede_alloc_mem_fp(struct qede_dev *edev,
1764 struct qede_fastpath *fp)
1765{
1766 int rc, tc;
1767
1768 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
1769 if (rc)
1770 goto err;
1771
1772 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1773 if (rc)
1774 goto err;
1775
1776 for (tc = 0; tc < edev->num_tc; tc++) {
1777 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
1778 if (rc)
1779 goto err;
1780 }
1781
1782 return 0;
1783
1784err:
1785 qede_free_mem_fp(edev, fp);
1786 return -ENOMEM;
1787}
1788
1789static void qede_free_mem_load(struct qede_dev *edev)
1790{
1791 int i;
1792
1793 for_each_rss(i) {
1794 struct qede_fastpath *fp = &edev->fp_array[i];
1795
1796 qede_free_mem_fp(edev, fp);
1797 }
1798}
1799
1800/* This function allocates all qede memory at NIC load. */
1801static int qede_alloc_mem_load(struct qede_dev *edev)
1802{
1803 int rc = 0, rss_id;
1804
1805 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
1806 struct qede_fastpath *fp = &edev->fp_array[rss_id];
1807
1808 rc = qede_alloc_mem_fp(edev, fp);
1809 if (rc)
1810 break;
1811 }
1812
1813 if (rss_id != QEDE_RSS_CNT(edev)) {
1814 /* Failed allocating memory for all the queues */
1815 if (!rss_id) {
1816 DP_ERR(edev,
1817 "Failed to allocate memory for the leading queue\n");
1818 rc = -ENOMEM;
1819 } else {
1820 DP_NOTICE(edev,
1821 "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
1822 QEDE_RSS_CNT(edev), rss_id);
1823 }
1824 edev->num_rss = rss_id;
1825 }
1826
1827 return 0;
1828}
1829
1830/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1831static void qede_init_fp(struct qede_dev *edev)
1832{
1833 int rss_id, txq_index, tc;
1834 struct qede_fastpath *fp;
1835
1836 for_each_rss(rss_id) {
1837 fp = &edev->fp_array[rss_id];
1838
1839 fp->edev = edev;
1840 fp->rss_id = rss_id;
1841
1842 memset((void *)&fp->napi, 0, sizeof(fp->napi));
1843
1844 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
1845
1846 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
1847 fp->rxq->rxq_id = rss_id;
1848
1849 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
1850 for (tc = 0; tc < edev->num_tc; tc++) {
1851 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
1852 fp->txqs[tc].index = txq_index;
1853 }
1854
1855 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1856 edev->ndev->name, rss_id);
1857 }
1858}
1859
1860static int qede_set_real_num_queues(struct qede_dev *edev)
1861{
1862 int rc = 0;
1863
1864 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
1865 if (rc) {
1866 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1867 return rc;
1868 }
1869 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
1870 if (rc) {
1871 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1872 return rc;
1873 }
1874
1875 return 0;
1876}
1877
1878static void qede_napi_disable_remove(struct qede_dev *edev)
1879{
1880 int i;
1881
1882 for_each_rss(i) {
1883 napi_disable(&edev->fp_array[i].napi);
1884
1885 netif_napi_del(&edev->fp_array[i].napi);
1886 }
1887}
1888
1889static void qede_napi_add_enable(struct qede_dev *edev)
1890{
1891 int i;
1892
1893 /* Add NAPI objects */
1894 for_each_rss(i) {
1895 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1896 qede_poll, NAPI_POLL_WEIGHT);
1897 napi_enable(&edev->fp_array[i].napi);
1898 }
1899}
1900
1901static void qede_sync_free_irqs(struct qede_dev *edev)
1902{
1903 int i;
1904
1905 for (i = 0; i < edev->int_info.used_cnt; i++) {
1906 if (edev->int_info.msix_cnt) {
1907 synchronize_irq(edev->int_info.msix[i].vector);
1908 free_irq(edev->int_info.msix[i].vector,
1909 &edev->fp_array[i]);
1910 } else {
1911 edev->ops->common->simd_handler_clean(edev->cdev, i);
1912 }
1913 }
1914
1915 edev->int_info.used_cnt = 0;
1916}
1917
