qlge: Use pci_enable_msix_range() instead of pci_enable_msix()
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
18c49b91 9#include <linux/bitops.h>
c4e84bde
RM
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
18c49b91 36#include <linux/if_vlan.h>
c4e84bde 37#include <linux/skbuff.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
70c71606 41#include <linux/prefetch.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
84cf7029
SR
66static int debug = -1; /* defaults above */
67module_param(debug, int, 0664);
c4e84bde
RM
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
a5a62a1c 73static int qlge_irq_type = MSIX_IRQ;
84cf7029 74module_param(qlge_irq_type, int, 0664);
a5a62a1c 75MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 76
8aae2600
RM
77static int qlge_mpi_coredump;
78module_param(qlge_mpi_coredump, int, 0);
79MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
d5c1da56
RM
81 "Default is OFF - Do Not allocate memory. ");
82
83static int qlge_force_coredump;
84module_param(qlge_force_coredump, int, 0);
85MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
8aae2600 88
a3aa1884 89static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
92 /* required last entry */
93 {0,}
94};
95
96MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
a45adbe8
JK
98static int ql_wol(struct ql_adapter *);
99static void qlge_set_multicast_list(struct net_device *);
100static int ql_adapter_down(struct ql_adapter *);
101static int ql_adapter_up(struct ql_adapter *);
ac409215 102
c4e84bde
RM
103/* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108{
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
ae9540f7 137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143}
144
145int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146{
0857e9d7 147 unsigned int wait_count = 30;
c4e84bde
RM
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
0857e9d7
RM
151 udelay(100);
152 } while (--wait_count);
c4e84bde
RM
153 return -ETIMEDOUT;
154}
155
156void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157{
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160}
161
162/* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168{
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
ae9540f7
JP
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
c4e84bde
RM
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
ae9540f7
JP
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
188 return -ETIMEDOUT;
189}
190
191/* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195{
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209}
210
211
212/* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217{
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
231 return -ENOMEM;
232 }
233
4322c5be
RM
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
c4e84bde
RM
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
ae9540f7
JP
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
242 goto exit;
243 }
244
c4e84bde
RM
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256exit:
4322c5be 257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260}
261
262/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265{
266 u32 offset = 0;
267 int status;
268
c4e84bde
RM
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
939678f8 275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
939678f8 283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
939678f8 289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
939678f8 297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
939678f8 304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 312 MAC_ADDR_MR, 0);
c4e84bde
RM
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
ae9540f7
JP
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
c4e84bde
RM
324 status = -EPERM;
325 }
326exit:
c4e84bde
RM
327 return status;
328}
329
330/* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335{
336 u32 offset = 0;
337 int status = 0;
338
c4e84bde
RM
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
c4e84bde
RM
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
c4e84bde
RM
379 status =
380 ql_wait_reg_rdy(qdev,
939678f8 381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
939678f8 390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
939678f8 399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
76b26694
RM
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
f646968f 413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
76b26694
RM
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
c4e84bde
RM
427 status =
428 ql_wait_reg_rdy(qdev,
939678f8 429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
ae9540f7
JP
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
c4e84bde
RM
442 status = -EPERM;
443 }
444exit:
c4e84bde
RM
445 return status;
446}
447
7fab3bfe
RM
448/* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453{
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
801e9096 459 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
462 } else {
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
ae9540f7
JP
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
7fab3bfe
RM
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
ae9540f7
JP
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
7fab3bfe
RM
477 return status;
478}
479
6a473308
RM
480void ql_link_on(struct ql_adapter *qdev)
481{
ae9540f7 482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485}
486
487void ql_link_off(struct ql_adapter *qdev)
488{
ae9540f7 489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492}
493
c4e84bde
RM
494/* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498{
499 int status = 0;
500
939678f8 501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511exit:
c4e84bde
RM
512 return status;
513}
514
515/* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522{
8587ea35 523 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
524 u32 value = 0;
525
c4e84bde
RM
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
fbc2ac33
RM
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
c4e84bde
RM
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
e163d7f2 573 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
e163d7f2 580 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
ae9540f7
JP
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614exit:
c4e84bde
RM
615 return status;
616}
617
618static void ql_enable_interrupts(struct ql_adapter *qdev)
619{
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621}
622
623static void ql_disable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626}
627
628/* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 631 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
bb0d215c 634u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 635{
bb0d215c
RM
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
c4e84bde 644 ql_write32(qdev, INTR_EN,
bb0d215c
RM
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
c4e84bde 648 }
bb0d215c
RM
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
c4e84bde
RM
658}
659
660static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661{
662 u32 var = 0;
bb0d215c 663 struct intr_context *ctx;
c4e84bde 664
bb0d215c
RM
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
08b1bc8f 672 spin_lock(&qdev->hw_lock);
bb0d215c 673 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 674 ql_write32(qdev, INTR_EN,
bb0d215c 675 ctx->intr_dis_mask);
c4e84bde
RM
676 var = ql_read32(qdev, STS);
677 }
bb0d215c 678 atomic_inc(&ctx->irq_cnt);
08b1bc8f 679 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
680 return var;
681}
682
683static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684{
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
bb0d215c
RM
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697}
698
b0c2aadf
RM
699static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700{
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
ae9540f7 707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
ae9540f7
JP
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
717
718 return csum;
719}
720
26351479 721static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
722{
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
26351479
RM
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
741exit:
742 return status;
743}
744
cdca8d02
RM
745static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746{
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
542512e4 751 u8 mac_addr[6];
cdca8d02
RM
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
e4552f51 756 if (!qdev->port)
cdca8d02
RM
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
ae9540f7
JP
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
cdca8d02
RM
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
ae9540f7 778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
779 status = -EINVAL;
780 goto exit;
781 }
782
542512e4
RM
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
542512e4 802 mac_addr,
cdca8d02
RM
803 qdev->ndev->addr_len);
804
805exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808}
809
b0c2aadf 810static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
811{
812 int i;
813 int status;
26351479 814 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 815 u32 offset = 0;
b0c2aadf 816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
e4552f51 821 if (qdev->port)
b0c2aadf 822 offset = size;
c4e84bde
RM
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
b0c2aadf 827 for (i = 0; i < size; i++, p++) {
e78f5fa7 828 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 829 if (status) {
ae9540f7
JP
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
c4e84bde
RM
832 goto exit;
833 }
834
835 }
b0c2aadf
RM
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
ae9540f7 841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
c4e84bde
RM
855exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858}
859
860/* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865{
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877}
878
879/* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884{
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900exit:
901 return status;
902}
903
904/* This is used for reading the 64-bit statistics regs. */
905int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906{
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921exit:
922 return status;
923}
924
cdca8d02
RM
925static int ql_8000_port_initialize(struct ql_adapter *qdev)
926{
bcc2cb3b 927 int status;
cfec0cbc
RM
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
bcc2cb3b
RM
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940exit:
941 return status;
cdca8d02
RM
942}
943
c4e84bde
RM
944/* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
b0c2aadf 950static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
951{
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
ae9540f7
JP
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
ae9540f7
JP
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
c4e84bde
RM
965 }
966 return status;
967 }
968
ae9540f7 969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023}
1024
7c734359
RM
1025static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026{
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028}
1029
c4e84bde 1030/* Get the next large buffer. */
8668ae92 1031static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1032{
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039}
1040
7c734359
RM
1041static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043{
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1047 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061}
1062
c4e84bde 1063/* Get the next small buffer. */
8668ae92 1064static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1065{
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072}
1073
1074/* Update an rx ring index. */
1075static void ql_update_cq(struct rx_ring *rx_ring)
1076{
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083}
1084
1085static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086{
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088}
1089
7c734359
RM
1090static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092{
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
7c734359
RM
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
ef380794 1110 rx_ring->pg_chunk.page = NULL;
ae9540f7
JP
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
7c734359
RM
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137}
c4e84bde
RM
1138/* Process (refill) a large buffer queue. */
1139static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140{
49f2186d
RM
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
c4e84bde 1143 struct bq_desc *lbq_desc;
c4e84bde
RM
1144 u64 map;
1145 int i;
1146
7c734359 1147 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
c4e84bde 1152 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1154 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1155 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
ae9540f7
JP
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
ae9540f7
JP
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
c4e84bde
RM
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1203 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde 1207 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
c4e84bde
RM
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
52e55f3c 1214 SMALL_BUFFER_SIZE);
c4e84bde 1215 if (sbq_desc->p.skb == NULL) {
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
433c88e8 1436/* Categorizing receive firmware frame errors */
ae721f3a
SV
1437static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
433c88e8
JK
1439{
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
ae721f3a 1443 rx_ring->rx_errors++;
433c88e8
JK
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466}
1467
a45adbe8
JK
1468/**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475{
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489}
1490
63526713
RM
1491/* Process an inbound completion from an rx ring. */
1492static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497{
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1500 struct napi_struct *napi = &rx_ring->napi;
1501
ae721f3a
SV
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
63526713
RM
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
ae9540f7
JP
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
63526713
RM
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
63526713
RM
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1533 if (vlan_id != 0xffff)
86a9bad3 1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91 1535 napi_gro_frags(napi);
63526713
RM
1536}
1537
4f848c0a
RM
1538/* Process an inbound completion from an rx ring. */
1539static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544{
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
a45adbe8 1550 size_t hlen = ETH_HLEN;
4f848c0a
RM
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
4f848c0a
RM
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
ae721f3a
SV
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
a45adbe8
JK
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
4f848c0a
RM
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
a45adbe8 1574 if (skb->len > ndev->mtu + hlen) {
ae9540f7
JP
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
4f848c0a
RM
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
a45adbe8 1580 memcpy(skb_put(skb, hlen), addr, hlen);
ae9540f7
JP
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
4f848c0a 1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
a45adbe8
JK
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
4f848c0a
RM
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1594 skb_checksum_none_assert(skb);
4f848c0a 1595
88230fd5 1596 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
4f848c0a
RM
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
e02ef331 1606 struct iphdr *iph =
a45adbe8 1607 (struct iphdr *)((u8 *)addr + hlen);
4f848c0a 1608 if (!(iph->frag_off &
0d653ed8 1609 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
e02ef331 1613 "UDP checksum done!\n");
4f848c0a
RM
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1619 if (vlan_id != 0xffff)
86a9bad3 1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
4f848c0a
RM
1625 return;
1626err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629}
1630
1631/* Process an inbound completion from an rx ring. */
1632static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637{
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
4f848c0a
RM
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1653
ae721f3a
SV
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1659 }
1660
4f848c0a
RM
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1666 }
1667
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1670 */
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1675 }
1676
1677 prefetch(skb->data);
4f848c0a 1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1687 }
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
4f848c0a
RM
1691
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1695 skb_checksum_none_assert(skb);
4f848c0a
RM
1696
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1699 */
88230fd5 1700 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
4f848c0a
RM
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
0d653ed8 1712 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
e02ef331 1716 "UDP checksum done!\n");
4f848c0a
RM
1717 }
1718 }
1719 }
1720
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1722 if (vlan_id != 0xffff)
86a9bad3 1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
4f848c0a
RM
1728}
1729
8668ae92 1730static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1731{
1732 void *temp_addr = skb->data;
1733
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1737 */
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1742}
1743
1744/*
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1748 */
1749static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1752{
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
c4e84bde
RM
1759
1760 /*
1761 * Handle the header buffer if present.
1762 */
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1767 /*
1768 * Headers fit nicely into a small buffer.
1769 */
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1779 }
1780
1781 /*
1782 * Handle the data buffer(s).
