regmap: irq: Add support to call client specific pre/post interrupt service
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
18c49b91 9#include <linux/bitops.h>
c4e84bde
RM
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
18c49b91 36#include <linux/if_vlan.h>
c4e84bde 37#include <linux/skbuff.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
70c71606 41#include <linux/prefetch.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
84cf7029
SR
66static int debug = -1; /* defaults above */
67module_param(debug, int, 0664);
c4e84bde
RM
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
a5a62a1c 73static int qlge_irq_type = MSIX_IRQ;
84cf7029 74module_param(qlge_irq_type, int, 0664);
a5a62a1c 75MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 76
8aae2600
RM
77static int qlge_mpi_coredump;
78module_param(qlge_mpi_coredump, int, 0);
79MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
d5c1da56
RM
81 "Default is OFF - Do Not allocate memory. ");
82
83static int qlge_force_coredump;
84module_param(qlge_force_coredump, int, 0);
85MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
8aae2600 88
9baa3c34 89static const struct pci_device_id qlge_pci_tbl[] = {
b0c2aadf 90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
92 /* required last entry */
93 {0,}
94};
95
96MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
a45adbe8
JK
98static int ql_wol(struct ql_adapter *);
99static void qlge_set_multicast_list(struct net_device *);
100static int ql_adapter_down(struct ql_adapter *);
101static int ql_adapter_up(struct ql_adapter *);
ac409215 102
c4e84bde
RM
103/* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108{
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
ae9540f7 137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143}
144
145int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146{
0857e9d7 147 unsigned int wait_count = 30;
c4e84bde
RM
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
0857e9d7
RM
151 udelay(100);
152 } while (--wait_count);
c4e84bde
RM
153 return -ETIMEDOUT;
154}
155
156void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157{
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160}
161
162/* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168{
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
ae9540f7
JP
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
c4e84bde
RM
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
ae9540f7
JP
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
188 return -ETIMEDOUT;
189}
190
191/* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195{
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209}
210
211
212/* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217{
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
231 return -ENOMEM;
232 }
233
4322c5be
RM
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
c4e84bde
RM
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
ae9540f7
JP
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
242 goto exit;
243 }
244
c4e84bde
RM
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256exit:
4322c5be 257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260}
261
262/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265{
266 u32 offset = 0;
267 int status;
268
c4e84bde
RM
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
939678f8 275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
939678f8 283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
939678f8 289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
939678f8 297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
939678f8 304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 312 MAC_ADDR_MR, 0);
c4e84bde
RM
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
ae9540f7
JP
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
c4e84bde
RM
324 status = -EPERM;
325 }
326exit:
c4e84bde
RM
327 return status;
328}
329
330/* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335{
336 u32 offset = 0;
337 int status = 0;
338
c4e84bde
RM
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
c4e84bde
RM
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
c4e84bde
RM
379 status =
380 ql_wait_reg_rdy(qdev,
939678f8 381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
939678f8 390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
939678f8 399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
76b26694
RM
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
f646968f 413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
76b26694
RM
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
c4e84bde
RM
427 status =
428 ql_wait_reg_rdy(qdev,
939678f8 429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
ae9540f7
JP
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
c4e84bde
RM
442 status = -EPERM;
443 }
444exit:
c4e84bde
RM
445 return status;
446}
447
7fab3bfe
RM
448/* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453{
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
801e9096 459 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
7fab3bfe 462 } else {
c7bf7169 463 eth_zero_addr(zero_mac_addr);
7fab3bfe 464 addr = &zero_mac_addr[0];
ae9540f7
JP
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
7fab3bfe
RM
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
ae9540f7
JP
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
7fab3bfe
RM
477 return status;
478}
479
6a473308
RM
480void ql_link_on(struct ql_adapter *qdev)
481{
ae9540f7 482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485}
486
487void ql_link_off(struct ql_adapter *qdev)
488{
ae9540f7 489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492}
493
c4e84bde
RM
494/* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498{
499 int status = 0;
500
939678f8 501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511exit:
c4e84bde
RM
512 return status;
513}
514
515/* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522{
8587ea35 523 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
524 u32 value = 0;
525
c4e84bde
RM
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
fbc2ac33
RM
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
c4e84bde
RM
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
e163d7f2 573 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
e163d7f2 580 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
ae9540f7
JP
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614exit:
c4e84bde
RM
615 return status;
616}
617
618static void ql_enable_interrupts(struct ql_adapter *qdev)
619{
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621}
622
623static void ql_disable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626}
627
628/* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 631 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
bb0d215c 634u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 635{
bb0d215c
RM
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
c4e84bde 644 ql_write32(qdev, INTR_EN,
bb0d215c
RM
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
c4e84bde 648 }
bb0d215c
RM
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
c4e84bde
RM
658}
659
660static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661{
662 u32 var = 0;
bb0d215c 663 struct intr_context *ctx;
c4e84bde 664
bb0d215c
RM
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
08b1bc8f 672 spin_lock(&qdev->hw_lock);
bb0d215c 673 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 674 ql_write32(qdev, INTR_EN,
bb0d215c 675 ctx->intr_dis_mask);
c4e84bde
RM
676 var = ql_read32(qdev, STS);
677 }
bb0d215c 678 atomic_inc(&ctx->irq_cnt);
08b1bc8f 679 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
680 return var;
681}
682
683static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684{
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
bb0d215c
RM
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697}
698
b0c2aadf
RM
699static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700{
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
ae9540f7 707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
ae9540f7
JP
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
717
718 return csum;
719}
720
26351479 721static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
722{
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
26351479
RM
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
741exit:
742 return status;
743}
744
cdca8d02
RM
745static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746{
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
542512e4 751 u8 mac_addr[6];
cdca8d02
RM
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
e4552f51 756 if (!qdev->port)
cdca8d02
RM
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
ae9540f7
JP
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
cdca8d02
RM
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
ae9540f7 778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
779 status = -EINVAL;
780 goto exit;
781 }
782
542512e4
RM
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
542512e4 802 mac_addr,
cdca8d02
RM
803 qdev->ndev->addr_len);
804
805exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808}
809
b0c2aadf 810static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
811{
812 int i;
813 int status;
26351479 814 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 815 u32 offset = 0;
b0c2aadf 816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
e4552f51 821 if (qdev->port)
b0c2aadf 822 offset = size;
c4e84bde
RM
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
b0c2aadf 827 for (i = 0; i < size; i++, p++) {
e78f5fa7 828 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 829 if (status) {
ae9540f7
JP
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
c4e84bde
RM
832 goto exit;
833 }
834
835 }
b0c2aadf
RM
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
ae9540f7 841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
c4e84bde
RM
855exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858}
859
860/* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865{
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877}
878
879/* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884{
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900exit:
901 return status;
902}
903
904/* This is used for reading the 64-bit statistics regs. */
905int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906{
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921exit:
922 return status;
923}
924
cdca8d02
RM
925static int ql_8000_port_initialize(struct ql_adapter *qdev)
926{
bcc2cb3b 927 int status;
cfec0cbc
RM
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
bcc2cb3b
RM
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940exit:
941 return status;
cdca8d02
RM
942}
943
c4e84bde
RM
944/* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
b0c2aadf 950static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
951{
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
ae9540f7
JP
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
ae9540f7
JP
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
c4e84bde
RM
965 }
966 return status;
967 }
968
ae9540f7 969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023}
1024
7c734359
RM
1025static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026{
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028}
1029
c4e84bde 1030/* Get the next large buffer. */
8668ae92 1031static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1032{
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039}
1040
7c734359
RM
1041static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043{
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1047 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061}
1062
c4e84bde 1063/* Get the next small buffer. */
8668ae92 1064static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1065{
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072}
1073
1074/* Update an rx ring index. */
1075static void ql_update_cq(struct rx_ring *rx_ring)
1076{
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083}
1084
1085static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086{
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088}
1089
7c734359
RM
1090static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092{
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
7c734359
RM
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
ef380794 1110 rx_ring->pg_chunk.page = NULL;
ae9540f7
JP
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
7c734359
RM
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137}
c4e84bde
RM
1138/* Process (refill) a large buffer queue. */
1139static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140{
49f2186d
RM
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
c4e84bde 1143 struct bq_desc *lbq_desc;
c4e84bde
RM
1144 u64 map;
1145 int i;
1146
7c734359 1147 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
c4e84bde 1152 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1154 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1155 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
ae9540f7
JP
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
ae9540f7
JP
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
c4e84bde
RM
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1203 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde 1207 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
c4e84bde
RM
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
52e55f3c 1214 SMALL_BUFFER_SIZE);
c4e84bde 1215 if (sbq_desc->p.skb == NULL) {
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
433c88e8 1436/* Categorizing receive firmware frame errors */
ae721f3a
SV
1437static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
433c88e8
JK
1439{
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
ae721f3a 1443 rx_ring->rx_errors++;
433c88e8
JK
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466}
1467
a45adbe8
JK
1468/**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475{
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489}
1490
63526713
RM
1491/* Process an inbound completion from an rx ring. */
1492static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497{
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1500 struct napi_struct *napi = &rx_ring->napi;
1501
ae721f3a
SV
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
63526713
RM
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
ae9540f7
JP
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
63526713
RM
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
63526713
RM
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1533 if (vlan_id != 0xffff)
86a9bad3 1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91 1535 napi_gro_frags(napi);
63526713
RM
1536}
1537
4f848c0a
RM
1538/* Process an inbound completion from an rx ring. */
1539static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544{
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
a45adbe8 1550 size_t hlen = ETH_HLEN;
4f848c0a
RM
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
4f848c0a
RM
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
ae721f3a
SV
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
a45adbe8
JK
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
4f848c0a
RM
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
a45adbe8 1574 if (skb->len > ndev->mtu + hlen) {
ae9540f7
JP
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
4f848c0a
RM
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
a45adbe8 1580 memcpy(skb_put(skb, hlen), addr, hlen);
ae9540f7
JP
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
4f848c0a 1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
a45adbe8
JK
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
4f848c0a
RM
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1594 skb_checksum_none_assert(skb);
4f848c0a 1595
88230fd5 1596 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
4f848c0a
RM
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
e02ef331 1606 struct iphdr *iph =
a45adbe8 1607 (struct iphdr *)((u8 *)addr + hlen);
4f848c0a 1608 if (!(iph->frag_off &
0d653ed8 1609 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
e02ef331 1613 "UDP checksum done!\n");
4f848c0a
RM
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1619 if (vlan_id != 0xffff)
86a9bad3 1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
4f848c0a
RM
1625 return;
1626err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629}
1630
1631/* Process an inbound completion from an rx ring. */
1632static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637{
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
4f848c0a
RM
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
2c9a266a
MC
1651
1652 pci_dma_sync_single_for_cpu(qdev->pdev,
1653 dma_unmap_addr(sbq_desc, mapaddr),
1654 dma_unmap_len(sbq_desc, maplen),
1655 PCI_DMA_FROMDEVICE);
1656
4f848c0a 1657 memcpy(skb_put(new_skb, length), skb->data, length);
2c9a266a
MC
1658
1659 pci_dma_sync_single_for_device(qdev->pdev,
1660 dma_unmap_addr(sbq_desc, mapaddr),
1661 dma_unmap_len(sbq_desc, maplen),
1662 PCI_DMA_FROMDEVICE);
4f848c0a
RM
1663 skb = new_skb;
1664
ae721f3a
SV
1665 /* Frame error, so drop the packet. */
1666 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668 dev_kfree_skb_any(skb);
1669 return;
1670 }
1671
4f848c0a
RM
1672 /* loopback self test for ethtool */
1673 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674 ql_check_lb_frame(qdev, skb);
1675 dev_kfree_skb_any(skb);
1676 return;
1677 }
1678
1679 /* The max framesize filter on this chip is set higher than
1680 * MTU since FCoE uses 2k frames.
1681 */
1682 if (skb->len > ndev->mtu + ETH_HLEN) {
1683 dev_kfree_skb_any(skb);
1684 rx_ring->rx_dropped++;
1685 return;
1686 }
1687
1688 prefetch(skb->data);
4f848c0a 1689 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1690 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 "%s Multicast.\n",
1692 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1698 }
1699 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1700 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701 "Promiscuous Packet.\n");
4f848c0a
RM
1702
1703 rx_ring->rx_packets++;
1704 rx_ring->rx_bytes += skb->len;
1705 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1706 skb_checksum_none_assert(skb);
4f848c0a
RM
1707
1708 /* If rx checksum is on, and there are no
1709 * csum or frame errors.
1710 */
88230fd5 1711 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1712 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713 /* TCP frame. */
1714 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1715 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716 "TCP checksum done!\n");
4f848c0a
RM
1717 skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720 /* Unfragmented ipv4 UDP frame. */
1721 struct iphdr *iph = (struct iphdr *) skb->data;
1722 if (!(iph->frag_off &
0d653ed8 1723 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1724 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1725 netif_printk(qdev, rx_status, KERN_DEBUG,
1726 qdev->ndev,
e02ef331 1727 "UDP checksum done!\n");
4f848c0a
RM
1728 }
1729 }
1730 }
1731
1732 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1733 if (vlan_id != 0xffff)
86a9bad3 1734 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1735 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736 napi_gro_receive(&rx_ring->napi, skb);
1737 else
1738 netif_receive_skb(skb);
4f848c0a
RM
1739}
1740
8668ae92 1741static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1742{
1743 void *temp_addr = skb->data;
1744
1745 /* Undo the skb_reserve(skb,32) we did before
1746 * giving to hardware, and realign data on
1747 * a 2-byte boundary.
1748 */
1749 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751 skb_copy_to_linear_data(skb, temp_addr,
1752 (unsigned int)len);
1753}
1754
1755/*
1756 * This function builds an skb for the given inbound
1757 * completion. It will be rewritten for readability in the near
1758 * future, but for not it works well.
1759 */
1760static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761 struct rx_ring *rx_ring,
1762 struct ib_mac_iocb_rsp *ib_mac_rsp)
1763{
1764 struct bq_desc *lbq_desc;
1765 struct bq_desc *sbq_desc;
1766 struct sk_buff *skb = NULL;
1767 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
1768 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769 size_t hlen = ETH_HLEN;
c4e84bde
RM
1770
1771 /*
1772 * Handle the header buffer if present.
1773 */
1774 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1776 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1778 /*
1779 * Headers fit nicely into a small buffer.
1780 */
1781 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1783 dma_unmap_addr(sbq_desc, mapaddr),
1784 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1785 PCI_DMA_FROMDEVICE);
1786 skb = sbq_desc->p.skb;
1787 ql_realign_skb(skb, hdr_len);
1788 skb_put(skb, hdr_len);
1789 sbq_desc->p.skb = NULL;
1790 }
1791
1792 /*
1793 * Handle the data buffer(s).