1918static int qede_req_msix_irqs(struct qede_dev *edev)
1919{
1920 int i, rc;
1921
1922 /* Sanitize number of interrupts == number of prepared RSS queues */
1923 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
1924 DP_ERR(edev,
1925 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1926 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
1927 return -EINVAL;
1928 }
1929
1930 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
1931 rc = request_irq(edev->int_info.msix[i].vector,
1932 qede_msix_fp_int, 0, edev->fp_array[i].name,
1933 &edev->fp_array[i]);
1934 if (rc) {
1935 DP_ERR(edev, "Request fp %d irq failed\n", i);
1936 qede_sync_free_irqs(edev);
1937 return rc;
1938 }
1939 DP_VERBOSE(edev, NETIF_MSG_INTR,
1940 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1941 edev->fp_array[i].name, i,
1942 &edev->fp_array[i]);
1943 edev->int_info.used_cnt++;
1944 }
1945
1946 return 0;
1947}
1948
1949static void qede_simd_fp_handler(void *cookie)
1950{
1951 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1952
1953 napi_schedule_irqoff(&fp->napi);
1954}
1955
1956static int qede_setup_irqs(struct qede_dev *edev)
1957{
1958 int i, rc = 0;
1959
1960 /* Learn Interrupt configuration */
1961 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1962 if (rc)
1963 return rc;
1964
1965 if (edev->int_info.msix_cnt) {
1966 rc = qede_req_msix_irqs(edev);
1967 if (rc)
1968 return rc;
1969 edev->ndev->irq = edev->int_info.msix[0].vector;
1970 } else {
1971 const struct qed_common_ops *ops;
1972
1973 /* qed should learn receive the RSS ids and callbacks */
1974 ops = edev->ops->common;
1975 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
1976 ops->simd_handler_config(edev->cdev,
1977 &edev->fp_array[i], i,
1978 qede_simd_fp_handler);
1979 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
1980 }
1981 return 0;
1982}
1983
1984static int qede_drain_txq(struct qede_dev *edev,
1985 struct qede_tx_queue *txq,
1986 bool allow_drain)
1987{
1988 int rc, cnt = 1000;
1989
1990 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1991 if (!cnt) {
1992 if (allow_drain) {
1993 DP_NOTICE(edev,
1994 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1995 txq->index);
1996 rc = edev->ops->common->drain(edev->cdev);
1997 if (rc)
1998 return rc;
1999 return qede_drain_txq(edev, txq, false);
2000 }
2001 DP_NOTICE(edev,
2002 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2003 txq->index, txq->sw_tx_prod,
2004 txq->sw_tx_cons);
2005 return -ENODEV;
2006 }
2007 cnt--;
2008 usleep_range(1000, 2000);
2009 barrier();
2010 }
2011
2012 /* FW finished processing, wait for HW to transmit all tx packets */
2013 usleep_range(1000, 2000);
2014
2015 return 0;
2016}
2017
2018static int qede_stop_queues(struct qede_dev *edev)
2019{
2020 struct qed_update_vport_params vport_update_params;
2021 struct qed_dev *cdev = edev->cdev;
2022 int rc, tc, i;
2023
2024 /* Disable the vport */
2025 memset(&vport_update_params, 0, sizeof(vport_update_params));
2026 vport_update_params.vport_id = 0;
2027 vport_update_params.update_vport_active_flg = 1;
2028 vport_update_params.vport_active_flg = 0;
2029 vport_update_params.update_rss_flg = 0;
2030
2031 rc = edev->ops->vport_update(cdev, &vport_update_params);
2032 if (rc) {
2033 DP_ERR(edev, "Failed to update vport\n");
2034 return rc;
2035 }
2036
2037 /* Flush Tx queues. If needed, request drain from MCP */
2038 for_each_rss(i) {
2039 struct qede_fastpath *fp = &edev->fp_array[i];
2040
2041 for (tc = 0; tc < edev->num_tc; tc++) {
2042 struct qede_tx_queue *txq = &fp->txqs[tc];
2043
2044 rc = qede_drain_txq(edev, txq, true);
2045 if (rc)
2046 return rc;
2047 }
2048 }
2049
2050 /* Stop all Queues in reverse order*/
