sfc: Update MCDI protocol definitions
[deliverable/linux.git] / drivers / net / ethernet / sfc / ef10.c
CommitLineData
8127d661
BH
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include <linux/in.h>
18#include <linux/jhash.h>
19#include <linux/wait.h>
20#include <linux/workqueue.h>
21
22/* Hardware control for EF10 architecture including 'Huntington'. */
23
24#define EFX_EF10_DRVGEN_EV 7
25enum {
26 EFX_EF10_TEST = 1,
27 EFX_EF10_REFILL,
28};
29
30/* The reserved RSS context value */
31#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
32
33/* The filter table(s) are managed by firmware and we have write-only
34 * access. When removing filters we must identify them to the
35 * firmware by a 64-bit handle, but this is too wide for Linux kernel
36 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
37 * be able to tell in advance whether a requested insertion will
38 * replace an existing filter. Therefore we maintain a software hash
39 * table, which should be at least as large as the hardware hash
40 * table.
41 *
42 * Huntington has a single 8K filter table shared between all filter
43 * types and both ports.
44 */
45#define HUNT_FILTER_TBL_ROWS 8192
46
47struct efx_ef10_filter_table {
48/* The RX match field masks supported by this fw & hw, in order of priority */
49 enum efx_filter_match_flags rx_match_flags[
50 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51 unsigned int rx_match_count;
52
53 struct {
54 unsigned long spec; /* pointer to spec plus flag bits */
55/* BUSY flag indicates that an update is in progress. STACK_OLD is
56 * used to mark and sweep stack-owned MAC filters.
57 */
58#define EFX_EF10_FILTER_FLAG_BUSY 1UL
59#define EFX_EF10_FILTER_FLAG_STACK_OLD 2UL
60#define EFX_EF10_FILTER_FLAGS 3UL
61 u64 handle; /* firmware handle */
62 } *entry;
63 wait_queue_head_t waitq;
64/* Shadow of net_device address lists, guarded by mac_lock */
65#define EFX_EF10_FILTER_STACK_UC_MAX 32
66#define EFX_EF10_FILTER_STACK_MC_MAX 256
67 struct {
68 u8 addr[ETH_ALEN];
69 u16 id;
70 } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71 stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72 int stack_uc_count; /* negative for PROMISC */
73 int stack_mc_count; /* negative for PROMISC/ALLMULTI */
74};
75
76/* An arbitrary search limit for the software hash table */
77#define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84{
85 efx_dword_t reg;
86
87 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90}
91
92static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93{
94 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95}
96
e5a2538a 97static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
8127d661
BH
98{
99 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100 struct efx_ef10_nic_data *nic_data = efx->nic_data;
101 size_t outlen;
102 int rc;
103
104 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107 outbuf, sizeof(outbuf), &outlen);
108 if (rc)
109 return rc;
e5a2538a
BH
110 if (outlen < sizeof(outbuf)) {
111 netif_err(efx, drv, efx->net_dev,
112 "unable to read datapath firmware capabilities\n");
113 return -EIO;
114 }
115
116 nic_data->datapath_caps =
117 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
8127d661 118
e5a2538a
BH
119 if (!(nic_data->datapath_caps &
120 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
121 netif_err(efx, drv, efx->net_dev,
122 "current firmware does not support TSO\n");
123 return -ENODEV;
124 }
125
126 if (!(nic_data->datapath_caps &
127 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
128 netif_err(efx, probe, efx->net_dev,
129 "current firmware does not support an RX prefix\n");
130 return -ENODEV;
8127d661
BH
131 }
132
133 return 0;
134}
135
136static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
137{
138 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
139 int rc;
140
141 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
142 outbuf, sizeof(outbuf), NULL);
143 if (rc)
144 return rc;
145 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
146 return rc > 0 ? rc : -ERANGE;
147}
148
149static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
150{
151 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
152 size_t outlen;
153 int rc;
154
155 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
156
157 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
158 outbuf, sizeof(outbuf), &outlen);
159 if (rc)
160 return rc;
161 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
162 return -EIO;
163
164 memcpy(mac_address,
165 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
166 return 0;
167}
168
169static int efx_ef10_probe(struct efx_nic *efx)
170{
171 struct efx_ef10_nic_data *nic_data;
172 int i, rc;
173
174 /* We can have one VI for each 8K region. However we need
175 * multiple TX queues per channel.
176 */
177 efx->max_channels =
178 min_t(unsigned int,
179 EFX_MAX_CHANNELS,
180 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
181 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
182 BUG_ON(efx->max_channels == 0);
183
184 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
185 if (!nic_data)
186 return -ENOMEM;
187 efx->nic_data = nic_data;
188
189 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
190 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
191 if (rc)
192 goto fail1;
193
194 /* Get the MC's warm boot count. In case it's rebooting right
195 * now, be prepared to retry.
196 */
197 i = 0;
198 for (;;) {
199 rc = efx_ef10_get_warm_boot_count(efx);
200 if (rc >= 0)
201 break;
202 if (++i == 5)
203 goto fail2;
204 ssleep(1);
205 }
206 nic_data->warm_boot_count = rc;
207
208 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
209
210 /* In case we're recovering from a crash (kexec), we want to
211 * cancel any outstanding request by the previous user of this
212 * function. We send a special message using the least
213 * significant bits of the 'high' (doorbell) register.
214 */
215 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
216
217 rc = efx_mcdi_init(efx);
218 if (rc)
219 goto fail2;
220
221 /* Reset (most) configuration for this function */
222 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
223 if (rc)
224 goto fail3;
225
226 /* Enable event logging */
227 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
228 if (rc)
229 goto fail3;
230
e5a2538a 231 rc = efx_ef10_init_datapath_caps(efx);
8127d661
BH
232 if (rc < 0)
233 goto fail3;
234
235 efx->rx_packet_len_offset =
236 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
237
8127d661
BH
238 rc = efx_mcdi_port_get_number(efx);
239 if (rc < 0)
240 goto fail3;
241 efx->port_num = rc;
242
243 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
244 if (rc)
245 goto fail3;
246
247 rc = efx_ef10_get_sysclk_freq(efx);
248 if (rc < 0)
249 goto fail3;
250 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
251
252 /* Check whether firmware supports bug 35388 workaround */
253 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
254 if (rc == 0)
255 nic_data->workaround_35388 = true;
256 else if (rc != -ENOSYS && rc != -ENOENT)
257 goto fail3;
258 netif_dbg(efx, probe, efx->net_dev,
259 "workaround for bug 35388 is %sabled\n",
260 nic_data->workaround_35388 ? "en" : "dis");
261
262 rc = efx_mcdi_mon_probe(efx);
263 if (rc)
264 goto fail3;
265
8127d661
BH
266 return 0;
267
268fail3:
269 efx_mcdi_fini(efx);
270fail2:
271 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
272fail1:
273 kfree(nic_data);
274 efx->nic_data = NULL;
275 return rc;
276}
277
278static int efx_ef10_free_vis(struct efx_nic *efx)
279{
280 int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
281
282 /* -EALREADY means nothing to free, so ignore */
283 if (rc == -EALREADY)
284 rc = 0;
285 return rc;
286}
287
183233be
BH
288#ifdef EFX_USE_PIO
289
290static void efx_ef10_free_piobufs(struct efx_nic *efx)
291{
292 struct efx_ef10_nic_data *nic_data = efx->nic_data;
293 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
294 unsigned int i;
295 int rc;
296
297 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
298
299 for (i = 0; i < nic_data->n_piobufs; i++) {
300 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
301 nic_data->piobuf_handle[i]);
302 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
303 NULL, 0, NULL);
304 WARN_ON(rc);
305 }
306
307 nic_data->n_piobufs = 0;
308}
309
310static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
311{
312 struct efx_ef10_nic_data *nic_data = efx->nic_data;
313 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
314 unsigned int i;
315 size_t outlen;
316 int rc = 0;
317
318 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
319
320 for (i = 0; i < n; i++) {
321 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
322 outbuf, sizeof(outbuf), &outlen);
323 if (rc)
324 break;
325 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
326 rc = -EIO;
327 break;
328 }
329 nic_data->piobuf_handle[i] =
330 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
331 netif_dbg(efx, probe, efx->net_dev,
332 "allocated PIO buffer %u handle %x\n", i,
333 nic_data->piobuf_handle[i]);
334 }
335
336 nic_data->n_piobufs = i;
337 if (rc)
338 efx_ef10_free_piobufs(efx);
339 return rc;
340}
341
342static int efx_ef10_link_piobufs(struct efx_nic *efx)
343{
344 struct efx_ef10_nic_data *nic_data = efx->nic_data;
345 MCDI_DECLARE_BUF(inbuf,
346 max(MC_CMD_LINK_PIOBUF_IN_LEN,
347 MC_CMD_UNLINK_PIOBUF_IN_LEN));
348 struct efx_channel *channel;
349 struct efx_tx_queue *tx_queue;
350 unsigned int offset, index;
351 int rc;
352
353 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
354 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
355
356 /* Link a buffer to each VI in the write-combining mapping */
357 for (index = 0; index < nic_data->n_piobufs; ++index) {
358 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
359 nic_data->piobuf_handle[index]);
360 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
361 nic_data->pio_write_vi_base + index);
362 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
363 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
364 NULL, 0, NULL);
365 if (rc) {
366 netif_err(efx, drv, efx->net_dev,
367 "failed to link VI %u to PIO buffer %u (%d)\n",
368 nic_data->pio_write_vi_base + index, index,
369 rc);
370 goto fail;
371 }
372 netif_dbg(efx, probe, efx->net_dev,
373 "linked VI %u to PIO buffer %u\n",
374 nic_data->pio_write_vi_base + index, index);
375 }
376
377 /* Link a buffer to each TX queue */
378 efx_for_each_channel(channel, efx) {
379 efx_for_each_channel_tx_queue(tx_queue, channel) {
380 /* We assign the PIO buffers to queues in
381 * reverse order to allow for the following
382 * special case.
383 */
384 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
385 tx_queue->channel->channel - 1) *
386 efx_piobuf_size);
387 index = offset / ER_DZ_TX_PIOBUF_SIZE;
388 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
389
390 /* When the host page size is 4K, the first
391 * host page in the WC mapping may be within
392 * the same VI page as the last TX queue. We
393 * can only link one buffer to each VI.
