sfc: Remove redundant 'rc' variable, always set to 0
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 41const char *const efx_loopback_mode_names[] = {
c459302d 42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 65 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d 71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 72const char *const efx_reset_type_names[] = {
c459302d
BH
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131static unsigned int rx_irq_mod_usec = 60;
132
133/* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142static unsigned int tx_irq_mod_usec = 150;
143
144/* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149static unsigned int interrupt_mode;
150
151/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 156 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
157 */
158static unsigned int rss_cpus;
159module_param(rss_cpus, uint, 0444);
160MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
84ae48fe
BH
162static int phy_flash_cfg;
163module_param(phy_flash_cfg, int, 0644);
164MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
6fb70fd1
BH
166static unsigned irq_adapt_low_thresh = 10000;
167module_param(irq_adapt_low_thresh, uint, 0644);
168MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171static unsigned irq_adapt_high_thresh = 20000;
172module_param(irq_adapt_high_thresh, uint, 0644);
173MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
62776d03
BH
176static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180module_param(debug, uint, 0);
181MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
8ceee660
BH
183/**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
4642610c
BH
188
189static void efx_remove_channels(struct efx_nic *efx);
8ceee660 190static void efx_remove_port(struct efx_nic *efx);
e8f14992 191static void efx_init_napi(struct efx_nic *efx);
8ceee660 192static void efx_fini_napi(struct efx_nic *efx);
e8f14992 193static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
194static void efx_fini_struct(struct efx_nic *efx);
195static void efx_start_all(struct efx_nic *efx);
196static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
197
198#define EFX_ASSERT_RESET_SERIALISED(efx) \
199 do { \
332c1ce9
BH
200 if ((efx->state == STATE_RUNNING) || \
201 (efx->state == STATE_DISABLED)) \
8ceee660
BH
202 ASSERT_RTNL(); \
203 } while (0)
204
205/**************************************************************************
206 *
207 * Event queue processing
208 *
209 *************************************************************************/
210
211/* Process channel's event queue
212 *
213 * This function is responsible for processing the event queue of a
214 * single channel. The caller must guarantee that this function will
215 * never be concurrently called more than once on the same channel,
216 * though different channels may be being processed concurrently.
217 */
fa236e18 218static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 219{
42cbe2d7 220 struct efx_nic *efx = channel->efx;
fa236e18 221 int spent;
8ceee660 222
a7d529ae 223 if (unlikely(efx->reset_pending || !channel->enabled))
42cbe2d7 224 return 0;
8ceee660 225
fa236e18
BH
226 spent = efx_nic_process_eventq(channel, budget);
227 if (spent == 0)
42cbe2d7 228 return 0;
8ceee660
BH
229
230 /* Deliver last RX packet. */
231 if (channel->rx_pkt) {
232 __efx_rx_packet(channel, channel->rx_pkt,
233 channel->rx_pkt_csummed);
234 channel->rx_pkt = NULL;
235 }
236
8ceee660
BH
237 efx_rx_strategy(channel);
238
f7d12cdc 239 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 240
fa236e18 241 return spent;
8ceee660
BH
242}
243
244/* Mark channel as finished processing
245 *
246 * Note that since we will not receive further interrupts for this
247 * channel before we finish processing and call the eventq_read_ack()
248 * method, there is no need to use the interrupt hold-off timers.
249 */
250static inline void efx_channel_processed(struct efx_channel *channel)
251{
5b9e207c
BH
252 /* The interrupt handler for this channel may set work_pending
253 * as soon as we acknowledge the events we've seen. Make sure
254 * it's cleared before then. */
dc8cfa55 255 channel->work_pending = false;
5b9e207c
BH
256 smp_wmb();
257
152b6a62 258 efx_nic_eventq_read_ack(channel);
8ceee660
BH
259}
260
261/* NAPI poll handler
262 *
263 * NAPI guarantees serialisation of polls of the same device, which
264 * provides the guarantee required by efx_process_channel().
265 */
266static int efx_poll(struct napi_struct *napi, int budget)
267{
268 struct efx_channel *channel =
269 container_of(napi, struct efx_channel, napi_str);
62776d03 270 struct efx_nic *efx = channel->efx;
fa236e18 271 int spent;
8ceee660 272
62776d03
BH
273 netif_vdbg(efx, intr, efx->net_dev,
274 "channel %d NAPI poll executing on CPU %d\n",
275 channel->channel, raw_smp_processor_id());
8ceee660 276
fa236e18 277 spent = efx_process_channel(channel, budget);
8ceee660 278
fa236e18 279 if (spent < budget) {
a4900ac9 280 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
281 efx->irq_rx_adaptive &&
282 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
283 if (unlikely(channel->irq_mod_score <
284 irq_adapt_low_thresh)) {
0d86ebd8
BH
285 if (channel->irq_moderation > 1) {
286 channel->irq_moderation -= 1;
ef2b90ee 287 efx->type->push_irq_moderation(channel);
0d86ebd8 288 }
6fb70fd1
BH
289 } else if (unlikely(channel->irq_mod_score >
290 irq_adapt_high_thresh)) {
0d86ebd8
BH
291 if (channel->irq_moderation <
292 efx->irq_rx_moderation) {
293 channel->irq_moderation += 1;
ef2b90ee 294 efx->type->push_irq_moderation(channel);
0d86ebd8 295 }
6fb70fd1 296 }
6fb70fd1
BH
297 channel->irq_count = 0;
298 channel->irq_mod_score = 0;
299 }
300
64d8ad6d
BH
301 efx_filter_rfs_expire(channel);
302
8ceee660 303 /* There is no race here; although napi_disable() will
288379f0 304 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
305 * since efx_channel_processed() will have no effect if
306 * interrupts have already been disabled.
307 */
288379f0 308 napi_complete(napi);
8ceee660
BH
309 efx_channel_processed(channel);
310 }
311
fa236e18 312 return spent;
8ceee660
BH
313}
314
315/* Process the eventq of the specified channel immediately on this CPU
316 *
317 * Disable hardware generated interrupts, wait for any existing
318 * processing to finish, then directly poll (and ack ) the eventq.
319 * Finally reenable NAPI and interrupts.
320 *
d4fabcc8
BH
321 * This is for use only during a loopback self-test. It must not
322 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
323 */
324void efx_process_channel_now(struct efx_channel *channel)
325{
326 struct efx_nic *efx = channel->efx;
327
8313aca3 328 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 329 BUG_ON(!channel->enabled);
d4fabcc8 330 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
331
332 /* Disable interrupts and wait for ISRs to complete */
152b6a62 333 efx_nic_disable_interrupts(efx);
94dec6a2 334 if (efx->legacy_irq) {
8ceee660 335 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
336 efx->legacy_irq_enabled = false;
337 }
64ee3120 338 if (channel->irq)
8ceee660
BH
339 synchronize_irq(channel->irq);
340
341 /* Wait for any NAPI processing to complete */
342 napi_disable(&channel->napi_str);
343
344 /* Poll the channel */
ecc910f5 345 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
346
347 /* Ack the eventq. This may cause an interrupt to be generated
348 * when they are reenabled */
349 efx_channel_processed(channel);
350
351 napi_enable(&channel->napi_str);
94dec6a2
BH
352 if (efx->legacy_irq)
353 efx->legacy_irq_enabled = true;
152b6a62 354 efx_nic_enable_interrupts(efx);
8ceee660
BH
355}
356
357/* Create event queue
358 * Event queue memory allocations are done only once. If the channel
359 * is reset, the memory buffer will be reused; this guards against
360 * errors during channel reset and also simplifies interrupt handling.
361 */
362static int efx_probe_eventq(struct efx_channel *channel)
363{
ecc910f5
SH
364 struct efx_nic *efx = channel->efx;
365 unsigned long entries;
366
86ee5302 367 netif_dbg(efx, probe, efx->net_dev,
62776d03 368 "chan %d create event queue\n", channel->channel);
8ceee660 369
ecc910f5
SH
370 /* Build an event queue with room for one event per tx and rx buffer,
371 * plus some extra for link state events and MCDI completions. */
372 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
373 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
374 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
375
152b6a62 376 return efx_nic_probe_eventq(channel);
8ceee660
BH
377}
378
379/* Prepare channel's event queue */
bc3c90a2 380static void efx_init_eventq(struct efx_channel *channel)
8ceee660 381{
62776d03
BH
382 netif_dbg(channel->efx, drv, channel->efx->net_dev,
383 "chan %d init event queue\n", channel->channel);
8ceee660
BH
384
385 channel->eventq_read_ptr = 0;
386
152b6a62 387 efx_nic_init_eventq(channel);
8ceee660
BH
388}
389
390static void efx_fini_eventq(struct efx_channel *channel)
391{
62776d03
BH
392 netif_dbg(channel->efx, drv, channel->efx->net_dev,
393 "chan %d fini event queue\n", channel->channel);
8ceee660 394
152b6a62 395 efx_nic_fini_eventq(channel);
8ceee660
BH
396}
397
398static void efx_remove_eventq(struct efx_channel *channel)
399{
62776d03
BH
400 netif_dbg(channel->efx, drv, channel->efx->net_dev,
401 "chan %d remove event queue\n", channel->channel);
8ceee660 402
152b6a62 403 efx_nic_remove_eventq(channel);
8ceee660
BH
404}
405
406/**************************************************************************
407 *
408 * Channel handling
409 *
410 *************************************************************************/
411
4642610c
BH
412/* Allocate and initialise a channel structure, optionally copying
413 * parameters (but not resources) from an old channel structure. */
414static struct efx_channel *
415efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
416{
417 struct efx_channel *channel;
418 struct efx_rx_queue *rx_queue;
419 struct efx_tx_queue *tx_queue;
420 int j;
421
422 if (old_channel) {
423 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
424 if (!channel)
425 return NULL;
426
427 *channel = *old_channel;
428
e8f14992 429 channel->napi_dev = NULL;
4642610c
BH
430 memset(&channel->eventq, 0, sizeof(channel->eventq));
431
432 rx_queue = &channel->rx_queue;