1794 */
1795 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1796 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 "No Data buffer in this packet.\n");
c4e84bde
RM
1798 return skb;
1799 }
1800
1801 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1803 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804 "Headers in small, data of %d bytes in small, combine them.\n",
1805 length);
c4e84bde
RM
1806 /*
1807 * Data is less than small buffer size so it's
1808 * stuffed in a small buffer.
1809 * For this case we append the data
1810 * from the "data" small buffer to the "header" small
1811 * buffer.
1812 */
1813 sbq_desc = ql_get_curr_sbuf(rx_ring);
1814 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1815 dma_unmap_addr
c4e84bde 1816 (sbq_desc, mapaddr),
64b9b41d 1817 dma_unmap_len
c4e84bde
RM
1818 (sbq_desc, maplen),
1819 PCI_DMA_FROMDEVICE);
1820 memcpy(skb_put(skb, length),
1821 sbq_desc->p.skb->data, length);
1822 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1823 dma_unmap_addr
c4e84bde
RM
1824 (sbq_desc,
1825 mapaddr),
64b9b41d 1826 dma_unmap_len
c4e84bde
RM
1827 (sbq_desc,
1828 maplen),
1829 PCI_DMA_FROMDEVICE);
1830 } else {
ae9540f7
JP
1831 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832 "%d bytes in a single small buffer.\n",
1833 length);
c4e84bde
RM
1834 sbq_desc = ql_get_curr_sbuf(rx_ring);
1835 skb = sbq_desc->p.skb;
1836 ql_realign_skb(skb, length);
1837 skb_put(skb, length);
1838 pci_unmap_single(qdev->pdev,
64b9b41d 1839 dma_unmap_addr(sbq_desc,
c4e84bde 1840 mapaddr),
64b9b41d 1841 dma_unmap_len(sbq_desc,
c4e84bde
RM
1842 maplen),
1843 PCI_DMA_FROMDEVICE);
1844 sbq_desc->p.skb = NULL;
1845 }
1846 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1848 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849 "Header in small, %d bytes in large. Chain large to small!\n",
1850 length);
c4e84bde
RM
1851 /*
1852 * The data is in a single large buffer. We
1853 * chain it to the header buffer's skb and let
1854 * it rip.
1855 */
7c734359 1856 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1857 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858 "Chaining page at offset = %d, for %d bytes to skb.\n",
1859 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1860 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861 lbq_desc->p.pg_chunk.offset,
1862 length);
c4e84bde
RM
1863 skb->len += length;
1864 skb->data_len += length;
1865 skb->truesize += length;
c4e84bde
RM
1866 } else {
1867 /*
1868 * The headers and data are in a single large buffer. We
1869 * copy it to a new skb and let it go. This can happen with
1870 * jumbo mtu on a non-TCP/UDP frame.
1871 */
7c734359 1872 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1873 skb = netdev_alloc_skb(qdev->ndev, length);
1874 if (skb == NULL) {
ae9540f7
JP
1875 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876 "No skb available, drop the packet.\n");
c4e84bde
RM
1877 return NULL;
1878 }
4055c7d4 1879 pci_unmap_page(qdev->pdev,
64b9b41d 1880 dma_unmap_addr(lbq_desc,
4055c7d4 1881 mapaddr),
64b9b41d 1882 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1883 PCI_DMA_FROMDEVICE);
c4e84bde 1884 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1885 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887 length);
7c734359
RM
1888 skb_fill_page_desc(skb, 0,
1889 lbq_desc->p.pg_chunk.page,
1890 lbq_desc->p.pg_chunk.offset,
1891 length);
c4e84bde
RM
1892 skb->len += length;
1893 skb->data_len += length;
1894 skb->truesize += length;
1895 length -= length;
a45adbe8
JK
1896 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1897 lbq_desc->p.pg_chunk.va,
1898 &hlen);
1899 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1900 }
1901 } else {
1902 /*
1903 * The data is in a chain of large buffers
1904 * pointed to by a small buffer. We loop
1905 * thru and chain them to the our small header
1906 * buffer's skb.
1907 * frags: There are 18 max frags and our small
1908 * buffer will hold 32 of them. The thing is,
1909 * we'll use 3 max for our 9000 byte jumbo
1910 * frames. If the MTU goes up we could
1911 * eventually be in trouble.
1912 */
7c734359 1913 int size, i = 0;
c4e84bde
RM
1914 sbq_desc = ql_get_curr_sbuf(rx_ring);
1915 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1916 dma_unmap_addr(sbq_desc, mapaddr),
1917 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1918 PCI_DMA_FROMDEVICE);
1919 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1920 /*
1921 * This is an non TCP/UDP IP frame, so
1922 * the headers aren't split into a small
1923 * buffer. We have to use the small buffer
1924 * that contains our sg list as our skb to
1925 * send upstairs. Copy the sg list here to
1926 * a local buffer and use it to find the
1927 * pages to chain.
1928 */
ae9540f7
JP
1929 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1930 "%d bytes of headers & data in chain of large.\n",
1931 length);
c4e84bde 1932 skb = sbq_desc->p.skb;
c4e84bde
RM
1933 sbq_desc->p.skb = NULL;
1934 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde 1935 }
afe6e00c 1936 do {
7c734359
RM
1937 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1938 size = (length < rx_ring->lbq_buf_size) ? length :
1939 rx_ring->lbq_buf_size;
c4e84bde 1940
ae9540f7
JP
1941 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1942 "Adding page %d to skb for %d bytes.\n",
1943 i, size);
7c734359
RM
1944 skb_fill_page_desc(skb, i,
1945 lbq_desc->p.pg_chunk.page,
1946 lbq_desc->p.pg_chunk.offset,
1947 size);
c4e84bde
RM
1948 skb->len += size;
1949 skb->data_len += size;
1950 skb->truesize += size;
1951 length -= size;
c4e84bde 1952 i++;
afe6e00c 1953 } while (length > 0);
a45adbe8
JK
1954 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1955 &hlen);
1956 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1957 }
1958 return skb;
1959}
1960
1961/* Process an inbound completion from an rx ring. */
4f848c0a 1962static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1963 struct rx_ring *rx_ring,
4f848c0a
RM
1964 struct ib_mac_iocb_rsp *ib_mac_rsp,
1965 u16 vlan_id)
c4e84bde
RM
1966{
1967 struct net_device *ndev = qdev->ndev;
1968 struct sk_buff *skb = NULL;
1969
1970 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1971
1972 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1973 if (unlikely(!skb)) {
ae9540f7
JP
1974 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975 "No skb available, drop packet.\n");
885ee398 1976 rx_ring->rx_dropped++;
c4e84bde
RM
1977 return;
1978 }
1979
ae721f3a
SV
1980 /* Frame error, so drop the packet. */
1981 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1982 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1983 dev_kfree_skb_any(skb);
1984 return;
1985 }
1986
ec33a491
RM
1987 /* The max framesize filter on this chip is set higher than
1988 * MTU since FCoE uses 2k frames.
1989 */
1990 if (skb->len > ndev->mtu + ETH_HLEN) {
1991 dev_kfree_skb_any(skb);
885ee398 1992 rx_ring->rx_dropped++;
ec33a491
RM
1993 return;
1994 }
1995
9dfbbaa6
RM
1996 /* loopback self test for ethtool */
1997 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1998 ql_check_lb_frame(qdev, skb);
1999 dev_kfree_skb_any(skb);
2000 return;
2001 }
2002
c4e84bde 2003 prefetch(skb->data);
c4e84bde 2004 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
2005 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2008 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2010 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2011 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 2012 rx_ring->rx_multicast++;
c4e84bde
RM
2013 }
2014 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
2015 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2016 "Promiscuous Packet.\n");
c4e84bde 2017 }
d555f592 2018
d555f592 2019 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 2020 skb_checksum_none_assert(skb);
d555f592
RM
2021
2022 /* If rx checksum is on, and there are no
2023 * csum or frame errors.
2024 */
88230fd5 2025 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
2026 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2027 /* TCP frame. */
2028 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
2029 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030 "TCP checksum done!\n");
d555f592
RM
2031 skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2033 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2034 /* Unfragmented ipv4 UDP frame. */
2035 struct iphdr *iph = (struct iphdr *) skb->data;
2036 if (!(iph->frag_off &
0d653ed8 2037 htons(IP_MF|IP_OFFSET))) {
d555f592 2038 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
2039 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2040 "TCP checksum done!\n");
d555f592
RM
2041 }
2042 }
c4e84bde 2043 }
d555f592 2044
885ee398
RM
2045 rx_ring->rx_packets++;
2046 rx_ring->rx_bytes += skb->len;
b2014ff8 2047 skb_record_rx_queue(skb, rx_ring->cq_id);
a45adbe8 2048 if (vlan_id != 0xffff)
86a9bad3 2049 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
2050 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2051 napi_gro_receive(&rx_ring->napi, skb);
2052 else
2053 netif_receive_skb(skb);
c4e84bde
RM
2054}
2055
4f848c0a
RM
2056/* Process an inbound completion from an rx ring. */
2057static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2058 struct rx_ring *rx_ring,
2059 struct ib_mac_iocb_rsp *ib_mac_rsp)
2060{
2061 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
2062 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2063 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
4f848c0a
RM
2064 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2065 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2066
2067 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2068
2069 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2070 /* The data and headers are split into
2071 * separate buffers.
2072 */
2073 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2074 vlan_id);
2075 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2076 /* The data fit in a single small buffer.
2077 * Allocate a new skb, copy the data and
2078 * return the buffer to the free pool.
2079 */
2080 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2081 length, vlan_id);
63526713
RM
2082 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2083 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2084 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2085 /* TCP packet in a page chunk that's been checksummed.
2086 * Tack it on to our GRO skb and let it go.
2087 */
2088 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2089 length, vlan_id);
4f848c0a
RM
2090 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2091 /* Non-TCP packet in a page chunk. Allocate an
2092 * skb, tack it on frags, and send it up.
2093 */
2094 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2095 length, vlan_id);
2096 } else {
c0c56955
RM
2097 /* Non-TCP/UDP large frames that span multiple buffers
2098 * can be processed corrrectly by the split frame logic.
2099 */
2100 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2101 vlan_id);
4f848c0a
RM
2102 }
2103
2104 return (unsigned long)length;
2105}
2106
c4e84bde
RM
2107/* Process an outbound completion from an rx ring. */
2108static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2109 struct ob_mac_iocb_rsp *mac_rsp)
2110{
2111 struct tx_ring *tx_ring;
2112 struct tx_ring_desc *tx_ring_desc;
2113
2114 QL_DUMP_OB_MAC_RSP(mac_rsp);
2115 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2116 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2117 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2118 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2119 tx_ring->tx_packets++;
c4e84bde
RM
2120 dev_kfree_skb(tx_ring_desc->skb);
2121 tx_ring_desc->skb = NULL;
2122
2123 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2124 OB_MAC_IOCB_RSP_S |
2125 OB_MAC_IOCB_RSP_L |
2126 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2130 }
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2134 }
2135 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2136 netif_warn(qdev, tx_done, qdev->ndev,
2137 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2138 }
2139 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2140 netif_warn(qdev, tx_done, qdev->ndev,
2141 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2142 }
2143 }
2144 atomic_inc(&tx_ring->tx_count);
2145}
2146
2147/* Fire up a handler to reset the MPI processor. */
2148void ql_queue_fw_error(struct ql_adapter *qdev)
2149{
6a473308 2150 ql_link_off(qdev);
c4e84bde
RM
2151 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2152}
2153
2154void ql_queue_asic_error(struct ql_adapter *qdev)
2155{
6a473308 2156 ql_link_off(qdev);
c4e84bde 2157 ql_disable_interrupts(qdev);
6497b607
RM
2158 /* Clear adapter up bit to signal the recovery
2159 * process that it shouldn't kill the reset worker
2160 * thread
2161 */
2162 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2163 /* Set asic recovery bit to indicate reset process that we are
2164 * in fatal error recovery process rather than normal close
2165 */
2166 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2167 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2168}
2169
2170static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2171 struct ib_ae_iocb_rsp *ib_ae_rsp)
2172{
2173 switch (ib_ae_rsp->event) {
2174 case MGMT_ERR_EVENT:
ae9540f7
JP
2175 netif_err(qdev, rx_err, qdev->ndev,
2176 "Management Processor Fatal Error.\n");
c4e84bde
RM
2177 ql_queue_fw_error(qdev);
2178 return;
2179
2180 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2181 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2182 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2183 ql_queue_asic_error(qdev);
2184 return;
2185
2186 case SOFT_ECC_ERROR_EVENT:
5069ee55 2187 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2188 ql_queue_asic_error(qdev);
2189 break;
2190
2191 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2192 netdev_err(qdev->ndev, "PCI error occurred when reading "
2193 "anonymous buffers from rx_ring %d.\n",
2194 ib_ae_rsp->q_id);
c4e84bde
RM
2195 ql_queue_asic_error(qdev);
2196 break;
2197
2198 default:
ae9540f7
JP
2199 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2200 ib_ae_rsp->event);
c4e84bde
RM
2201 ql_queue_asic_error(qdev);
2202 break;
2203 }
2204}
2205
2206static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2207{
2208 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2209 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2210 struct ob_mac_iocb_rsp *net_rsp = NULL;
2211 int count = 0;
2212
1e213303 2213 struct tx_ring *tx_ring;
c4e84bde
RM
2214 /* While there are entries in the completion queue. */
2215 while (prod != rx_ring->cnsmr_idx) {
2216
ae9540f7
JP
2217 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2219 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2220
2221 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2222 rmb();
2223 switch (net_rsp->opcode) {
2224
2225 case OPCODE_OB_MAC_TSO_IOCB:
2226 case OPCODE_OB_MAC_IOCB:
2227 ql_process_mac_tx_intr(qdev, net_rsp);
2228 break;
2229 default:
ae9540f7
JP
2230 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2232 net_rsp->opcode);
c4e84bde
RM
2233 }
2234 count++;
2235 ql_update_cq(rx_ring);
ba7cd3ba 2236 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2237 }
4da79504
DC
2238 if (!net_rsp)
2239 return 0;
c4e84bde 2240 ql_write_cq_idx(rx_ring);
1e213303 2241 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2242 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2243 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2244 /*
2245 * The queue got stopped because the tx_ring was full.
2246 * Wake it up, because it's now at least 25% empty.