1783 */
1784 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
c4e84bde
RM
1787 return skb;
1788 }
1789
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
c4e84bde
RM
1795 /*
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1801 */
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1804 dma_unmap_addr
c4e84bde 1805 (sbq_desc, mapaddr),
64b9b41d 1806 dma_unmap_len
c4e84bde
RM
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1812 dma_unmap_addr
c4e84bde
RM
1813 (sbq_desc,
1814 mapaddr),
64b9b41d 1815 dma_unmap_len
c4e84bde
RM
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
ae9540f7
JP
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
c4e84bde
RM
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
64b9b41d 1828 dma_unmap_addr(sbq_desc,
c4e84bde 1829 mapaddr),
64b9b41d 1830 dma_unmap_len(sbq_desc,
c4e84bde
RM
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1834 }
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
c4e84bde
RM
1840 /*
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1844 */
7c734359 1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
c4e84bde
RM
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
c4e84bde
RM
1855 } else {
1856 /*
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1860 */
7c734359 1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
ae9540f7
JP
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
c4e84bde
RM
1866 return NULL;
1867 }
4055c7d4 1868 pci_unmap_page(qdev->pdev,
64b9b41d 1869 dma_unmap_addr(lbq_desc,
4055c7d4 1870 mapaddr),
64b9b41d 1871 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1872 PCI_DMA_FROMDEVICE);
c4e84bde 1873 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
7c734359
RM
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
c4e84bde
RM
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
a45adbe8
JK
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1889 }
1890 } else {
1891 /*
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1901 */
7c734359 1902 int size, i = 0;
c4e84bde
RM
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909 /*
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1917 */
ae9540f7
JP
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
c4e84bde 1921 skb = sbq_desc->p.skb;
c4e84bde
RM
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1924 }
1925 while (length > 0) {
7c734359
RM
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
c4e84bde 1929
ae9540f7
JP
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
7c734359
RM
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
c4e84bde
RM
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
c4e84bde
RM
1941 i++;
1942 }
a45adbe8
JK
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1946 }
1947 return skb;
1948}
1949
1950/* Process an inbound completion from an rx ring. */
4f848c0a 1951static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1952 struct rx_ring *rx_ring,
4f848c0a
RM
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
c4e84bde
RM
1955{
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1958
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
ae9540f7
JP
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
885ee398 1965 rx_ring->rx_dropped++;
c4e84bde
RM
1966 return;
1967 }
1968
ae721f3a
SV
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1974 }
1975
ec33a491
RM
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1978 */
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
885ee398 1981 rx_ring->rx_dropped++;
ec33a491
RM
1982 return;
1983 }
1984
9dfbbaa6
RM
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1990 }
1991
c4e84bde 1992 prefetch(skb->data);
c4e84bde 1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 2001 rx_ring->rx_multicast++;
c4e84bde
RM
2002 }
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
c4e84bde 2006 }
d555f592 2007
d555f592 2008 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 2009 skb_checksum_none_assert(skb);
d555f592
RM
2010
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2013 */
88230fd5 2014 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
d555f592
RM
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
0d653ed8 2026 htons(IP_MF|IP_OFFSET))) {
d555f592 2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
d555f592
RM
2030 }
2031 }
c4e84bde 2032 }
d555f592 2033
885ee398
RM
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
b2014ff8 2036 skb_record_rx_queue(skb, rx_ring->cq_id);
a45adbe8 2037 if (vlan_id != 0xffff)
86a9bad3 2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
c4e84bde
RM
2043}
2044
4f848c0a
RM
2045/* Process an inbound completion from an rx ring. */
2046static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049{
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
4f848c0a
RM
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2061 */
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2068 */
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
63526713
RM
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2076 */
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
4f848c0a
RM
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2082 */
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
c0c56955
RM
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2088 */
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
4f848c0a
RM
2091 }
2092
2093 return (unsigned long)length;
2094}
2095
c4e84bde
RM
2096/* Process an outbound completion from an rx ring. */
2097static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2099{
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2102
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
c4e84bde
RM
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2111
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2119 }
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2123 }
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2127 }
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2131 }
2132 }
2133 atomic_inc(&tx_ring->tx_count);
2134}
2135
2136/* Fire up a handler to reset the MPI processor. */
2137void ql_queue_fw_error(struct ql_adapter *qdev)
2138{
6a473308 2139 ql_link_off(qdev);
c4e84bde
RM
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141}
2142
2143void ql_queue_asic_error(struct ql_adapter *qdev)
2144{
6a473308 2145 ql_link_off(qdev);
c4e84bde 2146 ql_disable_interrupts(qdev);
6497b607
RM
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2150 */
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2154 */
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157}
2158
2159static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161{
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
ae9540f7
JP
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
c4e84bde
RM
2166 ql_queue_fw_error(qdev);
2167 return;
2168
2169 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
5069ee55 2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2177 ql_queue_asic_error(qdev);
2178 break;
2179
2180 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
c4e84bde
RM
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 default:
ae9540f7
JP
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
c4e84bde
RM
2190 ql_queue_asic_error(qdev);
2191 break;
2192 }
2193}
2194
2195static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196{
2197 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2201
1e213303 2202 struct tx_ring *tx_ring;
c4e84bde
RM
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2205
ae9540f7
JP
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2209
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2213
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
ae9540f7
JP
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
c4e84bde
RM
2222 }
2223 count++;
2224 ql_update_cq(rx_ring);
ba7cd3ba 2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2226 }
4da79504
DC
2227 if (!net_rsp)
2228 return 0;
c4e84bde 2229 ql_write_cq_idx(rx_ring);
1e213303 2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2233 /*
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2236 */
1e213303 2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2238 }
2239
2240 return count;
2241}
2242
2243static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244{
2245 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2249
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2252
ae9540f7
JP
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2256
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2265
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
ae9540f7
JP
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
c4e84bde
RM
2275 }
2276 count++;
2277 ql_update_cq(rx_ring);
ba7cd3ba 2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2279 if (count == budget)
2280 break;
2281 }
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2285}
2286
2287static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288{
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2294
ae9540f7
JP
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2297
39aa8165
RM
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2304 */
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
39aa8165
RM
2311 ql_clean_outbound_rx_ring(trx_ring);
2312 }
2313 }
2314
2315 /*
2316 * Now service the RSS ring if it's active.
2317 */
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
ae9540f7
JP
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
39aa8165
RM
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324 }
2325
c4e84bde 2326 if (work_done < budget) {
22bdd4f5 2327 napi_complete(napi);
c4e84bde
RM
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329 }
2330 return work_done;
2331}
2332
c8f44aff 2333static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2334{
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2336
f646968f 2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
c4e84bde 2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2340 } else {
c4e84bde
RM
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342 }
2343}
2344
a45adbe8
JK
2345/**
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2348 */
2349static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2351{
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
2354
2355 status = ql_adapter_down(qdev);
2356 if (status) {
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2359 return status;
2360 }
2361
2362 /* update the features with resent change */
2363 ndev->features = features;
2364
2365 status = ql_adapter_up(qdev);
2366 if (status) {
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2369 return status;
2370 }
2371 return status;
2372}
2373
c8f44aff
MM
2374static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
18c49b91 2376{
a45adbe8 2377 int err;
18c49b91 2378
a45adbe8
JK
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2381 if (err)
2382 return err;
2383
18c49b91
JP
2384 return features;
2385}
2386
c8f44aff
MM
2387static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
18c49b91 2389{
c8f44aff 2390 netdev_features_t changed = ndev->features ^ features;
18c49b91 2391
f646968f 2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
18c49b91
JP
2393 qlge_vlan_mode(ndev, features);
2394
2395 return 0;
2396}
2397
8e586137 2398static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2399{
c4e84bde 2400 u32 enable_bit = MAC_ADDR_E;
8e586137 2401 int err;
c4e84bde 2402
8e586137
JP
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2405 if (err)
ae9540f7
JP
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
8e586137 2408 return err;
c4e84bde
RM
2409}
2410
80d5c368 2411static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
c4e84bde
RM
2412{
2413 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2414 int status;
8e586137 2415 int err;
cc288f54
RM
2416
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418 if (status)
8e586137 2419 return status;
c4e84bde 2420
8e586137 2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2422 set_bit(vid, qdev->active_vlans);
2423
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2425
2426 return err;
18c49b91
JP
2427}
2428
8e586137 2429static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2430{
2431 u32 enable_bit = 0;
8e586137 2432 int err;
18c49b91 2433
8e586137
JP
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2436 if (err)
ae9540f7
JP
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
8e586137 2439 return err;
18c49b91
JP
2440}
2441
80d5c368 2442static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
18c49b91
JP
2443{
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2445 int status;
8e586137 2446 int err;
c4e84bde 2447
18c49b91
JP
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449 if (status)
8e586137 2450 return status;
18c49b91 2451
8e586137 2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2453 clear_bit(vid, qdev->active_vlans);
2454
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2456
2457 return err;
c4e84bde
RM
2458}
2459
c1b60092
RM
2460static void qlge_restore_vlan(struct ql_adapter *qdev)
2461{
18c49b91
JP
2462 int status;
2463 u16 vid;
2464
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return;
2468
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2473}
2474
c4e84bde
RM
2475/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477{
2478 struct rx_ring *rx_ring = dev_id;
288379f0 2479 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2480 return IRQ_HANDLED;
2481}
2482
c4e84bde
RM
2483/* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2486 * the rx_rings.
2487 */
2488static irqreturn_t qlge_isr(int irq, void *dev_id)
2489{
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2493 u32 var;
c4e84bde
RM
2494 int work_done = 0;
2495
bb0d215c
RM
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2500 spin_unlock(&qdev->hw_lock);
2501 return IRQ_NONE;
c4e84bde 2502 }
bb0d215c 2503 spin_unlock(&qdev->hw_lock);
c4e84bde 2504
bb0d215c 2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2506
2507 /*
2508 * Check for fatal error.
2509 */
2510 if (var & STS_FE) {
2511 ql_queue_asic_error(qdev);
5069ee55 2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2513 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2516 return IRQ_HANDLED;
2517 }
2518
2519 /*
2520 * Check MPI processor activity.
2521 */
5ee22a5a
RM
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2524 /*
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2527 */
ae9540f7
JP
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
c4e84bde 2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2534 work_done++;
2535 }
2536
2537 /*
39aa8165
RM
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
c4e84bde 2541 */
39aa8165
RM
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
ae9540f7
JP
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
39aa8165 2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2547 napi_schedule(&rx_ring->napi);
2548 work_done++;
2549 }
bb0d215c 2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2552}
2553
2554static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555{
2556
2557 if (skb_is_gso(skb)) {
2558 int err;
2559 if (skb_header_cloned(skb)) {
2560 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2561 if (err)
2562 return err;
2563 }
2564
2565 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2566 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2567 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2568 mac_iocb_ptr->total_hdrs_len =
2569 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2570 mac_iocb_ptr->net_trans_offset =
2571 cpu_to_le16(skb_network_offset(skb) |
2572 skb_transport_offset(skb)
2573 << OB_MAC_TRANSPORT_HDR_SHIFT);
2574 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2575 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2576 if (likely(skb->protocol == htons(ETH_P_IP))) {
2577 struct iphdr *iph = ip_hdr(skb);
2578 iph->check = 0;
2579 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2580 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581 iph->daddr, 0,
2582 IPPROTO_TCP,
2583 0);
2584 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2585 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2586 tcp_hdr(skb)->check =
2587 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2588 &ipv6_hdr(skb)->daddr,
2589 0, IPPROTO_TCP, 0);
2590 }
2591 return 1;
2592 }
2593 return 0;
2594}
2595
2596static void ql_hw_csum_setup(struct sk_buff *skb,
2597 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2598{
2599 int len;
2600 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2601 __sum16 *check;
c4e84bde
RM
2602 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2603 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2604 mac_iocb_ptr->net_trans_offset =
2605 cpu_to_le16(skb_network_offset(skb) |
2606 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2607
2608 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2609 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2610 if (likely(iph->protocol == IPPROTO_TCP)) {
2611 check = &(tcp_hdr(skb)->check);
2612 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2613 mac_iocb_ptr->total_hdrs_len =
2614 cpu_to_le16(skb_transport_offset(skb) +
2615 (tcp_hdr(skb)->doff << 2));
2616 } else {
2617 check = &(udp_hdr(skb)->check);
2618 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2619 mac_iocb_ptr->total_hdrs_len =
2620 cpu_to_le16(skb_transport_offset(skb) +
2621 sizeof(struct udphdr));
2622 }
2623 *check = ~csum_tcpudp_magic(iph->saddr,
2624 iph->daddr, len, iph->protocol, 0);
2625}
2626
61357325 2627static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2628{
2629 struct tx_ring_desc *tx_ring_desc;
2630 struct ob_mac_iocb_req *mac_iocb_ptr;
2631 struct ql_adapter *qdev = netdev_priv(ndev);
2632 int tso;
2633 struct tx_ring *tx_ring;
1e213303 2634 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2635
2636 tx_ring = &qdev->tx_ring[tx_ring_idx];
2637
74c50b4b
RM
2638 if (skb_padto(skb, ETH_ZLEN))
2639 return NETDEV_TX_OK;
2640
c4e84bde 2641 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2642 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2643 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2644 __func__, tx_ring_idx);
1e213303 2645 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2646 tx_ring->tx_errors++;
c4e84bde
RM
2647 return NETDEV_TX_BUSY;
2648 }
2649 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2650 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2651 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2652
2653 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2654 mac_iocb_ptr->tid = tx_ring_desc->index;
2655 /* We use the upper 32-bits to store the tx queue for this IO.