433 rx_queue->buffer = NULL;
434 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
435
436 for (j = 0; j < EFX_TXQ_TYPES; j++) {
437 tx_queue = &channel->tx_queue[j];
438 if (tx_queue->channel)
439 tx_queue->channel = channel;
440 tx_queue->buffer = NULL;
441 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
442 }
443 } else {
444 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
445 if (!channel)
446 return NULL;
447
448 channel->efx = efx;
449 channel->channel = i;
450
451 for (j = 0; j < EFX_TXQ_TYPES; j++) {
452 tx_queue = &channel->tx_queue[j];
453 tx_queue->efx = efx;
454 tx_queue->queue = i * EFX_TXQ_TYPES + j;
455 tx_queue->channel = channel;
456 }
457 }
458
4642610c
BH
459 rx_queue = &channel->rx_queue;
460 rx_queue->efx = efx;
461 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
462 (unsigned long)rx_queue);
463
464 return channel;
465}
466
8ceee660
BH
467static int efx_probe_channel(struct efx_channel *channel)
468{
469 struct efx_tx_queue *tx_queue;
470 struct efx_rx_queue *rx_queue;
471 int rc;
472
62776d03
BH
473 netif_dbg(channel->efx, probe, channel->efx->net_dev,
474 "creating channel %d\n", channel->channel);
8ceee660
BH
475
476 rc = efx_probe_eventq(channel);
477 if (rc)
478 goto fail1;
479
480 efx_for_each_channel_tx_queue(tx_queue, channel) {
481 rc = efx_probe_tx_queue(tx_queue);
482 if (rc)
483 goto fail2;
484 }
485
486 efx_for_each_channel_rx_queue(rx_queue, channel) {
487 rc = efx_probe_rx_queue(rx_queue);
488 if (rc)
489 goto fail3;
490 }
491
492 channel->n_rx_frm_trunc = 0;
493
494 return 0;
495
496 fail3:
497 efx_for_each_channel_rx_queue(rx_queue, channel)
498 efx_remove_rx_queue(rx_queue);
499 fail2:
500 efx_for_each_channel_tx_queue(tx_queue, channel)
501 efx_remove_tx_queue(tx_queue);
502 fail1:
503 return rc;
504}
505
506
56536e9c
BH
507static void efx_set_channel_names(struct efx_nic *efx)
508{
509 struct efx_channel *channel;
510 const char *type = "";
511 int number;
512
513 efx_for_each_channel(channel, efx) {
514 number = channel->channel;
a4900ac9
BH
515 if (efx->n_channels > efx->n_rx_channels) {
516 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
517 type = "-rx";
518 } else {
519 type = "-tx";
a4900ac9 520 number -= efx->n_rx_channels;
56536e9c
BH
521 }
522 }
4642610c
BH
523 snprintf(efx->channel_name[channel->channel],
524 sizeof(efx->channel_name[0]),
56536e9c
BH
525 "%s%s-%d", efx->name, type, number);
526 }
527}
528
4642610c
BH
529static int efx_probe_channels(struct efx_nic *efx)
530{
531 struct efx_channel *channel;
532 int rc;
533
534 /* Restart special buffer allocation */
535 efx->next_buffer_table = 0;
536
537 efx_for_each_channel(channel, efx) {
538 rc = efx_probe_channel(channel);
539 if (rc) {
540 netif_err(efx, probe, efx->net_dev,
541 "failed to create channel %d\n",
542 channel->channel);
543 goto fail;
544 }
545 }
546 efx_set_channel_names(efx);
547
548 return 0;
549
550fail:
551 efx_remove_channels(efx);
552 return rc;
553}
554
8ceee660
BH
555/* Channels are shutdown and reinitialised whilst the NIC is running
556 * to propagate configuration changes (mtu, checksum offload), or
557 * to clear hardware error conditions
558 */
bc3c90a2 559static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
560{
561 struct efx_tx_queue *tx_queue;
562 struct efx_rx_queue *rx_queue;
563 struct efx_channel *channel;
8ceee660 564
f7f13b0b
BH
565 /* Calculate the rx buffer allocation parameters required to
566 * support the current MTU, including padding for header
567 * alignment and overruns.
568 */
569 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
570 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 571 efx->type->rx_buffer_hash_size +
f7f13b0b 572 efx->type->rx_buffer_padding);
62b330ba
SH
573 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
574 sizeof(struct efx_rx_page_state));
8ceee660
BH
575
576 /* Initialise the channels */
577 efx_for_each_channel(channel, efx) {
62776d03
BH
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "init chan %d\n", channel->channel);
8ceee660 580
bc3c90a2 581 efx_init_eventq(channel);
8ceee660 582
bc3c90a2
BH
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_init_tx_queue(tx_queue);
8ceee660
BH
585
586 /* The rx buffer allocation strategy is MTU dependent */
587 efx_rx_strategy(channel);
588
bc3c90a2
BH
589 efx_for_each_channel_rx_queue(rx_queue, channel)
590 efx_init_rx_queue(rx_queue);
8ceee660
BH
591
592 WARN_ON(channel->rx_pkt != NULL);
593 efx_rx_strategy(channel);
594 }
8ceee660
BH
595}
596
597/* This enables event queue processing and packet transmission.
598 *
599 * Note that this function is not allowed to fail, since that would
600 * introduce too much complexity into the suspend/resume path.
601 */
602static void efx_start_channel(struct efx_channel *channel)
603{
604 struct efx_rx_queue *rx_queue;
605
62776d03
BH
606 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
607 "starting chan %d\n", channel->channel);
8ceee660 608
5b9e207c
BH
609 /* The interrupt handler for this channel may set work_pending
610 * as soon as we enable it. Make sure it's cleared before
611 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
612 channel->work_pending = false;
613 channel->enabled = true;
5b9e207c 614 smp_wmb();
8ceee660 615
90d683af 616 /* Fill the queues before enabling NAPI */
8ceee660
BH
617 efx_for_each_channel_rx_queue(rx_queue, channel)
618 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
619
620 napi_enable(&channel->napi_str);
8ceee660
BH
621}
622
623/* This disables event queue processing and packet transmission.
624 * This function does not guarantee that all queue processing
625 * (e.g. RX refill) is complete.
626 */
627static void efx_stop_channel(struct efx_channel *channel)
628{
8ceee660
BH
629 if (!channel->enabled)
630 return;
631
62776d03
BH
632 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
633 "stop chan %d\n", channel->channel);
8ceee660 634
dc8cfa55 635 channel->enabled = false;
8ceee660 636 napi_disable(&channel->napi_str);
8ceee660
BH
637}
638
639static void efx_fini_channels(struct efx_nic *efx)
640{
641 struct efx_channel *channel;
642 struct efx_tx_queue *tx_queue;
643 struct efx_rx_queue *rx_queue;
6bc5d3a9 644 int rc;
8ceee660
BH
645
646 EFX_ASSERT_RESET_SERIALISED(efx);
647 BUG_ON(efx->port_enabled);
648
152b6a62 649 rc = efx_nic_flush_queues(efx);
fd371e32
SH
650 if (rc && EFX_WORKAROUND_7803(efx)) {
651 /* Schedule a reset to recover from the flush failure. The
652 * descriptor caches reference memory we're about to free,
653 * but falcon_reconfigure_mac_wrapper() won't reconnect
654 * the MACs because of the pending reset. */
62776d03
BH
655 netif_err(efx, drv, efx->net_dev,
656 "Resetting to recover from flush failure\n");
fd371e32
SH
657 efx_schedule_reset(efx, RESET_TYPE_ALL);
658 } else if (rc) {
62776d03 659 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 660 } else {
62776d03
BH
661 netif_dbg(efx, drv, efx->net_dev,
662 "successfully flushed all queues\n");
fd371e32 663 }
6bc5d3a9 664
8ceee660 665 efx_for_each_channel(channel, efx) {
62776d03
BH
666 netif_dbg(channel->efx, drv, channel->efx->net_dev,
667 "shut down chan %d\n", channel->channel);
8ceee660
BH
668
669 efx_for_each_channel_rx_queue(rx_queue, channel)
670 efx_fini_rx_queue(rx_queue);
94b274bf 671 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 672 efx_fini_tx_queue(tx_queue);
8ceee660
BH
673 efx_fini_eventq(channel);
674 }
675}
676
677static void efx_remove_channel(struct efx_channel *channel)
678{
679 struct efx_tx_queue *tx_queue;
680 struct efx_rx_queue *rx_queue;
681
62776d03
BH
682 netif_dbg(channel->efx, drv, channel->efx->net_dev,
683 "destroy chan %d\n", channel->channel);
8ceee660
BH
684
685 efx_for_each_channel_rx_queue(rx_queue, channel)
686 efx_remove_rx_queue(rx_queue);
94b274bf 687 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
688 efx_remove_tx_queue(tx_queue);
689 efx_remove_eventq(channel);
8ceee660
BH
690}
691
4642610c
BH
692static void efx_remove_channels(struct efx_nic *efx)
693{
694 struct efx_channel *channel;
695
696 efx_for_each_channel(channel, efx)
697 efx_remove_channel(channel);
698}
699
700int
701efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
702{
703 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
704 u32 old_rxq_entries, old_txq_entries;
705 unsigned i;
706 int rc;
707
708 efx_stop_all(efx);
709 efx_fini_channels(efx);
710
711 /* Clone channels */
712 memset(other_channel, 0, sizeof(other_channel));
713 for (i = 0; i < efx->n_channels; i++) {
714 channel = efx_alloc_channel(efx, i, efx->channel[i]);
715 if (!channel) {
716 rc = -ENOMEM;
717 goto out;
718 }
719 other_channel[i] = channel;
720 }
721
722 /* Swap entry counts and channel pointers */
723 old_rxq_entries = efx->rxq_entries;
724 old_txq_entries = efx->txq_entries;
725 efx->rxq_entries = rxq_entries;
726 efx->txq_entries = txq_entries;
727 for (i = 0; i < efx->n_channels; i++) {
728 channel = efx->channel[i];
729 efx->channel[i] = other_channel[i];
730 other_channel[i] = channel;
731 }
732
733 rc = efx_probe_channels(efx);
734 if (rc)
735 goto rollback;
736
e8f14992
BH
737 efx_init_napi(efx);
738
4642610c 739 /* Destroy old channels */
e8f14992
BH
740 for (i = 0; i < efx->n_channels; i++) {
741 efx_fini_napi_channel(other_channel[i]);
4642610c 742 efx_remove_channel(other_channel[i]);
e8f14992 743 }
4642610c
BH
744out:
745 /* Free unused channel structures */
746 for (i = 0; i < efx->n_channels; i++)
747 kfree(other_channel[i]);
748
749 efx_init_channels(efx);
750 efx_start_all(efx);
751 return rc;
752
753rollback:
754 /* Swap back */
755 efx->rxq_entries = old_rxq_entries;
756 efx->txq_entries = old_txq_entries;
757 for (i = 0; i < efx->n_channels; i++) {
758 channel = efx->channel[i];
759 efx->channel[i] = other_channel[i];
760 other_channel[i] = channel;
761 }
762 goto out;
763}
764
90d683af 765void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 766{
90d683af 767 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
768}
769
770/**************************************************************************
771 *
772 * Port handling
773 *
774 **************************************************************************/
775
776/* This ensures that the kernel is kept informed (via
777 * netif_carrier_on/off) of the link status, and also maintains the
778 * link status's stop on the port's TX queue.
