sfc: Limit scope of a Falcon A1 IRQ workaround
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
626950db 24#include <linux/aer.h>
b28405b0 25#include <linux/interrupt.h>
8ceee660 26#include "net_driver.h"
8ceee660 27#include "efx.h"
744093c9 28#include "nic.h"
dd40781e 29#include "selftest.h"
8ceee660 30
8880f4ec 31#include "mcdi.h"
fd371e32 32#include "workarounds.h"
8880f4ec 33
c459302d
BH
34/**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41/* Loopback mode names (see LOOPBACK_MODE()) */
42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 43const char *const efx_loopback_mode_names[] = {
c459302d 44 [LOOPBACK_NONE] = "NONE",
e58f69f4 45 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 67 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
71};
72
c459302d 73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 74const char *const efx_reset_type_names[] = {
626950db
AR
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 [RESET_TYPE_DISABLE] = "DISABLE",
81 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
82 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
83 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
84 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
85 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
86 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
87 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
88};
89
1ab00629
SH
90/* Reset workqueue. If any NIC has a hardware failure then a reset will be
91 * queued onto this work queue. This is not a per-nic work queue, because
92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93 */
94static struct workqueue_struct *reset_workqueue;
95
8ceee660
BH
96/**************************************************************************
97 *
98 * Configurable values
99 *
100 *************************************************************************/
101
8ceee660
BH
102/*
103 * Use separate channels for TX and RX events
104 *
28b581ab
NT
105 * Set this to 1 to use separate channels for TX and RX. It allows us
106 * to control interrupt affinity separately for TX and RX.
8ceee660 107 *
28b581ab 108 * This is only used in MSI-X interrupt mode
8ceee660 109 */
b9cc977d
BH
110static bool separate_tx_channels;
111module_param(separate_tx_channels, bool, 0444);
28b581ab
NT
112MODULE_PARM_DESC(separate_tx_channels,
113 "Use separate channels for TX and RX");
8ceee660
BH
114
115/* This is the weight assigned to each of the (per-channel) virtual
116 * NAPI devices.
117 */
118static int napi_weight = 64;
119
120/* This is the time (in jiffies) between invocations of the hardware
626950db
AR
121 * monitor.
122 * On Falcon-based NICs, this will:
e254c274
BH
123 * - Check the on-board hardware monitor;
124 * - Poll the link state and reconfigure the hardware as necessary.
626950db
AR
125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
126 * chance to start.
8ceee660 127 */
d215697f 128static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 129
8ceee660
BH
130/* Initial interrupt moderation settings. They can be modified after
131 * module load with ethtool.
132 *
133 * The default for RX should strike a balance between increasing the
134 * round-trip latency and reducing overhead.
135 */
136static unsigned int rx_irq_mod_usec = 60;
137
138/* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * This default is chosen to ensure that a 10G link does not go idle
142 * while a TX queue is stopped after it has become full. A queue is
143 * restarted when it drops below half full. The time this takes (assuming
144 * worst case 3 descriptors per packet and 1024 descriptors) is
145 * 512 / 3 * 1.2 = 205 usec.
146 */
147static unsigned int tx_irq_mod_usec = 150;
148
149/* This is the first interrupt mode to try out of:
150 * 0 => MSI-X
151 * 1 => MSI
152 * 2 => legacy
153 */
154static unsigned int interrupt_mode;
155
156/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157 * i.e. the number of CPUs among which we may distribute simultaneous
158 * interrupt handling.
159 *
160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 161 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
162 */
163static unsigned int rss_cpus;
164module_param(rss_cpus, uint, 0444);
165MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
166
b9cc977d
BH
167static bool phy_flash_cfg;
168module_param(phy_flash_cfg, bool, 0644);
84ae48fe
BH
169MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
170
e7bed9c8 171static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
172module_param(irq_adapt_low_thresh, uint, 0644);
173MODULE_PARM_DESC(irq_adapt_low_thresh,
174 "Threshold score for reducing IRQ moderation");
175
e7bed9c8 176static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
177module_param(irq_adapt_high_thresh, uint, 0644);
178MODULE_PARM_DESC(irq_adapt_high_thresh,
179 "Threshold score for increasing IRQ moderation");
180
62776d03
BH
181static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
184 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
185module_param(debug, uint, 0);
186MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
187
8ceee660
BH
188/**************************************************************************
189 *
190 * Utility functions and prototypes
191 *
192 *************************************************************************/
4642610c 193
d8291187
BH
194static void efx_soft_enable_interrupts(struct efx_nic *efx);
195static void efx_soft_disable_interrupts(struct efx_nic *efx);
7f967c01 196static void efx_remove_channel(struct efx_channel *channel);
4642610c 197static void efx_remove_channels(struct efx_nic *efx);
7f967c01 198static const struct efx_channel_type efx_default_channel_type;
8ceee660 199static void efx_remove_port(struct efx_nic *efx);
7f967c01 200static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 201static void efx_fini_napi(struct efx_nic *efx);
e8f14992 202static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
203static void efx_fini_struct(struct efx_nic *efx);
204static void efx_start_all(struct efx_nic *efx);
205static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
206
207#define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
f16aeea0 209 if ((efx->state == STATE_READY) || \
626950db 210 (efx->state == STATE_RECOVERY) || \
332c1ce9 211 (efx->state == STATE_DISABLED)) \
8ceee660
BH
212 ASSERT_RTNL(); \
213 } while (0)
214
8b7325b4
BH
215static int efx_check_disabled(struct efx_nic *efx)
216{
626950db 217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
8b7325b4
BH
218 netif_err(efx, drv, efx->net_dev,
219 "device is disabled due to earlier errors\n");
220 return -EIO;
221 }
222 return 0;
223}
224
8ceee660
BH
225/**************************************************************************
226 *
227 * Event queue processing
228 *
229 *************************************************************************/
230
231/* Process channel's event queue
232 *
233 * This function is responsible for processing the event queue of a
234 * single channel. The caller must guarantee that this function will
235 * never be concurrently called more than once on the same channel,
236 * though different channels may be being processed concurrently.
237 */
fa236e18 238static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 239{
fa236e18 240 int spent;
8ceee660 241
9f2cb71c 242 if (unlikely(!channel->enabled))
42cbe2d7 243 return 0;
8ceee660 244
fa236e18 245 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
246 if (spent && efx_channel_has_rx_queue(channel)) {
247 struct efx_rx_queue *rx_queue =
248 efx_channel_get_rx_queue(channel);
249
ff734ef4 250 efx_rx_flush_packet(channel);
97d48a10 251 if (rx_queue->enabled)
9f2cb71c 252 efx_fast_push_rx_descriptors(rx_queue);
8ceee660
BH
253 }
254
fa236e18 255 return spent;
8ceee660
BH
256}
257
8ceee660
BH
258/* NAPI poll handler
259 *
260 * NAPI guarantees serialisation of polls of the same device, which
261 * provides the guarantee required by efx_process_channel().
262 */
263static int efx_poll(struct napi_struct *napi, int budget)
264{
265 struct efx_channel *channel =
266 container_of(napi, struct efx_channel, napi_str);
62776d03 267 struct efx_nic *efx = channel->efx;
fa236e18 268 int spent;
8ceee660 269
62776d03
BH
270 netif_vdbg(efx, intr, efx->net_dev,
271 "channel %d NAPI poll executing on CPU %d\n",
272 channel->channel, raw_smp_processor_id());
8ceee660 273
fa236e18 274 spent = efx_process_channel(channel, budget);
8ceee660 275
fa236e18 276 if (spent < budget) {
9d9a6973 277 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
278 efx->irq_rx_adaptive &&
279 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
280 if (unlikely(channel->irq_mod_score <
281 irq_adapt_low_thresh)) {
0d86ebd8
BH
282 if (channel->irq_moderation > 1) {
283 channel->irq_moderation -= 1;
ef2b90ee 284 efx->type->push_irq_moderation(channel);
0d86ebd8 285 }
6fb70fd1
BH
286 } else if (unlikely(channel->irq_mod_score >
287 irq_adapt_high_thresh)) {
0d86ebd8
BH
288 if (channel->irq_moderation <
289 efx->irq_rx_moderation) {
290 channel->irq_moderation += 1;
ef2b90ee 291 efx->type->push_irq_moderation(channel);
0d86ebd8 292 }
6fb70fd1 293 }
6fb70fd1
BH
294 channel->irq_count = 0;
295 channel->irq_mod_score = 0;
296 }
297
64d8ad6d
BH
298 efx_filter_rfs_expire(channel);
299
8ceee660 300 /* There is no race here; although napi_disable() will
288379f0 301 * only wait for napi_complete(), this isn't a problem
514bedbc 302 * since efx_nic_eventq_read_ack() will have no effect if
8ceee660
BH
303 * interrupts have already been disabled.
304 */
288379f0 305 napi_complete(napi);
514bedbc 306 efx_nic_eventq_read_ack(channel);
8ceee660
BH
307 }
308
fa236e18 309 return spent;
8ceee660
BH
310}
311
8ceee660
BH
312/* Create event queue
313 * Event queue memory allocations are done only once. If the channel
314 * is reset, the memory buffer will be reused; this guards against
315 * errors during channel reset and also simplifies interrupt handling.
316 */
317static int efx_probe_eventq(struct efx_channel *channel)
318{
ecc910f5
SH
319 struct efx_nic *efx = channel->efx;
320 unsigned long entries;
321
86ee5302 322 netif_dbg(efx, probe, efx->net_dev,
62776d03 323 "chan %d create event queue\n", channel->channel);
8ceee660 324
ecc910f5
SH
325 /* Build an event queue with room for one event per tx and rx buffer,
326 * plus some extra for link state events and MCDI completions. */
327 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
328 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
329 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
330
152b6a62 331 return efx_nic_probe_eventq(channel);
8ceee660
BH
332}
333
334/* Prepare channel's event queue */
bc3c90a2 335static void efx_init_eventq(struct efx_channel *channel)
8ceee660 336{
62776d03
BH
337 netif_dbg(channel->efx, drv, channel->efx->net_dev,
338 "chan %d init event queue\n", channel->channel);
8ceee660
BH
339
340 channel->eventq_read_ptr = 0;
341
152b6a62 342 efx_nic_init_eventq(channel);
8ceee660
BH
343}
344
9f2cb71c
BH
345/* Enable event queue processing and NAPI */
346static void efx_start_eventq(struct efx_channel *channel)
347{
348 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
349 "chan %d start event queue\n", channel->channel);
350
514bedbc 351 /* Make sure the NAPI handler sees the enabled flag set */
9f2cb71c
BH
352 channel->enabled = true;
353 smp_wmb();
354
355 napi_enable(&channel->napi_str);
356 efx_nic_eventq_read_ack(channel);
357}
358
359/* Disable event queue processing and NAPI */
360static void efx_stop_eventq(struct efx_channel *channel)
361{
362 if (!channel->enabled)
363 return;
364
365 napi_disable(&channel->napi_str);
366 channel->enabled = false;
367}
368
8ceee660
BH
369static void efx_fini_eventq(struct efx_channel *channel)
370{
62776d03
BH
371 netif_dbg(channel->efx, drv, channel->efx->net_dev,
372 "chan %d fini event queue\n", channel->channel);
8ceee660 373
152b6a62 374 efx_nic_fini_eventq(channel);
8ceee660
BH
375}
376
377static void efx_remove_eventq(struct efx_channel *channel)
378{
62776d03
BH
379 netif_dbg(channel->efx, drv, channel->efx->net_dev,
380 "chan %d remove event queue\n", channel->channel);
8ceee660 381
152b6a62 382 efx_nic_remove_eventq(channel);
8ceee660
BH
383}
384
385/**************************************************************************
386 *
387 * Channel handling
388 *
389 *************************************************************************/
390
7f967c01 391/* Allocate and initialise a channel structure. */
4642610c
BH
392static struct efx_channel *
393efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
394{
395 struct efx_channel *channel;
396 struct efx_rx_queue *rx_queue;
397 struct efx_tx_queue *tx_queue;
398 int j;
399
7f967c01
BH
400 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
401 if (!channel)
402 return NULL;
4642610c 403
7f967c01
BH
404 channel->efx = efx;
405 channel->channel = i;
406 channel->type = &efx_default_channel_type;
4642610c 407
7f967c01
BH
408 for (j = 0; j < EFX_TXQ_TYPES; j++) {
409 tx_queue = &channel->tx_queue[j];
410 tx_queue->efx = efx;
411 tx_queue->queue = i * EFX_TXQ_TYPES + j;
412 tx_queue->channel = channel;
413 }
4642610c 414
7f967c01
BH
415 rx_queue = &channel->rx_queue;
416 rx_queue->efx = efx;
417 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
418 (unsigned long)rx_queue);
4642610c 419
7f967c01
BH
420 return channel;
421}
422
423/* Allocate and initialise a channel structure, copying parameters
424 * (but not resources) from an old channel structure.
