sfc: Move and rename efx_vf struct to siena_vf
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
8ceee660 20#include <linux/ethtool.h>
aa6ef27e 21#include <linux/topology.h>
5a0e3ad6 22#include <linux/gfp.h>
626950db 23#include <linux/aer.h>
b28405b0 24#include <linux/interrupt.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
dd40781e 28#include "selftest.h"
7fa8d547 29#include "sriov.h"
8ceee660 30
8880f4ec 31#include "mcdi.h"
fd371e32 32#include "workarounds.h"
8880f4ec 33
c459302d
BH
34/**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41/* Loopback mode names (see LOOPBACK_MODE()) */
42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 43const char *const efx_loopback_mode_names[] = {
c459302d 44 [LOOPBACK_NONE] = "NONE",
e58f69f4 45 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 67 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
71};
72
c459302d 73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 74const char *const efx_reset_type_names[] = {
626950db
AR
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
e283546c 80 [RESET_TYPE_MC_BIST] = "MC_BIST",
626950db
AR
81 [RESET_TYPE_DISABLE] = "DISABLE",
82 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
83 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
84 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
3de82b91 85 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
626950db
AR
86 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
87 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
e283546c 88 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
c459302d
BH
89};
90
1ab00629
SH
91/* Reset workqueue. If any NIC has a hardware failure then a reset will be
92 * queued onto this work queue. This is not a per-nic work queue, because
93 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
94 */
95static struct workqueue_struct *reset_workqueue;
96
74cd60a4
JC
97/* How often and how many times to poll for a reset while waiting for a
98 * BIST that another function started to complete.
99 */
100#define BIST_WAIT_DELAY_MS 100
101#define BIST_WAIT_DELAY_COUNT 100
102
8ceee660
BH
103/**************************************************************************
104 *
105 * Configurable values
106 *
107 *************************************************************************/
108
8ceee660
BH
109/*
110 * Use separate channels for TX and RX events
111 *
28b581ab
NT
112 * Set this to 1 to use separate channels for TX and RX. It allows us
113 * to control interrupt affinity separately for TX and RX.
8ceee660 114 *
28b581ab 115 * This is only used in MSI-X interrupt mode
8ceee660 116 */
b9cc977d
BH
117static bool separate_tx_channels;
118module_param(separate_tx_channels, bool, 0444);
28b581ab
NT
119MODULE_PARM_DESC(separate_tx_channels,
120 "Use separate channels for TX and RX");
8ceee660
BH
121
122/* This is the weight assigned to each of the (per-channel) virtual
123 * NAPI devices.
124 */
125static int napi_weight = 64;
126
127/* This is the time (in jiffies) between invocations of the hardware
626950db
AR
128 * monitor.
129 * On Falcon-based NICs, this will:
e254c274
BH
130 * - Check the on-board hardware monitor;
131 * - Poll the link state and reconfigure the hardware as necessary.
626950db
AR
132 * On Siena-based NICs for power systems with EEH support, this will give EEH a
133 * chance to start.
8ceee660 134 */
d215697f 135static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 136
8ceee660
BH
137/* Initial interrupt moderation settings. They can be modified after
138 * module load with ethtool.
139 *
140 * The default for RX should strike a balance between increasing the
141 * round-trip latency and reducing overhead.
142 */
143static unsigned int rx_irq_mod_usec = 60;
144
145/* Initial interrupt moderation settings. They can be modified after
146 * module load with ethtool.
147 *
148 * This default is chosen to ensure that a 10G link does not go idle
149 * while a TX queue is stopped after it has become full. A queue is
150 * restarted when it drops below half full. The time this takes (assuming
151 * worst case 3 descriptors per packet and 1024 descriptors) is
152 * 512 / 3 * 1.2 = 205 usec.
153 */
154static unsigned int tx_irq_mod_usec = 150;
155
156/* This is the first interrupt mode to try out of:
157 * 0 => MSI-X
158 * 1 => MSI
159 * 2 => legacy
160 */
161static unsigned int interrupt_mode;
162
163/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
164 * i.e. the number of CPUs among which we may distribute simultaneous
165 * interrupt handling.
166 *
167 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 168 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
169 */
170static unsigned int rss_cpus;
171module_param(rss_cpus, uint, 0444);
172MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
173
b9cc977d
BH
174static bool phy_flash_cfg;
175module_param(phy_flash_cfg, bool, 0644);
84ae48fe
BH
176MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
177
e7bed9c8 178static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
179module_param(irq_adapt_low_thresh, uint, 0644);
180MODULE_PARM_DESC(irq_adapt_low_thresh,
181 "Threshold score for reducing IRQ moderation");
182
e7bed9c8 183static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
184module_param(irq_adapt_high_thresh, uint, 0644);
185MODULE_PARM_DESC(irq_adapt_high_thresh,
186 "Threshold score for increasing IRQ moderation");
187
62776d03
BH
188static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
189 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
190 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
191 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
192module_param(debug, uint, 0);
193MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
194
8ceee660
BH
195/**************************************************************************
196 *
197 * Utility functions and prototypes
198 *
199 *************************************************************************/
4642610c 200
261e4d96 201static int efx_soft_enable_interrupts(struct efx_nic *efx);
d8291187 202static void efx_soft_disable_interrupts(struct efx_nic *efx);
7f967c01 203static void efx_remove_channel(struct efx_channel *channel);
4642610c 204static void efx_remove_channels(struct efx_nic *efx);
7f967c01 205static const struct efx_channel_type efx_default_channel_type;
8ceee660 206static void efx_remove_port(struct efx_nic *efx);
7f967c01 207static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 208static void efx_fini_napi(struct efx_nic *efx);
e8f14992 209static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
210static void efx_fini_struct(struct efx_nic *efx);
211static void efx_start_all(struct efx_nic *efx);
212static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
213
214#define EFX_ASSERT_RESET_SERIALISED(efx) \
215 do { \
f16aeea0 216 if ((efx->state == STATE_READY) || \
626950db 217 (efx->state == STATE_RECOVERY) || \
332c1ce9 218 (efx->state == STATE_DISABLED)) \
8ceee660
BH
219 ASSERT_RTNL(); \
220 } while (0)
221
8b7325b4
BH
222static int efx_check_disabled(struct efx_nic *efx)
223{
626950db 224 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
8b7325b4
BH
225 netif_err(efx, drv, efx->net_dev,
226 "device is disabled due to earlier errors\n");
227 return -EIO;
228 }
229 return 0;
230}
231
8ceee660
BH
232/**************************************************************************
233 *
234 * Event queue processing
235 *
236 *************************************************************************/
237
238/* Process channel's event queue
239 *
240 * This function is responsible for processing the event queue of a
241 * single channel. The caller must guarantee that this function will
242 * never be concurrently called more than once on the same channel,
243 * though different channels may be being processed concurrently.
244 */
fa236e18 245static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 246{
fa236e18 247 int spent;
8ceee660 248
9f2cb71c 249 if (unlikely(!channel->enabled))
42cbe2d7 250 return 0;
8ceee660 251
fa236e18 252 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
253 if (spent && efx_channel_has_rx_queue(channel)) {
254 struct efx_rx_queue *rx_queue =
255 efx_channel_get_rx_queue(channel);
256
ff734ef4 257 efx_rx_flush_packet(channel);
cce28794 258 efx_fast_push_rx_descriptors(rx_queue, true);
8ceee660
BH
259 }
260
fa236e18 261 return spent;
8ceee660
BH
262}
263
8ceee660
BH
264/* NAPI poll handler
265 *
266 * NAPI guarantees serialisation of polls of the same device, which
267 * provides the guarantee required by efx_process_channel().
268 */
269static int efx_poll(struct napi_struct *napi, int budget)
270{
271 struct efx_channel *channel =
272 container_of(napi, struct efx_channel, napi_str);
62776d03 273 struct efx_nic *efx = channel->efx;
fa236e18 274 int spent;
8ceee660 275
36763266
AR
276 if (!efx_channel_lock_napi(channel))
277 return budget;
278
62776d03
BH
279 netif_vdbg(efx, intr, efx->net_dev,
280 "channel %d NAPI poll executing on CPU %d\n",
281 channel->channel, raw_smp_processor_id());
8ceee660 282
fa236e18 283 spent = efx_process_channel(channel, budget);
8ceee660 284
fa236e18 285 if (spent < budget) {
9d9a6973 286 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
287 efx->irq_rx_adaptive &&
288 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
289 if (unlikely(channel->irq_mod_score <
290 irq_adapt_low_thresh)) {
0d86ebd8
BH
291 if (channel->irq_moderation > 1) {
292 channel->irq_moderation -= 1;
ef2b90ee 293 efx->type->push_irq_moderation(channel);
0d86ebd8 294 }
6fb70fd1
BH
295 } else if (unlikely(channel->irq_mod_score >
296 irq_adapt_high_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation <
298 efx->irq_rx_moderation) {
299 channel->irq_moderation += 1;
ef2b90ee 300 efx->type->push_irq_moderation(channel);
0d86ebd8 301 }
6fb70fd1 302 }
6fb70fd1
BH
303 channel->irq_count = 0;
304 channel->irq_mod_score = 0;
305 }
306
64d8ad6d
BH
307 efx_filter_rfs_expire(channel);
308
8ceee660 309 /* There is no race here; although napi_disable() will
288379f0 310 * only wait for napi_complete(), this isn't a problem
514bedbc 311 * since efx_nic_eventq_read_ack() will have no effect if
8ceee660
BH
312 * interrupts have already been disabled.
313 */
288379f0 314 napi_complete(napi);
514bedbc 315 efx_nic_eventq_read_ack(channel);
8ceee660
BH
316 }
317
36763266 318 efx_channel_unlock_napi(channel);
fa236e18 319 return spent;
8ceee660
BH
320}
321
8ceee660
BH
322/* Create event queue
323 * Event queue memory allocations are done only once. If the channel
324 * is reset, the memory buffer will be reused; this guards against
325 * errors during channel reset and also simplifies interrupt handling.
326 */
327static int efx_probe_eventq(struct efx_channel *channel)
328{
ecc910f5
SH
329 struct efx_nic *efx = channel->efx;
330 unsigned long entries;
331
86ee5302 332 netif_dbg(efx, probe, efx->net_dev,
62776d03 333 "chan %d create event queue\n", channel->channel);
8ceee660 334
ecc910f5
SH
335 /* Build an event queue with room for one event per tx and rx buffer,
336 * plus some extra for link state events and MCDI completions. */
337 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
338 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
339 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
340
152b6a62 341 return efx_nic_probe_eventq(channel);
8ceee660
BH
342}
343
344/* Prepare channel's event queue */
261e4d96 345static int efx_init_eventq(struct efx_channel *channel)
8ceee660 346{
15acb1ce 347 struct efx_nic *efx = channel->efx;
261e4d96
JC
348 int rc;
349
350 EFX_WARN_ON_PARANOID(channel->eventq_init);
351
15acb1ce 352 netif_dbg(efx, drv, efx->net_dev,
62776d03 353 "chan %d init event queue\n", channel->channel);
8ceee660 354
261e4d96
JC
355 rc = efx_nic_init_eventq(channel);
356 if (rc == 0) {
15acb1ce 357 efx->type->push_irq_moderation(channel);
261e4d96
JC
358 channel->eventq_read_ptr = 0;
359 channel->eventq_init = true;
360 }
361 return rc;
8ceee660
BH
362}
363
9f2cb71c 364/* Enable event queue processing and NAPI */
36763266 365void efx_start_eventq(struct efx_channel *channel)
9f2cb71c
BH
366{
367 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
368 "chan %d start event queue\n", channel->channel);
369
514bedbc 370 /* Make sure the NAPI handler sees the enabled flag set */
9f2cb71c
BH
371 channel->enabled = true;
372 smp_wmb();
373
36763266 374 efx_channel_enable(channel);
9f2cb71c
BH
375 napi_enable(&channel->napi_str);
376 efx_nic_eventq_read_ack(channel);
377}
378
379/* Disable event queue processing and NAPI */
36763266 380void efx_stop_eventq(struct efx_channel *channel)
9f2cb71c
BH
381{
382 if (!channel->enabled)
383 return;
384
385 napi_disable(&channel->napi_str);
36763266
AR
386 while (!efx_channel_disable(channel))
387 usleep_range(1000, 20000);
9f2cb71c
BH
388 channel->enabled = false;
389}
390
8ceee660
BH
391static void efx_fini_eventq(struct efx_channel *channel)
392{
be3fc09c
BH
393 if (!channel->eventq_init)
394 return;
395
62776d03
BH
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d fini event queue\n", channel->channel);
8ceee660 398
152b6a62 399 efx_nic_fini_eventq(channel);
be3fc09c 400 channel->eventq_init = false;
8ceee660
BH
401}
402
403static void efx_remove_eventq(struct efx_channel *channel)
404{
62776d03
BH
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d remove event queue\n", channel->channel);
8ceee660 407
152b6a62 408 efx_nic_remove_eventq(channel);
8ceee660
BH
409}
410
411/**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
7f967c01 417/* Allocate and initialise a channel structure. */
4642610c
BH
418static struct efx_channel *
419efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
420{
421 struct efx_channel *channel;
422 struct efx_rx_queue *rx_queue;
423 struct efx_tx_queue *tx_queue;
424 int j;
425
7f967c01
BH
426 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427 if (!channel)
428 return NULL;
4642610c 429
7f967c01
BH
430 channel->efx = efx;
431 channel->channel = i;
432 channel->type = &efx_default_channel_type;
4642610c 433
7f967c01
BH
434 for (j = 0; j < EFX_TXQ_TYPES; j++) {
435 tx_queue = &channel->tx_queue[j];
436 tx_queue->efx = efx;
437 tx_queue->queue = i * EFX_TXQ_TYPES + j;
438 tx_queue->channel = channel;
439 }
4642610c 440
7f967c01
BH
441 rx_queue = &channel->rx_queue;
442 rx_queue->efx = efx;
443 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
444 (unsigned long)rx_queue);
4642610c 445
7f967c01
BH
446 return channel;
447}
448
449/* Allocate and initialise a channel structure, copying parameters
450 * (but not resources) from an old channel structure.
