sfc: Refactor Falcon-arch filter removal
[deliverable/linux.git] / drivers / net / ethernet / sfc / farch.c
CommitLineData
86094f7f
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "farch_regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/* Falcon-architecture (SFC4000 and SFC9000-family) support */
26
27/**************************************************************************
28 *
29 * Configurable values
30 *
31 **************************************************************************
32 */
33
34/* This is set to 16 for a good reason. In summary, if larger than
35 * 16, the descriptor cache holds more than a default socket
36 * buffer's worth of packets (for UDP we can only have at most one
37 * socket buffer's worth outstanding). This combined with the fact
38 * that we only get 1 TX event per descriptor cache means the NIC
39 * goes idle.
40 */
41#define TX_DC_ENTRIES 16
42#define TX_DC_ENTRIES_ORDER 1
43
44#define RX_DC_ENTRIES 64
45#define RX_DC_ENTRIES_ORDER 3
46
47/* If EFX_MAX_INT_ERRORS internal errors occur within
48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 * disable it.
50 */
51#define EFX_INT_ERROR_EXPIRE 3600
52#define EFX_MAX_INT_ERRORS 5
53
54/* Depth of RX flush request fifo */
55#define EFX_RX_FLUSH_COUNT 4
56
57/* Driver generated events */
58#define _EFX_CHANNEL_MAGIC_TEST 0x000101
59#define _EFX_CHANNEL_MAGIC_FILL 0x000102
60#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
61#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
62
63#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
64#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
65
66#define EFX_CHANNEL_MAGIC_TEST(_channel) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
70 efx_rx_queue_index(_rx_queue))
71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
73 efx_rx_queue_index(_rx_queue))
74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 (_tx_queue)->queue)
77
78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79
80/**************************************************************************
81 *
82 * Hardware access
83 *
84 **************************************************************************/
85
86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 unsigned int index)
88{
89 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 value, index);
91}
92
93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 const efx_oword_t *mask)
95{
96 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98}
99
100int efx_farch_test_registers(struct efx_nic *efx,
101 const struct efx_farch_register_test *regs,
102 size_t n_regs)
103{
104 unsigned address = 0, i, j;
105 efx_oword_t mask, imask, original, reg, buf;
106
107 for (i = 0; i < n_regs; ++i) {
108 address = regs[i].address;
109 mask = imask = regs[i].mask;
110 EFX_INVERT_OWORD(imask);
111
112 efx_reado(efx, &original, address);
113
114 /* bit sweep on and off */
115 for (j = 0; j < 128; j++) {
116 if (!EFX_EXTRACT_OWORD32(mask, j, j))
117 continue;
118
119 /* Test this testable bit can be set in isolation */
120 EFX_AND_OWORD(reg, original, mask);
121 EFX_SET_OWORD32(reg, j, j, 1);
122
123 efx_writeo(efx, &reg, address);
124 efx_reado(efx, &buf, address);
125
126 if (efx_masked_compare_oword(&reg, &buf, &mask))
127 goto fail;
128
129 /* Test this testable bit can be cleared in isolation */
130 EFX_OR_OWORD(reg, original, mask);
131 EFX_SET_OWORD32(reg, j, j, 0);
132
133 efx_writeo(efx, &reg, address);
134 efx_reado(efx, &buf, address);
135
136 if (efx_masked_compare_oword(&reg, &buf, &mask))
137 goto fail;
138 }
139
140 efx_writeo(efx, &original, address);
141 }
142
143 return 0;
144
145fail:
146 netif_err(efx, hw, efx->net_dev,
147 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
148 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
149 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
150 return -EIO;
151}
152
153/**************************************************************************
154 *
155 * Special buffer handling
156 * Special buffers are used for event queues and the TX and RX
157 * descriptor rings.
158 *
159 *************************************************************************/
160
161/*
162 * Initialise a special buffer
163 *
164 * This will define a buffer (previously allocated via
165 * efx_alloc_special_buffer()) in the buffer table, allowing
166 * it to be used for event queues, descriptor rings etc.
167 */
168static void
169efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
170{
171 efx_qword_t buf_desc;
172 unsigned int index;
173 dma_addr_t dma_addr;
174 int i;
175
176 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
177
178 /* Write buffer descriptors to NIC */
179 for (i = 0; i < buffer->entries; i++) {
180 index = buffer->index + i;
181 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
182 netif_dbg(efx, probe, efx->net_dev,
183 "mapping special buffer %d at %llx\n",
184 index, (unsigned long long)dma_addr);
185 EFX_POPULATE_QWORD_3(buf_desc,
186 FRF_AZ_BUF_ADR_REGION, 0,
187 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
188 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
189 efx_write_buf_tbl(efx, &buf_desc, index);
190 }
191}
192
193/* Unmaps a buffer and clears the buffer table entries */
194static void
195efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
196{
197 efx_oword_t buf_tbl_upd;
198 unsigned int start = buffer->index;
199 unsigned int end = (buffer->index + buffer->entries - 1);
200
201 if (!buffer->entries)
202 return;
203
204 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
205 buffer->index, buffer->index + buffer->entries - 1);
206
207 EFX_POPULATE_OWORD_4(buf_tbl_upd,
208 FRF_AZ_BUF_UPD_CMD, 0,
209 FRF_AZ_BUF_CLR_CMD, 1,
210 FRF_AZ_BUF_CLR_END_ID, end,
211 FRF_AZ_BUF_CLR_START_ID, start);
212 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
213}
214
215/*
216 * Allocate a new special buffer
217 *
218 * This allocates memory for a new buffer, clears it and allocates a
219 * new buffer ID range. It does not write into the buffer table.
220 *
221 * This call will allocate 4KB buffers, since 8KB buffers can't be
222 * used for event queues and descriptor rings.
223 */
224static int efx_alloc_special_buffer(struct efx_nic *efx,
225 struct efx_special_buffer *buffer,
226 unsigned int len)
227{
228 len = ALIGN(len, EFX_BUF_SIZE);
229
230 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
231 return -ENOMEM;
232 buffer->entries = len / EFX_BUF_SIZE;
233 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
234
235 /* Select new buffer ID */
236 buffer->index = efx->next_buffer_table;
237 efx->next_buffer_table += buffer->entries;
238#ifdef CONFIG_SFC_SRIOV
239 BUG_ON(efx_sriov_enabled(efx) &&
240 efx->vf_buftbl_base < efx->next_buffer_table);
241#endif
242
243 netif_dbg(efx, probe, efx->net_dev,
244 "allocating special buffers %d-%d at %llx+%x "
245 "(virt %p phys %llx)\n", buffer->index,
246 buffer->index + buffer->entries - 1,
247 (u64)buffer->buf.dma_addr, len,
248 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
249
250 return 0;
251}
252
253static void
254efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
255{
256 if (!buffer->buf.addr)
257 return;
258
259 netif_dbg(efx, hw, efx->net_dev,
260 "deallocating special buffers %d-%d at %llx+%x "
261 "(virt %p phys %llx)\n", buffer->index,
262 buffer->index + buffer->entries - 1,
263 (u64)buffer->buf.dma_addr, buffer->buf.len,
264 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
265
266 efx_nic_free_buffer(efx, &buffer->buf);
267 buffer->entries = 0;
268}
269
270/**************************************************************************
271 *
272 * TX path
273 *
274 **************************************************************************/
275
276/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
277static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
278{
279 unsigned write_ptr;
280 efx_dword_t reg;
281
282 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
283 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
284 efx_writed_page(tx_queue->efx, &reg,
285 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
286}
287
288/* Write pointer and first descriptor for TX descriptor ring */
289static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
290 const efx_qword_t *txd)
291{
292 unsigned write_ptr;
293 efx_oword_t reg;
294
295 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
296 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
297
298 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
299 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
300 FRF_AZ_TX_DESC_WPTR, write_ptr);
301 reg.qword[0] = *txd;
302 efx_writeo_page(tx_queue->efx, &reg,
303 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
304}
305
306
307/* For each entry inserted into the software descriptor ring, create a
308 * descriptor in the hardware TX descriptor ring (in host memory), and
309 * write a doorbell.