425 */
426static struct efx_channel *
427efx_copy_channel(const struct efx_channel *old_channel)
428{
429 struct efx_channel *channel;
430 struct efx_rx_queue *rx_queue;
431 struct efx_tx_queue *tx_queue;
432 int j;
4642610c 433
7f967c01
BH
434 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
435 if (!channel)
436 return NULL;
437
438 *channel = *old_channel;
439
440 channel->napi_dev = NULL;
441 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 442
7f967c01
BH
443 for (j = 0; j < EFX_TXQ_TYPES; j++) {
444 tx_queue = &channel->tx_queue[j];
445 if (tx_queue->channel)
4642610c 446 tx_queue->channel = channel;
7f967c01
BH
447 tx_queue->buffer = NULL;
448 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
449 }
450
4642610c 451 rx_queue = &channel->rx_queue;
7f967c01
BH
452 rx_queue->buffer = NULL;
453 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
454 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
455 (unsigned long)rx_queue);
456
457 return channel;
458}
459
8ceee660
BH
460static int efx_probe_channel(struct efx_channel *channel)
461{
462 struct efx_tx_queue *tx_queue;
463 struct efx_rx_queue *rx_queue;
464 int rc;
465
62776d03
BH
466 netif_dbg(channel->efx, probe, channel->efx->net_dev,
467 "creating channel %d\n", channel->channel);
8ceee660 468
7f967c01
BH
469 rc = channel->type->pre_probe(channel);
470 if (rc)
471 goto fail;
472
8ceee660
BH
473 rc = efx_probe_eventq(channel);
474 if (rc)
7f967c01 475 goto fail;
8ceee660
BH
476
477 efx_for_each_channel_tx_queue(tx_queue, channel) {
478 rc = efx_probe_tx_queue(tx_queue);
479 if (rc)
7f967c01 480 goto fail;
8ceee660
BH
481 }
482
483 efx_for_each_channel_rx_queue(rx_queue, channel) {
484 rc = efx_probe_rx_queue(rx_queue);
485 if (rc)
7f967c01 486 goto fail;
8ceee660
BH
487 }
488
489 channel->n_rx_frm_trunc = 0;
490
491 return 0;
492
7f967c01
BH
493fail:
494 efx_remove_channel(channel);
8ceee660
BH
495 return rc;
496}
497
7f967c01
BH
498static void
499efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
500{
501 struct efx_nic *efx = channel->efx;
502 const char *type;
503 int number;
504
505 number = channel->channel;
506 if (efx->tx_channel_offset == 0) {
507 type = "";
508 } else if (channel->channel < efx->tx_channel_offset) {
509 type = "-rx";
510 } else {
511 type = "-tx";
512 number -= efx->tx_channel_offset;
513 }
514 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
515}
8ceee660 516
56536e9c
BH
517static void efx_set_channel_names(struct efx_nic *efx)
518{
519 struct efx_channel *channel;
56536e9c 520
7f967c01
BH
521 efx_for_each_channel(channel, efx)
522 channel->type->get_name(channel,
d8291187
BH
523 efx->msi_context[channel->channel].name,
524 sizeof(efx->msi_context[0].name));
56536e9c
BH
525}
526
4642610c
BH
527static int efx_probe_channels(struct efx_nic *efx)
528{
529 struct efx_channel *channel;
530 int rc;
531
532 /* Restart special buffer allocation */
533 efx->next_buffer_table = 0;
534
c92aaff1
BH
535 /* Probe channels in reverse, so that any 'extra' channels
536 * use the start of the buffer table. This allows the traffic
537 * channels to be resized without moving them or wasting the
538 * entries before them.
539 */
540 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
541 rc = efx_probe_channel(channel);
542 if (rc) {
543 netif_err(efx, probe, efx->net_dev,
544 "failed to create channel %d\n",
545 channel->channel);
546 goto fail;
547 }
548 }
549 efx_set_channel_names(efx);
550
551 return 0;
552
553fail:
554 efx_remove_channels(efx);
555 return rc;
556}
557
8ceee660
BH
558/* Channels are shutdown and reinitialised whilst the NIC is running
559 * to propagate configuration changes (mtu, checksum offload), or
560 * to clear hardware error conditions
561 */
9f2cb71c 562static void efx_start_datapath(struct efx_nic *efx)
8ceee660 563{
85740cdf 564 bool old_rx_scatter = efx->rx_scatter;
8ceee660
BH
565 struct efx_tx_queue *tx_queue;
566 struct efx_rx_queue *rx_queue;
567 struct efx_channel *channel;
85740cdf 568 size_t rx_buf_len;
8ceee660 569
f7f13b0b
BH
570 /* Calculate the rx buffer allocation parameters required to
571 * support the current MTU, including padding for header
572 * alignment and overruns.
573 */
272baeeb
BH
574 efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
575 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
576 efx->type->rx_buffer_padding);
85740cdf 577 rx_buf_len = (sizeof(struct efx_rx_page_state) +
c14ff2ea 578 NET_IP_ALIGN + efx->rx_dma_len);
85740cdf
BH
579 if (rx_buf_len <= PAGE_SIZE) {
580 efx->rx_scatter = false;
581 efx->rx_buffer_order = 0;
85740cdf 582 } else if (efx->type->can_rx_scatter) {
950c54df 583 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
85740cdf 584 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
950c54df
BH
585 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
586 EFX_RX_BUF_ALIGNMENT) >
587 PAGE_SIZE);
85740cdf
BH
588 efx->rx_scatter = true;
589 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
590 efx->rx_buffer_order = 0;
85740cdf
BH
591 } else {
592 efx->rx_scatter = false;
593 efx->rx_buffer_order = get_order(rx_buf_len);
85740cdf
BH
594 }
595
1648a23f
DP
596 efx_rx_config_page_split(efx);
597 if (efx->rx_buffer_order)
598 netif_dbg(efx, drv, efx->net_dev,
599 "RX buf len=%u; page order=%u batch=%u\n",
600 efx->rx_dma_len, efx->rx_buffer_order,
601 efx->rx_pages_per_batch);
602 else
603 netif_dbg(efx, drv, efx->net_dev,
604 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
605 efx->rx_dma_len, efx->rx_page_buf_step,
606 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
2768935a 607
85740cdf
BH
608 /* RX filters also have scatter-enabled flags */
609 if (efx->rx_scatter != old_rx_scatter)
610 efx_filter_update_rx_scatter(efx);
8ceee660 611
14bf718f
BH
612 /* We must keep at least one descriptor in a TX ring empty.
613 * We could avoid this when the queue size does not exactly
614 * match the hardware ring size, but it's not that important.
615 * Therefore we stop the queue when one more skb might fill
616 * the ring completely. We wake it when half way back to
617 * empty.
618 */
619 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
620 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
621
8ceee660
BH
622 /* Initialise the channels */
623 efx_for_each_channel(channel, efx) {
bc3c90a2
BH
624 efx_for_each_channel_tx_queue(tx_queue, channel)
625 efx_init_tx_queue(tx_queue);
8ceee660 626
9f2cb71c 627 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 628 efx_init_rx_queue(rx_queue);
9f2cb71c
BH
629 efx_nic_generate_fill_event(rx_queue);
630 }
8ceee660 631
85740cdf 632 WARN_ON(channel->rx_pkt_n_frags);
8ceee660 633 }
8ceee660 634
9f2cb71c
BH
635 if (netif_device_present(efx->net_dev))
636 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
637}
638
9f2cb71c 639static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
640{
641 struct efx_channel *channel;
642 struct efx_tx_queue *tx_queue;
643 struct efx_rx_queue *rx_queue;
3dca9d2d 644 struct pci_dev *dev = efx->pci_dev;
6bc5d3a9 645 int rc;
8ceee660
BH
646
647 EFX_ASSERT_RESET_SERIALISED(efx);
648 BUG_ON(efx->port_enabled);
649
3dca9d2d 650 /* Only perform flush if dma is enabled */
626950db 651 if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
3dca9d2d
SH
652 rc = efx_nic_flush_queues(efx);
653
654 if (rc && EFX_WORKAROUND_7803(efx)) {
655 /* Schedule a reset to recover from the flush failure. The
656 * descriptor caches reference memory we're about to free,
657 * but falcon_reconfigure_mac_wrapper() won't reconnect
658 * the MACs because of the pending reset. */
659 netif_err(efx, drv, efx->net_dev,
660 "Resetting to recover from flush failure\n");
661 efx_schedule_reset(efx, RESET_TYPE_ALL);
662 } else if (rc) {
663 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
664 } else {
665 netif_dbg(efx, drv, efx->net_dev,
666 "successfully flushed all queues\n");
667 }
fd371e32 668 }
6bc5d3a9 669
8ceee660 670 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
671 /* RX packet processing is pipelined, so wait for the
672 * NAPI handler to complete. At least event queue 0
673 * might be kept active by non-data events, so don't
674 * use napi_synchronize() but actually disable NAPI
675 * temporarily.
676 */
677 if (efx_channel_has_rx_queue(channel)) {
678 efx_stop_eventq(channel);
679 efx_start_eventq(channel);
680 }
8ceee660
BH
681
682 efx_for_each_channel_rx_queue(rx_queue, channel)
683 efx_fini_rx_queue(rx_queue);
94b274bf 684 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 685 efx_fini_tx_queue(tx_queue);
8ceee660
BH
686 }
687}
688
689static void efx_remove_channel(struct efx_channel *channel)
690{
691 struct efx_tx_queue *tx_queue;
692 struct efx_rx_queue *rx_queue;
693
62776d03
BH
694 netif_dbg(channel->efx, drv, channel->efx->net_dev,
695 "destroy chan %d\n", channel->channel);
8ceee660
BH
696
697 efx_for_each_channel_rx_queue(rx_queue, channel)
698 efx_remove_rx_queue(rx_queue);
94b274bf 699 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
700 efx_remove_tx_queue(tx_queue);
701 efx_remove_eventq(channel);
c31e5f9f 702 channel->type->post_remove(channel);
8ceee660
BH
703}
704
4642610c
BH
705static void efx_remove_channels(struct efx_nic *efx)
706{
707 struct efx_channel *channel;
708
709 efx_for_each_channel(channel, efx)
710 efx_remove_channel(channel);
711}
712
713int
714efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
715{
716 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
717 u32 old_rxq_entries, old_txq_entries;
7f967c01 718 unsigned i, next_buffer_table = 0;
8b7325b4
BH
719 int rc;
720
721 rc = efx_check_disabled(efx);
722 if (rc)
723 return rc;
7f967c01
BH
724
725 /* Not all channels should be reallocated. We must avoid
726 * reallocating their buffer table entries.
727 */
728 efx_for_each_channel(channel, efx) {
729 struct efx_rx_queue *rx_queue;
730 struct efx_tx_queue *tx_queue;
731
732 if (channel->type->copy)
733 continue;
734 next_buffer_table = max(next_buffer_table,
735 channel->eventq.index +
736 channel->eventq.entries);
737 efx_for_each_channel_rx_queue(rx_queue, channel)
738 next_buffer_table = max(next_buffer_table,
739 rx_queue->rxd.index +
740 rx_queue->rxd.entries);
741 efx_for_each_channel_tx_queue(tx_queue, channel)
742 next_buffer_table = max(next_buffer_table,
743 tx_queue->txd.index +
744 tx_queue->txd.entries);
745 }
4642610c 746
29c69a48 747 efx_device_detach_sync(efx);
4642610c 748 efx_stop_all(efx);
d8291187 749 efx_soft_disable_interrupts(efx);
4642610c 750
7f967c01 751 /* Clone channels (where possible) */
4642610c
BH
752 memset(other_channel, 0, sizeof(other_channel));
753 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
754 channel = efx->channel[i];
755 if (channel->type->copy)
756 channel = channel->type->copy(channel);
4642610c
BH
757 if (!channel) {
758 rc = -ENOMEM;
759 goto out;
760 }
761 other_channel[i] = channel;
762 }
763
764 /* Swap entry counts and channel pointers */
765 old_rxq_entries = efx->rxq_entries;
766 old_txq_entries = efx->txq_entries;
767 efx->rxq_entries = rxq_entries;
768 efx->txq_entries = txq_entries;
769 for (i = 0; i < efx->n_channels; i++) {
770 channel = efx->channel[i];
771 efx->channel[i] = other_channel[i];
772 other_channel[i] = channel;
773 }
774
7f967c01
BH
775 /* Restart buffer table allocation */
776 efx->next_buffer_table = next_buffer_table;
e8f14992 777
e8f14992 778 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
779 channel = efx->channel[i];
780 if (!channel->type->copy)
781 continue;
782 rc = efx_probe_channel(channel);
783 if (rc)
784 goto rollback;
785 efx_init_napi_channel(efx->channel[i]);
e8f14992 786 }
7f967c01 787
4642610c 788out:
7f967c01
BH
789 /* Destroy unused channel structures */
790 for (i = 0; i < efx->n_channels; i++) {
791 channel = other_channel[i];
792 if (channel && channel->type->copy) {
793 efx_fini_napi_channel(channel);
794 efx_remove_channel(channel);
795 kfree(channel);
796 }
797 }
4642610c 798
d8291187 799 efx_soft_enable_interrupts(efx);
4642610c 800 efx_start_all(efx);
29c69a48 801 netif_device_attach(efx->net_dev);
4642610c
BH
802 return rc;
803
804rollback:
805 /* Swap back */
806 efx->rxq_entries = old_rxq_entries;
807 efx->txq_entries = old_txq_entries;
808 for (i = 0; i < efx->n_channels; i++) {
809 channel = efx->channel[i];
810 efx->channel[i] = other_channel[i];
811 other_channel[i] = channel;
812 }
813 goto out;
814}
815
90d683af 816void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 817{
90d683af 818 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
819}
820
7f967c01
BH
821static const struct efx_channel_type efx_default_channel_type = {
822 .pre_probe = efx_channel_dummy_op_int,
c31e5f9f 823 .post_remove = efx_channel_dummy_op_void,
7f967c01
BH
824 .get_name = efx_get_channel_name,
825 .copy = efx_copy_channel,
826 .keep_eventq = false,
827};
828
829int efx_channel_dummy_op_int(struct efx_channel *channel)
830{
831 return 0;
832}
833
c31e5f9f
SH
834void efx_channel_dummy_op_void(struct efx_channel *channel)
835{
836}
837
8ceee660
BH
838/**************************************************************************
839 *
840 * Port handling
841 *
842 **************************************************************************/
843
844/* This ensures that the kernel is kept informed (via
845 * netif_carrier_on/off) of the link status, and also maintains the
846 * link status's stop on the port's TX queue.
