sonice: Fix build due to botched netdev_alloc_skb() conversion.
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 41const char *const efx_loopback_mode_names[] = {
c459302d 42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 65 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d 71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 72const char *const efx_reset_type_names[] = {
c459302d
BH
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131static unsigned int rx_irq_mod_usec = 60;
132
133/* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142static unsigned int tx_irq_mod_usec = 150;
143
144/* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149static unsigned int interrupt_mode;
150
151/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 156 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
157 */
158static unsigned int rss_cpus;
159module_param(rss_cpus, uint, 0444);
160MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
84ae48fe
BH
162static int phy_flash_cfg;
163module_param(phy_flash_cfg, int, 0644);
164MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
6fb70fd1
BH
166static unsigned irq_adapt_low_thresh = 10000;
167module_param(irq_adapt_low_thresh, uint, 0644);
168MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171static unsigned irq_adapt_high_thresh = 20000;
172module_param(irq_adapt_high_thresh, uint, 0644);
173MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
62776d03
BH
176static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180module_param(debug, uint, 0);
181MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
8ceee660
BH
183/**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
4642610c
BH
188
189static void efx_remove_channels(struct efx_nic *efx);
8ceee660 190static void efx_remove_port(struct efx_nic *efx);
e8f14992 191static void efx_init_napi(struct efx_nic *efx);
8ceee660 192static void efx_fini_napi(struct efx_nic *efx);
e8f14992 193static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
194static void efx_fini_struct(struct efx_nic *efx);
195static void efx_start_all(struct efx_nic *efx);
196static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
197
198#define EFX_ASSERT_RESET_SERIALISED(efx) \
199 do { \
332c1ce9
BH
200 if ((efx->state == STATE_RUNNING) || \
201 (efx->state == STATE_DISABLED)) \
8ceee660
BH
202 ASSERT_RTNL(); \
203 } while (0)
204
205/**************************************************************************
206 *
207 * Event queue processing
208 *
209 *************************************************************************/
210
211/* Process channel's event queue
212 *
213 * This function is responsible for processing the event queue of a
214 * single channel. The caller must guarantee that this function will
215 * never be concurrently called more than once on the same channel,
216 * though different channels may be being processed concurrently.
217 */
fa236e18 218static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 219{
42cbe2d7 220 struct efx_nic *efx = channel->efx;
fa236e18 221 int spent;
8ceee660 222
a7d529ae 223 if (unlikely(efx->reset_pending || !channel->enabled))
42cbe2d7 224 return 0;
8ceee660 225
fa236e18
BH
226 spent = efx_nic_process_eventq(channel, budget);
227 if (spent == 0)
42cbe2d7 228 return 0;
8ceee660
BH
229
230 /* Deliver last RX packet. */
231 if (channel->rx_pkt) {
db339569 232 __efx_rx_packet(channel, channel->rx_pkt);
8ceee660
BH
233 channel->rx_pkt = NULL;
234 }
235
8ceee660
BH
236 efx_rx_strategy(channel);
237
f7d12cdc 238 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 239
fa236e18 240 return spent;
8ceee660
BH
241}
242
243/* Mark channel as finished processing
244 *
245 * Note that since we will not receive further interrupts for this
246 * channel before we finish processing and call the eventq_read_ack()
247 * method, there is no need to use the interrupt hold-off timers.
248 */
249static inline void efx_channel_processed(struct efx_channel *channel)
250{
5b9e207c
BH
251 /* The interrupt handler for this channel may set work_pending
252 * as soon as we acknowledge the events we've seen. Make sure
253 * it's cleared before then. */
dc8cfa55 254 channel->work_pending = false;
5b9e207c
BH
255 smp_wmb();
256
152b6a62 257 efx_nic_eventq_read_ack(channel);
8ceee660
BH
258}
259
260/* NAPI poll handler
261 *
262 * NAPI guarantees serialisation of polls of the same device, which
263 * provides the guarantee required by efx_process_channel().
264 */
265static int efx_poll(struct napi_struct *napi, int budget)
266{
267 struct efx_channel *channel =
268 container_of(napi, struct efx_channel, napi_str);
62776d03 269 struct efx_nic *efx = channel->efx;
fa236e18 270 int spent;
8ceee660 271
62776d03
BH
272 netif_vdbg(efx, intr, efx->net_dev,
273 "channel %d NAPI poll executing on CPU %d\n",
274 channel->channel, raw_smp_processor_id());
8ceee660 275
fa236e18 276 spent = efx_process_channel(channel, budget);
8ceee660 277
fa236e18 278 if (spent < budget) {
a4900ac9 279 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
280 efx->irq_rx_adaptive &&
281 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
282 if (unlikely(channel->irq_mod_score <
283 irq_adapt_low_thresh)) {
0d86ebd8
BH
284 if (channel->irq_moderation > 1) {
285 channel->irq_moderation -= 1;
ef2b90ee 286 efx->type->push_irq_moderation(channel);
0d86ebd8 287 }
6fb70fd1
BH
288 } else if (unlikely(channel->irq_mod_score >
289 irq_adapt_high_thresh)) {
0d86ebd8
BH
290 if (channel->irq_moderation <
291 efx->irq_rx_moderation) {
292 channel->irq_moderation += 1;
ef2b90ee 293 efx->type->push_irq_moderation(channel);
0d86ebd8 294 }
6fb70fd1 295 }
6fb70fd1
BH
296 channel->irq_count = 0;
297 channel->irq_mod_score = 0;
298 }
299
64d8ad6d
BH
300 efx_filter_rfs_expire(channel);
301
8ceee660 302 /* There is no race here; although napi_disable() will
288379f0 303 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
304 * since efx_channel_processed() will have no effect if
305 * interrupts have already been disabled.
306 */
288379f0 307 napi_complete(napi);
8ceee660
BH
308 efx_channel_processed(channel);
309 }
310
fa236e18 311 return spent;
8ceee660
BH
312}
313
314/* Process the eventq of the specified channel immediately on this CPU
315 *
316 * Disable hardware generated interrupts, wait for any existing
317 * processing to finish, then directly poll (and ack ) the eventq.
318 * Finally reenable NAPI and interrupts.
319 *
d4fabcc8
BH
320 * This is for use only during a loopback self-test. It must not
321 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
322 */
323void efx_process_channel_now(struct efx_channel *channel)
324{
325 struct efx_nic *efx = channel->efx;
326
8313aca3 327 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 328 BUG_ON(!channel->enabled);
d4fabcc8 329 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
330
331 /* Disable interrupts and wait for ISRs to complete */
152b6a62 332 efx_nic_disable_interrupts(efx);
94dec6a2 333 if (efx->legacy_irq) {
8ceee660 334 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
335 efx->legacy_irq_enabled = false;
336 }
64ee3120 337 if (channel->irq)
8ceee660
BH
338 synchronize_irq(channel->irq);
339
340 /* Wait for any NAPI processing to complete */
341 napi_disable(&channel->napi_str);
342
343 /* Poll the channel */
ecc910f5 344 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
345
346 /* Ack the eventq. This may cause an interrupt to be generated
347 * when they are reenabled */
348 efx_channel_processed(channel);
349
350 napi_enable(&channel->napi_str);
94dec6a2
BH
351 if (efx->legacy_irq)
352 efx->legacy_irq_enabled = true;
152b6a62 353 efx_nic_enable_interrupts(efx);
8ceee660
BH
354}
355
356/* Create event queue
357 * Event queue memory allocations are done only once. If the channel
358 * is reset, the memory buffer will be reused; this guards against
359 * errors during channel reset and also simplifies interrupt handling.
360 */
361static int efx_probe_eventq(struct efx_channel *channel)
362{
ecc910f5
SH
363 struct efx_nic *efx = channel->efx;
364 unsigned long entries;
365
86ee5302 366 netif_dbg(efx, probe, efx->net_dev,
62776d03 367 "chan %d create event queue\n", channel->channel);
8ceee660 368
ecc910f5
SH
369 /* Build an event queue with room for one event per tx and rx buffer,
370 * plus some extra for link state events and MCDI completions. */
371 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
372 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
373 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
374
152b6a62 375 return efx_nic_probe_eventq(channel);
8ceee660
BH
376}
377
378/* Prepare channel's event queue */
bc3c90a2 379static void efx_init_eventq(struct efx_channel *channel)
8ceee660 380{
62776d03
BH
381 netif_dbg(channel->efx, drv, channel->efx->net_dev,
382 "chan %d init event queue\n", channel->channel);
8ceee660
BH
383
384 channel->eventq_read_ptr = 0;
385
152b6a62 386 efx_nic_init_eventq(channel);
8ceee660
BH
387}
388
389static void efx_fini_eventq(struct efx_channel *channel)
390{
62776d03
BH
391 netif_dbg(channel->efx, drv, channel->efx->net_dev,
392 "chan %d fini event queue\n", channel->channel);
8ceee660 393
152b6a62 394 efx_nic_fini_eventq(channel);
8ceee660
BH
395}
396
397static void efx_remove_eventq(struct efx_channel *channel)
398{
62776d03
BH
399 netif_dbg(channel->efx, drv, channel->efx->net_dev,
400 "chan %d remove event queue\n", channel->channel);
8ceee660 401
152b6a62 402 efx_nic_remove_eventq(channel);
8ceee660
BH
403}
404
405/**************************************************************************
406 *
407 * Channel handling
408 *
409 *************************************************************************/
410
4642610c
BH
411/* Allocate and initialise a channel structure, optionally copying
412 * parameters (but not resources) from an old channel structure. */
413static struct efx_channel *
414efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
415{
416 struct efx_channel *channel;
417 struct efx_rx_queue *rx_queue;
418 struct efx_tx_queue *tx_queue;
419 int j;
420
421 if (old_channel) {
422 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
423 if (!channel)
424 return NULL;
425
426 *channel = *old_channel;
427
e8f14992 428 channel->napi_dev = NULL;
4642610c
BH
429 memset(&channel->eventq, 0, sizeof(channel->eventq));
430
431 rx_queue = &channel->rx_queue;