2656 * When we get the completion we can use it to establish the context.
2657 */
2658 mac_iocb_ptr->txq_idx = tx_ring_idx;
2659 tx_ring_desc->skb = skb;
2660
2661 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2662
eab6d18d 2663 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2664 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2665 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2666 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2667 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2668 }
2669 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670 if (tso < 0) {
2671 dev_kfree_skb_any(skb);
2672 return NETDEV_TX_OK;
2673 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2674 ql_hw_csum_setup(skb,
2675 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676 }
0d979f74
RM
2677 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678 NETDEV_TX_OK) {
ae9540f7
JP
2679 netif_err(qdev, tx_queued, qdev->ndev,
2680 "Could not map the segments.\n");
885ee398 2681 tx_ring->tx_errors++;
0d979f74
RM
2682 return NETDEV_TX_BUSY;
2683 }
c4e84bde
RM
2684 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2685 tx_ring->prod_idx++;
2686 if (tx_ring->prod_idx == tx_ring->wq_len)
2687 tx_ring->prod_idx = 0;
2688 wmb();
2689
2690 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2691 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2692 "tx queued, slot %d, len %d\n",
2693 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2694
2695 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2696
2697 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2698 netif_stop_subqueue(ndev, tx_ring->wq_id);
2699 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2700 /*
2701 * The queue got stopped because the tx_ring was full.
2702 * Wake it up, because it's now at least 25% empty.
2703 */
2704 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2705 }
c4e84bde
RM
2706 return NETDEV_TX_OK;
2707}
2708
9dfbbaa6 2709
c4e84bde
RM
2710static void ql_free_shadow_space(struct ql_adapter *qdev)
2711{
2712 if (qdev->rx_ring_shadow_reg_area) {
2713 pci_free_consistent(qdev->pdev,
2714 PAGE_SIZE,
2715 qdev->rx_ring_shadow_reg_area,
2716 qdev->rx_ring_shadow_reg_dma);
2717 qdev->rx_ring_shadow_reg_area = NULL;
2718 }
2719 if (qdev->tx_ring_shadow_reg_area) {
2720 pci_free_consistent(qdev->pdev,
2721 PAGE_SIZE,
2722 qdev->tx_ring_shadow_reg_area,
2723 qdev->tx_ring_shadow_reg_dma);
2724 qdev->tx_ring_shadow_reg_area = NULL;
2725 }
2726}
2727
2728static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2729{
2730 qdev->rx_ring_shadow_reg_area =
2731 pci_alloc_consistent(qdev->pdev,
2732 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2733 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2734 netif_err(qdev, ifup, qdev->ndev,
2735 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2736 return -ENOMEM;
2737 }
b25215d0 2738 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2739 qdev->tx_ring_shadow_reg_area =
2740 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2741 &qdev->tx_ring_shadow_reg_dma);
2742 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2743 netif_err(qdev, ifup, qdev->ndev,
2744 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2745 goto err_wqp_sh_area;
2746 }
b25215d0 2747 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2748 return 0;
2749
2750err_wqp_sh_area:
2751 pci_free_consistent(qdev->pdev,
2752 PAGE_SIZE,
2753 qdev->rx_ring_shadow_reg_area,
2754 qdev->rx_ring_shadow_reg_dma);
2755 return -ENOMEM;
2756}
2757
2758static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2759{
2760 struct tx_ring_desc *tx_ring_desc;
2761 int i;
2762 struct ob_mac_iocb_req *mac_iocb_ptr;
2763
2764 mac_iocb_ptr = tx_ring->wq_base;
2765 tx_ring_desc = tx_ring->q;
2766 for (i = 0; i < tx_ring->wq_len; i++) {
2767 tx_ring_desc->index = i;
2768 tx_ring_desc->skb = NULL;
2769 tx_ring_desc->queue_entry = mac_iocb_ptr;
2770 mac_iocb_ptr++;
2771 tx_ring_desc++;
2772 }
2773 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2774}
2775
2776static void ql_free_tx_resources(struct ql_adapter *qdev,
2777 struct tx_ring *tx_ring)
2778{
2779 if (tx_ring->wq_base) {
2780 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2781 tx_ring->wq_base, tx_ring->wq_base_dma);
2782 tx_ring->wq_base = NULL;
2783 }
2784 kfree(tx_ring->q);
2785 tx_ring->q = NULL;
2786}
2787
2788static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2789 struct tx_ring *tx_ring)
2790{
2791 tx_ring->wq_base =
2792 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2793 &tx_ring->wq_base_dma);
2794
8e95a202 2795 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2796 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2797 goto pci_alloc_err;
2798
c4e84bde
RM
2799 tx_ring->q =
2800 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2801 if (tx_ring->q == NULL)
2802 goto err;
2803
2804 return 0;
2805err:
2806 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2807 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2808 tx_ring->wq_base = NULL;
2809pci_alloc_err:
2810 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2811 return -ENOMEM;
2812}
2813
8668ae92 2814static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2815{
c4e84bde
RM
2816 struct bq_desc *lbq_desc;
2817
7c734359
RM
2818 uint32_t curr_idx, clean_idx;
2819
2820 curr_idx = rx_ring->lbq_curr_idx;
2821 clean_idx = rx_ring->lbq_clean_idx;
2822 while (curr_idx != clean_idx) {
2823 lbq_desc = &rx_ring->lbq[curr_idx];
2824
2825 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2826 pci_unmap_page(qdev->pdev,
7c734359
RM
2827 lbq_desc->p.pg_chunk.map,
2828 ql_lbq_block_size(qdev),
c4e84bde 2829 PCI_DMA_FROMDEVICE);
7c734359 2830 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2831 }
7c734359
RM
2832
2833 put_page(lbq_desc->p.pg_chunk.page);
2834 lbq_desc->p.pg_chunk.page = NULL;
2835
2836 if (++curr_idx == rx_ring->lbq_len)
2837 curr_idx = 0;
2838
c4e84bde 2839 }
ef380794
TLSC
2840 if (rx_ring->pg_chunk.page) {
2841 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2842 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2843 put_page(rx_ring->pg_chunk.page);
2844 rx_ring->pg_chunk.page = NULL;
2845 }
c4e84bde
RM
2846}
2847
8668ae92 2848static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2849{
2850 int i;
2851 struct bq_desc *sbq_desc;
2852
2853 for (i = 0; i < rx_ring->sbq_len; i++) {
2854 sbq_desc = &rx_ring->sbq[i];
2855 if (sbq_desc == NULL) {
ae9540f7
JP
2856 netif_err(qdev, ifup, qdev->ndev,
2857 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2858 return;
2859 }
2860 if (sbq_desc->p.skb) {
2861 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2862 dma_unmap_addr(sbq_desc, mapaddr),
2863 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2864 PCI_DMA_FROMDEVICE);
2865 dev_kfree_skb(sbq_desc->p.skb);
2866 sbq_desc->p.skb = NULL;
2867 }
c4e84bde
RM
2868 }
2869}
2870
4545a3f2
RM
2871/* Free all large and small rx buffers associated
2872 * with the completion queues for this device.
2873 */
2874static void ql_free_rx_buffers(struct ql_adapter *qdev)
2875{
2876 int i;
2877 struct rx_ring *rx_ring;
2878
2879 for (i = 0; i < qdev->rx_ring_count; i++) {
2880 rx_ring = &qdev->rx_ring[i];
2881 if (rx_ring->lbq)
2882 ql_free_lbq_buffers(qdev, rx_ring);
2883 if (rx_ring->sbq)
2884 ql_free_sbq_buffers(qdev, rx_ring);
2885 }
2886}
2887
2888static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2889{
2890 struct rx_ring *rx_ring;
2891 int i;
2892
2893 for (i = 0; i < qdev->rx_ring_count; i++) {
2894 rx_ring = &qdev->rx_ring[i];
2895 if (rx_ring->type != TX_Q)
2896 ql_update_buffer_queues(qdev, rx_ring);
2897 }
2898}
2899
2900static void ql_init_lbq_ring(struct ql_adapter *qdev,
2901 struct rx_ring *rx_ring)
2902{
2903 int i;
2904 struct bq_desc *lbq_desc;
2905 __le64 *bq = rx_ring->lbq_base;
2906
2907 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2908 for (i = 0; i < rx_ring->lbq_len; i++) {
2909 lbq_desc = &rx_ring->lbq[i];
2910 memset(lbq_desc, 0, sizeof(*lbq_desc));
2911 lbq_desc->index = i;
2912 lbq_desc->addr = bq;
2913 bq++;
2914 }
2915}
2916
2917static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2918 struct rx_ring *rx_ring)
2919{
2920 int i;
2921 struct bq_desc *sbq_desc;
2c9a0d41 2922 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2923
4545a3f2 2924 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2925 for (i = 0; i < rx_ring->sbq_len; i++) {
2926 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2927 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2928 sbq_desc->index = i;
2c9a0d41 2929 sbq_desc->addr = bq;
c4e84bde
RM
2930 bq++;
2931 }
c4e84bde
RM
2932}
2933
2934static void ql_free_rx_resources(struct ql_adapter *qdev,
2935 struct rx_ring *rx_ring)
2936{
c4e84bde
RM
2937 /* Free the small buffer queue. */
2938 if (rx_ring->sbq_base) {
2939 pci_free_consistent(qdev->pdev,
2940 rx_ring->sbq_size,
2941 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2942 rx_ring->sbq_base = NULL;
2943 }
2944
2945 /* Free the small buffer queue control blocks. */
2946 kfree(rx_ring->sbq);
2947 rx_ring->sbq = NULL;
2948
2949 /* Free the large buffer queue. */
2950 if (rx_ring->lbq_base) {
2951 pci_free_consistent(qdev->pdev,
2952 rx_ring->lbq_size,
2953 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2954 rx_ring->lbq_base = NULL;
2955 }
2956
2957 /* Free the large buffer queue control blocks. */
2958 kfree(rx_ring->lbq);
2959 rx_ring->lbq = NULL;
2960
2961 /* Free the rx queue. */
2962 if (rx_ring->cq_base) {
2963 pci_free_consistent(qdev->pdev,
2964 rx_ring->cq_size,
2965 rx_ring->cq_base, rx_ring->cq_base_dma);
2966 rx_ring->cq_base = NULL;
2967 }
2968}
2969
2970/* Allocate queues and buffers for this completions queue based
2971 * on the values in the parameter structure. */
2972static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2973 struct rx_ring *rx_ring)
2974{
2975
2976 /*
2977 * Allocate the completion queue for this rx_ring.
2978 */
2979 rx_ring->cq_base =
2980 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2981 &rx_ring->cq_base_dma);
2982
2983 if (rx_ring->cq_base == NULL) {
ae9540f7 2984 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2985 return -ENOMEM;
2986 }
2987
2988 if (rx_ring->sbq_len) {
2989 /*
2990 * Allocate small buffer queue.
2991 */
2992 rx_ring->sbq_base =
2993 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2994 &rx_ring->sbq_base_dma);
2995
2996 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2997 netif_err(qdev, ifup, qdev->ndev,
2998 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2999 goto err_mem;
3000 }
3001
3002 /*
3003 * Allocate small buffer queue control blocks.
3004 */
14f8dc49
JP
3005 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3006 sizeof(struct bq_desc),
3007 GFP_KERNEL);
3008 if (rx_ring->sbq == NULL)
c4e84bde 3009 goto err_mem;
c4e84bde 3010
4545a3f2 3011 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
3012 }
3013
3014 if (rx_ring->lbq_len) {
3015 /*
3016 * Allocate large buffer queue.
3017 */
3018 rx_ring->lbq_base =
3019 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3020 &rx_ring->lbq_base_dma);
3021
3022 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
3023 netif_err(qdev, ifup, qdev->ndev,
3024 "Large buffer queue allocation failed.\n");
c4e84bde
RM
3025 goto err_mem;
3026 }
3027 /*
3028 * Allocate large buffer queue control blocks.