310 */
311void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
312{
313
314 struct efx_tx_buffer *buffer;
315 efx_qword_t *txd;
316 unsigned write_ptr;
317 unsigned old_write_count = tx_queue->write_count;
318
319 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
320
321 do {
322 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
323 buffer = &tx_queue->buffer[write_ptr];
324 txd = efx_tx_desc(tx_queue, write_ptr);
325 ++tx_queue->write_count;
326
327 /* Create TX descriptor ring entry */
328 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
329 EFX_POPULATE_QWORD_4(*txd,
330 FSF_AZ_TX_KER_CONT,
331 buffer->flags & EFX_TX_BUF_CONT,
332 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
333 FSF_AZ_TX_KER_BUF_REGION, 0,
334 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
335 } while (tx_queue->write_count != tx_queue->insert_count);
336
337 wmb(); /* Ensure descriptors are written before they are fetched */
338
339 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
340 txd = efx_tx_desc(tx_queue,
341 old_write_count & tx_queue->ptr_mask);
342 efx_farch_push_tx_desc(tx_queue, txd);
343 ++tx_queue->pushes;
344 } else {
345 efx_farch_notify_tx_desc(tx_queue);
346 }
347}
348
349/* Allocate hardware resources for a TX queue */
350int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
351{
352 struct efx_nic *efx = tx_queue->efx;
353 unsigned entries;
354
355 entries = tx_queue->ptr_mask + 1;
356 return efx_alloc_special_buffer(efx, &tx_queue->txd,
357 entries * sizeof(efx_qword_t));
358}
359
360void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
361{
362 struct efx_nic *efx = tx_queue->efx;
363 efx_oword_t reg;
364
365 /* Pin TX descriptor ring */
366 efx_init_special_buffer(efx, &tx_queue->txd);
367
368 /* Push TX descriptor ring to card */
369 EFX_POPULATE_OWORD_10(reg,
370 FRF_AZ_TX_DESCQ_EN, 1,
371 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
372 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
373 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
374 FRF_AZ_TX_DESCQ_EVQ_ID,
375 tx_queue->channel->channel,
376 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
377 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
378 FRF_AZ_TX_DESCQ_SIZE,
379 __ffs(tx_queue->txd.entries),
380 FRF_AZ_TX_DESCQ_TYPE, 0,
381 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
382
383 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
384 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
386 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
387 !csum);
388 }
389
390 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
391 tx_queue->queue);
392
393 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
394 /* Only 128 bits in this register */
395 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
396
397 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
398 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
399 __clear_bit_le(tx_queue->queue, &reg);
400 else
401 __set_bit_le(tx_queue->queue, &reg);
402 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
403 }
404
405 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
406 EFX_POPULATE_OWORD_1(reg,
407 FRF_BZ_TX_PACE,
408 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
409 FFE_BZ_TX_PACE_OFF :
410 FFE_BZ_TX_PACE_RESERVED);
411 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
412 tx_queue->queue);
413 }
414}
415
416static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
417{
418 struct efx_nic *efx = tx_queue->efx;
419 efx_oword_t tx_flush_descq;
420
421 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
422 atomic_set(&tx_queue->flush_outstanding, 1);
423
424 EFX_POPULATE_OWORD_2(tx_flush_descq,
425 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
426 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
427 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
428}
429
430void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
431{
432 struct efx_nic *efx = tx_queue->efx;
433 efx_oword_t tx_desc_ptr;
434
435 /* Remove TX descriptor ring from card */
436 EFX_ZERO_OWORD(tx_desc_ptr);
437 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
438 tx_queue->queue);
439
440 /* Unpin TX descriptor ring */
441 efx_fini_special_buffer(efx, &tx_queue->txd);
442}
443
444/* Free buffers backing TX queue */
445void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
446{
447 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
448}
449
450/**************************************************************************
451 *
452 * RX path
453 *
454 **************************************************************************/
455
456/* This creates an entry in the RX descriptor queue */
457static inline void
458efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
459{
460 struct efx_rx_buffer *rx_buf;
461 efx_qword_t *rxd;
462
463 rxd = efx_rx_desc(rx_queue, index);
464 rx_buf = efx_rx_buffer(rx_queue, index);
465 EFX_POPULATE_QWORD_3(*rxd,
466 FSF_AZ_RX_KER_BUF_SIZE,
467 rx_buf->len -
468 rx_queue->efx->type->rx_buffer_padding,
469 FSF_AZ_RX_KER_BUF_REGION, 0,
470 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
471}
472
473/* This writes to the RX_DESC_WPTR register for the specified receive
474 * descriptor ring.
475 */
476void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
477{
478 struct efx_nic *efx = rx_queue->efx;
479 efx_dword_t reg;
480 unsigned write_ptr;
481
482 while (rx_queue->notified_count != rx_queue->added_count) {
483 efx_farch_build_rx_desc(
484 rx_queue,
485 rx_queue->notified_count & rx_queue->ptr_mask);
486 ++rx_queue->notified_count;
487 }
488
489 wmb();
490 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
491 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
492 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
493 efx_rx_queue_index(rx_queue));
494}
495
496int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
497{
498 struct efx_nic *efx = rx_queue->efx;
499 unsigned entries;
500
501 entries = rx_queue->ptr_mask + 1;
502 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
503 entries * sizeof(efx_qword_t));
504}
505
506void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
507{
508 efx_oword_t rx_desc_ptr;
509 struct efx_nic *efx = rx_queue->efx;
510 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
511 bool iscsi_digest_en = is_b0;
512 bool jumbo_en;
513
514 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
515 * DMA to continue after a PCIe page boundary (and scattering
516 * is not possible). In Falcon B0 and Siena, it enables
517 * scatter.
518 */
519 jumbo_en = !is_b0 || efx->rx_scatter;
520
521 netif_dbg(efx, hw, efx->net_dev,
522 "RX queue %d ring in special buffers %d-%d\n",
523 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
524 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
525
526 rx_queue->scatter_n = 0;
527
528 /* Pin RX descriptor ring */
529 efx_init_special_buffer(efx, &rx_queue->rxd);
530
531 /* Push RX descriptor ring to card */
532 EFX_POPULATE_OWORD_10(rx_desc_ptr,
533 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
534 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
535 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
536 FRF_AZ_RX_DESCQ_EVQ_ID,
537 efx_rx_queue_channel(rx_queue)->channel,
538 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
539 FRF_AZ_RX_DESCQ_LABEL,
540 efx_rx_queue_index(rx_queue),
541 FRF_AZ_RX_DESCQ_SIZE,
542 __ffs(rx_queue->rxd.entries),
543 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
544 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
545 FRF_AZ_RX_DESCQ_EN, 1);
546 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
547 efx_rx_queue_index(rx_queue));
548}
549
550static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
551{
552 struct efx_nic *efx = rx_queue->efx;
553 efx_oword_t rx_flush_descq;
554
555 EFX_POPULATE_OWORD_2(rx_flush_descq,
556 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
557 FRF_AZ_RX_FLUSH_DESCQ,
558 efx_rx_queue_index(rx_queue));
559 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
560}
561
562void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
563{
564 efx_oword_t rx_desc_ptr;
565 struct efx_nic *efx = rx_queue->efx;
566
567 /* Remove RX descriptor ring from card */
568 EFX_ZERO_OWORD(rx_desc_ptr);
569 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
570 efx_rx_queue_index(rx_queue));
571
572 /* Unpin RX descriptor ring */
573 efx_fini_special_buffer(efx, &rx_queue->rxd);
574}
575
576/* Free buffers backing RX queue */
577void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
578{
579 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
580}
581
582/**************************************************************************
583 *
584 * Flush handling
585 *
586 **************************************************************************/
587
588/* efx_farch_flush_queues() must be woken up when all flushes are completed,
589 * or more RX flushes can be kicked off.
590 */
591static bool efx_farch_flush_wake(struct efx_nic *efx)
592{
593 /* Ensure that all updates are visible to efx_farch_flush_queues() */
594 smp_mb();
595
596 return (atomic_read(&efx->drain_pending) == 0 ||
597 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
598 && atomic_read(&efx->rxq_flush_pending) > 0));
599}
600
601static bool efx_check_tx_flush_complete(struct efx_nic *efx)
602{
603 bool i = true;
604 efx_oword_t txd_ptr_tbl;
605 struct efx_channel *channel;
606 struct efx_tx_queue *tx_queue;
607
608 efx_for_each_channel(channel, efx) {
609 efx_for_each_channel_tx_queue(tx_queue, channel) {
610 efx_reado_table(efx, &txd_ptr_tbl,
611 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
612 if (EFX_OWORD_FIELD(txd_ptr_tbl,
613 FRF_AZ_TX_DESCQ_FLUSH) ||
614 EFX_OWORD_FIELD(txd_ptr_tbl,
615 FRF_AZ_TX_DESCQ_EN)) {
616 netif_dbg(efx, hw, efx->net_dev,
617 "flush did not complete on TXQ %d\n",
618 tx_queue->queue);
619 i = false;
620 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
621 1, 0)) {
622 /* The flush is complete, but we didn't
623 * receive a flush completion event
624 */
625 netif_dbg(efx, hw, efx->net_dev,
626 "flush complete on TXQ %d, so drain "
627 "the queue\n", tx_queue->queue);
628 /* Don't need to increment drain_pending as it
629 * has already been incremented for the queues
630 * which did not drain
631 */
632 efx_farch_magic_event(channel,
633 EFX_CHANNEL_MAGIC_TX_DRAIN(
634 tx_queue));
635 }
636 }
637 }
638
639 return i;
640}
641
642/* Flush all the transmit queues, and continue flushing receive queues until
643 * they're all flushed. Wait for the DRAIN events to be recieved so that there
644 * are no more RX and TX events left on any channel. */
645static int efx_farch_do_flush(struct efx_nic *efx)
646{
647 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
648 struct efx_channel *channel;
649 struct efx_rx_queue *rx_queue;
650 struct efx_tx_queue *tx_queue;
651 int rc = 0;
652
653 efx_for_each_channel(channel, efx) {
654 efx_for_each_channel_tx_queue(tx_queue, channel) {
655 atomic_inc(&efx->drain_pending);
656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
659 atomic_inc(&efx->drain_pending);
660 rx_queue->flush_pending = true;
661 atomic_inc(&efx->rxq_flush_pending);
662 }
663 }
664
665 while (timeout && atomic_read(&efx->drain_pending) > 0) {
666 /* If SRIOV is enabled, then offload receive queue flushing to
667 * the firmware (though we will still have to poll for
668 * completion). If that fails, fall back to the old scheme.