779 */
fdaa9aed 780void efx_link_status_changed(struct efx_nic *efx)
8ceee660 781{
eb50c0d6
BH
782 struct efx_link_state *link_state = &efx->link_state;
783
8ceee660
BH
784 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
785 * that no events are triggered between unregister_netdev() and the
786 * driver unloading. A more general condition is that NETDEV_CHANGE
787 * can only be generated between NETDEV_UP and NETDEV_DOWN */
788 if (!netif_running(efx->net_dev))
789 return;
790
eb50c0d6 791 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
792 efx->n_link_state_changes++;
793
eb50c0d6 794 if (link_state->up)
8ceee660
BH
795 netif_carrier_on(efx->net_dev);
796 else
797 netif_carrier_off(efx->net_dev);
798 }
799
800 /* Status message for kernel log */
2aa9ef11 801 if (link_state->up)
62776d03
BH
802 netif_info(efx, link, efx->net_dev,
803 "link up at %uMbps %s-duplex (MTU %d)%s\n",
804 link_state->speed, link_state->fd ? "full" : "half",
805 efx->net_dev->mtu,
806 (efx->promiscuous ? " [PROMISC]" : ""));
2aa9ef11 807 else
62776d03 808 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
809}
810
d3245b28
BH
811void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
812{
813 efx->link_advertising = advertising;
814 if (advertising) {
815 if (advertising & ADVERTISED_Pause)
816 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
817 else
818 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
819 if (advertising & ADVERTISED_Asym_Pause)
820 efx->wanted_fc ^= EFX_FC_TX;
821 }
822}
823
b5626946 824void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
825{
826 efx->wanted_fc = wanted_fc;
827 if (efx->link_advertising) {
828 if (wanted_fc & EFX_FC_RX)
829 efx->link_advertising |= (ADVERTISED_Pause |
830 ADVERTISED_Asym_Pause);
831 else
832 efx->link_advertising &= ~(ADVERTISED_Pause |
833 ADVERTISED_Asym_Pause);
834 if (wanted_fc & EFX_FC_TX)
835 efx->link_advertising ^= ADVERTISED_Asym_Pause;
836 }
837}
838
115122af
BH
839static void efx_fini_port(struct efx_nic *efx);
840
d3245b28
BH
841/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
842 * the MAC appropriately. All other PHY configuration changes are pushed
843 * through phy_op->set_settings(), and pushed asynchronously to the MAC
844 * through efx_monitor().
845 *
846 * Callers must hold the mac_lock
847 */
848int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 849{
d3245b28
BH
850 enum efx_phy_mode phy_mode;
851 int rc;
8ceee660 852
d3245b28 853 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 854
a816f75a 855 /* Serialise the promiscuous flag with efx_set_multicast_list. */
73ba7b68
BH
856 netif_addr_lock_bh(efx->net_dev);
857 netif_addr_unlock_bh(efx->net_dev);
a816f75a 858
d3245b28
BH
859 /* Disable PHY transmit in mac level loopbacks */
860 phy_mode = efx->phy_mode;
177dfcd8
BH
861 if (LOOPBACK_INTERNAL(efx))
862 efx->phy_mode |= PHY_MODE_TX_DISABLED;
863 else
864 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 865
d3245b28 866 rc = efx->type->reconfigure_port(efx);
8ceee660 867
d3245b28
BH
868 if (rc)
869 efx->phy_mode = phy_mode;
177dfcd8 870
d3245b28 871 return rc;
8ceee660
BH
872}
873
874/* Reinitialise the MAC to pick up new PHY settings, even if the port is
875 * disabled. */
d3245b28 876int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 877{
d3245b28
BH
878 int rc;
879
8ceee660
BH
880 EFX_ASSERT_RESET_SERIALISED(efx);
881
882 mutex_lock(&efx->mac_lock);
d3245b28 883 rc = __efx_reconfigure_port(efx);
8ceee660 884 mutex_unlock(&efx->mac_lock);
d3245b28
BH
885
886 return rc;
8ceee660
BH
887}
888
8be4f3e6
BH
889/* Asynchronous work item for changing MAC promiscuity and multicast
890 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
891 * MAC directly. */
766ca0fa
BH
892static void efx_mac_work(struct work_struct *data)
893{
894 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
895
896 mutex_lock(&efx->mac_lock);
30b81cda 897 if (efx->port_enabled)
710b208d 898 efx->type->reconfigure_mac(efx);
766ca0fa
BH
899 mutex_unlock(&efx->mac_lock);
900}
901
8ceee660
BH
902static int efx_probe_port(struct efx_nic *efx)
903{
904 int rc;
905
62776d03 906 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 907
ff3b00a0
SH
908 if (phy_flash_cfg)
909 efx->phy_mode = PHY_MODE_SPECIAL;
910
ef2b90ee
BH
911 /* Connect up MAC/PHY operations table */
912 rc = efx->type->probe_port(efx);
8ceee660 913 if (rc)
e42de262 914 return rc;
8ceee660 915
e332bcb3
BH
916 /* Initialise MAC address to permanent address */
917 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
8ceee660
BH
918
919 return 0;
8ceee660
BH
920}
921
922static int efx_init_port(struct efx_nic *efx)
923{
924 int rc;
925
62776d03 926 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 927
1dfc5cea
BH
928 mutex_lock(&efx->mac_lock);
929
177dfcd8 930 rc = efx->phy_op->init(efx);
8ceee660 931 if (rc)
1dfc5cea 932 goto fail1;
8ceee660 933
dc8cfa55 934 efx->port_initialized = true;
1dfc5cea 935
d3245b28
BH
936 /* Reconfigure the MAC before creating dma queues (required for
937 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 938 efx->type->reconfigure_mac(efx);
d3245b28
BH
939
940 /* Ensure the PHY advertises the correct flow control settings */
941 rc = efx->phy_op->reconfigure(efx);
942 if (rc)
943 goto fail2;
944
1dfc5cea 945 mutex_unlock(&efx->mac_lock);
8ceee660 946 return 0;
177dfcd8 947
1dfc5cea 948fail2:
177dfcd8 949 efx->phy_op->fini(efx);
1dfc5cea
BH
950fail1:
951 mutex_unlock(&efx->mac_lock);
177dfcd8 952 return rc;
8ceee660
BH
953}
954
8ceee660
BH
955static void efx_start_port(struct efx_nic *efx)
956{
62776d03 957 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
958 BUG_ON(efx->port_enabled);
959
960 mutex_lock(&efx->mac_lock);
dc8cfa55 961 efx->port_enabled = true;
8be4f3e6
BH
962
963 /* efx_mac_work() might have been scheduled after efx_stop_port(),
964 * and then cancelled by efx_flush_all() */
710b208d 965 efx->type->reconfigure_mac(efx);
8be4f3e6 966
8ceee660
BH
967 mutex_unlock(&efx->mac_lock);
968}
969
fdaa9aed 970/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
971static void efx_stop_port(struct efx_nic *efx)
972{
62776d03 973 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
974
975 mutex_lock(&efx->mac_lock);
dc8cfa55 976 efx->port_enabled = false;
8ceee660
BH
977 mutex_unlock(&efx->mac_lock);
978
979 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
980 netif_addr_lock_bh(efx->net_dev);
981 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
982}
983
984static void efx_fini_port(struct efx_nic *efx)
985{
62776d03 986 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
987
988 if (!efx->port_initialized)
989 return;
990
177dfcd8 991 efx->phy_op->fini(efx);
dc8cfa55 992 efx->port_initialized = false;
8ceee660 993
eb50c0d6 994 efx->link_state.up = false;
8ceee660
BH
995 efx_link_status_changed(efx);
996}
997
998static void efx_remove_port(struct efx_nic *efx)
999{
62776d03 1000 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1001
ef2b90ee 1002 efx->type->remove_port(efx);
8ceee660
BH
1003}
1004
1005/**************************************************************************
1006 *
1007 * NIC handling
1008 *
1009 **************************************************************************/
1010
1011/* This configures the PCI device to enable I/O and DMA. */
1012static int efx_init_io(struct efx_nic *efx)
1013{
1014 struct pci_dev *pci_dev = efx->pci_dev;
1015 dma_addr_t dma_mask = efx->type->max_dma_mask;
1016 int rc;
1017
62776d03 1018 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1019
1020 rc = pci_enable_device(pci_dev);
1021 if (rc) {
62776d03
BH
1022 netif_err(efx, probe, efx->net_dev,
1023 "failed to enable PCI device\n");
8ceee660
BH
1024 goto fail1;
1025 }
1026
1027 pci_set_master(pci_dev);
1028
1029 /* Set the PCI DMA mask. Try all possibilities from our
1030 * genuine mask down to 32 bits, because some architectures
1031 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1032 * masks event though they reject 46 bit masks.
1033 */
1034 while (dma_mask > 0x7fffffffUL) {
e9e01846
BH
1035 if (pci_dma_supported(pci_dev, dma_mask)) {
1036 rc = pci_set_dma_mask(pci_dev, dma_mask);
1037 if (rc == 0)
1038 break;
1039 }
8ceee660
BH
1040 dma_mask >>= 1;
1041 }
1042 if (rc) {
62776d03
BH
1043 netif_err(efx, probe, efx->net_dev,
1044 "could not find a suitable DMA mask\n");
8ceee660
BH
1045 goto fail2;
1046 }
62776d03
BH
1047 netif_dbg(efx, probe, efx->net_dev,
1048 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1049 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1050 if (rc) {
1051 /* pci_set_consistent_dma_mask() is not *allowed* to
1052 * fail with a mask that pci_set_dma_mask() accepted,
1053 * but just in case...