3029 */
14f8dc49
JP
3030 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3031 sizeof(struct bq_desc),
3032 GFP_KERNEL);
3033 if (rx_ring->lbq == NULL)
c4e84bde 3034 goto err_mem;
c4e84bde 3035
4545a3f2 3036 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
3037 }
3038
3039 return 0;
3040
3041err_mem:
3042 ql_free_rx_resources(qdev, rx_ring);
3043 return -ENOMEM;
3044}
3045
3046static void ql_tx_ring_clean(struct ql_adapter *qdev)
3047{
3048 struct tx_ring *tx_ring;
3049 struct tx_ring_desc *tx_ring_desc;
3050 int i, j;
3051
3052 /*
3053 * Loop through all queues and free
3054 * any resources.
3055 */
3056 for (j = 0; j < qdev->tx_ring_count; j++) {
3057 tx_ring = &qdev->tx_ring[j];
3058 for (i = 0; i < tx_ring->wq_len; i++) {
3059 tx_ring_desc = &tx_ring->q[i];
3060 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
3061 netif_err(qdev, ifdown, qdev->ndev,
3062 "Freeing lost SKB %p, from queue %d, index %d.\n",
3063 tx_ring_desc->skb, j,
3064 tx_ring_desc->index);
c4e84bde
RM
3065 ql_unmap_send(qdev, tx_ring_desc,
3066 tx_ring_desc->map_cnt);
3067 dev_kfree_skb(tx_ring_desc->skb);
3068 tx_ring_desc->skb = NULL;
3069 }
3070 }
3071 }
3072}
3073
c4e84bde
RM
3074static void ql_free_mem_resources(struct ql_adapter *qdev)
3075{
3076 int i;
3077
3078 for (i = 0; i < qdev->tx_ring_count; i++)
3079 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3080 for (i = 0; i < qdev->rx_ring_count; i++)
3081 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3082 ql_free_shadow_space(qdev);
3083}
3084
3085static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3086{
3087 int i;
3088
3089 /* Allocate space for our shadow registers and such. */
3090 if (ql_alloc_shadow_space(qdev))
3091 return -ENOMEM;
3092
3093 for (i = 0; i < qdev->rx_ring_count; i++) {
3094 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3095 netif_err(qdev, ifup, qdev->ndev,
3096 "RX resource allocation failed.\n");
c4e84bde
RM
3097 goto err_mem;
3098 }
3099 }
3100 /* Allocate tx queue resources */
3101 for (i = 0; i < qdev->tx_ring_count; i++) {
3102 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3103 netif_err(qdev, ifup, qdev->ndev,
3104 "TX resource allocation failed.\n");
c4e84bde
RM
3105 goto err_mem;
3106 }
3107 }
3108 return 0;
3109
3110err_mem:
3111 ql_free_mem_resources(qdev);
3112 return -ENOMEM;
3113}
3114
3115/* Set up the rx ring control block and pass it to the chip.
3116 * The control block is defined as
3117 * "Completion Queue Initialization Control Block", or cqicb.
3118 */
3119static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3120{
3121 struct cqicb *cqicb = &rx_ring->cqicb;
3122 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3123 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3124 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3125 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3126 void __iomem *doorbell_area =
3127 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3128 int err = 0;
3129 u16 bq_len;
d4a4aba6 3130 u64 tmp;
b8facca0
RM
3131 __le64 *base_indirect_ptr;
3132 int page_entries;
c4e84bde
RM
3133
3134 /* Set up the shadow registers for this ring. */
3135 rx_ring->prod_idx_sh_reg = shadow_reg;
3136 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3137 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3138 shadow_reg += sizeof(u64);
3139 shadow_reg_dma += sizeof(u64);
3140 rx_ring->lbq_base_indirect = shadow_reg;
3141 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3142 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3144 rx_ring->sbq_base_indirect = shadow_reg;
3145 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3146
3147 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3148 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3149 rx_ring->cnsmr_idx = 0;
3150 rx_ring->curr_entry = rx_ring->cq_base;
3151
3152 /* PCI doorbell mem area + 0x04 for valid register */
3153 rx_ring->valid_db_reg = doorbell_area + 0x04;
3154
3155 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3156 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3157
3158 /* PCI doorbell mem area + 0x1c */
8668ae92 3159 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3160
3161 memset((void *)cqicb, 0, sizeof(struct cqicb));
3162 cqicb->msix_vect = rx_ring->irq;
3163
459caf5a
RM
3164 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3165 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3166
97345524 3167 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3168
97345524 3169 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3170
3171 /*
3172 * Set up the control block load flags.
3173 */
3174 cqicb->flags = FLAGS_LC | /* Load queue base address */
3175 FLAGS_LV | /* Load MSI-X vector */
3176 FLAGS_LI; /* Load irq delay values */
3177 if (rx_ring->lbq_len) {
3178 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3179 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3180 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3181 page_entries = 0;
3182 do {
3183 *base_indirect_ptr = cpu_to_le64(tmp);
3184 tmp += DB_PAGE_SIZE;
3185 base_indirect_ptr++;
3186 page_entries++;
3187 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3188 cqicb->lbq_addr =
3189 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3190 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3191 (u16) rx_ring->lbq_buf_size;
3192 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3193 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3194 (u16) rx_ring->lbq_len;
c4e84bde 3195 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3196 rx_ring->lbq_prod_idx = 0;
c4e84bde 3197 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3198 rx_ring->lbq_clean_idx = 0;
3199 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3200 }
3201 if (rx_ring->sbq_len) {
3202 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3203 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3204 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3205 page_entries = 0;
3206 do {
3207 *base_indirect_ptr = cpu_to_le64(tmp);
3208 tmp += DB_PAGE_SIZE;
3209 base_indirect_ptr++;
3210 page_entries++;
3211 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3212 cqicb->sbq_addr =
3213 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3214 cqicb->sbq_buf_size =
52e55f3c 3215 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3216 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3217 (u16) rx_ring->sbq_len;
c4e84bde 3218 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3219 rx_ring->sbq_prod_idx = 0;
c4e84bde 3220 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3221 rx_ring->sbq_clean_idx = 0;
3222 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3223 }
3224 switch (rx_ring->type) {
3225 case TX_Q:
c4e84bde
RM
3226 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3227 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3228 break;
c4e84bde
RM
3229 case RX_Q:
3230 /* Inbound completion handling rx_rings run in
3231 * separate NAPI contexts.
3232 */
3233 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3234 64);
3235 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3236 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3237 break;
3238 default:
ae9540f7
JP
3239 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3240 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3241 }
c4e84bde
RM
3242 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3243 CFG_LCQ, rx_ring->cq_id);
3244 if (err) {
ae9540f7 3245 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3246 return err;
3247 }
c4e84bde
RM
3248 return err;
3249}
3250
3251static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3252{
3253 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3254 void __iomem *doorbell_area =
3255 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3256 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3257 (tx_ring->wq_id * sizeof(u64));
3258 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3259 (tx_ring->wq_id * sizeof(u64));
3260 int err = 0;
3261
3262 /*
3263 * Assign doorbell registers for this tx_ring.
3264 */
3265 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3266 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3267 tx_ring->prod_idx = 0;
3268 /* TX PCI doorbell mem area + 0x04 */
3269 tx_ring->valid_db_reg = doorbell_area + 0x04;
3270
3271 /*
3272 * Assign shadow registers for this tx_ring.
3273 */
3274 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3275 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3276
3277 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3278 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3279 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3280 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3281 wqicb->rid = 0;
97345524 3282 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3283
97345524 3284 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3285
3286 ql_init_tx_ring(qdev, tx_ring);
3287
e332471c 3288 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3289 (u16) tx_ring->wq_id);
3290 if (err) {
ae9540f7 3291 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3292 return err;
3293 }
c4e84bde
RM
3294 return err;
3295}
3296
3297static void ql_disable_msix(struct ql_adapter *qdev)
3298{
3299 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3300 pci_disable_msix(qdev->pdev);
3301 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3302 kfree(qdev->msi_x_entry);
3303 qdev->msi_x_entry = NULL;
3304 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3305 pci_disable_msi(qdev->pdev);
3306 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3307 }
3308}
3309
a4ab6137
RM
3310/* We start by trying to get the number of vectors
3311 * stored in qdev->intr_count. If we don't get that
3312 * many then we reduce the count and try again.
3313 */
c4e84bde
RM
3314static void ql_enable_msix(struct ql_adapter *qdev)
3315{
a4ab6137 3316 int i, err;
c4e84bde 3317
c4e84bde 3318 /* Get the MSIX vectors. */
a5a62a1c 3319 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3320 /* Try to alloc space for the msix struct,
3321 * if it fails then go to MSI/legacy.
3322 */
a4ab6137 3323 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3324 sizeof(struct msix_entry),
3325 GFP_KERNEL);
3326 if (!qdev->msi_x_entry) {
a5a62a1c 3327 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3328 goto msi;
3329 }
3330
a4ab6137 3331 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3332 qdev->msi_x_entry[i].entry = i;
3333
50b483a1
AG
3334 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3335 1, qdev->intr_count);
a4ab6137 3336 if (err < 0) {
c4e84bde
RM
3337 kfree(qdev->msi_x_entry);
3338 qdev->msi_x_entry = NULL;
ae9540f7
JP
3339 netif_warn(qdev, ifup, qdev->ndev,
3340 "MSI-X Enable failed, trying MSI.\n");
a5a62a1c 3341 qlge_irq_type = MSI_IRQ;
50b483a1
AG
3342 } else {
3343 qdev->intr_count = err;
a4ab6137 3344 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3345 netif_info(qdev, ifup, qdev->ndev,
3346 "MSI-X Enabled, got %d vectors.\n",
3347 qdev->intr_count);
a4ab6137 3348 return;
c4e84bde
RM
3349 }
3350 }
3351msi:
a4ab6137 3352 qdev->intr_count = 1;
a5a62a1c 3353 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3354 if (!pci_enable_msi(qdev->pdev)) {
3355 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3356 netif_info(qdev, ifup, qdev->ndev,
3357 "Running with MSI interrupts.\n");
c4e84bde
RM
3358 return;
3359 }
3360 }
a5a62a1c 3361 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3362 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3363 "Running with legacy interrupts.\n");
c4e84bde
RM
3364}
3365
39aa8165
RM
3366/* Each vector services 1 RSS ring and and 1 or more
3367 * TX completion rings. This function loops through
3368 * the TX completion rings and assigns the vector that
3369 * will service it. An example would be if there are
3370 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3371 * This would mean that vector 0 would service RSS ring 0
25985edc 3372 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3373 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3374 */
3375static void ql_set_tx_vect(struct ql_adapter *qdev)
3376{
3377 int i, j, vect;
3378 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3379
3380 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3381 /* Assign irq vectors to TX rx_rings.*/
3382 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3383 i < qdev->rx_ring_count; i++) {
3384 if (j == tx_rings_per_vector) {
3385 vect++;
3386 j = 0;
3387 }
3388 qdev->rx_ring[i].irq = vect;
3389 j++;
3390 }
3391 } else {
3392 /* For single vector all rings have an irq
3393 * of zero.
3394 */
3395 for (i = 0; i < qdev->rx_ring_count; i++)
3396 qdev->rx_ring[i].irq = 0;
3397 }
3398}
3399
3400/* Set the interrupt mask for this vector. Each vector
3401 * will service 1 RSS ring and 1 or more TX completion
3402 * rings. This function sets up a bit mask per vector
3403 * that indicates which rings it services.
3404 */
3405static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3406{
3407 int j, vect = ctx->intr;
3408 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3409
3410 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3411 /* Add the RSS ring serviced by this vector
3412 * to the mask.
3413 */
3414 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3415 /* Add the TX ring(s) serviced by this vector
3416 * to the mask. */
3417 for (j = 0; j < tx_rings_per_vector; j++) {
3418 ctx->irq_mask |=
3419 (1 << qdev->rx_ring[qdev->rss_ring_count +
3420 (vect * tx_rings_per_vector) + j].cq_id);
3421 }
3422 } else {
3423 /* For single vector we just shift each queue's
3424 * ID into the mask.
3425 */
3426 for (j = 0; j < qdev->rx_ring_count; j++)
3427 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3428 }
3429}
3430
c4e84bde
RM
3431/*
3432 * Here we build the intr_context structures based on
3433 * our rx_ring count and intr vector count.
3434 * The intr_context structure is used to hook each vector
3435 * to possibly different handlers.
3436 */
3437static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3438{
3439 int i = 0;
3440 struct intr_context *intr_context = &qdev->intr_context[0];
3441
c4e84bde
RM
3442 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3443 /* Each rx_ring has it's
3444 * own intr_context since we have separate
3445 * vectors for each queue.
c4e84bde
RM
3446 */
3447 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3448 qdev->rx_ring[i].irq = i;
3449 intr_context->intr = i;
3450 intr_context->qdev = qdev;
39aa8165
RM
3451 /* Set up this vector's bit-mask that indicates
3452 * which queues it services.