669 */
670 if (efx_sriov_enabled(efx)) {
671 rc = efx_mcdi_flush_rxqs(efx);
672 if (!rc)
673 goto wait;
674 }
675
676 /* The hardware supports four concurrent rx flushes, each of
677 * which may need to be retried if there is an outstanding
678 * descriptor fetch
679 */
680 efx_for_each_channel(channel, efx) {
681 efx_for_each_channel_rx_queue(rx_queue, channel) {
682 if (atomic_read(&efx->rxq_flush_outstanding) >=
683 EFX_RX_FLUSH_COUNT)
684 break;
685
686 if (rx_queue->flush_pending) {
687 rx_queue->flush_pending = false;
688 atomic_dec(&efx->rxq_flush_pending);
689 atomic_inc(&efx->rxq_flush_outstanding);
690 efx_farch_flush_rx_queue(rx_queue);
691 }
692 }
693 }
694
695 wait:
696 timeout = wait_event_timeout(efx->flush_wq,
697 efx_farch_flush_wake(efx),
698 timeout);
699 }
700
701 if (atomic_read(&efx->drain_pending) &&
702 !efx_check_tx_flush_complete(efx)) {
703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
705 atomic_read(&efx->rxq_flush_outstanding),
706 atomic_read(&efx->rxq_flush_pending));
707 rc = -ETIMEDOUT;
708
709 atomic_set(&efx->drain_pending, 0);
710 atomic_set(&efx->rxq_flush_pending, 0);
711 atomic_set(&efx->rxq_flush_outstanding, 0);
712 }
713
714 return rc;
715}
716
717int efx_farch_fini_dmaq(struct efx_nic *efx)
718{
719 struct efx_channel *channel;
720 struct efx_tx_queue *tx_queue;
721 struct efx_rx_queue *rx_queue;
722 int rc = 0;
723
724 /* Do not attempt to write to the NIC during EEH recovery */
725 if (efx->state != STATE_RECOVERY) {
726 /* Only perform flush if DMA is enabled */
727 if (efx->pci_dev->is_busmaster) {
728 efx->type->prepare_flush(efx);
729 rc = efx_farch_do_flush(efx);
730 efx->type->finish_flush(efx);
731 }
732
733 efx_for_each_channel(channel, efx) {
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_farch_rx_fini(rx_queue);
736 efx_for_each_channel_tx_queue(tx_queue, channel)
737 efx_farch_tx_fini(tx_queue);
738 }
739 }
740
741 return rc;
742}
743
744/**************************************************************************
745 *
746 * Event queue processing
747 * Event queues are processed by per-channel tasklets.
748 *
749 **************************************************************************/
750
751/* Update a channel's event queue's read pointer (RPTR) register
752 *
753 * This writes the EVQ_RPTR_REG register for the specified channel's
754 * event queue.
755 */
756void efx_farch_ev_read_ack(struct efx_channel *channel)
757{
758 efx_dword_t reg;
759 struct efx_nic *efx = channel->efx;
760
761 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
762 channel->eventq_read_ptr & channel->eventq_mask);
763
764 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
765 * of 4 bytes, but it is really 16 bytes just like later revisions.
766 */
767 efx_writed(efx, &reg,
768 efx->type->evq_rptr_tbl_base +
769 FR_BZ_EVQ_RPTR_STEP * channel->channel);
770}
771
772/* Use HW to insert a SW defined event */
773void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
774 efx_qword_t *event)
775{
776 efx_oword_t drv_ev_reg;
777
778 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
779 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
780 drv_ev_reg.u32[0] = event->u32[0];
781 drv_ev_reg.u32[1] = event->u32[1];
782 drv_ev_reg.u32[2] = 0;
783 drv_ev_reg.u32[3] = 0;
784 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
785 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
786}
787
788static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
789{
790 efx_qword_t event;
791
792 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
793 FSE_AZ_EV_CODE_DRV_GEN_EV,
794 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
795 efx_farch_generate_event(channel->efx, channel->channel, &event);
796}
797
798/* Handle a transmit completion event
799 *
800 * The NIC batches TX completion events; the message we receive is of
801 * the form "complete all TX events up to this index".
802 */
803static int
804efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
805{
806 unsigned int tx_ev_desc_ptr;
807 unsigned int tx_ev_q_label;
808 struct efx_tx_queue *tx_queue;
809 struct efx_nic *efx = channel->efx;
810 int tx_packets = 0;
811
812 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
813 return 0;
814
815 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
816 /* Transmit completion */
817 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
818 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
819 tx_queue = efx_channel_get_tx_queue(
820 channel, tx_ev_q_label % EFX_TXQ_TYPES);
821 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
822 tx_queue->ptr_mask);
823 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
824 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
825 /* Rewrite the FIFO write pointer */
826 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
827 tx_queue = efx_channel_get_tx_queue(
828 channel, tx_ev_q_label % EFX_TXQ_TYPES);
829
830 netif_tx_lock(efx->net_dev);
831 efx_farch_notify_tx_desc(tx_queue);
832 netif_tx_unlock(efx->net_dev);
ab3b8250 833 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
86094f7f
BH
834 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
835 } else {
836 netif_err(efx, tx_err, efx->net_dev,
837 "channel %d unexpected TX event "
838 EFX_QWORD_FMT"\n", channel->channel,
839 EFX_QWORD_VAL(*event));
840 }
841
842 return tx_packets;
843}
844
845/* Detect errors included in the rx_evt_pkt_ok bit. */
846static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
847 const efx_qword_t *event)
848{
849 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
850 struct efx_nic *efx = rx_queue->efx;
851 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
852 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
853 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
854 bool rx_ev_other_err, rx_ev_pause_frm;
855 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
856 unsigned rx_ev_pkt_type;
857
858 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
859 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
860 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
861 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
862 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
863 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
864 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
865 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
866 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
867 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
868 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
869 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
870 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
871 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
872 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
873
874 /* Every error apart from tobe_disc and pause_frm */
875 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
876 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
877 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
878
879 /* Count errors that are not in MAC stats. Ignore expected
880 * checksum errors during self-test. */
881 if (rx_ev_frm_trunc)
882 ++channel->n_rx_frm_trunc;
883 else if (rx_ev_tobe_disc)
884 ++channel->n_rx_tobe_disc;
885 else if (!efx->loopback_selftest) {
886 if (rx_ev_ip_hdr_chksum_err)
887 ++channel->n_rx_ip_hdr_chksum_err;
888 else if (rx_ev_tcp_udp_chksum_err)
889 ++channel->n_rx_tcp_udp_chksum_err;
890 }
891
892 /* TOBE_DISC is expected on unicast mismatches; don't print out an
893 * error message. FRM_TRUNC indicates RXDP dropped the packet due
894 * to a FIFO overflow.
895 */
896#ifdef DEBUG
897 if (rx_ev_other_err && net_ratelimit()) {
898 netif_dbg(efx, rx_err, efx->net_dev,
899 " RX queue %d unexpected RX event "
900 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
901 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
902 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
903 rx_ev_ip_hdr_chksum_err ?
904 " [IP_HDR_CHKSUM_ERR]" : "",
905 rx_ev_tcp_udp_chksum_err ?