1054 */
62776d03
BH
1055 netif_err(efx, probe, efx->net_dev,
1056 "failed to set consistent DMA mask\n");
8ceee660
BH
1057 goto fail2;
1058 }
1059
dc803df8
BH
1060 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1061 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1062 if (rc) {
62776d03
BH
1063 netif_err(efx, probe, efx->net_dev,
1064 "request for memory BAR failed\n");
8ceee660
BH
1065 rc = -EIO;
1066 goto fail3;
1067 }
86c432ca
BH
1068 efx->membase = ioremap_nocache(efx->membase_phys,
1069 efx->type->mem_map_size);
8ceee660 1070 if (!efx->membase) {
62776d03
BH
1071 netif_err(efx, probe, efx->net_dev,
1072 "could not map memory BAR at %llx+%x\n",
1073 (unsigned long long)efx->membase_phys,
1074 efx->type->mem_map_size);
8ceee660
BH
1075 rc = -ENOMEM;
1076 goto fail4;
1077 }
62776d03
BH
1078 netif_dbg(efx, probe, efx->net_dev,
1079 "memory BAR at %llx+%x (virtual %p)\n",
1080 (unsigned long long)efx->membase_phys,
1081 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1082
1083 return 0;
1084
1085 fail4:
dc803df8 1086 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1087 fail3:
2c118e0f 1088 efx->membase_phys = 0;
8ceee660
BH
1089 fail2:
1090 pci_disable_device(efx->pci_dev);
1091 fail1:
1092 return rc;
1093}
1094
1095static void efx_fini_io(struct efx_nic *efx)
1096{
62776d03 1097 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1098
1099 if (efx->membase) {
1100 iounmap(efx->membase);
1101 efx->membase = NULL;
1102 }
1103
1104 if (efx->membase_phys) {
dc803df8 1105 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1106 efx->membase_phys = 0;
8ceee660
BH
1107 }
1108
1109 pci_disable_device(efx->pci_dev);
1110}
1111
fa142b9d 1112static int efx_wanted_parallelism(void)
46123d04 1113{
cdb08f8f 1114 cpumask_var_t thread_mask;
46123d04
BH
1115 int count;
1116 int cpu;
5b874e25
BH
1117
1118 if (rss_cpus)
1119 return rss_cpus;
46123d04 1120
cdb08f8f 1121 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
2f8975fb 1122 printk(KERN_WARNING
3977d033 1123 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1124 return 1;
1125 }
1126
46123d04
BH
1127 count = 0;
1128 for_each_online_cpu(cpu) {
cdb08f8f 1129 if (!cpumask_test_cpu(cpu, thread_mask)) {
46123d04 1130 ++count;
cdb08f8f
BH
1131 cpumask_or(thread_mask, thread_mask,
1132 topology_thread_cpumask(cpu));
46123d04
BH
1133 }
1134 }
1135
cdb08f8f 1136 free_cpumask_var(thread_mask);
46123d04
BH
1137 return count;
1138}
1139
64d8ad6d
BH
1140static int
1141efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1142{
1143#ifdef CONFIG_RFS_ACCEL
1144 int i, rc;
1145
1146 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1147 if (!efx->net_dev->rx_cpu_rmap)
1148 return -ENOMEM;
1149 for (i = 0; i < efx->n_rx_channels; i++) {
1150 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1151 xentries[i].vector);
1152 if (rc) {
1153 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1154 efx->net_dev->rx_cpu_rmap = NULL;
1155 return rc;
1156 }
1157 }
1158#endif
1159 return 0;
1160}
1161
46123d04
BH
1162/* Probe the number and type of interrupts we are able to obtain, and
1163 * the resulting numbers of channels and RX queues.
1164 */
64d8ad6d 1165static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1166{
46123d04
BH
1167 int max_channels =
1168 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1169 int rc, i;
1170
1171 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1172 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1173 int n_channels;
aa6ef27e 1174
fa142b9d 1175 n_channels = efx_wanted_parallelism();
a4900ac9
BH
1176 if (separate_tx_channels)
1177 n_channels *= 2;
1178 n_channels = min(n_channels, max_channels);
8ceee660 1179
a4900ac9 1180 for (i = 0; i < n_channels; i++)
8ceee660 1181 xentries[i].entry = i;
a4900ac9 1182 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1183 if (rc > 0) {
62776d03
BH
1184 netif_err(efx, drv, efx->net_dev,
1185 "WARNING: Insufficient MSI-X vectors"
1186 " available (%d < %d).\n", rc, n_channels);
1187 netif_err(efx, drv, efx->net_dev,
1188 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1189 EFX_BUG_ON_PARANOID(rc >= n_channels);
1190 n_channels = rc;
8ceee660 1191 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1192 n_channels);
8ceee660
BH
1193 }
1194
1195 if (rc == 0) {
a4900ac9
BH
1196 efx->n_channels = n_channels;
1197 if (separate_tx_channels) {
1198 efx->n_tx_channels =
1199 max(efx->n_channels / 2, 1U);
1200 efx->n_rx_channels =
1201 max(efx->n_channels -
1202 efx->n_tx_channels, 1U);
1203 } else {
1204 efx->n_tx_channels = efx->n_channels;
1205 efx->n_rx_channels = efx->n_channels;
1206 }
64d8ad6d
BH
1207 rc = efx_init_rx_cpu_rmap(efx, xentries);
1208 if (rc) {
1209 pci_disable_msix(efx->pci_dev);
1210 return rc;
1211 }
a4900ac9 1212 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1213 efx_get_channel(efx, i)->irq =
1214 xentries[i].vector;
8ceee660
BH
1215 } else {
1216 /* Fall back to single channel MSI */
1217 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1218 netif_err(efx, drv, efx->net_dev,
1219 "could not enable MSI-X\n");
8ceee660
BH
1220 }
1221 }
1222
1223 /* Try single interrupt MSI */
1224 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1225 efx->n_channels = 1;
a4900ac9
BH
1226 efx->n_rx_channels = 1;
1227 efx->n_tx_channels = 1;
8ceee660
BH
1228 rc = pci_enable_msi(efx->pci_dev);
1229 if (rc == 0) {
f7d12cdc 1230 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1231 } else {
62776d03
BH
1232 netif_err(efx, drv, efx->net_dev,
1233 "could not enable MSI\n");
8ceee660
BH
1234 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1235 }
1236 }
1237
1238 /* Assume legacy interrupts */
1239 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1240 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1241 efx->n_rx_channels = 1;
1242 efx->n_tx_channels = 1;
8ceee660
BH
1243 efx->legacy_irq = efx->pci_dev->irq;
1244 }
64d8ad6d
BH
1245
1246 return 0;
8ceee660
BH
1247}
1248
1249static void efx_remove_interrupts(struct efx_nic *efx)
1250{
1251 struct efx_channel *channel;
1252
1253 /* Remove MSI/MSI-X interrupts */
64ee3120 1254 efx_for_each_channel(channel, efx)
8ceee660
BH
1255 channel->irq = 0;
1256 pci_disable_msi(efx->pci_dev);
1257 pci_disable_msix(efx->pci_dev);
1258
1259 /* Remove legacy interrupt */
1260 efx->legacy_irq = 0;
1261}
1262
8831da7b 1263static void efx_set_channels(struct efx_nic *efx)
8ceee660 1264{
602a5322
BH
1265 struct efx_channel *channel;
1266 struct efx_tx_queue *tx_queue;
1267
97653431 1268 efx->tx_channel_offset =
a4900ac9 1269 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1270
1271 /* We need to adjust the TX queue numbers if we have separate
1272 * RX-only and TX-only channels.
1273 */
1274 efx_for_each_channel(channel, efx) {
1275 efx_for_each_channel_tx_queue(tx_queue, channel)
1276 tx_queue->queue -= (efx->tx_channel_offset *
1277 EFX_TXQ_TYPES);
1278 }
8ceee660
BH
1279}
1280
1281static int efx_probe_nic(struct efx_nic *efx)
1282{
765c9f46 1283 size_t i;
8ceee660
BH
1284 int rc;
1285
62776d03 1286 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1287
1288 /* Carry out hardware-type specific initialisation */
ef2b90ee 1289 rc = efx->type->probe(efx);
8ceee660
BH
1290 if (rc)
1291 return rc;
1292
a4900ac9 1293 /* Determine the number of channels and queues by trying to hook
8ceee660 1294 * in MSI-X interrupts. */
64d8ad6d
BH
1295 rc = efx_probe_interrupts(efx);
1296 if (rc)
1297 goto fail;
8ceee660 1298
5d3a6fca
BH
1299 if (efx->n_channels > 1)
1300 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1301 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429
BH
1302 efx->rx_indir_table[i] =
1303 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
5d3a6fca 1304
8831da7b 1305 efx_set_channels(efx);
c4f4adc7
BH
1306 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1307 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1308
1309 /* Initialise the interrupt moderation settings */
9e393b30
BH
1310 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1311 true);
8ceee660
BH
1312
1313 return 0;
64d8ad6d
BH
1314
1315fail:
1316 efx->type->remove(efx);
1317 return rc;
8ceee660
BH
1318}
1319
1320static void efx_remove_nic(struct efx_nic *efx)
1321{
62776d03 1322 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1323
1324 efx_remove_interrupts(efx);
ef2b90ee 1325 efx->type->remove(efx);
8ceee660
BH
1326}
1327
1328/**************************************************************************
1329 *
1330 * NIC startup/shutdown
1331 *
1332 *************************************************************************/
1333
1334static int efx_probe_all(struct efx_nic *efx)
1335{
8ceee660
BH
1336 int rc;
1337
8ceee660
BH
1338 rc = efx_probe_nic(efx);
1339 if (rc) {
62776d03 1340 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1341 goto fail1;
1342 }
1343
8ceee660
BH
1344 rc = efx_probe_port(efx);
1345 if (rc) {
62776d03 1346 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1347 goto fail2;
1348 }
1349
ecc910f5 1350 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1351 rc = efx_probe_channels(efx);
1352 if (rc)
1353 goto fail3;
8ceee660 1354
64eebcfd
BH
1355 rc = efx_probe_filters(efx);
1356 if (rc) {
1357 netif_err(efx, probe, efx->net_dev,
1358 "failed to create filter tables\n");
1359 goto fail4;
1360 }
1361
8ceee660
BH
1362 return 0;
1363
64eebcfd
BH
1364 fail4:
1365 efx_remove_channels(efx);
8ceee660 1366 fail3:
8ceee660
BH
1367 efx_remove_port(efx);
1368 fail2:
1369 efx_remove_nic(efx);
1370 fail1:
1371 return rc;
1372}
1373
1374/* Called after previous invocation(s) of efx_stop_all, restarts the
1375 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1376 * and ensures that the port is scheduled to be reconfigured.
1377 * This function is safe to call multiple times when the NIC is in any
1378 * state. */
1379static void efx_start_all(struct efx_nic *efx)
1380{
1381 struct efx_channel *channel;
1382
1383 EFX_ASSERT_RESET_SERIALISED(efx);
1384
1385 /* Check that it is appropriate to restart the interface. All
1386 * of these flags are safe to read under just the rtnl lock */
1387 if (efx->port_enabled)
1388 return;
1389 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1390 return;
73ba7b68 1391 if (!netif_running(efx->net_dev))
8ceee660
BH
1392 return;
1393
1394 /* Mark the port as enabled so port reconfigurations can start, then
1395 * restart the transmit interface early so the watchdog timer stops */
1396 efx_start_port(efx);
8ceee660 1397
73ba7b68 1398 if (netif_device_present(efx->net_dev))
c04bfc6b
BH
1399 netif_tx_wake_all_queues(efx->net_dev);
1400
1401 efx_for_each_channel(channel, efx)
8ceee660
BH
1402 efx_start_channel(channel);
1403
94dec6a2
BH
1404 if (efx->legacy_irq)
1405 efx->legacy_irq_enabled = true;
152b6a62 1406 efx_nic_enable_interrupts(efx);
8ceee660 1407
8880f4ec
BH
1408 /* Switch to event based MCDI completions after enabling interrupts.