432 rx_queue->buffer = NULL;
433 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
434
435 for (j = 0; j < EFX_TXQ_TYPES; j++) {
436 tx_queue = &channel->tx_queue[j];
437 if (tx_queue->channel)
438 tx_queue->channel = channel;
439 tx_queue->buffer = NULL;
440 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
441 }
442 } else {
443 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
444 if (!channel)
445 return NULL;
446
447 channel->efx = efx;
448 channel->channel = i;
449
450 for (j = 0; j < EFX_TXQ_TYPES; j++) {
451 tx_queue = &channel->tx_queue[j];
452 tx_queue->efx = efx;
453 tx_queue->queue = i * EFX_TXQ_TYPES + j;
454 tx_queue->channel = channel;
455 }
456 }
457
4642610c
BH
458 rx_queue = &channel->rx_queue;
459 rx_queue->efx = efx;
460 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
461 (unsigned long)rx_queue);
462
463 return channel;
464}
465
8ceee660
BH
466static int efx_probe_channel(struct efx_channel *channel)
467{
468 struct efx_tx_queue *tx_queue;
469 struct efx_rx_queue *rx_queue;
470 int rc;
471
62776d03
BH
472 netif_dbg(channel->efx, probe, channel->efx->net_dev,
473 "creating channel %d\n", channel->channel);
8ceee660
BH
474
475 rc = efx_probe_eventq(channel);
476 if (rc)
477 goto fail1;
478
479 efx_for_each_channel_tx_queue(tx_queue, channel) {
480 rc = efx_probe_tx_queue(tx_queue);
481 if (rc)
482 goto fail2;
483 }
484
485 efx_for_each_channel_rx_queue(rx_queue, channel) {
486 rc = efx_probe_rx_queue(rx_queue);
487 if (rc)
488 goto fail3;
489 }
490
491 channel->n_rx_frm_trunc = 0;
492
493 return 0;
494
495 fail3:
496 efx_for_each_channel_rx_queue(rx_queue, channel)
497 efx_remove_rx_queue(rx_queue);
498 fail2:
499 efx_for_each_channel_tx_queue(tx_queue, channel)
500 efx_remove_tx_queue(tx_queue);
501 fail1:
502 return rc;
503}
504
505
56536e9c
BH
506static void efx_set_channel_names(struct efx_nic *efx)
507{
508 struct efx_channel *channel;
509 const char *type = "";
510 int number;
511
512 efx_for_each_channel(channel, efx) {
513 number = channel->channel;
a4900ac9
BH
514 if (efx->n_channels > efx->n_rx_channels) {
515 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
516 type = "-rx";
517 } else {
518 type = "-tx";
a4900ac9 519 number -= efx->n_rx_channels;
56536e9c
BH
520 }
521 }
4642610c
BH
522 snprintf(efx->channel_name[channel->channel],
523 sizeof(efx->channel_name[0]),
56536e9c
BH
524 "%s%s-%d", efx->name, type, number);
525 }
526}
527
4642610c
BH
528static int efx_probe_channels(struct efx_nic *efx)
529{
530 struct efx_channel *channel;
531 int rc;
532
533 /* Restart special buffer allocation */
534 efx->next_buffer_table = 0;
535
536 efx_for_each_channel(channel, efx) {
537 rc = efx_probe_channel(channel);
538 if (rc) {
539 netif_err(efx, probe, efx->net_dev,
540 "failed to create channel %d\n",
541 channel->channel);
542 goto fail;
543 }
544 }
545 efx_set_channel_names(efx);
546
547 return 0;
548
549fail:
550 efx_remove_channels(efx);
551 return rc;
552}
553
8ceee660
BH
554/* Channels are shutdown and reinitialised whilst the NIC is running
555 * to propagate configuration changes (mtu, checksum offload), or
556 * to clear hardware error conditions
557 */
bc3c90a2 558static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
559{
560 struct efx_tx_queue *tx_queue;
561 struct efx_rx_queue *rx_queue;
562 struct efx_channel *channel;
8ceee660 563
f7f13b0b
BH
564 /* Calculate the rx buffer allocation parameters required to
565 * support the current MTU, including padding for header
566 * alignment and overruns.
567 */
568 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
569 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 570 efx->type->rx_buffer_hash_size +
f7f13b0b 571 efx->type->rx_buffer_padding);
62b330ba
SH
572 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
573 sizeof(struct efx_rx_page_state));
8ceee660
BH
574
575 /* Initialise the channels */
576 efx_for_each_channel(channel, efx) {
62776d03
BH
577 netif_dbg(channel->efx, drv, channel->efx->net_dev,
578 "init chan %d\n", channel->channel);
8ceee660 579
bc3c90a2 580 efx_init_eventq(channel);
8ceee660 581
bc3c90a2
BH
582 efx_for_each_channel_tx_queue(tx_queue, channel)
583 efx_init_tx_queue(tx_queue);
8ceee660
BH
584
585 /* The rx buffer allocation strategy is MTU dependent */
586 efx_rx_strategy(channel);
587
bc3c90a2
BH
588 efx_for_each_channel_rx_queue(rx_queue, channel)
589 efx_init_rx_queue(rx_queue);
8ceee660
BH
590
591 WARN_ON(channel->rx_pkt != NULL);
592 efx_rx_strategy(channel);
593 }
8ceee660
BH
594}
595
596/* This enables event queue processing and packet transmission.
597 *
598 * Note that this function is not allowed to fail, since that would
599 * introduce too much complexity into the suspend/resume path.
600 */
601static void efx_start_channel(struct efx_channel *channel)
602{
603 struct efx_rx_queue *rx_queue;
604
62776d03
BH
605 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
606 "starting chan %d\n", channel->channel);
8ceee660 607
5b9e207c
BH
608 /* The interrupt handler for this channel may set work_pending
609 * as soon as we enable it. Make sure it's cleared before
610 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
611 channel->work_pending = false;
612 channel->enabled = true;
5b9e207c 613 smp_wmb();
8ceee660 614
90d683af 615 /* Fill the queues before enabling NAPI */
8ceee660
BH
616 efx_for_each_channel_rx_queue(rx_queue, channel)
617 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
618
619 napi_enable(&channel->napi_str);
8ceee660
BH
620}
621
622/* This disables event queue processing and packet transmission.
623 * This function does not guarantee that all queue processing
624 * (e.g. RX refill) is complete.
625 */
626static void efx_stop_channel(struct efx_channel *channel)
627{
8ceee660
BH
628 if (!channel->enabled)
629 return;
630
62776d03
BH
631 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
632 "stop chan %d\n", channel->channel);
8ceee660 633
dc8cfa55 634 channel->enabled = false;
8ceee660 635 napi_disable(&channel->napi_str);
8ceee660
BH
636}
637
638static void efx_fini_channels(struct efx_nic *efx)
639{
640 struct efx_channel *channel;
641 struct efx_tx_queue *tx_queue;
642 struct efx_rx_queue *rx_queue;
6bc5d3a9 643 int rc;
8ceee660
BH
644
645 EFX_ASSERT_RESET_SERIALISED(efx);
646 BUG_ON(efx->port_enabled);
647
152b6a62 648 rc = efx_nic_flush_queues(efx);
fd371e32
SH
649 if (rc && EFX_WORKAROUND_7803(efx)) {
650 /* Schedule a reset to recover from the flush failure. The
651 * descriptor caches reference memory we're about to free,
652 * but falcon_reconfigure_mac_wrapper() won't reconnect
653 * the MACs because of the pending reset. */
62776d03
BH
654 netif_err(efx, drv, efx->net_dev,
655 "Resetting to recover from flush failure\n");
fd371e32
SH
656 efx_schedule_reset(efx, RESET_TYPE_ALL);
657 } else if (rc) {
62776d03 658 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 659 } else {
62776d03
BH
660 netif_dbg(efx, drv, efx->net_dev,
661 "successfully flushed all queues\n");
fd371e32 662 }
6bc5d3a9 663
8ceee660 664 efx_for_each_channel(channel, efx) {
62776d03
BH
665 netif_dbg(channel->efx, drv, channel->efx->net_dev,
666 "shut down chan %d\n", channel->channel);
8ceee660
BH
667
668 efx_for_each_channel_rx_queue(rx_queue, channel)
669 efx_fini_rx_queue(rx_queue);
94b274bf 670 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 671 efx_fini_tx_queue(tx_queue);
8ceee660
BH
672 efx_fini_eventq(channel);
673 }
674}
675
676static void efx_remove_channel(struct efx_channel *channel)
677{
678 struct efx_tx_queue *tx_queue;
679 struct efx_rx_queue *rx_queue;
680
62776d03
BH
681 netif_dbg(channel->efx, drv, channel->efx->net_dev,
682 "destroy chan %d\n", channel->channel);
8ceee660
BH
683
684 efx_for_each_channel_rx_queue(rx_queue, channel)
685 efx_remove_rx_queue(rx_queue);
94b274bf 686 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
687 efx_remove_tx_queue(tx_queue);
688 efx_remove_eventq(channel);
8ceee660
BH
689}
690
4642610c
BH
691static void efx_remove_channels(struct efx_nic *efx)
692{
693 struct efx_channel *channel;
694
695 efx_for_each_channel(channel, efx)
696 efx_remove_channel(channel);
697}
698
699int
700efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
701{
702 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
703 u32 old_rxq_entries, old_txq_entries;
704 unsigned i;
705 int rc;
706
707 efx_stop_all(efx);
708 efx_fini_channels(efx);
709
710 /* Clone channels */
711 memset(other_channel, 0, sizeof(other_channel));
712 for (i = 0; i < efx->n_channels; i++) {
713 channel = efx_alloc_channel(efx, i, efx->channel[i]);
714 if (!channel) {
715 rc = -ENOMEM;
716 goto out;
717 }
718 other_channel[i] = channel;
719 }
720
721 /* Swap entry counts and channel pointers */
722 old_rxq_entries = efx->rxq_entries;
723 old_txq_entries = efx->txq_entries;
724 efx->rxq_entries = rxq_entries;
725 efx->txq_entries = txq_entries;
726 for (i = 0; i < efx->n_channels; i++) {
727 channel = efx->channel[i];
728 efx->channel[i] = other_channel[i];
729 other_channel[i] = channel;
730 }
731
732 rc = efx_probe_channels(efx);
733 if (rc)
734 goto rollback;
735
e8f14992
BH
736 efx_init_napi(efx);
737
4642610c 738 /* Destroy old channels */
e8f14992
BH
739 for (i = 0; i < efx->n_channels; i++) {
740 efx_fini_napi_channel(other_channel[i]);
4642610c 741 efx_remove_channel(other_channel[i]);
e8f14992 742 }
4642610c
BH
743out:
744 /* Free unused channel structures */
745 for (i = 0; i < efx->n_channels; i++)
746 kfree(other_channel[i]);
747
748 efx_init_channels(efx);
749 efx_start_all(efx);
750 return rc;
751
752rollback:
753 /* Swap back */
754 efx->rxq_entries = old_rxq_entries;
755 efx->txq_entries = old_txq_entries;
756 for (i = 0; i < efx->n_channels; i++) {
757 channel = efx->channel[i];
758 efx->channel[i] = other_channel[i];
759 other_channel[i] = channel;
760 }
761 goto out;
762}
763
90d683af 764void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 765{
90d683af 766 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
767}
768
769/**************************************************************************
770 *
771 * Port handling
772 *
773 **************************************************************************/
774
775/* This ensures that the kernel is kept informed (via
776 * netif_carrier_on/off) of the link status, and also maintains the
777 * link status's stop on the port's TX queue.