906 " [TCP_UDP_CHKSUM_ERR]" : "",
907 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
908 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
909 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
910 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
911 rx_ev_pause_frm ? " [PAUSE]" : "");
912 }
913#endif
914
915 /* The frame must be discarded if any of these are true. */
916 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
917 rx_ev_tobe_disc | rx_ev_pause_frm) ?
918 EFX_RX_PKT_DISCARD : 0;
919}
920
921/* Handle receive events that are not in-order. Return true if this
922 * can be handled as a partial packet discard, false if it's more
923 * serious.
924 */
925static bool
926efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
927{
928 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
929 struct efx_nic *efx = rx_queue->efx;
930 unsigned expected, dropped;
931
932 if (rx_queue->scatter_n &&
933 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
934 rx_queue->ptr_mask)) {
935 ++channel->n_rx_nodesc_trunc;
936 return true;
937 }
938
939 expected = rx_queue->removed_count & rx_queue->ptr_mask;
940 dropped = (index - expected) & rx_queue->ptr_mask;
941 netif_info(efx, rx_err, efx->net_dev,
942 "dropped %d events (index=%d expected=%d)\n",
943 dropped, index, expected);
944
945 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
946 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
947 return false;
948}
949
950/* Handle a packet received event
951 *
952 * The NIC gives a "discard" flag if it's a unicast packet with the
953 * wrong destination address
954 * Also "is multicast" and "matches multicast filter" flags can be used to
955 * discard non-matching multicast packets.
956 */
957static void
958efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
959{
960 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
961 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
962 unsigned expected_ptr;
963 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
964 u16 flags;
965 struct efx_rx_queue *rx_queue;
966 struct efx_nic *efx = channel->efx;
967
968 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
969 return;
970
971 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
972 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
973 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
974 channel->channel);
975
976 rx_queue = efx_channel_get_rx_queue(channel);
977
978 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
979 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
980 rx_queue->ptr_mask);
981
982 /* Check for partial drops and other errors */
983 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
984 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
985 if (rx_ev_desc_ptr != expected_ptr &&
986 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
987 return;
988
989 /* Discard all pending fragments */
990 if (rx_queue->scatter_n) {
991 efx_rx_packet(
992 rx_queue,
993 rx_queue->removed_count & rx_queue->ptr_mask,
994 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
995 rx_queue->removed_count += rx_queue->scatter_n;
996 rx_queue->scatter_n = 0;
997 }
998
999 /* Return if there is no new fragment */
1000 if (rx_ev_desc_ptr != expected_ptr)
1001 return;
1002
1003 /* Discard new fragment if not SOP */
1004 if (!rx_ev_sop) {
1005 efx_rx_packet(
1006 rx_queue,
1007 rx_queue->removed_count & rx_queue->ptr_mask,
1008 1, 0, EFX_RX_PKT_DISCARD);
1009 ++rx_queue->removed_count;
1010 return;
1011 }
1012 }
1013
1014 ++rx_queue->scatter_n;
1015 if (rx_ev_cont)
1016 return;
1017
1018 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1019 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1020 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1021
1022 if (likely(rx_ev_pkt_ok)) {
1023 /* If packet is marked as OK then we can rely on the
1024 * hardware checksum and classification.
1025 */
1026 flags = 0;
1027 switch (rx_ev_hdr_type) {
1028 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1029 flags |= EFX_RX_PKT_TCP;
1030 /* fall through */
1031 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1032 flags |= EFX_RX_PKT_CSUMMED;
1033 /* fall through */
1034 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1035 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1036 break;
1037 }
1038 } else {
1039 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1040 }
1041
1042 /* Detect multicast packets that didn't match the filter */
1043 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1044 if (rx_ev_mcast_pkt) {
1045 unsigned int rx_ev_mcast_hash_match =
1046 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1047
1048 if (unlikely(!rx_ev_mcast_hash_match)) {
1049 ++channel->n_rx_mcast_mismatch;
1050 flags |= EFX_RX_PKT_DISCARD;
1051 }
1052 }
1053
1054 channel->irq_mod_score += 2;
1055
1056 /* Handle received packet */
1057 efx_rx_packet(rx_queue,
1058 rx_queue->removed_count & rx_queue->ptr_mask,
1059 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1060 rx_queue->removed_count += rx_queue->scatter_n;
1061 rx_queue->scatter_n = 0;
1062}
1063
1064/* If this flush done event corresponds to a &struct efx_tx_queue, then
1065 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1066 * of all transmit completions.
1067 */
1068static void
1069efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1070{
1071 struct efx_tx_queue *tx_queue;
1072 int qid;
1073
1074 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1075 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1076 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1077 qid % EFX_TXQ_TYPES);
1078 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1079 efx_farch_magic_event(tx_queue->channel,
1080 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1081 }
1082 }
1083}
1084
1085/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1086 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1087 * the RX queue back to the mask of RX queues in need of flushing.
1088 */
1089static void
1090efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1091{
1092 struct efx_channel *channel;
1093 struct efx_rx_queue *rx_queue;
1094 int qid;
1095 bool failed;
1096
1097 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1098 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1099 if (qid >= efx->n_channels)
1100 return;
1101 channel = efx_get_channel(efx, qid);
1102 if (!efx_channel_has_rx_queue(channel))
1103 return;
1104 rx_queue = efx_channel_get_rx_queue(channel);
1105
1106 if (failed) {
1107 netif_info(efx, hw, efx->net_dev,
1108 "RXQ %d flush retry\n", qid);
1109 rx_queue->flush_pending = true;
1110 atomic_inc(&efx->rxq_flush_pending);
1111 } else {
1112 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1113 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1114 }
1115 atomic_dec(&efx->rxq_flush_outstanding);
1116 if (efx_farch_flush_wake(efx))
1117 wake_up(&efx->flush_wq);
1118}
1119
1120static void
1121efx_farch_handle_drain_event(struct efx_channel *channel)
1122{
1123 struct efx_nic *efx = channel->efx;
1124
1125 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1126 atomic_dec(&efx->drain_pending);
1127 if (efx_farch_flush_wake(efx))
1128 wake_up(&efx->flush_wq);
1129}
1130
1131static void efx_farch_handle_generated_event(struct efx_channel *channel,
1132 efx_qword_t *event)
1133{
1134 struct efx_nic *efx = channel->efx;
1135 struct efx_rx_queue *rx_queue =
1136 efx_channel_has_rx_queue(channel) ?
1137 efx_channel_get_rx_queue(channel) : NULL;
1138 unsigned magic, code;
1139
1140 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1141 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1142
1143 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1144 channel->event_test_cpu = raw_smp_processor_id();
1145 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1146 /* The queue must be empty, so we won't receive any rx
1147 * events, so efx_process_channel() won't refill the
1148 * queue. Refill it here */
1149 efx_fast_push_rx_descriptors(rx_queue);
1150 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1151 efx_farch_handle_drain_event(channel);
1152 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1153 efx_farch_handle_drain_event(channel);
1154 } else {
1155 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1156 "generated event "EFX_QWORD_FMT"\n",
1157 channel->channel, EFX_QWORD_VAL(*event));
1158 }
1159}
1160
1161static void
1162efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1163{
1164 struct efx_nic *efx = channel->efx;
1165 unsigned int ev_sub_code;
1166 unsigned int ev_sub_data;
1167
1168 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1169 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1170
1171 switch (ev_sub_code) {
1172 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1173 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1174 channel->channel, ev_sub_data);
1175 efx_farch_handle_tx_flush_done(efx, event);
1176 efx_sriov_tx_flush_done(efx, event);
1177 break;
1178 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1179 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1180 channel->channel, ev_sub_data);
1181 efx_farch_handle_rx_flush_done(efx, event);
1182 efx_sriov_rx_flush_done(efx, event);
1183 break;
1184 case FSE_AZ_EVQ_INIT_DONE_EV:
1185 netif_dbg(efx, hw, efx->net_dev,
1186 "channel %d EVQ %d initialised\n",
1187 channel->channel, ev_sub_data);
1188 break;
1189 case FSE_AZ_SRM_UPD_DONE_EV:
1190 netif_vdbg(efx, hw, efx->net_dev,
1191 "channel %d SRAM update done\n", channel->channel);
1192 break;
1193 case FSE_AZ_WAKE_UP_EV:
1194 netif_vdbg(efx, hw, efx->net_dev,
1195 "channel %d RXQ %d wakeup event\n",
1196 channel->channel, ev_sub_data);
1197 break;
1198 case FSE_AZ_TIMER_EV:
1199 netif_vdbg(efx, hw, efx->net_dev,
1200 "channel %d RX queue %d timer expired\n",
1201 channel->channel, ev_sub_data);
1202 break;
1203 case FSE_AA_RX_RECOVER_EV:
1204 netif_err(efx, rx_err, efx->net_dev,
1205 "channel %d seen DRIVER RX_RESET event. "
1206 "Resetting.\n", channel->channel);
1207 atomic_inc(&efx->rx_reset);
1208 efx_schedule_reset(efx,
1209 EFX_WORKAROUND_6555(efx) ?
1210 RESET_TYPE_RX_RECOVERY :
1211 RESET_TYPE_DISABLE);
1212 break;
1213 case FSE_BZ_RX_DSC_ERROR_EV:
1214 if (ev_sub_data < EFX_VI_BASE) {
1215 netif_err(efx, rx_err, efx->net_dev,
1216 "RX DMA Q %d reports descriptor fetch error."