451 */
452static struct efx_channel *
453efx_copy_channel(const struct efx_channel *old_channel)
454{
455 struct efx_channel *channel;
456 struct efx_rx_queue *rx_queue;
457 struct efx_tx_queue *tx_queue;
458 int j;
4642610c 459
7f967c01
BH
460 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
461 if (!channel)
462 return NULL;
463
464 *channel = *old_channel;
465
466 channel->napi_dev = NULL;
467 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 468
7f967c01
BH
469 for (j = 0; j < EFX_TXQ_TYPES; j++) {
470 tx_queue = &channel->tx_queue[j];
471 if (tx_queue->channel)
4642610c 472 tx_queue->channel = channel;
7f967c01
BH
473 tx_queue->buffer = NULL;
474 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
475 }
476
4642610c 477 rx_queue = &channel->rx_queue;
7f967c01
BH
478 rx_queue->buffer = NULL;
479 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
480 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
481 (unsigned long)rx_queue);
482
483 return channel;
484}
485
8ceee660
BH
486static int efx_probe_channel(struct efx_channel *channel)
487{
488 struct efx_tx_queue *tx_queue;
489 struct efx_rx_queue *rx_queue;
490 int rc;
491
62776d03
BH
492 netif_dbg(channel->efx, probe, channel->efx->net_dev,
493 "creating channel %d\n", channel->channel);
8ceee660 494
7f967c01
BH
495 rc = channel->type->pre_probe(channel);
496 if (rc)
497 goto fail;
498
8ceee660
BH
499 rc = efx_probe_eventq(channel);
500 if (rc)
7f967c01 501 goto fail;
8ceee660
BH
502
503 efx_for_each_channel_tx_queue(tx_queue, channel) {
504 rc = efx_probe_tx_queue(tx_queue);
505 if (rc)
7f967c01 506 goto fail;
8ceee660
BH
507 }
508
509 efx_for_each_channel_rx_queue(rx_queue, channel) {
510 rc = efx_probe_rx_queue(rx_queue);
511 if (rc)
7f967c01 512 goto fail;
8ceee660
BH
513 }
514
8ceee660
BH
515 return 0;
516
7f967c01
BH
517fail:
518 efx_remove_channel(channel);
8ceee660
BH
519 return rc;
520}
521
7f967c01
BH
522static void
523efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
524{
525 struct efx_nic *efx = channel->efx;
526 const char *type;
527 int number;
528
529 number = channel->channel;
530 if (efx->tx_channel_offset == 0) {
531 type = "";
532 } else if (channel->channel < efx->tx_channel_offset) {
533 type = "-rx";
534 } else {
535 type = "-tx";
536 number -= efx->tx_channel_offset;
537 }
538 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
539}
8ceee660 540
56536e9c
BH
541static void efx_set_channel_names(struct efx_nic *efx)
542{
543 struct efx_channel *channel;
56536e9c 544
7f967c01
BH
545 efx_for_each_channel(channel, efx)
546 channel->type->get_name(channel,
d8291187
BH
547 efx->msi_context[channel->channel].name,
548 sizeof(efx->msi_context[0].name));
56536e9c
BH
549}
550
4642610c
BH
551static int efx_probe_channels(struct efx_nic *efx)
552{
553 struct efx_channel *channel;
554 int rc;
555
556 /* Restart special buffer allocation */
557 efx->next_buffer_table = 0;
558
c92aaff1
BH
559 /* Probe channels in reverse, so that any 'extra' channels
560 * use the start of the buffer table. This allows the traffic
561 * channels to be resized without moving them or wasting the
562 * entries before them.
563 */
564 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
565 rc = efx_probe_channel(channel);
566 if (rc) {
567 netif_err(efx, probe, efx->net_dev,
568 "failed to create channel %d\n",
569 channel->channel);
570 goto fail;
571 }
572 }
573 efx_set_channel_names(efx);
574
575 return 0;
576
577fail:
578 efx_remove_channels(efx);
579 return rc;
580}
581
8ceee660
BH
582/* Channels are shutdown and reinitialised whilst the NIC is running
583 * to propagate configuration changes (mtu, checksum offload), or
584 * to clear hardware error conditions
585 */
9f2cb71c 586static void efx_start_datapath(struct efx_nic *efx)
8ceee660 587{
85740cdf 588 bool old_rx_scatter = efx->rx_scatter;
8ceee660
BH
589 struct efx_tx_queue *tx_queue;
590 struct efx_rx_queue *rx_queue;
591 struct efx_channel *channel;
85740cdf 592 size_t rx_buf_len;
8ceee660 593
f7f13b0b
BH
594 /* Calculate the rx buffer allocation parameters required to
595 * support the current MTU, including padding for header
596 * alignment and overruns.
597 */
43a3739d 598 efx->rx_dma_len = (efx->rx_prefix_size +
272baeeb
BH
599 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
600 efx->type->rx_buffer_padding);
85740cdf 601 rx_buf_len = (sizeof(struct efx_rx_page_state) +
2ec03014 602 efx->rx_ip_align + efx->rx_dma_len);
85740cdf 603 if (rx_buf_len <= PAGE_SIZE) {
e8c68c0a 604 efx->rx_scatter = efx->type->always_rx_scatter;
85740cdf 605 efx->rx_buffer_order = 0;
85740cdf 606 } else if (efx->type->can_rx_scatter) {
950c54df 607 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
85740cdf 608 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
950c54df
BH
609 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
610 EFX_RX_BUF_ALIGNMENT) >
611 PAGE_SIZE);
85740cdf
BH
612 efx->rx_scatter = true;
613 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
614 efx->rx_buffer_order = 0;
85740cdf
BH
615 } else {
616 efx->rx_scatter = false;
617 efx->rx_buffer_order = get_order(rx_buf_len);
85740cdf
BH
618 }
619
1648a23f
DP
620 efx_rx_config_page_split(efx);
621 if (efx->rx_buffer_order)
622 netif_dbg(efx, drv, efx->net_dev,
623 "RX buf len=%u; page order=%u batch=%u\n",
624 efx->rx_dma_len, efx->rx_buffer_order,
625 efx->rx_pages_per_batch);
626 else
627 netif_dbg(efx, drv, efx->net_dev,
628 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
629 efx->rx_dma_len, efx->rx_page_buf_step,
630 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
2768935a 631
e8c68c0a 632 /* RX filters may also have scatter-enabled flags */
85740cdf 633 if (efx->rx_scatter != old_rx_scatter)
add72477 634 efx->type->filter_update_rx_scatter(efx);
8ceee660 635
14bf718f
BH
636 /* We must keep at least one descriptor in a TX ring empty.
637 * We could avoid this when the queue size does not exactly
638 * match the hardware ring size, but it's not that important.
639 * Therefore we stop the queue when one more skb might fill
640 * the ring completely. We wake it when half way back to
641 * empty.
642 */
643 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
644 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
645
8ceee660
BH
646 /* Initialise the channels */
647 efx_for_each_channel(channel, efx) {
3881d8ab 648 efx_for_each_channel_tx_queue(tx_queue, channel) {
bc3c90a2 649 efx_init_tx_queue(tx_queue);
3881d8ab
AR
650 atomic_inc(&efx->active_queues);
651 }
8ceee660 652
9f2cb71c 653 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 654 efx_init_rx_queue(rx_queue);
3881d8ab 655 atomic_inc(&efx->active_queues);
cce28794
JC
656 efx_stop_eventq(channel);
657 efx_fast_push_rx_descriptors(rx_queue, false);
658 efx_start_eventq(channel);
9f2cb71c 659 }
8ceee660 660
85740cdf 661 WARN_ON(channel->rx_pkt_n_frags);
8ceee660 662 }
8ceee660 663
2ea4dc28
AR
664 efx_ptp_start_datapath(efx);
665
9f2cb71c
BH
666 if (netif_device_present(efx->net_dev))
667 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
668}
669
9f2cb71c 670static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
671{
672 struct efx_channel *channel;
673 struct efx_tx_queue *tx_queue;
674 struct efx_rx_queue *rx_queue;
6bc5d3a9 675 int rc;
8ceee660
BH
676
677 EFX_ASSERT_RESET_SERIALISED(efx);
678 BUG_ON(efx->port_enabled);
679
2ea4dc28
AR
680 efx_ptp_stop_datapath(efx);
681
d8aec745
BH
682 /* Stop RX refill */
683 efx_for_each_channel(channel, efx) {
684 efx_for_each_channel_rx_queue(rx_queue, channel)
685 rx_queue->refill_enabled = false;
686 }
687
8ceee660 688 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
689 /* RX packet processing is pipelined, so wait for the
690 * NAPI handler to complete. At least event queue 0
691 * might be kept active by non-data events, so don't
692 * use napi_synchronize() but actually disable NAPI
693 * temporarily.
694 */
695 if (efx_channel_has_rx_queue(channel)) {
696 efx_stop_eventq(channel);
697 efx_start_eventq(channel);
698 }
e42c3d85 699 }
8ceee660 700
e42c3d85
BH
701 rc = efx->type->fini_dmaq(efx);
702 if (rc && EFX_WORKAROUND_7803(efx)) {
703 /* Schedule a reset to recover from the flush failure. The
704 * descriptor caches reference memory we're about to free,
705 * but falcon_reconfigure_mac_wrapper() won't reconnect
706 * the MACs because of the pending reset.
707 */
708 netif_err(efx, drv, efx->net_dev,
709 "Resetting to recover from flush failure\n");
710 efx_schedule_reset(efx, RESET_TYPE_ALL);
711 } else if (rc) {
712 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
713 } else {
714 netif_dbg(efx, drv, efx->net_dev,
715 "successfully flushed all queues\n");
716 }
717
718 efx_for_each_channel(channel, efx) {
8ceee660
BH
719 efx_for_each_channel_rx_queue(rx_queue, channel)
720 efx_fini_rx_queue(rx_queue);
94b274bf 721 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 722 efx_fini_tx_queue(tx_queue);
8ceee660
BH
723 }
724}
725
726static void efx_remove_channel(struct efx_channel *channel)
727{
728 struct efx_tx_queue *tx_queue;
729 struct efx_rx_queue *rx_queue;
730
62776d03
BH
731 netif_dbg(channel->efx, drv, channel->efx->net_dev,
732 "destroy chan %d\n", channel->channel);
8ceee660
BH
733
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_remove_rx_queue(rx_queue);
94b274bf 736 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
737 efx_remove_tx_queue(tx_queue);
738 efx_remove_eventq(channel);
c31e5f9f 739 channel->type->post_remove(channel);
8ceee660
BH
740}
741
4642610c
BH
742static void efx_remove_channels(struct efx_nic *efx)
743{
744 struct efx_channel *channel;
745
746 efx_for_each_channel(channel, efx)
747 efx_remove_channel(channel);
748}
749
750int
751efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
752{
753 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
754 u32 old_rxq_entries, old_txq_entries;
7f967c01 755 unsigned i, next_buffer_table = 0;
261e4d96 756 int rc, rc2;
8b7325b4
BH
757
758 rc = efx_check_disabled(efx);
759 if (rc)
760 return rc;
7f967c01
BH
761
762 /* Not all channels should be reallocated. We must avoid
763 * reallocating their buffer table entries.
764 */
765 efx_for_each_channel(channel, efx) {
766 struct efx_rx_queue *rx_queue;
767 struct efx_tx_queue *tx_queue;
768
769 if (channel->type->copy)
770 continue;
771 next_buffer_table = max(next_buffer_table,
772 channel->eventq.index +
773 channel->eventq.entries);
774 efx_for_each_channel_rx_queue(rx_queue, channel)
775 next_buffer_table = max(next_buffer_table,
776 rx_queue->rxd.index +
777 rx_queue->rxd.entries);
778 efx_for_each_channel_tx_queue(tx_queue, channel)
779 next_buffer_table = max(next_buffer_table,
780 tx_queue->txd.index +
781 tx_queue->txd.entries);
782 }
4642610c 783
29c69a48 784 efx_device_detach_sync(efx);
4642610c 785 efx_stop_all(efx);
d8291187 786 efx_soft_disable_interrupts(efx);
4642610c 787
7f967c01 788 /* Clone channels (where possible) */
4642610c
BH
789 memset(other_channel, 0, sizeof(other_channel));
790 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
791 channel = efx->channel[i];
792 if (channel->type->copy)
793 channel = channel->type->copy(channel);
4642610c
BH
794 if (!channel) {
795 rc = -ENOMEM;
796 goto out;
797 }
798 other_channel[i] = channel;
799 }
800
801 /* Swap entry counts and channel pointers */
802 old_rxq_entries = efx->rxq_entries;
803 old_txq_entries = efx->txq_entries;
804 efx->rxq_entries = rxq_entries;
805 efx->txq_entries = txq_entries;
806 for (i = 0; i < efx->n_channels; i++) {
807 channel = efx->channel[i];
808 efx->channel[i] = other_channel[i];
809 other_channel[i] = channel;
810 }
811
7f967c01
BH
812 /* Restart buffer table allocation */
813 efx->next_buffer_table = next_buffer_table;
e8f14992 814
e8f14992 815 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
816 channel = efx->channel[i];
817 if (!channel->type->copy)
818 continue;
819 rc = efx_probe_channel(channel);
820 if (rc)
821 goto rollback;
822 efx_init_napi_channel(efx->channel[i]);
e8f14992 823 }
7f967c01 824
4642610c 825out:
7f967c01
BH
826 /* Destroy unused channel structures */
827 for (i = 0; i < efx->n_channels; i++) {
828 channel = other_channel[i];
829 if (channel && channel->type->copy) {
830 efx_fini_napi_channel(channel);
831 efx_remove_channel(channel);
832 kfree(channel);
833 }
834 }
4642610c 835
261e4d96
JC
836 rc2 = efx_soft_enable_interrupts(efx);
837 if (rc2) {
838 rc = rc ? rc : rc2;
839 netif_err(efx, drv, efx->net_dev,
840 "unable to restart interrupts on channel reallocation\n");
841 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
842 } else {
843 efx_start_all(efx);
844 netif_device_attach(efx->net_dev);
845 }
4642610c
BH
846 return rc;
847
848rollback:
849 /* Swap back */
850 efx->rxq_entries = old_rxq_entries;
851 efx->txq_entries = old_txq_entries;
852 for (i = 0; i < efx->n_channels; i++) {
853 channel = efx->channel[i];
854 efx->channel[i] = other_channel[i];
855 other_channel[i] = channel;
856 }
857 goto out;
858}
859
90d683af 860void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 861{
90d683af 862 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
863}
864
7f967c01
BH
865static const struct efx_channel_type efx_default_channel_type = {
866 .pre_probe = efx_channel_dummy_op_int,
c31e5f9f 867 .post_remove = efx_channel_dummy_op_void,
7f967c01
BH
868 .get_name = efx_get_channel_name,
869 .copy = efx_copy_channel,
870 .keep_eventq = false,
871};
872
873int efx_channel_dummy_op_int(struct efx_channel *channel)
874{
875 return 0;
876}
877
c31e5f9f
SH
878void efx_channel_dummy_op_void(struct efx_channel *channel)
879{
880}
881
8ceee660
BH
882/**************************************************************************
883 *
884 * Port handling
885 *
886 **************************************************************************/
887
888/* This ensures that the kernel is kept informed (via
889 * netif_carrier_on/off) of the link status, and also maintains the
890 * link status's stop on the port's TX queue.