778 */
fdaa9aed 779void efx_link_status_changed(struct efx_nic *efx)
8ceee660 780{
eb50c0d6
BH
781 struct efx_link_state *link_state = &efx->link_state;
782
8ceee660
BH
783 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
784 * that no events are triggered between unregister_netdev() and the
785 * driver unloading. A more general condition is that NETDEV_CHANGE
786 * can only be generated between NETDEV_UP and NETDEV_DOWN */
787 if (!netif_running(efx->net_dev))
788 return;
789
eb50c0d6 790 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
791 efx->n_link_state_changes++;
792
eb50c0d6 793 if (link_state->up)
8ceee660
BH
794 netif_carrier_on(efx->net_dev);
795 else
796 netif_carrier_off(efx->net_dev);
797 }
798
799 /* Status message for kernel log */
2aa9ef11 800 if (link_state->up)
62776d03
BH
801 netif_info(efx, link, efx->net_dev,
802 "link up at %uMbps %s-duplex (MTU %d)%s\n",
803 link_state->speed, link_state->fd ? "full" : "half",
804 efx->net_dev->mtu,
805 (efx->promiscuous ? " [PROMISC]" : ""));
2aa9ef11 806 else
62776d03 807 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
808}
809
d3245b28
BH
810void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
811{
812 efx->link_advertising = advertising;
813 if (advertising) {
814 if (advertising & ADVERTISED_Pause)
815 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
816 else
817 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
818 if (advertising & ADVERTISED_Asym_Pause)
819 efx->wanted_fc ^= EFX_FC_TX;
820 }
821}
822
b5626946 823void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
824{
825 efx->wanted_fc = wanted_fc;
826 if (efx->link_advertising) {
827 if (wanted_fc & EFX_FC_RX)
828 efx->link_advertising |= (ADVERTISED_Pause |
829 ADVERTISED_Asym_Pause);
830 else
831 efx->link_advertising &= ~(ADVERTISED_Pause |
832 ADVERTISED_Asym_Pause);
833 if (wanted_fc & EFX_FC_TX)
834 efx->link_advertising ^= ADVERTISED_Asym_Pause;
835 }
836}
837
115122af
BH
838static void efx_fini_port(struct efx_nic *efx);
839
d3245b28
BH
840/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
841 * the MAC appropriately. All other PHY configuration changes are pushed
842 * through phy_op->set_settings(), and pushed asynchronously to the MAC
843 * through efx_monitor().
844 *
845 * Callers must hold the mac_lock
846 */
847int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 848{
d3245b28
BH
849 enum efx_phy_mode phy_mode;
850 int rc;
8ceee660 851
d3245b28 852 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 853
0fca8c97 854 /* Serialise the promiscuous flag with efx_set_rx_mode. */
73ba7b68
BH
855 netif_addr_lock_bh(efx->net_dev);
856 netif_addr_unlock_bh(efx->net_dev);
a816f75a 857
d3245b28
BH
858 /* Disable PHY transmit in mac level loopbacks */
859 phy_mode = efx->phy_mode;
177dfcd8
BH
860 if (LOOPBACK_INTERNAL(efx))
861 efx->phy_mode |= PHY_MODE_TX_DISABLED;
862 else
863 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 864
d3245b28 865 rc = efx->type->reconfigure_port(efx);
8ceee660 866
d3245b28
BH
867 if (rc)
868 efx->phy_mode = phy_mode;
177dfcd8 869
d3245b28 870 return rc;
8ceee660
BH
871}
872
873/* Reinitialise the MAC to pick up new PHY settings, even if the port is
874 * disabled. */
d3245b28 875int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 876{
d3245b28
BH
877 int rc;
878
8ceee660
BH
879 EFX_ASSERT_RESET_SERIALISED(efx);
880
881 mutex_lock(&efx->mac_lock);
d3245b28 882 rc = __efx_reconfigure_port(efx);
8ceee660 883 mutex_unlock(&efx->mac_lock);
d3245b28
BH
884
885 return rc;
8ceee660
BH
886}
887
8be4f3e6
BH
888/* Asynchronous work item for changing MAC promiscuity and multicast
889 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
890 * MAC directly. */
766ca0fa
BH
891static void efx_mac_work(struct work_struct *data)
892{
893 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
894
895 mutex_lock(&efx->mac_lock);
30b81cda 896 if (efx->port_enabled)
710b208d 897 efx->type->reconfigure_mac(efx);
766ca0fa
BH
898 mutex_unlock(&efx->mac_lock);
899}
900
8ceee660
BH
901static int efx_probe_port(struct efx_nic *efx)
902{
903 int rc;
904
62776d03 905 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 906
ff3b00a0
SH
907 if (phy_flash_cfg)
908 efx->phy_mode = PHY_MODE_SPECIAL;
909
ef2b90ee
BH
910 /* Connect up MAC/PHY operations table */
911 rc = efx->type->probe_port(efx);
8ceee660 912 if (rc)
e42de262 913 return rc;
8ceee660 914
e332bcb3
BH
915 /* Initialise MAC address to permanent address */
916 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
8ceee660
BH
917
918 return 0;
8ceee660
BH
919}
920
921static int efx_init_port(struct efx_nic *efx)
922{
923 int rc;
924
62776d03 925 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 926
1dfc5cea
BH
927 mutex_lock(&efx->mac_lock);
928
177dfcd8 929 rc = efx->phy_op->init(efx);
8ceee660 930 if (rc)
1dfc5cea 931 goto fail1;
8ceee660 932
dc8cfa55 933 efx->port_initialized = true;
1dfc5cea 934
d3245b28
BH
935 /* Reconfigure the MAC before creating dma queues (required for
936 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 937 efx->type->reconfigure_mac(efx);
d3245b28
BH
938
939 /* Ensure the PHY advertises the correct flow control settings */
940 rc = efx->phy_op->reconfigure(efx);
941 if (rc)
942 goto fail2;
943
1dfc5cea 944 mutex_unlock(&efx->mac_lock);
8ceee660 945 return 0;
177dfcd8 946
1dfc5cea 947fail2:
177dfcd8 948 efx->phy_op->fini(efx);
1dfc5cea
BH
949fail1:
950 mutex_unlock(&efx->mac_lock);
177dfcd8 951 return rc;
8ceee660
BH
952}
953
8ceee660
BH
954static void efx_start_port(struct efx_nic *efx)
955{
62776d03 956 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
957 BUG_ON(efx->port_enabled);
958
959 mutex_lock(&efx->mac_lock);
dc8cfa55 960 efx->port_enabled = true;
8be4f3e6
BH
961
962 /* efx_mac_work() might have been scheduled after efx_stop_port(),
963 * and then cancelled by efx_flush_all() */
710b208d 964 efx->type->reconfigure_mac(efx);
8be4f3e6 965
8ceee660
BH
966 mutex_unlock(&efx->mac_lock);
967}
968
fdaa9aed 969/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
970static void efx_stop_port(struct efx_nic *efx)
971{
62776d03 972 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
973
974 mutex_lock(&efx->mac_lock);
dc8cfa55 975 efx->port_enabled = false;
8ceee660
BH
976 mutex_unlock(&efx->mac_lock);
977
978 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
979 netif_addr_lock_bh(efx->net_dev);
980 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
981}
982
983static void efx_fini_port(struct efx_nic *efx)
984{
62776d03 985 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
986
987 if (!efx->port_initialized)
988 return;
989
177dfcd8 990 efx->phy_op->fini(efx);
dc8cfa55 991 efx->port_initialized = false;
8ceee660 992
eb50c0d6 993 efx->link_state.up = false;
8ceee660
BH
994 efx_link_status_changed(efx);
995}
996
997static void efx_remove_port(struct efx_nic *efx)
998{
62776d03 999 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1000
ef2b90ee 1001 efx->type->remove_port(efx);
8ceee660
BH
1002}
1003
1004/**************************************************************************
1005 *
1006 * NIC handling
1007 *
1008 **************************************************************************/
1009
1010/* This configures the PCI device to enable I/O and DMA. */
1011static int efx_init_io(struct efx_nic *efx)
1012{
1013 struct pci_dev *pci_dev = efx->pci_dev;
1014 dma_addr_t dma_mask = efx->type->max_dma_mask;
1015 int rc;
1016
62776d03 1017 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1018
1019 rc = pci_enable_device(pci_dev);
1020 if (rc) {
62776d03
BH
1021 netif_err(efx, probe, efx->net_dev,
1022 "failed to enable PCI device\n");
8ceee660
BH
1023 goto fail1;
1024 }
1025
1026 pci_set_master(pci_dev);
1027
1028 /* Set the PCI DMA mask. Try all possibilities from our
1029 * genuine mask down to 32 bits, because some architectures
1030 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1031 * masks event though they reject 46 bit masks.
1032 */
1033 while (dma_mask > 0x7fffffffUL) {
e9e01846
BH
1034 if (pci_dma_supported(pci_dev, dma_mask)) {
1035 rc = pci_set_dma_mask(pci_dev, dma_mask);
1036 if (rc == 0)
1037 break;
1038 }
8ceee660
BH
1039 dma_mask >>= 1;
1040 }
1041 if (rc) {
62776d03
BH
1042 netif_err(efx, probe, efx->net_dev,
1043 "could not find a suitable DMA mask\n");
8ceee660
BH
1044 goto fail2;
1045 }
62776d03
BH
1046 netif_dbg(efx, probe, efx->net_dev,
1047 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1048 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1049 if (rc) {
1050 /* pci_set_consistent_dma_mask() is not *allowed* to
1051 * fail with a mask that pci_set_dma_mask() accepted,
1052 * but just in case...