847 */
fdaa9aed 848void efx_link_status_changed(struct efx_nic *efx)
8ceee660 849{
eb50c0d6
BH
850 struct efx_link_state *link_state = &efx->link_state;
851
8ceee660
BH
852 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
853 * that no events are triggered between unregister_netdev() and the
854 * driver unloading. A more general condition is that NETDEV_CHANGE
855 * can only be generated between NETDEV_UP and NETDEV_DOWN */
856 if (!netif_running(efx->net_dev))
857 return;
858
eb50c0d6 859 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
860 efx->n_link_state_changes++;
861
eb50c0d6 862 if (link_state->up)
8ceee660
BH
863 netif_carrier_on(efx->net_dev);
864 else
865 netif_carrier_off(efx->net_dev);
866 }
867
868 /* Status message for kernel log */
2aa9ef11 869 if (link_state->up)
62776d03
BH
870 netif_info(efx, link, efx->net_dev,
871 "link up at %uMbps %s-duplex (MTU %d)%s\n",
872 link_state->speed, link_state->fd ? "full" : "half",
873 efx->net_dev->mtu,
874 (efx->promiscuous ? " [PROMISC]" : ""));
2aa9ef11 875 else
62776d03 876 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
877}
878
d3245b28
BH
879void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
880{
881 efx->link_advertising = advertising;
882 if (advertising) {
883 if (advertising & ADVERTISED_Pause)
884 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
885 else
886 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
887 if (advertising & ADVERTISED_Asym_Pause)
888 efx->wanted_fc ^= EFX_FC_TX;
889 }
890}
891
b5626946 892void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
893{
894 efx->wanted_fc = wanted_fc;
895 if (efx->link_advertising) {
896 if (wanted_fc & EFX_FC_RX)
897 efx->link_advertising |= (ADVERTISED_Pause |
898 ADVERTISED_Asym_Pause);
899 else
900 efx->link_advertising &= ~(ADVERTISED_Pause |
901 ADVERTISED_Asym_Pause);
902 if (wanted_fc & EFX_FC_TX)
903 efx->link_advertising ^= ADVERTISED_Asym_Pause;
904 }
905}
906
115122af
BH
907static void efx_fini_port(struct efx_nic *efx);
908
d3245b28
BH
909/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
910 * the MAC appropriately. All other PHY configuration changes are pushed
911 * through phy_op->set_settings(), and pushed asynchronously to the MAC
912 * through efx_monitor().
913 *
914 * Callers must hold the mac_lock
915 */
916int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 917{
d3245b28
BH
918 enum efx_phy_mode phy_mode;
919 int rc;
8ceee660 920
d3245b28 921 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 922
0fca8c97 923 /* Serialise the promiscuous flag with efx_set_rx_mode. */
73ba7b68
BH
924 netif_addr_lock_bh(efx->net_dev);
925 netif_addr_unlock_bh(efx->net_dev);
a816f75a 926
d3245b28
BH
927 /* Disable PHY transmit in mac level loopbacks */
928 phy_mode = efx->phy_mode;
177dfcd8
BH
929 if (LOOPBACK_INTERNAL(efx))
930 efx->phy_mode |= PHY_MODE_TX_DISABLED;
931 else
932 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 933
d3245b28 934 rc = efx->type->reconfigure_port(efx);
8ceee660 935
d3245b28
BH
936 if (rc)
937 efx->phy_mode = phy_mode;
177dfcd8 938
d3245b28 939 return rc;
8ceee660
BH
940}
941
942/* Reinitialise the MAC to pick up new PHY settings, even if the port is
943 * disabled. */
d3245b28 944int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 945{
d3245b28
BH
946 int rc;
947
8ceee660
BH
948 EFX_ASSERT_RESET_SERIALISED(efx);
949
950 mutex_lock(&efx->mac_lock);
d3245b28 951 rc = __efx_reconfigure_port(efx);
8ceee660 952 mutex_unlock(&efx->mac_lock);
d3245b28
BH
953
954 return rc;
8ceee660
BH
955}
956
8be4f3e6
BH
957/* Asynchronous work item for changing MAC promiscuity and multicast
958 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
959 * MAC directly. */
766ca0fa
BH
960static void efx_mac_work(struct work_struct *data)
961{
962 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
963
964 mutex_lock(&efx->mac_lock);
30b81cda 965 if (efx->port_enabled)
710b208d 966 efx->type->reconfigure_mac(efx);
766ca0fa
BH
967 mutex_unlock(&efx->mac_lock);
968}
969
8ceee660
BH
970static int efx_probe_port(struct efx_nic *efx)
971{
972 int rc;
973
62776d03 974 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 975
ff3b00a0
SH
976 if (phy_flash_cfg)
977 efx->phy_mode = PHY_MODE_SPECIAL;
978
ef2b90ee
BH
979 /* Connect up MAC/PHY operations table */
980 rc = efx->type->probe_port(efx);
8ceee660 981 if (rc)
e42de262 982 return rc;
8ceee660 983
e332bcb3
BH
984 /* Initialise MAC address to permanent address */
985 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
8ceee660
BH
986
987 return 0;
8ceee660
BH
988}
989
990static int efx_init_port(struct efx_nic *efx)
991{
992 int rc;
993
62776d03 994 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 995
1dfc5cea
BH
996 mutex_lock(&efx->mac_lock);
997
177dfcd8 998 rc = efx->phy_op->init(efx);
8ceee660 999 if (rc)
1dfc5cea 1000 goto fail1;
8ceee660 1001
dc8cfa55 1002 efx->port_initialized = true;
1dfc5cea 1003
d3245b28
BH
1004 /* Reconfigure the MAC before creating dma queues (required for
1005 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 1006 efx->type->reconfigure_mac(efx);
d3245b28
BH
1007
1008 /* Ensure the PHY advertises the correct flow control settings */
1009 rc = efx->phy_op->reconfigure(efx);
1010 if (rc)
1011 goto fail2;
1012
1dfc5cea 1013 mutex_unlock(&efx->mac_lock);
8ceee660 1014 return 0;
177dfcd8 1015
1dfc5cea 1016fail2:
177dfcd8 1017 efx->phy_op->fini(efx);
1dfc5cea
BH
1018fail1:
1019 mutex_unlock(&efx->mac_lock);
177dfcd8 1020 return rc;
8ceee660
BH
1021}
1022
8ceee660
BH
1023static void efx_start_port(struct efx_nic *efx)
1024{
62776d03 1025 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1026 BUG_ON(efx->port_enabled);
1027
1028 mutex_lock(&efx->mac_lock);
dc8cfa55 1029 efx->port_enabled = true;
8be4f3e6
BH
1030
1031 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1032 * and then cancelled by efx_flush_all() */
710b208d 1033 efx->type->reconfigure_mac(efx);
8be4f3e6 1034
8ceee660
BH
1035 mutex_unlock(&efx->mac_lock);
1036}
1037
fdaa9aed 1038/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1039static void efx_stop_port(struct efx_nic *efx)
1040{
62776d03 1041 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1042
1043 mutex_lock(&efx->mac_lock);
dc8cfa55 1044 efx->port_enabled = false;
8ceee660
BH
1045 mutex_unlock(&efx->mac_lock);
1046
1047 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1048 netif_addr_lock_bh(efx->net_dev);
1049 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1050}
1051
1052static void efx_fini_port(struct efx_nic *efx)
1053{
62776d03 1054 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1055
1056 if (!efx->port_initialized)
1057 return;
1058
177dfcd8 1059 efx->phy_op->fini(efx);
dc8cfa55 1060 efx->port_initialized = false;
8ceee660 1061
eb50c0d6 1062 efx->link_state.up = false;
8ceee660
BH
1063 efx_link_status_changed(efx);
1064}
1065
1066static void efx_remove_port(struct efx_nic *efx)
1067{
62776d03 1068 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1069
ef2b90ee 1070 efx->type->remove_port(efx);
8ceee660
BH
1071}
1072
1073/**************************************************************************
1074 *
1075 * NIC handling
1076 *
1077 **************************************************************************/
1078
1079/* This configures the PCI device to enable I/O and DMA. */
1080static int efx_init_io(struct efx_nic *efx)
1081{
1082 struct pci_dev *pci_dev = efx->pci_dev;
1083 dma_addr_t dma_mask = efx->type->max_dma_mask;
1084 int rc;
1085
62776d03 1086 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1087
1088 rc = pci_enable_device(pci_dev);
1089 if (rc) {
62776d03
BH
1090 netif_err(efx, probe, efx->net_dev,
1091 "failed to enable PCI device\n");
8ceee660
BH
1092 goto fail1;
1093 }
1094
1095 pci_set_master(pci_dev);
1096
1097 /* Set the PCI DMA mask. Try all possibilities from our
1098 * genuine mask down to 32 bits, because some architectures
1099 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1100 * masks event though they reject 46 bit masks.
1101 */
1102 while (dma_mask > 0x7fffffffUL) {
0e33d870
BH
1103 if (dma_supported(&pci_dev->dev, dma_mask)) {
1104 rc = dma_set_mask(&pci_dev->dev, dma_mask);
e9e01846
BH
1105 if (rc == 0)
1106 break;
1107 }
8ceee660
BH
1108 dma_mask >>= 1;
1109 }
1110 if (rc) {
62776d03
BH
1111 netif_err(efx, probe, efx->net_dev,
1112 "could not find a suitable DMA mask\n");
8ceee660
BH
1113 goto fail2;
1114 }
62776d03
BH
1115 netif_dbg(efx, probe, efx->net_dev,
1116 "using DMA mask %llx\n", (unsigned long long) dma_mask);
0e33d870 1117 rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
8ceee660 1118 if (rc) {
0e33d870
BH
1119 /* dma_set_coherent_mask() is not *allowed* to
1120 * fail with a mask that dma_set_mask() accepted,
8ceee660
BH
1121 * but just in case...