891 */
fdaa9aed 892void efx_link_status_changed(struct efx_nic *efx)
8ceee660 893{
eb50c0d6
BH
894 struct efx_link_state *link_state = &efx->link_state;
895
8ceee660
BH
896 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
897 * that no events are triggered between unregister_netdev() and the
898 * driver unloading. A more general condition is that NETDEV_CHANGE
899 * can only be generated between NETDEV_UP and NETDEV_DOWN */
900 if (!netif_running(efx->net_dev))
901 return;
902
eb50c0d6 903 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
904 efx->n_link_state_changes++;
905
eb50c0d6 906 if (link_state->up)
8ceee660
BH
907 netif_carrier_on(efx->net_dev);
908 else
909 netif_carrier_off(efx->net_dev);
910 }
911
912 /* Status message for kernel log */
2aa9ef11 913 if (link_state->up)
62776d03 914 netif_info(efx, link, efx->net_dev,
964e6135 915 "link up at %uMbps %s-duplex (MTU %d)\n",
62776d03 916 link_state->speed, link_state->fd ? "full" : "half",
964e6135 917 efx->net_dev->mtu);
2aa9ef11 918 else
62776d03 919 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
920}
921
d3245b28
BH
922void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
923{
924 efx->link_advertising = advertising;
925 if (advertising) {
926 if (advertising & ADVERTISED_Pause)
927 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
928 else
929 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
930 if (advertising & ADVERTISED_Asym_Pause)
931 efx->wanted_fc ^= EFX_FC_TX;
932 }
933}
934
b5626946 935void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
936{
937 efx->wanted_fc = wanted_fc;
938 if (efx->link_advertising) {
939 if (wanted_fc & EFX_FC_RX)
940 efx->link_advertising |= (ADVERTISED_Pause |
941 ADVERTISED_Asym_Pause);
942 else
943 efx->link_advertising &= ~(ADVERTISED_Pause |
944 ADVERTISED_Asym_Pause);
945 if (wanted_fc & EFX_FC_TX)
946 efx->link_advertising ^= ADVERTISED_Asym_Pause;
947 }
948}
949
115122af
BH
950static void efx_fini_port(struct efx_nic *efx);
951
d3245b28
BH
952/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
953 * the MAC appropriately. All other PHY configuration changes are pushed
954 * through phy_op->set_settings(), and pushed asynchronously to the MAC
955 * through efx_monitor().
956 *
957 * Callers must hold the mac_lock
958 */
959int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 960{
d3245b28
BH
961 enum efx_phy_mode phy_mode;
962 int rc;
8ceee660 963
d3245b28 964 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 965
d3245b28
BH
966 /* Disable PHY transmit in mac level loopbacks */
967 phy_mode = efx->phy_mode;
177dfcd8
BH
968 if (LOOPBACK_INTERNAL(efx))
969 efx->phy_mode |= PHY_MODE_TX_DISABLED;
970 else
971 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 972
d3245b28 973 rc = efx->type->reconfigure_port(efx);
8ceee660 974
d3245b28
BH
975 if (rc)
976 efx->phy_mode = phy_mode;
177dfcd8 977
d3245b28 978 return rc;
8ceee660
BH
979}
980
981/* Reinitialise the MAC to pick up new PHY settings, even if the port is
982 * disabled. */
d3245b28 983int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 984{
d3245b28
BH
985 int rc;
986
8ceee660
BH
987 EFX_ASSERT_RESET_SERIALISED(efx);
988
989 mutex_lock(&efx->mac_lock);
d3245b28 990 rc = __efx_reconfigure_port(efx);
8ceee660 991 mutex_unlock(&efx->mac_lock);
d3245b28
BH
992
993 return rc;
8ceee660
BH
994}
995
8be4f3e6
BH
996/* Asynchronous work item for changing MAC promiscuity and multicast
997 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
998 * MAC directly. */
766ca0fa
BH
999static void efx_mac_work(struct work_struct *data)
1000{
1001 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1002
1003 mutex_lock(&efx->mac_lock);
30b81cda 1004 if (efx->port_enabled)
710b208d 1005 efx->type->reconfigure_mac(efx);
766ca0fa
BH
1006 mutex_unlock(&efx->mac_lock);
1007}
1008
8ceee660
BH
1009static int efx_probe_port(struct efx_nic *efx)
1010{
1011 int rc;
1012
62776d03 1013 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 1014
ff3b00a0
SH
1015 if (phy_flash_cfg)
1016 efx->phy_mode = PHY_MODE_SPECIAL;
1017
ef2b90ee
BH
1018 /* Connect up MAC/PHY operations table */
1019 rc = efx->type->probe_port(efx);
8ceee660 1020 if (rc)
e42de262 1021 return rc;
8ceee660 1022
e332bcb3 1023 /* Initialise MAC address to permanent address */
cd84ff4d 1024 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
8ceee660
BH
1025
1026 return 0;
8ceee660
BH
1027}
1028
1029static int efx_init_port(struct efx_nic *efx)
1030{
1031 int rc;
1032
62776d03 1033 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 1034
1dfc5cea
BH
1035 mutex_lock(&efx->mac_lock);
1036
177dfcd8 1037 rc = efx->phy_op->init(efx);
8ceee660 1038 if (rc)
1dfc5cea 1039 goto fail1;
8ceee660 1040
dc8cfa55 1041 efx->port_initialized = true;
1dfc5cea 1042
d3245b28
BH
1043 /* Reconfigure the MAC before creating dma queues (required for
1044 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 1045 efx->type->reconfigure_mac(efx);
d3245b28
BH
1046
1047 /* Ensure the PHY advertises the correct flow control settings */
1048 rc = efx->phy_op->reconfigure(efx);
1049 if (rc)
1050 goto fail2;
1051
1dfc5cea 1052 mutex_unlock(&efx->mac_lock);
8ceee660 1053 return 0;
177dfcd8 1054
1dfc5cea 1055fail2:
177dfcd8 1056 efx->phy_op->fini(efx);
1dfc5cea
BH
1057fail1:
1058 mutex_unlock(&efx->mac_lock);
177dfcd8 1059 return rc;
8ceee660
BH
1060}
1061
8ceee660
BH
1062static void efx_start_port(struct efx_nic *efx)
1063{
62776d03 1064 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1065 BUG_ON(efx->port_enabled);
1066
1067 mutex_lock(&efx->mac_lock);
dc8cfa55 1068 efx->port_enabled = true;
8be4f3e6 1069
d615c039 1070 /* Ensure MAC ingress/egress is enabled */
710b208d 1071 efx->type->reconfigure_mac(efx);
8be4f3e6 1072
8ceee660
BH
1073 mutex_unlock(&efx->mac_lock);
1074}
1075
d615c039
BH
1076/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1077 * and the async self-test, wait for them to finish and prevent them
1078 * being scheduled again. This doesn't cover online resets, which
1079 * should only be cancelled when removing the device.
1080 */
8ceee660
BH
1081static void efx_stop_port(struct efx_nic *efx)
1082{
62776d03 1083 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660 1084
d615c039
BH
1085 EFX_ASSERT_RESET_SERIALISED(efx);
1086
8ceee660 1087 mutex_lock(&efx->mac_lock);
dc8cfa55 1088 efx->port_enabled = false;
8ceee660
BH
1089 mutex_unlock(&efx->mac_lock);
1090
1091 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1092 netif_addr_lock_bh(efx->net_dev);
1093 netif_addr_unlock_bh(efx->net_dev);
d615c039
BH
1094
1095 cancel_delayed_work_sync(&efx->monitor_work);
1096 efx_selftest_async_cancel(efx);
1097 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1098}
1099
1100static void efx_fini_port(struct efx_nic *efx)
1101{
62776d03 1102 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1103
1104 if (!efx->port_initialized)
1105 return;
1106
177dfcd8 1107 efx->phy_op->fini(efx);
dc8cfa55 1108 efx->port_initialized = false;
8ceee660 1109
eb50c0d6 1110 efx->link_state.up = false;
8ceee660
BH
1111 efx_link_status_changed(efx);
1112}
1113
1114static void efx_remove_port(struct efx_nic *efx)
1115{
62776d03 1116 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1117
ef2b90ee 1118 efx->type->remove_port(efx);
8ceee660
BH
1119}
1120
1121/**************************************************************************
1122 *
1123 * NIC handling
1124 *
1125 **************************************************************************/
1126
0bcf4a64
BH
1127static LIST_HEAD(efx_primary_list);
1128static LIST_HEAD(efx_unassociated_list);
1129
1130static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1131{
1132 return left->type == right->type &&
1133 left->vpd_sn && right->vpd_sn &&
1134 !strcmp(left->vpd_sn, right->vpd_sn);
1135}
1136
1137static void efx_associate(struct efx_nic *efx)
1138{
1139 struct efx_nic *other, *next;
1140
1141 if (efx->primary == efx) {
1142 /* Adding primary function; look for secondaries */
1143
1144 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1145 list_add_tail(&efx->node, &efx_primary_list);
1146
1147 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1148 node) {
1149 if (efx_same_controller(efx, other)) {
1150 list_del(&other->node);
1151 netif_dbg(other, probe, other->net_dev,
1152 "moving to secondary list of %s %s\n",
1153 pci_name(efx->pci_dev),
1154 efx->net_dev->name);
1155 list_add_tail(&other->node,
1156 &efx->secondary_list);
1157 other->primary = efx;
1158 }
1159 }
1160 } else {
1161 /* Adding secondary function; look for primary */
1162
1163 list_for_each_entry(other, &efx_primary_list, node) {
1164 if (efx_same_controller(efx, other)) {
1165 netif_dbg(efx, probe, efx->net_dev,
1166 "adding to secondary list of %s %s\n",
1167 pci_name(other->pci_dev),
1168 other->net_dev->name);
1169 list_add_tail(&efx->node,
1170 &other->secondary_list);
1171 efx->primary = other;
1172 return;
1173 }
1174 }
1175
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "adding to unassociated list\n");
1178 list_add_tail(&efx->node, &efx_unassociated_list);
1179 }
1180}
1181
1182static void efx_dissociate(struct efx_nic *efx)
1183{
1184 struct efx_nic *other, *next;
1185
1186 list_del(&efx->node);
1187 efx->primary = NULL;
1188
1189 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1190 list_del(&other->node);
1191 netif_dbg(other, probe, other->net_dev,
1192 "moving to unassociated list\n");
1193 list_add_tail(&other->node, &efx_unassociated_list);
1194 other->primary = NULL;
1195 }
1196}
1197
8ceee660
BH
1198/* This configures the PCI device to enable I/O and DMA. */
1199static int efx_init_io(struct efx_nic *efx)
1200{
1201 struct pci_dev *pci_dev = efx->pci_dev;
1202 dma_addr_t dma_mask = efx->type->max_dma_mask;
b105798f 1203 unsigned int mem_map_size = efx->type->mem_map_size(efx);
8ceee660
BH
1204 int rc;
1205
62776d03 1206 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1207
1208 rc = pci_enable_device(pci_dev);
1209 if (rc) {
62776d03
BH
1210 netif_err(efx, probe, efx->net_dev,
1211 "failed to enable PCI device\n");
8ceee660
BH
1212 goto fail1;
1213 }
1214
1215 pci_set_master(pci_dev);
1216
1217 /* Set the PCI DMA mask. Try all possibilities from our
1218 * genuine mask down to 32 bits, because some architectures
1219 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1220 * masks event though they reject 46 bit masks.
1221 */
1222 while (dma_mask > 0x7fffffffUL) {
0e33d870 1223 if (dma_supported(&pci_dev->dev, dma_mask)) {
9663deda 1224 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
e9e01846
BH
1225 if (rc == 0)
1226 break;
1227 }
8ceee660
BH
1228 dma_mask >>= 1;
1229 }
1230 if (rc) {
62776d03
BH
1231 netif_err(efx, probe, efx->net_dev,
1232 "could not find a suitable DMA mask\n");
8ceee660
BH
1233 goto fail2;
1234 }
62776d03
BH
1235 netif_dbg(efx, probe, efx->net_dev,
1236 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660 1237
dc803df8
BH
1238 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1239 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1240 if (rc) {
62776d03
BH
1241 netif_err(efx, probe, efx->net_dev,
1242 "request for memory BAR failed\n");
8ceee660
BH
1243 rc = -EIO;
1244 goto fail3;
1245 }
b105798f 1246 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
8ceee660 1247 if (!efx->membase) {
62776d03
BH
1248 netif_err(efx, probe, efx->net_dev,
1249 "could not map memory BAR at %llx+%x\n",
b105798f 1250 (unsigned long long)efx->membase_phys, mem_map_size);
8ceee660
BH
1251 rc = -ENOMEM;
1252 goto fail4;
1253 }
62776d03
BH
1254 netif_dbg(efx, probe, efx->net_dev,
1255 "memory BAR at %llx+%x (virtual %p)\n",
b105798f
BH
1256 (unsigned long long)efx->membase_phys, mem_map_size,
1257 efx->membase);
8ceee660
BH
1258
1259 return 0;
1260
1261 fail4:
dc803df8 1262 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1263 fail3:
2c118e0f 1264 efx->membase_phys = 0;
8ceee660
BH
1265 fail2:
1266 pci_disable_device(efx->pci_dev);
1267 fail1:
1268 return rc;
1269}
1270
1271static void efx_fini_io(struct efx_nic *efx)
1272{
62776d03 1273 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1274
1275 if (efx->membase) {
1276 iounmap(efx->membase);
1277 efx->membase = NULL;
1278 }
1279
1280 if (efx->membase_phys) {
dc803df8 1281 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1282 efx->membase_phys = 0;
8ceee660
BH
1283 }
1284
1285 pci_disable_device(efx->pci_dev);
1286}
1287
a9a52506 1288static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1289{
cdb08f8f 1290 cpumask_var_t thread_mask;
a16e5b24 1291 unsigned int count;
46123d04 1292 int cpu;
5b874e25 1293
cd2d5b52
BH
1294 if (rss_cpus) {
1295 count = rss_cpus;
1296 } else {
1297 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1298 netif_warn(efx, probe, efx->net_dev,
1299 "RSS disabled due to allocation failure\n");
1300 return 1;
1301 }
46123d04 1302
cd2d5b52
BH
1303 count = 0;
1304 for_each_online_cpu(cpu) {
1305 if (!cpumask_test_cpu(cpu, thread_mask)) {
1306 ++count;
1307 cpumask_or(thread_mask, thread_mask,
1308 topology_thread_cpumask(cpu));
1309 }
1310 }
1311
1312 free_cpumask_var(thread_mask);
2f8975fb
RR
1313 }
1314
cd2d5b52
BH
1315 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1316 * table entries that are inaccessible to VFs
1317 */
7fa8d547
SS
1318#ifdef CONFIG_SFC_SRIOV
1319 if (efx->type->sriov_wanted) {
1320 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1321 count > efx_vf_size(efx)) {
1322 netif_warn(efx, probe, efx->net_dev,
1323 "Reducing number of RSS channels from %u to %u for "
1324 "VF support. Increase vf-msix-limit to use more "
1325 "channels on the PF.\n",
1326 count, efx_vf_size(efx));
1327 count = efx_vf_size(efx);
1328 }
46123d04 1329 }
7fa8d547 1330#endif
46123d04
BH
1331
1332 return count;
1333}
1334
1335/* Probe the number and type of interrupts we are able to obtain, and
1336 * the resulting numbers of channels and RX queues.