394 */
395 if (tx_queue->queue == nic_data->pio_write_vi_base) {
396 BUG_ON(index != 0);
397 rc = 0;
398 } else {
399 MCDI_SET_DWORD(inbuf,
400 LINK_PIOBUF_IN_PIOBUF_HANDLE,
401 nic_data->piobuf_handle[index]);
402 MCDI_SET_DWORD(inbuf,
403 LINK_PIOBUF_IN_TXQ_INSTANCE,
404 tx_queue->queue);
405 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
406 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
407 NULL, 0, NULL);
408 }
409
410 if (rc) {
411 /* This is non-fatal; the TX path just
412 * won't use PIO for this queue
413 */
414 netif_err(efx, drv, efx->net_dev,
415 "failed to link VI %u to PIO buffer %u (%d)\n",
416 tx_queue->queue, index, rc);
417 tx_queue->piobuf = NULL;
418 } else {
419 tx_queue->piobuf =
420 nic_data->pio_write_base +
421 index * EFX_VI_PAGE_SIZE + offset;
422 tx_queue->piobuf_offset = offset;
423 netif_dbg(efx, probe, efx->net_dev,
424 "linked VI %u to PIO buffer %u offset %x addr %p\n",
425 tx_queue->queue, index,
426 tx_queue->piobuf_offset,
427 tx_queue->piobuf);
428 }
429 }
430 }
431
432 return 0;
433
434fail:
435 while (index--) {
436 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
437 nic_data->pio_write_vi_base + index);
438 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
439 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
440 NULL, 0, NULL);
441 }
442 return rc;
443}
444
445#else /* !EFX_USE_PIO */
446
447static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
448{
449 return n == 0 ? 0 : -ENOBUFS;
450}
451
452static int efx_ef10_link_piobufs(struct efx_nic *efx)
453{
454 return 0;
455}
456
457static void efx_ef10_free_piobufs(struct efx_nic *efx)
458{
459}
460
461#endif /* EFX_USE_PIO */
462
8127d661
BH
463static void efx_ef10_remove(struct efx_nic *efx)
464{
465 struct efx_ef10_nic_data *nic_data = efx->nic_data;
466 int rc;
467
468 efx_mcdi_mon_remove(efx);
469
470 /* This needs to be after efx_ptp_remove_channel() with no filters */
471 efx_ef10_rx_free_indir_table(efx);
472
183233be
BH
473 if (nic_data->wc_membase)
474 iounmap(nic_data->wc_membase);
475
8127d661
BH
476 rc = efx_ef10_free_vis(efx);
477 WARN_ON(rc != 0);
478
183233be
BH
479 if (!nic_data->must_restore_piobufs)
480 efx_ef10_free_piobufs(efx);
481
8127d661
BH
482 efx_mcdi_fini(efx);
483 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
484 kfree(nic_data);
485}
486
487static int efx_ef10_alloc_vis(struct efx_nic *efx,
488 unsigned int min_vis, unsigned int max_vis)
489{
490 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
491 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
492 struct efx_ef10_nic_data *nic_data = efx->nic_data;
493 size_t outlen;
494 int rc;
495
496 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
497 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
498 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
499 outbuf, sizeof(outbuf), &outlen);
500 if (rc != 0)
501 return rc;
502
503 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
504 return -EIO;
505
506 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
507 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
508
509 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
510 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
511 return 0;
512}
513
183233be
BH
514/* Note that the failure path of this function does not free
515 * resources, as this will be done by efx_ef10_remove().
516 */
8127d661
BH
517static int efx_ef10_dimension_resources(struct efx_nic *efx)
518{
183233be
BH
519 struct efx_ef10_nic_data *nic_data = efx->nic_data;
520 unsigned int uc_mem_map_size, wc_mem_map_size;
521 unsigned int min_vis, pio_write_vi_base, max_vis;
522 void __iomem *membase;
523 int rc;
524
525 min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
8127d661 526
183233be
BH
527#ifdef EFX_USE_PIO
528 /* Try to allocate PIO buffers if wanted and if the full
529 * number of PIO buffers would be sufficient to allocate one
530 * copy-buffer per TX channel. Failure is non-fatal, as there
531 * are only a small number of PIO buffers shared between all
532 * functions of the controller.
533 */
534 if (efx_piobuf_size != 0 &&
535 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
536 efx->n_tx_channels) {
537 unsigned int n_piobufs =
538 DIV_ROUND_UP(efx->n_tx_channels,
539 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
540
541 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
542 if (rc)
543 netif_err(efx, probe, efx->net_dev,
544 "failed to allocate PIO buffers (%d)\n", rc);
545 else
546 netif_dbg(efx, probe, efx->net_dev,
547 "allocated %u PIO buffers\n", n_piobufs);
548 }
549#else
550 nic_data->n_piobufs = 0;
551#endif
552
553 /* PIO buffers should be mapped with write-combining enabled,
554 * and we want to make single UC and WC mappings rather than
555 * several of each (in fact that's the only option if host
556 * page size is >4K). So we may allocate some extra VIs just
557 * for writing PIO buffers through.
558 */
559 uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
560 ER_DZ_TX_PIOBUF);
561 if (nic_data->n_piobufs) {
562 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
563 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
564 nic_data->n_piobufs) *
565 EFX_VI_PAGE_SIZE) -
566 uc_mem_map_size);
567 max_vis = pio_write_vi_base + nic_data->n_piobufs;
568 } else {
569 pio_write_vi_base = 0;
570 wc_mem_map_size = 0;
571 max_vis = min_vis;
572 }
573
574 /* In case the last attached driver failed to free VIs, do it now */
575 rc = efx_ef10_free_vis(efx);
576 if (rc != 0)
577 return rc;
578
579 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
580 if (rc != 0)
581 return rc;
582
583 /* If we didn't get enough VIs to map all the PIO buffers, free the
584 * PIO buffers
585 */
586 if (nic_data->n_piobufs &&
587 nic_data->n_allocated_vis <
588 pio_write_vi_base + nic_data->n_piobufs) {
589 netif_dbg(efx, probe, efx->net_dev,
590 "%u VIs are not sufficient to map %u PIO buffers\n",
591 nic_data->n_allocated_vis, nic_data->n_piobufs);
592 efx_ef10_free_piobufs(efx);
593 }
594
595 /* Shrink the original UC mapping of the memory BAR */
596 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
597 if (!membase) {
598 netif_err(efx, probe, efx->net_dev,
599 "could not shrink memory BAR to %x\n",
600 uc_mem_map_size);
601 return -ENOMEM;
602 }
603 iounmap(efx->membase);
604 efx->membase = membase;
605
606 /* Set up the WC mapping if needed */
607 if (wc_mem_map_size) {
608 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
609 uc_mem_map_size,
610 wc_mem_map_size);
611 if (!nic_data->wc_membase) {
612 netif_err(efx, probe, efx->net_dev,
613 "could not allocate WC mapping of size %x\n",
614 wc_mem_map_size);
615 return -ENOMEM;
616 }
617 nic_data->pio_write_vi_base = pio_write_vi_base;
618 nic_data->pio_write_base =
619 nic_data->wc_membase +
620 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
621 uc_mem_map_size);
622
623 rc = efx_ef10_link_piobufs(efx);
624 if (rc)
625 efx_ef10_free_piobufs(efx);
626 }
627
628 netif_dbg(efx, probe, efx->net_dev,
629 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
630 &efx->membase_phys, efx->membase, uc_mem_map_size,
631 nic_data->wc_membase, wc_mem_map_size);
632
633 return 0;
8127d661
BH
634}
635
636static int efx_ef10_init_nic(struct efx_nic *efx)
637{
638 struct efx_ef10_nic_data *nic_data = efx->nic_data;
639 int rc;
640
a915ccc9
BH
641 if (nic_data->must_check_datapath_caps) {
642 rc = efx_ef10_init_datapath_caps(efx);
643 if (rc)
644 return rc;
645 nic_data->must_check_datapath_caps = false;
646 }
647
8127d661
BH
648 if (nic_data->must_realloc_vis) {
649 /* We cannot let the number of VIs change now */
650 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
651 nic_data->n_allocated_vis);
652 if (rc)
653 return rc;
654 nic_data->must_realloc_vis = false;
655 }
656
183233be
BH
657 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
658 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
659 if (rc == 0) {
660 rc = efx_ef10_link_piobufs(efx);
661 if (rc)
662 efx_ef10_free_piobufs(efx);
663 }
664
665 /* Log an error on failure, but this is non-fatal */
666 if (rc)
667 netif_err(efx, drv, efx->net_dev,
668 "failed to restore PIO buffers (%d)\n", rc);
669 nic_data->must_restore_piobufs = false;
670 }
671
8127d661
BH
672 efx_ef10_rx_push_indir_table(efx);
673 return 0;
674}
675
676static int efx_ef10_map_reset_flags(u32 *flags)
677{
678 enum {
679 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
680 ETH_RESET_SHARED_SHIFT),
681 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
682 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
683 ETH_RESET_PHY | ETH_RESET_MGMT) <<
684 ETH_RESET_SHARED_SHIFT)
685 };
686
687 /* We assume for now that our PCI function is permitted to
688 * reset everything.
689 */
690
691 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
692 *flags &= ~EF10_RESET_MC;
693 return RESET_TYPE_WORLD;
694 }
695
696 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
697 *flags &= ~EF10_RESET_PORT;
698 return RESET_TYPE_ALL;
699 }
700
701 /* no invisible reset implemented */
702
703 return -EINVAL;
704}
705
706#define EF10_DMA_STAT(ext_name, mcdi_name) \
707 [EF10_STAT_ ## ext_name] = \
708 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
709#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
710 [EF10_STAT_ ## int_name] = \
711 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
712#define EF10_OTHER_STAT(ext_name) \
713 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
714
715static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
716 EF10_DMA_STAT(tx_bytes, TX_BYTES),
717 EF10_DMA_STAT(tx_packets, TX_PKTS),
718 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
719 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
720 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
721 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
722 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
723 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
724 EF10_DMA_STAT(tx_64, TX_64_PKTS),
725 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
726 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
727 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
728 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
729 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
730 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
731 EF10_DMA_STAT(rx_bytes, RX_BYTES),
732 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
733 EF10_OTHER_STAT(rx_good_bytes),
734 EF10_OTHER_STAT(rx_bad_bytes),
735 EF10_DMA_STAT(rx_packets, RX_PKTS),
736 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
737 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
738 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
739 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
740 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
741 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
742 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
743 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
744 EF10_DMA_STAT(rx_64, RX_64_PKTS),
745 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
746 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
747 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
748 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
749 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
750 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
751 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
752 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
753 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
754 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
755 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
756 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
568d7a00
EC
757 EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
758 EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
759 EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
760 EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
761 EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
762 EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
763 EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
764 EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
765 EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
766 EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
767 EF10_DMA_STAT(rx_dp_emerg_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
768 EF10_DMA_STAT(rx_dp_emerg_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
8127d661
BH
769};
770
771#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
772 (1ULL << EF10_STAT_tx_packets) | \
773 (1ULL << EF10_STAT_tx_pause) | \
774 (1ULL << EF10_STAT_tx_unicast) | \
775 (1ULL << EF10_STAT_tx_multicast) | \
776 (1ULL << EF10_STAT_tx_broadcast) | \
777 (1ULL << EF10_STAT_rx_bytes) | \
778 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
779 (1ULL << EF10_STAT_rx_good_bytes) | \
780 (1ULL << EF10_STAT_rx_bad_bytes) | \
781 (1ULL << EF10_STAT_rx_packets) | \
782 (1ULL << EF10_STAT_rx_good) | \
783 (1ULL << EF10_STAT_rx_bad) | \
784 (1ULL << EF10_STAT_rx_pause) | \
785 (1ULL << EF10_STAT_rx_control) | \
786 (1ULL << EF10_STAT_rx_unicast) | \
787 (1ULL << EF10_STAT_rx_multicast) | \
788 (1ULL << EF10_STAT_rx_broadcast) | \
789 (1ULL << EF10_STAT_rx_lt64) | \
790 (1ULL << EF10_STAT_rx_64) | \
791 (1ULL << EF10_STAT_rx_65_to_127) | \
792 (1ULL << EF10_STAT_rx_128_to_255) | \
793 (1ULL << EF10_STAT_rx_256_to_511) | \
794 (1ULL << EF10_STAT_rx_512_to_1023) | \
795 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
796 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
797 (1ULL << EF10_STAT_rx_gtjumbo) | \
798 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
799 (1ULL << EF10_STAT_rx_overflow) | \
800 (1ULL << EF10_STAT_rx_nodesc_drops))
801
802/* These statistics are only provided by the 10G MAC. For a 10G/40G
803 * switchable port we do not expose these because they might not
804 * include all the packets they should.
805 */
806#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
807 (1ULL << EF10_STAT_tx_lt64) | \
808 (1ULL << EF10_STAT_tx_64) | \
809 (1ULL << EF10_STAT_tx_65_to_127) | \
810 (1ULL << EF10_STAT_tx_128_to_255) | \
811 (1ULL << EF10_STAT_tx_256_to_511) | \
812 (1ULL << EF10_STAT_tx_512_to_1023) | \
813 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
814 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
815
816/* These statistics are only provided by the 40G MAC. For a 10G/40G
817 * switchable port we do expose these because the errors will otherwise
818 * be silent.
819 */
820#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
821 (1ULL << EF10_STAT_rx_length_error))
822
568d7a00
EC
823/* These statistics are only provided if the firmware supports the
824 * capability PM_AND_RXDP_COUNTERS.