1409 * If a reset has been scheduled, then we need to stay in polled mode.
1410 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1411 * reset_pending [modified from an atomic context], we instead guarantee
1412 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1413 efx_mcdi_mode_event(efx);
a7d529ae 1414 if (efx->reset_pending)
8880f4ec
BH
1415 efx_mcdi_mode_poll(efx);
1416
78c1f0a0
SH
1417 /* Start the hardware monitor if there is one. Otherwise (we're link
1418 * event driven), we have to poll the PHY because after an event queue
1419 * flush, we could have a missed a link state change */
1420 if (efx->type->monitor != NULL) {
8ceee660
BH
1421 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1422 efx_monitor_interval);
78c1f0a0
SH
1423 } else {
1424 mutex_lock(&efx->mac_lock);
1425 if (efx->phy_op->poll(efx))
1426 efx_link_status_changed(efx);
1427 mutex_unlock(&efx->mac_lock);
1428 }
55edc6e6 1429
ef2b90ee 1430 efx->type->start_stats(efx);
8ceee660
BH
1431}
1432
1433/* Flush all delayed work. Should only be called when no more delayed work
1434 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1435 * since we're holding the rtnl_lock at this point. */
1436static void efx_flush_all(struct efx_nic *efx)
1437{
8ceee660
BH
1438 /* Make sure the hardware monitor is stopped */
1439 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1440 /* Stop scheduled port reconfigurations */
766ca0fa 1441 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1442}
1443
1444/* Quiesce hardware and software without bringing the link down.
1445 * Safe to call multiple times, when the nic and interface is in any
1446 * state. The caller is guaranteed to subsequently be in a position
1447 * to modify any hardware and software state they see fit without
1448 * taking locks. */
1449static void efx_stop_all(struct efx_nic *efx)
1450{
1451 struct efx_channel *channel;
1452
1453 EFX_ASSERT_RESET_SERIALISED(efx);
1454
1455 /* port_enabled can be read safely under the rtnl lock */
1456 if (!efx->port_enabled)
1457 return;
1458
ef2b90ee 1459 efx->type->stop_stats(efx);
55edc6e6 1460
8880f4ec
BH
1461 /* Switch to MCDI polling on Siena before disabling interrupts */
1462 efx_mcdi_mode_poll(efx);
1463
8ceee660 1464 /* Disable interrupts and wait for ISR to complete */
152b6a62 1465 efx_nic_disable_interrupts(efx);
94dec6a2 1466 if (efx->legacy_irq) {
8ceee660 1467 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
1468 efx->legacy_irq_enabled = false;
1469 }
64ee3120 1470 efx_for_each_channel(channel, efx) {
8ceee660
BH
1471 if (channel->irq)
1472 synchronize_irq(channel->irq);
b3475645 1473 }
8ceee660
BH
1474
1475 /* Stop all NAPI processing and synchronous rx refills */
1476 efx_for_each_channel(channel, efx)
1477 efx_stop_channel(channel);
1478
1479 /* Stop all asynchronous port reconfigurations. Since all
1480 * event processing has already been stopped, there is no
1481 * window to loose phy events */
1482 efx_stop_port(efx);
1483
fdaa9aed 1484 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1485 efx_flush_all(efx);
1486
8ceee660
BH
1487 /* Stop the kernel transmit interface late, so the watchdog
1488 * timer isn't ticking over the flush */
73ba7b68
BH
1489 netif_tx_stop_all_queues(efx->net_dev);
1490 netif_tx_lock_bh(efx->net_dev);
1491 netif_tx_unlock_bh(efx->net_dev);
8ceee660
BH
1492}
1493
1494static void efx_remove_all(struct efx_nic *efx)
1495{
64eebcfd 1496 efx_remove_filters(efx);
4642610c 1497 efx_remove_channels(efx);
8ceee660
BH
1498 efx_remove_port(efx);
1499 efx_remove_nic(efx);
1500}
1501
8ceee660
BH
1502/**************************************************************************
1503 *
1504 * Interrupt moderation
1505 *
1506 **************************************************************************/
1507
cc180b69 1508static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1509{
b548f976
BH
1510 if (usecs == 0)
1511 return 0;
cc180b69 1512 if (usecs * 1000 < quantum_ns)
0d86ebd8 1513 return 1; /* never round down to 0 */
cc180b69 1514 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1515}
1516
8ceee660 1517/* Set interrupt moderation parameters */
9e393b30
BH
1518int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1519 unsigned int rx_usecs, bool rx_adaptive,
1520 bool rx_may_override_tx)
8ceee660 1521{
f7d12cdc 1522 struct efx_channel *channel;
cc180b69
BH
1523 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1524 efx->timer_quantum_ns,
1525 1000);
1526 unsigned int tx_ticks;
1527 unsigned int rx_ticks;
8ceee660
BH
1528
1529 EFX_ASSERT_RESET_SERIALISED(efx);
1530
cc180b69 1531 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1532 return -EINVAL;
1533
cc180b69
BH
1534 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1535 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1536
9e393b30
BH
1537 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1538 !rx_may_override_tx) {
1539 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1540 "RX and TX IRQ moderation must be equal\n");
1541 return -EINVAL;
1542 }
1543
6fb70fd1 1544 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1545 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1546 efx_for_each_channel(channel, efx) {
525da907 1547 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1548 channel->irq_moderation = rx_ticks;
525da907 1549 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1550 channel->irq_moderation = tx_ticks;
1551 }
9e393b30
BH
1552
1553 return 0;
8ceee660
BH
1554}
1555
a0c4faf5
BH
1556void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1557 unsigned int *rx_usecs, bool *rx_adaptive)
1558{
cc180b69
BH
1559 /* We must round up when converting ticks to microseconds
1560 * because we round down when converting the other way.
1561 */
1562
a0c4faf5 1563 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1564 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1565 efx->timer_quantum_ns,
1566 1000);
a0c4faf5
BH
1567
1568 /* If channels are shared between RX and TX, so is IRQ
1569 * moderation. Otherwise, IRQ moderation is the same for all
1570 * TX channels and is not adaptive.
1571 */
1572 if (efx->tx_channel_offset == 0)
1573 *tx_usecs = *rx_usecs;
1574 else
cc180b69 1575 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1576 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1577 efx->timer_quantum_ns,
1578 1000);
a0c4faf5
BH
1579}
1580
8ceee660
BH
1581/**************************************************************************
1582 *
1583 * Hardware monitor
1584 *
1585 **************************************************************************/
1586
e254c274 1587/* Run periodically off the general workqueue */
8ceee660
BH
1588static void efx_monitor(struct work_struct *data)
1589{
1590 struct efx_nic *efx = container_of(data, struct efx_nic,
1591 monitor_work.work);
8ceee660 1592
62776d03
BH
1593 netif_vdbg(efx, timer, efx->net_dev,
1594 "hardware monitor executing on CPU %d\n",
1595 raw_smp_processor_id());
ef2b90ee 1596 BUG_ON(efx->type->monitor == NULL);
8ceee660 1597
8ceee660
BH
1598 /* If the mac_lock is already held then it is likely a port
1599 * reconfiguration is already in place, which will likely do
e254c274
BH
1600 * most of the work of monitor() anyway. */
1601 if (mutex_trylock(&efx->mac_lock)) {
1602 if (efx->port_enabled)
1603 efx->type->monitor(efx);
1604 mutex_unlock(&efx->mac_lock);
1605 }
8ceee660 1606
8ceee660
BH
1607 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1608 efx_monitor_interval);
1609}
1610
1611/**************************************************************************
1612 *
1613 * ioctls
1614 *
1615 *************************************************************************/
1616
1617/* Net device ioctl
1618 * Context: process, rtnl_lock() held.
1619 */
1620static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1621{
767e468c 1622 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1623 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1624
1625 EFX_ASSERT_RESET_SERIALISED(efx);
1626
68e7f45e
BH
1627 /* Convert phy_id from older PRTAD/DEVAD format */
1628 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1629 (data->phy_id & 0xfc00) == 0x0400)
1630 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1631
1632 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1633}
1634
1635/**************************************************************************
1636 *
1637 * NAPI interface
1638 *
1639 **************************************************************************/
1640
e8f14992 1641static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1642{
1643 struct efx_channel *channel;
8ceee660
BH
1644
1645 efx_for_each_channel(channel, efx) {
1646 channel->napi_dev = efx->net_dev;
718cff1e
BH
1647 netif_napi_add(channel->napi_dev, &channel->napi_str,
1648 efx_poll, napi_weight);
8ceee660 1649 }
e8f14992
BH
1650}
1651
1652static void efx_fini_napi_channel(struct efx_channel *channel)
1653{
1654 if (channel->napi_dev)
1655 netif_napi_del(&channel->napi_str);
1656 channel->napi_dev = NULL;
8ceee660
BH
1657}
1658
1659static void efx_fini_napi(struct efx_nic *efx)
1660{
1661 struct efx_channel *channel;
1662
e8f14992
BH
1663 efx_for_each_channel(channel, efx)
1664 efx_fini_napi_channel(channel);
8ceee660
BH
1665}
1666
1667/**************************************************************************
1668 *
1669 * Kernel netpoll interface
1670 *
1671 *************************************************************************/
1672
1673#ifdef CONFIG_NET_POLL_CONTROLLER
1674
1675/* Although in the common case interrupts will be disabled, this is not
1676 * guaranteed. However, all our work happens inside the NAPI callback,
1677 * so no locking is required.
1678 */
1679static void efx_netpoll(struct net_device *net_dev)
1680{
767e468c 1681 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1682 struct efx_channel *channel;
1683
64ee3120 1684 efx_for_each_channel(channel, efx)
8ceee660
BH
1685 efx_schedule_channel(channel);
1686}
1687
1688#endif
1689
1690/**************************************************************************
1691 *
1692 * Kernel net device interface
1693 *
1694 *************************************************************************/
1695
1696/* Context: process, rtnl_lock() held. */
1697static int efx_net_open(struct net_device *net_dev)
1698{
767e468c 1699 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1700 EFX_ASSERT_RESET_SERIALISED(efx);
1701
62776d03
BH
1702 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1703 raw_smp_processor_id());
8ceee660 1704
f4bd954e
BH
1705 if (efx->state == STATE_DISABLED)
1706 return -EIO;
f8b87c17
BH
1707 if (efx->phy_mode & PHY_MODE_SPECIAL)
1708 return -EBUSY;
8880f4ec
BH
1709 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1710 return -EIO;
f8b87c17 1711
78c1f0a0
SH
1712 /* Notify the kernel of the link state polled during driver load,
1713 * before the monitor starts running */
1714 efx_link_status_changed(efx);
1715
8ceee660
BH
1716 efx_start_all(efx);
1717 return 0;
1718}
1719
1720/* Context: process, rtnl_lock() held.