2051 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2052 struct qed_stop_rxq_params rx_params;
2053
2054 /* Stop the Tx Queue(s)*/
2055 for (tc = 0; tc < edev->num_tc; tc++) {
2056 struct qed_stop_txq_params tx_params;
2057
2058 tx_params.rss_id = i;
2059 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2060 rc = edev->ops->q_tx_stop(cdev, &tx_params);
2061 if (rc) {
2062 DP_ERR(edev, "Failed to stop TXQ #%d\n",
2063 tx_params.tx_queue_id);
2064 return rc;
2065 }
2066 }
2067
2068 /* Stop the Rx Queue*/
2069 memset(&rx_params, 0, sizeof(rx_params));
2070 rx_params.rss_id = i;
2071 rx_params.rx_queue_id = i;
2072
2073 rc = edev->ops->q_rx_stop(cdev, &rx_params);
2074 if (rc) {
2075 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2076 return rc;
2077 }
2078 }
2079
2080 /* Stop the vport */
2081 rc = edev->ops->vport_stop(cdev, 0);
2082 if (rc)
2083 DP_ERR(edev, "Failed to stop VPORT\n");
2084
2085 return rc;
2086}
2087
2088static int qede_start_queues(struct qede_dev *edev)
2089{
2090 int rc, tc, i;
2091 int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
2092 struct qed_dev *cdev = edev->cdev;
2093 struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2094 struct qed_update_vport_params vport_update_params;
2095 struct qed_queue_start_common_params q_params;
2096
2097 if (!edev->num_rss) {
2098 DP_ERR(edev,
2099 "Cannot update V-VPORT as active as there are no Rx queues\n");
2100 return -EINVAL;
2101 }
2102
2103 rc = edev->ops->vport_start(cdev, vport_id,
2104 edev->ndev->mtu,
2105 drop_ttl0_flg,
2106 vlan_removal_en);
2107
2108 if (rc) {
2109 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2110 return rc;
2111 }
2112
2113 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2114 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2115 vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2116
2117 for_each_rss(i) {
2118 struct qede_fastpath *fp = &edev->fp_array[i];
2119 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2120
2121 memset(&q_params, 0, sizeof(q_params));
2122 q_params.rss_id = i;
2123 q_params.queue_id = i;
2124 q_params.vport_id = 0;
2125 q_params.sb = fp->sb_info->igu_sb_id;
2126 q_params.sb_idx = RX_PI;
2127
2128 rc = edev->ops->q_rx_start(cdev, &q_params,
2129 fp->rxq->rx_buf_size,
2130 fp->rxq->rx_bd_ring.p_phys_addr,
2131 phys_table,
2132 fp->rxq->rx_comp_ring.page_cnt,
2133 &fp->rxq->hw_rxq_prod_addr);
2134 if (rc) {
2135 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2136 return rc;
2137 }
2138
2139 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2140
2141 qede_update_rx_prod(edev, fp->rxq);
2142
2143 for (tc = 0; tc < edev->num_tc; tc++) {
2144 struct qede_tx_queue *txq = &fp->txqs[tc];
2145 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2146
2147 memset(&q_params, 0, sizeof(q_params));
2148 q_params.rss_id = i;
2149 q_params.queue_id = txq_index;
2150 q_params.vport_id = 0;
2151 q_params.sb = fp->sb_info->igu_sb_id;
2152 q_params.sb_idx = TX_PI(tc);
2153
2154 rc = edev->ops->q_tx_start(cdev, &q_params,
2155 txq->tx_pbl.pbl.p_phys_table,
2156 txq->tx_pbl.page_cnt,
2157 &txq->doorbell_addr);
2158 if (rc) {
2159 DP_ERR(edev, "Start TXQ #%d failed %d\n",
2160 txq_index, rc);
2161 return rc;
2162 }
2163
2164 txq->hw_cons_ptr =
2165 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2166 SET_FIELD(txq->tx_db.data.params,
2167 ETH_DB_DATA_DEST, DB_DEST_XCM);
2168 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2169 DB_AGG_CMD_SET);
2170 SET_FIELD(txq->tx_db.data.params,
2171 ETH_DB_DATA_AGG_VAL_SEL,
2172 DQ_XCM_ETH_TX_BD_PROD_CMD);
2173
2174 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2175 }
2176 }
2177
2178 /* Prepare and send the vport enable */
2179 memset(&vport_update_params, 0, sizeof(vport_update_params));