1122 */
62776d03
BH
1123 netif_err(efx, probe, efx->net_dev,
1124 "failed to set consistent DMA mask\n");
8ceee660
BH
1125 goto fail2;
1126 }
1127
dc803df8
BH
1128 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1129 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1130 if (rc) {
62776d03
BH
1131 netif_err(efx, probe, efx->net_dev,
1132 "request for memory BAR failed\n");
8ceee660
BH
1133 rc = -EIO;
1134 goto fail3;
1135 }
86c432ca
BH
1136 efx->membase = ioremap_nocache(efx->membase_phys,
1137 efx->type->mem_map_size);
8ceee660 1138 if (!efx->membase) {
62776d03
BH
1139 netif_err(efx, probe, efx->net_dev,
1140 "could not map memory BAR at %llx+%x\n",
1141 (unsigned long long)efx->membase_phys,
1142 efx->type->mem_map_size);
8ceee660
BH
1143 rc = -ENOMEM;
1144 goto fail4;
1145 }
62776d03
BH
1146 netif_dbg(efx, probe, efx->net_dev,
1147 "memory BAR at %llx+%x (virtual %p)\n",
1148 (unsigned long long)efx->membase_phys,
1149 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1150
1151 return 0;
1152
1153 fail4:
dc803df8 1154 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1155 fail3:
2c118e0f 1156 efx->membase_phys = 0;
8ceee660
BH
1157 fail2:
1158 pci_disable_device(efx->pci_dev);
1159 fail1:
1160 return rc;
1161}
1162
1163static void efx_fini_io(struct efx_nic *efx)
1164{
62776d03 1165 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1166
1167 if (efx->membase) {
1168 iounmap(efx->membase);
1169 efx->membase = NULL;
1170 }
1171
1172 if (efx->membase_phys) {
dc803df8 1173 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1174 efx->membase_phys = 0;
8ceee660
BH
1175 }
1176
1177 pci_disable_device(efx->pci_dev);
1178}
1179
a9a52506 1180static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1181{
cdb08f8f 1182 cpumask_var_t thread_mask;
a16e5b24 1183 unsigned int count;
46123d04 1184 int cpu;
5b874e25 1185
cd2d5b52
BH
1186 if (rss_cpus) {
1187 count = rss_cpus;
1188 } else {
1189 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1190 netif_warn(efx, probe, efx->net_dev,
1191 "RSS disabled due to allocation failure\n");
1192 return 1;
1193 }
46123d04 1194
cd2d5b52
BH
1195 count = 0;
1196 for_each_online_cpu(cpu) {
1197 if (!cpumask_test_cpu(cpu, thread_mask)) {
1198 ++count;
1199 cpumask_or(thread_mask, thread_mask,
1200 topology_thread_cpumask(cpu));
1201 }
1202 }
1203
1204 free_cpumask_var(thread_mask);
2f8975fb
RR
1205 }
1206
cd2d5b52
BH
1207 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1208 * table entries that are inaccessible to VFs
1209 */
1210 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1211 count > efx_vf_size(efx)) {
1212 netif_warn(efx, probe, efx->net_dev,
1213 "Reducing number of RSS channels from %u to %u for "
1214 "VF support. Increase vf-msix-limit to use more "
1215 "channels on the PF.\n",
1216 count, efx_vf_size(efx));
1217 count = efx_vf_size(efx);
46123d04
BH
1218 }
1219
1220 return count;
1221}
1222
1223/* Probe the number and type of interrupts we are able to obtain, and
1224 * the resulting numbers of channels and RX queues.
1225 */
64d8ad6d 1226static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1227{
a16e5b24
BH
1228 unsigned int max_channels =
1229 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
7f967c01
BH
1230 unsigned int extra_channels = 0;
1231 unsigned int i, j;
a16e5b24 1232 int rc;
8ceee660 1233
7f967c01
BH
1234 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1235 if (efx->extra_channel_type[i])
1236 ++extra_channels;
1237
8ceee660 1238 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1239 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1240 unsigned int n_channels;
aa6ef27e 1241
a9a52506 1242 n_channels = efx_wanted_parallelism(efx);
a4900ac9
BH
1243 if (separate_tx_channels)
1244 n_channels *= 2;
7f967c01 1245 n_channels += extra_channels;
a4900ac9 1246 n_channels = min(n_channels, max_channels);
8ceee660 1247
a4900ac9 1248 for (i = 0; i < n_channels; i++)
8ceee660 1249 xentries[i].entry = i;
a4900ac9 1250 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1251 if (rc > 0) {
62776d03
BH
1252 netif_err(efx, drv, efx->net_dev,
1253 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1254 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1255 netif_err(efx, drv, efx->net_dev,
1256 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1257 EFX_BUG_ON_PARANOID(rc >= n_channels);
1258 n_channels = rc;
8ceee660 1259 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1260 n_channels);
8ceee660
BH
1261 }
1262
1263 if (rc == 0) {
a4900ac9 1264 efx->n_channels = n_channels;
7f967c01
BH
1265 if (n_channels > extra_channels)
1266 n_channels -= extra_channels;
a4900ac9 1267 if (separate_tx_channels) {
7f967c01
BH
1268 efx->n_tx_channels = max(n_channels / 2, 1U);
1269 efx->n_rx_channels = max(n_channels -
1270 efx->n_tx_channels,
1271 1U);
a4900ac9 1272 } else {
7f967c01
BH
1273 efx->n_tx_channels = n_channels;
1274 efx->n_rx_channels = n_channels;
a4900ac9 1275 }
7f967c01 1276 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1277 efx_get_channel(efx, i)->irq =
1278 xentries[i].vector;
8ceee660
BH
1279 } else {
1280 /* Fall back to single channel MSI */
1281 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1282 netif_err(efx, drv, efx->net_dev,
1283 "could not enable MSI-X\n");
8ceee660
BH
1284 }
1285 }
1286
1287 /* Try single interrupt MSI */
1288 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1289 efx->n_channels = 1;
a4900ac9
BH
1290 efx->n_rx_channels = 1;
1291 efx->n_tx_channels = 1;
8ceee660
BH
1292 rc = pci_enable_msi(efx->pci_dev);
1293 if (rc == 0) {
f7d12cdc 1294 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1295 } else {
62776d03
BH
1296 netif_err(efx, drv, efx->net_dev,
1297 "could not enable MSI\n");
8ceee660
BH
1298 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1299 }
1300 }
1301
1302 /* Assume legacy interrupts */
1303 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1304 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1305 efx->n_rx_channels = 1;
1306 efx->n_tx_channels = 1;
8ceee660
BH
1307 efx->legacy_irq = efx->pci_dev->irq;
1308 }
64d8ad6d 1309
7f967c01
BH
1310 /* Assign extra channels if possible */
1311 j = efx->n_channels;
1312 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1313 if (!efx->extra_channel_type[i])
1314 continue;
1315 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1316 efx->n_channels <= extra_channels) {
1317 efx->extra_channel_type[i]->handle_no_channel(efx);
1318 } else {
1319 --j;
1320 efx_get_channel(efx, j)->type =
1321 efx->extra_channel_type[i];
1322 }
1323 }
1324
cd2d5b52 1325 /* RSS might be usable on VFs even if it is disabled on the PF */
3132d282 1326 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
cd2d5b52
BH
1327 efx->n_rx_channels : efx_vf_size(efx));
1328
64d8ad6d 1329 return 0;
8ceee660
BH
1330}
1331
d8291187 1332static void efx_soft_enable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1333{
1334 struct efx_channel *channel;
1335
8b7325b4
BH
1336 BUG_ON(efx->state == STATE_DISABLED);
1337
d8291187
BH
1338 efx->irq_soft_enabled = true;
1339 smp_wmb();
9f2cb71c
BH
1340
1341 efx_for_each_channel(channel, efx) {
d8291187 1342 if (!channel->type->keep_eventq)
7f967c01 1343 efx_init_eventq(channel);
9f2cb71c
BH
1344 efx_start_eventq(channel);
1345 }
1346
1347 efx_mcdi_mode_event(efx);
1348}
1349
d8291187 1350static void efx_soft_disable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1351{
1352 struct efx_channel *channel;
1353
8b7325b4
BH
1354 if (efx->state == STATE_DISABLED)
1355 return;
1356
9f2cb71c
BH
1357 efx_mcdi_mode_poll(efx);
1358
d8291187
BH
1359 efx->irq_soft_enabled = false;
1360 smp_wmb();
1361
1362 if (efx->legacy_irq)
9f2cb71c 1363 synchronize_irq(efx->legacy_irq);
9f2cb71c
BH
1364
1365 efx_for_each_channel(channel, efx) {
1366 if (channel->irq)
1367 synchronize_irq(channel->irq);
1368
1369 efx_stop_eventq(channel);
d8291187 1370 if (!channel->type->keep_eventq)
7f967c01 1371 efx_fini_eventq(channel);
9f2cb71c
BH
1372 }
1373}
1374
d8291187
BH
1375static void efx_enable_interrupts(struct efx_nic *efx)
1376{
1377 struct efx_channel *channel;
1378
1379 BUG_ON(efx->state == STATE_DISABLED);
1380
1381 if (efx->eeh_disabled_legacy_irq) {
1382 enable_irq(efx->legacy_irq);
1383 efx->eeh_disabled_legacy_irq = false;
1384 }
1385
1386 efx_nic_enable_interrupts(efx);
1387
1388 efx_for_each_channel(channel, efx) {
1389 if (channel->type->keep_eventq)
1390 efx_init_eventq(channel);
1391 }
1392
1393 efx_soft_enable_interrupts(efx);
1394}
1395
1396static void efx_disable_interrupts(struct efx_nic *efx)
1397{
1398 struct efx_channel *channel;
1399
1400 efx_soft_disable_interrupts(efx);
1401
1402 efx_for_each_channel(channel, efx) {
1403 if (channel->type->keep_eventq)
1404 efx_fini_eventq(channel);
1405 }
1406
1407 efx_nic_disable_interrupts(efx);
1408}
1409
8ceee660
BH
1410static void efx_remove_interrupts(struct efx_nic *efx)
1411{
1412 struct efx_channel *channel;
1413
1414 /* Remove MSI/MSI-X interrupts */
64ee3120 1415 efx_for_each_channel(channel, efx)
8ceee660
BH
1416 channel->irq = 0;
1417 pci_disable_msi(efx->pci_dev);
1418 pci_disable_msix(efx->pci_dev);
1419
1420 /* Remove legacy interrupt */
1421 efx->legacy_irq = 0;
1422}
1423
8831da7b 1424static void efx_set_channels(struct efx_nic *efx)
8ceee660 1425{
602a5322
BH
1426 struct efx_channel *channel;
1427 struct efx_tx_queue *tx_queue;
1428
97653431 1429 efx->tx_channel_offset =
a4900ac9 1430 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322 1431
79d68b37
SH
1432 /* We need to mark which channels really have RX and TX
1433 * queues, and adjust the TX queue numbers if we have separate
602a5322
BH
1434 * RX-only and TX-only channels.
1435 */
1436 efx_for_each_channel(channel, efx) {
79d68b37
SH
1437 if (channel->channel < efx->n_rx_channels)
1438 channel->rx_queue.core_index = channel->channel;
1439 else
1440 channel->rx_queue.core_index = -1;
1441
602a5322
BH
1442 efx_for_each_channel_tx_queue(tx_queue, channel)
1443 tx_queue->queue -= (efx->tx_channel_offset *
1444 EFX_TXQ_TYPES);
1445 }
8ceee660
BH
1446}
1447
1448static int efx_probe_nic(struct efx_nic *efx)
1449{
765c9f46 1450 size_t i;
8ceee660
BH
1451 int rc;
1452
62776d03 1453 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1454
1455 /* Carry out hardware-type specific initialisation */
ef2b90ee 1456 rc = efx->type->probe(efx);
8ceee660
BH
1457 if (rc)
1458 return rc;
1459
a4900ac9 1460 /* Determine the number of channels and queues by trying to hook
8ceee660 1461 * in MSI-X interrupts. */
64d8ad6d
BH
1462 rc = efx_probe_interrupts(efx);
1463 if (rc)
1464 goto fail;
8ceee660 1465
28e47c49
BH
1466 efx->type->dimension_resources(efx);
1467
5d3a6fca
BH
1468 if (efx->n_channels > 1)
1469 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1470 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429 1471 efx->rx_indir_table[i] =
cd2d5b52 1472 ethtool_rxfh_indir_default(i, efx->rss_spread);
5d3a6fca 1473
8831da7b 1474 efx_set_channels(efx);
c4f4adc7
BH
1475 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1476 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1477
1478 /* Initialise the interrupt moderation settings */
9e393b30
BH
1479 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1480 true);
8ceee660
BH
1481
1482 return 0;
64d8ad6d
BH
1483
1484fail:
1485 efx->type->remove(efx);
1486 return rc;
8ceee660
BH
1487}
1488
1489static void efx_remove_nic(struct efx_nic *efx)
1490{
62776d03 1491 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1492
1493 efx_remove_interrupts(efx);
ef2b90ee 1494 efx->type->remove(efx);
8ceee660
BH
1495}
1496
1497/**************************************************************************
1498 *
1499 * NIC startup/shutdown
1500 *
1501 *************************************************************************/
1502
1503static int efx_probe_all(struct efx_nic *efx)
1504{
8ceee660
BH
1505 int rc;
1506
8ceee660
BH
1507 rc = efx_probe_nic(efx);
1508 if (rc) {
62776d03 1509 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1510 goto fail1;
1511 }
1512
8ceee660
BH
1513 rc = efx_probe_port(efx);
1514 if (rc) {
62776d03 1515 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1516 goto fail2;
1517 }
1518
7e6d06f0
BH
1519 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1520 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1521 rc = -EINVAL;
1522 goto fail3;
1523 }
ecc910f5 1524 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1525
64eebcfd
BH
1526 rc = efx_probe_filters(efx);
1527 if (rc) {
1528 netif_err(efx, probe, efx->net_dev,
1529 "failed to create filter tables\n");
7f967c01 1530 goto fail3;
64eebcfd
BH
1531 }
1532
7f967c01
BH
1533 rc = efx_probe_channels(efx);
1534 if (rc)
1535 goto fail4;
1536
8ceee660
BH
1537 return 0;
1538
64eebcfd 1539 fail4:
7f967c01 1540 efx_remove_filters(efx);
8ceee660 1541 fail3:
8ceee660
BH
1542 efx_remove_port(efx);
1543 fail2:
1544 efx_remove_nic(efx);
1545 fail1:
1546 return rc;
1547}
1548
8b7325b4
BH
1549/* If the interface is supposed to be running but is not, start
1550 * the hardware and software data path, regular activity for the port
1551 * (MAC statistics, link polling, etc.) and schedule the port to be
1552 * reconfigured. Interrupts must already be enabled. This function
1553 * is safe to call multiple times, so long as the NIC is not disabled.