1217 " RX Q %d is disabled.\n", ev_sub_data,
1218 ev_sub_data);
1219 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1220 } else
1221 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1222 break;
1223 case FSE_BZ_TX_DSC_ERROR_EV:
1224 if (ev_sub_data < EFX_VI_BASE) {
1225 netif_err(efx, tx_err, efx->net_dev,
1226 "TX DMA Q %d reports descriptor fetch error."
1227 " TX Q %d is disabled.\n", ev_sub_data,
1228 ev_sub_data);
1229 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1230 } else
1231 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1232 break;
1233 default:
1234 netif_vdbg(efx, hw, efx->net_dev,
1235 "channel %d unknown driver event code %d "
1236 "data %04x\n", channel->channel, ev_sub_code,
1237 ev_sub_data);
1238 break;
1239 }
1240}
1241
1242int efx_farch_ev_process(struct efx_channel *channel, int budget)
1243{
1244 struct efx_nic *efx = channel->efx;
1245 unsigned int read_ptr;
1246 efx_qword_t event, *p_event;
1247 int ev_code;
1248 int tx_packets = 0;
1249 int spent = 0;
1250
1251 read_ptr = channel->eventq_read_ptr;
1252
1253 for (;;) {
1254 p_event = efx_event(channel, read_ptr);
1255 event = *p_event;
1256
1257 if (!efx_event_present(&event))
1258 /* End of events */
1259 break;
1260
1261 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1262 "channel %d event is "EFX_QWORD_FMT"\n",
1263 channel->channel, EFX_QWORD_VAL(event));
1264
1265 /* Clear this event by marking it all ones */
1266 EFX_SET_QWORD(*p_event);
1267
1268 ++read_ptr;
1269
1270 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1271
1272 switch (ev_code) {
1273 case FSE_AZ_EV_CODE_RX_EV:
1274 efx_farch_handle_rx_event(channel, &event);
1275 if (++spent == budget)
1276 goto out;
1277 break;
1278 case FSE_AZ_EV_CODE_TX_EV:
1279 tx_packets += efx_farch_handle_tx_event(channel,
1280 &event);
1281 if (tx_packets > efx->txq_entries) {
1282 spent = budget;
1283 goto out;
1284 }
1285 break;
1286 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1287 efx_farch_handle_generated_event(channel, &event);
1288 break;
1289 case FSE_AZ_EV_CODE_DRIVER_EV:
1290 efx_farch_handle_driver_event(channel, &event);
1291 break;
1292 case FSE_CZ_EV_CODE_USER_EV:
1293 efx_sriov_event(channel, &event);
1294 break;
1295 case FSE_CZ_EV_CODE_MCDI_EV:
1296 efx_mcdi_process_event(channel, &event);
1297 break;
1298 case FSE_AZ_EV_CODE_GLOBAL_EV:
1299 if (efx->type->handle_global_event &&
1300 efx->type->handle_global_event(channel, &event))
1301 break;
1302 /* else fall through */
1303 default:
1304 netif_err(channel->efx, hw, channel->efx->net_dev,
1305 "channel %d unknown event type %d (data "
1306 EFX_QWORD_FMT ")\n", channel->channel,
1307 ev_code, EFX_QWORD_VAL(event));
1308 }
1309 }
1310
1311out:
1312 channel->eventq_read_ptr = read_ptr;
1313 return spent;
1314}
1315
1316/* Allocate buffer table entries for event queue */
1317int efx_farch_ev_probe(struct efx_channel *channel)
1318{
1319 struct efx_nic *efx = channel->efx;
1320 unsigned entries;
1321
1322 entries = channel->eventq_mask + 1;
1323 return efx_alloc_special_buffer(efx, &channel->eventq,
1324 entries * sizeof(efx_qword_t));
1325}
1326
1327void efx_farch_ev_init(struct efx_channel *channel)
1328{
1329 efx_oword_t reg;
1330 struct efx_nic *efx = channel->efx;
1331
1332 netif_dbg(efx, hw, efx->net_dev,
1333 "channel %d event queue in special buffers %d-%d\n",
1334 channel->channel, channel->eventq.index,
1335 channel->eventq.index + channel->eventq.entries - 1);
1336
1337 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1338 EFX_POPULATE_OWORD_3(reg,
1339 FRF_CZ_TIMER_Q_EN, 1,
1340 FRF_CZ_HOST_NOTIFY_MODE, 0,
1341 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1342 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1343 }
1344
1345 /* Pin event queue buffer */
1346 efx_init_special_buffer(efx, &channel->eventq);
1347
1348 /* Fill event queue with all ones (i.e. empty events) */
1349 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1350
1351 /* Push event queue to card */
1352 EFX_POPULATE_OWORD_3(reg,
1353 FRF_AZ_EVQ_EN, 1,
1354 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1355 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1356 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1357 channel->channel);
1358
1359 efx->type->push_irq_moderation(channel);
1360}
1361
1362void efx_farch_ev_fini(struct efx_channel *channel)
1363{
1364 efx_oword_t reg;
1365 struct efx_nic *efx = channel->efx;
1366
1367 /* Remove event queue from card */
1368 EFX_ZERO_OWORD(reg);
1369 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1370 channel->channel);
1371 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1372 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1373
1374 /* Unpin event queue */
1375 efx_fini_special_buffer(efx, &channel->eventq);
1376}
1377
1378/* Free buffers backing event queue */
1379void efx_farch_ev_remove(struct efx_channel *channel)
1380{
1381 efx_free_special_buffer(channel->efx, &channel->eventq);
1382}
1383
1384
1385void efx_farch_ev_test_generate(struct efx_channel *channel)
1386{
1387 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1388}
1389
1390void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1391{
1392 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1393 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1394}
1395
1396/**************************************************************************
1397 *
1398 * Hardware interrupts
1399 * The hardware interrupt handler does very little work; all the event
1400 * queue processing is carried out by per-channel tasklets.
1401 *
1402 **************************************************************************/
1403
1404/* Enable/disable/generate interrupts */
1405static inline void efx_farch_interrupts(struct efx_nic *efx,
1406 bool enabled, bool force)
1407{
1408 efx_oword_t int_en_reg_ker;
1409
1410 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1411 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412 FRF_AZ_KER_INT_KER, force,
1413 FRF_AZ_DRV_INT_EN_KER, enabled);
1414 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415}
1416
1417void efx_farch_irq_enable_master(struct efx_nic *efx)
1418{
1419 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1420 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422 efx_farch_interrupts(efx, true, false);
1423}
1424
1425void efx_farch_irq_disable_master(struct efx_nic *efx)
1426{
1427 /* Disable interrupts */
1428 efx_farch_interrupts(efx, false, false);
1429}
1430
1431/* Generate a test interrupt
1432 * Interrupt must already have been enabled, otherwise nasty things
1433 * may happen.
1434 */
1435void efx_farch_irq_test_generate(struct efx_nic *efx)
1436{
1437 efx_farch_interrupts(efx, true, true);
1438}
1439
1440/* Process a fatal interrupt
1441 * Disable bus mastering ASAP and schedule a reset
1442 */
1443irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1444{
1445 struct falcon_nic_data *nic_data = efx->nic_data;
1446 efx_oword_t *int_ker = efx->irq_status.addr;
1447 efx_oword_t fatal_intr;
1448 int error, mem_perr;
1449
1450 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1451 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1452
1453 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1454 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1455 EFX_OWORD_VAL(fatal_intr),
1456 error ? "disabling bus mastering" : "no recognised error");
1457
1458 /* If this is a memory parity error dump which blocks are offending */
1459 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1460 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1461 if (mem_perr) {
1462 efx_oword_t reg;
1463 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1464 netif_err(efx, hw, efx->net_dev,
1465 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1466 EFX_OWORD_VAL(reg));
1467 }
1468
1469 /* Disable both devices */
1470 pci_clear_master(efx->pci_dev);
1471 if (efx_nic_is_dual_func(efx))
1472 pci_clear_master(nic_data->pci_dev2);
1473 efx_farch_irq_disable_master(efx);
1474
1475 /* Count errors and reset or disable the NIC accordingly */
1476 if (efx->int_error_count == 0 ||
1477 time_after(jiffies, efx->int_error_expire)) {
1478 efx->int_error_count = 0;
1479 efx->int_error_expire =
1480 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1481 }
1482 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1483 netif_err(efx, hw, efx->net_dev,
1484 "SYSTEM ERROR - reset scheduled\n");
1485 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1486 } else {
1487 netif_err(efx, hw, efx->net_dev,
1488 "SYSTEM ERROR - max number of errors seen."