2247 */
1e213303 2248 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2249 }
2250
2251 return count;
2252}
2253
2254static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2255{
2256 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2257 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2258 struct ql_net_rsp_iocb *net_rsp;
2259 int count = 0;
2260
2261 /* While there are entries in the completion queue. */
2262 while (prod != rx_ring->cnsmr_idx) {
2263
ae9540f7
JP
2264 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2265 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2266 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2267
2268 net_rsp = rx_ring->curr_entry;
2269 rmb();
2270 switch (net_rsp->opcode) {
2271 case OPCODE_IB_MAC_IOCB:
2272 ql_process_mac_rx_intr(qdev, rx_ring,
2273 (struct ib_mac_iocb_rsp *)
2274 net_rsp);
2275 break;
2276
2277 case OPCODE_IB_AE_IOCB:
2278 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2279 net_rsp);
2280 break;
2281 default:
ae9540f7
JP
2282 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2283 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2284 net_rsp->opcode);
2285 break;
c4e84bde
RM
2286 }
2287 count++;
2288 ql_update_cq(rx_ring);
ba7cd3ba 2289 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2290 if (count == budget)
2291 break;
2292 }
2293 ql_update_buffer_queues(qdev, rx_ring);
2294 ql_write_cq_idx(rx_ring);
2295 return count;
2296}
2297
2298static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2299{
2300 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2301 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2302 struct rx_ring *trx_ring;
2303 int i, work_done = 0;
2304 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2305
ae9540f7
JP
2306 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2307 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2308
39aa8165
RM
2309 /* Service the TX rings first. They start
2310 * right after the RSS rings. */
2311 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2312 trx_ring = &qdev->rx_ring[i];
2313 /* If this TX completion ring belongs to this vector and
2314 * it's not empty then service it.
2315 */
2316 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2317 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2318 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2319 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320 "%s: Servicing TX completion ring %d.\n",
2321 __func__, trx_ring->cq_id);
39aa8165
RM
2322 ql_clean_outbound_rx_ring(trx_ring);
2323 }
2324 }
2325
2326 /*
2327 * Now service the RSS ring if it's active.
2328 */
2329 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2330 rx_ring->cnsmr_idx) {
ae9540f7
JP
2331 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2332 "%s: Servicing RX completion ring %d.\n",
2333 __func__, rx_ring->cq_id);
39aa8165
RM
2334 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2335 }
2336
c4e84bde 2337 if (work_done < budget) {
22bdd4f5 2338 napi_complete(napi);
c4e84bde
RM
2339 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2340 }
2341 return work_done;
2342}
2343
c8f44aff 2344static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2345{
2346 struct ql_adapter *qdev = netdev_priv(ndev);
2347
f646968f 2348 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
c4e84bde 2349 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2350 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2351 } else {
c4e84bde
RM
2352 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 }
2354}
2355
a45adbe8
JK
2356/**
2357 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2358 * based on the features to enable/disable hardware vlan accel
2359 */
2360static int qlge_update_hw_vlan_features(struct net_device *ndev,
2361 netdev_features_t features)
2362{
2363 struct ql_adapter *qdev = netdev_priv(ndev);
2364 int status = 0;
61132bf7 2365 bool need_restart = netif_running(ndev);
a45adbe8 2366
61132bf7
ML
2367 if (need_restart) {
2368 status = ql_adapter_down(qdev);
2369 if (status) {
2370 netif_err(qdev, link, qdev->ndev,
2371 "Failed to bring down the adapter\n");
2372 return status;
2373 }
a45adbe8
JK
2374 }
2375
2376 /* update the features with resent change */
2377 ndev->features = features;
2378
61132bf7
ML
2379 if (need_restart) {
2380 status = ql_adapter_up(qdev);
2381 if (status) {
2382 netif_err(qdev, link, qdev->ndev,
2383 "Failed to bring up the adapter\n");
2384 return status;
2385 }
a45adbe8 2386 }
61132bf7 2387
a45adbe8
JK
2388 return status;
2389}
2390
c8f44aff
MM
2391static netdev_features_t qlge_fix_features(struct net_device *ndev,
2392 netdev_features_t features)
18c49b91 2393{
a45adbe8 2394 int err;
18c49b91 2395
a45adbe8
JK
2396 /* Update the behavior of vlan accel in the adapter */
2397 err = qlge_update_hw_vlan_features(ndev, features);
2398 if (err)
2399 return err;
2400
18c49b91
JP
2401 return features;
2402}
2403
c8f44aff
MM
2404static int qlge_set_features(struct net_device *ndev,
2405 netdev_features_t features)
18c49b91 2406{
c8f44aff 2407 netdev_features_t changed = ndev->features ^ features;
18c49b91 2408
f646968f 2409 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
18c49b91
JP
2410 qlge_vlan_mode(ndev, features);
2411
2412 return 0;
2413}
2414
8e586137 2415static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2416{
c4e84bde 2417 u32 enable_bit = MAC_ADDR_E;
8e586137 2418 int err;
c4e84bde 2419
8e586137
JP
2420 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2421 MAC_ADDR_TYPE_VLAN, vid);
2422 if (err)
ae9540f7
JP
2423 netif_err(qdev, ifup, qdev->ndev,
2424 "Failed to init vlan address.\n");
8e586137 2425 return err;
c4e84bde
RM
2426}
2427
80d5c368 2428static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
c4e84bde
RM
2429{
2430 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2431 int status;
8e586137 2432 int err;
cc288f54
RM
2433
2434 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2435 if (status)
8e586137 2436 return status;
c4e84bde 2437
8e586137 2438 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2439 set_bit(vid, qdev->active_vlans);
2440
2441 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2442
2443 return err;
18c49b91
JP
2444}
2445
8e586137 2446static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2447{
2448 u32 enable_bit = 0;
8e586137 2449 int err;
18c49b91 2450
8e586137
JP
2451 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2452 MAC_ADDR_TYPE_VLAN, vid);
2453 if (err)
ae9540f7
JP
2454 netif_err(qdev, ifup, qdev->ndev,
2455 "Failed to clear vlan address.\n");
8e586137 2456 return err;
18c49b91
JP
2457}
2458
80d5c368 2459static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
18c49b91
JP
2460{
2461 struct ql_adapter *qdev = netdev_priv(ndev);
2462 int status;
8e586137 2463 int err;
c4e84bde 2464
18c49b91
JP
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
8e586137 2467 return status;
18c49b91 2468
8e586137 2469 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2470 clear_bit(vid, qdev->active_vlans);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2473
2474 return err;
c4e84bde
RM
2475}
2476
c1b60092
RM
2477static void qlge_restore_vlan(struct ql_adapter *qdev)
2478{
18c49b91
JP
2479 int status;
2480 u16 vid;
2481
2482 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2483 if (status)
2484 return;
2485
2486 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2487 __qlge_vlan_rx_add_vid(qdev, vid);
2488
2489 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2490}
2491
c4e84bde
RM
2492/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2493static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2494{
2495 struct rx_ring *rx_ring = dev_id;
288379f0 2496 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2497 return IRQ_HANDLED;
2498}
2499
c4e84bde
RM
2500/* This handles a fatal error, MPI activity, and the default
2501 * rx_ring in an MSI-X multiple vector environment.
2502 * In MSI/Legacy environment it also process the rest of
2503 * the rx_rings.
2504 */
2505static irqreturn_t qlge_isr(int irq, void *dev_id)
2506{
2507 struct rx_ring *rx_ring = dev_id;
2508 struct ql_adapter *qdev = rx_ring->qdev;
2509 struct intr_context *intr_context = &qdev->intr_context[0];
2510 u32 var;
c4e84bde
RM
2511 int work_done = 0;
2512
bb0d215c
RM
2513 spin_lock(&qdev->hw_lock);
2514 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2515 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2516 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2517 spin_unlock(&qdev->hw_lock);
2518 return IRQ_NONE;
c4e84bde 2519 }
bb0d215c 2520 spin_unlock(&qdev->hw_lock);
c4e84bde 2521
bb0d215c 2522 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2523
2524 /*
2525 * Check for fatal error.
2526 */
2527 if (var & STS_FE) {
2528 ql_queue_asic_error(qdev);
5069ee55 2529 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2530 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2531 netdev_err(qdev->ndev, "Resetting chip. "
2532 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2533 return IRQ_HANDLED;
2534 }
2535
2536 /*
2537 * Check MPI processor activity.
2538 */
5ee22a5a
RM
2539 if ((var & STS_PI) &&
2540 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2541 /*
2542 * We've got an async event or mailbox completion.
2543 * Handle it and clear the source of the interrupt.
2544 */
ae9540f7
JP
2545 netif_err(qdev, intr, qdev->ndev,
2546 "Got MPI processor interrupt.\n");
c4e84bde 2547 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2548 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2549 queue_delayed_work_on(smp_processor_id(),
2550 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2551 work_done++;
2552 }
2553
2554 /*
39aa8165
RM
2555 * Get the bit-mask that shows the active queues for this
2556 * pass. Compare it to the queues that this irq services
2557 * and call napi if there's a match.
c4e84bde 2558 */
39aa8165
RM
2559 var = ql_read32(qdev, ISR1);
2560 if (var & intr_context->irq_mask) {
ae9540f7
JP
2561 netif_info(qdev, intr, qdev->ndev,
2562 "Waking handler for rx_ring[0].\n");
39aa8165 2563 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2564 napi_schedule(&rx_ring->napi);
2565 work_done++;
2566 }
bb0d215c 2567 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2568 return work_done ? IRQ_HANDLED : IRQ_NONE;
2569}
2570
2571static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2572{
2573
2574 if (skb_is_gso(skb)) {
2575 int err;
1ee1cfe7 2576 __be16 l3_proto = vlan_get_protocol(skb);
bb9689e6 2577
2578 err = skb_cow_head(skb, 0);
2579 if (err < 0)
2580 return err;
c4e84bde
RM
2581
2582 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2583 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2584 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2585 mac_iocb_ptr->total_hdrs_len =
2586 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2587 mac_iocb_ptr->net_trans_offset =
2588 cpu_to_le16(skb_network_offset(skb) |
2589 skb_transport_offset(skb)
2590 << OB_MAC_TRANSPORT_HDR_SHIFT);
2591 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2592 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1ee1cfe7 2593 if (likely(l3_proto == htons(ETH_P_IP))) {
c4e84bde
RM
2594 struct iphdr *iph = ip_hdr(skb);
2595 iph->check = 0;
2596 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2597 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2598 iph->daddr, 0,
2599 IPPROTO_TCP,
2600 0);
1ee1cfe7 2601 } else if (l3_proto == htons(ETH_P_IPV6)) {
c4e84bde
RM
2602 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2603 tcp_hdr(skb)->check =
2604 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2605 &ipv6_hdr(skb)->daddr,
2606 0, IPPROTO_TCP, 0);
2607 }
2608 return 1;
2609 }
2610 return 0;
2611}
2612
2613static void ql_hw_csum_setup(struct sk_buff *skb,
2614 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2615{
2616 int len;
2617 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2618 __sum16 *check;
c4e84bde
RM
2619 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2620 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2621 mac_iocb_ptr->net_trans_offset =
2622 cpu_to_le16(skb_network_offset(skb) |
2623 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2624
2625 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2626 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2627 if (likely(iph->protocol == IPPROTO_TCP)) {
2628 check = &(tcp_hdr(skb)->check);
2629 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2630 mac_iocb_ptr->total_hdrs_len =
2631 cpu_to_le16(skb_transport_offset(skb) +
2632 (tcp_hdr(skb)->doff << 2));
2633 } else {
2634 check = &(udp_hdr(skb)->check);
2635 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2636 mac_iocb_ptr->total_hdrs_len =
2637 cpu_to_le16(skb_transport_offset(skb) +
2638 sizeof(struct udphdr));
2639 }
2640 *check = ~csum_tcpudp_magic(iph->saddr,
2641 iph->daddr, len, iph->protocol, 0);
2642}
2643
61357325 2644static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2645{
2646 struct tx_ring_desc *tx_ring_desc;
2647 struct ob_mac_iocb_req *mac_iocb_ptr;
2648 struct ql_adapter *qdev = netdev_priv(ndev);
2649 int tso;
2650 struct tx_ring *tx_ring;
1e213303 2651 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2652
2653 tx_ring = &qdev->tx_ring[tx_ring_idx];
2654
74c50b4b
RM
2655 if (skb_padto(skb, ETH_ZLEN))
2656 return NETDEV_TX_OK;
2657
c4e84bde 2658 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2659 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2660 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2661 __func__, tx_ring_idx);
1e213303 2662 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2663 tx_ring->tx_errors++;
c4e84bde
RM
2664 return NETDEV_TX_BUSY;
2665 }
2666 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2667 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2668 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2669
2670 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2671 mac_iocb_ptr->tid = tx_ring_desc->index;
2672 /* We use the upper 32-bits to store the tx queue for this IO.
2673 * When we get the completion we can use it to establish the context.
2674 */
2675 mac_iocb_ptr->txq_idx = tx_ring_idx;
2676 tx_ring_desc->skb = skb;
2677
2678 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2679
df8a39de 2680 if (skb_vlan_tag_present(skb)) {
ae9540f7 2681 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
df8a39de 2682 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
c4e84bde 2683 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
df8a39de 2684 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
c4e84bde
RM
2685 }
2686 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2687 if (tso < 0) {
2688 dev_kfree_skb_any(skb);
2689 return NETDEV_TX_OK;
2690 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2691 ql_hw_csum_setup(skb,
2692 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2693 }
0d979f74
RM
2694 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2695 NETDEV_TX_OK) {
ae9540f7
JP
2696 netif_err(qdev, tx_queued, qdev->ndev,
2697 "Could not map the segments.\n");
885ee398 2698 tx_ring->tx_errors++;
0d979f74
RM
2699 return NETDEV_TX_BUSY;
2700 }
c4e84bde
RM
2701 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2702 tx_ring->prod_idx++;
2703 if (tx_ring->prod_idx == tx_ring->wq_len)
2704 tx_ring->prod_idx = 0;
2705 wmb();
2706
2707 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2708 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2709 "tx queued, slot %d, len %d\n",
2710 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2711
2712 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2713
2714 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2715 netif_stop_subqueue(ndev, tx_ring->wq_id);
2716 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2717 /*
2718 * The queue got stopped because the tx_ring was full.
2719 * Wake it up, because it's now at least 25% empty.