3453 */
3454 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3455 /*
3456 * We set up each vectors enable/disable/read bits so
3457 * there's no bit/mask calculations in the critical path.
3458 */
3459 intr_context->intr_en_mask =
3460 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3461 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3462 | i;
3463 intr_context->intr_dis_mask =
3464 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3465 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3466 INTR_EN_IHD | i;
3467 intr_context->intr_read_mask =
3468 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3469 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3470 i;
39aa8165
RM
3471 if (i == 0) {
3472 /* The first vector/queue handles
3473 * broadcast/multicast, fatal errors,
3474 * and firmware events. This in addition
3475 * to normal inbound NAPI processing.
c4e84bde 3476 */
39aa8165 3477 intr_context->handler = qlge_isr;
b2014ff8
RM
3478 sprintf(intr_context->name, "%s-rx-%d",
3479 qdev->ndev->name, i);
3480 } else {
c4e84bde 3481 /*
39aa8165 3482 * Inbound queues handle unicast frames only.
c4e84bde 3483 */
39aa8165
RM
3484 intr_context->handler = qlge_msix_rx_isr;
3485 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3486 qdev->ndev->name, i);
c4e84bde
RM
3487 }
3488 }
3489 } else {
3490 /*
3491 * All rx_rings use the same intr_context since
3492 * there is only one vector.
3493 */
3494 intr_context->intr = 0;
3495 intr_context->qdev = qdev;
3496 /*
3497 * We set up each vectors enable/disable/read bits so
3498 * there's no bit/mask calculations in the critical path.
3499 */
3500 intr_context->intr_en_mask =
3501 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3502 intr_context->intr_dis_mask =
3503 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3504 INTR_EN_TYPE_DISABLE;
3505 intr_context->intr_read_mask =
3506 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3507 /*
3508 * Single interrupt means one handler for all rings.
3509 */
3510 intr_context->handler = qlge_isr;
3511 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3512 /* Set up this vector's bit-mask that indicates
3513 * which queues it services. In this case there is
3514 * a single vector so it will service all RSS and
3515 * TX completion rings.
3516 */
3517 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3518 }
39aa8165
RM
3519 /* Tell the TX completion rings which MSIx vector
3520 * they will be using.
3521 */
3522 ql_set_tx_vect(qdev);
c4e84bde
RM
3523}
3524
3525static void ql_free_irq(struct ql_adapter *qdev)
3526{
3527 int i;
3528 struct intr_context *intr_context = &qdev->intr_context[0];
3529
3530 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3531 if (intr_context->hooked) {
3532 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3533 free_irq(qdev->msi_x_entry[i].vector,
3534 &qdev->rx_ring[i]);
c4e84bde
RM
3535 } else {
3536 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3537 }
3538 }
3539 }
3540 ql_disable_msix(qdev);
3541}
3542
3543static int ql_request_irq(struct ql_adapter *qdev)
3544{
3545 int i;
3546 int status = 0;
3547 struct pci_dev *pdev = qdev->pdev;
3548 struct intr_context *intr_context = &qdev->intr_context[0];
3549
3550 ql_resolve_queues_to_irqs(qdev);
3551
3552 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3553 atomic_set(&intr_context->irq_cnt, 0);
3554 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3555 status = request_irq(qdev->msi_x_entry[i].vector,
3556 intr_context->handler,
3557 0,
3558 intr_context->name,
3559 &qdev->rx_ring[i]);
3560 if (status) {
ae9540f7
JP
3561 netif_err(qdev, ifup, qdev->ndev,
3562 "Failed request for MSIX interrupt %d.\n",
3563 i);
c4e84bde 3564 goto err_irq;
c4e84bde
RM
3565 }
3566 } else {
ae9540f7
JP
3567 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3568 "trying msi or legacy interrupts.\n");
3569 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3570 "%s: irq = %d.\n", __func__, pdev->irq);
3571 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3572 "%s: context->name = %s.\n", __func__,
3573 intr_context->name);
3574 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3575 "%s: dev_id = 0x%p.\n", __func__,
3576 &qdev->rx_ring[0]);
c4e84bde
RM
3577 status =
3578 request_irq(pdev->irq, qlge_isr,
3579 test_bit(QL_MSI_ENABLED,
3580 &qdev->
3581 flags) ? 0 : IRQF_SHARED,
3582 intr_context->name, &qdev->rx_ring[0]);
3583 if (status)
3584 goto err_irq;
3585
ae9540f7
JP
3586 netif_err(qdev, ifup, qdev->ndev,
3587 "Hooked intr %d, queue type %s, with name %s.\n",
3588 i,
3589 qdev->rx_ring[0].type == DEFAULT_Q ?
3590 "DEFAULT_Q" :
3591 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3592 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3593 intr_context->name);
c4e84bde
RM
3594 }
3595 intr_context->hooked = 1;
3596 }
3597 return status;
3598err_irq:
ae9540f7 3599 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3600 ql_free_irq(qdev);
3601 return status;
3602}
3603
3604static int ql_start_rss(struct ql_adapter *qdev)
3605{
215faf9c
JP
3606 static const u8 init_hash_seed[] = {
3607 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3608 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3609 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3610 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3611 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3612 };
c4e84bde
RM
3613 struct ricb *ricb = &qdev->ricb;
3614 int status = 0;
3615 int i;
3616 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3617
e332471c 3618 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3619
b2014ff8 3620 ricb->base_cq = RSS_L4K;
c4e84bde 3621 ricb->flags =
541ae28c
RM
3622 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3623 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3624
3625 /*
3626 * Fill out the Indirection Table.
3627 */
541ae28c
RM
3628 for (i = 0; i < 1024; i++)
3629 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3630
541ae28c
RM
3631 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3632 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3633
e332471c 3634 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3635 if (status) {
ae9540f7 3636 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3637 return status;
3638 }
c4e84bde
RM
3639 return status;
3640}
3641
a5f59dc9 3642static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3643{
a5f59dc9 3644 int i, status = 0;
c4e84bde 3645
8587ea35
RM
3646 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3647 if (status)
3648 return status;
c4e84bde
RM
3649 /* Clear all the entries in the routing table. */
3650 for (i = 0; i < 16; i++) {
3651 status = ql_set_routing_reg(qdev, i, 0, 0);
3652 if (status) {
ae9540f7
JP
3653 netif_err(qdev, ifup, qdev->ndev,
3654 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3655 break;
c4e84bde
RM
3656 }
3657 }
a5f59dc9
RM
3658 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3659 return status;
3660}
3661
3662/* Initialize the frame-to-queue routing. */
3663static int ql_route_initialize(struct ql_adapter *qdev)
3664{
3665 int status = 0;
3666
fd21cf52
RM
3667 /* Clear all the entries in the routing table. */
3668 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3669 if (status)
3670 return status;
3671
fd21cf52 3672 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3673 if (status)
fd21cf52 3674 return status;
c4e84bde 3675
fbc2ac33
RM
3676 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3677 RT_IDX_IP_CSUM_ERR, 1);
3678 if (status) {
3679 netif_err(qdev, ifup, qdev->ndev,
3680 "Failed to init routing register "
3681 "for IP CSUM error packets.\n");
3682 goto exit;
3683 }
3684 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3685 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3686 if (status) {
ae9540f7 3687 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3688 "Failed to init routing register "
3689 "for TCP/UDP CSUM error packets.\n");
8587ea35 3690 goto exit;
c4e84bde
RM
3691 }
3692 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3693 if (status) {
ae9540f7
JP
3694 netif_err(qdev, ifup, qdev->ndev,
3695 "Failed to init routing register for broadcast packets.\n");
8587ea35 3696 goto exit;
c4e84bde
RM
3697 }
3698 /* If we have more than one inbound queue, then turn on RSS in the
3699 * routing block.
3700 */
3701 if (qdev->rss_ring_count > 1) {
3702 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3703 RT_IDX_RSS_MATCH, 1);
3704 if (status) {
ae9540f7
JP
3705 netif_err(qdev, ifup, qdev->ndev,
3706 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3707 goto exit;
c4e84bde
RM
3708 }
3709 }
3710
3711 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3712 RT_IDX_CAM_HIT, 1);
8587ea35 3713 if (status)
ae9540f7
JP
3714 netif_err(qdev, ifup, qdev->ndev,
3715 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3716exit:
3717 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3718 return status;
3719}
3720
2ee1e272 3721int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3722{
7fab3bfe 3723 int status, set;
bb58b5b6 3724
7fab3bfe
RM
3725 /* If check if the link is up and use to
3726 * determine if we are setting or clearing
3727 * the MAC address in the CAM.
3728 */
3729 set = ql_read32(qdev, STS);
3730 set &= qdev->port_link_up;
3731 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3732 if (status) {
ae9540f7 3733 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3734 return status;
3735 }
3736
3737 status = ql_route_initialize(qdev);
3738 if (status)
ae9540f7 3739 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3740
3741 return status;
3742}
3743
c4e84bde
RM
3744static int ql_adapter_initialize(struct ql_adapter *qdev)
3745{
3746 u32 value, mask;
3747 int i;
3748 int status = 0;
3749
3750 /*
3751 * Set up the System register to halt on errors.
3752 */
3753 value = SYS_EFE | SYS_FAE;
3754 mask = value << 16;
3755 ql_write32(qdev, SYS, mask | value);
3756
c9cf0a04 3757 /* Set the default queue, and VLAN behavior. */
a45adbe8
JK
3758 value = NIC_RCV_CFG_DFQ;
3759 mask = NIC_RCV_CFG_DFQ_MASK;
3760 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3761 value |= NIC_RCV_CFG_RV;
3762 mask |= (NIC_RCV_CFG_RV << 16);
3763 }
c4e84bde
RM
3764 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3765
3766 /* Set the MPI interrupt to enabled. */
3767 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3768
3769 /* Enable the function, set pagesize, enable error checking. */
3770 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3771 FSC_EC | FSC_VM_PAGE_4K;
3772 value |= SPLT_SETTING;
c4e84bde
RM
3773
3774 /* Set/clear header splitting. */
3775 mask = FSC_VM_PAGESIZE_MASK |
3776 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3777 ql_write32(qdev, FSC, mask | value);
3778
572c526f 3779 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3780
a3b71939
RM
3781 /* Set RX packet routing to use port/pci function on which the
3782 * packet arrived on in addition to usual frame routing.
3783 * This is helpful on bonding where both interfaces can have
3784 * the same MAC address.
3785 */
3786 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3787 /* Reroute all packets to our Interface.
3788 * They may have been routed to MPI firmware
3789 * due to WOL.
3790 */
3791 value = ql_read32(qdev, MGMT_RCV_CFG);
3792 value &= ~MGMT_RCV_CFG_RM;
3793 mask = 0xffff0000;
3794
3795 /* Sticky reg needs clearing due to WOL. */
3796 ql_write32(qdev, MGMT_RCV_CFG, mask);
3797 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3798
3799 /* Default WOL is enable on Mezz cards */
3800 if (qdev->pdev->subsystem_device == 0x0068 ||
3801 qdev->pdev->subsystem_device == 0x0180)
3802 qdev->wol = WAKE_MAGIC;
a3b71939 3803
c4e84bde
RM
3804 /* Start up the rx queues. */
3805 for (i = 0; i < qdev->rx_ring_count; i++) {
3806 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3807 if (status) {
ae9540f7
JP
3808 netif_err(qdev, ifup, qdev->ndev,
3809 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3810 return status;
3811 }
3812 }
3813
3814 /* If there is more than one inbound completion queue
3815 * then download a RICB to configure RSS.