1337 */
64d8ad6d 1338static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1339{
7f967c01
BH
1340 unsigned int extra_channels = 0;
1341 unsigned int i, j;
a16e5b24 1342 int rc;
8ceee660 1343
7f967c01
BH
1344 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1345 if (efx->extra_channel_type[i])
1346 ++extra_channels;
1347
8ceee660 1348 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1349 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1350 unsigned int n_channels;
aa6ef27e 1351
a9a52506 1352 n_channels = efx_wanted_parallelism(efx);
a4900ac9
BH
1353 if (separate_tx_channels)
1354 n_channels *= 2;
7f967c01 1355 n_channels += extra_channels;
b105798f 1356 n_channels = min(n_channels, efx->max_channels);
8ceee660 1357
a4900ac9 1358 for (i = 0; i < n_channels; i++)
8ceee660 1359 xentries[i].entry = i;
184603d8
AG
1360 rc = pci_enable_msix_range(efx->pci_dev,
1361 xentries, 1, n_channels);
1362 if (rc < 0) {
1363 /* Fall back to single channel MSI */
1364 efx->interrupt_mode = EFX_INT_MODE_MSI;
1365 netif_err(efx, drv, efx->net_dev,
1366 "could not enable MSI-X\n");
1367 } else if (rc < n_channels) {
62776d03
BH
1368 netif_err(efx, drv, efx->net_dev,
1369 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1370 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1371 netif_err(efx, drv, efx->net_dev,
1372 "WARNING: Performance may be reduced.\n");
a4900ac9 1373 n_channels = rc;
8ceee660
BH
1374 }
1375
184603d8 1376 if (rc > 0) {
a4900ac9 1377 efx->n_channels = n_channels;
7f967c01
BH
1378 if (n_channels > extra_channels)
1379 n_channels -= extra_channels;
a4900ac9 1380 if (separate_tx_channels) {
7f967c01
BH
1381 efx->n_tx_channels = max(n_channels / 2, 1U);
1382 efx->n_rx_channels = max(n_channels -
1383 efx->n_tx_channels,
1384 1U);
a4900ac9 1385 } else {
7f967c01
BH
1386 efx->n_tx_channels = n_channels;
1387 efx->n_rx_channels = n_channels;
a4900ac9 1388 }
7f967c01 1389 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1390 efx_get_channel(efx, i)->irq =
1391 xentries[i].vector;
8ceee660
BH
1392 }
1393 }
1394
1395 /* Try single interrupt MSI */
1396 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1397 efx->n_channels = 1;
a4900ac9
BH
1398 efx->n_rx_channels = 1;
1399 efx->n_tx_channels = 1;
8ceee660
BH
1400 rc = pci_enable_msi(efx->pci_dev);
1401 if (rc == 0) {
f7d12cdc 1402 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1403 } else {
62776d03
BH
1404 netif_err(efx, drv, efx->net_dev,
1405 "could not enable MSI\n");
8ceee660
BH
1406 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1407 }
1408 }
1409
1410 /* Assume legacy interrupts */
1411 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1412 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1413 efx->n_rx_channels = 1;
1414 efx->n_tx_channels = 1;
8ceee660
BH
1415 efx->legacy_irq = efx->pci_dev->irq;
1416 }
64d8ad6d 1417
7f967c01
BH
1418 /* Assign extra channels if possible */
1419 j = efx->n_channels;
1420 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1421 if (!efx->extra_channel_type[i])
1422 continue;
1423 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1424 efx->n_channels <= extra_channels) {
1425 efx->extra_channel_type[i]->handle_no_channel(efx);
1426 } else {
1427 --j;
1428 efx_get_channel(efx, j)->type =
1429 efx->extra_channel_type[i];
1430 }
1431 }
1432
cd2d5b52 1433 /* RSS might be usable on VFs even if it is disabled on the PF */
7fa8d547
SS
1434#ifdef CONFIG_SFC_SRIOV
1435 if (efx->type->sriov_wanted) {
1436 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1437 !efx->type->sriov_wanted(efx)) ?
1438 efx->n_rx_channels : efx_vf_size(efx));
1439 return 0;
1440 }
1441#endif
1442 efx->rss_spread = efx->n_rx_channels;
64d8ad6d 1443 return 0;
8ceee660
BH
1444}
1445
261e4d96 1446static int efx_soft_enable_interrupts(struct efx_nic *efx)
9f2cb71c 1447{
261e4d96
JC
1448 struct efx_channel *channel, *end_channel;
1449 int rc;
9f2cb71c 1450
8b7325b4
BH
1451 BUG_ON(efx->state == STATE_DISABLED);
1452
d8291187
BH
1453 efx->irq_soft_enabled = true;
1454 smp_wmb();
9f2cb71c
BH
1455
1456 efx_for_each_channel(channel, efx) {
261e4d96
JC
1457 if (!channel->type->keep_eventq) {
1458 rc = efx_init_eventq(channel);
1459 if (rc)
1460 goto fail;
1461 }
9f2cb71c
BH
1462 efx_start_eventq(channel);
1463 }
1464
1465 efx_mcdi_mode_event(efx);
261e4d96
JC
1466
1467 return 0;
1468fail:
1469 end_channel = channel;
1470 efx_for_each_channel(channel, efx) {
1471 if (channel == end_channel)
1472 break;
1473 efx_stop_eventq(channel);
1474 if (!channel->type->keep_eventq)
1475 efx_fini_eventq(channel);
1476 }
1477
1478 return rc;
9f2cb71c
BH
1479}
1480
d8291187 1481static void efx_soft_disable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1482{
1483 struct efx_channel *channel;
1484
8b7325b4
BH
1485 if (efx->state == STATE_DISABLED)
1486 return;
1487
9f2cb71c
BH
1488 efx_mcdi_mode_poll(efx);
1489
d8291187
BH
1490 efx->irq_soft_enabled = false;
1491 smp_wmb();
1492
1493 if (efx->legacy_irq)
9f2cb71c 1494 synchronize_irq(efx->legacy_irq);
9f2cb71c
BH
1495
1496 efx_for_each_channel(channel, efx) {
1497 if (channel->irq)
1498 synchronize_irq(channel->irq);
1499
1500 efx_stop_eventq(channel);
d8291187 1501 if (!channel->type->keep_eventq)
7f967c01 1502 efx_fini_eventq(channel);
9f2cb71c 1503 }
cade715f
BH
1504
1505 /* Flush the asynchronous MCDI request queue */
1506 efx_mcdi_flush_async(efx);
9f2cb71c
BH
1507}
1508
261e4d96 1509static int efx_enable_interrupts(struct efx_nic *efx)
d8291187 1510{
261e4d96
JC
1511 struct efx_channel *channel, *end_channel;
1512 int rc;
d8291187
BH
1513
1514 BUG_ON(efx->state == STATE_DISABLED);
1515
1516 if (efx->eeh_disabled_legacy_irq) {
1517 enable_irq(efx->legacy_irq);
1518 efx->eeh_disabled_legacy_irq = false;
1519 }
1520
86094f7f 1521 efx->type->irq_enable_master(efx);
d8291187
BH
1522
1523 efx_for_each_channel(channel, efx) {
261e4d96
JC
1524 if (channel->type->keep_eventq) {
1525 rc = efx_init_eventq(channel);
1526 if (rc)
1527 goto fail;
1528 }
1529 }
1530
1531 rc = efx_soft_enable_interrupts(efx);
1532 if (rc)
1533 goto fail;
1534
1535 return 0;
1536
1537fail:
1538 end_channel = channel;
1539 efx_for_each_channel(channel, efx) {
1540 if (channel == end_channel)
1541 break;
d8291187 1542 if (channel->type->keep_eventq)
261e4d96 1543 efx_fini_eventq(channel);
d8291187
BH
1544 }
1545
261e4d96
JC
1546 efx->type->irq_disable_non_ev(efx);
1547
1548 return rc;
d8291187
BH
1549}
1550
1551static void efx_disable_interrupts(struct efx_nic *efx)
1552{
1553 struct efx_channel *channel;
1554
1555 efx_soft_disable_interrupts(efx);
1556
1557 efx_for_each_channel(channel, efx) {
1558 if (channel->type->keep_eventq)
1559 efx_fini_eventq(channel);
1560 }
1561
86094f7f 1562 efx->type->irq_disable_non_ev(efx);
d8291187
BH
1563}
1564
8ceee660
BH
1565static void efx_remove_interrupts(struct efx_nic *efx)
1566{
1567 struct efx_channel *channel;
1568
1569 /* Remove MSI/MSI-X interrupts */
64ee3120 1570 efx_for_each_channel(channel, efx)
8ceee660
BH
1571 channel->irq = 0;
1572 pci_disable_msi(efx->pci_dev);
1573 pci_disable_msix(efx->pci_dev);
1574
1575 /* Remove legacy interrupt */
1576 efx->legacy_irq = 0;
1577}
1578
8831da7b 1579static void efx_set_channels(struct efx_nic *efx)
8ceee660 1580{
602a5322
BH
1581 struct efx_channel *channel;
1582 struct efx_tx_queue *tx_queue;
1583
97653431 1584 efx->tx_channel_offset =
a4900ac9 1585 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322 1586
79d68b37
SH
1587 /* We need to mark which channels really have RX and TX
1588 * queues, and adjust the TX queue numbers if we have separate
602a5322
BH
1589 * RX-only and TX-only channels.
1590 */
1591 efx_for_each_channel(channel, efx) {
79d68b37
SH
1592 if (channel->channel < efx->n_rx_channels)
1593 channel->rx_queue.core_index = channel->channel;
1594 else
1595 channel->rx_queue.core_index = -1;
1596
602a5322
BH
1597 efx_for_each_channel_tx_queue(tx_queue, channel)
1598 tx_queue->queue -= (efx->tx_channel_offset *
1599 EFX_TXQ_TYPES);
1600 }
8ceee660
BH
1601}
1602
1603static int efx_probe_nic(struct efx_nic *efx)
1604{
765c9f46 1605 size_t i;
8ceee660
BH
1606 int rc;
1607
62776d03 1608 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1609
1610 /* Carry out hardware-type specific initialisation */
ef2b90ee 1611 rc = efx->type->probe(efx);
8ceee660
BH
1612 if (rc)
1613 return rc;
1614
a4900ac9 1615 /* Determine the number of channels and queues by trying to hook
8ceee660 1616 * in MSI-X interrupts. */
64d8ad6d
BH
1617 rc = efx_probe_interrupts(efx);
1618 if (rc)
c15eed22 1619 goto fail1;
8ceee660 1620
52ad762b
DP
1621 efx_set_channels(efx);
1622
c15eed22
BH
1623 rc = efx->type->dimension_resources(efx);
1624 if (rc)
1625 goto fail2;
28e47c49 1626
5d3a6fca 1627 if (efx->n_channels > 1)
7a20db37 1628 netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1629 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429 1630 efx->rx_indir_table[i] =
cd2d5b52 1631 ethtool_rxfh_indir_default(i, efx->rss_spread);
5d3a6fca 1632
c4f4adc7
BH
1633 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1634 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1635
1636 /* Initialise the interrupt moderation settings */
9e393b30
BH
1637 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1638 true);
8ceee660
BH
1639
1640 return 0;
64d8ad6d 1641
c15eed22
BH
1642fail2:
1643 efx_remove_interrupts(efx);
1644fail1:
64d8ad6d
BH
1645 efx->type->remove(efx);
1646 return rc;
8ceee660
BH
1647}
1648
1649static void efx_remove_nic(struct efx_nic *efx)
1650{
62776d03 1651 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1652
1653 efx_remove_interrupts(efx);
ef2b90ee 1654 efx->type->remove(efx);
8ceee660
BH
1655}
1656
add72477
BH
1657static int efx_probe_filters(struct efx_nic *efx)
1658{
1659 int rc;
1660
1661 spin_lock_init(&efx->filter_lock);
1662
1663 rc = efx->type->filter_table_probe(efx);
1664 if (rc)
1665 return rc;
1666
1667#ifdef CONFIG_RFS_ACCEL
1668 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1669 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1670 sizeof(*efx->rps_flow_id),
1671 GFP_KERNEL);
1672 if (!efx->rps_flow_id) {
1673 efx->type->filter_table_remove(efx);
1674 return -ENOMEM;
1675 }
1676 }
1677#endif
1678
1679 return 0;
1680}
1681
1682static void efx_remove_filters(struct efx_nic *efx)
1683{
1684#ifdef CONFIG_RFS_ACCEL
1685 kfree(efx->rps_flow_id);
1686#endif
1687 efx->type->filter_table_remove(efx);
1688}
1689
1690static void efx_restore_filters(struct efx_nic *efx)
1691{
1692 efx->type->filter_table_restore(efx);
1693}
1694
8ceee660
BH
1695/**************************************************************************
1696 *
1697 * NIC startup/shutdown
1698 *
1699 *************************************************************************/
1700
1701static int efx_probe_all(struct efx_nic *efx)
1702{
8ceee660
BH
1703 int rc;
1704
8ceee660
BH
1705 rc = efx_probe_nic(efx);
1706 if (rc) {
62776d03 1707 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1708 goto fail1;
1709 }
1710
8ceee660
BH
1711 rc = efx_probe_port(efx);
1712 if (rc) {
62776d03 1713 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1714 goto fail2;
1715 }
1716
7e6d06f0
BH
1717 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1718 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1719 rc = -EINVAL;
1720 goto fail3;
1721 }
ecc910f5 1722 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1723
64eebcfd
BH
1724 rc = efx_probe_filters(efx);
1725 if (rc) {
1726 netif_err(efx, probe, efx->net_dev,
1727 "failed to create filter tables\n");
7f967c01 1728 goto fail3;
64eebcfd
BH
1729 }
1730
7f967c01
BH
1731 rc = efx_probe_channels(efx);
1732 if (rc)
1733 goto fail4;
1734
8ceee660
BH
1735 return 0;
1736
64eebcfd 1737 fail4:
7f967c01 1738 efx_remove_filters(efx);
8ceee660 1739 fail3:
8ceee660
BH
1740 efx_remove_port(efx);
1741 fail2:
1742 efx_remove_nic(efx);
1743 fail1:
1744 return rc;
1745}
1746
8b7325b4
BH
1747/* If the interface is supposed to be running but is not, start
1748 * the hardware and software data path, regular activity for the port
1749 * (MAC statistics, link polling, etc.) and schedule the port to be
1750 * reconfigured. Interrupts must already be enabled. This function
1751 * is safe to call multiple times, so long as the NIC is not disabled.