2180 vport_update_params.vport_id = vport_id;
2181 vport_update_params.update_vport_active_flg = 1;
2182 vport_update_params.vport_active_flg = 1;
2183
2184 /* Fill struct with RSS params */
2185 if (QEDE_RSS_CNT(edev) > 1) {
2186 vport_update_params.update_rss_flg = 1;
2187 for (i = 0; i < 128; i++)
2188 rss_params->rss_ind_table[i] =
2189 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2190 netdev_rss_key_fill(rss_params->rss_key,
2191 sizeof(rss_params->rss_key));
2192 } else {
2193 memset(rss_params, 0, sizeof(*rss_params));
2194 }
2195 memcpy(&vport_update_params.rss_params, rss_params,
2196 sizeof(*rss_params));
2197
2198 rc = edev->ops->vport_update(cdev, &vport_update_params);
2199 if (rc) {
2200 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2201 return rc;
2202 }
2203
2204 return 0;
2205}
2206
0d8e0aa0
SK
2207static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2208 enum qed_filter_xcast_params_type opcode,
2209 unsigned char *mac, int num_macs)
2210{
2211 struct qed_filter_params filter_cmd;
2212 int i;
2213
2214 memset(&filter_cmd, 0, sizeof(filter_cmd));
2215 filter_cmd.type = QED_FILTER_TYPE_MCAST;
2216 filter_cmd.filter.mcast.type = opcode;
2217 filter_cmd.filter.mcast.num = num_macs;
2218
2219 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2220 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2221
2222 return edev->ops->filter_config(edev->cdev, &filter_cmd);
2223}
2224
2950219d
YM
2225enum qede_unload_mode {
2226 QEDE_UNLOAD_NORMAL,
2227};
2228
2229static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2230{
a2ec6172 2231 struct qed_link_params link_params;
2950219d
YM
2232 int rc;
2233
2234 DP_INFO(edev, "Starting qede unload\n");
2235
0d8e0aa0
SK
2236 mutex_lock(&edev->qede_lock);
2237 edev->state = QEDE_STATE_CLOSED;
2238
2950219d
YM
2239 /* Close OS Tx */
2240 netif_tx_disable(edev->ndev);
2241 netif_carrier_off(edev->ndev);
2242
a2ec6172
SK
2243 /* Reset the link */
2244 memset(&link_params, 0, sizeof(link_params));
2245 link_params.link_up = false;
2246 edev->ops->common->set_link(edev->cdev, &link_params);
2950219d
YM
2247 rc = qede_stop_queues(edev);
2248 if (rc) {
2249 qede_sync_free_irqs(edev);
2250 goto out;
2251 }
2252
2253 DP_INFO(edev, "Stopped Queues\n");
2254
2255 edev->ops->fastpath_stop(edev->cdev);
2256
2257 /* Release the interrupts */
2258 qede_sync_free_irqs(edev);
2259 edev->ops->common->set_fp_int(edev->cdev, 0);
2260
2261 qede_napi_disable_remove(edev);
2262
2263 qede_free_mem_load(edev);
2264 qede_free_fp_array(edev);
2265
2266out:
2267 mutex_unlock(&edev->qede_lock);
2268 DP_INFO(edev, "Ending qede unload\n");
2269}
2270
2271enum qede_load_mode {
2272 QEDE_LOAD_NORMAL,
2273};
2274
2275static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
2276{
a2ec6172
SK
2277 struct qed_link_params link_params;
2278 struct qed_link_output link_output;
2950219d
YM
2279 int rc;
2280
2281 DP_INFO(edev, "Starting qede load\n");
2282
2283 rc = qede_set_num_queues(edev);
2284 if (rc)
2285 goto err0;
2286
2287 rc = qede_alloc_fp_array(edev);
2288 if (rc)
2289 goto err0;
2290
2291 qede_init_fp(edev);
2292
2293 rc = qede_alloc_mem_load(edev);
2294 if (rc)
2295 goto err1;
2296 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
2297 QEDE_RSS_CNT(edev), edev->num_tc);
2298
2299 rc = qede_set_real_num_queues(edev);
2300 if (rc)
2301 goto err2;
2302
2303 qede_napi_add_enable(edev);
2304 DP_INFO(edev, "Napi added and enabled\n");
2305
2306 rc = qede_setup_irqs(edev);
2307 if (rc)
2308 goto err3;
2309 DP_INFO(edev, "Setup IRQs succeeded\n");
2310
2311 rc = qede_start_queues(edev);
2312 if (rc)
2313 goto err4;
2314 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2315
2316 /* Add primary mac and set Rx filters */