3816 */
3817 if (qdev->rss_ring_count > 1) {
3818 status = ql_start_rss(qdev);
3819 if (status) {
ae9540f7 3820 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3821 return status;
3822 }
3823 }
3824
3825 /* Start up the tx queues. */
3826 for (i = 0; i < qdev->tx_ring_count; i++) {
3827 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3828 if (status) {
ae9540f7
JP
3829 netif_err(qdev, ifup, qdev->ndev,
3830 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3831 return status;
3832 }
3833 }
3834
b0c2aadf
RM
3835 /* Initialize the port and set the max framesize. */
3836 status = qdev->nic_ops->port_initialize(qdev);
80928860 3837 if (status)
ae9540f7 3838 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3839
bb58b5b6
RM
3840 /* Set up the MAC address and frame routing filter. */
3841 status = ql_cam_route_initialize(qdev);
c4e84bde 3842 if (status) {
ae9540f7
JP
3843 netif_err(qdev, ifup, qdev->ndev,
3844 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3845 return status;
3846 }
3847
3848 /* Start NAPI for the RSS queues. */
19257f5a 3849 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3850 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3851
3852 return status;
3853}
3854
3855/* Issue soft reset to chip. */
3856static int ql_adapter_reset(struct ql_adapter *qdev)
3857{
3858 u32 value;
c4e84bde 3859 int status = 0;
a5f59dc9 3860 unsigned long end_jiffies;
c4e84bde 3861
a5f59dc9
RM
3862 /* Clear all the entries in the routing table. */
3863 status = ql_clear_routing_entries(qdev);
3864 if (status) {
ae9540f7 3865 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3866 return status;
3867 }
3868
3869 end_jiffies = jiffies +
3870 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3871
da92b393
JK
3872 /* Check if bit is set then skip the mailbox command and
3873 * clear the bit, else we are in normal reset process.
3874 */
3875 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3876 /* Stop management traffic. */
3877 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3878
3879 /* Wait for the NIC and MGMNT FIFOs to empty. */
3880 ql_wait_fifo_empty(qdev);
3881 } else
3882 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3883
c4e84bde 3884 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3885
c4e84bde
RM
3886 do {
3887 value = ql_read32(qdev, RST_FO);
3888 if ((value & RST_FO_FR) == 0)
3889 break;
a75ee7f1
RM
3890 cpu_relax();
3891 } while (time_before(jiffies, end_jiffies));
c4e84bde 3892
c4e84bde 3893 if (value & RST_FO_FR) {
ae9540f7
JP
3894 netif_err(qdev, ifdown, qdev->ndev,
3895 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3896 status = -ETIMEDOUT;
c4e84bde
RM
3897 }
3898
84087f4d
RM
3899 /* Resume management traffic. */
3900 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3901 return status;
3902}
3903
3904static void ql_display_dev_info(struct net_device *ndev)
3905{
b16fed0a 3906 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3907
ae9540f7
JP
3908 netif_info(qdev, probe, qdev->ndev,
3909 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3910 "XG Roll = %d, XG Rev = %d.\n",
3911 qdev->func,
3912 qdev->port,
3913 qdev->chip_rev_id & 0x0000000f,
3914 qdev->chip_rev_id >> 4 & 0x0000000f,
3915 qdev->chip_rev_id >> 8 & 0x0000000f,
3916 qdev->chip_rev_id >> 12 & 0x0000000f);
3917 netif_info(qdev, probe, qdev->ndev,
3918 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3919}
3920
ac409215 3921static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3922{
3923 int status = 0;
3924 u32 wol = MB_WOL_DISABLE;
3925
3926 /* The CAM is still intact after a reset, but if we
3927 * are doing WOL, then we may need to program the
3928 * routing regs. We would also need to issue the mailbox
3929 * commands to instruct the MPI what to do per the ethtool
3930 * settings.
3931 */
3932
3933 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3934 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3935 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3936 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3937 qdev->wol);
bc083ce9
RM
3938 return -EINVAL;
3939 }
3940
3941 if (qdev->wol & WAKE_MAGIC) {
3942 status = ql_mb_wol_set_magic(qdev, 1);
3943 if (status) {
ae9540f7
JP
3944 netif_err(qdev, ifdown, qdev->ndev,
3945 "Failed to set magic packet on %s.\n",
3946 qdev->ndev->name);
bc083ce9
RM
3947 return status;
3948 } else
ae9540f7
JP
3949 netif_info(qdev, drv, qdev->ndev,
3950 "Enabled magic packet successfully on %s.\n",
3951 qdev->ndev->name);
bc083ce9
RM
3952
3953 wol |= MB_WOL_MAGIC_PKT;
3954 }
3955
3956 if (qdev->wol) {
bc083ce9
RM
3957 wol |= MB_WOL_MODE_ON;
3958 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3959 netif_err(qdev, drv, qdev->ndev,
3960 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3961 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3962 wol, qdev->ndev->name);
bc083ce9
RM
3963 }
3964
3965 return status;
3966}
3967
c5dadddb 3968static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3969{
c4e84bde 3970
6497b607
RM
3971 /* Don't kill the reset worker thread if we
3972 * are in the process of recovery.
3973 */
3974 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3975 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3976 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3977 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3978 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3979 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3980 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3981}
3982
3983static int ql_adapter_down(struct ql_adapter *qdev)
3984{
3985 int i, status = 0;
3986
3987 ql_link_off(qdev);
3988
3989 ql_cancel_all_work_sync(qdev);
c4e84bde 3990
39aa8165
RM
3991 for (i = 0; i < qdev->rss_ring_count; i++)
3992 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3993
3994 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3995
3996 ql_disable_interrupts(qdev);
3997
3998 ql_tx_ring_clean(qdev);
3999
6b318cb3
RM
4000 /* Call netif_napi_del() from common point.
4001 */
b2014ff8 4002 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
4003 netif_napi_del(&qdev->rx_ring[i].napi);
4004
c4e84bde
RM
4005 status = ql_adapter_reset(qdev);
4006 if (status)
ae9540f7
JP
4007 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4008 qdev->func);
fe5f0980
BL
4009 ql_free_rx_buffers(qdev);
4010
c4e84bde
RM
4011 return status;
4012}
4013
4014static int ql_adapter_up(struct ql_adapter *qdev)
4015{
4016 int err = 0;
4017
c4e84bde
RM
4018 err = ql_adapter_initialize(qdev);
4019 if (err) {
ae9540f7 4020 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
4021 goto err_init;
4022 }
c4e84bde 4023 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 4024 ql_alloc_rx_buffers(qdev);
8b007de1
RM
4025 /* If the port is initialized and the
4026 * link is up the turn on the carrier.
4027 */
4028 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4029 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 4030 ql_link_on(qdev);
f2c05004
RM
4031 /* Restore rx mode. */
4032 clear_bit(QL_ALLMULTI, &qdev->flags);
4033 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4034 qlge_set_multicast_list(qdev->ndev);
4035
c1b60092
RM
4036 /* Restore vlan setting. */
4037 qlge_restore_vlan(qdev);
4038
c4e84bde
RM
4039 ql_enable_interrupts(qdev);
4040 ql_enable_all_completion_interrupts(qdev);
1e213303 4041 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
4042
4043 return 0;
4044err_init:
4045 ql_adapter_reset(qdev);
4046 return err;
4047}
4048
c4e84bde
RM
4049static void ql_release_adapter_resources(struct ql_adapter *qdev)
4050{
4051 ql_free_mem_resources(qdev);
4052 ql_free_irq(qdev);
4053}
4054
4055static int ql_get_adapter_resources(struct ql_adapter *qdev)
4056{
4057 int status = 0;
4058
4059 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 4060 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
4061 return -ENOMEM;
4062 }
4063 status = ql_request_irq(qdev);
c4e84bde
RM
4064 return status;
4065}
4066
4067static int qlge_close(struct net_device *ndev)
4068{
4069 struct ql_adapter *qdev = netdev_priv(ndev);
4070
4bbd1a19
RM
4071 /* If we hit pci_channel_io_perm_failure
4072 * failure condition, then we already
4073 * brought the adapter down.
4074 */
4075 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4076 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4077 clear_bit(QL_EEH_FATAL, &qdev->flags);
4078 return 0;
4079 }
4080
c4e84bde
RM
4081 /*
4082 * Wait for device to recover from a reset.
4083 * (Rarely happens, but possible.)
4084 */
4085 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4086 msleep(1);
4087 ql_adapter_down(qdev);
4088 ql_release_adapter_resources(qdev);
c4e84bde
RM
4089 return 0;
4090}
4091
4092static int ql_configure_rings(struct ql_adapter *qdev)
4093{
4094 int i;
4095 struct rx_ring *rx_ring;
4096 struct tx_ring *tx_ring;
a4ab6137 4097 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4098 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4099 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4100
4101 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4102
4103 /* In a perfect world we have one RSS ring for each CPU
4104 * and each has it's own vector. To do that we ask for
4105 * cpu_cnt vectors. ql_enable_msix() will adjust the
4106 * vector count to what we actually get. We then
4107 * allocate an RSS ring for each.
4108 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4109 */
a4ab6137
RM
4110 qdev->intr_count = cpu_cnt;
4111 ql_enable_msix(qdev);
4112 /* Adjust the RSS ring count to the actual vector count. */
4113 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4114 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4115 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4116
c4e84bde
RM
4117 for (i = 0; i < qdev->tx_ring_count; i++) {
4118 tx_ring = &qdev->tx_ring[i];
e332471c 4119 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4120 tx_ring->qdev = qdev;
4121 tx_ring->wq_id = i;
4122 tx_ring->wq_len = qdev->tx_ring_size;
4123 tx_ring->wq_size =
4124 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4125
4126 /*
4127 * The completion queue ID for the tx rings start
39aa8165 4128 * immediately after the rss rings.
c4e84bde 4129 */
39aa8165 4130 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4131 }
4132
4133 for (i = 0; i < qdev->rx_ring_count; i++) {
4134 rx_ring = &qdev->rx_ring[i];
e332471c 4135 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4136 rx_ring->qdev = qdev;
4137 rx_ring->cq_id = i;
4138 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4139 if (i < qdev->rss_ring_count) {
39aa8165
RM
4140 /*
4141 * Inbound (RSS) queues.
4142 */
c4e84bde
RM
4143 rx_ring->cq_len = qdev->rx_ring_size;
4144 rx_ring->cq_size =
4145 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4146 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4147 rx_ring->lbq_size =
2c9a0d41 4148 rx_ring->lbq_len * sizeof(__le64);
7c734359 4149 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4150 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4151 rx_ring->sbq_size =
2c9a0d41 4152 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4153 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4154 rx_ring->type = RX_Q;
4155 } else {
c4e84bde
RM
4156 /*
4157 * Outbound queue handles outbound completions only.