1752 * Requires the RTNL lock.
9f2cb71c 1753 */
8ceee660
BH
1754static void efx_start_all(struct efx_nic *efx)
1755{
8ceee660 1756 EFX_ASSERT_RESET_SERIALISED(efx);
8b7325b4 1757 BUG_ON(efx->state == STATE_DISABLED);
8ceee660
BH
1758
1759 /* Check that it is appropriate to restart the interface. All
1760 * of these flags are safe to read under just the rtnl lock */
e283546c
EC
1761 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1762 efx->reset_pending)
8ceee660
BH
1763 return;
1764
8ceee660 1765 efx_start_port(efx);
9f2cb71c 1766 efx_start_datapath(efx);
8880f4ec 1767
626950db
AR
1768 /* Start the hardware monitor if there is one */
1769 if (efx->type->monitor != NULL)
8ceee660
BH
1770 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1771 efx_monitor_interval);
626950db
AR
1772
1773 /* If link state detection is normally event-driven, we have
1774 * to poll now because we could have missed a change
1775 */
1776 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
78c1f0a0
SH
1777 mutex_lock(&efx->mac_lock);
1778 if (efx->phy_op->poll(efx))
1779 efx_link_status_changed(efx);
1780 mutex_unlock(&efx->mac_lock);
1781 }
55edc6e6 1782
ef2b90ee 1783 efx->type->start_stats(efx);
f8f3b5ae
JC
1784 efx->type->pull_stats(efx);
1785 spin_lock_bh(&efx->stats_lock);
1786 efx->type->update_stats(efx, NULL, NULL);
1787 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1788}
1789
8b7325b4
BH
1790/* Quiesce the hardware and software data path, and regular activity
1791 * for the port without bringing the link down. Safe to call multiple
1792 * times with the NIC in almost any state, but interrupts should be
1793 * enabled. Requires the RTNL lock.
1794 */
8ceee660
BH
1795static void efx_stop_all(struct efx_nic *efx)
1796{
8ceee660
BH
1797 EFX_ASSERT_RESET_SERIALISED(efx);
1798
1799 /* port_enabled can be read safely under the rtnl lock */
1800 if (!efx->port_enabled)
1801 return;
1802
f8f3b5ae
JC
1803 /* update stats before we go down so we can accurately count
1804 * rx_nodesc_drops
1805 */
1806 efx->type->pull_stats(efx);
1807 spin_lock_bh(&efx->stats_lock);
1808 efx->type->update_stats(efx, NULL, NULL);
1809 spin_unlock_bh(&efx->stats_lock);
ef2b90ee 1810 efx->type->stop_stats(efx);
8ceee660
BH
1811 efx_stop_port(efx);
1812
29c69a48
BH
1813 /* Stop the kernel transmit interface. This is only valid if
1814 * the device is stopped or detached; otherwise the watchdog
1815 * may fire immediately.
1816 */
1817 WARN_ON(netif_running(efx->net_dev) &&
1818 netif_device_present(efx->net_dev));
9f2cb71c
BH
1819 netif_tx_disable(efx->net_dev);
1820
1821 efx_stop_datapath(efx);
8ceee660
BH
1822}
1823
1824static void efx_remove_all(struct efx_nic *efx)
1825{
4642610c 1826 efx_remove_channels(efx);
7f967c01 1827 efx_remove_filters(efx);
8ceee660
BH
1828 efx_remove_port(efx);
1829 efx_remove_nic(efx);
1830}
1831
8ceee660
BH
1832/**************************************************************************
1833 *
1834 * Interrupt moderation
1835 *
1836 **************************************************************************/
1837
cc180b69 1838static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1839{
b548f976
BH
1840 if (usecs == 0)
1841 return 0;
cc180b69 1842 if (usecs * 1000 < quantum_ns)
0d86ebd8 1843 return 1; /* never round down to 0 */
cc180b69 1844 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1845}
1846
8ceee660 1847/* Set interrupt moderation parameters */
9e393b30
BH
1848int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1849 unsigned int rx_usecs, bool rx_adaptive,
1850 bool rx_may_override_tx)
8ceee660 1851{
f7d12cdc 1852 struct efx_channel *channel;
cc180b69
BH
1853 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1854 efx->timer_quantum_ns,
1855 1000);
1856 unsigned int tx_ticks;
1857 unsigned int rx_ticks;
8ceee660
BH
1858
1859 EFX_ASSERT_RESET_SERIALISED(efx);
1860
cc180b69 1861 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1862 return -EINVAL;
1863
cc180b69
BH
1864 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1865 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1866
9e393b30
BH
1867 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1868 !rx_may_override_tx) {
1869 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1870 "RX and TX IRQ moderation must be equal\n");
1871 return -EINVAL;
1872 }
1873
6fb70fd1 1874 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1875 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1876 efx_for_each_channel(channel, efx) {
525da907 1877 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1878 channel->irq_moderation = rx_ticks;
525da907 1879 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1880 channel->irq_moderation = tx_ticks;
1881 }
9e393b30
BH
1882
1883 return 0;
8ceee660
BH
1884}
1885
a0c4faf5
BH
1886void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1887 unsigned int *rx_usecs, bool *rx_adaptive)
1888{
cc180b69
BH
1889 /* We must round up when converting ticks to microseconds
1890 * because we round down when converting the other way.
1891 */
1892
a0c4faf5 1893 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1894 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1895 efx->timer_quantum_ns,
1896 1000);
a0c4faf5
BH
1897
1898 /* If channels are shared between RX and TX, so is IRQ
1899 * moderation. Otherwise, IRQ moderation is the same for all
1900 * TX channels and is not adaptive.
1901 */
1902 if (efx->tx_channel_offset == 0)
1903 *tx_usecs = *rx_usecs;
1904 else
cc180b69 1905 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1906 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1907 efx->timer_quantum_ns,
1908 1000);
a0c4faf5
BH
1909}
1910
8ceee660
BH
1911/**************************************************************************
1912 *
1913 * Hardware monitor
1914 *
1915 **************************************************************************/
1916
e254c274 1917/* Run periodically off the general workqueue */
8ceee660
BH
1918static void efx_monitor(struct work_struct *data)
1919{
1920 struct efx_nic *efx = container_of(data, struct efx_nic,
1921 monitor_work.work);
8ceee660 1922
62776d03
BH
1923 netif_vdbg(efx, timer, efx->net_dev,
1924 "hardware monitor executing on CPU %d\n",
1925 raw_smp_processor_id());
ef2b90ee 1926 BUG_ON(efx->type->monitor == NULL);
8ceee660 1927
8ceee660
BH
1928 /* If the mac_lock is already held then it is likely a port
1929 * reconfiguration is already in place, which will likely do
e254c274
BH
1930 * most of the work of monitor() anyway. */
1931 if (mutex_trylock(&efx->mac_lock)) {
1932 if (efx->port_enabled)
1933 efx->type->monitor(efx);
1934 mutex_unlock(&efx->mac_lock);
1935 }
8ceee660 1936
8ceee660
BH
1937 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1938 efx_monitor_interval);
1939}
1940
1941/**************************************************************************
1942 *
1943 * ioctls
1944 *
1945 *************************************************************************/
1946
1947/* Net device ioctl
1948 * Context: process, rtnl_lock() held.
1949 */
1950static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1951{
767e468c 1952 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1953 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660 1954
7c236c43 1955 if (cmd == SIOCSHWTSTAMP)
433dc9b3
BH
1956 return efx_ptp_set_ts_config(efx, ifr);
1957 if (cmd == SIOCGHWTSTAMP)
1958 return efx_ptp_get_ts_config(efx, ifr);
7c236c43 1959
68e7f45e
BH
1960 /* Convert phy_id from older PRTAD/DEVAD format */
1961 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1962 (data->phy_id & 0xfc00) == 0x0400)
1963 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1964
1965 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1966}
1967
1968/**************************************************************************
1969 *
1970 * NAPI interface
1971 *
1972 **************************************************************************/
1973
7f967c01
BH
1974static void efx_init_napi_channel(struct efx_channel *channel)
1975{
1976 struct efx_nic *efx = channel->efx;
1977
1978 channel->napi_dev = efx->net_dev;
1979 netif_napi_add(channel->napi_dev, &channel->napi_str,
1980 efx_poll, napi_weight);
36763266
AR
1981 napi_hash_add(&channel->napi_str);
1982 efx_channel_init_lock(channel);
7f967c01
BH
1983}
1984
e8f14992 1985static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1986{
1987 struct efx_channel *channel;
8ceee660 1988
7f967c01
BH
1989 efx_for_each_channel(channel, efx)
1990 efx_init_napi_channel(channel);
e8f14992
BH
1991}
1992
1993static void efx_fini_napi_channel(struct efx_channel *channel)
1994{
36763266 1995 if (channel->napi_dev) {
e8f14992 1996 netif_napi_del(&channel->napi_str);
36763266
AR
1997 napi_hash_del(&channel->napi_str);
1998 }
e8f14992 1999 channel->napi_dev = NULL;
8ceee660
BH
2000}
2001
2002static void efx_fini_napi(struct efx_nic *efx)
2003{
2004 struct efx_channel *channel;
2005
e8f14992
BH
2006 efx_for_each_channel(channel, efx)
2007 efx_fini_napi_channel(channel);
8ceee660
BH
2008}
2009
2010/**************************************************************************
2011 *
2012 * Kernel netpoll interface
2013 *
2014 *************************************************************************/
2015
2016#ifdef CONFIG_NET_POLL_CONTROLLER
2017
2018/* Although in the common case interrupts will be disabled, this is not
2019 * guaranteed. However, all our work happens inside the NAPI callback,
2020 * so no locking is required.
2021 */
2022static void efx_netpoll(struct net_device *net_dev)
2023{
767e468c 2024 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
2025 struct efx_channel *channel;
2026
64ee3120 2027 efx_for_each_channel(channel, efx)
8ceee660
BH
2028 efx_schedule_channel(channel);
2029}
2030
2031#endif
2032
36763266
AR
2033#ifdef CONFIG_NET_RX_BUSY_POLL
2034static int efx_busy_poll(struct napi_struct *napi)
2035{
2036 struct efx_channel *channel =
2037 container_of(napi, struct efx_channel, napi_str);
2038 struct efx_nic *efx = channel->efx;
2039 int budget = 4;
2040 int old_rx_packets, rx_packets;
2041
2042 if (!netif_running(efx->net_dev))
2043 return LL_FLUSH_FAILED;
2044
2045 if (!efx_channel_lock_poll(channel))
2046 return LL_FLUSH_BUSY;
2047
2048 old_rx_packets = channel->rx_queue.rx_packets;
2049 efx_process_channel(channel, budget);
2050
2051 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2052
2053 /* There is no race condition with NAPI here.
2054 * NAPI will automatically be rescheduled if it yielded during busy
2055 * polling, because it was not able to take the lock and thus returned
2056 * the full budget.
2057 */
2058 efx_channel_unlock_poll(channel);
2059
2060 return rx_packets;
2061}
2062#endif
2063
8ceee660
BH
2064/**************************************************************************
2065 *
2066 * Kernel net device interface
2067 *
2068 *************************************************************************/
2069
2070/* Context: process, rtnl_lock() held. */
2071static int efx_net_open(struct net_device *net_dev)
2072{
767e468c 2073 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4
BH
2074 int rc;
2075
62776d03
BH
2076 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2077 raw_smp_processor_id());
8ceee660 2078
8b7325b4
BH
2079 rc = efx_check_disabled(efx);
2080 if (rc)
2081 return rc;
f8b87c17
BH
2082 if (efx->phy_mode & PHY_MODE_SPECIAL)
2083 return -EBUSY;
8880f4ec
BH
2084 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2085 return -EIO;
f8b87c17 2086
78c1f0a0
SH
2087 /* Notify the kernel of the link state polled during driver load,
2088 * before the monitor starts running */
2089 efx_link_status_changed(efx);
2090
8ceee660 2091 efx_start_all(efx);
dd40781e 2092 efx_selftest_async_start(efx);
8ceee660
BH
2093 return 0;
2094}
2095
2096/* Context: process, rtnl_lock() held.
2097 * Note that the kernel will ignore our return code; this method
2098 * should really be a void.