2720 */
2721 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2722 }
c4e84bde
RM
2723 return NETDEV_TX_OK;
2724}
2725
9dfbbaa6 2726
c4e84bde
RM
2727static void ql_free_shadow_space(struct ql_adapter *qdev)
2728{
2729 if (qdev->rx_ring_shadow_reg_area) {
2730 pci_free_consistent(qdev->pdev,
2731 PAGE_SIZE,
2732 qdev->rx_ring_shadow_reg_area,
2733 qdev->rx_ring_shadow_reg_dma);
2734 qdev->rx_ring_shadow_reg_area = NULL;
2735 }
2736 if (qdev->tx_ring_shadow_reg_area) {
2737 pci_free_consistent(qdev->pdev,
2738 PAGE_SIZE,
2739 qdev->tx_ring_shadow_reg_area,
2740 qdev->tx_ring_shadow_reg_dma);
2741 qdev->tx_ring_shadow_reg_area = NULL;
2742 }
2743}
2744
2745static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2746{
2747 qdev->rx_ring_shadow_reg_area =
440c734f
JP
2748 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749 &qdev->rx_ring_shadow_reg_dma);
c4e84bde 2750 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2751 netif_err(qdev, ifup, qdev->ndev,
2752 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2753 return -ENOMEM;
2754 }
440c734f 2755
c4e84bde 2756 qdev->tx_ring_shadow_reg_area =
440c734f
JP
2757 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2758 &qdev->tx_ring_shadow_reg_dma);
c4e84bde 2759 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2760 netif_err(qdev, ifup, qdev->ndev,
2761 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2762 goto err_wqp_sh_area;
2763 }
2764 return 0;
2765
2766err_wqp_sh_area:
2767 pci_free_consistent(qdev->pdev,
2768 PAGE_SIZE,
2769 qdev->rx_ring_shadow_reg_area,
2770 qdev->rx_ring_shadow_reg_dma);
2771 return -ENOMEM;
2772}
2773
2774static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2775{
2776 struct tx_ring_desc *tx_ring_desc;
2777 int i;
2778 struct ob_mac_iocb_req *mac_iocb_ptr;
2779
2780 mac_iocb_ptr = tx_ring->wq_base;
2781 tx_ring_desc = tx_ring->q;
2782 for (i = 0; i < tx_ring->wq_len; i++) {
2783 tx_ring_desc->index = i;
2784 tx_ring_desc->skb = NULL;
2785 tx_ring_desc->queue_entry = mac_iocb_ptr;
2786 mac_iocb_ptr++;
2787 tx_ring_desc++;
2788 }
2789 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2790}
2791
2792static void ql_free_tx_resources(struct ql_adapter *qdev,
2793 struct tx_ring *tx_ring)
2794{
2795 if (tx_ring->wq_base) {
2796 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2797 tx_ring->wq_base, tx_ring->wq_base_dma);
2798 tx_ring->wq_base = NULL;
2799 }
2800 kfree(tx_ring->q);
2801 tx_ring->q = NULL;
2802}
2803
2804static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2805 struct tx_ring *tx_ring)
2806{
2807 tx_ring->wq_base =
2808 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2809 &tx_ring->wq_base_dma);
2810
8e95a202 2811 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2812 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2813 goto pci_alloc_err;
2814
c4e84bde
RM
2815 tx_ring->q =
2816 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2817 if (tx_ring->q == NULL)
2818 goto err;
2819
2820 return 0;
2821err:
2822 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2823 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2824 tx_ring->wq_base = NULL;
2825pci_alloc_err:
2826 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2827 return -ENOMEM;
2828}
2829
8668ae92 2830static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2831{
c4e84bde
RM
2832 struct bq_desc *lbq_desc;
2833
7c734359
RM
2834 uint32_t curr_idx, clean_idx;
2835
2836 curr_idx = rx_ring->lbq_curr_idx;
2837 clean_idx = rx_ring->lbq_clean_idx;
2838 while (curr_idx != clean_idx) {
2839 lbq_desc = &rx_ring->lbq[curr_idx];
2840
2841 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2842 pci_unmap_page(qdev->pdev,
7c734359
RM
2843 lbq_desc->p.pg_chunk.map,
2844 ql_lbq_block_size(qdev),
c4e84bde 2845 PCI_DMA_FROMDEVICE);
7c734359 2846 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2847 }
7c734359
RM
2848
2849 put_page(lbq_desc->p.pg_chunk.page);
2850 lbq_desc->p.pg_chunk.page = NULL;
2851
2852 if (++curr_idx == rx_ring->lbq_len)
2853 curr_idx = 0;
2854
c4e84bde 2855 }
ef380794
TLSC
2856 if (rx_ring->pg_chunk.page) {
2857 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2858 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2859 put_page(rx_ring->pg_chunk.page);
2860 rx_ring->pg_chunk.page = NULL;
2861 }
c4e84bde
RM
2862}
2863
8668ae92 2864static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2865{
2866 int i;
2867 struct bq_desc *sbq_desc;
2868
2869 for (i = 0; i < rx_ring->sbq_len; i++) {
2870 sbq_desc = &rx_ring->sbq[i];
2871 if (sbq_desc == NULL) {
ae9540f7
JP
2872 netif_err(qdev, ifup, qdev->ndev,
2873 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2874 return;
2875 }
2876 if (sbq_desc->p.skb) {
2877 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2878 dma_unmap_addr(sbq_desc, mapaddr),
2879 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2880 PCI_DMA_FROMDEVICE);
2881 dev_kfree_skb(sbq_desc->p.skb);
2882 sbq_desc->p.skb = NULL;
2883 }
c4e84bde
RM
2884 }
2885}
2886
4545a3f2
RM
2887/* Free all large and small rx buffers associated
2888 * with the completion queues for this device.
2889 */
2890static void ql_free_rx_buffers(struct ql_adapter *qdev)
2891{
2892 int i;
2893 struct rx_ring *rx_ring;
2894
2895 for (i = 0; i < qdev->rx_ring_count; i++) {
2896 rx_ring = &qdev->rx_ring[i];
2897 if (rx_ring->lbq)
2898 ql_free_lbq_buffers(qdev, rx_ring);
2899 if (rx_ring->sbq)
2900 ql_free_sbq_buffers(qdev, rx_ring);
2901 }
2902}
2903
2904static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2905{
2906 struct rx_ring *rx_ring;
2907 int i;
2908
2909 for (i = 0; i < qdev->rx_ring_count; i++) {
2910 rx_ring = &qdev->rx_ring[i];
2911 if (rx_ring->type != TX_Q)
2912 ql_update_buffer_queues(qdev, rx_ring);
2913 }
2914}
2915
2916static void ql_init_lbq_ring(struct ql_adapter *qdev,
2917 struct rx_ring *rx_ring)
2918{
2919 int i;
2920 struct bq_desc *lbq_desc;
2921 __le64 *bq = rx_ring->lbq_base;
2922
2923 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2924 for (i = 0; i < rx_ring->lbq_len; i++) {
2925 lbq_desc = &rx_ring->lbq[i];
2926 memset(lbq_desc, 0, sizeof(*lbq_desc));
2927 lbq_desc->index = i;
2928 lbq_desc->addr = bq;
2929 bq++;
2930 }
2931}
2932
2933static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2934 struct rx_ring *rx_ring)
2935{
2936 int i;
2937 struct bq_desc *sbq_desc;
2c9a0d41 2938 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2939
4545a3f2 2940 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2941 for (i = 0; i < rx_ring->sbq_len; i++) {
2942 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2943 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2944 sbq_desc->index = i;
2c9a0d41 2945 sbq_desc->addr = bq;
c4e84bde
RM
2946 bq++;
2947 }
c4e84bde
RM
2948}
2949
2950static void ql_free_rx_resources(struct ql_adapter *qdev,
2951 struct rx_ring *rx_ring)
2952{
c4e84bde
RM
2953 /* Free the small buffer queue. */
2954 if (rx_ring->sbq_base) {
2955 pci_free_consistent(qdev->pdev,
2956 rx_ring->sbq_size,
2957 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2958 rx_ring->sbq_base = NULL;
2959 }
2960
2961 /* Free the small buffer queue control blocks. */
2962 kfree(rx_ring->sbq);
2963 rx_ring->sbq = NULL;
2964
2965 /* Free the large buffer queue. */
2966 if (rx_ring->lbq_base) {
2967 pci_free_consistent(qdev->pdev,
2968 rx_ring->lbq_size,
2969 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2970 rx_ring->lbq_base = NULL;
2971 }
2972
2973 /* Free the large buffer queue control blocks. */
2974 kfree(rx_ring->lbq);
2975 rx_ring->lbq = NULL;
2976
2977 /* Free the rx queue. */
2978 if (rx_ring->cq_base) {
2979 pci_free_consistent(qdev->pdev,
2980 rx_ring->cq_size,
2981 rx_ring->cq_base, rx_ring->cq_base_dma);
2982 rx_ring->cq_base = NULL;
2983 }
2984}
2985
2986/* Allocate queues and buffers for this completions queue based
2987 * on the values in the parameter structure. */
2988static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2989 struct rx_ring *rx_ring)
2990{
2991
2992 /*
2993 * Allocate the completion queue for this rx_ring.
2994 */
2995 rx_ring->cq_base =
2996 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2997 &rx_ring->cq_base_dma);
2998
2999 if (rx_ring->cq_base == NULL) {
ae9540f7 3000 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
3001 return -ENOMEM;
3002 }
3003
3004 if (rx_ring->sbq_len) {
3005 /*
3006 * Allocate small buffer queue.
3007 */
3008 rx_ring->sbq_base =
3009 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3010 &rx_ring->sbq_base_dma);
3011
3012 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
3013 netif_err(qdev, ifup, qdev->ndev,
3014 "Small buffer queue allocation failed.\n");
c4e84bde
RM
3015 goto err_mem;
3016 }
3017
3018 /*
3019 * Allocate small buffer queue control blocks.
3020 */
14f8dc49
JP
3021 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3022 sizeof(struct bq_desc),
3023 GFP_KERNEL);
3024 if (rx_ring->sbq == NULL)
c4e84bde 3025 goto err_mem;
c4e84bde 3026
4545a3f2 3027 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
3028 }
3029
3030 if (rx_ring->lbq_len) {
3031 /*
3032 * Allocate large buffer queue.
3033 */
3034 rx_ring->lbq_base =
3035 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3036 &rx_ring->lbq_base_dma);
3037
3038 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
3039 netif_err(qdev, ifup, qdev->ndev,
3040 "Large buffer queue allocation failed.\n");
c4e84bde
RM
3041 goto err_mem;
3042 }
3043 /*
3044 * Allocate large buffer queue control blocks.
3045 */
14f8dc49
JP
3046 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3047 sizeof(struct bq_desc),
3048 GFP_KERNEL);
3049 if (rx_ring->lbq == NULL)
c4e84bde 3050 goto err_mem;
c4e84bde 3051
4545a3f2 3052 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
3053 }
3054
3055 return 0;
3056
3057err_mem:
3058 ql_free_rx_resources(qdev, rx_ring);
3059 return -ENOMEM;
3060}
3061
3062static void ql_tx_ring_clean(struct ql_adapter *qdev)
3063{
3064 struct tx_ring *tx_ring;
3065 struct tx_ring_desc *tx_ring_desc;
3066 int i, j;
3067
3068 /*
3069 * Loop through all queues and free
3070 * any resources.
3071 */
3072 for (j = 0; j < qdev->tx_ring_count; j++) {
3073 tx_ring = &qdev->tx_ring[j];
3074 for (i = 0; i < tx_ring->wq_len; i++) {
3075 tx_ring_desc = &tx_ring->q[i];
3076 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
3077 netif_err(qdev, ifdown, qdev->ndev,
3078 "Freeing lost SKB %p, from queue %d, index %d.\n",
3079 tx_ring_desc->skb, j,
3080 tx_ring_desc->index);
c4e84bde
RM
3081 ql_unmap_send(qdev, tx_ring_desc,
3082 tx_ring_desc->map_cnt);
3083 dev_kfree_skb(tx_ring_desc->skb);
3084 tx_ring_desc->skb = NULL;
3085 }
3086 }
3087 }
3088}
3089
c4e84bde
RM
3090static void ql_free_mem_resources(struct ql_adapter *qdev)
3091{
3092 int i;
3093
3094 for (i = 0; i < qdev->tx_ring_count; i++)
3095 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3096 for (i = 0; i < qdev->rx_ring_count; i++)
3097 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3098 ql_free_shadow_space(qdev);
3099}
3100
3101static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3102{
3103 int i;
3104
3105 /* Allocate space for our shadow registers and such. */
3106 if (ql_alloc_shadow_space(qdev))
3107 return -ENOMEM;
3108
3109 for (i = 0; i < qdev->rx_ring_count; i++) {
3110 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3111 netif_err(qdev, ifup, qdev->ndev,
3112 "RX resource allocation failed.\n");
c4e84bde
RM
3113 goto err_mem;
3114 }
3115 }
3116 /* Allocate tx queue resources */
3117 for (i = 0; i < qdev->tx_ring_count; i++) {
3118 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3119 netif_err(qdev, ifup, qdev->ndev,
3120 "TX resource allocation failed.\n");
c4e84bde
RM
3121 goto err_mem;
3122 }
3123 }
3124 return 0;
3125
3126err_mem:
3127 ql_free_mem_resources(qdev);
3128 return -ENOMEM;
3129}
3130
3131/* Set up the rx ring control block and pass it to the chip.
3132 * The control block is defined as
3133 * "Completion Queue Initialization Control Block", or cqicb.
3134 */
3135static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3136{
3137 struct cqicb *cqicb = &rx_ring->cqicb;
3138 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3139 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3140 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3141 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3142 void __iomem *doorbell_area =
3143 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3144 int err = 0;
3145 u16 bq_len;
d4a4aba6 3146 u64 tmp;
b8facca0
RM
3147 __le64 *base_indirect_ptr;
3148 int page_entries;
c4e84bde
RM
3149
3150 /* Set up the shadow registers for this ring. */
3151 rx_ring->prod_idx_sh_reg = shadow_reg;
3152 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3153 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3154 shadow_reg += sizeof(u64);
3155 shadow_reg_dma += sizeof(u64);
3156 rx_ring->lbq_base_indirect = shadow_reg;
3157 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3158 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3159 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3160 rx_ring->sbq_base_indirect = shadow_reg;
3161 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3162
3163 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3164 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3165 rx_ring->cnsmr_idx = 0;
3166 rx_ring->curr_entry = rx_ring->cq_base;
3167
3168 /* PCI doorbell mem area + 0x04 for valid register */
3169 rx_ring->valid_db_reg = doorbell_area + 0x04;
3170
3171 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3172 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3173
3174 /* PCI doorbell mem area + 0x1c */
8668ae92 3175 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3176
3177 memset((void *)cqicb, 0, sizeof(struct cqicb));
3178 cqicb->msix_vect = rx_ring->irq;
3179
459caf5a
RM
3180 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3181 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3182
97345524 3183 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3184
97345524 3185 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3186
3187 /*
3188 * Set up the control block load flags.