1053 */
62776d03
BH
1054 netif_err(efx, probe, efx->net_dev,
1055 "failed to set consistent DMA mask\n");
8ceee660
BH
1056 goto fail2;
1057 }
1058
dc803df8
BH
1059 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1060 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1061 if (rc) {
62776d03
BH
1062 netif_err(efx, probe, efx->net_dev,
1063 "request for memory BAR failed\n");
8ceee660
BH
1064 rc = -EIO;
1065 goto fail3;
1066 }
86c432ca
BH
1067 efx->membase = ioremap_nocache(efx->membase_phys,
1068 efx->type->mem_map_size);
8ceee660 1069 if (!efx->membase) {
62776d03
BH
1070 netif_err(efx, probe, efx->net_dev,
1071 "could not map memory BAR at %llx+%x\n",
1072 (unsigned long long)efx->membase_phys,
1073 efx->type->mem_map_size);
8ceee660
BH
1074 rc = -ENOMEM;
1075 goto fail4;
1076 }
62776d03
BH
1077 netif_dbg(efx, probe, efx->net_dev,
1078 "memory BAR at %llx+%x (virtual %p)\n",
1079 (unsigned long long)efx->membase_phys,
1080 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1081
1082 return 0;
1083
1084 fail4:
dc803df8 1085 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1086 fail3:
2c118e0f 1087 efx->membase_phys = 0;
8ceee660
BH
1088 fail2:
1089 pci_disable_device(efx->pci_dev);
1090 fail1:
1091 return rc;
1092}
1093
1094static void efx_fini_io(struct efx_nic *efx)
1095{
62776d03 1096 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1097
1098 if (efx->membase) {
1099 iounmap(efx->membase);
1100 efx->membase = NULL;
1101 }
1102
1103 if (efx->membase_phys) {
dc803df8 1104 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1105 efx->membase_phys = 0;
8ceee660
BH
1106 }
1107
1108 pci_disable_device(efx->pci_dev);
1109}
1110
fa142b9d 1111static int efx_wanted_parallelism(void)
46123d04 1112{
cdb08f8f 1113 cpumask_var_t thread_mask;
46123d04
BH
1114 int count;
1115 int cpu;
5b874e25
BH
1116
1117 if (rss_cpus)
1118 return rss_cpus;
46123d04 1119
cdb08f8f 1120 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
2f8975fb 1121 printk(KERN_WARNING
3977d033 1122 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1123 return 1;
1124 }
1125
46123d04
BH
1126 count = 0;
1127 for_each_online_cpu(cpu) {
cdb08f8f 1128 if (!cpumask_test_cpu(cpu, thread_mask)) {
46123d04 1129 ++count;
cdb08f8f
BH
1130 cpumask_or(thread_mask, thread_mask,
1131 topology_thread_cpumask(cpu));
46123d04
BH
1132 }
1133 }
1134
cdb08f8f 1135 free_cpumask_var(thread_mask);
46123d04
BH
1136 return count;
1137}
1138
64d8ad6d
BH
1139static int
1140efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1141{
1142#ifdef CONFIG_RFS_ACCEL
1143 int i, rc;
1144
1145 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1146 if (!efx->net_dev->rx_cpu_rmap)
1147 return -ENOMEM;
1148 for (i = 0; i < efx->n_rx_channels; i++) {
1149 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1150 xentries[i].vector);
1151 if (rc) {
1152 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1153 efx->net_dev->rx_cpu_rmap = NULL;
1154 return rc;
1155 }
1156 }
1157#endif
1158 return 0;
1159}
1160
46123d04
BH
1161/* Probe the number and type of interrupts we are able to obtain, and
1162 * the resulting numbers of channels and RX queues.
1163 */
64d8ad6d 1164static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1165{
46123d04
BH
1166 int max_channels =
1167 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1168 int rc, i;
1169
1170 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1171 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1172 int n_channels;
aa6ef27e 1173
fa142b9d 1174 n_channels = efx_wanted_parallelism();
a4900ac9
BH
1175 if (separate_tx_channels)
1176 n_channels *= 2;
1177 n_channels = min(n_channels, max_channels);
8ceee660 1178
a4900ac9 1179 for (i = 0; i < n_channels; i++)
8ceee660 1180 xentries[i].entry = i;
a4900ac9 1181 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1182 if (rc > 0) {
62776d03
BH
1183 netif_err(efx, drv, efx->net_dev,
1184 "WARNING: Insufficient MSI-X vectors"
1185 " available (%d < %d).\n", rc, n_channels);
1186 netif_err(efx, drv, efx->net_dev,
1187 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1188 EFX_BUG_ON_PARANOID(rc >= n_channels);
1189 n_channels = rc;
8ceee660 1190 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1191 n_channels);
8ceee660
BH
1192 }
1193
1194 if (rc == 0) {
a4900ac9
BH
1195 efx->n_channels = n_channels;
1196 if (separate_tx_channels) {
1197 efx->n_tx_channels =
1198 max(efx->n_channels / 2, 1U);
1199 efx->n_rx_channels =
1200 max(efx->n_channels -
1201 efx->n_tx_channels, 1U);
1202 } else {
1203 efx->n_tx_channels = efx->n_channels;
1204 efx->n_rx_channels = efx->n_channels;
1205 }
64d8ad6d
BH
1206 rc = efx_init_rx_cpu_rmap(efx, xentries);
1207 if (rc) {
1208 pci_disable_msix(efx->pci_dev);
1209 return rc;
1210 }
a4900ac9 1211 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1212 efx_get_channel(efx, i)->irq =
1213 xentries[i].vector;
8ceee660
BH
1214 } else {
1215 /* Fall back to single channel MSI */
1216 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1217 netif_err(efx, drv, efx->net_dev,
1218 "could not enable MSI-X\n");
8ceee660
BH
1219 }
1220 }
1221
1222 /* Try single interrupt MSI */
1223 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1224 efx->n_channels = 1;
a4900ac9
BH
1225 efx->n_rx_channels = 1;
1226 efx->n_tx_channels = 1;
8ceee660
BH
1227 rc = pci_enable_msi(efx->pci_dev);
1228 if (rc == 0) {
f7d12cdc 1229 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1230 } else {
62776d03
BH
1231 netif_err(efx, drv, efx->net_dev,
1232 "could not enable MSI\n");
8ceee660
BH
1233 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1234 }
1235 }
1236
1237 /* Assume legacy interrupts */
1238 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1239 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1240 efx->n_rx_channels = 1;
1241 efx->n_tx_channels = 1;
8ceee660
BH
1242 efx->legacy_irq = efx->pci_dev->irq;
1243 }
64d8ad6d
BH
1244
1245 return 0;
8ceee660
BH
1246}
1247
1248static void efx_remove_interrupts(struct efx_nic *efx)
1249{
1250 struct efx_channel *channel;
1251
1252 /* Remove MSI/MSI-X interrupts */
64ee3120 1253 efx_for_each_channel(channel, efx)
8ceee660
BH
1254 channel->irq = 0;
1255 pci_disable_msi(efx->pci_dev);
1256 pci_disable_msix(efx->pci_dev);
1257
1258 /* Remove legacy interrupt */
1259 efx->legacy_irq = 0;
1260}
1261
8831da7b 1262static void efx_set_channels(struct efx_nic *efx)
8ceee660 1263{
602a5322
BH
1264 struct efx_channel *channel;
1265 struct efx_tx_queue *tx_queue;
1266
97653431 1267 efx->tx_channel_offset =
a4900ac9 1268 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1269
1270 /* We need to adjust the TX queue numbers if we have separate
1271 * RX-only and TX-only channels.
1272 */
1273 efx_for_each_channel(channel, efx) {
1274 efx_for_each_channel_tx_queue(tx_queue, channel)
1275 tx_queue->queue -= (efx->tx_channel_offset *
1276 EFX_TXQ_TYPES);
1277 }
8ceee660
BH
1278}
1279
1280static int efx_probe_nic(struct efx_nic *efx)
1281{
765c9f46 1282 size_t i;
8ceee660
BH
1283 int rc;
1284
62776d03 1285 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1286
1287 /* Carry out hardware-type specific initialisation */
ef2b90ee 1288 rc = efx->type->probe(efx);
8ceee660
BH
1289 if (rc)
1290 return rc;
1291
a4900ac9 1292 /* Determine the number of channels and queues by trying to hook
8ceee660 1293 * in MSI-X interrupts. */
64d8ad6d
BH
1294 rc = efx_probe_interrupts(efx);
1295 if (rc)
1296 goto fail;
8ceee660 1297
5d3a6fca
BH
1298 if (efx->n_channels > 1)
1299 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1300 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429
BH
1301 efx->rx_indir_table[i] =
1302 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
5d3a6fca 1303
8831da7b 1304 efx_set_channels(efx);
c4f4adc7
BH
1305 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1306 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1307
1308 /* Initialise the interrupt moderation settings */
9e393b30
BH
1309 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1310 true);
8ceee660
BH
1311
1312 return 0;
64d8ad6d
BH
1313
1314fail:
1315 efx->type->remove(efx);
1316 return rc;
8ceee660
BH
1317}
1318
1319static void efx_remove_nic(struct efx_nic *efx)
1320{
62776d03 1321 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1322
1323 efx_remove_interrupts(efx);
ef2b90ee 1324 efx->type->remove(efx);
8ceee660
BH
1325}
1326
1327/**************************************************************************
1328 *
1329 * NIC startup/shutdown
1330 *
1331 *************************************************************************/
1332
1333static int efx_probe_all(struct efx_nic *efx)
1334{
8ceee660
BH
1335 int rc;
1336
8ceee660
BH
1337 rc = efx_probe_nic(efx);
1338 if (rc) {
62776d03 1339 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1340 goto fail1;
1341 }
1342
8ceee660
BH
1343 rc = efx_probe_port(efx);
1344 if (rc) {
62776d03 1345 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1346 goto fail2;
1347 }
1348
ecc910f5 1349 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1350 rc = efx_probe_channels(efx);
1351 if (rc)
1352 goto fail3;
8ceee660 1353
64eebcfd
BH
1354 rc = efx_probe_filters(efx);
1355 if (rc) {
1356 netif_err(efx, probe, efx->net_dev,
1357 "failed to create filter tables\n");
1358 goto fail4;
1359 }
1360
8ceee660
BH
1361 return 0;
1362
64eebcfd
BH
1363 fail4:
1364 efx_remove_channels(efx);
8ceee660 1365 fail3:
8ceee660
BH
1366 efx_remove_port(efx);
1367 fail2:
1368 efx_remove_nic(efx);
1369 fail1:
1370 return rc;
1371}
1372
1373/* Called after previous invocation(s) of efx_stop_all, restarts the
1374 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1375 * and ensures that the port is scheduled to be reconfigured.
1376 * This function is safe to call multiple times when the NIC is in any
1377 * state. */
1378static void efx_start_all(struct efx_nic *efx)
1379{
1380 struct efx_channel *channel;
1381
1382 EFX_ASSERT_RESET_SERIALISED(efx);
1383
1384 /* Check that it is appropriate to restart the interface. All
1385 * of these flags are safe to read under just the rtnl lock */
1386 if (efx->port_enabled)
1387 return;
1388 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1389 return;
73ba7b68 1390 if (!netif_running(efx->net_dev))
8ceee660
BH
1391 return;
1392
1393 /* Mark the port as enabled so port reconfigurations can start, then
1394 * restart the transmit interface early so the watchdog timer stops */
1395 efx_start_port(efx);
8ceee660 1396
73ba7b68 1397 if (netif_device_present(efx->net_dev))
c04bfc6b
BH
1398 netif_tx_wake_all_queues(efx->net_dev);
1399
1400 efx_for_each_channel(channel, efx)
8ceee660
BH
1401 efx_start_channel(channel);
1402
94dec6a2
BH
1403 if (efx->legacy_irq)
1404 efx->legacy_irq_enabled = true;
152b6a62 1405 efx_nic_enable_interrupts(efx);
8ceee660 1406
8880f4ec
BH
1407 /* Switch to event based MCDI completions after enabling interrupts.