1554 * Requires the RTNL lock.
9f2cb71c 1555 */
8ceee660
BH
1556static void efx_start_all(struct efx_nic *efx)
1557{
8ceee660 1558 EFX_ASSERT_RESET_SERIALISED(efx);
8b7325b4 1559 BUG_ON(efx->state == STATE_DISABLED);
8ceee660
BH
1560
1561 /* Check that it is appropriate to restart the interface. All
1562 * of these flags are safe to read under just the rtnl lock */
8b7325b4 1563 if (efx->port_enabled || !netif_running(efx->net_dev))
8ceee660
BH
1564 return;
1565
8ceee660 1566 efx_start_port(efx);
9f2cb71c 1567 efx_start_datapath(efx);
8880f4ec 1568
626950db
AR
1569 /* Start the hardware monitor if there is one */
1570 if (efx->type->monitor != NULL)
8ceee660
BH
1571 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1572 efx_monitor_interval);
626950db
AR
1573
1574 /* If link state detection is normally event-driven, we have
1575 * to poll now because we could have missed a change
1576 */
1577 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
78c1f0a0
SH
1578 mutex_lock(&efx->mac_lock);
1579 if (efx->phy_op->poll(efx))
1580 efx_link_status_changed(efx);
1581 mutex_unlock(&efx->mac_lock);
1582 }
55edc6e6 1583
ef2b90ee 1584 efx->type->start_stats(efx);
8ceee660
BH
1585}
1586
1587/* Flush all delayed work. Should only be called when no more delayed work
1588 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1589 * since we're holding the rtnl_lock at this point. */
1590static void efx_flush_all(struct efx_nic *efx)
1591{
dd40781e 1592 /* Make sure the hardware monitor and event self-test are stopped */
8ceee660 1593 cancel_delayed_work_sync(&efx->monitor_work);
dd40781e 1594 efx_selftest_async_cancel(efx);
8ceee660 1595 /* Stop scheduled port reconfigurations */
766ca0fa 1596 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1597}
1598
8b7325b4
BH
1599/* Quiesce the hardware and software data path, and regular activity
1600 * for the port without bringing the link down. Safe to call multiple
1601 * times with the NIC in almost any state, but interrupts should be
1602 * enabled. Requires the RTNL lock.
1603 */
8ceee660
BH
1604static void efx_stop_all(struct efx_nic *efx)
1605{
8ceee660
BH
1606 EFX_ASSERT_RESET_SERIALISED(efx);
1607
1608 /* port_enabled can be read safely under the rtnl lock */
1609 if (!efx->port_enabled)
1610 return;
1611
ef2b90ee 1612 efx->type->stop_stats(efx);
8ceee660
BH
1613 efx_stop_port(efx);
1614
fdaa9aed 1615 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1616 efx_flush_all(efx);
1617
29c69a48
BH
1618 /* Stop the kernel transmit interface. This is only valid if
1619 * the device is stopped or detached; otherwise the watchdog
1620 * may fire immediately.
1621 */
1622 WARN_ON(netif_running(efx->net_dev) &&
1623 netif_device_present(efx->net_dev));
9f2cb71c
BH
1624 netif_tx_disable(efx->net_dev);
1625
1626 efx_stop_datapath(efx);
8ceee660
BH
1627}
1628
1629static void efx_remove_all(struct efx_nic *efx)
1630{
4642610c 1631 efx_remove_channels(efx);
7f967c01 1632 efx_remove_filters(efx);
8ceee660
BH
1633 efx_remove_port(efx);
1634 efx_remove_nic(efx);
1635}
1636
8ceee660
BH
1637/**************************************************************************
1638 *
1639 * Interrupt moderation
1640 *
1641 **************************************************************************/
1642
cc180b69 1643static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1644{
b548f976
BH
1645 if (usecs == 0)
1646 return 0;
cc180b69 1647 if (usecs * 1000 < quantum_ns)
0d86ebd8 1648 return 1; /* never round down to 0 */
cc180b69 1649 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1650}
1651
8ceee660 1652/* Set interrupt moderation parameters */
9e393b30
BH
1653int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1654 unsigned int rx_usecs, bool rx_adaptive,
1655 bool rx_may_override_tx)
8ceee660 1656{
f7d12cdc 1657 struct efx_channel *channel;
cc180b69
BH
1658 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1659 efx->timer_quantum_ns,
1660 1000);
1661 unsigned int tx_ticks;
1662 unsigned int rx_ticks;
8ceee660
BH
1663
1664 EFX_ASSERT_RESET_SERIALISED(efx);
1665
cc180b69 1666 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1667 return -EINVAL;
1668
cc180b69
BH
1669 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1670 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1671
9e393b30
BH
1672 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1673 !rx_may_override_tx) {
1674 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1675 "RX and TX IRQ moderation must be equal\n");
1676 return -EINVAL;
1677 }
1678
6fb70fd1 1679 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1680 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1681 efx_for_each_channel(channel, efx) {
525da907 1682 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1683 channel->irq_moderation = rx_ticks;
525da907 1684 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1685 channel->irq_moderation = tx_ticks;
1686 }
9e393b30
BH
1687
1688 return 0;
8ceee660
BH
1689}
1690
a0c4faf5
BH
1691void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1692 unsigned int *rx_usecs, bool *rx_adaptive)
1693{
cc180b69
BH
1694 /* We must round up when converting ticks to microseconds
1695 * because we round down when converting the other way.
1696 */
1697
a0c4faf5 1698 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1699 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1700 efx->timer_quantum_ns,
1701 1000);
a0c4faf5
BH
1702
1703 /* If channels are shared between RX and TX, so is IRQ
1704 * moderation. Otherwise, IRQ moderation is the same for all
1705 * TX channels and is not adaptive.
1706 */
1707 if (efx->tx_channel_offset == 0)
1708 *tx_usecs = *rx_usecs;
1709 else
cc180b69 1710 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1711 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1712 efx->timer_quantum_ns,
1713 1000);
a0c4faf5
BH
1714}
1715
8ceee660
BH
1716/**************************************************************************
1717 *
1718 * Hardware monitor
1719 *
1720 **************************************************************************/
1721
e254c274 1722/* Run periodically off the general workqueue */
8ceee660
BH
1723static void efx_monitor(struct work_struct *data)
1724{
1725 struct efx_nic *efx = container_of(data, struct efx_nic,
1726 monitor_work.work);
8ceee660 1727
62776d03
BH
1728 netif_vdbg(efx, timer, efx->net_dev,
1729 "hardware monitor executing on CPU %d\n",
1730 raw_smp_processor_id());
ef2b90ee 1731 BUG_ON(efx->type->monitor == NULL);
8ceee660 1732
8ceee660
BH
1733 /* If the mac_lock is already held then it is likely a port
1734 * reconfiguration is already in place, which will likely do
e254c274
BH
1735 * most of the work of monitor() anyway. */
1736 if (mutex_trylock(&efx->mac_lock)) {
1737 if (efx->port_enabled)
1738 efx->type->monitor(efx);
1739 mutex_unlock(&efx->mac_lock);
1740 }
8ceee660 1741
8ceee660
BH
1742 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1743 efx_monitor_interval);
1744}
1745
1746/**************************************************************************
1747 *
1748 * ioctls
1749 *
1750 *************************************************************************/
1751
1752/* Net device ioctl
1753 * Context: process, rtnl_lock() held.
1754 */
1755static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1756{
767e468c 1757 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1758 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660 1759
7c236c43
SH
1760 if (cmd == SIOCSHWTSTAMP)
1761 return efx_ptp_ioctl(efx, ifr, cmd);
1762
68e7f45e
BH
1763 /* Convert phy_id from older PRTAD/DEVAD format */
1764 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1765 (data->phy_id & 0xfc00) == 0x0400)
1766 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1767
1768 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1769}
1770
1771/**************************************************************************
1772 *
1773 * NAPI interface
1774 *
1775 **************************************************************************/
1776
7f967c01
BH
1777static void efx_init_napi_channel(struct efx_channel *channel)
1778{
1779 struct efx_nic *efx = channel->efx;
1780
1781 channel->napi_dev = efx->net_dev;
1782 netif_napi_add(channel->napi_dev, &channel->napi_str,
1783 efx_poll, napi_weight);
1784}
1785
e8f14992 1786static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1787{
1788 struct efx_channel *channel;
8ceee660 1789
7f967c01
BH
1790 efx_for_each_channel(channel, efx)
1791 efx_init_napi_channel(channel);
e8f14992
BH
1792}
1793
1794static void efx_fini_napi_channel(struct efx_channel *channel)
1795{
1796 if (channel->napi_dev)
1797 netif_napi_del(&channel->napi_str);
1798 channel->napi_dev = NULL;
8ceee660
BH
1799}
1800
1801static void efx_fini_napi(struct efx_nic *efx)
1802{
1803 struct efx_channel *channel;
1804
e8f14992
BH
1805 efx_for_each_channel(channel, efx)
1806 efx_fini_napi_channel(channel);
8ceee660
BH
1807}
1808
1809/**************************************************************************
1810 *
1811 * Kernel netpoll interface
1812 *
1813 *************************************************************************/
1814
1815#ifdef CONFIG_NET_POLL_CONTROLLER
1816
1817/* Although in the common case interrupts will be disabled, this is not
1818 * guaranteed. However, all our work happens inside the NAPI callback,
1819 * so no locking is required.
1820 */
1821static void efx_netpoll(struct net_device *net_dev)
1822{
767e468c 1823 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1824 struct efx_channel *channel;
1825
64ee3120 1826 efx_for_each_channel(channel, efx)
8ceee660
BH
1827 efx_schedule_channel(channel);
1828}
1829
1830#endif
1831
1832/**************************************************************************
1833 *
1834 * Kernel net device interface
1835 *
1836 *************************************************************************/
1837
1838/* Context: process, rtnl_lock() held. */
1839static int efx_net_open(struct net_device *net_dev)
1840{
767e468c 1841 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4
BH
1842 int rc;
1843
62776d03
BH
1844 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1845 raw_smp_processor_id());
8ceee660 1846
8b7325b4
BH
1847 rc = efx_check_disabled(efx);
1848 if (rc)
1849 return rc;
f8b87c17
BH
1850 if (efx->phy_mode & PHY_MODE_SPECIAL)
1851 return -EBUSY;
8880f4ec
BH
1852 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1853 return -EIO;
f8b87c17 1854
78c1f0a0
SH
1855 /* Notify the kernel of the link state polled during driver load,
1856 * before the monitor starts running */
1857 efx_link_status_changed(efx);
1858
8ceee660 1859 efx_start_all(efx);
dd40781e 1860 efx_selftest_async_start(efx);
8ceee660
BH
1861 return 0;
1862}
1863
1864/* Context: process, rtnl_lock() held.
1865 * Note that the kernel will ignore our return code; this method
1866 * should really be a void.