825 */
826#define HUNT_PM_AND_RXDP_STAT_MASK ( \
827 (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) | \
828 (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) | \
829 (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) | \
830 (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) | \
831 (1ULL << EF10_STAT_rx_pm_trunc_qbb) | \
832 (1ULL << EF10_STAT_rx_pm_discard_qbb) | \
833 (1ULL << EF10_STAT_rx_pm_discard_mapping) | \
834 (1ULL << EF10_STAT_rx_dp_q_disabled_packets) | \
835 (1ULL << EF10_STAT_rx_dp_di_dropped_packets) | \
836 (1ULL << EF10_STAT_rx_dp_streaming_packets) | \
837 (1ULL << EF10_STAT_rx_dp_emerg_fetch) | \
838 (1ULL << EF10_STAT_rx_dp_emerg_wait))
839
4bae913b 840static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
8127d661 841{
4bae913b 842 u64 raw_mask = HUNT_COMMON_STAT_MASK;
8127d661 843 u32 port_caps = efx_mcdi_phy_get_caps(efx);
568d7a00 844 struct efx_ef10_nic_data *nic_data = efx->nic_data;
8127d661
BH
845
846 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
4bae913b 847 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
8127d661 848 else
4bae913b 849 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
568d7a00
EC
850
851 if (nic_data->datapath_caps &
852 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
853 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
854
4bae913b
EC
855 return raw_mask;
856}
857
858static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
859{
860 u64 raw_mask = efx_ef10_raw_stat_mask(efx);
861
862#if BITS_PER_LONG == 64
863 mask[0] = raw_mask;
864#else
865 mask[0] = raw_mask & 0xffffffff;
866 mask[1] = raw_mask >> 32;
867#endif
8127d661
BH
868}
869
870static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
871{
4bae913b
EC
872 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
873
874 efx_ef10_get_stat_mask(efx, mask);
8127d661 875 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
4bae913b 876 mask, names);
8127d661
BH
877}
878
879static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
880{
881 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4bae913b 882 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
8127d661
BH
883 __le64 generation_start, generation_end;
884 u64 *stats = nic_data->stats;
885 __le64 *dma_stats;
886
4bae913b
EC
887 efx_ef10_get_stat_mask(efx, mask);
888
8127d661
BH
889 dma_stats = efx->stats_buffer.addr;
890 nic_data = efx->nic_data;
891
892 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
893 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
894 return 0;
895 rmb();
4bae913b 896 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
8127d661 897 stats, efx->stats_buffer.addr, false);
d546a893 898 rmb();
8127d661
BH
899 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
900 if (generation_end != generation_start)
901 return -EAGAIN;
902
903 /* Update derived statistics */
904 stats[EF10_STAT_rx_good_bytes] =
905 stats[EF10_STAT_rx_bytes] -
906 stats[EF10_STAT_rx_bytes_minus_good_bytes];
907 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
908 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
909
910 return 0;
911}
912
913
914static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
915 struct rtnl_link_stats64 *core_stats)
916{
4bae913b 917 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
8127d661
BH
918 struct efx_ef10_nic_data *nic_data = efx->nic_data;
919 u64 *stats = nic_data->stats;
920 size_t stats_count = 0, index;
921 int retry;
922
4bae913b
EC
923 efx_ef10_get_stat_mask(efx, mask);
924
8127d661
BH
925 /* If we're unlucky enough to read statistics during the DMA, wait
926 * up to 10ms for it to finish (typically takes <500us)
927 */
928 for (retry = 0; retry < 100; ++retry) {
929 if (efx_ef10_try_update_nic_stats(efx) == 0)
930 break;
931 udelay(100);
932 }
933
934 if (full_stats) {
935 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
936 if (efx_ef10_stat_desc[index].name) {
937 *full_stats++ = stats[index];
938 ++stats_count;
939 }
940 }
941 }
942
943 if (core_stats) {
944 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
945 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
946 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
947 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
948 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
949 core_stats->multicast = stats[EF10_STAT_rx_multicast];
950 core_stats->rx_length_errors =
951 stats[EF10_STAT_rx_gtjumbo] +
952 stats[EF10_STAT_rx_length_error];
953 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
954 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
955 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
956 core_stats->rx_errors = (core_stats->rx_length_errors +
957 core_stats->rx_crc_errors +
958 core_stats->rx_frame_errors);
959 }
960
961 return stats_count;
962}
963
964static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
965{
966 struct efx_nic *efx = channel->efx;
967 unsigned int mode, value;
968 efx_dword_t timer_cmd;
969
970 if (channel->irq_moderation) {
971 mode = 3;
972 value = channel->irq_moderation - 1;
973 } else {
974 mode = 0;
975 value = 0;
976 }
977
978 if (EFX_EF10_WORKAROUND_35388(efx)) {
979 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
980 EFE_DD_EVQ_IND_TIMER_FLAGS,
981 ERF_DD_EVQ_IND_TIMER_MODE, mode,
982 ERF_DD_EVQ_IND_TIMER_VAL, value);
983 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
984 channel->channel);
985 } else {
986 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
987 ERF_DZ_TC_TIMER_VAL, value);
988 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
989 channel->channel);
990 }
991}
992
993static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
994{
995 wol->supported = 0;
996 wol->wolopts = 0;
997 memset(&wol->sopass, 0, sizeof(wol->sopass));
998}
999
1000static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1001{
1002 if (type != 0)
1003 return -EINVAL;
1004 return 0;
1005}
1006
1007static void efx_ef10_mcdi_request(struct efx_nic *efx,
1008 const efx_dword_t *hdr, size_t hdr_len,
1009 const efx_dword_t *sdu, size_t sdu_len)
1010{
1011 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1012 u8 *pdu = nic_data->mcdi_buf.addr;
1013
1014 memcpy(pdu, hdr, hdr_len);
1015 memcpy(pdu + hdr_len, sdu, sdu_len);
1016 wmb();
1017
1018 /* The hardware provides 'low' and 'high' (doorbell) registers
1019 * for passing the 64-bit address of an MCDI request to
1020 * firmware. However the dwords are swapped by firmware. The
1021 * least significant bits of the doorbell are then 0 for all
1022 * MCDI requests due to alignment.
1023 */
1024 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1025 ER_DZ_MC_DB_LWRD);
1026 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1027 ER_DZ_MC_DB_HWRD);
1028}
1029
1030static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1031{
1032 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1033 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1034
1035 rmb();
1036 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1037}
1038
1039static void
1040efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1041 size_t offset, size_t outlen)
1042{
1043 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1044 const u8 *pdu = nic_data->mcdi_buf.addr;
1045
1046 memcpy(outbuf, pdu + offset, outlen);
1047}
1048
1049static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1050{
1051 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1052 int rc;
1053
1054 rc = efx_ef10_get_warm_boot_count(efx);
1055 if (rc < 0) {
1056 /* The firmware is presumably in the process of
1057 * rebooting. However, we are supposed to report each
1058 * reboot just once, so we must only do that once we
1059 * can read and store the updated warm boot count.
1060 */
1061 return 0;
1062 }
1063
1064 if (rc == nic_data->warm_boot_count)
1065 return 0;
1066
1067 nic_data->warm_boot_count = rc;
1068
1069 /* All our allocations have been reset */
1070 nic_data->must_realloc_vis = true;
1071 nic_data->must_restore_filters = true;
183233be 1072 nic_data->must_restore_piobufs = true;
8127d661
BH
1073 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1074
a915ccc9
BH
1075 /* The datapath firmware might have been changed */
1076 nic_data->must_check_datapath_caps = true;
1077
869070c5
BH
1078 /* MAC statistics have been cleared on the NIC; clear the local
1079 * statistic that we update with efx_update_diff_stat().
1080 */
1081 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1082
8127d661
BH
1083 return -EIO;
1084}
1085
1086/* Handle an MSI interrupt
1087 *
1088 * Handle an MSI hardware interrupt. This routine schedules event
1089 * queue processing. No interrupt acknowledgement cycle is necessary.
1090 * Also, we never need to check that the interrupt is for us, since
1091 * MSI interrupts cannot be shared.
1092 */
1093static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1094{
1095 struct efx_msi_context *context = dev_id;
1096 struct efx_nic *efx = context->efx;
1097
1098 netif_vdbg(efx, intr, efx->net_dev,
1099 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1100
1101 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1102 /* Note test interrupts */
1103 if (context->index == efx->irq_level)
1104 efx->last_irq_cpu = raw_smp_processor_id();
1105
1106 /* Schedule processing of the channel */
1107 efx_schedule_channel_irq(efx->channel[context->index]);
1108 }
1109
1110 return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1114{
1115 struct efx_nic *efx = dev_id;
1116 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1117 struct efx_channel *channel;
1118 efx_dword_t reg;
1119 u32 queues;
1120
1121 /* Read the ISR which also ACKs the interrupts */
1122 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1123 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1124
1125 if (queues == 0)
1126 return IRQ_NONE;
1127
1128 if (likely(soft_enabled)) {
1129 /* Note test interrupts */
1130 if (queues & (1U << efx->irq_level))
1131 efx->last_irq_cpu = raw_smp_processor_id();
1132
1133 efx_for_each_channel(channel, efx) {
1134 if (queues & 1)
1135 efx_schedule_channel_irq(channel);
1136 queues >>= 1;
1137 }
1138 }
1139
1140 netif_vdbg(efx, intr, efx->net_dev,
1141 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1142 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1143
1144 return IRQ_HANDLED;
1145}
1146
1147static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1148{
1149 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1150
1151 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1152
1153 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1154 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1155 inbuf, sizeof(inbuf), NULL, 0, NULL);
1156}
1157
1158static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1159{
1160 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1161 (tx_queue->ptr_mask + 1) *
1162 sizeof(efx_qword_t),
1163 GFP_KERNEL);
1164}
1165
1166/* This writes to the TX_DESC_WPTR and also pushes data */
1167static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1168 const efx_qword_t *txd)
1169{
1170 unsigned int write_ptr;
1171 efx_oword_t reg;
1172
1173 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1174 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1175 reg.qword[0] = *txd;
1176 efx_writeo_page(tx_queue->efx, &reg,
1177 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1178}
1179
1180static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1181{
1182 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1183 EFX_BUF_SIZE));
1184 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1185 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1186 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1187 struct efx_channel *channel = tx_queue->channel;
1188 struct efx_nic *efx = tx_queue->efx;
1189 size_t inlen, outlen;
1190 dma_addr_t dma_addr;
1191 efx_qword_t *txd;
1192 int rc;
1193 int i;
1194
1195 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1196 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1197 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1198 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1199 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1200 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1201 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1202 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1203 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1204
1205 dma_addr = tx_queue->txd.buf.dma_addr;
1206
1207 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1208 tx_queue->queue, entries, (u64)dma_addr);
1209
1210 for (i = 0; i < entries; ++i) {
1211 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1212 dma_addr += EFX_BUF_SIZE;
1213 }
1214
1215 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1216
1217 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1218 outbuf, sizeof(outbuf), &outlen);
1219 if (rc)
1220 goto fail;
1221
1222 /* A previous user of this TX queue might have set us up the
1223 * bomb by writing a descriptor to the TX push collector but
1224 * not the doorbell. (Each collector belongs to a port, not a
1225 * queue or function, so cannot easily be reset.) We must
1226 * attempt to push a no-op descriptor in its place.