1721 * Note that the kernel will ignore our return code; this method
1722 * should really be a void.
1723 */
1724static int efx_net_stop(struct net_device *net_dev)
1725{
767e468c 1726 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1727
62776d03
BH
1728 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1729 raw_smp_processor_id());
8ceee660 1730
f4bd954e
BH
1731 if (efx->state != STATE_DISABLED) {
1732 /* Stop the device and flush all the channels */
1733 efx_stop_all(efx);
1734 efx_fini_channels(efx);
1735 efx_init_channels(efx);
1736 }
8ceee660
BH
1737
1738 return 0;
1739}
1740
5b9e207c 1741/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
1742static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1743 struct rtnl_link_stats64 *stats)
8ceee660 1744{
767e468c 1745 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1746 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1747
55edc6e6 1748 spin_lock_bh(&efx->stats_lock);
1cb34522 1749
ef2b90ee 1750 efx->type->update_stats(efx);
8ceee660
BH
1751
1752 stats->rx_packets = mac_stats->rx_packets;
1753 stats->tx_packets = mac_stats->tx_packets;
1754 stats->rx_bytes = mac_stats->rx_bytes;
1755 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1756 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1757 stats->multicast = mac_stats->rx_multicast;
1758 stats->collisions = mac_stats->tx_collision;
1759 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1760 mac_stats->rx_length_error);
8ceee660
BH
1761 stats->rx_crc_errors = mac_stats->rx_bad;
1762 stats->rx_frame_errors = mac_stats->rx_align_error;
1763 stats->rx_fifo_errors = mac_stats->rx_overflow;
1764 stats->rx_missed_errors = mac_stats->rx_missed;
1765 stats->tx_window_errors = mac_stats->tx_late_collision;
1766
1767 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1768 stats->rx_crc_errors +
1769 stats->rx_frame_errors +
8ceee660
BH
1770 mac_stats->rx_symbol_error);
1771 stats->tx_errors = (stats->tx_window_errors +
1772 mac_stats->tx_bad);
1773
1cb34522
BH
1774 spin_unlock_bh(&efx->stats_lock);
1775
8ceee660
BH
1776 return stats;
1777}
1778
1779/* Context: netif_tx_lock held, BHs disabled. */
1780static void efx_watchdog(struct net_device *net_dev)
1781{
767e468c 1782 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1783
62776d03
BH
1784 netif_err(efx, tx_err, efx->net_dev,
1785 "TX stuck with port_enabled=%d: resetting channels\n",
1786 efx->port_enabled);
8ceee660 1787
739bb23d 1788 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1789}
1790
1791
1792/* Context: process, rtnl_lock() held. */
1793static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1794{
767e468c 1795 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1796
1797 EFX_ASSERT_RESET_SERIALISED(efx);
1798
1799 if (new_mtu > EFX_MAX_MTU)
1800 return -EINVAL;
1801
1802 efx_stop_all(efx);
1803
62776d03 1804 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1805
1806 efx_fini_channels(efx);
d3245b28
BH
1807
1808 mutex_lock(&efx->mac_lock);
1809 /* Reconfigure the MAC before enabling the dma queues so that
1810 * the RX buffers don't overflow */
8ceee660 1811 net_dev->mtu = new_mtu;
710b208d 1812 efx->type->reconfigure_mac(efx);
d3245b28
BH
1813 mutex_unlock(&efx->mac_lock);
1814
bc3c90a2 1815 efx_init_channels(efx);
8ceee660
BH
1816
1817 efx_start_all(efx);
6c8eef4a 1818 return 0;
8ceee660
BH
1819}
1820
1821static int efx_set_mac_address(struct net_device *net_dev, void *data)
1822{
767e468c 1823 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1824 struct sockaddr *addr = data;
1825 char *new_addr = addr->sa_data;
1826
1827 EFX_ASSERT_RESET_SERIALISED(efx);
1828
1829 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1830 netif_err(efx, drv, efx->net_dev,
1831 "invalid ethernet MAC address requested: %pM\n",
1832 new_addr);
8ceee660
BH
1833 return -EINVAL;
1834 }
1835
1836 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1837
1838 /* Reconfigure the MAC */
d3245b28 1839 mutex_lock(&efx->mac_lock);
710b208d 1840 efx->type->reconfigure_mac(efx);
d3245b28 1841 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1842
1843 return 0;
1844}
1845
a816f75a 1846/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1847static void efx_set_multicast_list(struct net_device *net_dev)
1848{
767e468c 1849 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1850 struct netdev_hw_addr *ha;
8ceee660 1851 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1852 u32 crc;
1853 int bit;
8ceee660 1854
8be4f3e6 1855 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1856
1857 /* Build multicast hash table */
8be4f3e6 1858 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1859 memset(mc_hash, 0xff, sizeof(*mc_hash));
1860 } else {
1861 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1862 netdev_for_each_mc_addr(ha, net_dev) {
1863 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1864 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1865 set_bit_le(bit, mc_hash->byte);
8ceee660 1866 }
8ceee660 1867
8be4f3e6
BH
1868 /* Broadcast packets go through the multicast hash filter.
1869 * ether_crc_le() of the broadcast address is 0xbe2612ff
1870 * so we always add bit 0xff to the mask.
1871 */
1872 set_bit_le(0xff, mc_hash->byte);
1873 }
a816f75a 1874
8be4f3e6
BH
1875 if (efx->port_enabled)
1876 queue_work(efx->workqueue, &efx->mac_work);
1877 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1878}
1879
c8f44aff 1880static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
1881{
1882 struct efx_nic *efx = netdev_priv(net_dev);
1883
1884 /* If disabling RX n-tuple filtering, clear existing filters */
1885 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1886 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1887
1888 return 0;
1889}
1890
c3ecb9f3
SH
1891static const struct net_device_ops efx_netdev_ops = {
1892 .ndo_open = efx_net_open,
1893 .ndo_stop = efx_net_stop,
4472702e 1894 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1895 .ndo_tx_timeout = efx_watchdog,
1896 .ndo_start_xmit = efx_hard_start_xmit,
1897 .ndo_validate_addr = eth_validate_addr,
1898 .ndo_do_ioctl = efx_ioctl,
1899 .ndo_change_mtu = efx_change_mtu,
1900 .ndo_set_mac_address = efx_set_mac_address,
afc4b13d 1901 .ndo_set_rx_mode = efx_set_multicast_list,
abfe9039 1902 .ndo_set_features = efx_set_features,
c3ecb9f3
SH
1903#ifdef CONFIG_NET_POLL_CONTROLLER
1904 .ndo_poll_controller = efx_netpoll,
1905#endif
94b274bf 1906 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
1907#ifdef CONFIG_RFS_ACCEL
1908 .ndo_rx_flow_steer = efx_filter_rfs,
1909#endif
c3ecb9f3
SH
1910};
1911
7dde596e
BH
1912static void efx_update_name(struct efx_nic *efx)
1913{
1914 strcpy(efx->name, efx->net_dev->name);
1915 efx_mtd_rename(efx);
1916 efx_set_channel_names(efx);
1917}
1918
8ceee660
BH
1919static int efx_netdev_event(struct notifier_block *this,
1920 unsigned long event, void *ptr)
1921{
d3208b5e 1922 struct net_device *net_dev = ptr;
8ceee660 1923
7dde596e
BH
1924 if (net_dev->netdev_ops == &efx_netdev_ops &&
1925 event == NETDEV_CHANGENAME)
1926 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1927
1928 return NOTIFY_DONE;
1929}
1930
1931static struct notifier_block efx_netdev_notifier = {
1932 .notifier_call = efx_netdev_event,
1933};
1934
06d5e193
BH
1935static ssize_t
1936show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1937{
1938 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1939 return sprintf(buf, "%d\n", efx->phy_type);
1940}
1941static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1942
8ceee660
BH
1943static int efx_register_netdev(struct efx_nic *efx)
1944{
1945 struct net_device *net_dev = efx->net_dev;
c04bfc6b 1946 struct efx_channel *channel;
8ceee660
BH
1947 int rc;
1948
1949 net_dev->watchdog_timeo = 5 * HZ;
1950 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1951 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1952 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1953
7dde596e 1954 rtnl_lock();
aed0628d
BH
1955
1956 rc = dev_alloc_name(net_dev, net_dev->name);
1957 if (rc < 0)
1958 goto fail_locked;
7dde596e 1959 efx_update_name(efx);
aed0628d
BH
1960
1961 rc = register_netdevice(net_dev);
1962 if (rc)
1963 goto fail_locked;
1964
c04bfc6b
BH
1965 efx_for_each_channel(channel, efx) {
1966 struct efx_tx_queue *tx_queue;
60031fcc
BH
1967 efx_for_each_channel_tx_queue(tx_queue, channel)
1968 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
1969 }
1970
aed0628d 1971 /* Always start with carrier off; PHY events will detect the link */
86ee5302 1972 netif_carrier_off(net_dev);
aed0628d 1973
7dde596e 1974 rtnl_unlock();
8ceee660 1975
06d5e193
BH
1976 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1977 if (rc) {
62776d03
BH
1978 netif_err(efx, drv, efx->net_dev,
1979 "failed to init net dev attributes\n");
06d5e193
BH
1980 goto fail_registered;
1981 }
1982
8ceee660 1983 return 0;
06d5e193 1984
aed0628d
BH
1985fail_locked:
1986 rtnl_unlock();
62776d03 1987 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1988 return rc;
1989
06d5e193
BH
1990fail_registered:
1991 unregister_netdev(net_dev);
1992 return rc;
8ceee660
BH
1993}
1994
1995static void efx_unregister_netdev(struct efx_nic *efx)
1996{
f7d12cdc 1997 struct efx_channel *channel;
8ceee660
BH
1998 struct efx_tx_queue *tx_queue;
1999
2000 if (!efx->net_dev)
2001 return;
2002
767e468c 2003 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2004
2005 /* Free up any skbs still remaining. This has to happen before
2006 * we try to unregister the netdev as running their destructors
2007 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2008 efx_for_each_channel(channel, efx) {
2009 efx_for_each_channel_tx_queue(tx_queue, channel)
2010 efx_release_tx_buffers(tx_queue);
2011 }
8ceee660 2012
73ba7b68
BH
2013 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2014 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2015 unregister_netdev(efx->net_dev);
8ceee660
BH
2016}
2017
2018/**************************************************************************
2019 *
2020 * Device reset and suspend
2021 *
2022 **************************************************************************/
2023
2467ca46
BH
2024/* Tears down the entire software state and most of the hardware state
2025 * before reset. */
d3245b28 2026void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2027{
8ceee660
BH
2028 EFX_ASSERT_RESET_SERIALISED(efx);
2029
2467ca46
BH
2030 efx_stop_all(efx);
2031 mutex_lock(&efx->mac_lock);
2032
8ceee660 2033 efx_fini_channels(efx);
4b988280
SH
2034 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2035 efx->phy_op->fini(efx);
ef2b90ee 2036 efx->type->fini(efx);
8ceee660
BH
2037}
2038
2467ca46
BH
2039/* This function will always ensure that the locks acquired in
2040 * efx_reset_down() are released. A failure return code indicates
2041 * that we were unable to reinitialise the hardware, and the
2042 * driver should be disabled. If ok is false, then the rx and tx
2043 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2044int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2045{
2046 int rc;
2047
2467ca46 2048 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2049
ef2b90ee 2050 rc = efx->type->init(efx);
8ceee660 2051 if (rc) {
62776d03 2052 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2053 goto fail;
8ceee660
BH
2054 }
2055
eb9f6744
BH
2056 if (!ok)
2057 goto fail;
2058
4b988280 2059 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2060 rc = efx->phy_op->init(efx);
2061 if (rc)
2062 goto fail;
2063 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2064 netif_err(efx, drv, efx->net_dev,
2065 "could not restore PHY settings\n");
4b988280
SH
2066 }
2067
710b208d 2068 efx->type->reconfigure_mac(efx);
8ceee660 2069
eb9f6744 2070 efx_init_channels(efx);
64eebcfd 2071 efx_restore_filters(efx);
eb9f6744 2072
eb9f6744
BH
2073 mutex_unlock(&efx->mac_lock);
2074
2075 efx_start_all(efx);
2076
2077 return 0;
2078
2079fail:
2080 efx->port_initialized = false;
2467ca46
BH
2081
2082 mutex_unlock(&efx->mac_lock);
2083
8ceee660
BH
2084 return rc;
2085}
2086
eb9f6744
BH
2087/* Reset the NIC using the specified method. Note that the reset may
2088 * fail, in which case the card will be left in an unusable state.