1408 * If a reset has been scheduled, then we need to stay in polled mode.
1409 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1410 * reset_pending [modified from an atomic context], we instead guarantee
1411 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1412 efx_mcdi_mode_event(efx);
a7d529ae 1413 if (efx->reset_pending)
8880f4ec
BH
1414 efx_mcdi_mode_poll(efx);
1415
78c1f0a0
SH
1416 /* Start the hardware monitor if there is one. Otherwise (we're link
1417 * event driven), we have to poll the PHY because after an event queue
1418 * flush, we could have a missed a link state change */
1419 if (efx->type->monitor != NULL) {
8ceee660
BH
1420 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1421 efx_monitor_interval);
78c1f0a0
SH
1422 } else {
1423 mutex_lock(&efx->mac_lock);
1424 if (efx->phy_op->poll(efx))
1425 efx_link_status_changed(efx);
1426 mutex_unlock(&efx->mac_lock);
1427 }
55edc6e6 1428
ef2b90ee 1429 efx->type->start_stats(efx);
8ceee660
BH
1430}
1431
1432/* Flush all delayed work. Should only be called when no more delayed work
1433 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1434 * since we're holding the rtnl_lock at this point. */
1435static void efx_flush_all(struct efx_nic *efx)
1436{
8ceee660
BH
1437 /* Make sure the hardware monitor is stopped */
1438 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1439 /* Stop scheduled port reconfigurations */
766ca0fa 1440 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1441}
1442
1443/* Quiesce hardware and software without bringing the link down.
1444 * Safe to call multiple times, when the nic and interface is in any
1445 * state. The caller is guaranteed to subsequently be in a position
1446 * to modify any hardware and software state they see fit without
1447 * taking locks. */
1448static void efx_stop_all(struct efx_nic *efx)
1449{
1450 struct efx_channel *channel;
1451
1452 EFX_ASSERT_RESET_SERIALISED(efx);
1453
1454 /* port_enabled can be read safely under the rtnl lock */
1455 if (!efx->port_enabled)
1456 return;
1457
ef2b90ee 1458 efx->type->stop_stats(efx);
55edc6e6 1459
8880f4ec
BH
1460 /* Switch to MCDI polling on Siena before disabling interrupts */
1461 efx_mcdi_mode_poll(efx);
1462
8ceee660 1463 /* Disable interrupts and wait for ISR to complete */
152b6a62 1464 efx_nic_disable_interrupts(efx);
94dec6a2 1465 if (efx->legacy_irq) {
8ceee660 1466 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
1467 efx->legacy_irq_enabled = false;
1468 }
64ee3120 1469 efx_for_each_channel(channel, efx) {
8ceee660
BH
1470 if (channel->irq)
1471 synchronize_irq(channel->irq);
b3475645 1472 }
8ceee660
BH
1473
1474 /* Stop all NAPI processing and synchronous rx refills */
1475 efx_for_each_channel(channel, efx)
1476 efx_stop_channel(channel);
1477
1478 /* Stop all asynchronous port reconfigurations. Since all
1479 * event processing has already been stopped, there is no
1480 * window to loose phy events */
1481 efx_stop_port(efx);
1482
fdaa9aed 1483 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1484 efx_flush_all(efx);
1485
8ceee660
BH
1486 /* Stop the kernel transmit interface late, so the watchdog
1487 * timer isn't ticking over the flush */
73ba7b68
BH
1488 netif_tx_stop_all_queues(efx->net_dev);
1489 netif_tx_lock_bh(efx->net_dev);
1490 netif_tx_unlock_bh(efx->net_dev);
8ceee660
BH
1491}
1492
1493static void efx_remove_all(struct efx_nic *efx)
1494{
64eebcfd 1495 efx_remove_filters(efx);
4642610c 1496 efx_remove_channels(efx);
8ceee660
BH
1497 efx_remove_port(efx);
1498 efx_remove_nic(efx);
1499}
1500
8ceee660
BH
1501/**************************************************************************
1502 *
1503 * Interrupt moderation
1504 *
1505 **************************************************************************/
1506
cc180b69 1507static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1508{
b548f976
BH
1509 if (usecs == 0)
1510 return 0;
cc180b69 1511 if (usecs * 1000 < quantum_ns)
0d86ebd8 1512 return 1; /* never round down to 0 */
cc180b69 1513 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1514}
1515
8ceee660 1516/* Set interrupt moderation parameters */
9e393b30
BH
1517int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1518 unsigned int rx_usecs, bool rx_adaptive,
1519 bool rx_may_override_tx)
8ceee660 1520{
f7d12cdc 1521 struct efx_channel *channel;
cc180b69
BH
1522 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1523 efx->timer_quantum_ns,
1524 1000);
1525 unsigned int tx_ticks;
1526 unsigned int rx_ticks;
8ceee660
BH
1527
1528 EFX_ASSERT_RESET_SERIALISED(efx);
1529
cc180b69 1530 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1531 return -EINVAL;
1532
cc180b69
BH
1533 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1534 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1535
9e393b30
BH
1536 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1537 !rx_may_override_tx) {
1538 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1539 "RX and TX IRQ moderation must be equal\n");
1540 return -EINVAL;
1541 }
1542
6fb70fd1 1543 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1544 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1545 efx_for_each_channel(channel, efx) {
525da907 1546 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1547 channel->irq_moderation = rx_ticks;
525da907 1548 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1549 channel->irq_moderation = tx_ticks;
1550 }
9e393b30
BH
1551
1552 return 0;
8ceee660
BH
1553}
1554
a0c4faf5
BH
1555void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1556 unsigned int *rx_usecs, bool *rx_adaptive)
1557{
cc180b69
BH
1558 /* We must round up when converting ticks to microseconds
1559 * because we round down when converting the other way.
1560 */
1561
a0c4faf5 1562 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1563 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1564 efx->timer_quantum_ns,
1565 1000);
a0c4faf5
BH
1566
1567 /* If channels are shared between RX and TX, so is IRQ
1568 * moderation. Otherwise, IRQ moderation is the same for all
1569 * TX channels and is not adaptive.
1570 */
1571 if (efx->tx_channel_offset == 0)
1572 *tx_usecs = *rx_usecs;
1573 else
cc180b69 1574 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1575 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1576 efx->timer_quantum_ns,
1577 1000);
a0c4faf5
BH
1578}
1579
8ceee660
BH
1580/**************************************************************************
1581 *
1582 * Hardware monitor
1583 *
1584 **************************************************************************/
1585
e254c274 1586/* Run periodically off the general workqueue */
8ceee660
BH
1587static void efx_monitor(struct work_struct *data)
1588{
1589 struct efx_nic *efx = container_of(data, struct efx_nic,
1590 monitor_work.work);
8ceee660 1591
62776d03
BH
1592 netif_vdbg(efx, timer, efx->net_dev,
1593 "hardware monitor executing on CPU %d\n",
1594 raw_smp_processor_id());
ef2b90ee 1595 BUG_ON(efx->type->monitor == NULL);
8ceee660 1596
8ceee660
BH
1597 /* If the mac_lock is already held then it is likely a port
1598 * reconfiguration is already in place, which will likely do
e254c274
BH
1599 * most of the work of monitor() anyway. */
1600 if (mutex_trylock(&efx->mac_lock)) {
1601 if (efx->port_enabled)
1602 efx->type->monitor(efx);
1603 mutex_unlock(&efx->mac_lock);
1604 }
8ceee660 1605
8ceee660
BH
1606 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1607 efx_monitor_interval);
1608}
1609
1610/**************************************************************************
1611 *
1612 * ioctls
1613 *
1614 *************************************************************************/
1615
1616/* Net device ioctl
1617 * Context: process, rtnl_lock() held.
1618 */
1619static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1620{
767e468c 1621 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1622 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1623
1624 EFX_ASSERT_RESET_SERIALISED(efx);
1625
68e7f45e
BH
1626 /* Convert phy_id from older PRTAD/DEVAD format */
1627 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1628 (data->phy_id & 0xfc00) == 0x0400)
1629 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1630
1631 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1632}
1633
1634/**************************************************************************
1635 *
1636 * NAPI interface
1637 *
1638 **************************************************************************/
1639
e8f14992 1640static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1641{
1642 struct efx_channel *channel;
8ceee660
BH
1643
1644 efx_for_each_channel(channel, efx) {
1645 channel->napi_dev = efx->net_dev;
718cff1e
BH
1646 netif_napi_add(channel->napi_dev, &channel->napi_str,
1647 efx_poll, napi_weight);
8ceee660 1648 }
e8f14992
BH
1649}
1650
1651static void efx_fini_napi_channel(struct efx_channel *channel)
1652{
1653 if (channel->napi_dev)
1654 netif_napi_del(&channel->napi_str);
1655 channel->napi_dev = NULL;
8ceee660
BH
1656}
1657
1658static void efx_fini_napi(struct efx_nic *efx)
1659{
1660 struct efx_channel *channel;
1661
e8f14992
BH
1662 efx_for_each_channel(channel, efx)
1663 efx_fini_napi_channel(channel);
8ceee660
BH
1664}
1665
1666/**************************************************************************
1667 *
1668 * Kernel netpoll interface
1669 *
1670 *************************************************************************/
1671
1672#ifdef CONFIG_NET_POLL_CONTROLLER
1673
1674/* Although in the common case interrupts will be disabled, this is not
1675 * guaranteed. However, all our work happens inside the NAPI callback,
1676 * so no locking is required.
1677 */
1678static void efx_netpoll(struct net_device *net_dev)
1679{
767e468c 1680 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1681 struct efx_channel *channel;
1682
64ee3120 1683 efx_for_each_channel(channel, efx)
8ceee660
BH
1684 efx_schedule_channel(channel);
1685}
1686
1687#endif
1688
1689/**************************************************************************
1690 *
1691 * Kernel net device interface
1692 *
1693 *************************************************************************/
1694
1695/* Context: process, rtnl_lock() held. */
1696static int efx_net_open(struct net_device *net_dev)
1697{
767e468c 1698 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1699 EFX_ASSERT_RESET_SERIALISED(efx);
1700
62776d03
BH
1701 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1702 raw_smp_processor_id());
8ceee660 1703
f4bd954e
BH
1704 if (efx->state == STATE_DISABLED)
1705 return -EIO;
f8b87c17
BH
1706 if (efx->phy_mode & PHY_MODE_SPECIAL)
1707 return -EBUSY;
8880f4ec
BH
1708 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1709 return -EIO;
f8b87c17 1710
78c1f0a0
SH
1711 /* Notify the kernel of the link state polled during driver load,
1712 * before the monitor starts running */
1713 efx_link_status_changed(efx);
1714
8ceee660
BH
1715 efx_start_all(efx);
1716 return 0;
1717}
1718
1719/* Context: process, rtnl_lock() held.