1227 */
1228 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1229 tx_queue->insert_count = 1;
1230 txd = efx_tx_desc(tx_queue, 0);
1231 EFX_POPULATE_QWORD_4(*txd,
1232 ESF_DZ_TX_DESC_IS_OPT, true,
1233 ESF_DZ_TX_OPTION_TYPE,
1234 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1235 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1236 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1237 tx_queue->write_count = 1;
1238 wmb();
1239 efx_ef10_push_tx_desc(tx_queue, txd);
1240
1241 return;
1242
1243fail:
1244 WARN_ON(true);
1245 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1246}
1247
1248static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1249{
1250 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1251 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1252 struct efx_nic *efx = tx_queue->efx;
1253 size_t outlen;
1254 int rc;
1255
1256 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1257 tx_queue->queue);
1258
1259 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1260 outbuf, sizeof(outbuf), &outlen);
1261
1262 if (rc && rc != -EALREADY)
1263 goto fail;
1264
1265 return;
1266
1267fail:
1268 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1269}
1270
1271static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1272{
1273 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1274}
1275
1276/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1277static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1278{
1279 unsigned int write_ptr;
1280 efx_dword_t reg;
1281
1282 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1283 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1284 efx_writed_page(tx_queue->efx, &reg,
1285 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1286}
1287
1288static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1289{
1290 unsigned int old_write_count = tx_queue->write_count;
1291 struct efx_tx_buffer *buffer;
1292 unsigned int write_ptr;
1293 efx_qword_t *txd;
1294
1295 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1296
1297 do {
1298 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1299 buffer = &tx_queue->buffer[write_ptr];
1300 txd = efx_tx_desc(tx_queue, write_ptr);
1301 ++tx_queue->write_count;
1302
1303 /* Create TX descriptor ring entry */
1304 if (buffer->flags & EFX_TX_BUF_OPTION) {
1305 *txd = buffer->option;
1306 } else {
1307 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1308 EFX_POPULATE_QWORD_3(
1309 *txd,
1310 ESF_DZ_TX_KER_CONT,
1311 buffer->flags & EFX_TX_BUF_CONT,
1312 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1313 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1314 }
1315 } while (tx_queue->write_count != tx_queue->insert_count);
1316
1317 wmb(); /* Ensure descriptors are written before they are fetched */
1318
1319 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1320 txd = efx_tx_desc(tx_queue,
1321 old_write_count & tx_queue->ptr_mask);
1322 efx_ef10_push_tx_desc(tx_queue, txd);
1323 ++tx_queue->pushes;
1324 } else {
1325 efx_ef10_notify_tx_desc(tx_queue);
1326 }
1327}
1328
1329static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1330{
1331 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1332 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1333 size_t outlen;
1334 int rc;
1335
1336 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1337 EVB_PORT_ID_ASSIGNED);
1338 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1339 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1340 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1341 EFX_MAX_CHANNELS);
1342
1343 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1344 outbuf, sizeof(outbuf), &outlen);
1345 if (rc != 0)
1346 return rc;
1347
1348 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1349 return -EIO;
1350
1351 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1352
1353 return 0;
1354}
1355
1356static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1357{
1358 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1359 int rc;
1360
1361 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1362 context);
1363
1364 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1365 NULL, 0, NULL);
1366 WARN_ON(rc != 0);
1367}
1368
1369static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1370{
1371 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1372 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1373 int i, rc;
1374
1375 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1376 context);
1377 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1378 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1379
1380 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1381 MCDI_PTR(tablebuf,
1382 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1383 (u8) efx->rx_indir_table[i];
1384
1385 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1386 sizeof(tablebuf), NULL, 0, NULL);
1387 if (rc != 0)
1388 return rc;
1389
1390 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1391 context);
1392 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1393 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1394 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1395 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1396 efx->rx_hash_key[i];
1397
1398 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1399 sizeof(keybuf), NULL, 0, NULL);
1400}
1401
1402static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1403{
1404 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1405
1406 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1407 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1408 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1409}
1410
1411static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1412{
1413 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1414 int rc;
1415
1416 netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1417
1418 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1419 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1420 if (rc != 0)
1421 goto fail;
1422 }
1423
1424 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1425 if (rc != 0)
1426 goto fail;
1427
1428 return;
1429
1430fail:
1431 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1432}
1433
1434static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1435{
1436 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1437 (rx_queue->ptr_mask + 1) *
1438 sizeof(efx_qword_t),
1439 GFP_KERNEL);
1440}
1441
1442static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1443{
1444 MCDI_DECLARE_BUF(inbuf,
1445 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1446 EFX_BUF_SIZE));
1447 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1448 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1449 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1450 struct efx_nic *efx = rx_queue->efx;
1451 size_t inlen, outlen;
1452 dma_addr_t dma_addr;
1453 int rc;
1454 int i;
1455
1456 rx_queue->scatter_n = 0;
1457 rx_queue->scatter_len = 0;
1458
1459 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1460 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1461 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1462 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1463 efx_rx_queue_index(rx_queue));
1464 MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1465 INIT_RXQ_IN_FLAG_PREFIX, 1);
1466 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1467 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1468
1469 dma_addr = rx_queue->rxd.buf.dma_addr;
1470
1471 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1472 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1473
1474 for (i = 0; i < entries; ++i) {
1475 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1476 dma_addr += EFX_BUF_SIZE;
1477 }
1478
1479 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1480
1481 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1482 outbuf, sizeof(outbuf), &outlen);
1483 if (rc)
1484 goto fail;
1485
1486 return;
1487
1488fail:
1489 WARN_ON(true);
1490 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1491}
1492
1493static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1494{
1495 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1496 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1497 struct efx_nic *efx = rx_queue->efx;
1498 size_t outlen;
1499 int rc;
1500
1501 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1502 efx_rx_queue_index(rx_queue));
1503
1504 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1505 outbuf, sizeof(outbuf), &outlen);
1506
1507 if (rc && rc != -EALREADY)
1508 goto fail;
1509
1510 return;
1511
1512fail:
1513 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1514}
1515
1516static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1517{
1518 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1519}
1520
1521/* This creates an entry in the RX descriptor queue */
1522static inline void
1523efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1524{
1525 struct efx_rx_buffer *rx_buf;
1526 efx_qword_t *rxd;
1527
1528 rxd = efx_rx_desc(rx_queue, index);
1529 rx_buf = efx_rx_buffer(rx_queue, index);
1530 EFX_POPULATE_QWORD_2(*rxd,
1531 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1532 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1533}
1534
1535static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1536{
1537 struct efx_nic *efx = rx_queue->efx;
1538 unsigned int write_count;
1539 efx_dword_t reg;
1540
1541 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1542 write_count = rx_queue->added_count & ~7;
1543 if (rx_queue->notified_count == write_count)
1544 return;
1545
1546 do
1547 efx_ef10_build_rx_desc(
1548 rx_queue,
1549 rx_queue->notified_count & rx_queue->ptr_mask);
1550 while (++rx_queue->notified_count != write_count);
1551
1552 wmb();
1553 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1554 write_count & rx_queue->ptr_mask);
1555 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1556 efx_rx_queue_index(rx_queue));
1557}
1558
1559static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1560
1561static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1562{
1563 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1564 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1565 efx_qword_t event;
1566
1567 EFX_POPULATE_QWORD_2(event,
1568 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1569 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1570
1571 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1572
1573 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1574 * already swapped the data to little-endian order.
1575 */
1576 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1577 sizeof(efx_qword_t));
1578
1579 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1580 inbuf, sizeof(inbuf), 0,
1581 efx_ef10_rx_defer_refill_complete, 0);
1582}
1583
1584static void
1585efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1586 int rc, efx_dword_t *outbuf,
1587 size_t outlen_actual)
1588{
1589 /* nothing to do */
1590}
1591
1592static int efx_ef10_ev_probe(struct efx_channel *channel)
1593{
1594 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1595 (channel->eventq_mask + 1) *
1596 sizeof(efx_qword_t),
1597 GFP_KERNEL);
1598}
1599
1600static int efx_ef10_ev_init(struct efx_channel *channel)
1601{
1602 MCDI_DECLARE_BUF(inbuf,
1603 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1604 EFX_BUF_SIZE));
1605 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1606 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1607 struct efx_nic *efx = channel->efx;
1608 struct efx_ef10_nic_data *nic_data;
1609 bool supports_rx_merge;
1610 size_t inlen, outlen;
1611 dma_addr_t dma_addr;
1612 int rc;
1613 int i;
1614
1615 nic_data = efx->nic_data;
1616 supports_rx_merge =
1617 !!(nic_data->datapath_caps &
1618 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1619
1620 /* Fill event queue with all ones (i.e. empty events) */
1621 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1622
1623 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1624 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1625 /* INIT_EVQ expects index in vector table, not absolute */
1626 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1627 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1628 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1629 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1630 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1631 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1632 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1633 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1634 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1635 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1636 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1637 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1638 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1639
1640 dma_addr = channel->eventq.buf.dma_addr;
1641 for (i = 0; i < entries; ++i) {
1642 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1643 dma_addr += EFX_BUF_SIZE;
1644 }
1645
1646 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1647
1648 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1649 outbuf, sizeof(outbuf), &outlen);
1650 if (rc)
1651 goto fail;
1652
1653 /* IRQ return is ignored */
1654
1655 return 0;
1656
1657fail:
1658 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1659 return rc;
1660}
1661
1662static void efx_ef10_ev_fini(struct efx_channel *channel)
1663{
1664 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1665 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1666 struct efx_nic *efx = channel->efx;
1667 size_t outlen;
1668 int rc;
1669
1670 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1671
1672 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1673 outbuf, sizeof(outbuf), &outlen);
1674
1675 if (rc && rc != -EALREADY)
1676 goto fail;
1677
1678 return;
1679
1680fail:
1681 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1682}
1683
1684static void efx_ef10_ev_remove(struct efx_channel *channel)
1685{
1686 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1687}
1688
1689static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1690 unsigned int rx_queue_label)
1691{
1692 struct efx_nic *efx = rx_queue->efx;
1693
1694 netif_info(efx, hw, efx->net_dev,
1695 "rx event arrived on queue %d labeled as queue %u\n",
1696 efx_rx_queue_index(rx_queue), rx_queue_label);
1697
1698 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1699}
1700
1701static void
1702efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1703 unsigned int actual, unsigned int expected)
1704{
1705 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1706 struct efx_nic *efx = rx_queue->efx;
1707
1708 netif_info(efx, hw, efx->net_dev,
1709 "dropped %d events (index=%d expected=%d)\n",
1710 dropped, actual, expected);
1711
1712 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1713}
1714
1715/* partially received RX was aborted. clean up. */
1716static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1717{
1718 unsigned int rx_desc_ptr;
1719
1720 WARN_ON(rx_queue->scatter_n == 0);
1721
1722 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1723 "scattered RX aborted (dropping %u buffers)\n",
1724 rx_queue->scatter_n);
1725
1726 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1727
1728 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1729 0, EFX_RX_PKT_DISCARD);
1730
1731 rx_queue->removed_count += rx_queue->scatter_n;
1732 rx_queue->scatter_n = 0;
1733 rx_queue->scatter_len = 0;
1734 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1735}
1736
1737static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1738 const efx_qword_t *event)
1739{
1740 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1741 unsigned int n_descs, n_packets, i;
1742 struct efx_nic *efx = channel->efx;
1743 struct efx_rx_queue *rx_queue;
1744 bool rx_cont;
1745 u16 flags = 0;
1746
1747 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1748 return 0;
1749
1750 /* Basic packet information */
1751 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1752 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1753 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1754 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1755 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1756
1757 WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1758
1759 rx_queue = efx_channel_get_rx_queue(channel);
1760
1761 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1762 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1763
1764 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1765 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1766
1767 if (n_descs != rx_queue->scatter_n + 1) {
1768 /* detect rx abort */
1769 if (unlikely(n_descs == rx_queue->scatter_n)) {
1770 WARN_ON(rx_bytes != 0);
1771 efx_ef10_handle_rx_abort(rx_queue);
1772 return 0;
1773 }
1774
1775 if (unlikely(rx_queue->scatter_n != 0)) {
1776 /* Scattered packet completions cannot be
1777 * merged, so something has gone wrong.