4158 */
4159 /* outbound cq is same size as tx_ring it services. */
4160 rx_ring->cq_len = qdev->tx_ring_size;
4161 rx_ring->cq_size =
4162 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4163 rx_ring->lbq_len = 0;
4164 rx_ring->lbq_size = 0;
4165 rx_ring->lbq_buf_size = 0;
4166 rx_ring->sbq_len = 0;
4167 rx_ring->sbq_size = 0;
4168 rx_ring->sbq_buf_size = 0;
4169 rx_ring->type = TX_Q;
c4e84bde
RM
4170 }
4171 }
4172 return 0;
4173}
4174
4175static int qlge_open(struct net_device *ndev)
4176{
4177 int err = 0;
4178 struct ql_adapter *qdev = netdev_priv(ndev);
4179
74e12435
RM
4180 err = ql_adapter_reset(qdev);
4181 if (err)
4182 return err;
4183
c4e84bde
RM
4184 err = ql_configure_rings(qdev);
4185 if (err)
4186 return err;
4187
4188 err = ql_get_adapter_resources(qdev);
4189 if (err)
4190 goto error_up;
4191
4192 err = ql_adapter_up(qdev);
4193 if (err)
4194 goto error_up;
4195
4196 return err;
4197
4198error_up:
4199 ql_release_adapter_resources(qdev);
c4e84bde
RM
4200 return err;
4201}
4202
7c734359
RM
4203static int ql_change_rx_buffers(struct ql_adapter *qdev)
4204{
4205 struct rx_ring *rx_ring;
4206 int i, status;
4207 u32 lbq_buf_len;
4208
25985edc 4209 /* Wait for an outstanding reset to complete. */
7c734359
RM
4210 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4211 int i = 3;
4212 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4213 netif_err(qdev, ifup, qdev->ndev,
4214 "Waiting for adapter UP...\n");
7c734359
RM
4215 ssleep(1);
4216 }
4217
4218 if (!i) {
ae9540f7
JP
4219 netif_err(qdev, ifup, qdev->ndev,
4220 "Timed out waiting for adapter UP\n");
7c734359
RM
4221 return -ETIMEDOUT;
4222 }
4223 }
4224
4225 status = ql_adapter_down(qdev);
4226 if (status)
4227 goto error;
4228
4229 /* Get the new rx buffer size. */
4230 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4231 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4232 qdev->lbq_buf_order = get_order(lbq_buf_len);
4233
4234 for (i = 0; i < qdev->rss_ring_count; i++) {
4235 rx_ring = &qdev->rx_ring[i];
4236 /* Set the new size. */
4237 rx_ring->lbq_buf_size = lbq_buf_len;
4238 }
4239
4240 status = ql_adapter_up(qdev);
4241 if (status)
4242 goto error;
4243
4244 return status;
4245error:
ae9540f7
JP
4246 netif_alert(qdev, ifup, qdev->ndev,
4247 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4248 set_bit(QL_ADAPTER_UP, &qdev->flags);
4249 dev_close(qdev->ndev);
4250 return status;
4251}
4252
c4e84bde
RM
4253static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4254{
4255 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4256 int status;
c4e84bde
RM
4257
4258 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4259 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4260 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4261 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4262 } else
4263 return -EINVAL;
7c734359
RM
4264
4265 queue_delayed_work(qdev->workqueue,
4266 &qdev->mpi_port_cfg_work, 3*HZ);
4267
746079da
BL
4268 ndev->mtu = new_mtu;
4269
7c734359 4270 if (!netif_running(qdev->ndev)) {
7c734359
RM
4271 return 0;
4272 }
4273
7c734359
RM
4274 status = ql_change_rx_buffers(qdev);
4275 if (status) {
ae9540f7
JP
4276 netif_err(qdev, ifup, qdev->ndev,
4277 "Changing MTU failed.\n");
7c734359
RM
4278 }
4279
4280 return status;
c4e84bde
RM
4281}
4282
4283static struct net_device_stats *qlge_get_stats(struct net_device
4284 *ndev)
4285{
885ee398
RM
4286 struct ql_adapter *qdev = netdev_priv(ndev);
4287 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4288 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4289 unsigned long pkts, mcast, dropped, errors, bytes;
4290 int i;
4291
4292 /* Get RX stats. */
4293 pkts = mcast = dropped = errors = bytes = 0;
4294 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4295 pkts += rx_ring->rx_packets;
4296 bytes += rx_ring->rx_bytes;
4297 dropped += rx_ring->rx_dropped;
4298 errors += rx_ring->rx_errors;
4299 mcast += rx_ring->rx_multicast;
4300 }
4301 ndev->stats.rx_packets = pkts;
4302 ndev->stats.rx_bytes = bytes;
4303 ndev->stats.rx_dropped = dropped;
4304 ndev->stats.rx_errors = errors;
4305 ndev->stats.multicast = mcast;
4306
4307 /* Get TX stats. */
4308 pkts = errors = bytes = 0;
4309 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4310 pkts += tx_ring->tx_packets;
4311 bytes += tx_ring->tx_bytes;
4312 errors += tx_ring->tx_errors;
4313 }
4314 ndev->stats.tx_packets = pkts;
4315 ndev->stats.tx_bytes = bytes;
4316 ndev->stats.tx_errors = errors;
bcc90f55 4317 return &ndev->stats;
c4e84bde
RM
4318}
4319
ac409215 4320static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4321{
b16fed0a 4322 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4323 struct netdev_hw_addr *ha;
cc288f54 4324 int i, status;
c4e84bde 4325
cc288f54
RM
4326 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4327 if (status)
4328 return;
c4e84bde
RM
4329 /*
4330 * Set or clear promiscuous mode if a
4331 * transition is taking place.
4332 */
4333 if (ndev->flags & IFF_PROMISC) {
4334 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4335 if (ql_set_routing_reg
4336 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4337 netif_err(qdev, hw, qdev->ndev,
25985edc 4338 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4339 } else {
4340 set_bit(QL_PROMISCUOUS, &qdev->flags);
4341 }
4342 }
4343 } else {
4344 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4345 if (ql_set_routing_reg
4346 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4347 netif_err(qdev, hw, qdev->ndev,
25985edc 4348 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4349 } else {
4350 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4351 }
4352 }
4353 }
4354
4355 /*
4356 * Set or clear all multicast mode if a
4357 * transition is taking place.
4358 */
4359 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4360 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4361 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4362 if (ql_set_routing_reg
4363 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4364 netif_err(qdev, hw, qdev->ndev,
4365 "Failed to set all-multi mode.\n");
c4e84bde
RM
4366 } else {
4367 set_bit(QL_ALLMULTI, &qdev->flags);
4368 }
4369 }
4370 } else {
4371 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4372 if (ql_set_routing_reg
4373 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4374 netif_err(qdev, hw, qdev->ndev,
4375 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4376 } else {
4377 clear_bit(QL_ALLMULTI, &qdev->flags);
4378 }
4379 }
4380 }
4381
4cd24eaf 4382 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4383 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4384 if (status)
4385 goto exit;
f9dcbcc9 4386 i = 0;
22bedad3
JP
4387 netdev_for_each_mc_addr(ha, ndev) {
4388 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4389 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4390 netif_err(qdev, hw, qdev->ndev,
4391 "Failed to loadmulticast address.\n");
cc288f54 4392 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4393 goto exit;
4394 }
f9dcbcc9
JP
4395 i++;
4396 }
cc288f54 4397 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4398 if (ql_set_routing_reg
4399 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4400 netif_err(qdev, hw, qdev->ndev,
4401 "Failed to set multicast match mode.\n");
c4e84bde
RM
4402 } else {
4403 set_bit(QL_ALLMULTI, &qdev->flags);
4404 }
4405 }
4406exit:
8587ea35 4407 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4408}
4409
4410static int qlge_set_mac_address(struct net_device *ndev, void *p)
4411{
b16fed0a 4412 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4413 struct sockaddr *addr = p;
cc288f54 4414 int status;
c4e84bde 4415
c4e84bde
RM
4416 if (!is_valid_ether_addr(addr->sa_data))
4417 return -EADDRNOTAVAIL;
4418 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4419 /* Update local copy of current mac address. */
4420 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4421
cc288f54
RM
4422 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4423 if (status)
4424 return status;
cc288f54
RM
4425 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4426 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4427 if (status)
ae9540f7 4428 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4429 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4430 return status;
c4e84bde
RM
4431}
4432
4433static void qlge_tx_timeout(struct net_device *ndev)
4434{
b16fed0a 4435 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4436 ql_queue_asic_error(qdev);
c4e84bde
RM
4437}
4438
4439static void ql_asic_reset_work(struct work_struct *work)
4440{
4441 struct ql_adapter *qdev =
4442 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4443 int status;
f2c0d8df 4444 rtnl_lock();
db98812f
RM
4445 status = ql_adapter_down(qdev);
4446 if (status)
4447 goto error;
4448
4449 status = ql_adapter_up(qdev);
4450 if (status)
4451 goto error;
2cd6dbaa
RM
4452
4453 /* Restore rx mode. */
4454 clear_bit(QL_ALLMULTI, &qdev->flags);
4455 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4456 qlge_set_multicast_list(qdev->ndev);
4457
f2c0d8df 4458 rtnl_unlock();
db98812f
RM
4459 return;
4460error:
ae9540f7
JP
4461 netif_alert(qdev, ifup, qdev->ndev,
4462 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4463
db98812f
RM
4464 set_bit(QL_ADAPTER_UP, &qdev->flags);
4465 dev_close(qdev->ndev);
4466 rtnl_unlock();
c4e84bde
RM
4467}
4468
ef9c7ab4 4469static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4470 .get_flash = ql_get_8012_flash_params,
4471 .port_initialize = ql_8012_port_initialize,
4472};
4473
ef9c7ab4 4474static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4475 .get_flash = ql_get_8000_flash_params,
4476 .port_initialize = ql_8000_port_initialize,
4477};
4478
e4552f51
RM
4479/* Find the pcie function number for the other NIC
4480 * on this chip. Since both NIC functions share a
4481 * common firmware we have the lowest enabled function
4482 * do any common work. Examples would be resetting
4483 * after a fatal firmware error, or doing a firmware
4484 * coredump.
4485 */
4486static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4487{
4488 int status = 0;
4489 u32 temp;
4490 u32 nic_func1, nic_func2;
4491
4492 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4493 &temp);
4494 if (status)
4495 return status;
4496
4497 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4498 MPI_TEST_NIC_FUNC_MASK);
4499 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4500 MPI_TEST_NIC_FUNC_MASK);
4501
4502 if (qdev->func == nic_func1)
4503 qdev->alt_func = nic_func2;
4504 else if (qdev->func == nic_func2)
4505 qdev->alt_func = nic_func1;
4506 else
4507 status = -EIO;
4508
4509 return status;
4510}
b0c2aadf 4511
e4552f51 4512static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4513{
e4552f51 4514 int status;
c4e84bde
RM
4515 qdev->func =
4516 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4517 if (qdev->func > 3)
4518 return -EIO;
4519
4520 status = ql_get_alt_pcie_func(qdev);
4521 if (status)
4522 return status;
4523
4524 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4525 if (qdev->port) {
c4e84bde
RM
4526 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4527 qdev->port_link_up = STS_PL1;
4528 qdev->port_init = STS_PI1;
4529 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4530 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4531 } else {
4532 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4533 qdev->port_link_up = STS_PL0;
4534 qdev->port_init = STS_PI0;
4535 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4536 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4537 }
4538 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4539 qdev->device_id = qdev->pdev->device;
4540 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4541 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4542 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4543 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4544 return status;
c4e84bde
RM
4545}
4546
4547static void ql_release_all(struct pci_dev *pdev)
4548{
4549 struct net_device *ndev = pci_get_drvdata(pdev);
4550 struct ql_adapter *qdev = netdev_priv(ndev);
4551
4552 if (qdev->workqueue) {
4553 destroy_workqueue(qdev->workqueue);
4554 qdev->workqueue = NULL;
4555 }
39aa8165 4556
c4e84bde 4557 if (qdev->reg_base)
8668ae92 4558 iounmap(qdev->reg_base);
c4e84bde
RM
4559 if (qdev->doorbell_area)
4560 iounmap(qdev->doorbell_area);
8aae2600 4561 vfree(qdev->mpi_coredump);
c4e84bde 4562 pci_release_regions(pdev);
c4e84bde
RM
4563}
4564
1dd06ae8
GKH
4565static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4566 int cards_found)
c4e84bde
RM
4567{
4568 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4569 int err = 0;
c4e84bde 4570
e332471c 4571 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4572 err = pci_enable_device(pdev);
4573 if (err) {
4574 dev_err(&pdev->dev, "PCI device enable failed.\n");
4575 return err;
4576 }
4577
ebd6e774
RM
4578 qdev->ndev = ndev;
4579 qdev->pdev = pdev;
4580 pci_set_drvdata(pdev, ndev);
c4e84bde 4581
bc9167f3
RM
4582 /* Set PCIe read request size */
4583 err = pcie_set_readrq(pdev, 4096);
4584 if (err) {
4585 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4586 goto err_out1;
bc9167f3
RM
4587 }
4588
c4e84bde
RM
4589 err = pci_request_regions(pdev, DRV_NAME);
4590 if (err) {
4591 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4592 return err;
c4e84bde
RM
4593 }
4594
4595 pci_set_master(pdev);
6a35528a 4596 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4597 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4598 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4599 } else {
284901a9 4600 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4601 if (!err)
284901a9 4602 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4603 }
4604
4605 if (err) {
4606 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4607 goto err_out2;
c4e84bde
RM
4608 }
4609
73475339
RM
4610 /* Set PCIe reset type for EEH to fundamental. */
4611 pdev->needs_freset = 1;
6d190c6e 4612 pci_save_state(pdev);
c4e84bde
RM
4613 qdev->reg_base =
4614 ioremap_nocache(pci_resource_start(pdev, 1),
4615 pci_resource_len(pdev, 1));
4616 if (!qdev->reg_base) {
4617 dev_err(&pdev->dev, "Register mapping failed.\n");
4618 err = -ENOMEM;
4f9a91c8 4619 goto err_out2;
c4e84bde
RM
4620 }
4621
4622 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4623 qdev->doorbell_area =
4624 ioremap_nocache(pci_resource_start(pdev, 3),
4625 pci_resource_len(pdev, 3));
4626 if (!qdev->doorbell_area) {
4627 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4628 err = -ENOMEM;
4f9a91c8 4629 goto err_out2;
c4e84bde
RM
4630 }
4631
e4552f51
RM
4632 err = ql_get_board_info(qdev);
4633 if (err) {
4634 dev_err(&pdev->dev, "Register access failed.\n");
4635 err = -EIO;
4f9a91c8 4636 goto err_out2;
e4552f51 4637 }
c4e84bde
RM
4638 qdev->msg_enable = netif_msg_init(debug, default_msg);
4639 spin_lock_init(&qdev->hw_lock);
4640 spin_lock_init(&qdev->stats_lock);
4641
8aae2600
RM
4642 if (qlge_mpi_coredump) {
4643 qdev->mpi_coredump =
4644 vmalloc(sizeof(struct ql_mpi_coredump));
4645 if (qdev->mpi_coredump == NULL) {
8aae2600 4646 err = -ENOMEM;
ce96bc86 4647 goto err_out2;
8aae2600 4648 }
d5c1da56
RM
4649 if (qlge_force_coredump)
4650 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4651 }
c4e84bde 4652 /* make sure the EEPROM is good */
b0c2aadf 4653 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4654 if (err) {
4655 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4656 goto err_out2;
c4e84bde
RM
4657 }
4658
801e9096
RM
4659 /* Keep local copy of current mac address. */
4660 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4661
4662 /* Set up the default ring sizes. */
4663 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4664 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4665
4666 /* Set up the coalescing parameters. */
4667 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4668 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4669 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4670 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4671
4672 /*
4673 * Set up the operating parameters.