1720 * Note that the kernel will ignore our return code; this method
1721 * should really be a void.
1722 */
1723static int efx_net_stop(struct net_device *net_dev)
1724{
767e468c 1725 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1726
62776d03
BH
1727 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1728 raw_smp_processor_id());
8ceee660 1729
f4bd954e
BH
1730 if (efx->state != STATE_DISABLED) {
1731 /* Stop the device and flush all the channels */
1732 efx_stop_all(efx);
1733 efx_fini_channels(efx);
1734 efx_init_channels(efx);
1735 }
8ceee660
BH
1736
1737 return 0;
1738}
1739
5b9e207c 1740/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
1741static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1742 struct rtnl_link_stats64 *stats)
8ceee660 1743{
767e468c 1744 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1745 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1746
55edc6e6 1747 spin_lock_bh(&efx->stats_lock);
1cb34522 1748
ef2b90ee 1749 efx->type->update_stats(efx);
8ceee660
BH
1750
1751 stats->rx_packets = mac_stats->rx_packets;
1752 stats->tx_packets = mac_stats->tx_packets;
1753 stats->rx_bytes = mac_stats->rx_bytes;
1754 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1755 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1756 stats->multicast = mac_stats->rx_multicast;
1757 stats->collisions = mac_stats->tx_collision;
1758 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1759 mac_stats->rx_length_error);
8ceee660
BH
1760 stats->rx_crc_errors = mac_stats->rx_bad;
1761 stats->rx_frame_errors = mac_stats->rx_align_error;
1762 stats->rx_fifo_errors = mac_stats->rx_overflow;
1763 stats->rx_missed_errors = mac_stats->rx_missed;
1764 stats->tx_window_errors = mac_stats->tx_late_collision;
1765
1766 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1767 stats->rx_crc_errors +
1768 stats->rx_frame_errors +
8ceee660
BH
1769 mac_stats->rx_symbol_error);
1770 stats->tx_errors = (stats->tx_window_errors +
1771 mac_stats->tx_bad);
1772
1cb34522
BH
1773 spin_unlock_bh(&efx->stats_lock);
1774
8ceee660
BH
1775 return stats;
1776}
1777
1778/* Context: netif_tx_lock held, BHs disabled. */
1779static void efx_watchdog(struct net_device *net_dev)
1780{
767e468c 1781 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1782
62776d03
BH
1783 netif_err(efx, tx_err, efx->net_dev,
1784 "TX stuck with port_enabled=%d: resetting channels\n",
1785 efx->port_enabled);
8ceee660 1786
739bb23d 1787 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1788}
1789
1790
1791/* Context: process, rtnl_lock() held. */
1792static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1793{
767e468c 1794 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1795
1796 EFX_ASSERT_RESET_SERIALISED(efx);
1797
1798 if (new_mtu > EFX_MAX_MTU)
1799 return -EINVAL;
1800
1801 efx_stop_all(efx);
1802
62776d03 1803 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1804
1805 efx_fini_channels(efx);
d3245b28
BH
1806
1807 mutex_lock(&efx->mac_lock);
1808 /* Reconfigure the MAC before enabling the dma queues so that
1809 * the RX buffers don't overflow */
8ceee660 1810 net_dev->mtu = new_mtu;
710b208d 1811 efx->type->reconfigure_mac(efx);
d3245b28
BH
1812 mutex_unlock(&efx->mac_lock);
1813
bc3c90a2 1814 efx_init_channels(efx);
8ceee660
BH
1815
1816 efx_start_all(efx);
6c8eef4a 1817 return 0;
8ceee660
BH
1818}
1819
1820static int efx_set_mac_address(struct net_device *net_dev, void *data)
1821{
767e468c 1822 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1823 struct sockaddr *addr = data;
1824 char *new_addr = addr->sa_data;
1825
1826 EFX_ASSERT_RESET_SERIALISED(efx);
1827
1828 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1829 netif_err(efx, drv, efx->net_dev,
1830 "invalid ethernet MAC address requested: %pM\n",
1831 new_addr);
8ceee660
BH
1832 return -EINVAL;
1833 }
1834
1835 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1836
1837 /* Reconfigure the MAC */
d3245b28 1838 mutex_lock(&efx->mac_lock);
710b208d 1839 efx->type->reconfigure_mac(efx);
d3245b28 1840 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1841
1842 return 0;
1843}
1844
a816f75a 1845/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 1846static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 1847{
767e468c 1848 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1849 struct netdev_hw_addr *ha;
8ceee660 1850 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1851 u32 crc;
1852 int bit;
8ceee660 1853
8be4f3e6 1854 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1855
1856 /* Build multicast hash table */
8be4f3e6 1857 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1858 memset(mc_hash, 0xff, sizeof(*mc_hash));
1859 } else {
1860 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1861 netdev_for_each_mc_addr(ha, net_dev) {
1862 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1863 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1864 set_bit_le(bit, mc_hash->byte);
8ceee660 1865 }
8ceee660 1866
8be4f3e6
BH
1867 /* Broadcast packets go through the multicast hash filter.
1868 * ether_crc_le() of the broadcast address is 0xbe2612ff
1869 * so we always add bit 0xff to the mask.
1870 */
1871 set_bit_le(0xff, mc_hash->byte);
1872 }
a816f75a 1873
8be4f3e6
BH
1874 if (efx->port_enabled)
1875 queue_work(efx->workqueue, &efx->mac_work);
1876 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1877}
1878
c8f44aff 1879static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
1880{
1881 struct efx_nic *efx = netdev_priv(net_dev);
1882
1883 /* If disabling RX n-tuple filtering, clear existing filters */
1884 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1885 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1886
1887 return 0;
1888}
1889
c3ecb9f3
SH
1890static const struct net_device_ops efx_netdev_ops = {
1891 .ndo_open = efx_net_open,
1892 .ndo_stop = efx_net_stop,
4472702e 1893 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1894 .ndo_tx_timeout = efx_watchdog,
1895 .ndo_start_xmit = efx_hard_start_xmit,
1896 .ndo_validate_addr = eth_validate_addr,
1897 .ndo_do_ioctl = efx_ioctl,
1898 .ndo_change_mtu = efx_change_mtu,
1899 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 1900 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 1901 .ndo_set_features = efx_set_features,
c3ecb9f3
SH
1902#ifdef CONFIG_NET_POLL_CONTROLLER
1903 .ndo_poll_controller = efx_netpoll,
1904#endif
94b274bf 1905 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
1906#ifdef CONFIG_RFS_ACCEL
1907 .ndo_rx_flow_steer = efx_filter_rfs,
1908#endif
c3ecb9f3
SH
1909};
1910
7dde596e
BH
1911static void efx_update_name(struct efx_nic *efx)
1912{
1913 strcpy(efx->name, efx->net_dev->name);
1914 efx_mtd_rename(efx);
1915 efx_set_channel_names(efx);
1916}
1917
8ceee660
BH
1918static int efx_netdev_event(struct notifier_block *this,
1919 unsigned long event, void *ptr)
1920{
d3208b5e 1921 struct net_device *net_dev = ptr;
8ceee660 1922
7dde596e
BH
1923 if (net_dev->netdev_ops == &efx_netdev_ops &&
1924 event == NETDEV_CHANGENAME)
1925 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1926
1927 return NOTIFY_DONE;
1928}
1929
1930static struct notifier_block efx_netdev_notifier = {
1931 .notifier_call = efx_netdev_event,
1932};
1933
06d5e193
BH
1934static ssize_t
1935show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1936{
1937 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1938 return sprintf(buf, "%d\n", efx->phy_type);
1939}
1940static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1941
8ceee660
BH
1942static int efx_register_netdev(struct efx_nic *efx)
1943{
1944 struct net_device *net_dev = efx->net_dev;
c04bfc6b 1945 struct efx_channel *channel;
8ceee660
BH
1946 int rc;
1947
1948 net_dev->watchdog_timeo = 5 * HZ;
1949 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1950 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1951 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1952
7dde596e 1953 rtnl_lock();
aed0628d
BH
1954
1955 rc = dev_alloc_name(net_dev, net_dev->name);
1956 if (rc < 0)
1957 goto fail_locked;
7dde596e 1958 efx_update_name(efx);
aed0628d
BH
1959
1960 rc = register_netdevice(net_dev);
1961 if (rc)
1962 goto fail_locked;
1963
c04bfc6b
BH
1964 efx_for_each_channel(channel, efx) {
1965 struct efx_tx_queue *tx_queue;
60031fcc
BH
1966 efx_for_each_channel_tx_queue(tx_queue, channel)
1967 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
1968 }
1969
aed0628d 1970 /* Always start with carrier off; PHY events will detect the link */
86ee5302 1971 netif_carrier_off(net_dev);
aed0628d 1972
7dde596e 1973 rtnl_unlock();
8ceee660 1974
06d5e193
BH
1975 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1976 if (rc) {
62776d03
BH
1977 netif_err(efx, drv, efx->net_dev,
1978 "failed to init net dev attributes\n");
06d5e193
BH
1979 goto fail_registered;
1980 }
1981
8ceee660 1982 return 0;
06d5e193 1983
aed0628d
BH
1984fail_locked:
1985 rtnl_unlock();
62776d03 1986 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1987 return rc;
1988
06d5e193
BH
1989fail_registered:
1990 unregister_netdev(net_dev);
1991 return rc;
8ceee660
BH
1992}
1993
1994static void efx_unregister_netdev(struct efx_nic *efx)
1995{
f7d12cdc 1996 struct efx_channel *channel;
8ceee660
BH
1997 struct efx_tx_queue *tx_queue;
1998
1999 if (!efx->net_dev)
2000 return;
2001
767e468c 2002 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2003
2004 /* Free up any skbs still remaining. This has to happen before
2005 * we try to unregister the netdev as running their destructors
2006 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2007 efx_for_each_channel(channel, efx) {
2008 efx_for_each_channel_tx_queue(tx_queue, channel)
2009 efx_release_tx_buffers(tx_queue);
2010 }
8ceee660 2011
73ba7b68
BH
2012 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2013 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2014 unregister_netdev(efx->net_dev);
8ceee660
BH
2015}
2016
2017/**************************************************************************
2018 *
2019 * Device reset and suspend
2020 *
2021 **************************************************************************/
2022
2467ca46
BH
2023/* Tears down the entire software state and most of the hardware state
2024 * before reset. */
d3245b28 2025void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2026{
8ceee660
BH
2027 EFX_ASSERT_RESET_SERIALISED(efx);
2028
2467ca46
BH
2029 efx_stop_all(efx);
2030 mutex_lock(&efx->mac_lock);
2031
8ceee660 2032 efx_fini_channels(efx);
4b988280
SH
2033 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2034 efx->phy_op->fini(efx);
ef2b90ee 2035 efx->type->fini(efx);
8ceee660
BH
2036}
2037
2467ca46
BH
2038/* This function will always ensure that the locks acquired in
2039 * efx_reset_down() are released. A failure return code indicates
2040 * that we were unable to reinitialise the hardware, and the
2041 * driver should be disabled. If ok is false, then the rx and tx
2042 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2043int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2044{
2045 int rc;
2046
2467ca46 2047 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2048
ef2b90ee 2049 rc = efx->type->init(efx);
8ceee660 2050 if (rc) {
62776d03 2051 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2052 goto fail;
8ceee660
BH
2053 }
2054
eb9f6744
BH
2055 if (!ok)
2056 goto fail;
2057
4b988280 2058 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2059 rc = efx->phy_op->init(efx);
2060 if (rc)
2061 goto fail;
2062 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2063 netif_err(efx, drv, efx->net_dev,
2064 "could not restore PHY settings\n");
4b988280
SH
2065 }
2066
710b208d 2067 efx->type->reconfigure_mac(efx);
8ceee660 2068
eb9f6744 2069 efx_init_channels(efx);
64eebcfd 2070 efx_restore_filters(efx);
eb9f6744 2071
eb9f6744
BH
2072 mutex_unlock(&efx->mac_lock);
2073
2074 efx_start_all(efx);
2075
2076 return 0;
2077
2078fail:
2079 efx->port_initialized = false;
2467ca46
BH
2080
2081 mutex_unlock(&efx->mac_lock);
2082
8ceee660
BH
2083 return rc;
2084}
2085
eb9f6744
BH
2086/* Reset the NIC using the specified method. Note that the reset may
2087 * fail, in which case the card will be left in an unusable state.