1778 */
1779 efx_ef10_handle_rx_bad_lbits(
1780 rx_queue, next_ptr_lbits,
1781 (rx_queue->removed_count +
1782 rx_queue->scatter_n + 1) &
1783 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1784 return 0;
1785 }
1786
1787 /* Merged completion for multiple non-scattered packets */
1788 rx_queue->scatter_n = 1;
1789 rx_queue->scatter_len = 0;
1790 n_packets = n_descs;
1791 ++channel->n_rx_merge_events;
1792 channel->n_rx_merge_packets += n_packets;
1793 flags |= EFX_RX_PKT_PREFIX_LEN;
1794 } else {
1795 ++rx_queue->scatter_n;
1796 rx_queue->scatter_len += rx_bytes;
1797 if (rx_cont)
1798 return 0;
1799 n_packets = 1;
1800 }
1801
1802 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1803 flags |= EFX_RX_PKT_DISCARD;
1804
1805 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1806 channel->n_rx_ip_hdr_chksum_err += n_packets;
1807 } else if (unlikely(EFX_QWORD_FIELD(*event,
1808 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1809 channel->n_rx_tcp_udp_chksum_err += n_packets;
1810 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1811 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1812 flags |= EFX_RX_PKT_CSUMMED;
1813 }
1814
1815 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1816 flags |= EFX_RX_PKT_TCP;
1817
1818 channel->irq_mod_score += 2 * n_packets;
1819
1820 /* Handle received packet(s) */
1821 for (i = 0; i < n_packets; i++) {
1822 efx_rx_packet(rx_queue,
1823 rx_queue->removed_count & rx_queue->ptr_mask,
1824 rx_queue->scatter_n, rx_queue->scatter_len,
1825 flags);
1826 rx_queue->removed_count += rx_queue->scatter_n;
1827 }
1828
1829 rx_queue->scatter_n = 0;
1830 rx_queue->scatter_len = 0;
1831
1832 return n_packets;
1833}
1834
1835static int
1836efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1837{
1838 struct efx_nic *efx = channel->efx;
1839 struct efx_tx_queue *tx_queue;
1840 unsigned int tx_ev_desc_ptr;
1841 unsigned int tx_ev_q_label;
1842 int tx_descs = 0;
1843
1844 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1845 return 0;
1846
1847 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1848 return 0;
1849
1850 /* Transmit completion */
1851 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1852 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1853 tx_queue = efx_channel_get_tx_queue(channel,
1854 tx_ev_q_label % EFX_TXQ_TYPES);
1855 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1856 tx_queue->ptr_mask);
1857 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1858
1859 return tx_descs;
1860}
1861
1862static void
1863efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1864{
1865 struct efx_nic *efx = channel->efx;
1866 int subcode;
1867
1868 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1869
1870 switch (subcode) {
1871 case ESE_DZ_DRV_TIMER_EV:
1872 case ESE_DZ_DRV_WAKE_UP_EV:
1873 break;
1874 case ESE_DZ_DRV_START_UP_EV:
1875 /* event queue init complete. ok. */
1876 break;
1877 default:
1878 netif_err(efx, hw, efx->net_dev,
1879 "channel %d unknown driver event type %d"
1880 " (data " EFX_QWORD_FMT ")\n",
1881 channel->channel, subcode,
1882 EFX_QWORD_VAL(*event));
1883
1884 }
1885}
1886
1887static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1888 efx_qword_t *event)
1889{
1890 struct efx_nic *efx = channel->efx;
1891 u32 subcode;
1892
1893 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1894
1895 switch (subcode) {
1896 case EFX_EF10_TEST:
1897 channel->event_test_cpu = raw_smp_processor_id();
1898 break;
1899 case EFX_EF10_REFILL:
1900 /* The queue must be empty, so we won't receive any rx
1901 * events, so efx_process_channel() won't refill the
1902 * queue. Refill it here
1903 */
1904 efx_fast_push_rx_descriptors(&channel->rx_queue);
1905 break;
1906 default:
1907 netif_err(efx, hw, efx->net_dev,
1908 "channel %d unknown driver event type %u"
1909 " (data " EFX_QWORD_FMT ")\n",
1910 channel->channel, (unsigned) subcode,
1911 EFX_QWORD_VAL(*event));
1912 }
1913}
1914
1915static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1916{
1917 struct efx_nic *efx = channel->efx;
1918 efx_qword_t event, *p_event;
1919 unsigned int read_ptr;
1920 int ev_code;
1921 int tx_descs = 0;
1922 int spent = 0;
1923
1924 read_ptr = channel->eventq_read_ptr;
1925
1926 for (;;) {
1927 p_event = efx_event(channel, read_ptr);
1928 event = *p_event;
1929
1930 if (!efx_event_present(&event))
1931 break;
1932
1933 EFX_SET_QWORD(*p_event);
1934
1935 ++read_ptr;
1936
1937 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1938
1939 netif_vdbg(efx, drv, efx->net_dev,
1940 "processing event on %d " EFX_QWORD_FMT "\n",
1941 channel->channel, EFX_QWORD_VAL(event));
1942
1943 switch (ev_code) {
1944 case ESE_DZ_EV_CODE_MCDI_EV:
1945 efx_mcdi_process_event(channel, &event);
1946 break;
1947 case ESE_DZ_EV_CODE_RX_EV:
1948 spent += efx_ef10_handle_rx_event(channel, &event);
1949 if (spent >= quota) {
1950 /* XXX can we split a merged event to
1951 * avoid going over-quota?
1952 */
1953 spent = quota;
1954 goto out;
1955 }
1956 break;
1957 case ESE_DZ_EV_CODE_TX_EV:
1958 tx_descs += efx_ef10_handle_tx_event(channel, &event);
1959 if (tx_descs > efx->txq_entries) {
1960 spent = quota;
1961 goto out;
1962 } else if (++spent == quota) {
1963 goto out;
1964 }
1965 break;
1966 case ESE_DZ_EV_CODE_DRIVER_EV:
1967 efx_ef10_handle_driver_event(channel, &event);
1968 if (++spent == quota)
1969 goto out;
1970 break;
1971 case EFX_EF10_DRVGEN_EV:
1972 efx_ef10_handle_driver_generated_event(channel, &event);
1973 break;
1974 default:
1975 netif_err(efx, hw, efx->net_dev,
1976 "channel %d unknown event type %d"
1977 " (data " EFX_QWORD_FMT ")\n",
1978 channel->channel, ev_code,
1979 EFX_QWORD_VAL(event));
1980 }
1981 }
1982
1983out:
1984 channel->eventq_read_ptr = read_ptr;
1985 return spent;
1986}
1987
1988static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1989{
1990 struct efx_nic *efx = channel->efx;
1991 efx_dword_t rptr;
1992
1993 if (EFX_EF10_WORKAROUND_35388(efx)) {
1994 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1995 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1996 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1997 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1998
1999 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2000 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2001 ERF_DD_EVQ_IND_RPTR,
2002 (channel->eventq_read_ptr &
2003 channel->eventq_mask) >>
2004 ERF_DD_EVQ_IND_RPTR_WIDTH);
2005 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2006 channel->channel);
2007 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2008 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2009 ERF_DD_EVQ_IND_RPTR,
2010 channel->eventq_read_ptr &
2011 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2012 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2013 channel->channel);
2014 } else {
2015 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2016 channel->eventq_read_ptr &
2017 channel->eventq_mask);
2018 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2019 }
2020}
2021
2022static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2023{
2024 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2025 struct efx_nic *efx = channel->efx;
2026 efx_qword_t event;
2027 int rc;
2028
2029 EFX_POPULATE_QWORD_2(event,
2030 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2031 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2032
2033 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2034
2035 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2036 * already swapped the data to little-endian order.
2037 */
2038 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2039 sizeof(efx_qword_t));
2040
2041 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2042 NULL, 0, NULL);
2043 if (rc != 0)
2044 goto fail;
2045
2046 return;
2047
2048fail:
2049 WARN_ON(true);
2050 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2051}
2052
2053void efx_ef10_handle_drain_event(struct efx_nic *efx)
2054{
2055 if (atomic_dec_and_test(&efx->active_queues))
2056 wake_up(&efx->flush_wq);
2057
2058 WARN_ON(atomic_read(&efx->active_queues) < 0);
2059}
2060
2061static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2062{
2063 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2064 struct efx_channel *channel;
2065 struct efx_tx_queue *tx_queue;
2066 struct efx_rx_queue *rx_queue;
2067 int pending;
2068
2069 /* If the MC has just rebooted, the TX/RX queues will have already been
2070 * torn down, but efx->active_queues needs to be set to zero.
2071 */
2072 if (nic_data->must_realloc_vis) {
2073 atomic_set(&efx->active_queues, 0);
2074 return 0;
2075 }
2076
2077 /* Do not attempt to write to the NIC during EEH recovery */
2078 if (efx->state != STATE_RECOVERY) {
2079 efx_for_each_channel(channel, efx) {
2080 efx_for_each_channel_rx_queue(rx_queue, channel)
2081 efx_ef10_rx_fini(rx_queue);
2082 efx_for_each_channel_tx_queue(tx_queue, channel)
2083 efx_ef10_tx_fini(tx_queue);
2084 }
2085
2086 wait_event_timeout(efx->flush_wq,
2087 atomic_read(&efx->active_queues) == 0,
2088 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2089 pending = atomic_read(&efx->active_queues);
2090 if (pending) {
2091 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2092 pending);
2093 return -ETIMEDOUT;
2094 }
2095 }
2096
2097 return 0;
2098}
2099
2100static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2101 const struct efx_filter_spec *right)
2102{
2103 if ((left->match_flags ^ right->match_flags) |
2104 ((left->flags ^ right->flags) &
2105 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2106 return false;
2107
2108 return memcmp(&left->outer_vid, &right->outer_vid,
2109 sizeof(struct efx_filter_spec) -
2110 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2111}
2112
2113static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2114{
2115 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2116 return jhash2((const u32 *)&spec->outer_vid,
2117 (sizeof(struct efx_filter_spec) -
2118 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2119 0);
2120 /* XXX should we randomise the initval? */
2121}
2122
2123/* Decide whether a filter should be exclusive or else should allow
2124 * delivery to additional recipients. Currently we decide that
2125 * filters for specific local unicast MAC and IP addresses are
2126 * exclusive.
2127 */
2128static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2129{
2130 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2131 !is_multicast_ether_addr(spec->loc_mac))
2132 return true;
2133
2134 if ((spec->match_flags &
2135 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2136 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2137 if (spec->ether_type == htons(ETH_P_IP) &&
2138 !ipv4_is_multicast(spec->loc_host[0]))
2139 return true;
2140 if (spec->ether_type == htons(ETH_P_IPV6) &&
2141 ((const u8 *)spec->loc_host)[0] != 0xff)
2142 return true;
2143 }
2144
2145 return false;
2146}
2147
2148static struct efx_filter_spec *
2149efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2150 unsigned int filter_idx)
2151{
2152 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2153 ~EFX_EF10_FILTER_FLAGS);
2154}
2155
2156static unsigned int
2157efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2158 unsigned int filter_idx)
2159{
2160 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2161}
2162
2163static void
2164efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2165 unsigned int filter_idx,
2166 const struct efx_filter_spec *spec,
2167 unsigned int flags)
2168{
2169 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2170}
2171
2172static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2173 const struct efx_filter_spec *spec,
2174 efx_dword_t *inbuf, u64 handle,
2175 bool replacing)
2176{
2177 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2178
2179 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2180
2181 if (replacing) {
2182 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2183 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2184 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2185 } else {
2186 u32 match_fields = 0;
2187
2188 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2189 efx_ef10_filter_is_exclusive(spec) ?
2190 MC_CMD_FILTER_OP_IN_OP_INSERT :
2191 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2192
2193 /* Convert match flags and values. Unlike almost
2194 * everything else in MCDI, these fields are in
2195 * network byte order.
2196 */
2197 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2198 match_fields |=
2199 is_multicast_ether_addr(spec->loc_mac) ?