2099 */
2100static int efx_net_stop(struct net_device *net_dev)
2101{
767e468c 2102 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2103
62776d03
BH
2104 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2105 raw_smp_processor_id());
8ceee660 2106
8b7325b4
BH
2107 /* Stop the device and flush all the channels */
2108 efx_stop_all(efx);
8ceee660
BH
2109
2110 return 0;
2111}
2112
5b9e207c 2113/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
2114static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2115 struct rtnl_link_stats64 *stats)
8ceee660 2116{
767e468c 2117 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2118
55edc6e6 2119 spin_lock_bh(&efx->stats_lock);
cd0ecc9a 2120 efx->type->update_stats(efx, NULL, stats);
1cb34522
BH
2121 spin_unlock_bh(&efx->stats_lock);
2122
8ceee660
BH
2123 return stats;
2124}
2125
2126/* Context: netif_tx_lock held, BHs disabled. */
2127static void efx_watchdog(struct net_device *net_dev)
2128{
767e468c 2129 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2130
62776d03
BH
2131 netif_err(efx, tx_err, efx->net_dev,
2132 "TX stuck with port_enabled=%d: resetting channels\n",
2133 efx->port_enabled);
8ceee660 2134
739bb23d 2135 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
2136}
2137
2138
2139/* Context: process, rtnl_lock() held. */
2140static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2141{
767e468c 2142 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4 2143 int rc;
8ceee660 2144
8b7325b4
BH
2145 rc = efx_check_disabled(efx);
2146 if (rc)
2147 return rc;
8ceee660
BH
2148 if (new_mtu > EFX_MAX_MTU)
2149 return -EINVAL;
2150
62776d03 2151 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 2152
29c69a48
BH
2153 efx_device_detach_sync(efx);
2154 efx_stop_all(efx);
2155
d3245b28 2156 mutex_lock(&efx->mac_lock);
8ceee660 2157 net_dev->mtu = new_mtu;
710b208d 2158 efx->type->reconfigure_mac(efx);
d3245b28
BH
2159 mutex_unlock(&efx->mac_lock);
2160
8ceee660 2161 efx_start_all(efx);
29c69a48 2162 netif_device_attach(efx->net_dev);
6c8eef4a 2163 return 0;
8ceee660
BH
2164}
2165
2166static int efx_set_mac_address(struct net_device *net_dev, void *data)
2167{
767e468c 2168 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2169 struct sockaddr *addr = data;
e0b3ae30 2170 u8 *new_addr = addr->sa_data;
8ceee660 2171
8ceee660 2172 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
2173 netif_err(efx, drv, efx->net_dev,
2174 "invalid ethernet MAC address requested: %pM\n",
2175 new_addr);
504f9b5a 2176 return -EADDRNOTAVAIL;
8ceee660
BH
2177 }
2178
cd84ff4d 2179 ether_addr_copy(net_dev->dev_addr, new_addr);
7fa8d547
SS
2180 if (efx->type->sriov_mac_address_changed)
2181 efx->type->sriov_mac_address_changed(efx);
8ceee660
BH
2182
2183 /* Reconfigure the MAC */
d3245b28 2184 mutex_lock(&efx->mac_lock);
710b208d 2185 efx->type->reconfigure_mac(efx);
d3245b28 2186 mutex_unlock(&efx->mac_lock);
8ceee660
BH
2187
2188 return 0;
2189}
2190
a816f75a 2191/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 2192static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 2193{
767e468c 2194 struct efx_nic *efx = netdev_priv(net_dev);
a816f75a 2195
8be4f3e6
BH
2196 if (efx->port_enabled)
2197 queue_work(efx->workqueue, &efx->mac_work);
2198 /* Otherwise efx_start_port() will do this */
8ceee660
BH
2199}
2200
c8f44aff 2201static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
2202{
2203 struct efx_nic *efx = netdev_priv(net_dev);
2204
2205 /* If disabling RX n-tuple filtering, clear existing filters */
2206 if (net_dev->features & ~data & NETIF_F_NTUPLE)
fbd79120 2207 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
abfe9039
BH
2208
2209 return 0;
2210}
2211
7fa8d547 2212static const struct net_device_ops efx_netdev_ops = {
c3ecb9f3
SH
2213 .ndo_open = efx_net_open,
2214 .ndo_stop = efx_net_stop,
4472702e 2215 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2216 .ndo_tx_timeout = efx_watchdog,
2217 .ndo_start_xmit = efx_hard_start_xmit,
2218 .ndo_validate_addr = eth_validate_addr,
2219 .ndo_do_ioctl = efx_ioctl,
2220 .ndo_change_mtu = efx_change_mtu,
2221 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2222 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2223 .ndo_set_features = efx_set_features,
cd2d5b52 2224#ifdef CONFIG_SFC_SRIOV
7fa8d547
SS
2225 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2226 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2227 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2228 .ndo_get_vf_config = efx_sriov_get_vf_config,
cd2d5b52 2229#endif
c3ecb9f3
SH
2230#ifdef CONFIG_NET_POLL_CONTROLLER
2231 .ndo_poll_controller = efx_netpoll,
2232#endif
94b274bf 2233 .ndo_setup_tc = efx_setup_tc,
36763266
AR
2234#ifdef CONFIG_NET_RX_BUSY_POLL
2235 .ndo_busy_poll = efx_busy_poll,
2236#endif
64d8ad6d
BH
2237#ifdef CONFIG_RFS_ACCEL
2238 .ndo_rx_flow_steer = efx_filter_rfs,
2239#endif
c3ecb9f3
SH
2240};
2241
7dde596e
BH
2242static void efx_update_name(struct efx_nic *efx)
2243{
2244 strcpy(efx->name, efx->net_dev->name);
2245 efx_mtd_rename(efx);
2246 efx_set_channel_names(efx);
2247}
2248
8ceee660
BH
2249static int efx_netdev_event(struct notifier_block *this,
2250 unsigned long event, void *ptr)
2251{
351638e7 2252 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
8ceee660 2253
7fa8d547 2254 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
7dde596e
BH
2255 event == NETDEV_CHANGENAME)
2256 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2257
2258 return NOTIFY_DONE;
2259}
2260
2261static struct notifier_block efx_netdev_notifier = {
2262 .notifier_call = efx_netdev_event,
2263};
2264
06d5e193
BH
2265static ssize_t
2266show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2267{
2268 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2269 return sprintf(buf, "%d\n", efx->phy_type);
2270}
776fbcc9 2271static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
06d5e193 2272
8ceee660
BH
2273static int efx_register_netdev(struct efx_nic *efx)
2274{
2275 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2276 struct efx_channel *channel;
8ceee660
BH
2277 int rc;
2278
2279 net_dev->watchdog_timeo = 5 * HZ;
2280 net_dev->irq = efx->pci_dev->irq;
7fa8d547
SS
2281 net_dev->netdev_ops = &efx_netdev_ops;
2282 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
8127d661 2283 net_dev->priv_flags |= IFF_UNICAST_FLT;
7ad24ea4 2284 net_dev->ethtool_ops = &efx_ethtool_ops;
7e6d06f0 2285 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
8ceee660 2286
7dde596e 2287 rtnl_lock();
aed0628d 2288
7153f623
BH
2289 /* Enable resets to be scheduled and check whether any were
2290 * already requested. If so, the NIC is probably hosed so we
2291 * abort.
2292 */
2293 efx->state = STATE_READY;
2294 smp_mb(); /* ensure we change state before checking reset_pending */
2295 if (efx->reset_pending) {
2296 netif_err(efx, probe, efx->net_dev,
2297 "aborting probe due to scheduled reset\n");
2298 rc = -EIO;
2299 goto fail_locked;
2300 }
2301
aed0628d
BH
2302 rc = dev_alloc_name(net_dev, net_dev->name);
2303 if (rc < 0)
2304 goto fail_locked;
7dde596e 2305 efx_update_name(efx);
aed0628d 2306
8f8b3d51
BH
2307 /* Always start with carrier off; PHY events will detect the link */
2308 netif_carrier_off(net_dev);
2309
aed0628d
BH
2310 rc = register_netdevice(net_dev);
2311 if (rc)
2312 goto fail_locked;
2313
c04bfc6b
BH
2314 efx_for_each_channel(channel, efx) {
2315 struct efx_tx_queue *tx_queue;
60031fcc
BH
2316 efx_for_each_channel_tx_queue(tx_queue, channel)
2317 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2318 }
2319
0bcf4a64
BH
2320 efx_associate(efx);
2321
7dde596e 2322 rtnl_unlock();
8ceee660 2323
06d5e193
BH
2324 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2325 if (rc) {
62776d03
BH
2326 netif_err(efx, drv, efx->net_dev,
2327 "failed to init net dev attributes\n");
06d5e193
BH
2328 goto fail_registered;
2329 }
2330
8ceee660 2331 return 0;
06d5e193 2332
7153f623
BH
2333fail_registered:
2334 rtnl_lock();
0bcf4a64 2335 efx_dissociate(efx);
7153f623 2336 unregister_netdevice(net_dev);
aed0628d 2337fail_locked:
7153f623 2338 efx->state = STATE_UNINIT;
aed0628d 2339 rtnl_unlock();
62776d03 2340 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d 2341 return rc;
8ceee660
BH
2342}
2343
2344static void efx_unregister_netdev(struct efx_nic *efx)
2345{
8ceee660
BH
2346 if (!efx->net_dev)
2347 return;
2348
767e468c 2349 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660 2350
73ba7b68
BH
2351 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2352 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
7153f623
BH
2353
2354 rtnl_lock();
2355 unregister_netdevice(efx->net_dev);
2356 efx->state = STATE_UNINIT;
2357 rtnl_unlock();
8ceee660
BH
2358}
2359
2360/**************************************************************************
2361 *
2362 * Device reset and suspend
2363 *
2364 **************************************************************************/
2365
2467ca46
BH
2366/* Tears down the entire software state and most of the hardware state
2367 * before reset. */
d3245b28 2368void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2369{
8ceee660
BH
2370 EFX_ASSERT_RESET_SERIALISED(efx);
2371
e283546c
EC
2372 if (method == RESET_TYPE_MCDI_TIMEOUT)
2373 efx->type->prepare_flr(efx);
2374
2467ca46 2375 efx_stop_all(efx);
d8291187 2376 efx_disable_interrupts(efx);
5642ceef
BH
2377
2378 mutex_lock(&efx->mac_lock);
4b988280
SH
2379 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2380 efx->phy_op->fini(efx);
ef2b90ee 2381 efx->type->fini(efx);
8ceee660
BH
2382}
2383
2467ca46
BH
2384/* This function will always ensure that the locks acquired in
2385 * efx_reset_down() are released. A failure return code indicates
2386 * that we were unable to reinitialise the hardware, and the
2387 * driver should be disabled. If ok is false, then the rx and tx
2388 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2389int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2390{
2391 int rc;
2392
2467ca46 2393 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2394
e283546c
EC
2395 if (method == RESET_TYPE_MCDI_TIMEOUT)
2396 efx->type->finish_flr(efx);
2397
2398 /* Ensure that SRAM is initialised even if we're disabling the device */
ef2b90ee 2399 rc = efx->type->init(efx);
8ceee660 2400 if (rc) {
62776d03 2401 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2402 goto fail;
8ceee660
BH
2403 }
2404
eb9f6744
BH
2405 if (!ok)
2406 goto fail;
2407
4b988280 2408 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2409 rc = efx->phy_op->init(efx);
2410 if (rc)
2411 goto fail;
2412 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2413 netif_err(efx, drv, efx->net_dev,
2414 "could not restore PHY settings\n");
4b988280
SH
2415 }
2416
261e4d96
JC
2417 rc = efx_enable_interrupts(efx);
2418 if (rc)
2419 goto fail;
64eebcfd 2420 efx_restore_filters(efx);
7fa8d547
SS
2421 if (efx->type->sriov_reset)
2422 efx->type->sriov_reset(efx);
eb9f6744 2423
eb9f6744
BH
2424 mutex_unlock(&efx->mac_lock);
2425
2426 efx_start_all(efx);
2427
2428 return 0;
2429
2430fail:
2431 efx->port_initialized = false;
2467ca46
BH
2432
2433 mutex_unlock(&efx->mac_lock);
2434
8ceee660
BH
2435 return rc;
2436}
2437
eb9f6744
BH
2438/* Reset the NIC using the specified method. Note that the reset may
2439 * fail, in which case the card will be left in an unusable state.
8ceee660 2440 *
eb9f6744 2441 * Caller must hold the rtnl_lock.
8ceee660 2442 */
eb9f6744 2443int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2444{
eb9f6744
BH
2445 int rc, rc2;
2446 bool disabled;
8ceee660 2447
62776d03
BH
2448 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2449 RESET_TYPE(method));
8ceee660 2450
c2f3b8e3 2451 efx_device_detach_sync(efx);
d3245b28 2452 efx_reset_down(efx, method);
8ceee660 2453
ef2b90ee 2454 rc = efx->type->reset(efx, method);
8ceee660 2455 if (rc) {
62776d03 2456 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2457 goto out;
8ceee660
BH
2458 }
2459
a7d529ae
BH
2460 /* Clear flags for the scopes we covered. We assume the NIC and
2461 * driver are now quiescent so that there is no race here.
2462 */
e283546c
EC
2463 if (method < RESET_TYPE_MAX_METHOD)
2464 efx->reset_pending &= -(1 << (method + 1));
2465 else /* it doesn't fit into the well-ordered scope hierarchy */
2466 __clear_bit(method, &efx->reset_pending);
8ceee660
BH
2467
2468 /* Reinitialise bus-mastering, which may have been turned off before
2469 * the reset was scheduled. This is still appropriate, even in the
2470 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2471 * can respond to requests. */
2472 pci_set_master(efx->pci_dev);
2473
eb9f6744 2474out:
8ceee660 2475 /* Leave device stopped if necessary */
626950db
AR
2476 disabled = rc ||
2477 method == RESET_TYPE_DISABLE ||
2478 method == RESET_TYPE_RECOVER_OR_DISABLE;
eb9f6744
BH
2479 rc2 = efx_reset_up(efx, method, !disabled);
2480 if (rc2) {
2481 disabled = true;
2482 if (!rc)
2483 rc = rc2;
8ceee660
BH
2484 }
2485
eb9f6744 2486 if (disabled) {
f49a4589 2487 dev_close(efx->net_dev);
62776d03 2488 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2489 efx->state = STATE_DISABLED;
f4bd954e 2490 } else {
62776d03 2491 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2492 netif_device_attach(efx->net_dev);
f4bd954e 2493 }
8ceee660
BH
2494 return rc;
2495}
2496
626950db
AR
2497/* Try recovery mechanisms.