8ceee660 2088 *
eb9f6744 2089 * Caller must hold the rtnl_lock.
8ceee660 2090 */
eb9f6744 2091int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2092{
eb9f6744
BH
2093 int rc, rc2;
2094 bool disabled;
8ceee660 2095
62776d03
BH
2096 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2097 RESET_TYPE(method));
8ceee660 2098
e4abce85 2099 netif_device_detach(efx->net_dev);
d3245b28 2100 efx_reset_down(efx, method);
8ceee660 2101
ef2b90ee 2102 rc = efx->type->reset(efx, method);
8ceee660 2103 if (rc) {
62776d03 2104 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2105 goto out;
8ceee660
BH
2106 }
2107
a7d529ae
BH
2108 /* Clear flags for the scopes we covered. We assume the NIC and
2109 * driver are now quiescent so that there is no race here.
2110 */
2111 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2112
2113 /* Reinitialise bus-mastering, which may have been turned off before
2114 * the reset was scheduled. This is still appropriate, even in the
2115 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2116 * can respond to requests. */
2117 pci_set_master(efx->pci_dev);
2118
eb9f6744 2119out:
8ceee660 2120 /* Leave device stopped if necessary */
eb9f6744
BH
2121 disabled = rc || method == RESET_TYPE_DISABLE;
2122 rc2 = efx_reset_up(efx, method, !disabled);
2123 if (rc2) {
2124 disabled = true;
2125 if (!rc)
2126 rc = rc2;
8ceee660
BH
2127 }
2128
eb9f6744 2129 if (disabled) {
f49a4589 2130 dev_close(efx->net_dev);
62776d03 2131 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2132 efx->state = STATE_DISABLED;
f4bd954e 2133 } else {
62776d03 2134 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2135 netif_device_attach(efx->net_dev);
f4bd954e 2136 }
8ceee660
BH
2137 return rc;
2138}
2139
2140/* The worker thread exists so that code that cannot sleep can
2141 * schedule a reset for later.
2142 */
2143static void efx_reset_work(struct work_struct *data)
2144{
eb9f6744 2145 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
a7d529ae 2146 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
8ceee660 2147
a7d529ae 2148 if (!pending)
319ba649
SH
2149 return;
2150
eb9f6744 2151 /* If we're not RUNNING then don't reset. Leave the reset_pending
a7d529ae 2152 * flags set so that efx_pci_probe_main will be retried */
eb9f6744 2153 if (efx->state != STATE_RUNNING) {
62776d03
BH
2154 netif_info(efx, drv, efx->net_dev,
2155 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2156 return;
2157 }
2158
2159 rtnl_lock();
a7d529ae 2160 (void)efx_reset(efx, fls(pending) - 1);
eb9f6744 2161 rtnl_unlock();
8ceee660
BH
2162}
2163
2164void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2165{
2166 enum reset_type method;
2167
8ceee660
BH
2168 switch (type) {
2169 case RESET_TYPE_INVISIBLE:
2170 case RESET_TYPE_ALL:
2171 case RESET_TYPE_WORLD:
2172 case RESET_TYPE_DISABLE:
2173 method = type;
0e2a9c7c
BH
2174 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2175 RESET_TYPE(method));
8ceee660 2176 break;
8ceee660 2177 default:
0e2a9c7c 2178 method = efx->type->map_reset_reason(type);
62776d03
BH
2179 netif_dbg(efx, drv, efx->net_dev,
2180 "scheduling %s reset for %s\n",
2181 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2182 break;
2183 }
8ceee660 2184
a7d529ae 2185 set_bit(method, &efx->reset_pending);
8ceee660 2186
8880f4ec
BH
2187 /* efx_process_channel() will no longer read events once a
2188 * reset is scheduled. So switch back to poll'd MCDI completions. */
2189 efx_mcdi_mode_poll(efx);
2190
1ab00629 2191 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2192}
2193
2194/**************************************************************************
2195 *
2196 * List of NICs we support
2197 *
2198 **************************************************************************/
2199
2200/* PCI device ID table */
a3aa1884 2201static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2202 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2203 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2204 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2205 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2206 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2207 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2208 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2209 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2210 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2211 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2212 {0} /* end of list */
2213};
2214
2215/**************************************************************************
2216 *
3759433d 2217 * Dummy PHY/MAC operations
8ceee660 2218 *
01aad7b6 2219 * Can be used for some unimplemented operations
8ceee660
BH
2220 * Needed so all function pointers are valid and do not have to be tested
2221 * before use
2222 *
2223 **************************************************************************/
2224int efx_port_dummy_op_int(struct efx_nic *efx)
2225{
2226 return 0;
2227}
2228void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2229
2230static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2231{
2232 return false;
2233}
8ceee660 2234
6c8c2513 2235static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2236 .init = efx_port_dummy_op_int,
d3245b28 2237 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2238 .poll = efx_port_dummy_op_poll,
8ceee660 2239 .fini = efx_port_dummy_op_void,
8ceee660
BH
2240};
2241
8ceee660
BH
2242/**************************************************************************
2243 *
2244 * Data housekeeping
2245 *
2246 **************************************************************************/
2247
2248/* This zeroes out and then fills in the invariants in a struct
2249 * efx_nic (including all sub-structures).
2250 */
6c8c2513 2251static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2252 struct pci_dev *pci_dev, struct net_device *net_dev)
2253{
4642610c 2254 int i;
8ceee660
BH
2255
2256 /* Initialise common structures */
2257 memset(efx, 0, sizeof(*efx));
2258 spin_lock_init(&efx->biu_lock);
76884835
BH
2259#ifdef CONFIG_SFC_MTD
2260 INIT_LIST_HEAD(&efx->mtd_list);
2261#endif
8ceee660
BH
2262 INIT_WORK(&efx->reset_work, efx_reset_work);
2263 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2264 efx->pci_dev = pci_dev;
62776d03 2265 efx->msg_enable = debug;
8ceee660 2266 efx->state = STATE_INIT;
8ceee660 2267 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2268
2269 efx->net_dev = net_dev;
8ceee660
BH
2270 spin_lock_init(&efx->stats_lock);
2271 mutex_init(&efx->mac_lock);
2272 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2273 efx->mdio.dev = net_dev;
766ca0fa 2274 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2275
2276 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2277 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2278 if (!efx->channel[i])
2279 goto fail;
8ceee660
BH
2280 }
2281
2282 efx->type = type;
2283
8ceee660
BH
2284 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2285
2286 /* Higher numbered interrupt modes are less capable! */
2287 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2288 interrupt_mode);
2289
6977dc63
BH
2290 /* Would be good to use the net_dev name, but we're too early */
2291 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2292 pci_name(pci_dev));
2293 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2294 if (!efx->workqueue)
4642610c 2295 goto fail;
8d9853d9 2296
8ceee660 2297 return 0;
4642610c
BH
2298
2299fail:
2300 efx_fini_struct(efx);
2301 return -ENOMEM;
8ceee660
BH
2302}
2303
2304static void efx_fini_struct(struct efx_nic *efx)
2305{
8313aca3
BH
2306 int i;
2307
2308 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2309 kfree(efx->channel[i]);
2310
8ceee660
BH
2311 if (efx->workqueue) {
2312 destroy_workqueue(efx->workqueue);
2313 efx->workqueue = NULL;
2314 }
2315}
2316
2317/**************************************************************************
2318 *
2319 * PCI interface
2320 *
2321 **************************************************************************/
2322
2323/* Main body of final NIC shutdown code
2324 * This is called only at module unload (or hotplug removal).
2325 */
2326static void efx_pci_remove_main(struct efx_nic *efx)
2327{
64d8ad6d
BH
2328#ifdef CONFIG_RFS_ACCEL
2329 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2330 efx->net_dev->rx_cpu_rmap = NULL;
2331#endif
152b6a62 2332 efx_nic_fini_interrupt(efx);
8ceee660
BH
2333 efx_fini_channels(efx);
2334 efx_fini_port(efx);
ef2b90ee 2335 efx->type->fini(efx);
8ceee660
BH
2336 efx_fini_napi(efx);
2337 efx_remove_all(efx);
2338}
2339
2340/* Final NIC shutdown
2341 * This is called only at module unload (or hotplug removal).
2342 */
2343static void efx_pci_remove(struct pci_dev *pci_dev)
2344{
2345 struct efx_nic *efx;
2346
2347 efx = pci_get_drvdata(pci_dev);
2348 if (!efx)
2349 return;
2350
2351 /* Mark the NIC as fini, then stop the interface */
2352 rtnl_lock();
2353 efx->state = STATE_FINI;
2354 dev_close(efx->net_dev);
2355
2356 /* Allow any queued efx_resets() to complete */
2357 rtnl_unlock();
2358
8ceee660
BH
2359 efx_unregister_netdev(efx);
2360
7dde596e
BH
2361 efx_mtd_remove(efx);
2362
8ceee660
BH
2363 /* Wait for any scheduled resets to complete. No more will be
2364 * scheduled from this point because efx_stop_all() has been
2365 * called, we are no longer registered with driverlink, and
2366 * the net_device's have been removed. */
1ab00629 2367 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2368
2369 efx_pci_remove_main(efx);
2370
8ceee660 2371 efx_fini_io(efx);
62776d03 2372 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2373
2374 pci_set_drvdata(pci_dev, NULL);
2375 efx_fini_struct(efx);
2376 free_netdev(efx->net_dev);
2377};
2378
2379/* Main body of NIC initialisation
2380 * This is called at module load (or hotplug insertion, theoretically).