2200 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2201 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2202#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2203 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2204 match_fields |= \
2205 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2206 mcdi_field ## _LBN; \
2207 BUILD_BUG_ON( \
2208 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2209 sizeof(spec->gen_field)); \
2210 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2211 &spec->gen_field, sizeof(spec->gen_field)); \
2212 }
2213 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2214 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2215 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2216 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2217 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2218 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2219 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2220 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2221 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2222 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2223#undef COPY_FIELD
2224 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2225 match_fields);
2226 }
2227
2228 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2229 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2230 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2231 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2232 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2233 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2234 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2235 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
2236 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2237 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2238 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2239 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2240 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2241 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2242 spec->rss_context !=
2243 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2244 spec->rss_context : nic_data->rx_rss_context);
2245}
2246
2247static int efx_ef10_filter_push(struct efx_nic *efx,
2248 const struct efx_filter_spec *spec,
2249 u64 *handle, bool replacing)
2250{
2251 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2252 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2253 int rc;
2254
2255 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2256 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2257 outbuf, sizeof(outbuf), NULL);
2258 if (rc == 0)
2259 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2260 return rc;
2261}
2262
2263static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2264 enum efx_filter_match_flags match_flags)
2265{
2266 unsigned int match_pri;
2267
2268 for (match_pri = 0;
2269 match_pri < table->rx_match_count;
2270 match_pri++)
2271 if (table->rx_match_flags[match_pri] == match_flags)
2272 return match_pri;
2273
2274 return -EPROTONOSUPPORT;
2275}
2276
2277static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2278 struct efx_filter_spec *spec,
2279 bool replace_equal)
2280{
2281 struct efx_ef10_filter_table *table = efx->filter_state;
2282 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2283 struct efx_filter_spec *saved_spec;
2284 unsigned int match_pri, hash;
2285 unsigned int priv_flags;
2286 bool replacing = false;
2287 int ins_index = -1;
2288 DEFINE_WAIT(wait);
2289 bool is_mc_recip;
2290 s32 rc;
2291
2292 /* For now, only support RX filters */
2293 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2294 EFX_FILTER_FLAG_RX)
2295 return -EINVAL;
2296
2297 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2298 if (rc < 0)
2299 return rc;
2300 match_pri = rc;
2301
2302 hash = efx_ef10_filter_hash(spec);
2303 is_mc_recip = efx_filter_is_mc_recipient(spec);
2304 if (is_mc_recip)
2305 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2306
2307 /* Find any existing filters with the same match tuple or
2308 * else a free slot to insert at. If any of them are busy,
2309 * we have to wait and retry.
2310 */
2311 for (;;) {
2312 unsigned int depth = 1;
2313 unsigned int i;
2314
2315 spin_lock_bh(&efx->filter_lock);
2316
2317 for (;;) {
2318 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2319 saved_spec = efx_ef10_filter_entry_spec(table, i);
2320
2321 if (!saved_spec) {
2322 if (ins_index < 0)
2323 ins_index = i;
2324 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2325 if (table->entry[i].spec &
2326 EFX_EF10_FILTER_FLAG_BUSY)
2327 break;
2328 if (spec->priority < saved_spec->priority &&
2329 !(saved_spec->priority ==
2330 EFX_FILTER_PRI_REQUIRED &&
2331 saved_spec->flags &
2332 EFX_FILTER_FLAG_RX_STACK)) {
2333 rc = -EPERM;
2334 goto out_unlock;
2335 }
2336 if (!is_mc_recip) {
2337 /* This is the only one */
2338 if (spec->priority ==
2339 saved_spec->priority &&
2340 !replace_equal) {
2341 rc = -EEXIST;
2342 goto out_unlock;
2343 }
2344 ins_index = i;
2345 goto found;
2346 } else if (spec->priority >
2347 saved_spec->priority ||
2348 (spec->priority ==
2349 saved_spec->priority &&
2350 replace_equal)) {
2351 if (ins_index < 0)
2352 ins_index = i;
2353 else
2354 __set_bit(depth, mc_rem_map);
2355 }
2356 }
2357
2358 /* Once we reach the maximum search depth, use
2359 * the first suitable slot or return -EBUSY if
2360 * there was none
2361 */
2362 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2363 if (ins_index < 0) {
2364 rc = -EBUSY;
2365 goto out_unlock;
2366 }
2367 goto found;
2368 }
2369
2370 ++depth;
2371 }
2372
2373 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2374 spin_unlock_bh(&efx->filter_lock);
2375 schedule();
2376 }
2377
2378found:
2379 /* Create a software table entry if necessary, and mark it
2380 * busy. We might yet fail to insert, but any attempt to
2381 * insert a conflicting filter while we're waiting for the
2382 * firmware must find the busy entry.
2383 */
2384 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2385 if (saved_spec) {
2386 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2387 /* Just make sure it won't be removed */
2388 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2389 table->entry[ins_index].spec &=
2390 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2391 rc = ins_index;
2392 goto out_unlock;
2393 }
2394 replacing = true;
2395 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2396 } else {
2397 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2398 if (!saved_spec) {
2399 rc = -ENOMEM;
2400 goto out_unlock;
2401 }
2402 *saved_spec = *spec;
2403 priv_flags = 0;
2404 }
2405 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2406 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2407
2408 /* Mark lower-priority multicast recipients busy prior to removal */
2409 if (is_mc_recip) {
2410 unsigned int depth, i;
2411
2412 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2413 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2414 if (test_bit(depth, mc_rem_map))
2415 table->entry[i].spec |=
2416 EFX_EF10_FILTER_FLAG_BUSY;
2417 }
2418 }
2419
2420 spin_unlock_bh(&efx->filter_lock);
2421
2422 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2423 replacing);
2424
2425 /* Finalise the software table entry */
2426 spin_lock_bh(&efx->filter_lock);
2427 if (rc == 0) {
2428 if (replacing) {
2429 /* Update the fields that may differ */
2430 saved_spec->priority = spec->priority;
2431 saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2432 saved_spec->flags |= spec->flags;
2433 saved_spec->rss_context = spec->rss_context;
2434 saved_spec->dmaq_id = spec->dmaq_id;
2435 }
2436 } else if (!replacing) {
2437 kfree(saved_spec);
2438 saved_spec = NULL;
2439 }
2440 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2441
2442 /* Remove and finalise entries for lower-priority multicast
2443 * recipients
2444 */
2445 if (is_mc_recip) {
2446 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2447 unsigned int depth, i;
2448
2449 memset(inbuf, 0, sizeof(inbuf));
2450
2451 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2452 if (!test_bit(depth, mc_rem_map))
2453 continue;
2454
2455 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2456 saved_spec = efx_ef10_filter_entry_spec(table, i);
2457 priv_flags = efx_ef10_filter_entry_flags(table, i);
2458
2459 if (rc == 0) {
2460 spin_unlock_bh(&efx->filter_lock);
2461 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2462 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2463 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2464 table->entry[i].handle);
2465 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2466 inbuf, sizeof(inbuf),
2467 NULL, 0, NULL);
2468 spin_lock_bh(&efx->filter_lock);
2469 }
2470
2471 if (rc == 0) {
2472 kfree(saved_spec);
2473 saved_spec = NULL;
2474 priv_flags = 0;
2475 } else {
2476 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2477 }
2478 efx_ef10_filter_set_entry(table, i, saved_spec,
2479 priv_flags);
2480 }
2481 }
2482
2483 /* If successful, return the inserted filter ID */
2484 if (rc == 0)
2485 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2486
2487 wake_up_all(&table->waitq);
2488out_unlock:
2489 spin_unlock_bh(&efx->filter_lock);
2490 finish_wait(&table->waitq, &wait);
2491 return rc;
2492}
2493
9fd8095d 2494static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
8127d661
BH
2495{
2496 /* no need to do anything here on EF10 */
2497}
2498
2499/* Remove a filter.
2500 * If !stack_requested, remove by ID
2501 * If stack_requested, remove by index
2502 * Filter ID may come from userland and must be range-checked.
2503 */
2504static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2505 enum efx_filter_priority priority,
2506 u32 filter_id, bool stack_requested)
2507{
2508 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2509 struct efx_ef10_filter_table *table = efx->filter_state;
2510 MCDI_DECLARE_BUF(inbuf,
2511 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2512 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2513 struct efx_filter_spec *spec;
2514 DEFINE_WAIT(wait);
2515 int rc;
2516
2517 /* Find the software table entry and mark it busy. Don't
2518 * remove it yet; any attempt to update while we're waiting
2519 * for the firmware must find the busy entry.
2520 */
2521 for (;;) {
2522 spin_lock_bh(&efx->filter_lock);
2523 if (!(table->entry[filter_idx].spec &
2524 EFX_EF10_FILTER_FLAG_BUSY))
2525 break;
2526 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2527 spin_unlock_bh(&efx->filter_lock);
2528 schedule();
2529 }
2530 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2531 if (!spec || spec->priority > priority ||
2532 (!stack_requested &&
2533 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2534 filter_id / HUNT_FILTER_TBL_ROWS)) {
2535 rc = -ENOENT;
2536 goto out_unlock;
2537 }
2538 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2539 spin_unlock_bh(&efx->filter_lock);
2540
2541 if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2542 /* Reset steering of a stack-owned filter */
2543
2544 struct efx_filter_spec new_spec = *spec;
2545
2546 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2547 new_spec.flags = (EFX_FILTER_FLAG_RX |
2548 EFX_FILTER_FLAG_RX_RSS |
2549 EFX_FILTER_FLAG_RX_STACK);
2550 new_spec.dmaq_id = 0;
2551 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2552 rc = efx_ef10_filter_push(efx, &new_spec,
2553 &table->entry[filter_idx].handle,
2554 true);
2555
2556 spin_lock_bh(&efx->filter_lock);
2557 if (rc == 0)
2558 *spec = new_spec;
2559 } else {
2560 /* Really remove the filter */
2561
2562 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2563 efx_ef10_filter_is_exclusive(spec) ?
2564 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2565 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2566 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2567 table->entry[filter_idx].handle);
2568 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2569 inbuf, sizeof(inbuf), NULL, 0, NULL);
2570
2571 spin_lock_bh(&efx->filter_lock);
2572 if (rc == 0) {
2573 kfree(spec);
2574 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2575 }
2576 }
2577 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2578 wake_up_all(&table->waitq);
2579out_unlock:
2580 spin_unlock_bh(&efx->filter_lock);
2581 finish_wait(&table->waitq, &wait);
2582 return rc;
2583}
2584
2585static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2586 enum efx_filter_priority priority,
2587 u32 filter_id)
2588{
2589 return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2590}
2591
2592static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2593 enum efx_filter_priority priority,
2594 u32 filter_id, struct efx_filter_spec *spec)
2595{
2596 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2597 struct efx_ef10_filter_table *table = efx->filter_state;
2598 const struct efx_filter_spec *saved_spec;
2599 int rc;
2600
2601 spin_lock_bh(&efx->filter_lock);
2602 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2603 if (saved_spec && saved_spec->priority == priority &&
2604 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2605 filter_id / HUNT_FILTER_TBL_ROWS) {
2606 *spec = *saved_spec;
2607 rc = 0;
2608 } else {
2609 rc = -ENOENT;
2610 }
2611 spin_unlock_bh(&efx->filter_lock);
2612 return rc;
2613}
2614
2615static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2616 enum efx_filter_priority priority)
2617{
2618 /* TODO */
2619}
2620
2621static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2622 enum efx_filter_priority priority)
2623{
2624 struct efx_ef10_filter_table *table = efx->filter_state;
2625 unsigned int filter_idx;
2626 s32 count = 0;
2627
2628 spin_lock_bh(&efx->filter_lock);
2629 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2630 if (table->entry[filter_idx].spec &&
2631 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2632 priority)
2633 ++count;
2634 }
2635 spin_unlock_bh(&efx->filter_lock);
2636 return count;
2637}
2638
2639static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2640{
2641 struct efx_ef10_filter_table *table = efx->filter_state;
2642
2643 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2644}
2645
2646static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2647 enum efx_filter_priority priority,
2648 u32 *buf, u32 size)
2649{
2650 struct efx_ef10_filter_table *table = efx->filter_state;
2651 struct efx_filter_spec *spec;
2652 unsigned int filter_idx;
2653 s32 count = 0;
2654
2655 spin_lock_bh(&efx->filter_lock);
2656 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2657 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2658 if (spec && spec->priority == priority) {
2659 if (count == size) {
2660 count = -EMSGSIZE;
2661 break;
2662 }
2663 buf[count++] = (efx_ef10_filter_rx_match_pri(
2664 table, spec->match_flags) *
2665 HUNT_FILTER_TBL_ROWS +
2666 filter_idx);
2667 }
2668 }
2669 spin_unlock_bh(&efx->filter_lock);
2670 return count;
2671}
2672
2673#ifdef CONFIG_RFS_ACCEL
2674
2675static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2676
2677static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2678 struct efx_filter_spec *spec)
2679{
2680 struct efx_ef10_filter_table *table = efx->filter_state;
2681 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2682 struct efx_filter_spec *saved_spec;
2683 unsigned int hash, i, depth = 1;
2684 bool replacing = false;
2685 int ins_index = -1;
2686 u64 cookie;
2687 s32 rc;
2688
2689 /* Must be an RX filter without RSS and not for a multicast
2690 * destination address (RFS only works for connected sockets).