8ceee660 2089 *
eb9f6744 2090 * Caller must hold the rtnl_lock.
8ceee660 2091 */
eb9f6744 2092int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2093{
eb9f6744
BH
2094 int rc, rc2;
2095 bool disabled;
8ceee660 2096
62776d03
BH
2097 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2098 RESET_TYPE(method));
8ceee660 2099
e4abce85 2100 netif_device_detach(efx->net_dev);
d3245b28 2101 efx_reset_down(efx, method);
8ceee660 2102
ef2b90ee 2103 rc = efx->type->reset(efx, method);
8ceee660 2104 if (rc) {
62776d03 2105 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2106 goto out;
8ceee660
BH
2107 }
2108
a7d529ae
BH
2109 /* Clear flags for the scopes we covered. We assume the NIC and
2110 * driver are now quiescent so that there is no race here.
2111 */
2112 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2113
2114 /* Reinitialise bus-mastering, which may have been turned off before
2115 * the reset was scheduled. This is still appropriate, even in the
2116 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2117 * can respond to requests. */
2118 pci_set_master(efx->pci_dev);
2119
eb9f6744 2120out:
8ceee660 2121 /* Leave device stopped if necessary */
eb9f6744
BH
2122 disabled = rc || method == RESET_TYPE_DISABLE;
2123 rc2 = efx_reset_up(efx, method, !disabled);
2124 if (rc2) {
2125 disabled = true;
2126 if (!rc)
2127 rc = rc2;
8ceee660
BH
2128 }
2129
eb9f6744 2130 if (disabled) {
f49a4589 2131 dev_close(efx->net_dev);
62776d03 2132 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2133 efx->state = STATE_DISABLED;
f4bd954e 2134 } else {
62776d03 2135 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2136 netif_device_attach(efx->net_dev);
f4bd954e 2137 }
8ceee660
BH
2138 return rc;
2139}
2140
2141/* The worker thread exists so that code that cannot sleep can
2142 * schedule a reset for later.
2143 */
2144static void efx_reset_work(struct work_struct *data)
2145{
eb9f6744 2146 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
a7d529ae 2147 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
8ceee660 2148
a7d529ae 2149 if (!pending)
319ba649
SH
2150 return;
2151
eb9f6744 2152 /* If we're not RUNNING then don't reset. Leave the reset_pending
a7d529ae 2153 * flags set so that efx_pci_probe_main will be retried */
eb9f6744 2154 if (efx->state != STATE_RUNNING) {
62776d03
BH
2155 netif_info(efx, drv, efx->net_dev,
2156 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2157 return;
2158 }
2159
2160 rtnl_lock();
a7d529ae 2161 (void)efx_reset(efx, fls(pending) - 1);
eb9f6744 2162 rtnl_unlock();
8ceee660
BH
2163}
2164
2165void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2166{
2167 enum reset_type method;
2168
8ceee660
BH
2169 switch (type) {
2170 case RESET_TYPE_INVISIBLE:
2171 case RESET_TYPE_ALL:
2172 case RESET_TYPE_WORLD:
2173 case RESET_TYPE_DISABLE:
2174 method = type;
0e2a9c7c
BH
2175 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2176 RESET_TYPE(method));
8ceee660 2177 break;
8ceee660 2178 default:
0e2a9c7c 2179 method = efx->type->map_reset_reason(type);
62776d03
BH
2180 netif_dbg(efx, drv, efx->net_dev,
2181 "scheduling %s reset for %s\n",
2182 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2183 break;
2184 }
8ceee660 2185
a7d529ae 2186 set_bit(method, &efx->reset_pending);
8ceee660 2187
8880f4ec
BH
2188 /* efx_process_channel() will no longer read events once a
2189 * reset is scheduled. So switch back to poll'd MCDI completions. */
2190 efx_mcdi_mode_poll(efx);
2191
1ab00629 2192 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2193}
2194
2195/**************************************************************************
2196 *
2197 * List of NICs we support
2198 *
2199 **************************************************************************/
2200
2201/* PCI device ID table */
a3aa1884 2202static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2203 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2204 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2205 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2206 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2207 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2208 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2209 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2210 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2211 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2212 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2213 {0} /* end of list */
2214};
2215
2216/**************************************************************************
2217 *
3759433d 2218 * Dummy PHY/MAC operations
8ceee660 2219 *
01aad7b6 2220 * Can be used for some unimplemented operations
8ceee660
BH
2221 * Needed so all function pointers are valid and do not have to be tested
2222 * before use
2223 *
2224 **************************************************************************/
2225int efx_port_dummy_op_int(struct efx_nic *efx)
2226{
2227 return 0;
2228}
2229void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2230
2231static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2232{
2233 return false;
2234}
8ceee660 2235
6c8c2513 2236static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2237 .init = efx_port_dummy_op_int,
d3245b28 2238 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2239 .poll = efx_port_dummy_op_poll,
8ceee660 2240 .fini = efx_port_dummy_op_void,
8ceee660
BH
2241};
2242
8ceee660
BH
2243/**************************************************************************
2244 *
2245 * Data housekeeping
2246 *
2247 **************************************************************************/
2248
2249/* This zeroes out and then fills in the invariants in a struct
2250 * efx_nic (including all sub-structures).
2251 */
6c8c2513 2252static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2253 struct pci_dev *pci_dev, struct net_device *net_dev)
2254{
4642610c 2255 int i;
8ceee660
BH
2256
2257 /* Initialise common structures */
2258 memset(efx, 0, sizeof(*efx));
2259 spin_lock_init(&efx->biu_lock);
76884835
BH
2260#ifdef CONFIG_SFC_MTD
2261 INIT_LIST_HEAD(&efx->mtd_list);
2262#endif
8ceee660
BH
2263 INIT_WORK(&efx->reset_work, efx_reset_work);
2264 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2265 efx->pci_dev = pci_dev;
62776d03 2266 efx->msg_enable = debug;
8ceee660 2267 efx->state = STATE_INIT;
8ceee660 2268 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2269
2270 efx->net_dev = net_dev;
8ceee660
BH
2271 spin_lock_init(&efx->stats_lock);
2272 mutex_init(&efx->mac_lock);
2273 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2274 efx->mdio.dev = net_dev;
766ca0fa 2275 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2276
2277 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2278 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2279 if (!efx->channel[i])
2280 goto fail;
8ceee660
BH
2281 }
2282
2283 efx->type = type;
2284
8ceee660
BH
2285 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2286
2287 /* Higher numbered interrupt modes are less capable! */
2288 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2289 interrupt_mode);
2290
6977dc63
BH
2291 /* Would be good to use the net_dev name, but we're too early */
2292 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2293 pci_name(pci_dev));
2294 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2295 if (!efx->workqueue)
4642610c 2296 goto fail;
8d9853d9 2297
8ceee660 2298 return 0;
4642610c
BH
2299
2300fail:
2301 efx_fini_struct(efx);
2302 return -ENOMEM;
8ceee660
BH
2303}
2304
2305static void efx_fini_struct(struct efx_nic *efx)
2306{
8313aca3
BH
2307 int i;
2308
2309 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2310 kfree(efx->channel[i]);
2311
8ceee660
BH
2312 if (efx->workqueue) {
2313 destroy_workqueue(efx->workqueue);
2314 efx->workqueue = NULL;
2315 }
2316}
2317
2318/**************************************************************************
2319 *
2320 * PCI interface
2321 *
2322 **************************************************************************/
2323
2324/* Main body of final NIC shutdown code
2325 * This is called only at module unload (or hotplug removal).
2326 */
2327static void efx_pci_remove_main(struct efx_nic *efx)
2328{
64d8ad6d
BH
2329#ifdef CONFIG_RFS_ACCEL
2330 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2331 efx->net_dev->rx_cpu_rmap = NULL;
2332#endif
152b6a62 2333 efx_nic_fini_interrupt(efx);
8ceee660
BH
2334 efx_fini_channels(efx);
2335 efx_fini_port(efx);
ef2b90ee 2336 efx->type->fini(efx);
8ceee660
BH
2337 efx_fini_napi(efx);
2338 efx_remove_all(efx);
2339}
2340
2341/* Final NIC shutdown
2342 * This is called only at module unload (or hotplug removal).
2343 */
2344static void efx_pci_remove(struct pci_dev *pci_dev)
2345{
2346 struct efx_nic *efx;
2347
2348 efx = pci_get_drvdata(pci_dev);
2349 if (!efx)
2350 return;
2351
2352 /* Mark the NIC as fini, then stop the interface */
2353 rtnl_lock();
2354 efx->state = STATE_FINI;
2355 dev_close(efx->net_dev);
2356
2357 /* Allow any queued efx_resets() to complete */
2358 rtnl_unlock();
2359
8ceee660
BH
2360 efx_unregister_netdev(efx);
2361
7dde596e
BH
2362 efx_mtd_remove(efx);
2363
8ceee660
BH
2364 /* Wait for any scheduled resets to complete. No more will be
2365 * scheduled from this point because efx_stop_all() has been
2366 * called, we are no longer registered with driverlink, and
2367 * the net_device's have been removed. */
1ab00629 2368 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2369
2370 efx_pci_remove_main(efx);
2371
8ceee660 2372 efx_fini_io(efx);
62776d03 2373 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2374
2375 pci_set_drvdata(pci_dev, NULL);
2376 efx_fini_struct(efx);
2377 free_netdev(efx->net_dev);
2378};
2379
2380/* Main body of NIC initialisation
2381 * This is called at module load (or hotplug insertion, theoretically).