1867 */
1868static int efx_net_stop(struct net_device *net_dev)
1869{
767e468c 1870 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1871
62776d03
BH
1872 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1873 raw_smp_processor_id());
8ceee660 1874
8b7325b4
BH
1875 /* Stop the device and flush all the channels */
1876 efx_stop_all(efx);
8ceee660
BH
1877
1878 return 0;
1879}
1880
5b9e207c 1881/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
1882static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1883 struct rtnl_link_stats64 *stats)
8ceee660 1884{
767e468c 1885 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1886 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1887
55edc6e6 1888 spin_lock_bh(&efx->stats_lock);
1cb34522 1889
ef2b90ee 1890 efx->type->update_stats(efx);
8ceee660
BH
1891
1892 stats->rx_packets = mac_stats->rx_packets;
1893 stats->tx_packets = mac_stats->tx_packets;
1894 stats->rx_bytes = mac_stats->rx_bytes;
1895 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1896 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1897 stats->multicast = mac_stats->rx_multicast;
1898 stats->collisions = mac_stats->tx_collision;
1899 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1900 mac_stats->rx_length_error);
8ceee660
BH
1901 stats->rx_crc_errors = mac_stats->rx_bad;
1902 stats->rx_frame_errors = mac_stats->rx_align_error;
1903 stats->rx_fifo_errors = mac_stats->rx_overflow;
1904 stats->rx_missed_errors = mac_stats->rx_missed;
1905 stats->tx_window_errors = mac_stats->tx_late_collision;
1906
1907 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1908 stats->rx_crc_errors +
1909 stats->rx_frame_errors +
8ceee660
BH
1910 mac_stats->rx_symbol_error);
1911 stats->tx_errors = (stats->tx_window_errors +
1912 mac_stats->tx_bad);
1913
1cb34522
BH
1914 spin_unlock_bh(&efx->stats_lock);
1915
8ceee660
BH
1916 return stats;
1917}
1918
1919/* Context: netif_tx_lock held, BHs disabled. */
1920static void efx_watchdog(struct net_device *net_dev)
1921{
767e468c 1922 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1923
62776d03
BH
1924 netif_err(efx, tx_err, efx->net_dev,
1925 "TX stuck with port_enabled=%d: resetting channels\n",
1926 efx->port_enabled);
8ceee660 1927
739bb23d 1928 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1929}
1930
1931
1932/* Context: process, rtnl_lock() held. */
1933static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1934{
767e468c 1935 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4 1936 int rc;
8ceee660 1937
8b7325b4
BH
1938 rc = efx_check_disabled(efx);
1939 if (rc)
1940 return rc;
8ceee660
BH
1941 if (new_mtu > EFX_MAX_MTU)
1942 return -EINVAL;
1943
62776d03 1944 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 1945
29c69a48
BH
1946 efx_device_detach_sync(efx);
1947 efx_stop_all(efx);
1948
d3245b28 1949 mutex_lock(&efx->mac_lock);
8ceee660 1950 net_dev->mtu = new_mtu;
710b208d 1951 efx->type->reconfigure_mac(efx);
d3245b28
BH
1952 mutex_unlock(&efx->mac_lock);
1953
8ceee660 1954 efx_start_all(efx);
29c69a48 1955 netif_device_attach(efx->net_dev);
6c8eef4a 1956 return 0;
8ceee660
BH
1957}
1958
1959static int efx_set_mac_address(struct net_device *net_dev, void *data)
1960{
767e468c 1961 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1962 struct sockaddr *addr = data;
1963 char *new_addr = addr->sa_data;
1964
8ceee660 1965 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1966 netif_err(efx, drv, efx->net_dev,
1967 "invalid ethernet MAC address requested: %pM\n",
1968 new_addr);
504f9b5a 1969 return -EADDRNOTAVAIL;
8ceee660
BH
1970 }
1971
1972 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
cd2d5b52 1973 efx_sriov_mac_address_changed(efx);
8ceee660
BH
1974
1975 /* Reconfigure the MAC */
d3245b28 1976 mutex_lock(&efx->mac_lock);
710b208d 1977 efx->type->reconfigure_mac(efx);
d3245b28 1978 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1979
1980 return 0;
1981}
1982
a816f75a 1983/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 1984static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 1985{
767e468c 1986 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1987 struct netdev_hw_addr *ha;
8ceee660 1988 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1989 u32 crc;
1990 int bit;
8ceee660 1991
8be4f3e6 1992 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1993
1994 /* Build multicast hash table */
8be4f3e6 1995 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1996 memset(mc_hash, 0xff, sizeof(*mc_hash));
1997 } else {
1998 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1999 netdev_for_each_mc_addr(ha, net_dev) {
2000 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660 2001 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
32766ec8 2002 __set_bit_le(bit, mc_hash);
8ceee660 2003 }
8ceee660 2004
8be4f3e6
BH
2005 /* Broadcast packets go through the multicast hash filter.
2006 * ether_crc_le() of the broadcast address is 0xbe2612ff
2007 * so we always add bit 0xff to the mask.
2008 */
32766ec8 2009 __set_bit_le(0xff, mc_hash);
8be4f3e6 2010 }
a816f75a 2011
8be4f3e6
BH
2012 if (efx->port_enabled)
2013 queue_work(efx->workqueue, &efx->mac_work);
2014 /* Otherwise efx_start_port() will do this */
8ceee660
BH
2015}
2016
c8f44aff 2017static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
2018{
2019 struct efx_nic *efx = netdev_priv(net_dev);
2020
2021 /* If disabling RX n-tuple filtering, clear existing filters */
2022 if (net_dev->features & ~data & NETIF_F_NTUPLE)
2023 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2024
2025 return 0;
2026}
2027
c3ecb9f3
SH
2028static const struct net_device_ops efx_netdev_ops = {
2029 .ndo_open = efx_net_open,
2030 .ndo_stop = efx_net_stop,
4472702e 2031 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2032 .ndo_tx_timeout = efx_watchdog,
2033 .ndo_start_xmit = efx_hard_start_xmit,
2034 .ndo_validate_addr = eth_validate_addr,
2035 .ndo_do_ioctl = efx_ioctl,
2036 .ndo_change_mtu = efx_change_mtu,
2037 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2038 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2039 .ndo_set_features = efx_set_features,
cd2d5b52
BH
2040#ifdef CONFIG_SFC_SRIOV
2041 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2042 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2043 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2044 .ndo_get_vf_config = efx_sriov_get_vf_config,
2045#endif
c3ecb9f3
SH
2046#ifdef CONFIG_NET_POLL_CONTROLLER
2047 .ndo_poll_controller = efx_netpoll,
2048#endif
94b274bf 2049 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
2050#ifdef CONFIG_RFS_ACCEL
2051 .ndo_rx_flow_steer = efx_filter_rfs,
2052#endif
c3ecb9f3
SH
2053};
2054
7dde596e
BH
2055static void efx_update_name(struct efx_nic *efx)
2056{
2057 strcpy(efx->name, efx->net_dev->name);
2058 efx_mtd_rename(efx);
2059 efx_set_channel_names(efx);
2060}
2061
8ceee660
BH
2062static int efx_netdev_event(struct notifier_block *this,
2063 unsigned long event, void *ptr)
2064{
351638e7 2065 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
8ceee660 2066
7dde596e
BH
2067 if (net_dev->netdev_ops == &efx_netdev_ops &&
2068 event == NETDEV_CHANGENAME)
2069 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2070
2071 return NOTIFY_DONE;
2072}
2073
2074static struct notifier_block efx_netdev_notifier = {
2075 .notifier_call = efx_netdev_event,
2076};
2077
06d5e193
BH
2078static ssize_t
2079show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2080{
2081 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2082 return sprintf(buf, "%d\n", efx->phy_type);
2083}
776fbcc9 2084static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
06d5e193 2085
8ceee660
BH
2086static int efx_register_netdev(struct efx_nic *efx)
2087{
2088 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2089 struct efx_channel *channel;
8ceee660
BH
2090 int rc;
2091
2092 net_dev->watchdog_timeo = 5 * HZ;
2093 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 2094 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660 2095 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
7e6d06f0 2096 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
8ceee660 2097
7dde596e 2098 rtnl_lock();
aed0628d 2099
7153f623
BH
2100 /* Enable resets to be scheduled and check whether any were
2101 * already requested. If so, the NIC is probably hosed so we
2102 * abort.
2103 */
2104 efx->state = STATE_READY;
2105 smp_mb(); /* ensure we change state before checking reset_pending */
2106 if (efx->reset_pending) {
2107 netif_err(efx, probe, efx->net_dev,
2108 "aborting probe due to scheduled reset\n");
2109 rc = -EIO;
2110 goto fail_locked;
2111 }
2112
aed0628d
BH
2113 rc = dev_alloc_name(net_dev, net_dev->name);
2114 if (rc < 0)
2115 goto fail_locked;
7dde596e 2116 efx_update_name(efx);
aed0628d 2117
8f8b3d51
BH
2118 /* Always start with carrier off; PHY events will detect the link */
2119 netif_carrier_off(net_dev);
2120
aed0628d
BH
2121 rc = register_netdevice(net_dev);
2122 if (rc)
2123 goto fail_locked;
2124
c04bfc6b
BH
2125 efx_for_each_channel(channel, efx) {
2126 struct efx_tx_queue *tx_queue;
60031fcc
BH
2127 efx_for_each_channel_tx_queue(tx_queue, channel)
2128 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2129 }
2130
7dde596e 2131 rtnl_unlock();
8ceee660 2132
06d5e193
BH
2133 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2134 if (rc) {
62776d03
BH
2135 netif_err(efx, drv, efx->net_dev,
2136 "failed to init net dev attributes\n");
06d5e193
BH
2137 goto fail_registered;
2138 }
2139
8ceee660 2140 return 0;
06d5e193 2141
7153f623
BH
2142fail_registered:
2143 rtnl_lock();
2144 unregister_netdevice(net_dev);
aed0628d 2145fail_locked:
7153f623 2146 efx->state = STATE_UNINIT;
aed0628d 2147 rtnl_unlock();
62776d03 2148 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d 2149 return rc;
8ceee660
BH
2150}
2151
2152static void efx_unregister_netdev(struct efx_nic *efx)
2153{
f7d12cdc 2154 struct efx_channel *channel;
8ceee660
BH
2155 struct efx_tx_queue *tx_queue;
2156
2157 if (!efx->net_dev)
2158 return;
2159
767e468c 2160 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2161
2162 /* Free up any skbs still remaining. This has to happen before
2163 * we try to unregister the netdev as running their destructors
2164 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2165 efx_for_each_channel(channel, efx) {
2166 efx_for_each_channel_tx_queue(tx_queue, channel)
2167 efx_release_tx_buffers(tx_queue);
2168 }
8ceee660 2169
73ba7b68
BH
2170 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2171 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
7153f623
BH
2172
2173 rtnl_lock();
2174 unregister_netdevice(efx->net_dev);
2175 efx->state = STATE_UNINIT;
2176 rtnl_unlock();
8ceee660
BH
2177}
2178
2179/**************************************************************************
2180 *
2181 * Device reset and suspend
2182 *
2183 **************************************************************************/
2184
2467ca46
BH
2185/* Tears down the entire software state and most of the hardware state
2186 * before reset. */
d3245b28 2187void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2188{
8ceee660
BH
2189 EFX_ASSERT_RESET_SERIALISED(efx);
2190
2467ca46 2191 efx_stop_all(efx);
d8291187 2192 efx_disable_interrupts(efx);
5642ceef
BH
2193
2194 mutex_lock(&efx->mac_lock);
4b988280
SH
2195 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2196 efx->phy_op->fini(efx);
ef2b90ee 2197 efx->type->fini(efx);
8ceee660
BH
2198}
2199
2467ca46
BH
2200/* This function will always ensure that the locks acquired in
2201 * efx_reset_down() are released. A failure return code indicates
2202 * that we were unable to reinitialise the hardware, and the
2203 * driver should be disabled. If ok is false, then the rx and tx
2204 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2205int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2206{
2207 int rc;
2208
2467ca46 2209 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2210
ef2b90ee 2211 rc = efx->type->init(efx);
8ceee660 2212 if (rc) {
62776d03 2213 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2214 goto fail;
8ceee660
BH
2215 }
2216
eb9f6744
BH
2217 if (!ok)
2218 goto fail;
2219
4b988280 2220 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2221 rc = efx->phy_op->init(efx);
2222 if (rc)
2223 goto fail;
2224 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2225 netif_err(efx, drv, efx->net_dev,
2226 "could not restore PHY settings\n");
4b988280
SH
2227 }
2228
710b208d 2229 efx->type->reconfigure_mac(efx);
8ceee660 2230
d8291187 2231 efx_enable_interrupts(efx);
64eebcfd 2232 efx_restore_filters(efx);
cd2d5b52 2233 efx_sriov_reset(efx);
eb9f6744 2234
eb9f6744
BH
2235 mutex_unlock(&efx->mac_lock);
2236
2237 efx_start_all(efx);
2238
2239 return 0;
2240
2241fail:
2242 efx->port_initialized = false;
2467ca46
BH
2243
2244 mutex_unlock(&efx->mac_lock);
2245
8ceee660
BH
2246 return rc;
2247}
2248
eb9f6744
BH
2249/* Reset the NIC using the specified method. Note that the reset may
2250 * fail, in which case the card will be left in an unusable state.
8ceee660 2251 *
eb9f6744 2252 * Caller must hold the rtnl_lock.
8ceee660 2253 */
eb9f6744 2254int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2255{
eb9f6744
BH
2256 int rc, rc2;
2257 bool disabled;
8ceee660 2258
62776d03
BH
2259 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2260 RESET_TYPE(method));
8ceee660 2261
c2f3b8e3 2262 efx_device_detach_sync(efx);
d3245b28 2263 efx_reset_down(efx, method);
8ceee660 2264
ef2b90ee 2265 rc = efx->type->reset(efx, method);
8ceee660 2266 if (rc) {
62776d03 2267 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2268 goto out;
8ceee660
BH
2269 }
2270
a7d529ae
BH
2271 /* Clear flags for the scopes we covered. We assume the NIC and
2272 * driver are now quiescent so that there is no race here.
2273 */
2274 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2275
2276 /* Reinitialise bus-mastering, which may have been turned off before
2277 * the reset was scheduled. This is still appropriate, even in the
2278 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2279 * can respond to requests. */
2280 pci_set_master(efx->pci_dev);
2281
eb9f6744 2282out:
8ceee660 2283 /* Leave device stopped if necessary */
626950db
AR
2284 disabled = rc ||
2285 method == RESET_TYPE_DISABLE ||
2286 method == RESET_TYPE_RECOVER_OR_DISABLE;
eb9f6744
BH
2287 rc2 = efx_reset_up(efx, method, !disabled);
2288 if (rc2) {
2289 disabled = true;
2290 if (!rc)
2291 rc = rc2;
8ceee660
BH
2292 }
2293
eb9f6744 2294 if (disabled) {
f49a4589 2295 dev_close(efx->net_dev);
62776d03 2296 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2297 efx->state = STATE_DISABLED;
f4bd954e 2298 } else {
62776d03 2299 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2300 netif_device_attach(efx->net_dev);
f4bd954e 2301 }
8ceee660
BH
2302 return rc;
2303}
2304
626950db
AR
2305/* Try recovery mechanisms.