1489 "NIC will be disabled\n");
1490 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1491 }
1492
1493 return IRQ_HANDLED;
1494}
1495
1496/* Handle a legacy interrupt
1497 * Acknowledges the interrupt and schedule event queue processing.
1498 */
1499irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1500{
1501 struct efx_nic *efx = dev_id;
1502 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1503 efx_oword_t *int_ker = efx->irq_status.addr;
1504 irqreturn_t result = IRQ_NONE;
1505 struct efx_channel *channel;
1506 efx_dword_t reg;
1507 u32 queues;
1508 int syserr;
1509
1510 /* Read the ISR which also ACKs the interrupts */
1511 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1512 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1513
1514 /* Legacy interrupts are disabled too late by the EEH kernel
1515 * code. Disable them earlier.
1516 * If an EEH error occurred, the read will have returned all ones.
1517 */
1518 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1519 !efx->eeh_disabled_legacy_irq) {
1520 disable_irq_nosync(efx->legacy_irq);
1521 efx->eeh_disabled_legacy_irq = true;
1522 }
1523
1524 /* Handle non-event-queue sources */
1525 if (queues & (1U << efx->irq_level) && soft_enabled) {
1526 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1527 if (unlikely(syserr))
1528 return efx_farch_fatal_interrupt(efx);
1529 efx->last_irq_cpu = raw_smp_processor_id();
1530 }
1531
1532 if (queues != 0) {
ab3b8250 1533 efx->irq_zero_count = 0;
86094f7f
BH
1534
1535 /* Schedule processing of any interrupting queues */
1536 if (likely(soft_enabled)) {
1537 efx_for_each_channel(channel, efx) {
1538 if (queues & 1)
1539 efx_schedule_channel_irq(channel);
1540 queues >>= 1;
1541 }
1542 }
1543 result = IRQ_HANDLED;
1544
ab3b8250 1545 } else {
86094f7f
BH
1546 efx_qword_t *event;
1547
ab3b8250
BH
1548 /* Legacy ISR read can return zero once (SF bug 15783) */
1549
86094f7f
BH
1550 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1551 * because this might be a shared interrupt. */
1552 if (efx->irq_zero_count++ == 0)
1553 result = IRQ_HANDLED;
1554
1555 /* Ensure we schedule or rearm all event queues */
1556 if (likely(soft_enabled)) {
1557 efx_for_each_channel(channel, efx) {
1558 event = efx_event(channel,
1559 channel->eventq_read_ptr);
1560 if (efx_event_present(event))
1561 efx_schedule_channel_irq(channel);
1562 else
1563 efx_farch_ev_read_ack(channel);
1564 }
1565 }
1566 }
1567
1568 if (result == IRQ_HANDLED)
1569 netif_vdbg(efx, intr, efx->net_dev,
1570 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1571 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1572
1573 return result;
1574}
1575
1576/* Handle an MSI interrupt
1577 *
1578 * Handle an MSI hardware interrupt. This routine schedules event
1579 * queue processing. No interrupt acknowledgement cycle is necessary.
1580 * Also, we never need to check that the interrupt is for us, since
1581 * MSI interrupts cannot be shared.
1582 */
1583irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1584{
1585 struct efx_msi_context *context = dev_id;
1586 struct efx_nic *efx = context->efx;
1587 efx_oword_t *int_ker = efx->irq_status.addr;
1588 int syserr;
1589
1590 netif_vdbg(efx, intr, efx->net_dev,
1591 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1592 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1593
1594 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1595 return IRQ_HANDLED;
1596
1597 /* Handle non-event-queue sources */
1598 if (context->index == efx->irq_level) {
1599 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1600 if (unlikely(syserr))
1601 return efx_farch_fatal_interrupt(efx);
1602 efx->last_irq_cpu = raw_smp_processor_id();
1603 }
1604
1605 /* Schedule processing of the channel */
1606 efx_schedule_channel_irq(efx->channel[context->index]);
1607
1608 return IRQ_HANDLED;
1609}
1610
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1616{
1617 size_t i = 0;
1618 efx_dword_t dword;
1619
1620 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1621 return;
1622
1623 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625
1626 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 efx->rx_indir_table[i]);
1629 efx_writed(efx, &dword,
1630 FR_BZ_RX_INDIRECTION_TBL +
1631 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632 }
1633}
1634
1635/* Looks at available SRAM resources and works out how many queues we
1636 * can support, and where things like descriptor caches should live.
1637 *
1638 * SRAM is split up as follows:
1639 * 0 buftbl entries for channels
1640 * efx->vf_buftbl_base buftbl entries for SR-IOV
1641 * efx->rx_dc_base RX descriptor caches
1642 * efx->tx_dc_base TX descriptor caches
1643 */
1644void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1645{
1646 unsigned vi_count, buftbl_min;
1647
1648 /* Account for the buffer table entries backing the datapath channels
1649 * and the descriptor caches for those channels.
1650 */
1651 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1652 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1653 efx->n_channels * EFX_MAX_EVQ_SIZE)
1654 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1655 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1656
1657#ifdef CONFIG_SFC_SRIOV
1658 if (efx_sriov_wanted(efx)) {
1659 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1660
1661 efx->vf_buftbl_base = buftbl_min;
1662
1663 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1664 vi_count = max(vi_count, EFX_VI_BASE);
1665 buftbl_free = (sram_lim_qw - buftbl_min -
1666 vi_count * vi_dc_entries);
1667
1668 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1669 efx_vf_size(efx));
1670 vf_limit = min(buftbl_free / entries_per_vf,
1671 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1672
1673 if (efx->vf_count > vf_limit) {
1674 netif_err(efx, probe, efx->net_dev,
1675 "Reducing VF count from from %d to %d\n",
1676 efx->vf_count, vf_limit);
1677 efx->vf_count = vf_limit;
1678 }
1679 vi_count += efx->vf_count * efx_vf_size(efx);
1680 }
1681#endif
1682
1683 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1684 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1685}
1686
1687u32 efx_farch_fpga_ver(struct efx_nic *efx)
1688{
1689 efx_oword_t altera_build;
1690 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1691 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1692}
1693
1694void efx_farch_init_common(struct efx_nic *efx)
1695{
1696 efx_oword_t temp;
1697
1698 /* Set positions of descriptor caches in SRAM. */
1699 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1700 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1701 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1702 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1703
1704 /* Set TX descriptor cache size. */
1705 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1707 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1708
1709 /* Set RX descriptor cache size. Set low watermark to size-8, as
1710 * this allows most efficient prefetching.
1711 */
1712 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1714 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1715 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1716 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1717
1718 /* Program INT_KER address */
1719 EFX_POPULATE_OWORD_2(temp,
1720 FRF_AZ_NORM_INT_VEC_DIS_KER,
1721 EFX_INT_MODE_USE_MSI(efx),
1722 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1723 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1724
1725 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1726 /* Use an interrupt level unused by event queues */
1727 efx->irq_level = 0x1f;
1728 else
1729 /* Use a valid MSI-X vector */
1730 efx->irq_level = 0;
1731
1732 /* Enable all the genuinely fatal interrupts. (They are still
1733 * masked by the overall interrupt mask, controlled by
1734 * falcon_interrupts()).
1735 *
1736 * Note: All other fatal interrupts are enabled
1737 */
1738 EFX_POPULATE_OWORD_3(temp,
1739 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1740 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1741 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1742 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1743 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1744 EFX_INVERT_OWORD(temp);
1745 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1746
1747 efx_farch_rx_push_indir_table(efx);
1748
1749 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1750 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1751 */
1752 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1753 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1754 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1755 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1756 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1757 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1758 /* Enable SW_EV to inherit in char driver - assume harmless here */
1759 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1760 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1762 /* Disable hardware watchdog which can misfire */
1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1764 /* Squash TX of packets of 16 bytes or less */
1765 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1766 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1767 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1768
1769 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1770 EFX_POPULATE_OWORD_4(temp,
1771 /* Default values */
1772 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1773 FRF_BZ_TX_PACE_SB_AF, 0xb,
1774 FRF_BZ_TX_PACE_FB_BASE, 0,
1775 /* Allow large pace values in the
1776 * fast bin. */
1777 FRF_BZ_TX_PACE_BIN_TH,
1778 FFE_BZ_TX_PACE_RESERVED);
1779 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1780 }
1781}
add72477
BH
1782
1783/**************************************************************************
1784 *
1785 * Filter tables
1786 *
1787 **************************************************************************
1788 */
1789
1790/* "Fudge factors" - difference between programmed value and actual depth.