2382 */
2383static int efx_pci_probe_main(struct efx_nic *efx)
2384{
2385 int rc;
2386
2387 /* Do start-of-day initialisation */
2388 rc = efx_probe_all(efx);
2389 if (rc)
2390 goto fail1;
2391
e8f14992 2392 efx_init_napi(efx);
8ceee660 2393
ef2b90ee 2394 rc = efx->type->init(efx);
8ceee660 2395 if (rc) {
62776d03
BH
2396 netif_err(efx, probe, efx->net_dev,
2397 "failed to initialise NIC\n");
278c0621 2398 goto fail3;
8ceee660
BH
2399 }
2400
2401 rc = efx_init_port(efx);
2402 if (rc) {
62776d03
BH
2403 netif_err(efx, probe, efx->net_dev,
2404 "failed to initialise port\n");
278c0621 2405 goto fail4;
8ceee660
BH
2406 }
2407
bc3c90a2 2408 efx_init_channels(efx);
8ceee660 2409
152b6a62 2410 rc = efx_nic_init_interrupt(efx);
8ceee660 2411 if (rc)
278c0621 2412 goto fail5;
8ceee660
BH
2413
2414 return 0;
2415
278c0621 2416 fail5:
bc3c90a2 2417 efx_fini_channels(efx);
8ceee660 2418 efx_fini_port(efx);
8ceee660 2419 fail4:
ef2b90ee 2420 efx->type->fini(efx);
8ceee660
BH
2421 fail3:
2422 efx_fini_napi(efx);
8ceee660
BH
2423 efx_remove_all(efx);
2424 fail1:
2425 return rc;
2426}
2427
2428/* NIC initialisation
2429 *
2430 * This is called at module load (or hotplug insertion,
73ba7b68 2431 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2432 * sets up and registers the network devices with the kernel and hooks
2433 * the interrupt service routine. It does not prepare the device for
2434 * transmission; this is left to the first time one of the network
2435 * interfaces is brought up (i.e. efx_net_open).
2436 */
2437static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2438 const struct pci_device_id *entry)
2439{
6c8c2513 2440 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2441 struct net_device *net_dev;
2442 struct efx_nic *efx;
2443 int i, rc;
2444
2445 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2446 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2447 EFX_MAX_RX_QUEUES);
8ceee660
BH
2448 if (!net_dev)
2449 return -ENOMEM;
c383b537 2450 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2451 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2452 NETIF_F_RXCSUM);
738a8f4b
BH
2453 if (type->offload_features & NETIF_F_V6_CSUM)
2454 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2455 /* Mask for features that also apply to VLAN devices */
2456 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2457 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2458 NETIF_F_RXCSUM);
2459 /* All offloads can be toggled */
2460 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2461 efx = netdev_priv(net_dev);
8ceee660 2462 pci_set_drvdata(pci_dev, efx);
62776d03 2463 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2464 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2465 if (rc)
2466 goto fail1;
2467
62776d03 2468 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2469 "Solarflare NIC detected\n");
8ceee660
BH
2470
2471 /* Set up basic I/O (BAR mappings etc) */
2472 rc = efx_init_io(efx);
2473 if (rc)
2474 goto fail2;
2475
2476 /* No serialisation is required with the reset path because
2477 * we're in STATE_INIT. */
2478 for (i = 0; i < 5; i++) {
2479 rc = efx_pci_probe_main(efx);
8ceee660
BH
2480
2481 /* Serialise against efx_reset(). No more resets will be
2482 * scheduled since efx_stop_all() has been called, and we
2483 * have not and never have been registered with either
2484 * the rtnetlink or driverlink layers. */
1ab00629 2485 cancel_work_sync(&efx->reset_work);
8ceee660 2486
fa402b2e 2487 if (rc == 0) {
a7d529ae 2488 if (efx->reset_pending) {
fa402b2e
SH
2489 /* If there was a scheduled reset during
2490 * probe, the NIC is probably hosed anyway */
2491 efx_pci_remove_main(efx);
2492 rc = -EIO;
2493 } else {
2494 break;
2495 }
2496 }
2497
8ceee660 2498 /* Retry if a recoverably reset event has been scheduled */
a7d529ae
BH
2499 if (efx->reset_pending &
2500 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2501 !efx->reset_pending)
8ceee660
BH
2502 goto fail3;
2503
a7d529ae 2504 efx->reset_pending = 0;
8ceee660
BH
2505 }
2506
2507 if (rc) {
62776d03 2508 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2509 goto fail4;
2510 }
2511
55edc6e6
BH
2512 /* Switch to the running state before we expose the device to the OS,
2513 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2514 efx->state = STATE_RUNNING;
7dde596e 2515
8ceee660
BH
2516 rc = efx_register_netdev(efx);
2517 if (rc)
2518 goto fail5;
2519
62776d03 2520 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2521
2522 rtnl_lock();
2523 efx_mtd_probe(efx); /* allowed to fail */
2524 rtnl_unlock();
8ceee660
BH
2525 return 0;
2526
2527 fail5:
2528 efx_pci_remove_main(efx);
2529 fail4:
2530 fail3:
2531 efx_fini_io(efx);
2532 fail2:
2533 efx_fini_struct(efx);
2534 fail1:
5e2a911c 2535 WARN_ON(rc > 0);
62776d03 2536 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2537 free_netdev(net_dev);
2538 return rc;
2539}
2540
89c758fa
BH
2541static int efx_pm_freeze(struct device *dev)
2542{
2543 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2544
2545 efx->state = STATE_FINI;
2546
2547 netif_device_detach(efx->net_dev);
2548
2549 efx_stop_all(efx);
2550 efx_fini_channels(efx);
2551
2552 return 0;
2553}
2554
2555static int efx_pm_thaw(struct device *dev)
2556{
2557 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2558
2559 efx->state = STATE_INIT;
2560
2561 efx_init_channels(efx);
2562
2563 mutex_lock(&efx->mac_lock);
2564 efx->phy_op->reconfigure(efx);
2565 mutex_unlock(&efx->mac_lock);
2566
2567 efx_start_all(efx);
2568
2569 netif_device_attach(efx->net_dev);
2570
2571 efx->state = STATE_RUNNING;
2572
2573 efx->type->resume_wol(efx);
2574
319ba649
SH
2575 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2576 queue_work(reset_workqueue, &efx->reset_work);
2577
89c758fa
BH
2578 return 0;
2579}
2580
2581static int efx_pm_poweroff(struct device *dev)
2582{
2583 struct pci_dev *pci_dev = to_pci_dev(dev);
2584 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2585
2586 efx->type->fini(efx);
2587
a7d529ae 2588 efx->reset_pending = 0;
89c758fa
BH
2589
2590 pci_save_state(pci_dev);
2591 return pci_set_power_state(pci_dev, PCI_D3hot);
2592}
2593
2594/* Used for both resume and restore */
2595static int efx_pm_resume(struct device *dev)
2596{
2597 struct pci_dev *pci_dev = to_pci_dev(dev);
2598 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2599 int rc;
2600
2601 rc = pci_set_power_state(pci_dev, PCI_D0);
2602 if (rc)
2603 return rc;
2604 pci_restore_state(pci_dev);
2605 rc = pci_enable_device(pci_dev);
2606 if (rc)
2607 return rc;
2608 pci_set_master(efx->pci_dev);
2609 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2610 if (rc)
2611 return rc;
2612 rc = efx->type->init(efx);
2613 if (rc)
2614 return rc;
2615 efx_pm_thaw(dev);
2616 return 0;
2617}
2618
2619static int efx_pm_suspend(struct device *dev)
2620{
2621 int rc;
2622
2623 efx_pm_freeze(dev);
2624 rc = efx_pm_poweroff(dev);
2625 if (rc)
2626 efx_pm_resume(dev);
2627 return rc;
2628}
2629
18e83e4c 2630static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
2631 .suspend = efx_pm_suspend,
2632 .resume = efx_pm_resume,
2633 .freeze = efx_pm_freeze,
2634 .thaw = efx_pm_thaw,
2635 .poweroff = efx_pm_poweroff,
2636 .restore = efx_pm_resume,
2637};
2638
8ceee660 2639static struct pci_driver efx_pci_driver = {
c5d5f5fd 2640 .name = KBUILD_MODNAME,
8ceee660
BH
2641 .id_table = efx_pci_table,
2642 .probe = efx_pci_probe,
2643 .remove = efx_pci_remove,
89c758fa 2644 .driver.pm = &efx_pm_ops,
8ceee660
BH
2645};
2646
2647/**************************************************************************
2648 *
2649 * Kernel module interface
2650 *
2651 *************************************************************************/
2652
2653module_param(interrupt_mode, uint, 0444);
2654MODULE_PARM_DESC(interrupt_mode,
2655 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2656
2657static int __init efx_init_module(void)
2658{
2659 int rc;
2660
2661 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2662
2663 rc = register_netdevice_notifier(&efx_netdev_notifier);
2664 if (rc)
2665 goto err_notifier;
2666
1ab00629
SH
2667 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2668 if (!reset_workqueue) {
2669 rc = -ENOMEM;
2670 goto err_reset;
2671 }
8ceee660
BH
2672
2673 rc = pci_register_driver(&efx_pci_driver);
2674 if (rc < 0)
2675 goto err_pci;
2676
2677 return 0;
2678
2679 err_pci:
1ab00629
SH
2680 destroy_workqueue(reset_workqueue);
2681 err_reset:
8ceee660
BH
2682 unregister_netdevice_notifier(&efx_netdev_notifier);
2683 err_notifier:
2684 return rc;
2685}
2686
2687static void __exit efx_exit_module(void)
2688{
2689 printk(KERN_INFO "Solarflare NET driver unloading\n");
2690
2691 pci_unregister_driver(&efx_pci_driver);
1ab00629 2692 destroy_workqueue(reset_workqueue);
8ceee660
BH
2693 unregister_netdevice_notifier(&efx_netdev_notifier);
2694
2695}
2696
2697module_init(efx_init_module);
2698module_exit(efx_exit_module);
2699
906bb26c
BH
2700MODULE_AUTHOR("Solarflare Communications and "
2701 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2702MODULE_DESCRIPTION("Solarflare Communications network driver");
2703MODULE_LICENSE("GPL");
2704MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 1.231249 seconds and 5 git commands to generate.