2306 * For now only EEH is supported.
2307 * Returns 0 if the recovery mechanisms are unsuccessful.
2308 * Returns a non-zero value otherwise.
2309 */
b28405b0 2310int efx_try_recovery(struct efx_nic *efx)
626950db
AR
2311{
2312#ifdef CONFIG_EEH
2313 /* A PCI error can occur and not be seen by EEH because nothing
2314 * happens on the PCI bus. In this case the driver may fail and
2315 * schedule a 'recover or reset', leading to this recovery handler.
2316 * Manually call the eeh failure check function.
2317 */
2318 struct eeh_dev *eehdev =
2319 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2320
2321 if (eeh_dev_check_failure(eehdev)) {
2322 /* The EEH mechanisms will handle the error and reset the
2323 * device if necessary.
2324 */
2325 return 1;
2326 }
2327#endif
2328 return 0;
2329}
2330
8ceee660
BH
2331/* The worker thread exists so that code that cannot sleep can
2332 * schedule a reset for later.
2333 */
2334static void efx_reset_work(struct work_struct *data)
2335{
eb9f6744 2336 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
626950db
AR
2337 unsigned long pending;
2338 enum reset_type method;
2339
2340 pending = ACCESS_ONCE(efx->reset_pending);
2341 method = fls(pending) - 1;
2342
2343 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2344 method == RESET_TYPE_RECOVER_OR_ALL) &&
2345 efx_try_recovery(efx))
2346 return;
8ceee660 2347
a7d529ae 2348 if (!pending)
319ba649
SH
2349 return;
2350
eb9f6744 2351 rtnl_lock();
7153f623
BH
2352
2353 /* We checked the state in efx_schedule_reset() but it may
2354 * have changed by now. Now that we have the RTNL lock,
2355 * it cannot change again.
2356 */
2357 if (efx->state == STATE_READY)
626950db 2358 (void)efx_reset(efx, method);
7153f623 2359
eb9f6744 2360 rtnl_unlock();
8ceee660
BH
2361}
2362
2363void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2364{
2365 enum reset_type method;
2366
626950db
AR
2367 if (efx->state == STATE_RECOVERY) {
2368 netif_dbg(efx, drv, efx->net_dev,
2369 "recovering: skip scheduling %s reset\n",
2370 RESET_TYPE(type));
2371 return;
2372 }
2373
8ceee660
BH
2374 switch (type) {
2375 case RESET_TYPE_INVISIBLE:
2376 case RESET_TYPE_ALL:
626950db 2377 case RESET_TYPE_RECOVER_OR_ALL:
8ceee660
BH
2378 case RESET_TYPE_WORLD:
2379 case RESET_TYPE_DISABLE:
626950db 2380 case RESET_TYPE_RECOVER_OR_DISABLE:
8ceee660 2381 method = type;
0e2a9c7c
BH
2382 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2383 RESET_TYPE(method));
8ceee660 2384 break;
8ceee660 2385 default:
0e2a9c7c 2386 method = efx->type->map_reset_reason(type);
62776d03
BH
2387 netif_dbg(efx, drv, efx->net_dev,
2388 "scheduling %s reset for %s\n",
2389 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2390 break;
2391 }
8ceee660 2392
a7d529ae 2393 set_bit(method, &efx->reset_pending);
7153f623
BH
2394 smp_mb(); /* ensure we change reset_pending before checking state */
2395
2396 /* If we're not READY then just leave the flags set as the cue
2397 * to abort probing or reschedule the reset later.
2398 */
2399 if (ACCESS_ONCE(efx->state) != STATE_READY)
2400 return;
8ceee660 2401
8880f4ec
BH
2402 /* efx_process_channel() will no longer read events once a
2403 * reset is scheduled. So switch back to poll'd MCDI completions. */
2404 efx_mcdi_mode_poll(efx);
2405
1ab00629 2406 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2407}
2408
2409/**************************************************************************
2410 *
2411 * List of NICs we support
2412 *
2413 **************************************************************************/
2414
2415/* PCI device ID table */
a3aa1884 2416static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2417 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2418 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2419 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2420 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2421 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2422 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2423 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2424 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2425 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2426 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2427 {0} /* end of list */
2428};
2429
2430/**************************************************************************
2431 *
3759433d 2432 * Dummy PHY/MAC operations
8ceee660 2433 *
01aad7b6 2434 * Can be used for some unimplemented operations
8ceee660
BH
2435 * Needed so all function pointers are valid and do not have to be tested
2436 * before use
2437 *
2438 **************************************************************************/
2439int efx_port_dummy_op_int(struct efx_nic *efx)
2440{
2441 return 0;
2442}
2443void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2444
2445static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2446{
2447 return false;
2448}
8ceee660 2449
6c8c2513 2450static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2451 .init = efx_port_dummy_op_int,
d3245b28 2452 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2453 .poll = efx_port_dummy_op_poll,
8ceee660 2454 .fini = efx_port_dummy_op_void,
8ceee660
BH
2455};
2456
8ceee660
BH
2457/**************************************************************************
2458 *
2459 * Data housekeeping
2460 *
2461 **************************************************************************/
2462
2463/* This zeroes out and then fills in the invariants in a struct
2464 * efx_nic (including all sub-structures).
2465 */
adeb15aa 2466static int efx_init_struct(struct efx_nic *efx,
8ceee660
BH
2467 struct pci_dev *pci_dev, struct net_device *net_dev)
2468{
4642610c 2469 int i;
8ceee660
BH
2470
2471 /* Initialise common structures */
8ceee660 2472 spin_lock_init(&efx->biu_lock);
76884835
BH
2473#ifdef CONFIG_SFC_MTD
2474 INIT_LIST_HEAD(&efx->mtd_list);
2475#endif
8ceee660
BH
2476 INIT_WORK(&efx->reset_work, efx_reset_work);
2477 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2478 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2479 efx->pci_dev = pci_dev;
62776d03 2480 efx->msg_enable = debug;
f16aeea0 2481 efx->state = STATE_UNINIT;
8ceee660 2482 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2483
2484 efx->net_dev = net_dev;
8ceee660
BH
2485 spin_lock_init(&efx->stats_lock);
2486 mutex_init(&efx->mac_lock);
2487 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2488 efx->mdio.dev = net_dev;
766ca0fa 2489 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2490 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2491
2492 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2493 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2494 if (!efx->channel[i])
2495 goto fail;
d8291187
BH
2496 efx->msi_context[i].efx = efx;
2497 efx->msi_context[i].index = i;
8ceee660
BH
2498 }
2499
8ceee660
BH
2500 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2501
2502 /* Higher numbered interrupt modes are less capable! */
2503 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2504 interrupt_mode);
2505
6977dc63
BH
2506 /* Would be good to use the net_dev name, but we're too early */
2507 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2508 pci_name(pci_dev));
2509 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2510 if (!efx->workqueue)
4642610c 2511 goto fail;
8d9853d9 2512
8ceee660 2513 return 0;
4642610c
BH
2514
2515fail:
2516 efx_fini_struct(efx);
2517 return -ENOMEM;
8ceee660
BH
2518}
2519
2520static void efx_fini_struct(struct efx_nic *efx)
2521{
8313aca3
BH
2522 int i;
2523
2524 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2525 kfree(efx->channel[i]);
2526
8ceee660
BH
2527 if (efx->workqueue) {
2528 destroy_workqueue(efx->workqueue);
2529 efx->workqueue = NULL;
2530 }
2531}
2532
2533/**************************************************************************
2534 *
2535 * PCI interface
2536 *
2537 **************************************************************************/
2538
2539/* Main body of final NIC shutdown code
2540 * This is called only at module unload (or hotplug removal).
2541 */
2542static void efx_pci_remove_main(struct efx_nic *efx)
2543{
7153f623
BH
2544 /* Flush reset_work. It can no longer be scheduled since we
2545 * are not READY.
2546 */
2547 BUG_ON(efx->state == STATE_READY);
2548 cancel_work_sync(&efx->reset_work);
2549
d8291187 2550 efx_disable_interrupts(efx);
152b6a62 2551 efx_nic_fini_interrupt(efx);
8ceee660 2552 efx_fini_port(efx);
ef2b90ee 2553 efx->type->fini(efx);
8ceee660
BH
2554 efx_fini_napi(efx);
2555 efx_remove_all(efx);
2556}
2557
2558/* Final NIC shutdown
2559 * This is called only at module unload (or hotplug removal).
2560 */
2561static void efx_pci_remove(struct pci_dev *pci_dev)
2562{
2563 struct efx_nic *efx;
2564
2565 efx = pci_get_drvdata(pci_dev);
2566 if (!efx)
2567 return;
2568
2569 /* Mark the NIC as fini, then stop the interface */
2570 rtnl_lock();
8ceee660 2571 dev_close(efx->net_dev);
d8291187 2572 efx_disable_interrupts(efx);
8ceee660
BH
2573 rtnl_unlock();
2574
cd2d5b52 2575 efx_sriov_fini(efx);
8ceee660
BH
2576 efx_unregister_netdev(efx);
2577
7dde596e
BH
2578 efx_mtd_remove(efx);
2579
8ceee660
BH
2580 efx_pci_remove_main(efx);
2581
8ceee660 2582 efx_fini_io(efx);
62776d03 2583 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660 2584
8ceee660 2585 efx_fini_struct(efx);
3de4e301 2586 pci_set_drvdata(pci_dev, NULL);
8ceee660 2587 free_netdev(efx->net_dev);
626950db
AR
2588
2589 pci_disable_pcie_error_reporting(pci_dev);
8ceee660
BH
2590};
2591
460eeaa0
BH
2592/* NIC VPD information
2593 * Called during probe to display the part number of the
2594 * installed NIC. VPD is potentially very large but this should
2595 * always appear within the first 512 bytes.
2596 */
2597#define SFC_VPD_LEN 512
2598static void efx_print_product_vpd(struct efx_nic *efx)
2599{
2600 struct pci_dev *dev = efx->pci_dev;
2601 char vpd_data[SFC_VPD_LEN];
2602 ssize_t vpd_size;
2603 int i, j;
2604
2605 /* Get the vpd data from the device */
2606 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2607 if (vpd_size <= 0) {
2608 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2609 return;
2610 }
2611
2612 /* Get the Read only section */
2613 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2614 if (i < 0) {
2615 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2616 return;
2617 }
2618
2619 j = pci_vpd_lrdt_size(&vpd_data[i]);
2620 i += PCI_VPD_LRDT_TAG_SIZE;
2621 if (i + j > vpd_size)
2622 j = vpd_size - i;
2623
2624 /* Get the Part number */
2625 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2626 if (i < 0) {
2627 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2628 return;
2629 }
2630
2631 j = pci_vpd_info_field_size(&vpd_data[i]);
2632 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2633 if (i + j > vpd_size) {
2634 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2635 return;
2636 }
2637
2638 netif_info(efx, drv, efx->net_dev,
2639 "Part Number : %.*s\n", j, &vpd_data[i]);
2640}
2641
2642
8ceee660
BH
2643/* Main body of NIC initialisation
2644 * This is called at module load (or hotplug insertion, theoretically).
2645 */
2646static int efx_pci_probe_main(struct efx_nic *efx)
2647{
2648 int rc;
2649
2650 /* Do start-of-day initialisation */
2651 rc = efx_probe_all(efx);
2652 if (rc)
2653 goto fail1;
2654
e8f14992 2655 efx_init_napi(efx);
8ceee660 2656
ef2b90ee 2657 rc = efx->type->init(efx);
8ceee660 2658 if (rc) {
62776d03
BH
2659 netif_err(efx, probe, efx->net_dev,
2660 "failed to initialise NIC\n");
278c0621 2661 goto fail3;
8ceee660
BH
2662 }
2663
2664 rc = efx_init_port(efx);
2665 if (rc) {
62776d03
BH
2666 netif_err(efx, probe, efx->net_dev,
2667 "failed to initialise port\n");
278c0621 2668 goto fail4;
8ceee660
BH
2669 }
2670
152b6a62 2671 rc = efx_nic_init_interrupt(efx);
8ceee660 2672 if (rc)
278c0621 2673 goto fail5;
d8291187 2674 efx_enable_interrupts(efx);
8ceee660
BH
2675
2676 return 0;
2677
278c0621 2678 fail5:
8ceee660 2679 efx_fini_port(efx);
8ceee660 2680 fail4:
ef2b90ee 2681 efx->type->fini(efx);
8ceee660
BH
2682 fail3:
2683 efx_fini_napi(efx);
8ceee660
BH
2684 efx_remove_all(efx);
2685 fail1:
2686 return rc;
2687}
2688
2689/* NIC initialisation
2690 *
2691 * This is called at module load (or hotplug insertion,
73ba7b68 2692 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2693 * sets up and registers the network devices with the kernel and hooks
2694 * the interrupt service routine. It does not prepare the device for
2695 * transmission; this is left to the first time one of the network
2696 * interfaces is brought up (i.e. efx_net_open).