2498 * For now only EEH is supported.
2499 * Returns 0 if the recovery mechanisms are unsuccessful.
2500 * Returns a non-zero value otherwise.
2501 */
b28405b0 2502int efx_try_recovery(struct efx_nic *efx)
626950db
AR
2503{
2504#ifdef CONFIG_EEH
2505 /* A PCI error can occur and not be seen by EEH because nothing
2506 * happens on the PCI bus. In this case the driver may fail and
2507 * schedule a 'recover or reset', leading to this recovery handler.
2508 * Manually call the eeh failure check function.
2509 */
12a89dba 2510 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
626950db
AR
2511 if (eeh_dev_check_failure(eehdev)) {
2512 /* The EEH mechanisms will handle the error and reset the
2513 * device if necessary.
2514 */
2515 return 1;
2516 }
2517#endif
2518 return 0;
2519}
2520
74cd60a4
JC
2521static void efx_wait_for_bist_end(struct efx_nic *efx)
2522{
2523 int i;
2524
2525 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2526 if (efx_mcdi_poll_reboot(efx))
2527 goto out;
2528 msleep(BIST_WAIT_DELAY_MS);
2529 }
2530
2531 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2532out:
2533 /* Either way unset the BIST flag. If we found no reboot we probably
2534 * won't recover, but we should try.
2535 */
2536 efx->mc_bist_for_other_fn = false;
2537}
2538
8ceee660
BH
2539/* The worker thread exists so that code that cannot sleep can
2540 * schedule a reset for later.
2541 */
2542static void efx_reset_work(struct work_struct *data)
2543{
eb9f6744 2544 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
626950db
AR
2545 unsigned long pending;
2546 enum reset_type method;
2547
2548 pending = ACCESS_ONCE(efx->reset_pending);
2549 method = fls(pending) - 1;
2550
74cd60a4
JC
2551 if (method == RESET_TYPE_MC_BIST)
2552 efx_wait_for_bist_end(efx);
2553
626950db
AR
2554 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2555 method == RESET_TYPE_RECOVER_OR_ALL) &&
2556 efx_try_recovery(efx))
2557 return;
8ceee660 2558
a7d529ae 2559 if (!pending)
319ba649
SH
2560 return;
2561
eb9f6744 2562 rtnl_lock();
7153f623
BH
2563
2564 /* We checked the state in efx_schedule_reset() but it may
2565 * have changed by now. Now that we have the RTNL lock,
2566 * it cannot change again.
2567 */
2568 if (efx->state == STATE_READY)
626950db 2569 (void)efx_reset(efx, method);
7153f623 2570
eb9f6744 2571 rtnl_unlock();
8ceee660
BH
2572}
2573
2574void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2575{
2576 enum reset_type method;
2577
626950db
AR
2578 if (efx->state == STATE_RECOVERY) {
2579 netif_dbg(efx, drv, efx->net_dev,
2580 "recovering: skip scheduling %s reset\n",
2581 RESET_TYPE(type));
2582 return;
2583 }
2584
8ceee660
BH
2585 switch (type) {
2586 case RESET_TYPE_INVISIBLE:
2587 case RESET_TYPE_ALL:
626950db 2588 case RESET_TYPE_RECOVER_OR_ALL:
8ceee660
BH
2589 case RESET_TYPE_WORLD:
2590 case RESET_TYPE_DISABLE:
626950db 2591 case RESET_TYPE_RECOVER_OR_DISABLE:
74cd60a4 2592 case RESET_TYPE_MC_BIST:
e283546c 2593 case RESET_TYPE_MCDI_TIMEOUT:
8ceee660 2594 method = type;
0e2a9c7c
BH
2595 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2596 RESET_TYPE(method));
8ceee660 2597 break;
8ceee660 2598 default:
0e2a9c7c 2599 method = efx->type->map_reset_reason(type);
62776d03
BH
2600 netif_dbg(efx, drv, efx->net_dev,
2601 "scheduling %s reset for %s\n",
2602 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2603 break;
2604 }
8ceee660 2605
a7d529ae 2606 set_bit(method, &efx->reset_pending);
7153f623
BH
2607 smp_mb(); /* ensure we change reset_pending before checking state */
2608
2609 /* If we're not READY then just leave the flags set as the cue
2610 * to abort probing or reschedule the reset later.
2611 */
2612 if (ACCESS_ONCE(efx->state) != STATE_READY)
2613 return;
8ceee660 2614
8880f4ec
BH
2615 /* efx_process_channel() will no longer read events once a
2616 * reset is scheduled. So switch back to poll'd MCDI completions. */
2617 efx_mcdi_mode_poll(efx);
2618
1ab00629 2619 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2620}
2621
2622/**************************************************************************
2623 *
2624 * List of NICs we support
2625 *
2626 **************************************************************************/
2627
2628/* PCI device ID table */
9baa3c34 2629static const struct pci_device_id efx_pci_table[] = {
937383a5
BH
2630 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2631 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2632 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2633 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2634 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2635 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2636 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2637 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2638 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2639 .driver_data = (unsigned long) &siena_a0_nic_type},
8127d661
BH
2640 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2641 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
3b06a00e
MW
2642 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2643 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
8ceee660
BH
2644 {0} /* end of list */
2645};
2646
2647/**************************************************************************
2648 *
3759433d 2649 * Dummy PHY/MAC operations
8ceee660 2650 *
01aad7b6 2651 * Can be used for some unimplemented operations
8ceee660
BH
2652 * Needed so all function pointers are valid and do not have to be tested
2653 * before use
2654 *
2655 **************************************************************************/
2656int efx_port_dummy_op_int(struct efx_nic *efx)
2657{
2658 return 0;
2659}
2660void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2661
2662static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2663{
2664 return false;
2665}
8ceee660 2666
6c8c2513 2667static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2668 .init = efx_port_dummy_op_int,
d3245b28 2669 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2670 .poll = efx_port_dummy_op_poll,
8ceee660 2671 .fini = efx_port_dummy_op_void,
8ceee660
BH
2672};
2673
8ceee660
BH
2674/**************************************************************************
2675 *
2676 * Data housekeeping
2677 *
2678 **************************************************************************/
2679
2680/* This zeroes out and then fills in the invariants in a struct
2681 * efx_nic (including all sub-structures).
2682 */
adeb15aa 2683static int efx_init_struct(struct efx_nic *efx,
8ceee660
BH
2684 struct pci_dev *pci_dev, struct net_device *net_dev)
2685{
4642610c 2686 int i;
8ceee660
BH
2687
2688 /* Initialise common structures */
0bcf4a64
BH
2689 INIT_LIST_HEAD(&efx->node);
2690 INIT_LIST_HEAD(&efx->secondary_list);
8ceee660 2691 spin_lock_init(&efx->biu_lock);
76884835
BH
2692#ifdef CONFIG_SFC_MTD
2693 INIT_LIST_HEAD(&efx->mtd_list);
2694#endif
8ceee660
BH
2695 INIT_WORK(&efx->reset_work, efx_reset_work);
2696 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2697 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2698 efx->pci_dev = pci_dev;
62776d03 2699 efx->msg_enable = debug;
f16aeea0 2700 efx->state = STATE_UNINIT;
8ceee660 2701 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2702
2703 efx->net_dev = net_dev;
43a3739d 2704 efx->rx_prefix_size = efx->type->rx_prefix_size;
2ec03014
AR
2705 efx->rx_ip_align =
2706 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
43a3739d
JC
2707 efx->rx_packet_hash_offset =
2708 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
bd9a265d
JC
2709 efx->rx_packet_ts_offset =
2710 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
8ceee660
BH
2711 spin_lock_init(&efx->stats_lock);
2712 mutex_init(&efx->mac_lock);
2713 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2714 efx->mdio.dev = net_dev;
766ca0fa 2715 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2716 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2717
2718 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2719 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2720 if (!efx->channel[i])
2721 goto fail;
d8291187
BH
2722 efx->msi_context[i].efx = efx;
2723 efx->msi_context[i].index = i;
8ceee660
BH
2724 }
2725
8ceee660
BH
2726 /* Higher numbered interrupt modes are less capable! */
2727 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2728 interrupt_mode);
2729
6977dc63
BH
2730 /* Would be good to use the net_dev name, but we're too early */
2731 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2732 pci_name(pci_dev));
2733 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2734 if (!efx->workqueue)
4642610c 2735 goto fail;
8d9853d9 2736
8ceee660 2737 return 0;
4642610c
BH
2738
2739fail:
2740 efx_fini_struct(efx);
2741 return -ENOMEM;
8ceee660
BH
2742}
2743
2744static void efx_fini_struct(struct efx_nic *efx)
2745{
8313aca3
BH
2746 int i;
2747
2748 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2749 kfree(efx->channel[i]);
2750
ef215e64
BH
2751 kfree(efx->vpd_sn);
2752
8ceee660
BH
2753 if (efx->workqueue) {
2754 destroy_workqueue(efx->workqueue);
2755 efx->workqueue = NULL;
2756 }
2757}
2758
e4d112e4
EC
2759void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2760{
2761 u64 n_rx_nodesc_trunc = 0;
2762 struct efx_channel *channel;
2763
2764 efx_for_each_channel(channel, efx)
2765 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2766 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2767 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2768}
2769
8ceee660
BH
2770/**************************************************************************
2771 *
2772 * PCI interface
2773 *
2774 **************************************************************************/
2775
2776/* Main body of final NIC shutdown code
2777 * This is called only at module unload (or hotplug removal).
2778 */
2779static void efx_pci_remove_main(struct efx_nic *efx)
2780{
7153f623
BH
2781 /* Flush reset_work. It can no longer be scheduled since we
2782 * are not READY.
2783 */
2784 BUG_ON(efx->state == STATE_READY);
2785 cancel_work_sync(&efx->reset_work);
2786
d8291187 2787 efx_disable_interrupts(efx);
152b6a62 2788 efx_nic_fini_interrupt(efx);
8ceee660 2789 efx_fini_port(efx);
ef2b90ee 2790 efx->type->fini(efx);
8ceee660
BH
2791 efx_fini_napi(efx);
2792 efx_remove_all(efx);
2793}
2794
2795/* Final NIC shutdown
2796 * This is called only at module unload (or hotplug removal).
2797 */
2798static void efx_pci_remove(struct pci_dev *pci_dev)
2799{
2800 struct efx_nic *efx;
2801
2802 efx = pci_get_drvdata(pci_dev);
2803 if (!efx)
2804 return;
2805
2806 /* Mark the NIC as fini, then stop the interface */
2807 rtnl_lock();
0bcf4a64 2808 efx_dissociate(efx);
8ceee660 2809 dev_close(efx->net_dev);
d8291187 2810 efx_disable_interrupts(efx);
8ceee660
BH
2811 rtnl_unlock();
2812
7fa8d547
SS
2813 if (efx->type->sriov_fini)
2814 efx->type->sriov_fini(efx);
2815
8ceee660
BH
2816 efx_unregister_netdev(efx);
2817
7dde596e
BH
2818 efx_mtd_remove(efx);
2819
8ceee660
BH
2820 efx_pci_remove_main(efx);
2821
8ceee660 2822 efx_fini_io(efx);
62776d03 2823 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660 2824
8ceee660
BH
2825 efx_fini_struct(efx);
2826 free_netdev(efx->net_dev);
626950db
AR
2827
2828 pci_disable_pcie_error_reporting(pci_dev);
8ceee660
BH
2829};
2830
460eeaa0
BH
2831/* NIC VPD information
2832 * Called during probe to display the part number of the
2833 * installed NIC. VPD is potentially very large but this should
2834 * always appear within the first 512 bytes.
2835 */
2836#define SFC_VPD_LEN 512
ef215e64 2837static void efx_probe_vpd_strings(struct efx_nic *efx)
460eeaa0
BH
2838{
2839 struct pci_dev *dev = efx->pci_dev;
2840 char vpd_data[SFC_VPD_LEN];
2841 ssize_t vpd_size;
ef215e64 2842 int ro_start, ro_size, i, j;
460eeaa0
BH
2843
2844 /* Get the vpd data from the device */
2845 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2846 if (vpd_size <= 0) {
2847 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2848 return;
2849 }
2850
2851 /* Get the Read only section */
ef215e64
BH
2852 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2853 if (ro_start < 0) {
460eeaa0
BH
2854 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2855 return;
2856 }
2857
ef215e64
BH
2858 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2859 j = ro_size;
2860 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
460eeaa0
BH
2861 if (i + j > vpd_size)
2862 j = vpd_size - i;
2863
2864 /* Get the Part number */
2865 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2866 if (i < 0) {
2867 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2868 return;
2869 }
2870
2871 j = pci_vpd_info_field_size(&vpd_data[i]);
2872 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2873 if (i + j > vpd_size) {
2874 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2875 return;
2876 }
2877
2878 netif_info(efx, drv, efx->net_dev,
2879 "Part Number : %.*s\n", j, &vpd_data[i]);
ef215e64
BH
2880
2881 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2882 j = ro_size;
2883 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2884 if (i < 0) {
2885 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2886 return;
2887 }
2888
2889 j = pci_vpd_info_field_size(&vpd_data[i]);
2890 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2891 if (i + j > vpd_size) {
2892 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2893 return;
2894 }
2895
2896 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2897 if (!efx->vpd_sn)
2898 return;
2899
2900 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
460eeaa0
BH
2901}
2902
2903
8ceee660
BH
2904/* Main body of NIC initialisation
2905 * This is called at module load (or hotplug insertion, theoretically).