2317 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
2318
0d8e0aa0
SK
2319 mutex_lock(&edev->qede_lock);
2320 edev->state = QEDE_STATE_OPEN;
2321 mutex_unlock(&edev->qede_lock);
a2ec6172
SK
2322
2323 /* Ask for link-up using current configuration */
2324 memset(&link_params, 0, sizeof(link_params));
2325 link_params.link_up = true;
2326 edev->ops->common->set_link(edev->cdev, &link_params);
2327
2328 /* Query whether link is already-up */
2329 memset(&link_output, 0, sizeof(link_output));
2330 edev->ops->common->get_link(edev->cdev, &link_output);
2331 qede_link_update(edev, &link_output);
2332
2950219d
YM
2333 DP_INFO(edev, "Ending successfully qede load\n");
2334
2335 return 0;
2336
2337err4:
2338 qede_sync_free_irqs(edev);
2339 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2340err3:
2341 qede_napi_disable_remove(edev);
2342err2:
2343 qede_free_mem_load(edev);
2344err1:
2345 edev->ops->common->set_fp_int(edev->cdev, 0);
2346 qede_free_fp_array(edev);
2347 edev->num_rss = 0;
2348err0:
2349 return rc;
2350}
2351
133fac0e
SK
2352void qede_reload(struct qede_dev *edev,
2353 void (*func)(struct qede_dev *, union qede_reload_args *),
2354 union qede_reload_args *args)
2355{
2356 qede_unload(edev, QEDE_UNLOAD_NORMAL);
2357 /* Call function handler to update parameters
2358 * needed for function load.
2359 */
2360 if (func)
2361 func(edev, args);
2362
2363 qede_load(edev, QEDE_LOAD_NORMAL);
2364
2365 mutex_lock(&edev->qede_lock);
2366 qede_config_rx_mode(edev->ndev);
2367 mutex_unlock(&edev->qede_lock);
2368}
2369
2950219d
YM
2370/* called with rtnl_lock */
2371static int qede_open(struct net_device *ndev)
2372{
2373 struct qede_dev *edev = netdev_priv(ndev);
2374
2375 netif_carrier_off(ndev);
2376
2377 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2378
2379 return qede_load(edev, QEDE_LOAD_NORMAL);
2380}
2381
2382static int qede_close(struct net_device *ndev)
2383{
2384 struct qede_dev *edev = netdev_priv(ndev);
2385
2386 qede_unload(edev, QEDE_UNLOAD_NORMAL);
2387
2388 return 0;
2389}
0d8e0aa0 2390
a2ec6172
SK
2391static void qede_link_update(void *dev, struct qed_link_output *link)
2392{
2393 struct qede_dev *edev = dev;
2394
2395 if (!netif_running(edev->ndev)) {
2396 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2397 return;
2398 }
2399
2400 if (link->link_up) {
2401 DP_NOTICE(edev, "Link is up\n");
2402 netif_tx_start_all_queues(edev->ndev);
2403 netif_carrier_on(edev->ndev);
2404 } else {
2405 DP_NOTICE(edev, "Link is down\n");
2406 netif_tx_disable(edev->ndev);
2407 netif_carrier_off(edev->ndev);
2408 }
2409}
2410
0d8e0aa0
SK
2411static int qede_set_mac_addr(struct net_device *ndev, void *p)
2412{
2413 struct qede_dev *edev = netdev_priv(ndev);
2414 struct sockaddr *addr = p;
2415 int rc;
2416
2417 ASSERT_RTNL(); /* @@@TBD To be removed */
2418
2419 DP_INFO(edev, "Set_mac_addr called\n");
2420
2421 if (!is_valid_ether_addr(addr->sa_data)) {
2422 DP_NOTICE(edev, "The MAC address is not valid\n");
2423 return -EFAULT;
2424 }
2425
2426 ether_addr_copy(ndev->dev_addr, addr->sa_data);
2427
2428 if (!netif_running(ndev)) {
2429 DP_NOTICE(edev, "The device is currently down\n");
2430 return 0;
2431 }
2432
2433 /* Remove the previous primary mac */
2434 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2435 edev->primary_mac);
2436 if (rc)
2437 return rc;
2438
2439 /* Add MAC filter according to the new unicast HW MAC address */
2440 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
2441 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2442 edev->primary_mac);
2443}
2444
2445static int
2446qede_configure_mcast_filtering(struct net_device *ndev,
2447 enum qed_filter_rx_mode_type *accept_flags)
2448{
2449 struct qede_dev *edev = netdev_priv(ndev);