2697 */
87d1fc11 2698static int efx_pci_probe(struct pci_dev *pci_dev,
1dd06ae8 2699 const struct pci_device_id *entry)
8ceee660 2700{
8ceee660
BH
2701 struct net_device *net_dev;
2702 struct efx_nic *efx;
fadac6aa 2703 int rc;
8ceee660
BH
2704
2705 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2706 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2707 EFX_MAX_RX_QUEUES);
8ceee660
BH
2708 if (!net_dev)
2709 return -ENOMEM;
adeb15aa
BH
2710 efx = netdev_priv(net_dev);
2711 efx->type = (const struct efx_nic_type *) entry->driver_data;
2712 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
97bc5415 2713 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2714 NETIF_F_RXCSUM);
adeb15aa 2715 if (efx->type->offload_features & NETIF_F_V6_CSUM)
738a8f4b 2716 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2717 /* Mask for features that also apply to VLAN devices */
2718 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2719 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2720 NETIF_F_RXCSUM);
2721 /* All offloads can be toggled */
2722 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
8ceee660 2723 pci_set_drvdata(pci_dev, efx);
62776d03 2724 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
adeb15aa 2725 rc = efx_init_struct(efx, pci_dev, net_dev);
8ceee660
BH
2726 if (rc)
2727 goto fail1;
2728
62776d03 2729 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2730 "Solarflare NIC detected\n");
8ceee660 2731
460eeaa0
BH
2732 efx_print_product_vpd(efx);
2733
8ceee660
BH
2734 /* Set up basic I/O (BAR mappings etc) */
2735 rc = efx_init_io(efx);
2736 if (rc)
2737 goto fail2;
2738
fadac6aa 2739 rc = efx_pci_probe_main(efx);
fadac6aa
BH
2740 if (rc)
2741 goto fail3;
8ceee660 2742
8ceee660
BH
2743 rc = efx_register_netdev(efx);
2744 if (rc)
fadac6aa 2745 goto fail4;
8ceee660 2746
cd2d5b52
BH
2747 rc = efx_sriov_init(efx);
2748 if (rc)
2749 netif_err(efx, probe, efx->net_dev,
2750 "SR-IOV can't be enabled rc %d\n", rc);
2751
62776d03 2752 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 2753
7c43161c 2754 /* Try to create MTDs, but allow this to fail */
a5211bb5 2755 rtnl_lock();
7c43161c 2756 rc = efx_mtd_probe(efx);
a5211bb5 2757 rtnl_unlock();
7c43161c
BH
2758 if (rc)
2759 netif_warn(efx, probe, efx->net_dev,
2760 "failed to create MTDs (%d)\n", rc);
2761
626950db
AR
2762 rc = pci_enable_pcie_error_reporting(pci_dev);
2763 if (rc && rc != -EINVAL)
2764 netif_warn(efx, probe, efx->net_dev,
2765 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2766
8ceee660
BH
2767 return 0;
2768
8ceee660 2769 fail4:
fadac6aa 2770 efx_pci_remove_main(efx);
8ceee660
BH
2771 fail3:
2772 efx_fini_io(efx);
2773 fail2:
2774 efx_fini_struct(efx);
2775 fail1:
3de4e301 2776 pci_set_drvdata(pci_dev, NULL);
5e2a911c 2777 WARN_ON(rc > 0);
62776d03 2778 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2779 free_netdev(net_dev);
2780 return rc;
2781}
2782
89c758fa
BH
2783static int efx_pm_freeze(struct device *dev)
2784{
2785 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2786
61da026d
BH
2787 rtnl_lock();
2788
6032fb56
BH
2789 if (efx->state != STATE_DISABLED) {
2790 efx->state = STATE_UNINIT;
89c758fa 2791
c2f3b8e3 2792 efx_device_detach_sync(efx);
89c758fa 2793
6032fb56 2794 efx_stop_all(efx);
d8291187 2795 efx_disable_interrupts(efx);
6032fb56 2796 }
89c758fa 2797
61da026d
BH
2798 rtnl_unlock();
2799
89c758fa
BH
2800 return 0;
2801}
2802
2803static int efx_pm_thaw(struct device *dev)
2804{
2805 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2806
61da026d
BH
2807 rtnl_lock();
2808
6032fb56 2809 if (efx->state != STATE_DISABLED) {
d8291187 2810 efx_enable_interrupts(efx);
89c758fa 2811
6032fb56
BH
2812 mutex_lock(&efx->mac_lock);
2813 efx->phy_op->reconfigure(efx);
2814 mutex_unlock(&efx->mac_lock);
89c758fa 2815
6032fb56 2816 efx_start_all(efx);
89c758fa 2817
6032fb56 2818 netif_device_attach(efx->net_dev);
89c758fa 2819
6032fb56 2820 efx->state = STATE_READY;
89c758fa 2821
6032fb56
BH
2822 efx->type->resume_wol(efx);
2823 }
89c758fa 2824
61da026d
BH
2825 rtnl_unlock();
2826
319ba649
SH
2827 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2828 queue_work(reset_workqueue, &efx->reset_work);
2829
89c758fa
BH
2830 return 0;
2831}
2832
2833static int efx_pm_poweroff(struct device *dev)
2834{
2835 struct pci_dev *pci_dev = to_pci_dev(dev);
2836 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2837
2838 efx->type->fini(efx);
2839
a7d529ae 2840 efx->reset_pending = 0;
89c758fa
BH
2841
2842 pci_save_state(pci_dev);
2843 return pci_set_power_state(pci_dev, PCI_D3hot);
2844}
2845
2846/* Used for both resume and restore */
2847static int efx_pm_resume(struct device *dev)
2848{
2849 struct pci_dev *pci_dev = to_pci_dev(dev);
2850 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2851 int rc;
2852
2853 rc = pci_set_power_state(pci_dev, PCI_D0);
2854 if (rc)
2855 return rc;
2856 pci_restore_state(pci_dev);
2857 rc = pci_enable_device(pci_dev);
2858 if (rc)
2859 return rc;
2860 pci_set_master(efx->pci_dev);
2861 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2862 if (rc)
2863 return rc;
2864 rc = efx->type->init(efx);
2865 if (rc)
2866 return rc;
2867 efx_pm_thaw(dev);
2868 return 0;
2869}
2870
2871static int efx_pm_suspend(struct device *dev)
2872{
2873 int rc;
2874
2875 efx_pm_freeze(dev);
2876 rc = efx_pm_poweroff(dev);
2877 if (rc)
2878 efx_pm_resume(dev);
2879 return rc;
2880}
2881
18e83e4c 2882static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
2883 .suspend = efx_pm_suspend,
2884 .resume = efx_pm_resume,
2885 .freeze = efx_pm_freeze,
2886 .thaw = efx_pm_thaw,
2887 .poweroff = efx_pm_poweroff,
2888 .restore = efx_pm_resume,
2889};
2890
626950db
AR
2891/* A PCI error affecting this device was detected.
2892 * At this point MMIO and DMA may be disabled.
2893 * Stop the software path and request a slot reset.
2894 */
debd0034 2895static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
2896 enum pci_channel_state state)
626950db
AR
2897{
2898 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2899 struct efx_nic *efx = pci_get_drvdata(pdev);
2900
2901 if (state == pci_channel_io_perm_failure)
2902 return PCI_ERS_RESULT_DISCONNECT;
2903
2904 rtnl_lock();
2905
2906 if (efx->state != STATE_DISABLED) {
2907 efx->state = STATE_RECOVERY;
2908 efx->reset_pending = 0;
2909
2910 efx_device_detach_sync(efx);
2911
2912 efx_stop_all(efx);
d8291187 2913 efx_disable_interrupts(efx);
626950db
AR
2914
2915 status = PCI_ERS_RESULT_NEED_RESET;
2916 } else {
2917 /* If the interface is disabled we don't want to do anything
2918 * with it.
2919 */
2920 status = PCI_ERS_RESULT_RECOVERED;
2921 }
2922
2923 rtnl_unlock();
2924
2925 pci_disable_device(pdev);
2926
2927 return status;
2928}
2929
2930/* Fake a successfull reset, which will be performed later in efx_io_resume. */
debd0034 2931static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
626950db
AR
2932{
2933 struct efx_nic *efx = pci_get_drvdata(pdev);
2934 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2935 int rc;
2936
2937 if (pci_enable_device(pdev)) {
2938 netif_err(efx, hw, efx->net_dev,
2939 "Cannot re-enable PCI device after reset.\n");
2940 status = PCI_ERS_RESULT_DISCONNECT;
2941 }
2942
2943 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
2944 if (rc) {
2945 netif_err(efx, hw, efx->net_dev,
2946 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
2947 /* Non-fatal error. Continue. */
2948 }
2949
2950 return status;
2951}
2952
2953/* Perform the actual reset and resume I/O operations. */
2954static void efx_io_resume(struct pci_dev *pdev)
2955{
2956 struct efx_nic *efx = pci_get_drvdata(pdev);
2957 int rc;
2958
2959 rtnl_lock();
2960
2961 if (efx->state == STATE_DISABLED)
2962 goto out;
2963
2964 rc = efx_reset(efx, RESET_TYPE_ALL);
2965 if (rc) {
2966 netif_err(efx, hw, efx->net_dev,
2967 "efx_reset failed after PCI error (%d)\n", rc);
2968 } else {
2969 efx->state = STATE_READY;
2970 netif_dbg(efx, hw, efx->net_dev,
2971 "Done resetting and resuming IO after PCI error.\n");
2972 }
2973
2974out:
2975 rtnl_unlock();
2976}
2977
2978/* For simplicity and reliability, we always require a slot reset and try to
2979 * reset the hardware when a pci error affecting the device is detected.
2980 * We leave both the link_reset and mmio_enabled callback unimplemented:
2981 * with our request for slot reset the mmio_enabled callback will never be
2982 * called, and the link_reset callback is not used by AER or EEH mechanisms.
2983 */
2984static struct pci_error_handlers efx_err_handlers = {
2985 .error_detected = efx_io_error_detected,
2986 .slot_reset = efx_io_slot_reset,
2987 .resume = efx_io_resume,
2988};
2989
8ceee660 2990static struct pci_driver efx_pci_driver = {
c5d5f5fd 2991 .name = KBUILD_MODNAME,
8ceee660
BH
2992 .id_table = efx_pci_table,
2993 .probe = efx_pci_probe,
2994 .remove = efx_pci_remove,
89c758fa 2995 .driver.pm = &efx_pm_ops,
626950db 2996 .err_handler = &efx_err_handlers,
8ceee660
BH
2997};
2998
2999/**************************************************************************
3000 *
3001 * Kernel module interface
3002 *
3003 *************************************************************************/
3004
3005module_param(interrupt_mode, uint, 0444);
3006MODULE_PARM_DESC(interrupt_mode,
3007 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3008
3009static int __init efx_init_module(void)
3010{
3011 int rc;
3012
3013 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3014
3015 rc = register_netdevice_notifier(&efx_netdev_notifier);
3016 if (rc)
3017 goto err_notifier;
3018
cd2d5b52
BH
3019 rc = efx_init_sriov();
3020 if (rc)
3021 goto err_sriov;
3022
1ab00629
SH
3023 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3024 if (!reset_workqueue) {
3025 rc = -ENOMEM;
3026 goto err_reset;
3027 }
8ceee660
BH
3028
3029 rc = pci_register_driver(&efx_pci_driver);
3030 if (rc < 0)
3031 goto err_pci;
3032
3033 return 0;
3034
3035 err_pci:
1ab00629
SH
3036 destroy_workqueue(reset_workqueue);
3037 err_reset:
cd2d5b52
BH
3038 efx_fini_sriov();
3039 err_sriov:
8ceee660
BH
3040 unregister_netdevice_notifier(&efx_netdev_notifier);
3041 err_notifier:
3042 return rc;
3043}
3044
3045static void __exit efx_exit_module(void)
3046{
3047 printk(KERN_INFO "Solarflare NET driver unloading\n");
3048
3049 pci_unregister_driver(&efx_pci_driver);
1ab00629 3050 destroy_workqueue(reset_workqueue);
cd2d5b52 3051 efx_fini_sriov();
8ceee660
BH
3052 unregister_netdevice_notifier(&efx_netdev_notifier);
3053
3054}
3055
3056module_init(efx_init_module);
3057module_exit(efx_exit_module);
3058
906bb26c
BH
3059MODULE_AUTHOR("Solarflare Communications and "
3060 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
3061MODULE_DESCRIPTION("Solarflare Communications network driver");
3062MODULE_LICENSE("GPL");
3063MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.817133 seconds and 5 git commands to generate.