3189 */
3190 cqicb->flags = FLAGS_LC | /* Load queue base address */
3191 FLAGS_LV | /* Load MSI-X vector */
3192 FLAGS_LI; /* Load irq delay values */
3193 if (rx_ring->lbq_len) {
3194 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3195 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3196 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3197 page_entries = 0;
3198 do {
3199 *base_indirect_ptr = cpu_to_le64(tmp);
3200 tmp += DB_PAGE_SIZE;
3201 base_indirect_ptr++;
3202 page_entries++;
3203 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3204 cqicb->lbq_addr =
3205 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3206 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3207 (u16) rx_ring->lbq_buf_size;
3208 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3209 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3210 (u16) rx_ring->lbq_len;
c4e84bde 3211 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3212 rx_ring->lbq_prod_idx = 0;
c4e84bde 3213 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3214 rx_ring->lbq_clean_idx = 0;
3215 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3216 }
3217 if (rx_ring->sbq_len) {
3218 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3219 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3220 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3221 page_entries = 0;
3222 do {
3223 *base_indirect_ptr = cpu_to_le64(tmp);
3224 tmp += DB_PAGE_SIZE;
3225 base_indirect_ptr++;
3226 page_entries++;
3227 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3228 cqicb->sbq_addr =
3229 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3230 cqicb->sbq_buf_size =
52e55f3c 3231 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3232 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3233 (u16) rx_ring->sbq_len;
c4e84bde 3234 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3235 rx_ring->sbq_prod_idx = 0;
c4e84bde 3236 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3237 rx_ring->sbq_clean_idx = 0;
3238 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3239 }
3240 switch (rx_ring->type) {
3241 case TX_Q:
c4e84bde
RM
3242 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3243 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3244 break;
c4e84bde
RM
3245 case RX_Q:
3246 /* Inbound completion handling rx_rings run in
3247 * separate NAPI contexts.
3248 */
3249 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3250 64);
3251 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3252 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3253 break;
3254 default:
ae9540f7
JP
3255 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3256 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3257 }
c4e84bde
RM
3258 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3259 CFG_LCQ, rx_ring->cq_id);
3260 if (err) {
ae9540f7 3261 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3262 return err;
3263 }
c4e84bde
RM
3264 return err;
3265}
3266
3267static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3268{
3269 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3270 void __iomem *doorbell_area =
3271 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3272 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3273 (tx_ring->wq_id * sizeof(u64));
3274 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3275 (tx_ring->wq_id * sizeof(u64));
3276 int err = 0;
3277
3278 /*
3279 * Assign doorbell registers for this tx_ring.
3280 */
3281 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3282 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3283 tx_ring->prod_idx = 0;
3284 /* TX PCI doorbell mem area + 0x04 */
3285 tx_ring->valid_db_reg = doorbell_area + 0x04;
3286
3287 /*
3288 * Assign shadow registers for this tx_ring.
3289 */
3290 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3291 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3292
3293 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3294 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3295 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3296 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3297 wqicb->rid = 0;
97345524 3298 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3299
97345524 3300 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3301
3302 ql_init_tx_ring(qdev, tx_ring);
3303
e332471c 3304 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3305 (u16) tx_ring->wq_id);
3306 if (err) {
ae9540f7 3307 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3308 return err;
3309 }
c4e84bde
RM
3310 return err;
3311}
3312
3313static void ql_disable_msix(struct ql_adapter *qdev)
3314{
3315 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3316 pci_disable_msix(qdev->pdev);
3317 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3318 kfree(qdev->msi_x_entry);
3319 qdev->msi_x_entry = NULL;
3320 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3321 pci_disable_msi(qdev->pdev);
3322 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3323 }
3324}
3325
a4ab6137
RM
3326/* We start by trying to get the number of vectors
3327 * stored in qdev->intr_count. If we don't get that
3328 * many then we reduce the count and try again.
3329 */
c4e84bde
RM
3330static void ql_enable_msix(struct ql_adapter *qdev)
3331{
a4ab6137 3332 int i, err;
c4e84bde 3333
c4e84bde 3334 /* Get the MSIX vectors. */
a5a62a1c 3335 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3336 /* Try to alloc space for the msix struct,
3337 * if it fails then go to MSI/legacy.
3338 */
a4ab6137 3339 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3340 sizeof(struct msix_entry),
3341 GFP_KERNEL);
3342 if (!qdev->msi_x_entry) {
a5a62a1c 3343 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3344 goto msi;
3345 }
3346
a4ab6137 3347 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3348 qdev->msi_x_entry[i].entry = i;
3349
50b483a1
AG
3350 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3351 1, qdev->intr_count);
a4ab6137 3352 if (err < 0) {
c4e84bde
RM
3353 kfree(qdev->msi_x_entry);
3354 qdev->msi_x_entry = NULL;
ae9540f7
JP
3355 netif_warn(qdev, ifup, qdev->ndev,
3356 "MSI-X Enable failed, trying MSI.\n");
a5a62a1c 3357 qlge_irq_type = MSI_IRQ;
50b483a1
AG
3358 } else {
3359 qdev->intr_count = err;
a4ab6137 3360 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3361 netif_info(qdev, ifup, qdev->ndev,
3362 "MSI-X Enabled, got %d vectors.\n",
3363 qdev->intr_count);
a4ab6137 3364 return;
c4e84bde
RM
3365 }
3366 }
3367msi:
a4ab6137 3368 qdev->intr_count = 1;
a5a62a1c 3369 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3370 if (!pci_enable_msi(qdev->pdev)) {
3371 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3372 netif_info(qdev, ifup, qdev->ndev,
3373 "Running with MSI interrupts.\n");
c4e84bde
RM
3374 return;
3375 }
3376 }
a5a62a1c 3377 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3378 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3379 "Running with legacy interrupts.\n");
c4e84bde
RM
3380}
3381
39aa8165
RM
3382/* Each vector services 1 RSS ring and and 1 or more
3383 * TX completion rings. This function loops through
3384 * the TX completion rings and assigns the vector that
3385 * will service it. An example would be if there are
3386 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3387 * This would mean that vector 0 would service RSS ring 0
25985edc 3388 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3389 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3390 */
3391static void ql_set_tx_vect(struct ql_adapter *qdev)
3392{
3393 int i, j, vect;
3394 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3395
3396 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3397 /* Assign irq vectors to TX rx_rings.*/
3398 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3399 i < qdev->rx_ring_count; i++) {
3400 if (j == tx_rings_per_vector) {
3401 vect++;
3402 j = 0;
3403 }
3404 qdev->rx_ring[i].irq = vect;
3405 j++;
3406 }
3407 } else {
3408 /* For single vector all rings have an irq
3409 * of zero.
3410 */
3411 for (i = 0; i < qdev->rx_ring_count; i++)
3412 qdev->rx_ring[i].irq = 0;
3413 }
3414}
3415
3416/* Set the interrupt mask for this vector. Each vector
3417 * will service 1 RSS ring and 1 or more TX completion
3418 * rings. This function sets up a bit mask per vector
3419 * that indicates which rings it services.
3420 */
3421static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3422{
3423 int j, vect = ctx->intr;
3424 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3425
3426 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3427 /* Add the RSS ring serviced by this vector
3428 * to the mask.
3429 */
3430 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3431 /* Add the TX ring(s) serviced by this vector
3432 * to the mask. */
3433 for (j = 0; j < tx_rings_per_vector; j++) {
3434 ctx->irq_mask |=
3435 (1 << qdev->rx_ring[qdev->rss_ring_count +
3436 (vect * tx_rings_per_vector) + j].cq_id);
3437 }
3438 } else {
3439 /* For single vector we just shift each queue's
3440 * ID into the mask.
3441 */
3442 for (j = 0; j < qdev->rx_ring_count; j++)
3443 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3444 }
3445}
3446
c4e84bde
RM
3447/*
3448 * Here we build the intr_context structures based on
3449 * our rx_ring count and intr vector count.
3450 * The intr_context structure is used to hook each vector
3451 * to possibly different handlers.
3452 */
3453static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3454{
3455 int i = 0;
3456 struct intr_context *intr_context = &qdev->intr_context[0];
3457
c4e84bde
RM
3458 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3459 /* Each rx_ring has it's
3460 * own intr_context since we have separate
3461 * vectors for each queue.
c4e84bde
RM
3462 */
3463 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3464 qdev->rx_ring[i].irq = i;
3465 intr_context->intr = i;
3466 intr_context->qdev = qdev;
39aa8165
RM
3467 /* Set up this vector's bit-mask that indicates
3468 * which queues it services.
3469 */
3470 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3471 /*
3472 * We set up each vectors enable/disable/read bits so
3473 * there's no bit/mask calculations in the critical path.
3474 */
3475 intr_context->intr_en_mask =
3476 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3478 | i;
3479 intr_context->intr_dis_mask =
3480 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3481 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3482 INTR_EN_IHD | i;
3483 intr_context->intr_read_mask =
3484 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3485 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3486 i;
39aa8165
RM
3487 if (i == 0) {
3488 /* The first vector/queue handles
3489 * broadcast/multicast, fatal errors,
3490 * and firmware events. This in addition
3491 * to normal inbound NAPI processing.
c4e84bde 3492 */
39aa8165 3493 intr_context->handler = qlge_isr;
b2014ff8
RM
3494 sprintf(intr_context->name, "%s-rx-%d",
3495 qdev->ndev->name, i);
3496 } else {
c4e84bde 3497 /*
39aa8165 3498 * Inbound queues handle unicast frames only.
c4e84bde 3499 */
39aa8165
RM
3500 intr_context->handler = qlge_msix_rx_isr;
3501 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3502 qdev->ndev->name, i);
c4e84bde
RM
3503 }
3504 }
3505 } else {
3506 /*
3507 * All rx_rings use the same intr_context since
3508 * there is only one vector.
3509 */
3510 intr_context->intr = 0;
3511 intr_context->qdev = qdev;
3512 /*
3513 * We set up each vectors enable/disable/read bits so
3514 * there's no bit/mask calculations in the critical path.
3515 */
3516 intr_context->intr_en_mask =
3517 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3518 intr_context->intr_dis_mask =
3519 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3520 INTR_EN_TYPE_DISABLE;
3521 intr_context->intr_read_mask =
3522 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3523 /*
3524 * Single interrupt means one handler for all rings.
3525 */
3526 intr_context->handler = qlge_isr;
3527 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3528 /* Set up this vector's bit-mask that indicates
3529 * which queues it services. In this case there is
3530 * a single vector so it will service all RSS and
3531 * TX completion rings.
3532 */
3533 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3534 }
39aa8165
RM
3535 /* Tell the TX completion rings which MSIx vector
3536 * they will be using.
3537 */
3538 ql_set_tx_vect(qdev);
c4e84bde
RM
3539}
3540
3541static void ql_free_irq(struct ql_adapter *qdev)
3542{
3543 int i;
3544 struct intr_context *intr_context = &qdev->intr_context[0];
3545
3546 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3547 if (intr_context->hooked) {
3548 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3549 free_irq(qdev->msi_x_entry[i].vector,
3550 &qdev->rx_ring[i]);
c4e84bde
RM
3551 } else {
3552 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3553 }
3554 }
3555 }
3556 ql_disable_msix(qdev);
3557}
3558
3559static int ql_request_irq(struct ql_adapter *qdev)
3560{
3561 int i;
3562 int status = 0;
3563 struct pci_dev *pdev = qdev->pdev;
3564 struct intr_context *intr_context = &qdev->intr_context[0];
3565
3566 ql_resolve_queues_to_irqs(qdev);
3567
3568 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3569 atomic_set(&intr_context->irq_cnt, 0);
3570 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3571 status = request_irq(qdev->msi_x_entry[i].vector,
3572 intr_context->handler,
3573 0,
3574 intr_context->name,
3575 &qdev->rx_ring[i]);
3576 if (status) {
ae9540f7
JP
3577 netif_err(qdev, ifup, qdev->ndev,
3578 "Failed request for MSIX interrupt %d.\n",
3579 i);
c4e84bde 3580 goto err_irq;
c4e84bde
RM
3581 }
3582 } else {
ae9540f7
JP
3583 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 "trying msi or legacy interrupts.\n");
3585 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3586 "%s: irq = %d.\n", __func__, pdev->irq);
3587 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3588 "%s: context->name = %s.\n", __func__,
3589 intr_context->name);
3590 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3591 "%s: dev_id = 0x%p.\n", __func__,
3592 &qdev->rx_ring[0]);
c4e84bde
RM
3593 status =
3594 request_irq(pdev->irq, qlge_isr,
3595 test_bit(QL_MSI_ENABLED,
3596 &qdev->
3597 flags) ? 0 : IRQF_SHARED,
3598 intr_context->name, &qdev->rx_ring[0]);
3599 if (status)
3600 goto err_irq;
3601
ae9540f7
JP
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Hooked intr %d, queue type %s, with name %s.\n",
3604 i,
3605 qdev->rx_ring[0].type == DEFAULT_Q ?
3606 "DEFAULT_Q" :
3607 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3608 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3609 intr_context->name);
c4e84bde
RM
3610 }
3611 intr_context->hooked = 1;
3612 }
3613 return status;
3614err_irq:
a42c3a28 3615 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
c4e84bde
RM
3616 ql_free_irq(qdev);
3617 return status;
3618}
3619
3620static int ql_start_rss(struct ql_adapter *qdev)
3621{
215faf9c
JP
3622 static const u8 init_hash_seed[] = {
3623 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3624 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3625 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3626 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3627 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3628 };
c4e84bde
RM
3629 struct ricb *ricb = &qdev->ricb;
3630 int status = 0;
3631 int i;
3632 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3633
e332471c 3634 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3635
b2014ff8 3636 ricb->base_cq = RSS_L4K;
c4e84bde 3637 ricb->flags =
541ae28c
RM
3638 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3639 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3640
3641 /*
3642 * Fill out the Indirection Table.