4674 */
c4e84bde
RM
4675 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4676 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4677 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4678 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4679 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4680 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4681 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4682 init_completion(&qdev->ide_completion);
4d7b6b5d 4683 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4684
4685 if (!cards_found) {
4686 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4687 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4688 DRV_NAME, DRV_VERSION);
4689 }
4690 return 0;
4f9a91c8 4691err_out2:
c4e84bde 4692 ql_release_all(pdev);
4f9a91c8 4693err_out1:
c4e84bde
RM
4694 pci_disable_device(pdev);
4695 return err;
4696}
4697
25ed7849
SH
4698static const struct net_device_ops qlge_netdev_ops = {
4699 .ndo_open = qlge_open,
4700 .ndo_stop = qlge_close,
4701 .ndo_start_xmit = qlge_send,
4702 .ndo_change_mtu = qlge_change_mtu,
4703 .ndo_get_stats = qlge_get_stats,
afc4b13d 4704 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4705 .ndo_set_mac_address = qlge_set_mac_address,
4706 .ndo_validate_addr = eth_validate_addr,
4707 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4708 .ndo_fix_features = qlge_fix_features,
4709 .ndo_set_features = qlge_set_features,
01e6b953
RM
4710 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4711 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4712};
4713
15c052fc
RM
4714static void ql_timer(unsigned long data)
4715{
4716 struct ql_adapter *qdev = (struct ql_adapter *)data;
4717 u32 var = 0;
4718
4719 var = ql_read32(qdev, STS);
4720 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4721 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4722 return;
4723 }
4724
72046d84 4725 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4726}
4727
5d8e8726 4728static int qlge_probe(struct pci_dev *pdev,
1dd06ae8 4729 const struct pci_device_id *pci_entry)
c4e84bde
RM
4730{
4731 struct net_device *ndev = NULL;
4732 struct ql_adapter *qdev = NULL;
4733 static int cards_found = 0;
4734 int err = 0;
4735
1e213303 4736 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4737 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4738 if (!ndev)
4739 return -ENOMEM;
4740
4741 err = ql_init_device(pdev, ndev, cards_found);
4742 if (err < 0) {
4743 free_netdev(ndev);
4744 return err;
4745 }
4746
4747 qdev = netdev_priv(ndev);
4748 SET_NETDEV_DEV(ndev, &pdev->dev);
a45adbe8
JK
4749 ndev->hw_features = NETIF_F_SG |
4750 NETIF_F_IP_CSUM |
4751 NETIF_F_TSO |
4752 NETIF_F_TSO_ECN |
4753 NETIF_F_HW_VLAN_CTAG_TX |
4754 NETIF_F_HW_VLAN_CTAG_RX |
4755 NETIF_F_HW_VLAN_CTAG_FILTER |
4756 NETIF_F_RXCSUM;
4757 ndev->features = ndev->hw_features;
1a0150a9 4758 ndev->vlan_features = ndev->hw_features;
51bb352f
JK
4759 /* vlan gets same features (except vlan filter) */
4760 ndev->vlan_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
c4e84bde
RM
4761
4762 if (test_bit(QL_DMA64, &qdev->flags))
4763 ndev->features |= NETIF_F_HIGHDMA;
4764
4765 /*
4766 * Set up net_device structure.
4767 */
4768 ndev->tx_queue_len = qdev->tx_ring_size;
4769 ndev->irq = pdev->irq;
25ed7849
SH
4770
4771 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4772 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4773 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4774
c4e84bde
RM
4775 err = register_netdev(ndev);
4776 if (err) {
4777 dev_err(&pdev->dev, "net device registration failed.\n");
4778 ql_release_all(pdev);
4779 pci_disable_device(pdev);
4d2593cc 4780 free_netdev(ndev);
c4e84bde
RM
4781 return err;
4782 }
15c052fc
RM
4783 /* Start up the timer to trigger EEH if
4784 * the bus goes dead
4785 */
4786 init_timer_deferrable(&qdev->timer);
4787 qdev->timer.data = (unsigned long)qdev;
4788 qdev->timer.function = ql_timer;
4789 qdev->timer.expires = jiffies + (5*HZ);
4790 add_timer(&qdev->timer);
6a473308 4791 ql_link_off(qdev);
c4e84bde 4792 ql_display_dev_info(ndev);
9dfbbaa6 4793 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4794 cards_found++;
4795 return 0;
4796}
4797
9dfbbaa6
RM
4798netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4799{
4800 return qlge_send(skb, ndev);
4801}
4802
4803int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4804{
4805 return ql_clean_inbound_rx_ring(rx_ring, budget);
4806}
4807
5d8e8726 4808static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4809{
4810 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4811 struct ql_adapter *qdev = netdev_priv(ndev);
4812 del_timer_sync(&qdev->timer);
c5dadddb 4813 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4814 unregister_netdev(ndev);
4815 ql_release_all(pdev);
4816 pci_disable_device(pdev);
4817 free_netdev(ndev);
4818}
4819
6d190c6e
RM
4820/* Clean up resources without touching hardware. */
4821static void ql_eeh_close(struct net_device *ndev)
4822{
4823 int i;
4824 struct ql_adapter *qdev = netdev_priv(ndev);
4825
4826 if (netif_carrier_ok(ndev)) {
4827 netif_carrier_off(ndev);
4828 netif_stop_queue(ndev);
4829 }
4830
7ae80abd
BL
4831 /* Disabling the timer */
4832 del_timer_sync(&qdev->timer);
c5dadddb 4833 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4834
4835 for (i = 0; i < qdev->rss_ring_count; i++)
4836 netif_napi_del(&qdev->rx_ring[i].napi);
4837
4838 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4839 ql_tx_ring_clean(qdev);
4840 ql_free_rx_buffers(qdev);
4841 ql_release_adapter_resources(qdev);
4842}
4843
c4e84bde
RM
4844/*
4845 * This callback is called by the PCI subsystem whenever
4846 * a PCI bus error is detected.
4847 */
4848static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4849 enum pci_channel_state state)
4850{
4851 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4852 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4853
6d190c6e
RM
4854 switch (state) {
4855 case pci_channel_io_normal:
4856 return PCI_ERS_RESULT_CAN_RECOVER;
4857 case pci_channel_io_frozen:
4858 netif_device_detach(ndev);
4859 if (netif_running(ndev))
4860 ql_eeh_close(ndev);
4861 pci_disable_device(pdev);
4862 return PCI_ERS_RESULT_NEED_RESET;
4863 case pci_channel_io_perm_failure:
4864 dev_err(&pdev->dev,
4865 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4866 ql_eeh_close(ndev);
4867 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4868 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4869 }
c4e84bde
RM
4870
4871 /* Request a slot reset. */
4872 return PCI_ERS_RESULT_NEED_RESET;
4873}
4874
4875/*
4876 * This callback is called after the PCI buss has been reset.
4877 * Basically, this tries to restart the card from scratch.
4878 * This is a shortened version of the device probe/discovery code,
4879 * it resembles the first-half of the () routine.
4880 */
4881static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4882{
4883 struct net_device *ndev = pci_get_drvdata(pdev);
4884 struct ql_adapter *qdev = netdev_priv(ndev);
4885
6d190c6e
RM
4886 pdev->error_state = pci_channel_io_normal;
4887
4888 pci_restore_state(pdev);
c4e84bde 4889 if (pci_enable_device(pdev)) {
ae9540f7
JP
4890 netif_err(qdev, ifup, qdev->ndev,
4891 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4892 return PCI_ERS_RESULT_DISCONNECT;
4893 }
c4e84bde 4894 pci_set_master(pdev);
a112fd4c
RM
4895
4896 if (ql_adapter_reset(qdev)) {
ae9540f7 4897 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4898 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4899 return PCI_ERS_RESULT_DISCONNECT;
4900 }
4901
c4e84bde
RM
4902 return PCI_ERS_RESULT_RECOVERED;
4903}
4904
4905static void qlge_io_resume(struct pci_dev *pdev)
4906{
4907 struct net_device *ndev = pci_get_drvdata(pdev);
4908 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4909 int err = 0;
c4e84bde 4910
c4e84bde 4911 if (netif_running(ndev)) {
6d190c6e
RM
4912 err = qlge_open(ndev);
4913 if (err) {
ae9540f7
JP
4914 netif_err(qdev, ifup, qdev->ndev,
4915 "Device initialization failed after reset.\n");
c4e84bde
RM
4916 return;
4917 }
6d190c6e 4918 } else {
ae9540f7
JP
4919 netif_err(qdev, ifup, qdev->ndev,
4920 "Device was not running prior to EEH.\n");
c4e84bde 4921 }
72046d84 4922 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4923 netif_device_attach(ndev);
4924}
4925
3646f0e5 4926static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4927 .error_detected = qlge_io_error_detected,
4928 .slot_reset = qlge_io_slot_reset,
4929 .resume = qlge_io_resume,
4930};
4931
4932static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4933{
4934 struct net_device *ndev = pci_get_drvdata(pdev);
4935 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4936 int err;
c4e84bde
RM
4937
4938 netif_device_detach(ndev);
15c052fc 4939 del_timer_sync(&qdev->timer);
c4e84bde
RM
4940
4941 if (netif_running(ndev)) {
4942 err = ql_adapter_down(qdev);
4943 if (!err)
4944 return err;
4945 }
4946
bc083ce9 4947 ql_wol(qdev);
c4e84bde
RM
4948 err = pci_save_state(pdev);
4949 if (err)
4950 return err;
4951
4952 pci_disable_device(pdev);
4953
4954 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4955
4956 return 0;
4957}
4958
04da2cf9 4959#ifdef CONFIG_PM
c4e84bde
RM
4960static int qlge_resume(struct pci_dev *pdev)
4961{
4962 struct net_device *ndev = pci_get_drvdata(pdev);
4963 struct ql_adapter *qdev = netdev_priv(ndev);
4964 int err;
4965
4966 pci_set_power_state(pdev, PCI_D0);
4967 pci_restore_state(pdev);
4968 err = pci_enable_device(pdev);
4969 if (err) {
ae9540f7 4970 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4971 return err;
4972 }
4973 pci_set_master(pdev);
4974
4975 pci_enable_wake(pdev, PCI_D3hot, 0);
4976 pci_enable_wake(pdev, PCI_D3cold, 0);
4977
4978 if (netif_running(ndev)) {
4979 err = ql_adapter_up(qdev);
4980 if (err)
4981 return err;
4982 }
4983
72046d84 4984 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4985 netif_device_attach(ndev);
4986
4987 return 0;
4988}
04da2cf9 4989#endif /* CONFIG_PM */
c4e84bde
RM
4990
4991static void qlge_shutdown(struct pci_dev *pdev)
4992{
4993 qlge_suspend(pdev, PMSG_SUSPEND);
4994}
4995
4996static struct pci_driver qlge_driver = {
4997 .name = DRV_NAME,
4998 .id_table = qlge_pci_tbl,
4999 .probe = qlge_probe,
5d8e8726 5000 .remove = qlge_remove,
c4e84bde
RM
5001#ifdef CONFIG_PM
5002 .suspend = qlge_suspend,
5003 .resume = qlge_resume,
5004#endif
5005 .shutdown = qlge_shutdown,
5006 .err_handler = &qlge_err_handler
5007};
5008
70a611de 5009module_pci_driver(qlge_driver);
This page took 1.118171 seconds and 5 git commands to generate.