2381 */
2382static int efx_pci_probe_main(struct efx_nic *efx)
2383{
2384 int rc;
2385
2386 /* Do start-of-day initialisation */
2387 rc = efx_probe_all(efx);
2388 if (rc)
2389 goto fail1;
2390
e8f14992 2391 efx_init_napi(efx);
8ceee660 2392
ef2b90ee 2393 rc = efx->type->init(efx);
8ceee660 2394 if (rc) {
62776d03
BH
2395 netif_err(efx, probe, efx->net_dev,
2396 "failed to initialise NIC\n");
278c0621 2397 goto fail3;
8ceee660
BH
2398 }
2399
2400 rc = efx_init_port(efx);
2401 if (rc) {
62776d03
BH
2402 netif_err(efx, probe, efx->net_dev,
2403 "failed to initialise port\n");
278c0621 2404 goto fail4;
8ceee660
BH
2405 }
2406
bc3c90a2 2407 efx_init_channels(efx);
8ceee660 2408
152b6a62 2409 rc = efx_nic_init_interrupt(efx);
8ceee660 2410 if (rc)
278c0621 2411 goto fail5;
8ceee660
BH
2412
2413 return 0;
2414
278c0621 2415 fail5:
bc3c90a2 2416 efx_fini_channels(efx);
8ceee660 2417 efx_fini_port(efx);
8ceee660 2418 fail4:
ef2b90ee 2419 efx->type->fini(efx);
8ceee660
BH
2420 fail3:
2421 efx_fini_napi(efx);
8ceee660
BH
2422 efx_remove_all(efx);
2423 fail1:
2424 return rc;
2425}
2426
2427/* NIC initialisation
2428 *
2429 * This is called at module load (or hotplug insertion,
73ba7b68 2430 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2431 * sets up and registers the network devices with the kernel and hooks
2432 * the interrupt service routine. It does not prepare the device for
2433 * transmission; this is left to the first time one of the network
2434 * interfaces is brought up (i.e. efx_net_open).
2435 */
2436static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2437 const struct pci_device_id *entry)
2438{
6c8c2513 2439 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2440 struct net_device *net_dev;
2441 struct efx_nic *efx;
2442 int i, rc;
2443
2444 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2445 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2446 EFX_MAX_RX_QUEUES);
8ceee660
BH
2447 if (!net_dev)
2448 return -ENOMEM;
c383b537 2449 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2450 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2451 NETIF_F_RXCSUM);
738a8f4b
BH
2452 if (type->offload_features & NETIF_F_V6_CSUM)
2453 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2454 /* Mask for features that also apply to VLAN devices */
2455 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2456 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2457 NETIF_F_RXCSUM);
2458 /* All offloads can be toggled */
2459 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2460 efx = netdev_priv(net_dev);
8ceee660 2461 pci_set_drvdata(pci_dev, efx);
62776d03 2462 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2463 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2464 if (rc)
2465 goto fail1;
2466
62776d03 2467 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2468 "Solarflare NIC detected\n");
8ceee660
BH
2469
2470 /* Set up basic I/O (BAR mappings etc) */
2471 rc = efx_init_io(efx);
2472 if (rc)
2473 goto fail2;
2474
2475 /* No serialisation is required with the reset path because
2476 * we're in STATE_INIT. */
2477 for (i = 0; i < 5; i++) {
2478 rc = efx_pci_probe_main(efx);
8ceee660
BH
2479
2480 /* Serialise against efx_reset(). No more resets will be
2481 * scheduled since efx_stop_all() has been called, and we
2482 * have not and never have been registered with either
2483 * the rtnetlink or driverlink layers. */
1ab00629 2484 cancel_work_sync(&efx->reset_work);
8ceee660 2485
fa402b2e 2486 if (rc == 0) {
a7d529ae 2487 if (efx->reset_pending) {
fa402b2e
SH
2488 /* If there was a scheduled reset during
2489 * probe, the NIC is probably hosed anyway */
2490 efx_pci_remove_main(efx);
2491 rc = -EIO;
2492 } else {
2493 break;
2494 }
2495 }
2496
8ceee660 2497 /* Retry if a recoverably reset event has been scheduled */
a7d529ae
BH
2498 if (efx->reset_pending &
2499 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2500 !efx->reset_pending)
8ceee660
BH
2501 goto fail3;
2502
a7d529ae 2503 efx->reset_pending = 0;
8ceee660
BH
2504 }
2505
2506 if (rc) {
62776d03 2507 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2508 goto fail4;
2509 }
2510
55edc6e6
BH
2511 /* Switch to the running state before we expose the device to the OS,
2512 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2513 efx->state = STATE_RUNNING;
7dde596e 2514
8ceee660
BH
2515 rc = efx_register_netdev(efx);
2516 if (rc)
2517 goto fail5;
2518
62776d03 2519 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2520
2521 rtnl_lock();
2522 efx_mtd_probe(efx); /* allowed to fail */
2523 rtnl_unlock();
8ceee660
BH
2524 return 0;
2525
2526 fail5:
2527 efx_pci_remove_main(efx);
2528 fail4:
2529 fail3:
2530 efx_fini_io(efx);
2531 fail2:
2532 efx_fini_struct(efx);
2533 fail1:
5e2a911c 2534 WARN_ON(rc > 0);
62776d03 2535 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2536 free_netdev(net_dev);
2537 return rc;
2538}
2539
89c758fa
BH
2540static int efx_pm_freeze(struct device *dev)
2541{
2542 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2543
2544 efx->state = STATE_FINI;
2545
2546 netif_device_detach(efx->net_dev);
2547
2548 efx_stop_all(efx);
2549 efx_fini_channels(efx);
2550
2551 return 0;
2552}
2553
2554static int efx_pm_thaw(struct device *dev)
2555{
2556 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2557
2558 efx->state = STATE_INIT;
2559
2560 efx_init_channels(efx);
2561
2562 mutex_lock(&efx->mac_lock);
2563 efx->phy_op->reconfigure(efx);
2564 mutex_unlock(&efx->mac_lock);
2565
2566 efx_start_all(efx);
2567
2568 netif_device_attach(efx->net_dev);
2569
2570 efx->state = STATE_RUNNING;
2571
2572 efx->type->resume_wol(efx);
2573
319ba649
SH
2574 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2575 queue_work(reset_workqueue, &efx->reset_work);
2576
89c758fa
BH
2577 return 0;
2578}
2579
2580static int efx_pm_poweroff(struct device *dev)
2581{
2582 struct pci_dev *pci_dev = to_pci_dev(dev);
2583 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2584
2585 efx->type->fini(efx);
2586
a7d529ae 2587 efx->reset_pending = 0;
89c758fa
BH
2588
2589 pci_save_state(pci_dev);
2590 return pci_set_power_state(pci_dev, PCI_D3hot);
2591}
2592
2593/* Used for both resume and restore */
2594static int efx_pm_resume(struct device *dev)
2595{
2596 struct pci_dev *pci_dev = to_pci_dev(dev);
2597 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2598 int rc;
2599
2600 rc = pci_set_power_state(pci_dev, PCI_D0);
2601 if (rc)
2602 return rc;
2603 pci_restore_state(pci_dev);
2604 rc = pci_enable_device(pci_dev);
2605 if (rc)
2606 return rc;
2607 pci_set_master(efx->pci_dev);
2608 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2609 if (rc)
2610 return rc;
2611 rc = efx->type->init(efx);
2612 if (rc)
2613 return rc;
2614 efx_pm_thaw(dev);
2615 return 0;
2616}
2617
2618static int efx_pm_suspend(struct device *dev)
2619{
2620 int rc;
2621
2622 efx_pm_freeze(dev);
2623 rc = efx_pm_poweroff(dev);
2624 if (rc)
2625 efx_pm_resume(dev);
2626 return rc;
2627}
2628
18e83e4c 2629static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
2630 .suspend = efx_pm_suspend,
2631 .resume = efx_pm_resume,
2632 .freeze = efx_pm_freeze,
2633 .thaw = efx_pm_thaw,
2634 .poweroff = efx_pm_poweroff,
2635 .restore = efx_pm_resume,
2636};
2637
8ceee660 2638static struct pci_driver efx_pci_driver = {
c5d5f5fd 2639 .name = KBUILD_MODNAME,
8ceee660
BH
2640 .id_table = efx_pci_table,
2641 .probe = efx_pci_probe,
2642 .remove = efx_pci_remove,
89c758fa 2643 .driver.pm = &efx_pm_ops,
8ceee660
BH
2644};
2645
2646/**************************************************************************
2647 *
2648 * Kernel module interface
2649 *
2650 *************************************************************************/
2651
2652module_param(interrupt_mode, uint, 0444);
2653MODULE_PARM_DESC(interrupt_mode,
2654 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2655
2656static int __init efx_init_module(void)
2657{
2658 int rc;
2659
2660 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2661
2662 rc = register_netdevice_notifier(&efx_netdev_notifier);
2663 if (rc)
2664 goto err_notifier;
2665
1ab00629
SH
2666 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2667 if (!reset_workqueue) {
2668 rc = -ENOMEM;
2669 goto err_reset;
2670 }
8ceee660
BH
2671
2672 rc = pci_register_driver(&efx_pci_driver);
2673 if (rc < 0)
2674 goto err_pci;
2675
2676 return 0;
2677
2678 err_pci:
1ab00629
SH
2679 destroy_workqueue(reset_workqueue);
2680 err_reset:
8ceee660
BH
2681 unregister_netdevice_notifier(&efx_netdev_notifier);
2682 err_notifier:
2683 return rc;
2684}
2685
2686static void __exit efx_exit_module(void)
2687{
2688 printk(KERN_INFO "Solarflare NET driver unloading\n");
2689
2690 pci_unregister_driver(&efx_pci_driver);
1ab00629 2691 destroy_workqueue(reset_workqueue);
8ceee660
BH
2692 unregister_netdevice_notifier(&efx_netdev_notifier);
2693
2694}
2695
2696module_init(efx_init_module);
2697module_exit(efx_exit_module);
2698
906bb26c
BH
2699MODULE_AUTHOR("Solarflare Communications and "
2700 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2701MODULE_DESCRIPTION("Solarflare Communications network driver");
2702MODULE_LICENSE("GPL");
2703MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.696457 seconds and 5 git commands to generate.