1791 * Due to pipelined implementation we need to program H/W with a value that
1792 * is larger than the hop limit we want.
1793 */
1794#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1795#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1796
1797/* Hard maximum search limit. Hardware will time-out beyond 200-something.
1798 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1799 * table is full.
1800 */
1801#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1802
1803/* Don't try very hard to find space for performance hints, as this is
1804 * counter-productive. */
1805#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1806
1807enum efx_farch_filter_type {
1808 EFX_FARCH_FILTER_TCP_FULL = 0,
1809 EFX_FARCH_FILTER_TCP_WILD,
1810 EFX_FARCH_FILTER_UDP_FULL,
1811 EFX_FARCH_FILTER_UDP_WILD,
1812 EFX_FARCH_FILTER_MAC_FULL = 4,
1813 EFX_FARCH_FILTER_MAC_WILD,
1814 EFX_FARCH_FILTER_UC_DEF = 8,
1815 EFX_FARCH_FILTER_MC_DEF,
1816 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1817};
1818
1819enum efx_farch_filter_table_id {
1820 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1821 EFX_FARCH_FILTER_TABLE_RX_MAC,
1822 EFX_FARCH_FILTER_TABLE_RX_DEF,
1823 EFX_FARCH_FILTER_TABLE_TX_MAC,
1824 EFX_FARCH_FILTER_TABLE_COUNT,
1825};
1826
1827enum efx_farch_filter_index {
1828 EFX_FARCH_FILTER_INDEX_UC_DEF,
1829 EFX_FARCH_FILTER_INDEX_MC_DEF,
1830 EFX_FARCH_FILTER_SIZE_RX_DEF,
1831};
1832
1833struct efx_farch_filter_spec {
1834 u8 type:4;
1835 u8 priority:4;
1836 u8 flags;
1837 u16 dmaq_id;
1838 u32 data[3];
1839};
1840
1841struct efx_farch_filter_table {
1842 enum efx_farch_filter_table_id id;
1843 u32 offset; /* address of table relative to BAR */
1844 unsigned size; /* number of entries */
1845 unsigned step; /* step between entries */
1846 unsigned used; /* number currently used */
1847 unsigned long *used_bitmap;
1848 struct efx_farch_filter_spec *spec;
1849 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1850};
1851
1852struct efx_farch_filter_state {
1853 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1854};
1855
1856static void
1857efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1858 struct efx_farch_filter_table *table,
1859 unsigned int filter_idx);
1860
1861/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1862 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1863static u16 efx_farch_filter_hash(u32 key)
1864{
1865 u16 tmp;
1866
1867 /* First 16 rounds */
1868 tmp = 0x1fff ^ key >> 16;
1869 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1870 tmp = tmp ^ tmp >> 9;
1871 /* Last 16 rounds */
1872 tmp = tmp ^ tmp << 13 ^ key;
1873 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1874 return tmp ^ tmp >> 9;
1875}
1876
1877/* To allow for hash collisions, filter search continues at these
1878 * increments from the first possible entry selected by the hash. */
1879static u16 efx_farch_filter_increment(u32 key)
1880{
1881 return key * 2 - 1;
1882}
1883
1884static enum efx_farch_filter_table_id
1885efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1886{
1887 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1888 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1889 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1890 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1891 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1892 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1893 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1894 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1895 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1896 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1897 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1898 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1899 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1900 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1901 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1902}
1903
1904static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1905{
1906 struct efx_farch_filter_state *state = efx->filter_state;
1907 struct efx_farch_filter_table *table;
1908 efx_oword_t filter_ctl;
1909
1910 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1911
1912 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1913 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1914 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1915 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1916 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1917 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1918 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1919 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1920 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1921 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1922 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1923 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1924 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1925
1926 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1927 if (table->size) {
1928 EFX_SET_OWORD_FIELD(
1929 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1930 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1931 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1932 EFX_SET_OWORD_FIELD(
1933 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1934 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1935 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1936 }
1937
1938 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1939 if (table->size) {
1940 EFX_SET_OWORD_FIELD(
1941 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1942 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1943 EFX_SET_OWORD_FIELD(
1944 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1945 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1946 EFX_FILTER_FLAG_RX_RSS));
1947 EFX_SET_OWORD_FIELD(
1948 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1949 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1950 EFX_SET_OWORD_FIELD(
1951 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1952 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1953 EFX_FILTER_FLAG_RX_RSS));
1954
1955 /* There is a single bit to enable RX scatter for all
1956 * unmatched packets. Only set it if scatter is
1957 * enabled in both filter specs.
1958 */
1959 EFX_SET_OWORD_FIELD(
1960 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1961 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1962 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1963 EFX_FILTER_FLAG_RX_SCATTER));
1964 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1965 /* We don't expose 'default' filters because unmatched
1966 * packets always go to the queue number found in the
1967 * RSS table. But we still need to set the RX scatter
1968 * bit here.
1969 */
1970 EFX_SET_OWORD_FIELD(
1971 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1972 efx->rx_scatter);
1973 }
1974
1975 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1976}
1977
1978static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
1979{
1980 struct efx_farch_filter_state *state = efx->filter_state;
1981 struct efx_farch_filter_table *table;
1982 efx_oword_t tx_cfg;
1983
1984 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1985
1986 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
1987 if (table->size) {
1988 EFX_SET_OWORD_FIELD(
1989 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1990 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1991 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1992 EFX_SET_OWORD_FIELD(
1993 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1994 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1995 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1996 }
1997
1998 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1999}
2000
2001static int
2002efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2003 const struct efx_filter_spec *gen_spec)
2004{
2005 bool is_full = false;
2006
2007 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2008 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2009 return -EINVAL;
2010
2011 spec->priority = gen_spec->priority;
2012 spec->flags = gen_spec->flags;
2013 spec->dmaq_id = gen_spec->dmaq_id;
2014
2015 switch (gen_spec->match_flags) {
2016 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2017 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2018 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2019 is_full = true;
2020 /* fall through */
2021 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2022 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2023 __be32 rhost, host1, host2;
2024 __be16 rport, port1, port2;
2025
2026 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2027
2028 if (gen_spec->ether_type != htons(ETH_P_IP))
2029 return -EPROTONOSUPPORT;
2030 if (gen_spec->loc_port == 0 ||
2031 (is_full && gen_spec->rem_port == 0))
2032 return -EADDRNOTAVAIL;
2033 switch (gen_spec->ip_proto) {
2034 case IPPROTO_TCP:
2035 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2036 EFX_FARCH_FILTER_TCP_WILD);
2037 break;
2038 case IPPROTO_UDP:
2039 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2040 EFX_FARCH_FILTER_UDP_WILD);
2041 break;
2042 default:
2043 return -EPROTONOSUPPORT;
2044 }
2045
2046 /* Filter is constructed in terms of source and destination,
2047 * with the odd wrinkle that the ports are swapped in a UDP
2048 * wildcard filter. We need to convert from local and remote
2049 * (= zero for wildcard) addresses.
2050 */
2051 rhost = is_full ? gen_spec->rem_host[0] : 0;
2052 rport = is_full ? gen_spec->rem_port : 0;
2053 host1 = rhost;
2054 host2 = gen_spec->loc_host[0];
2055 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2056 port1 = gen_spec->loc_port;
2057 port2 = rport;
2058 } else {
2059 port1 = rport;
2060 port2 = gen_spec->loc_port;
2061 }
2062 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2063 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2064 spec->data[2] = ntohl(host2);
2065
2066 break;
2067 }
2068
2069 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2070 is_full = true;
2071 /* fall through */
2072 case EFX_FILTER_MATCH_LOC_MAC:
2073 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2074 EFX_FARCH_FILTER_MAC_WILD);
2075 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2076 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2077 gen_spec->loc_mac[3] << 16 |
2078 gen_spec->loc_mac[4] << 8 |
2079 gen_spec->loc_mac[5]);
2080 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2081 gen_spec->loc_mac[1]);
2082 break;
2083
2084 case EFX_FILTER_MATCH_LOC_MAC_IG:
2085 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2086 EFX_FARCH_FILTER_MC_DEF :
2087 EFX_FARCH_FILTER_UC_DEF);
2088 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2089 break;
2090
2091 default:
2092 return -EPROTONOSUPPORT;
2093 }
2094
2095 return 0;
2096}
2097
2098static void
2099efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2100 const struct efx_farch_filter_spec *spec)
2101{
2102 bool is_full = false;
2103
2104 /* *gen_spec should be completely initialised, to be consistent
2105 * with efx_filter_init_{rx,tx}() and in case we want to copy
2106 * it back to userland.