2691 * These restrictions allow us to pass only a tiny amount of
2692 * data through to the completion function.
2693 */
2694 EFX_WARN_ON_PARANOID(spec->flags !=
2695 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2696 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2697 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2698
2699 hash = efx_ef10_filter_hash(spec);
2700
2701 spin_lock_bh(&efx->filter_lock);
2702
2703 /* Find any existing filter with the same match tuple or else
2704 * a free slot to insert at. If an existing filter is busy,
2705 * we have to give up.
2706 */
2707 for (;;) {
2708 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2709 saved_spec = efx_ef10_filter_entry_spec(table, i);
2710
2711 if (!saved_spec) {
2712 if (ins_index < 0)
2713 ins_index = i;
2714 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2715 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2716 rc = -EBUSY;
2717 goto fail_unlock;
2718 }
2719 EFX_WARN_ON_PARANOID(saved_spec->flags &
2720 EFX_FILTER_FLAG_RX_STACK);
2721 if (spec->priority < saved_spec->priority) {
2722 rc = -EPERM;
2723 goto fail_unlock;
2724 }
2725 ins_index = i;
2726 break;
2727 }
2728
2729 /* Once we reach the maximum search depth, use the
2730 * first suitable slot or return -EBUSY if there was
2731 * none
2732 */
2733 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2734 if (ins_index < 0) {
2735 rc = -EBUSY;
2736 goto fail_unlock;
2737 }
2738 break;
2739 }
2740
2741 ++depth;
2742 }
2743
2744 /* Create a software table entry if necessary, and mark it
2745 * busy. We might yet fail to insert, but any attempt to
2746 * insert a conflicting filter while we're waiting for the
2747 * firmware must find the busy entry.
2748 */
2749 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2750 if (saved_spec) {
2751 replacing = true;
2752 } else {
2753 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2754 if (!saved_spec) {
2755 rc = -ENOMEM;
2756 goto fail_unlock;
2757 }
2758 *saved_spec = *spec;
2759 }
2760 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2761 EFX_EF10_FILTER_FLAG_BUSY);
2762
2763 spin_unlock_bh(&efx->filter_lock);
2764
2765 /* Pack up the variables needed on completion */
2766 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2767
2768 efx_ef10_filter_push_prep(efx, spec, inbuf,
2769 table->entry[ins_index].handle, replacing);
2770 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2771 MC_CMD_FILTER_OP_OUT_LEN,
2772 efx_ef10_filter_rfs_insert_complete, cookie);
2773
2774 return ins_index;
2775
2776fail_unlock:
2777 spin_unlock_bh(&efx->filter_lock);
2778 return rc;
2779}
2780
2781static void
2782efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2783 int rc, efx_dword_t *outbuf,
2784 size_t outlen_actual)
2785{
2786 struct efx_ef10_filter_table *table = efx->filter_state;
2787 unsigned int ins_index, dmaq_id;
2788 struct efx_filter_spec *spec;
2789 bool replacing;
2790
2791 /* Unpack the cookie */
2792 replacing = cookie >> 31;
2793 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2794 dmaq_id = cookie & 0xffff;
2795
2796 spin_lock_bh(&efx->filter_lock);
2797 spec = efx_ef10_filter_entry_spec(table, ins_index);
2798 if (rc == 0) {
2799 table->entry[ins_index].handle =
2800 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2801 if (replacing)
2802 spec->dmaq_id = dmaq_id;
2803 } else if (!replacing) {
2804 kfree(spec);
2805 spec = NULL;
2806 }
2807 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2808 spin_unlock_bh(&efx->filter_lock);
2809
2810 wake_up_all(&table->waitq);
2811}
2812
2813static void
2814efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2815 unsigned long filter_idx,
2816 int rc, efx_dword_t *outbuf,
2817 size_t outlen_actual);
2818
2819static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2820 unsigned int filter_idx)
2821{
2822 struct efx_ef10_filter_table *table = efx->filter_state;
2823 struct efx_filter_spec *spec =
2824 efx_ef10_filter_entry_spec(table, filter_idx);
2825 MCDI_DECLARE_BUF(inbuf,
2826 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2827 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2828
2829 if (!spec ||
2830 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2831 spec->priority != EFX_FILTER_PRI_HINT ||
2832 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2833 flow_id, filter_idx))
2834 return false;
2835
2836 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2837 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2838 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2839 table->entry[filter_idx].handle);
2840 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2841 efx_ef10_filter_rfs_expire_complete, filter_idx))
2842 return false;
2843
2844 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2845 return true;
2846}
2847
2848static void
2849efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2850 unsigned long filter_idx,
2851 int rc, efx_dword_t *outbuf,
2852 size_t outlen_actual)
2853{
2854 struct efx_ef10_filter_table *table = efx->filter_state;
2855 struct efx_filter_spec *spec =
2856 efx_ef10_filter_entry_spec(table, filter_idx);
2857
2858 spin_lock_bh(&efx->filter_lock);
2859 if (rc == 0) {
2860 kfree(spec);
2861 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2862 }
2863 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2864 wake_up_all(&table->waitq);
2865 spin_unlock_bh(&efx->filter_lock);
2866}
2867
2868#endif /* CONFIG_RFS_ACCEL */
2869
2870static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2871{
2872 int match_flags = 0;
2873
2874#define MAP_FLAG(gen_flag, mcdi_field) { \
2875 u32 old_mcdi_flags = mcdi_flags; \
2876 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2877 mcdi_field ## _LBN); \
2878 if (mcdi_flags != old_mcdi_flags) \
2879 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2880 }
2881 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2882 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2883 MAP_FLAG(REM_HOST, SRC_IP);
2884 MAP_FLAG(LOC_HOST, DST_IP);
2885 MAP_FLAG(REM_MAC, SRC_MAC);
2886 MAP_FLAG(REM_PORT, SRC_PORT);
2887 MAP_FLAG(LOC_MAC, DST_MAC);
2888 MAP_FLAG(LOC_PORT, DST_PORT);
2889 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2890 MAP_FLAG(INNER_VID, INNER_VLAN);
2891 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2892 MAP_FLAG(IP_PROTO, IP_PROTO);
2893#undef MAP_FLAG
2894
2895 /* Did we map them all? */
2896 if (mcdi_flags)
2897 return -EINVAL;
2898
2899 return match_flags;
2900}
2901
2902static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2903{
2904 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2905 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2906 unsigned int pd_match_pri, pd_match_count;
2907 struct efx_ef10_filter_table *table;
2908 size_t outlen;
2909 int rc;
2910
2911 table = kzalloc(sizeof(*table), GFP_KERNEL);
2912 if (!table)
2913 return -ENOMEM;
2914
2915 /* Find out which RX filter types are supported, and their priorities */
2916 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2917 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2918 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2919 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2920 &outlen);
2921 if (rc)
2922 goto fail;
2923 pd_match_count = MCDI_VAR_ARRAY_LEN(
2924 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2925 table->rx_match_count = 0;
2926
2927 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2928 u32 mcdi_flags =
2929 MCDI_ARRAY_DWORD(
2930 outbuf,
2931 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2932 pd_match_pri);
2933 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2934 if (rc < 0) {
2935 netif_dbg(efx, probe, efx->net_dev,
2936 "%s: fw flags %#x pri %u not supported in driver\n",
2937 __func__, mcdi_flags, pd_match_pri);
2938 } else {
2939 netif_dbg(efx, probe, efx->net_dev,
2940 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2941 __func__, mcdi_flags, pd_match_pri,
2942 rc, table->rx_match_count);
2943 table->rx_match_flags[table->rx_match_count++] = rc;
2944 }
2945 }
2946
2947 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2948 if (!table->entry) {
2949 rc = -ENOMEM;
2950 goto fail;
2951 }
2952
2953 efx->filter_state = table;
2954 init_waitqueue_head(&table->waitq);
2955 return 0;
2956
2957fail:
2958 kfree(table);
2959 return rc;
2960}
2961
2962static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2963{
2964 struct efx_ef10_filter_table *table = efx->filter_state;
2965 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2966 struct efx_filter_spec *spec;
2967 unsigned int filter_idx;
2968 bool failed = false;
2969 int rc;
2970
2971 if (!nic_data->must_restore_filters)
2972 return;
2973
2974 spin_lock_bh(&efx->filter_lock);
2975
2976 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2977 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2978 if (!spec)
2979 continue;
2980
2981 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2982 spin_unlock_bh(&efx->filter_lock);
2983
2984 rc = efx_ef10_filter_push(efx, spec,
2985 &table->entry[filter_idx].handle,
2986 false);
2987 if (rc)
2988 failed = true;
2989
2990 spin_lock_bh(&efx->filter_lock);
2991 if (rc) {
2992 kfree(spec);
2993 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2994 } else {
2995 table->entry[filter_idx].spec &=
2996 ~EFX_EF10_FILTER_FLAG_BUSY;
2997 }
2998 }
2999
3000 spin_unlock_bh(&efx->filter_lock);
3001
3002 if (failed)
3003 netif_err(efx, hw, efx->net_dev,
3004 "unable to restore all filters\n");
3005 else
3006 nic_data->must_restore_filters = false;
3007}
3008
3009static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3010{
3011 struct efx_ef10_filter_table *table = efx->filter_state;
3012 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3013 struct efx_filter_spec *spec;
3014 unsigned int filter_idx;
3015 int rc;
3016
3017 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3018 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3019 if (!spec)
3020 continue;
3021
3022 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3023 efx_ef10_filter_is_exclusive(spec) ?