3643 */
541ae28c
RM
3644 for (i = 0; i < 1024; i++)
3645 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3646
541ae28c
RM
3647 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3648 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3649
e332471c 3650 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3651 if (status) {
ae9540f7 3652 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3653 return status;
3654 }
c4e84bde
RM
3655 return status;
3656}
3657
a5f59dc9 3658static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3659{
a5f59dc9 3660 int i, status = 0;
c4e84bde 3661
8587ea35
RM
3662 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3663 if (status)
3664 return status;
c4e84bde
RM
3665 /* Clear all the entries in the routing table. */
3666 for (i = 0; i < 16; i++) {
3667 status = ql_set_routing_reg(qdev, i, 0, 0);
3668 if (status) {
ae9540f7
JP
3669 netif_err(qdev, ifup, qdev->ndev,
3670 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3671 break;
c4e84bde
RM
3672 }
3673 }
a5f59dc9
RM
3674 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3675 return status;
3676}
3677
3678/* Initialize the frame-to-queue routing. */
3679static int ql_route_initialize(struct ql_adapter *qdev)
3680{
3681 int status = 0;
3682
fd21cf52
RM
3683 /* Clear all the entries in the routing table. */
3684 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3685 if (status)
3686 return status;
3687
fd21cf52 3688 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3689 if (status)
fd21cf52 3690 return status;
c4e84bde 3691
fbc2ac33
RM
3692 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3693 RT_IDX_IP_CSUM_ERR, 1);
3694 if (status) {
3695 netif_err(qdev, ifup, qdev->ndev,
3696 "Failed to init routing register "
3697 "for IP CSUM error packets.\n");
3698 goto exit;
3699 }
3700 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3701 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3702 if (status) {
ae9540f7 3703 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3704 "Failed to init routing register "
3705 "for TCP/UDP CSUM error packets.\n");
8587ea35 3706 goto exit;
c4e84bde
RM
3707 }
3708 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3709 if (status) {
ae9540f7
JP
3710 netif_err(qdev, ifup, qdev->ndev,
3711 "Failed to init routing register for broadcast packets.\n");
8587ea35 3712 goto exit;
c4e84bde
RM
3713 }
3714 /* If we have more than one inbound queue, then turn on RSS in the
3715 * routing block.
3716 */
3717 if (qdev->rss_ring_count > 1) {
3718 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3719 RT_IDX_RSS_MATCH, 1);
3720 if (status) {
ae9540f7
JP
3721 netif_err(qdev, ifup, qdev->ndev,
3722 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3723 goto exit;
c4e84bde
RM
3724 }
3725 }
3726
3727 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3728 RT_IDX_CAM_HIT, 1);
8587ea35 3729 if (status)
ae9540f7
JP
3730 netif_err(qdev, ifup, qdev->ndev,
3731 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3732exit:
3733 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3734 return status;
3735}
3736
2ee1e272 3737int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3738{
7fab3bfe 3739 int status, set;
bb58b5b6 3740
7fab3bfe
RM
3741 /* If check if the link is up and use to
3742 * determine if we are setting or clearing
3743 * the MAC address in the CAM.
3744 */
3745 set = ql_read32(qdev, STS);
3746 set &= qdev->port_link_up;
3747 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3748 if (status) {
ae9540f7 3749 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3750 return status;
3751 }
3752
3753 status = ql_route_initialize(qdev);
3754 if (status)
ae9540f7 3755 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3756
3757 return status;
3758}
3759
c4e84bde
RM
3760static int ql_adapter_initialize(struct ql_adapter *qdev)
3761{
3762 u32 value, mask;
3763 int i;
3764 int status = 0;
3765
3766 /*
3767 * Set up the System register to halt on errors.
3768 */
3769 value = SYS_EFE | SYS_FAE;
3770 mask = value << 16;
3771 ql_write32(qdev, SYS, mask | value);
3772
c9cf0a04 3773 /* Set the default queue, and VLAN behavior. */
a45adbe8
JK
3774 value = NIC_RCV_CFG_DFQ;
3775 mask = NIC_RCV_CFG_DFQ_MASK;
3776 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3777 value |= NIC_RCV_CFG_RV;
3778 mask |= (NIC_RCV_CFG_RV << 16);
3779 }
c4e84bde
RM
3780 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3781
3782 /* Set the MPI interrupt to enabled. */
3783 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3784
3785 /* Enable the function, set pagesize, enable error checking. */
3786 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3787 FSC_EC | FSC_VM_PAGE_4K;
3788 value |= SPLT_SETTING;
c4e84bde
RM
3789
3790 /* Set/clear header splitting. */
3791 mask = FSC_VM_PAGESIZE_MASK |
3792 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3793 ql_write32(qdev, FSC, mask | value);
3794
572c526f 3795 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3796
a3b71939
RM
3797 /* Set RX packet routing to use port/pci function on which the
3798 * packet arrived on in addition to usual frame routing.
3799 * This is helpful on bonding where both interfaces can have
3800 * the same MAC address.
3801 */
3802 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3803 /* Reroute all packets to our Interface.
3804 * They may have been routed to MPI firmware
3805 * due to WOL.
3806 */
3807 value = ql_read32(qdev, MGMT_RCV_CFG);
3808 value &= ~MGMT_RCV_CFG_RM;
3809 mask = 0xffff0000;
3810
3811 /* Sticky reg needs clearing due to WOL. */
3812 ql_write32(qdev, MGMT_RCV_CFG, mask);
3813 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3814
3815 /* Default WOL is enable on Mezz cards */
3816 if (qdev->pdev->subsystem_device == 0x0068 ||
3817 qdev->pdev->subsystem_device == 0x0180)
3818 qdev->wol = WAKE_MAGIC;
a3b71939 3819
c4e84bde
RM
3820 /* Start up the rx queues. */
3821 for (i = 0; i < qdev->rx_ring_count; i++) {
3822 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3823 if (status) {
ae9540f7
JP
3824 netif_err(qdev, ifup, qdev->ndev,
3825 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3826 return status;
3827 }
3828 }
3829
3830 /* If there is more than one inbound completion queue
3831 * then download a RICB to configure RSS.
3832 */
3833 if (qdev->rss_ring_count > 1) {
3834 status = ql_start_rss(qdev);
3835 if (status) {
ae9540f7 3836 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3837 return status;
3838 }
3839 }
3840
3841 /* Start up the tx queues. */
3842 for (i = 0; i < qdev->tx_ring_count; i++) {
3843 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3844 if (status) {
ae9540f7
JP
3845 netif_err(qdev, ifup, qdev->ndev,
3846 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3847 return status;
3848 }
3849 }
3850
b0c2aadf
RM
3851 /* Initialize the port and set the max framesize. */
3852 status = qdev->nic_ops->port_initialize(qdev);
80928860 3853 if (status)
ae9540f7 3854 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3855
bb58b5b6
RM
3856 /* Set up the MAC address and frame routing filter. */
3857 status = ql_cam_route_initialize(qdev);
c4e84bde 3858 if (status) {
ae9540f7
JP
3859 netif_err(qdev, ifup, qdev->ndev,
3860 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3861 return status;
3862 }
3863
3864 /* Start NAPI for the RSS queues. */
19257f5a 3865 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3866 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3867
3868 return status;
3869}
3870
3871/* Issue soft reset to chip. */
3872static int ql_adapter_reset(struct ql_adapter *qdev)
3873{
3874 u32 value;
c4e84bde 3875 int status = 0;
a5f59dc9 3876 unsigned long end_jiffies;
c4e84bde 3877
a5f59dc9
RM
3878 /* Clear all the entries in the routing table. */
3879 status = ql_clear_routing_entries(qdev);
3880 if (status) {
ae9540f7 3881 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3882 return status;
3883 }
3884
da92b393
JK
3885 /* Check if bit is set then skip the mailbox command and
3886 * clear the bit, else we are in normal reset process.
3887 */
3888 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3889 /* Stop management traffic. */
3890 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3891
3892 /* Wait for the NIC and MGMNT FIFOs to empty. */
3893 ql_wait_fifo_empty(qdev);
3894 } else
3895 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3896
c4e84bde 3897 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3898
3f6e785f 3899 end_jiffies = jiffies + usecs_to_jiffies(30);
c4e84bde
RM
3900 do {
3901 value = ql_read32(qdev, RST_FO);
3902 if ((value & RST_FO_FR) == 0)
3903 break;
a75ee7f1
RM
3904 cpu_relax();
3905 } while (time_before(jiffies, end_jiffies));
c4e84bde 3906
c4e84bde 3907 if (value & RST_FO_FR) {
ae9540f7
JP
3908 netif_err(qdev, ifdown, qdev->ndev,
3909 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3910 status = -ETIMEDOUT;
c4e84bde
RM
3911 }
3912
84087f4d
RM
3913 /* Resume management traffic. */
3914 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3915 return status;
3916}
3917
3918static void ql_display_dev_info(struct net_device *ndev)
3919{
b16fed0a 3920 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3921
ae9540f7
JP
3922 netif_info(qdev, probe, qdev->ndev,
3923 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3924 "XG Roll = %d, XG Rev = %d.\n",
3925 qdev->func,
3926 qdev->port,
3927 qdev->chip_rev_id & 0x0000000f,
3928 qdev->chip_rev_id >> 4 & 0x0000000f,
3929 qdev->chip_rev_id >> 8 & 0x0000000f,
3930 qdev->chip_rev_id >> 12 & 0x0000000f);
3931 netif_info(qdev, probe, qdev->ndev,
3932 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3933}
3934
ac409215 3935static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3936{
3937 int status = 0;
3938 u32 wol = MB_WOL_DISABLE;
3939
3940 /* The CAM is still intact after a reset, but if we
3941 * are doing WOL, then we may need to program the
3942 * routing regs. We would also need to issue the mailbox
3943 * commands to instruct the MPI what to do per the ethtool
3944 * settings.
3945 */
3946
3947 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3948 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3949 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3950 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3951 qdev->wol);
bc083ce9
RM
3952 return -EINVAL;
3953 }
3954
3955 if (qdev->wol & WAKE_MAGIC) {
3956 status = ql_mb_wol_set_magic(qdev, 1);
3957 if (status) {
ae9540f7
JP
3958 netif_err(qdev, ifdown, qdev->ndev,
3959 "Failed to set magic packet on %s.\n",
3960 qdev->ndev->name);
bc083ce9
RM
3961 return status;
3962 } else
ae9540f7
JP
3963 netif_info(qdev, drv, qdev->ndev,
3964 "Enabled magic packet successfully on %s.\n",
3965 qdev->ndev->name);
bc083ce9
RM
3966
3967 wol |= MB_WOL_MAGIC_PKT;
3968 }
3969
3970 if (qdev->wol) {
bc083ce9
RM
3971 wol |= MB_WOL_MODE_ON;
3972 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3973 netif_err(qdev, drv, qdev->ndev,
3974 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3975 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3976 wol, qdev->ndev->name);
bc083ce9
RM
3977 }
3978
3979 return status;
3980}
3981
c5dadddb 3982static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3983{
c4e84bde 3984
6497b607
RM
3985 /* Don't kill the reset worker thread if we
3986 * are in the process of recovery.
3987 */
3988 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3989 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3990 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3991 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3992 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3993 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3994 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3995}
3996
3997static int ql_adapter_down(struct ql_adapter *qdev)
3998{
3999 int i, status = 0;
4000
4001 ql_link_off(qdev);
4002
4003 ql_cancel_all_work_sync(qdev);
c4e84bde 4004
39aa8165
RM
4005 for (i = 0; i < qdev->rss_ring_count; i++)
4006 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
4007
4008 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4009
4010 ql_disable_interrupts(qdev);
4011
4012 ql_tx_ring_clean(qdev);
4013
6b318cb3
RM
4014 /* Call netif_napi_del() from common point.
4015 */
b2014ff8 4016 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
4017 netif_napi_del(&qdev->rx_ring[i].napi);
4018
c4e84bde
RM
4019 status = ql_adapter_reset(qdev);
4020 if (status)
ae9540f7
JP
4021 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4022 qdev->func);
fe5f0980
BL
4023 ql_free_rx_buffers(qdev);
4024
c4e84bde
RM
4025 return status;
4026}
4027
4028static int ql_adapter_up(struct ql_adapter *qdev)
4029{
4030 int err = 0;
4031
c4e84bde
RM
4032 err = ql_adapter_initialize(qdev);
4033 if (err) {
ae9540f7 4034 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
4035 goto err_init;
4036 }
c4e84bde 4037 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 4038 ql_alloc_rx_buffers(qdev);
8b007de1
RM
4039 /* If the port is initialized and the
4040 * link is up the turn on the carrier.
4041 */
4042 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4043 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 4044 ql_link_on(qdev);
f2c05004
RM
4045 /* Restore rx mode. */
4046 clear_bit(QL_ALLMULTI, &qdev->flags);
4047 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4048 qlge_set_multicast_list(qdev->ndev);
4049
c1b60092
RM
4050 /* Restore vlan setting. */
4051 qlge_restore_vlan(qdev);
4052
c4e84bde
RM
4053 ql_enable_interrupts(qdev);
4054 ql_enable_all_completion_interrupts(qdev);
1e213303 4055 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
4056
4057 return 0;
4058err_init:
4059 ql_adapter_reset(qdev);
4060 return err;
4061}
4062
c4e84bde
RM
4063static void ql_release_adapter_resources(struct ql_adapter *qdev)
4064{
4065 ql_free_mem_resources(qdev);
4066 ql_free_irq(qdev);
4067}
4068
4069static int ql_get_adapter_resources(struct ql_adapter *qdev)
4070{
4071 int status = 0;
4072
4073 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 4074 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
4075 return -ENOMEM;
4076 }
4077 status = ql_request_irq(qdev);
c4e84bde
RM
4078 return status;
4079}
4080
4081static int qlge_close(struct net_device *ndev)
4082{
4083 struct ql_adapter *qdev = netdev_priv(ndev);
4084
4bbd1a19
RM
4085 /* If we hit pci_channel_io_perm_failure
4086 * failure condition, then we already
4087 * brought the adapter down.
4088 */
4089 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4090 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4091 clear_bit(QL_EEH_FATAL, &qdev->flags);
4092 return 0;
4093 }
4094
c4e84bde
RM
4095 /*
4096 * Wait for device to recover from a reset.
4097 * (Rarely happens, but possible.)
4098 */
4099 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4100 msleep(1);
4101 ql_adapter_down(qdev);
4102 ql_release_adapter_resources(qdev);
c4e84bde
RM
4103 return 0;
4104}
4105
4106static int ql_configure_rings(struct ql_adapter *qdev)
4107{
4108 int i;
4109 struct rx_ring *rx_ring;
4110 struct tx_ring *tx_ring;
a4ab6137 4111 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4112 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4113 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4114
4115 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4116
4117 /* In a perfect world we have one RSS ring for each CPU
4118 * and each has it's own vector. To do that we ask for
4119 * cpu_cnt vectors. ql_enable_msix() will adjust the
4120 * vector count to what we actually get. We then
4121 * allocate an RSS ring for each.