2450 unsigned char *mc_macs, *temp;
2451 struct netdev_hw_addr *ha;
2452 int rc = 0, mc_count;
2453 size_t size;
2454
2455 size = 64 * ETH_ALEN;
2456
2457 mc_macs = kzalloc(size, GFP_KERNEL);
2458 if (!mc_macs) {
2459 DP_NOTICE(edev,
2460 "Failed to allocate memory for multicast MACs\n");
2461 rc = -ENOMEM;
2462 goto exit;
2463 }
2464
2465 temp = mc_macs;
2466
2467 /* Remove all previously configured MAC filters */
2468 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2469 mc_macs, 1);
2470 if (rc)
2471 goto exit;
2472
2473 netif_addr_lock_bh(ndev);
2474
2475 mc_count = netdev_mc_count(ndev);
2476 if (mc_count < 64) {
2477 netdev_for_each_mc_addr(ha, ndev) {
2478 ether_addr_copy(temp, ha->addr);
2479 temp += ETH_ALEN;
2480 }
2481 }
2482
2483 netif_addr_unlock_bh(ndev);
2484
2485 /* Check for all multicast @@@TBD resource allocation */
2486 if ((ndev->flags & IFF_ALLMULTI) ||
2487 (mc_count > 64)) {
2488 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
2489 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
2490 } else {
2491 /* Add all multicast MAC filters */
2492 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2493 mc_macs, mc_count);
2494 }
2495
2496exit:
2497 kfree(mc_macs);
2498 return rc;
2499}
2500
2501static void qede_set_rx_mode(struct net_device *ndev)
2502{
2503 struct qede_dev *edev = netdev_priv(ndev);
2504
2505 DP_INFO(edev, "qede_set_rx_mode called\n");
2506
2507 if (edev->state != QEDE_STATE_OPEN) {
2508 DP_INFO(edev,
2509 "qede_set_rx_mode called while interface is down\n");
2510 } else {
2511 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
2512 schedule_delayed_work(&edev->sp_task, 0);
2513 }
2514}
2515
2516/* Must be called with qede_lock held */
2517static void qede_config_rx_mode(struct net_device *ndev)
2518{
2519 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
2520 struct qede_dev *edev = netdev_priv(ndev);
2521 struct qed_filter_params rx_mode;
2522 unsigned char *uc_macs, *temp;
2523 struct netdev_hw_addr *ha;
2524 int rc, uc_count;
2525 size_t size;
2526
2527 netif_addr_lock_bh(ndev);
2528
2529 uc_count = netdev_uc_count(ndev);
2530 size = uc_count * ETH_ALEN;
2531
2532 uc_macs = kzalloc(size, GFP_ATOMIC);
2533 if (!uc_macs) {
2534 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
2535 netif_addr_unlock_bh(ndev);
2536 return;
2537 }
2538
2539 temp = uc_macs;
2540 netdev_for_each_uc_addr(ha, ndev) {
2541 ether_addr_copy(temp, ha->addr);
2542 temp += ETH_ALEN;
2543 }
2544
2545 netif_addr_unlock_bh(ndev);
2546
2547 /* Configure the struct for the Rx mode */
2548 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
2549 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
2550
2551 /* Remove all previous unicast secondary macs and multicast macs
2552 * (configrue / leave the primary mac)
2553 */
2554 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
2555 edev->primary_mac);
2556 if (rc)
2557 goto out;
2558
2559 /* Check for promiscuous */
2560 if ((ndev->flags & IFF_PROMISC) ||
2561 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
2562 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
2563 } else {
2564 /* Add MAC filters according to the unicast secondary macs */
2565 int i;
2566
2567 temp = uc_macs;
2568 for (i = 0; i < uc_count; i++) {
2569 rc = qede_set_ucast_rx_mac(edev,
2570 QED_FILTER_XCAST_TYPE_ADD,
2571 temp);
2572 if (rc)
2573 goto out;
2574
2575 temp += ETH_ALEN;
2576 }
2577
2578 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
2579 if (rc)
2580 goto out;
2581 }
2582
2583 rx_mode.filter.accept_flags = accept_flags;
2584 edev->ops->filter_config(edev->cdev, &rx_mode);
2585out:
2586 kfree(uc_macs);
2587}
This page took 0.158282 seconds and 5 git commands to generate.