2906 */
2907static int efx_pci_probe_main(struct efx_nic *efx)
2908{
2909 int rc;
2910
2911 /* Do start-of-day initialisation */
2912 rc = efx_probe_all(efx);
2913 if (rc)
2914 goto fail1;
2915
e8f14992 2916 efx_init_napi(efx);
8ceee660 2917
ef2b90ee 2918 rc = efx->type->init(efx);
8ceee660 2919 if (rc) {
62776d03
BH
2920 netif_err(efx, probe, efx->net_dev,
2921 "failed to initialise NIC\n");
278c0621 2922 goto fail3;
8ceee660
BH
2923 }
2924
2925 rc = efx_init_port(efx);
2926 if (rc) {
62776d03
BH
2927 netif_err(efx, probe, efx->net_dev,
2928 "failed to initialise port\n");
278c0621 2929 goto fail4;
8ceee660
BH
2930 }
2931
152b6a62 2932 rc = efx_nic_init_interrupt(efx);
8ceee660 2933 if (rc)
278c0621 2934 goto fail5;
261e4d96
JC
2935 rc = efx_enable_interrupts(efx);
2936 if (rc)
2937 goto fail6;
8ceee660
BH
2938
2939 return 0;
2940
261e4d96
JC
2941 fail6:
2942 efx_nic_fini_interrupt(efx);
278c0621 2943 fail5:
8ceee660 2944 efx_fini_port(efx);
8ceee660 2945 fail4:
ef2b90ee 2946 efx->type->fini(efx);
8ceee660
BH
2947 fail3:
2948 efx_fini_napi(efx);
8ceee660
BH
2949 efx_remove_all(efx);
2950 fail1:
2951 return rc;
2952}
2953
2954/* NIC initialisation
2955 *
2956 * This is called at module load (or hotplug insertion,
73ba7b68 2957 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2958 * sets up and registers the network devices with the kernel and hooks
2959 * the interrupt service routine. It does not prepare the device for
2960 * transmission; this is left to the first time one of the network
2961 * interfaces is brought up (i.e. efx_net_open).
2962 */
87d1fc11 2963static int efx_pci_probe(struct pci_dev *pci_dev,
1dd06ae8 2964 const struct pci_device_id *entry)
8ceee660 2965{
8ceee660
BH
2966 struct net_device *net_dev;
2967 struct efx_nic *efx;
fadac6aa 2968 int rc;
8ceee660
BH
2969
2970 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2971 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2972 EFX_MAX_RX_QUEUES);
8ceee660
BH
2973 if (!net_dev)
2974 return -ENOMEM;
adeb15aa
BH
2975 efx = netdev_priv(net_dev);
2976 efx->type = (const struct efx_nic_type *) entry->driver_data;
2977 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
97bc5415 2978 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2979 NETIF_F_RXCSUM);
adeb15aa 2980 if (efx->type->offload_features & NETIF_F_V6_CSUM)
738a8f4b 2981 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2982 /* Mask for features that also apply to VLAN devices */
2983 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2984 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2985 NETIF_F_RXCSUM);
2986 /* All offloads can be toggled */
2987 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
8ceee660 2988 pci_set_drvdata(pci_dev, efx);
62776d03 2989 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
adeb15aa 2990 rc = efx_init_struct(efx, pci_dev, net_dev);
8ceee660
BH
2991 if (rc)
2992 goto fail1;
2993
62776d03 2994 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2995 "Solarflare NIC detected\n");
8ceee660 2996
ef215e64 2997 efx_probe_vpd_strings(efx);
460eeaa0 2998
8ceee660
BH
2999 /* Set up basic I/O (BAR mappings etc) */
3000 rc = efx_init_io(efx);
3001 if (rc)
3002 goto fail2;
3003
fadac6aa 3004 rc = efx_pci_probe_main(efx);
fadac6aa
BH
3005 if (rc)
3006 goto fail3;
8ceee660 3007
8ceee660
BH
3008 rc = efx_register_netdev(efx);
3009 if (rc)
fadac6aa 3010 goto fail4;
8ceee660 3011
7fa8d547
SS
3012 if (efx->type->sriov_init) {
3013 rc = efx->type->sriov_init(efx);
3014 if (rc)
3015 netif_err(efx, probe, efx->net_dev,
3016 "SR-IOV can't be enabled rc %d\n", rc);
3017 }
cd2d5b52 3018
62776d03 3019 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 3020
7c43161c 3021 /* Try to create MTDs, but allow this to fail */
a5211bb5 3022 rtnl_lock();
7c43161c 3023 rc = efx_mtd_probe(efx);
a5211bb5 3024 rtnl_unlock();
7c43161c
BH
3025 if (rc)
3026 netif_warn(efx, probe, efx->net_dev,
3027 "failed to create MTDs (%d)\n", rc);
3028
626950db
AR
3029 rc = pci_enable_pcie_error_reporting(pci_dev);
3030 if (rc && rc != -EINVAL)
3031 netif_warn(efx, probe, efx->net_dev,
3032 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3033
8ceee660
BH
3034 return 0;
3035
8ceee660 3036 fail4:
fadac6aa 3037 efx_pci_remove_main(efx);
8ceee660
BH
3038 fail3:
3039 efx_fini_io(efx);
3040 fail2:
3041 efx_fini_struct(efx);
3042 fail1:
5e2a911c 3043 WARN_ON(rc > 0);
62776d03 3044 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
3045 free_netdev(net_dev);
3046 return rc;
3047}
3048
89c758fa
BH
3049static int efx_pm_freeze(struct device *dev)
3050{
3051 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3052
61da026d
BH
3053 rtnl_lock();
3054
6032fb56
BH
3055 if (efx->state != STATE_DISABLED) {
3056 efx->state = STATE_UNINIT;
89c758fa 3057
c2f3b8e3 3058 efx_device_detach_sync(efx);
89c758fa 3059
6032fb56 3060 efx_stop_all(efx);
d8291187 3061 efx_disable_interrupts(efx);
6032fb56 3062 }
89c758fa 3063
61da026d
BH
3064 rtnl_unlock();
3065
89c758fa
BH
3066 return 0;
3067}
3068
3069static int efx_pm_thaw(struct device *dev)
3070{
261e4d96 3071 int rc;
89c758fa
BH
3072 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3073
61da026d
BH
3074 rtnl_lock();
3075
6032fb56 3076 if (efx->state != STATE_DISABLED) {
261e4d96
JC
3077 rc = efx_enable_interrupts(efx);
3078 if (rc)
3079 goto fail;
89c758fa 3080
6032fb56
BH
3081 mutex_lock(&efx->mac_lock);
3082 efx->phy_op->reconfigure(efx);
3083 mutex_unlock(&efx->mac_lock);
89c758fa 3084
6032fb56 3085 efx_start_all(efx);
89c758fa 3086
6032fb56 3087 netif_device_attach(efx->net_dev);
89c758fa 3088
6032fb56 3089 efx->state = STATE_READY;
89c758fa 3090
6032fb56
BH
3091 efx->type->resume_wol(efx);
3092 }
89c758fa 3093
61da026d
BH
3094 rtnl_unlock();
3095
319ba649
SH
3096 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3097 queue_work(reset_workqueue, &efx->reset_work);
3098
89c758fa 3099 return 0;
261e4d96
JC
3100
3101fail:
3102 rtnl_unlock();
3103
3104 return rc;
89c758fa
BH
3105}
3106
3107static int efx_pm_poweroff(struct device *dev)
3108{
3109 struct pci_dev *pci_dev = to_pci_dev(dev);
3110 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3111
3112 efx->type->fini(efx);
3113
a7d529ae 3114 efx->reset_pending = 0;
89c758fa
BH
3115
3116 pci_save_state(pci_dev);
3117 return pci_set_power_state(pci_dev, PCI_D3hot);
3118}
3119
3120/* Used for both resume and restore */
3121static int efx_pm_resume(struct device *dev)
3122{
3123 struct pci_dev *pci_dev = to_pci_dev(dev);
3124 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3125 int rc;
3126
3127 rc = pci_set_power_state(pci_dev, PCI_D0);
3128 if (rc)
3129 return rc;
3130 pci_restore_state(pci_dev);
3131 rc = pci_enable_device(pci_dev);
3132 if (rc)
3133 return rc;
3134 pci_set_master(efx->pci_dev);
3135 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3136 if (rc)
3137 return rc;
3138 rc = efx->type->init(efx);
3139 if (rc)
3140 return rc;
261e4d96
JC
3141 rc = efx_pm_thaw(dev);
3142 return rc;
89c758fa
BH
3143}
3144
3145static int efx_pm_suspend(struct device *dev)
3146{
3147 int rc;
3148
3149 efx_pm_freeze(dev);
3150 rc = efx_pm_poweroff(dev);
3151 if (rc)
3152 efx_pm_resume(dev);
3153 return rc;
3154}
3155
18e83e4c 3156static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
3157 .suspend = efx_pm_suspend,
3158 .resume = efx_pm_resume,
3159 .freeze = efx_pm_freeze,
3160 .thaw = efx_pm_thaw,
3161 .poweroff = efx_pm_poweroff,
3162 .restore = efx_pm_resume,
3163};
3164
626950db
AR
3165/* A PCI error affecting this device was detected.
3166 * At this point MMIO and DMA may be disabled.
3167 * Stop the software path and request a slot reset.
3168 */
debd0034 3169static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3170 enum pci_channel_state state)
626950db
AR
3171{
3172 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3173 struct efx_nic *efx = pci_get_drvdata(pdev);
3174
3175 if (state == pci_channel_io_perm_failure)
3176 return PCI_ERS_RESULT_DISCONNECT;
3177
3178 rtnl_lock();
3179
3180 if (efx->state != STATE_DISABLED) {
3181 efx->state = STATE_RECOVERY;
3182 efx->reset_pending = 0;
3183
3184 efx_device_detach_sync(efx);
3185
3186 efx_stop_all(efx);
d8291187 3187 efx_disable_interrupts(efx);
626950db
AR
3188
3189 status = PCI_ERS_RESULT_NEED_RESET;
3190 } else {
3191 /* If the interface is disabled we don't want to do anything
3192 * with it.
3193 */
3194 status = PCI_ERS_RESULT_RECOVERED;
3195 }
3196
3197 rtnl_unlock();
3198
3199 pci_disable_device(pdev);
3200
3201 return status;
3202}
3203
dbedd44e 3204/* Fake a successful reset, which will be performed later in efx_io_resume. */
debd0034 3205static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
626950db
AR
3206{
3207 struct efx_nic *efx = pci_get_drvdata(pdev);
3208 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3209 int rc;
3210
3211 if (pci_enable_device(pdev)) {
3212 netif_err(efx, hw, efx->net_dev,
3213 "Cannot re-enable PCI device after reset.\n");
3214 status = PCI_ERS_RESULT_DISCONNECT;
3215 }
3216
3217 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3218 if (rc) {
3219 netif_err(efx, hw, efx->net_dev,
3220 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3221 /* Non-fatal error. Continue. */
3222 }
3223
3224 return status;
3225}
3226
3227/* Perform the actual reset and resume I/O operations. */
3228static void efx_io_resume(struct pci_dev *pdev)
3229{
3230 struct efx_nic *efx = pci_get_drvdata(pdev);
3231 int rc;
3232
3233 rtnl_lock();
3234
3235 if (efx->state == STATE_DISABLED)
3236 goto out;
3237
3238 rc = efx_reset(efx, RESET_TYPE_ALL);
3239 if (rc) {
3240 netif_err(efx, hw, efx->net_dev,
3241 "efx_reset failed after PCI error (%d)\n", rc);
3242 } else {
3243 efx->state = STATE_READY;
3244 netif_dbg(efx, hw, efx->net_dev,
3245 "Done resetting and resuming IO after PCI error.\n");
3246 }
3247
3248out:
3249 rtnl_unlock();
3250}
3251
3252/* For simplicity and reliability, we always require a slot reset and try to
3253 * reset the hardware when a pci error affecting the device is detected.
3254 * We leave both the link_reset and mmio_enabled callback unimplemented:
3255 * with our request for slot reset the mmio_enabled callback will never be
3256 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3257 */
3258static struct pci_error_handlers efx_err_handlers = {
3259 .error_detected = efx_io_error_detected,
3260 .slot_reset = efx_io_slot_reset,
3261 .resume = efx_io_resume,
3262};
3263
8ceee660 3264static struct pci_driver efx_pci_driver = {
c5d5f5fd 3265 .name = KBUILD_MODNAME,
8ceee660
BH
3266 .id_table = efx_pci_table,
3267 .probe = efx_pci_probe,
3268 .remove = efx_pci_remove,
89c758fa 3269 .driver.pm = &efx_pm_ops,
626950db 3270 .err_handler = &efx_err_handlers,
8ceee660
BH
3271};
3272
3273/**************************************************************************
3274 *
3275 * Kernel module interface
3276 *
3277 *************************************************************************/
3278
3279module_param(interrupt_mode, uint, 0444);
3280MODULE_PARM_DESC(interrupt_mode,
3281 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3282
3283static int __init efx_init_module(void)
3284{
3285 int rc;
3286
3287 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3288
3289 rc = register_netdevice_notifier(&efx_netdev_notifier);
3290 if (rc)
3291 goto err_notifier;
3292
7fa8d547 3293#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3294 rc = efx_init_sriov();
3295 if (rc)
3296 goto err_sriov;
7fa8d547 3297#endif
cd2d5b52 3298
1ab00629
SH
3299 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3300 if (!reset_workqueue) {
3301 rc = -ENOMEM;
3302 goto err_reset;
3303 }
8ceee660
BH
3304
3305 rc = pci_register_driver(&efx_pci_driver);
3306 if (rc < 0)
3307 goto err_pci;
3308
3309 return 0;
3310
3311 err_pci:
1ab00629
SH
3312 destroy_workqueue(reset_workqueue);
3313 err_reset:
7fa8d547 3314#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3315 efx_fini_sriov();
3316 err_sriov:
7fa8d547 3317#endif
8ceee660
BH
3318 unregister_netdevice_notifier(&efx_netdev_notifier);
3319 err_notifier:
3320 return rc;
3321}
3322
3323static void __exit efx_exit_module(void)
3324{
3325 printk(KERN_INFO "Solarflare NET driver unloading\n");
3326
3327 pci_unregister_driver(&efx_pci_driver);
1ab00629 3328 destroy_workqueue(reset_workqueue);
7fa8d547 3329#ifdef CONFIG_SFC_SRIOV
cd2d5b52 3330 efx_fini_sriov();
7fa8d547 3331#endif
8ceee660
BH
3332 unregister_netdevice_notifier(&efx_netdev_notifier);
3333
3334}
3335
3336module_init(efx_init_module);
3337module_exit(efx_exit_module);
3338
906bb26c
BH
3339MODULE_AUTHOR("Solarflare Communications and "
3340 "Michael Brown <mbrown@fensystems.co.uk>");
6a350fdb 3341MODULE_DESCRIPTION("Solarflare network driver");
8ceee660
BH
3342MODULE_LICENSE("GPL");
3343MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 1.118576 seconds and 5 git commands to generate.