4122 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4123 */
a4ab6137
RM
4124 qdev->intr_count = cpu_cnt;
4125 ql_enable_msix(qdev);
4126 /* Adjust the RSS ring count to the actual vector count. */
4127 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4128 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4129 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4130
c4e84bde
RM
4131 for (i = 0; i < qdev->tx_ring_count; i++) {
4132 tx_ring = &qdev->tx_ring[i];
e332471c 4133 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4134 tx_ring->qdev = qdev;
4135 tx_ring->wq_id = i;
4136 tx_ring->wq_len = qdev->tx_ring_size;
4137 tx_ring->wq_size =
4138 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4139
4140 /*
4141 * The completion queue ID for the tx rings start
39aa8165 4142 * immediately after the rss rings.
c4e84bde 4143 */
39aa8165 4144 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4145 }
4146
4147 for (i = 0; i < qdev->rx_ring_count; i++) {
4148 rx_ring = &qdev->rx_ring[i];
e332471c 4149 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4150 rx_ring->qdev = qdev;
4151 rx_ring->cq_id = i;
4152 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4153 if (i < qdev->rss_ring_count) {
39aa8165
RM
4154 /*
4155 * Inbound (RSS) queues.
4156 */
c4e84bde
RM
4157 rx_ring->cq_len = qdev->rx_ring_size;
4158 rx_ring->cq_size =
4159 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4160 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4161 rx_ring->lbq_size =
2c9a0d41 4162 rx_ring->lbq_len * sizeof(__le64);
7c734359 4163 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4164 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4165 rx_ring->sbq_size =
2c9a0d41 4166 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4167 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4168 rx_ring->type = RX_Q;
4169 } else {
c4e84bde
RM
4170 /*
4171 * Outbound queue handles outbound completions only.
4172 */
4173 /* outbound cq is same size as tx_ring it services. */
4174 rx_ring->cq_len = qdev->tx_ring_size;
4175 rx_ring->cq_size =
4176 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4177 rx_ring->lbq_len = 0;
4178 rx_ring->lbq_size = 0;
4179 rx_ring->lbq_buf_size = 0;
4180 rx_ring->sbq_len = 0;
4181 rx_ring->sbq_size = 0;
4182 rx_ring->sbq_buf_size = 0;
4183 rx_ring->type = TX_Q;
c4e84bde
RM
4184 }
4185 }
4186 return 0;
4187}
4188
4189static int qlge_open(struct net_device *ndev)
4190{
4191 int err = 0;
4192 struct ql_adapter *qdev = netdev_priv(ndev);
4193
74e12435
RM
4194 err = ql_adapter_reset(qdev);
4195 if (err)
4196 return err;
4197
c4e84bde
RM
4198 err = ql_configure_rings(qdev);
4199 if (err)
4200 return err;
4201
4202 err = ql_get_adapter_resources(qdev);
4203 if (err)
4204 goto error_up;
4205
4206 err = ql_adapter_up(qdev);
4207 if (err)
4208 goto error_up;
4209
4210 return err;
4211
4212error_up:
4213 ql_release_adapter_resources(qdev);
c4e84bde
RM
4214 return err;
4215}
4216
7c734359
RM
4217static int ql_change_rx_buffers(struct ql_adapter *qdev)
4218{
4219 struct rx_ring *rx_ring;
4220 int i, status;
4221 u32 lbq_buf_len;
4222
25985edc 4223 /* Wait for an outstanding reset to complete. */
7c734359 4224 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
351434c6
DC
4225 int i = 4;
4226
4227 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4228 netif_err(qdev, ifup, qdev->ndev,
4229 "Waiting for adapter UP...\n");
7c734359
RM
4230 ssleep(1);
4231 }
4232
4233 if (!i) {
ae9540f7
JP
4234 netif_err(qdev, ifup, qdev->ndev,
4235 "Timed out waiting for adapter UP\n");
7c734359
RM
4236 return -ETIMEDOUT;
4237 }
4238 }
4239
4240 status = ql_adapter_down(qdev);
4241 if (status)
4242 goto error;
4243
4244 /* Get the new rx buffer size. */
4245 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4246 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4247 qdev->lbq_buf_order = get_order(lbq_buf_len);
4248
4249 for (i = 0; i < qdev->rss_ring_count; i++) {
4250 rx_ring = &qdev->rx_ring[i];
4251 /* Set the new size. */
4252 rx_ring->lbq_buf_size = lbq_buf_len;
4253 }
4254
4255 status = ql_adapter_up(qdev);
4256 if (status)
4257 goto error;
4258
4259 return status;
4260error:
ae9540f7
JP
4261 netif_alert(qdev, ifup, qdev->ndev,
4262 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4263 set_bit(QL_ADAPTER_UP, &qdev->flags);
4264 dev_close(qdev->ndev);
4265 return status;
4266}
4267
c4e84bde
RM
4268static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4269{
4270 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4271 int status;
c4e84bde
RM
4272
4273 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4274 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4275 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4276 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4277 } else
4278 return -EINVAL;
7c734359
RM
4279
4280 queue_delayed_work(qdev->workqueue,
4281 &qdev->mpi_port_cfg_work, 3*HZ);
4282
746079da
BL
4283 ndev->mtu = new_mtu;
4284
7c734359 4285 if (!netif_running(qdev->ndev)) {
7c734359
RM
4286 return 0;
4287 }
4288
7c734359
RM
4289 status = ql_change_rx_buffers(qdev);
4290 if (status) {
ae9540f7
JP
4291 netif_err(qdev, ifup, qdev->ndev,
4292 "Changing MTU failed.\n");
7c734359
RM
4293 }
4294
4295 return status;
c4e84bde
RM
4296}
4297
4298static struct net_device_stats *qlge_get_stats(struct net_device
4299 *ndev)
4300{
885ee398
RM
4301 struct ql_adapter *qdev = netdev_priv(ndev);
4302 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4303 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4304 unsigned long pkts, mcast, dropped, errors, bytes;
4305 int i;
4306
4307 /* Get RX stats. */
4308 pkts = mcast = dropped = errors = bytes = 0;
4309 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4310 pkts += rx_ring->rx_packets;
4311 bytes += rx_ring->rx_bytes;
4312 dropped += rx_ring->rx_dropped;
4313 errors += rx_ring->rx_errors;
4314 mcast += rx_ring->rx_multicast;
4315 }
4316 ndev->stats.rx_packets = pkts;
4317 ndev->stats.rx_bytes = bytes;
4318 ndev->stats.rx_dropped = dropped;
4319 ndev->stats.rx_errors = errors;
4320 ndev->stats.multicast = mcast;
4321
4322 /* Get TX stats. */
4323 pkts = errors = bytes = 0;
4324 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4325 pkts += tx_ring->tx_packets;
4326 bytes += tx_ring->tx_bytes;
4327 errors += tx_ring->tx_errors;
4328 }
4329 ndev->stats.tx_packets = pkts;
4330 ndev->stats.tx_bytes = bytes;
4331 ndev->stats.tx_errors = errors;
bcc90f55 4332 return &ndev->stats;
c4e84bde
RM
4333}
4334
ac409215 4335static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4336{
b16fed0a 4337 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4338 struct netdev_hw_addr *ha;
cc288f54 4339 int i, status;
c4e84bde 4340
cc288f54
RM
4341 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4342 if (status)
4343 return;
c4e84bde
RM
4344 /*
4345 * Set or clear promiscuous mode if a
4346 * transition is taking place.
4347 */
4348 if (ndev->flags & IFF_PROMISC) {
4349 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4350 if (ql_set_routing_reg
4351 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4352 netif_err(qdev, hw, qdev->ndev,
25985edc 4353 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4354 } else {
4355 set_bit(QL_PROMISCUOUS, &qdev->flags);
4356 }
4357 }
4358 } else {
4359 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4360 if (ql_set_routing_reg
4361 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4362 netif_err(qdev, hw, qdev->ndev,
25985edc 4363 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4364 } else {
4365 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4366 }
4367 }
4368 }
4369
4370 /*
4371 * Set or clear all multicast mode if a
4372 * transition is taking place.
4373 */
4374 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4375 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4376 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4377 if (ql_set_routing_reg
4378 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4379 netif_err(qdev, hw, qdev->ndev,
4380 "Failed to set all-multi mode.\n");
c4e84bde
RM
4381 } else {
4382 set_bit(QL_ALLMULTI, &qdev->flags);
4383 }
4384 }
4385 } else {
4386 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4387 if (ql_set_routing_reg
4388 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4389 netif_err(qdev, hw, qdev->ndev,
4390 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4391 } else {
4392 clear_bit(QL_ALLMULTI, &qdev->flags);
4393 }
4394 }
4395 }
4396
4cd24eaf 4397 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4398 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4399 if (status)
4400 goto exit;
f9dcbcc9 4401 i = 0;
22bedad3
JP
4402 netdev_for_each_mc_addr(ha, ndev) {
4403 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4404 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4405 netif_err(qdev, hw, qdev->ndev,
4406 "Failed to loadmulticast address.\n");
cc288f54 4407 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4408 goto exit;
4409 }
f9dcbcc9
JP
4410 i++;
4411 }
cc288f54 4412 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4413 if (ql_set_routing_reg
4414 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4415 netif_err(qdev, hw, qdev->ndev,
4416 "Failed to set multicast match mode.\n");
c4e84bde
RM
4417 } else {
4418 set_bit(QL_ALLMULTI, &qdev->flags);
4419 }
4420 }
4421exit:
8587ea35 4422 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4423}
4424
4425static int qlge_set_mac_address(struct net_device *ndev, void *p)
4426{
b16fed0a 4427 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4428 struct sockaddr *addr = p;
cc288f54 4429 int status;
c4e84bde 4430
c4e84bde
RM
4431 if (!is_valid_ether_addr(addr->sa_data))
4432 return -EADDRNOTAVAIL;
4433 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4434 /* Update local copy of current mac address. */
4435 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4436
cc288f54
RM
4437 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4438 if (status)
4439 return status;
cc288f54
RM
4440 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4441 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4442 if (status)
ae9540f7 4443 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4444 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4445 return status;
c4e84bde
RM
4446}
4447
4448static void qlge_tx_timeout(struct net_device *ndev)
4449{
b16fed0a 4450 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4451 ql_queue_asic_error(qdev);
c4e84bde
RM
4452}
4453
4454static void ql_asic_reset_work(struct work_struct *work)
4455{
4456 struct ql_adapter *qdev =
4457 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4458 int status;
f2c0d8df 4459 rtnl_lock();
db98812f
RM
4460 status = ql_adapter_down(qdev);
4461 if (status)
4462 goto error;
4463
4464 status = ql_adapter_up(qdev);
4465 if (status)
4466 goto error;
2cd6dbaa
RM
4467
4468 /* Restore rx mode. */
4469 clear_bit(QL_ALLMULTI, &qdev->flags);
4470 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4471 qlge_set_multicast_list(qdev->ndev);
4472
f2c0d8df 4473 rtnl_unlock();
db98812f
RM
4474 return;
4475error:
ae9540f7
JP
4476 netif_alert(qdev, ifup, qdev->ndev,
4477 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4478
db98812f
RM
4479 set_bit(QL_ADAPTER_UP, &qdev->flags);
4480 dev_close(qdev->ndev);
4481 rtnl_unlock();
c4e84bde
RM
4482}
4483
ef9c7ab4 4484static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4485 .get_flash = ql_get_8012_flash_params,
4486 .port_initialize = ql_8012_port_initialize,
4487};
4488
ef9c7ab4 4489static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4490 .get_flash = ql_get_8000_flash_params,
4491 .port_initialize = ql_8000_port_initialize,
4492};
4493
e4552f51
RM
4494/* Find the pcie function number for the other NIC
4495 * on this chip. Since both NIC functions share a
4496 * common firmware we have the lowest enabled function
4497 * do any common work. Examples would be resetting
4498 * after a fatal firmware error, or doing a firmware
4499 * coredump.