3024 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3025 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3026 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3027 table->entry[filter_idx].handle);
3028 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3029 NULL, 0, NULL);
3030
3031 WARN_ON(rc != 0);
3032 kfree(spec);
3033 }
3034
3035 vfree(table->entry);
3036 kfree(table);
3037}
3038
3039static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3040{
3041 struct efx_ef10_filter_table *table = efx->filter_state;
3042 struct net_device *net_dev = efx->net_dev;
3043 struct efx_filter_spec spec;
3044 bool remove_failed = false;
3045 struct netdev_hw_addr *uc;
3046 struct netdev_hw_addr *mc;
3047 unsigned int filter_idx;
3048 int i, n, rc;
3049
3050 if (!efx_dev_registered(efx))
3051 return;
3052
3053 /* Mark old filters that may need to be removed */
3054 spin_lock_bh(&efx->filter_lock);
3055 n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
3056 for (i = 0; i < n; i++) {
3057 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3058 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3059 }
3060 n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
3061 for (i = 0; i < n; i++) {
3062 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3063 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3064 }
3065 spin_unlock_bh(&efx->filter_lock);
3066
3067 /* Copy/convert the address lists; add the primary station
3068 * address and broadcast address
3069 */
3070 netif_addr_lock_bh(net_dev);
3071 if (net_dev->flags & IFF_PROMISC ||
3072 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
3073 table->stack_uc_count = -1;
3074 } else {
3075 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
3076 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
3077 ETH_ALEN);
3078 i = 1;
3079 netdev_for_each_uc_addr(uc, net_dev) {
3080 memcpy(table->stack_uc_list[i].addr,
3081 uc->addr, ETH_ALEN);
3082 i++;
3083 }
3084 }
3085 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3086 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
3087 table->stack_mc_count = -1;
3088 } else {
3089 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
3090 eth_broadcast_addr(table->stack_mc_list[0].addr);
3091 i = 1;
3092 netdev_for_each_mc_addr(mc, net_dev) {
3093 memcpy(table->stack_mc_list[i].addr,
3094 mc->addr, ETH_ALEN);
3095 i++;
3096 }
3097 }
3098 netif_addr_unlock_bh(net_dev);
3099
3100 /* Insert/renew unicast filters */
3101 if (table->stack_uc_count >= 0) {
3102 for (i = 0; i < table->stack_uc_count; i++) {
3103 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3104 EFX_FILTER_FLAG_RX_RSS |
3105 EFX_FILTER_FLAG_RX_STACK,
3106 0);
3107 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3108 table->stack_uc_list[i].addr);
3109 rc = efx_ef10_filter_insert(efx, &spec, true);
3110 if (rc < 0) {
3111 /* Fall back to unicast-promisc */
3112 while (i--)
3113 efx_ef10_filter_remove_safe(
3114 efx, EFX_FILTER_PRI_REQUIRED,
3115 table->stack_uc_list[i].id);
3116 table->stack_uc_count = -1;
3117 break;
3118 }
3119 table->stack_uc_list[i].id = rc;
3120 }
3121 }
3122 if (table->stack_uc_count < 0) {
3123 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3124 EFX_FILTER_FLAG_RX_RSS |
3125 EFX_FILTER_FLAG_RX_STACK,
3126 0);
3127 efx_filter_set_uc_def(&spec);
3128 rc = efx_ef10_filter_insert(efx, &spec, true);
3129 if (rc < 0) {
3130 WARN_ON(1);
3131 table->stack_uc_count = 0;
3132 } else {
3133 table->stack_uc_list[0].id = rc;
3134 }
3135 }
3136
3137 /* Insert/renew multicast filters */
3138 if (table->stack_mc_count >= 0) {
3139 for (i = 0; i < table->stack_mc_count; i++) {
3140 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3141 EFX_FILTER_FLAG_RX_RSS |
3142 EFX_FILTER_FLAG_RX_STACK,
3143 0);
3144 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3145 table->stack_mc_list[i].addr);
3146 rc = efx_ef10_filter_insert(efx, &spec, true);
3147 if (rc < 0) {
3148 /* Fall back to multicast-promisc */
3149 while (i--)
3150 efx_ef10_filter_remove_safe(
3151 efx, EFX_FILTER_PRI_REQUIRED,
3152 table->stack_mc_list[i].id);
3153 table->stack_mc_count = -1;
3154 break;
3155 }
3156 table->stack_mc_list[i].id = rc;
3157 }
3158 }
3159 if (table->stack_mc_count < 0) {
3160 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3161 EFX_FILTER_FLAG_RX_RSS |
3162 EFX_FILTER_FLAG_RX_STACK,
3163 0);
3164 efx_filter_set_mc_def(&spec);
3165 rc = efx_ef10_filter_insert(efx, &spec, true);
3166 if (rc < 0) {
3167 WARN_ON(1);
3168 table->stack_mc_count = 0;
3169 } else {
3170 table->stack_mc_list[0].id = rc;
3171 }
3172 }
3173
3174 /* Remove filters that weren't renewed. Since nothing else
3175 * changes the STACK_OLD flag or removes these filters, we
3176 * don't need to hold the filter_lock while scanning for
3177 * these filters.
3178 */
3179 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3180 if (ACCESS_ONCE(table->entry[i].spec) &
3181 EFX_EF10_FILTER_FLAG_STACK_OLD) {
3182 if (efx_ef10_filter_remove_internal(efx,
3183 EFX_FILTER_PRI_REQUIRED,
3184 i, true) < 0)
3185 remove_failed = true;
3186 }
3187 }
3188 WARN_ON(remove_failed);
3189}
3190
3191static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3192{
3193 efx_ef10_filter_sync_rx_mode(efx);
3194
3195 return efx_mcdi_set_mac(efx);
3196}
3197
3198#ifdef CONFIG_SFC_MTD
3199
3200struct efx_ef10_nvram_type_info {
3201 u16 type, type_mask;
3202 u8 port;
3203 const char *name;
3204};
3205
3206static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3207 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3208 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3209 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3210 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3211 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3212 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3213 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3214 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3215 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3216 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3217};
3218
3219static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3220 struct efx_mcdi_mtd_partition *part,
3221 unsigned int type)
3222{
3223 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3224 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3225 const struct efx_ef10_nvram_type_info *info;
3226 size_t size, erase_size, outlen;
3227 bool protected;
3228 int rc;
3229
3230 for (info = efx_ef10_nvram_types; ; info++) {
3231 if (info ==
3232 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3233 return -ENODEV;
3234 if ((type & ~info->type_mask) == info->type)
3235 break;
3236 }
3237 if (info->port != efx_port_num(efx))
3238 return -ENODEV;
3239
3240 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3241 if (rc)
3242 return rc;
3243 if (protected)
3244 return -ENODEV; /* hide it */
3245
3246 part->nvram_type = type;
3247
3248 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3249 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3250 outbuf, sizeof(outbuf), &outlen);
3251 if (rc)
3252 return rc;
3253 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3254 return -EIO;
3255 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3256 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3257 part->fw_subtype = MCDI_DWORD(outbuf,
3258 NVRAM_METADATA_OUT_SUBTYPE);
3259
3260 part->common.dev_type_name = "EF10 NVRAM manager";
3261 part->common.type_name = info->name;
3262
3263 part->common.mtd.type = MTD_NORFLASH;
3264 part->common.mtd.flags = MTD_CAP_NORFLASH;
3265 part->common.mtd.size = size;
3266 part->common.mtd.erasesize = erase_size;
3267
3268 return 0;
3269}
3270
3271static int efx_ef10_mtd_probe(struct efx_nic *efx)
3272{
3273 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3274 struct efx_mcdi_mtd_partition *parts;
3275 size_t outlen, n_parts_total, i, n_parts;
3276 unsigned int type;
3277 int rc;
3278
3279 ASSERT_RTNL();
3280
3281 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3282 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3283 outbuf, sizeof(outbuf), &outlen);
3284 if (rc)
3285 return rc;
3286 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3287 return -EIO;
3288
3289 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3290 if (n_parts_total >
3291 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3292 return -EIO;
3293
3294 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3295 if (!parts)
3296 return -ENOMEM;
3297
3298 n_parts = 0;
3299 for (i = 0; i < n_parts_total; i++) {
3300 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3301 i);
3302 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3303 if (rc == 0)
3304 n_parts++;
3305 else if (rc != -ENODEV)
3306 goto fail;
3307 }
3308
3309 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3310fail:
3311 if (rc)
3312 kfree(parts);
3313 return rc;
3314}
3315
3316#endif /* CONFIG_SFC_MTD */
3317
3318static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3319{
3320 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3321}
3322
3323const struct efx_nic_type efx_hunt_a0_nic_type = {
3324 .mem_map_size = efx_ef10_mem_map_size,
3325 .probe = efx_ef10_probe,
3326 .remove = efx_ef10_remove,
3327 .dimension_resources = efx_ef10_dimension_resources,
3328 .init = efx_ef10_init_nic,
3329 .fini = efx_port_dummy_op_void,
3330 .map_reset_reason = efx_mcdi_map_reset_reason,
3331 .map_reset_flags = efx_ef10_map_reset_flags,
3332 .reset = efx_mcdi_reset,
3333 .probe_port = efx_mcdi_port_probe,
3334 .remove_port = efx_mcdi_port_remove,
3335 .fini_dmaq = efx_ef10_fini_dmaq,
3336 .describe_stats = efx_ef10_describe_stats,
3337 .update_stats = efx_ef10_update_stats,
3338 .start_stats = efx_mcdi_mac_start_stats,
3339 .stop_stats = efx_mcdi_mac_stop_stats,
3340 .set_id_led = efx_mcdi_set_id_led,
3341 .push_irq_moderation = efx_ef10_push_irq_moderation,
3342 .reconfigure_mac = efx_ef10_mac_reconfigure,
3343 .check_mac_fault = efx_mcdi_mac_check_fault,
3344 .reconfigure_port = efx_mcdi_port_reconfigure,
3345 .get_wol = efx_ef10_get_wol,
3346 .set_wol = efx_ef10_set_wol,
3347 .resume_wol = efx_port_dummy_op_void,
3348 /* TODO: test_chip */
3349 .test_nvram = efx_mcdi_nvram_test_all,
3350 .mcdi_request = efx_ef10_mcdi_request,
3351 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3352 .mcdi_read_response = efx_ef10_mcdi_read_response,
3353 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3354 .irq_enable_master = efx_port_dummy_op_void,
3355 .irq_test_generate = efx_ef10_irq_test_generate,
3356 .irq_disable_non_ev = efx_port_dummy_op_void,
3357 .irq_handle_msi = efx_ef10_msi_interrupt,
3358 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3359 .tx_probe = efx_ef10_tx_probe,
3360 .tx_init = efx_ef10_tx_init,
3361 .tx_remove = efx_ef10_tx_remove,
3362 .tx_write = efx_ef10_tx_write,
3363 .rx_push_indir_table = efx_ef10_rx_push_indir_table,
3364 .rx_probe = efx_ef10_rx_probe,
3365 .rx_init = efx_ef10_rx_init,
3366 .rx_remove = efx_ef10_rx_remove,
3367 .rx_write = efx_ef10_rx_write,
3368 .rx_defer_refill = efx_ef10_rx_defer_refill,
3369 .ev_probe = efx_ef10_ev_probe,
3370 .ev_init = efx_ef10_ev_init,
3371 .ev_fini = efx_ef10_ev_fini,
3372 .ev_remove = efx_ef10_ev_remove,
3373 .ev_process = efx_ef10_ev_process,
3374 .ev_read_ack = efx_ef10_ev_read_ack,
3375 .ev_test_generate = efx_ef10_ev_test_generate,
3376 .filter_table_probe = efx_ef10_filter_table_probe,
3377 .filter_table_restore = efx_ef10_filter_table_restore,
3378 .filter_table_remove = efx_ef10_filter_table_remove,
3379 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3380 .filter_insert = efx_ef10_filter_insert,
3381 .filter_remove_safe = efx_ef10_filter_remove_safe,
3382 .filter_get_safe = efx_ef10_filter_get_safe,
3383 .filter_clear_rx = efx_ef10_filter_clear_rx,
3384 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3385 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3386 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3387#ifdef CONFIG_RFS_ACCEL
3388 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3389 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3390#endif
3391#ifdef CONFIG_SFC_MTD
3392 .mtd_probe = efx_ef10_mtd_probe,
3393 .mtd_rename = efx_mcdi_mtd_rename,
3394 .mtd_read = efx_mcdi_mtd_read,
3395 .mtd_erase = efx_mcdi_mtd_erase,
3396 .mtd_write = efx_mcdi_mtd_write,
3397 .mtd_sync = efx_mcdi_mtd_sync,
3398#endif
3399 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3400
3401 .revision = EFX_REV_HUNT_A0,
3402 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3403 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3404 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3405 .can_rx_scatter = true,
3406 .always_rx_scatter = true,
3407 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3408 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3409 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3410 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3411 .mcdi_max_ver = 2,
3412 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3413};
This page took 0.179863 seconds and 5 git commands to generate.