4500 */
4501static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4502{
4503 int status = 0;
4504 u32 temp;
4505 u32 nic_func1, nic_func2;
4506
4507 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4508 &temp);
4509 if (status)
4510 return status;
4511
4512 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4513 MPI_TEST_NIC_FUNC_MASK);
4514 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4515 MPI_TEST_NIC_FUNC_MASK);
4516
4517 if (qdev->func == nic_func1)
4518 qdev->alt_func = nic_func2;
4519 else if (qdev->func == nic_func2)
4520 qdev->alt_func = nic_func1;
4521 else
4522 status = -EIO;
4523
4524 return status;
4525}
b0c2aadf 4526
e4552f51 4527static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4528{
e4552f51 4529 int status;
c4e84bde
RM
4530 qdev->func =
4531 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4532 if (qdev->func > 3)
4533 return -EIO;
4534
4535 status = ql_get_alt_pcie_func(qdev);
4536 if (status)
4537 return status;
4538
4539 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4540 if (qdev->port) {
c4e84bde
RM
4541 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4542 qdev->port_link_up = STS_PL1;
4543 qdev->port_init = STS_PI1;
4544 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4545 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4546 } else {
4547 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4548 qdev->port_link_up = STS_PL0;
4549 qdev->port_init = STS_PI0;
4550 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4551 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4552 }
4553 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4554 qdev->device_id = qdev->pdev->device;
4555 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4556 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4557 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4558 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4559 return status;
c4e84bde
RM
4560}
4561
4562static void ql_release_all(struct pci_dev *pdev)
4563{
4564 struct net_device *ndev = pci_get_drvdata(pdev);
4565 struct ql_adapter *qdev = netdev_priv(ndev);
4566
4567 if (qdev->workqueue) {
4568 destroy_workqueue(qdev->workqueue);
4569 qdev->workqueue = NULL;
4570 }
39aa8165 4571
c4e84bde 4572 if (qdev->reg_base)
8668ae92 4573 iounmap(qdev->reg_base);
c4e84bde
RM
4574 if (qdev->doorbell_area)
4575 iounmap(qdev->doorbell_area);
8aae2600 4576 vfree(qdev->mpi_coredump);
c4e84bde 4577 pci_release_regions(pdev);
c4e84bde
RM
4578}
4579
1dd06ae8
GKH
4580static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4581 int cards_found)
c4e84bde
RM
4582{
4583 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4584 int err = 0;
c4e84bde 4585
e332471c 4586 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4587 err = pci_enable_device(pdev);
4588 if (err) {
4589 dev_err(&pdev->dev, "PCI device enable failed.\n");
4590 return err;
4591 }
4592
ebd6e774
RM
4593 qdev->ndev = ndev;
4594 qdev->pdev = pdev;
4595 pci_set_drvdata(pdev, ndev);
c4e84bde 4596
bc9167f3
RM
4597 /* Set PCIe read request size */
4598 err = pcie_set_readrq(pdev, 4096);
4599 if (err) {
4600 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4601 goto err_out1;
bc9167f3
RM
4602 }
4603
c4e84bde
RM
4604 err = pci_request_regions(pdev, DRV_NAME);
4605 if (err) {
4606 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4607 return err;
c4e84bde
RM
4608 }
4609
4610 pci_set_master(pdev);
6a35528a 4611 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4612 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4613 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4614 } else {
284901a9 4615 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4616 if (!err)
284901a9 4617 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4618 }
4619
4620 if (err) {
4621 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4622 goto err_out2;
c4e84bde
RM
4623 }
4624
73475339
RM
4625 /* Set PCIe reset type for EEH to fundamental. */
4626 pdev->needs_freset = 1;
6d190c6e 4627 pci_save_state(pdev);
c4e84bde
RM
4628 qdev->reg_base =
4629 ioremap_nocache(pci_resource_start(pdev, 1),
4630 pci_resource_len(pdev, 1));
4631 if (!qdev->reg_base) {
4632 dev_err(&pdev->dev, "Register mapping failed.\n");
4633 err = -ENOMEM;
4f9a91c8 4634 goto err_out2;
c4e84bde
RM
4635 }
4636
4637 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4638 qdev->doorbell_area =
4639 ioremap_nocache(pci_resource_start(pdev, 3),
4640 pci_resource_len(pdev, 3));
4641 if (!qdev->doorbell_area) {
4642 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4643 err = -ENOMEM;
4f9a91c8 4644 goto err_out2;
c4e84bde
RM
4645 }
4646
e4552f51
RM
4647 err = ql_get_board_info(qdev);
4648 if (err) {
4649 dev_err(&pdev->dev, "Register access failed.\n");
4650 err = -EIO;
4f9a91c8 4651 goto err_out2;
e4552f51 4652 }
c4e84bde
RM
4653 qdev->msg_enable = netif_msg_init(debug, default_msg);
4654 spin_lock_init(&qdev->hw_lock);
4655 spin_lock_init(&qdev->stats_lock);
4656
8aae2600
RM
4657 if (qlge_mpi_coredump) {
4658 qdev->mpi_coredump =
4659 vmalloc(sizeof(struct ql_mpi_coredump));
4660 if (qdev->mpi_coredump == NULL) {
8aae2600 4661 err = -ENOMEM;
ce96bc86 4662 goto err_out2;
8aae2600 4663 }
d5c1da56
RM
4664 if (qlge_force_coredump)
4665 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4666 }
c4e84bde 4667 /* make sure the EEPROM is good */
b0c2aadf 4668 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4669 if (err) {
4670 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4671 goto err_out2;
c4e84bde
RM
4672 }
4673
801e9096
RM
4674 /* Keep local copy of current mac address. */
4675 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4676
4677 /* Set up the default ring sizes. */
4678 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4679 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4680
4681 /* Set up the coalescing parameters. */
4682 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4683 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4684 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4685 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4686
4687 /*
4688 * Set up the operating parameters.
4689 */
ac18dd9e 4690 qdev->workqueue = alloc_ordered_workqueue(ndev->name, WQ_MEM_RECLAIM);
c4e84bde
RM
4691 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4694 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4695 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4696 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4697 init_completion(&qdev->ide_completion);
4d7b6b5d 4698 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4699
4700 if (!cards_found) {
4701 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4702 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4703 DRV_NAME, DRV_VERSION);
4704 }
4705 return 0;
4f9a91c8 4706err_out2:
c4e84bde 4707 ql_release_all(pdev);
4f9a91c8 4708err_out1:
c4e84bde
RM
4709 pci_disable_device(pdev);
4710 return err;
4711}
4712
25ed7849
SH
4713static const struct net_device_ops qlge_netdev_ops = {
4714 .ndo_open = qlge_open,
4715 .ndo_stop = qlge_close,
4716 .ndo_start_xmit = qlge_send,
4717 .ndo_change_mtu = qlge_change_mtu,
4718 .ndo_get_stats = qlge_get_stats,
afc4b13d 4719 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4720 .ndo_set_mac_address = qlge_set_mac_address,
4721 .ndo_validate_addr = eth_validate_addr,
4722 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4723 .ndo_fix_features = qlge_fix_features,
4724 .ndo_set_features = qlge_set_features,
01e6b953
RM
4725 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4726 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4727};
4728
15c052fc
RM
4729static void ql_timer(unsigned long data)
4730{
4731 struct ql_adapter *qdev = (struct ql_adapter *)data;
4732 u32 var = 0;
4733
4734 var = ql_read32(qdev, STS);
4735 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4736 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4737 return;
4738 }
4739
72046d84 4740 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4741}
4742
5d8e8726 4743static int qlge_probe(struct pci_dev *pdev,
1dd06ae8 4744 const struct pci_device_id *pci_entry)
c4e84bde
RM
4745{
4746 struct net_device *ndev = NULL;
4747 struct ql_adapter *qdev = NULL;
4748 static int cards_found = 0;
4749 int err = 0;
4750
1e213303 4751 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4752 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4753 if (!ndev)
4754 return -ENOMEM;
4755
4756 err = ql_init_device(pdev, ndev, cards_found);
4757 if (err < 0) {
4758 free_netdev(ndev);
4759 return err;
4760 }
4761
4762 qdev = netdev_priv(ndev);
4763 SET_NETDEV_DEV(ndev, &pdev->dev);
a45adbe8
JK
4764 ndev->hw_features = NETIF_F_SG |
4765 NETIF_F_IP_CSUM |
4766 NETIF_F_TSO |
4767 NETIF_F_TSO_ECN |
4768 NETIF_F_HW_VLAN_CTAG_TX |
4769 NETIF_F_HW_VLAN_CTAG_RX |
4770 NETIF_F_HW_VLAN_CTAG_FILTER |
4771 NETIF_F_RXCSUM;
4772 ndev->features = ndev->hw_features;
1a0150a9 4773 ndev->vlan_features = ndev->hw_features;
51bb352f 4774 /* vlan gets same features (except vlan filter) */
f6d1ac4b
VY
4775 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4776 NETIF_F_HW_VLAN_CTAG_TX |
4777 NETIF_F_HW_VLAN_CTAG_RX);
c4e84bde
RM
4778
4779 if (test_bit(QL_DMA64, &qdev->flags))
4780 ndev->features |= NETIF_F_HIGHDMA;
4781
4782 /*
4783 * Set up net_device structure.
4784 */
4785 ndev->tx_queue_len = qdev->tx_ring_size;
4786 ndev->irq = pdev->irq;
25ed7849
SH
4787
4788 ndev->netdev_ops = &qlge_netdev_ops;
7ad24ea4 4789 ndev->ethtool_ops = &qlge_ethtool_ops;
c4e84bde 4790 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4791
c4e84bde
RM
4792 err = register_netdev(ndev);
4793 if (err) {
4794 dev_err(&pdev->dev, "net device registration failed.\n");
4795 ql_release_all(pdev);
4796 pci_disable_device(pdev);
4d2593cc 4797 free_netdev(ndev);
c4e84bde
RM
4798 return err;
4799 }
15c052fc
RM
4800 /* Start up the timer to trigger EEH if
4801 * the bus goes dead
4802 */
4803 init_timer_deferrable(&qdev->timer);
4804 qdev->timer.data = (unsigned long)qdev;
4805 qdev->timer.function = ql_timer;
4806 qdev->timer.expires = jiffies + (5*HZ);
4807 add_timer(&qdev->timer);
6a473308 4808 ql_link_off(qdev);
c4e84bde 4809 ql_display_dev_info(ndev);
9dfbbaa6 4810 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4811 cards_found++;
4812 return 0;
4813}
4814
9dfbbaa6
RM
4815netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4816{
4817 return qlge_send(skb, ndev);
4818}
4819
4820int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4821{
4822 return ql_clean_inbound_rx_ring(rx_ring, budget);
4823}
4824
5d8e8726 4825static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4826{
4827 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4828 struct ql_adapter *qdev = netdev_priv(ndev);
4829 del_timer_sync(&qdev->timer);
c5dadddb 4830 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4831 unregister_netdev(ndev);
4832 ql_release_all(pdev);
4833 pci_disable_device(pdev);
4834 free_netdev(ndev);
4835}
4836
6d190c6e
RM
4837/* Clean up resources without touching hardware. */
4838static void ql_eeh_close(struct net_device *ndev)
4839{
4840 int i;
4841 struct ql_adapter *qdev = netdev_priv(ndev);
4842
4843 if (netif_carrier_ok(ndev)) {
4844 netif_carrier_off(ndev);
4845 netif_stop_queue(ndev);
4846 }
4847
7ae80abd
BL
4848 /* Disabling the timer */
4849 del_timer_sync(&qdev->timer);
c5dadddb 4850 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4851
4852 for (i = 0; i < qdev->rss_ring_count; i++)
4853 netif_napi_del(&qdev->rx_ring[i].napi);
4854
4855 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856 ql_tx_ring_clean(qdev);
4857 ql_free_rx_buffers(qdev);
4858 ql_release_adapter_resources(qdev);
4859}
4860
c4e84bde
RM
4861/*
4862 * This callback is called by the PCI subsystem whenever
4863 * a PCI bus error is detected.
4864 */
4865static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866 enum pci_channel_state state)
4867{
4868 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4869 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4870
6d190c6e
RM
4871 switch (state) {
4872 case pci_channel_io_normal:
4873 return PCI_ERS_RESULT_CAN_RECOVER;
4874 case pci_channel_io_frozen:
4875 netif_device_detach(ndev);
4876 if (netif_running(ndev))
4877 ql_eeh_close(ndev);
4878 pci_disable_device(pdev);
4879 return PCI_ERS_RESULT_NEED_RESET;
4880 case pci_channel_io_perm_failure:
4881 dev_err(&pdev->dev,
4882 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4883 ql_eeh_close(ndev);
4884 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4885 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4886 }
c4e84bde
RM
4887
4888 /* Request a slot reset. */
4889 return PCI_ERS_RESULT_NEED_RESET;
4890}
4891
4892/*
4893 * This callback is called after the PCI buss has been reset.
4894 * Basically, this tries to restart the card from scratch.
4895 * This is a shortened version of the device probe/discovery code,
4896 * it resembles the first-half of the () routine.
4897 */
4898static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4899{
4900 struct net_device *ndev = pci_get_drvdata(pdev);
4901 struct ql_adapter *qdev = netdev_priv(ndev);
4902
6d190c6e
RM
4903 pdev->error_state = pci_channel_io_normal;
4904
4905 pci_restore_state(pdev);
c4e84bde 4906 if (pci_enable_device(pdev)) {
ae9540f7
JP
4907 netif_err(qdev, ifup, qdev->ndev,
4908 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4909 return PCI_ERS_RESULT_DISCONNECT;
4910 }
c4e84bde 4911 pci_set_master(pdev);
a112fd4c
RM
4912
4913 if (ql_adapter_reset(qdev)) {
ae9540f7 4914 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4915 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4916 return PCI_ERS_RESULT_DISCONNECT;
4917 }
4918
c4e84bde
RM
4919 return PCI_ERS_RESULT_RECOVERED;
4920}
4921
4922static void qlge_io_resume(struct pci_dev *pdev)
4923{
4924 struct net_device *ndev = pci_get_drvdata(pdev);
4925 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4926 int err = 0;
c4e84bde 4927
c4e84bde 4928 if (netif_running(ndev)) {
6d190c6e
RM
4929 err = qlge_open(ndev);
4930 if (err) {
ae9540f7
JP
4931 netif_err(qdev, ifup, qdev->ndev,
4932 "Device initialization failed after reset.\n");
c4e84bde
RM
4933 return;
4934 }
6d190c6e 4935 } else {
ae9540f7
JP
4936 netif_err(qdev, ifup, qdev->ndev,
4937 "Device was not running prior to EEH.\n");
c4e84bde 4938 }
72046d84 4939 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4940 netif_device_attach(ndev);
4941}
4942
3646f0e5 4943static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4944 .error_detected = qlge_io_error_detected,
4945 .slot_reset = qlge_io_slot_reset,
4946 .resume = qlge_io_resume,
4947};
4948
4949static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4950{
4951 struct net_device *ndev = pci_get_drvdata(pdev);
4952 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4953 int err;
c4e84bde
RM
4954
4955 netif_device_detach(ndev);
15c052fc 4956 del_timer_sync(&qdev->timer);
c4e84bde
RM
4957
4958 if (netif_running(ndev)) {
4959 err = ql_adapter_down(qdev);
4960 if (!err)
4961 return err;
4962 }
4963
bc083ce9 4964 ql_wol(qdev);
c4e84bde
RM
4965 err = pci_save_state(pdev);
4966 if (err)
4967 return err;
4968
4969 pci_disable_device(pdev);
4970
4971 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4972
4973 return 0;
4974}
4975
04da2cf9 4976#ifdef CONFIG_PM
c4e84bde
RM
4977static int qlge_resume(struct pci_dev *pdev)
4978{
4979 struct net_device *ndev = pci_get_drvdata(pdev);
4980 struct ql_adapter *qdev = netdev_priv(ndev);
4981 int err;
4982
4983 pci_set_power_state(pdev, PCI_D0);
4984 pci_restore_state(pdev);
4985 err = pci_enable_device(pdev);
4986 if (err) {
ae9540f7 4987 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4988 return err;
4989 }
4990 pci_set_master(pdev);
4991
4992 pci_enable_wake(pdev, PCI_D3hot, 0);
4993 pci_enable_wake(pdev, PCI_D3cold, 0);
4994
4995 if (netif_running(ndev)) {
4996 err = ql_adapter_up(qdev);
4997 if (err)
4998 return err;
4999 }
5000
72046d84 5001 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
5002 netif_device_attach(ndev);
5003
5004 return 0;
5005}
04da2cf9 5006#endif /* CONFIG_PM */
c4e84bde
RM
5007
5008static void qlge_shutdown(struct pci_dev *pdev)
5009{
5010 qlge_suspend(pdev, PMSG_SUSPEND);
5011}
5012
5013static struct pci_driver qlge_driver = {
5014 .name = DRV_NAME,
5015 .id_table = qlge_pci_tbl,
5016 .probe = qlge_probe,
5d8e8726 5017 .remove = qlge_remove,
c4e84bde
RM
5018#ifdef CONFIG_PM
5019 .suspend = qlge_suspend,
5020 .resume = qlge_resume,
5021#endif
5022 .shutdown = qlge_shutdown,
5023 .err_handler = &qlge_err_handler
5024};
5025
70a611de 5026module_pci_driver(qlge_driver);
This page took 1.193555 seconds and 5 git commands to generate.