2107 */
2108 memset(gen_spec, 0, sizeof(*gen_spec));
2109
2110 gen_spec->priority = spec->priority;
2111 gen_spec->flags = spec->flags;
2112 gen_spec->dmaq_id = spec->dmaq_id;
2113
2114 switch (spec->type) {
2115 case EFX_FARCH_FILTER_TCP_FULL:
2116 case EFX_FARCH_FILTER_UDP_FULL:
2117 is_full = true;
2118 /* fall through */
2119 case EFX_FARCH_FILTER_TCP_WILD:
2120 case EFX_FARCH_FILTER_UDP_WILD: {
2121 __be32 host1, host2;
2122 __be16 port1, port2;
2123
2124 gen_spec->match_flags =
2125 EFX_FILTER_MATCH_ETHER_TYPE |
2126 EFX_FILTER_MATCH_IP_PROTO |
2127 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2128 if (is_full)
2129 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2130 EFX_FILTER_MATCH_REM_PORT);
2131 gen_spec->ether_type = htons(ETH_P_IP);
2132 gen_spec->ip_proto =
2133 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2134 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2135 IPPROTO_TCP : IPPROTO_UDP;
2136
2137 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2138 port1 = htons(spec->data[0]);
2139 host2 = htonl(spec->data[2]);
2140 port2 = htons(spec->data[1] >> 16);
2141 if (spec->flags & EFX_FILTER_FLAG_TX) {
2142 gen_spec->loc_host[0] = host1;
2143 gen_spec->rem_host[0] = host2;
2144 } else {
2145 gen_spec->loc_host[0] = host2;
2146 gen_spec->rem_host[0] = host1;
2147 }
2148 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2149 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2150 gen_spec->loc_port = port1;
2151 gen_spec->rem_port = port2;
2152 } else {
2153 gen_spec->loc_port = port2;
2154 gen_spec->rem_port = port1;
2155 }
2156
2157 break;
2158 }
2159
2160 case EFX_FARCH_FILTER_MAC_FULL:
2161 is_full = true;
2162 /* fall through */
2163 case EFX_FARCH_FILTER_MAC_WILD:
2164 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2165 if (is_full)
2166 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2167 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2168 gen_spec->loc_mac[1] = spec->data[2];
2169 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2170 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2171 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2172 gen_spec->loc_mac[5] = spec->data[1];
2173 gen_spec->outer_vid = htons(spec->data[0]);
2174 break;
2175
2176 case EFX_FARCH_FILTER_UC_DEF:
2177 case EFX_FARCH_FILTER_MC_DEF:
2178 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2179 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2180 break;
2181
2182 default:
2183 WARN_ON(1);
2184 break;
2185 }
2186}
2187
2188static void
2189efx_farch_filter_reset_rx_def(struct efx_nic *efx, unsigned filter_idx)
2190{
2191 struct efx_farch_filter_state *state = efx->filter_state;
2192 struct efx_farch_filter_table *table =
2193 &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2194 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2195
2196 /* If there's only one channel then disable RSS for non VF
2197 * traffic, thereby allowing VFs to use RSS when the PF can't.
2198 */
2199 spec->type = EFX_FARCH_FILTER_UC_DEF + filter_idx;
2200 spec->priority = EFX_FILTER_PRI_MANUAL;
2201 spec->flags = (EFX_FILTER_FLAG_RX |
2202 (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2203 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2204 spec->dmaq_id = 0;
2205 table->used_bitmap[0] |= 1 << filter_idx;
2206}
2207
2208/* Build a filter entry and return its n-tuple key. */
2209static u32 efx_farch_filter_build(efx_oword_t *filter,
2210 struct efx_farch_filter_spec *spec)
2211{
2212 u32 data3;
2213
2214 switch (efx_farch_filter_spec_table_id(spec)) {
2215 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2216 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2217 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2218 EFX_POPULATE_OWORD_7(
2219 *filter,
2220 FRF_BZ_RSS_EN,
2221 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2222 FRF_BZ_SCATTER_EN,
2223 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2224 FRF_BZ_TCP_UDP, is_udp,
2225 FRF_BZ_RXQ_ID, spec->dmaq_id,
2226 EFX_DWORD_2, spec->data[2],
2227 EFX_DWORD_1, spec->data[1],
2228 EFX_DWORD_0, spec->data[0]);
2229 data3 = is_udp;
2230 break;
2231 }
2232
2233 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2234 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2235 EFX_POPULATE_OWORD_7(
2236 *filter,
2237 FRF_CZ_RMFT_RSS_EN,
2238 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2239 FRF_CZ_RMFT_SCATTER_EN,
2240 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2241 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2242 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2243 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2244 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2245 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2246 data3 = is_wild;
2247 break;
2248 }
2249
2250 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2251 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2252 EFX_POPULATE_OWORD_5(*filter,
2253 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2254 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2255 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2256 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2257 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2258 data3 = is_wild | spec->dmaq_id << 1;
2259 break;
2260 }
2261
2262 default:
2263 BUG();
2264 }
2265
2266 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2267}
2268
2269static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2270 const struct efx_farch_filter_spec *right)
2271{
2272 if (left->type != right->type ||
2273 memcmp(left->data, right->data, sizeof(left->data)))
2274 return false;
2275
2276 if (left->flags & EFX_FILTER_FLAG_TX &&
2277 left->dmaq_id != right->dmaq_id)
2278 return false;
2279
2280 return true;
2281}
2282
2283/*
2284 * Construct/deconstruct external filter IDs. At least the RX filter
2285 * IDs must be ordered by matching priority, for RX NFC semantics.
2286 *
2287 * Deconstruction needs to be robust against invalid IDs so that
2288 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2289 * accept user-provided IDs.
2290 */
2291
2292#define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2293
2294static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2295 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2296 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2297 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2298 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2299 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2300 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2301 [EFX_FARCH_FILTER_UC_DEF] = 4,
2302 [EFX_FARCH_FILTER_MC_DEF] = 4,
2303};
2304
2305static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2306 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2307 EFX_FARCH_FILTER_TABLE_RX_IP,
2308 EFX_FARCH_FILTER_TABLE_RX_MAC,
2309 EFX_FARCH_FILTER_TABLE_RX_MAC,
2310 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2311 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2312 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2313};
2314
2315#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2316#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2317
2318static inline u32
2319efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2320 unsigned int index)
2321{
2322 unsigned int range;
2323
2324 range = efx_farch_filter_type_match_pri[spec->type];
2325 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2326 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2327
2328 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2329}
2330
2331static inline enum efx_farch_filter_table_id
2332efx_farch_filter_id_table_id(u32 id)
2333{
2334 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2335
2336 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2337 return efx_farch_filter_range_table[range];
2338 else
2339 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2340}
2341
2342static inline unsigned int efx_farch_filter_id_index(u32 id)
2343{
2344 return id & EFX_FARCH_FILTER_INDEX_MASK;
2345}
2346
2347u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2348{
2349 struct efx_farch_filter_state *state = efx->filter_state;
2350 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2351 enum efx_farch_filter_table_id table_id;
2352
2353 do {
2354 table_id = efx_farch_filter_range_table[range];
2355 if (state->table[table_id].size != 0)
2356 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2357 state->table[table_id].size;
2358 } while (range--);
2359
2360 return 0;
2361}
2362
2363s32 efx_farch_filter_insert(struct efx_nic *efx,
2364 struct efx_filter_spec *gen_spec,
2365 bool replace_equal)
2366{
2367 struct efx_farch_filter_state *state = efx->filter_state;
2368 struct efx_farch_filter_table *table;
2369 struct efx_farch_filter_spec spec;
2370 efx_oword_t filter;
2371 int rep_index, ins_index;
2372 unsigned int depth = 0;
2373 int rc;
2374
2375 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2376 if (rc)
2377 return rc;
2378
2379 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2380 if (table->size == 0)
2381 return -EINVAL;
2382
2383 netif_vdbg(efx, hw, efx->net_dev,
2384 "%s: type %d search_limit=%d", __func__, spec.type,
2385 table->search_limit[spec.type]);
2386
2387 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2388 /* One filter spec per type */
2389 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2390 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2391 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2392 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2393 ins_index = rep_index;
2394
2395 spin_lock_bh(&efx->filter_lock);
2396 } else {
2397 /* Search concurrently for
2398 * (1) a filter to be replaced (rep_index): any filter
2399 * with the same match values, up to the current
2400 * search depth for this type, and
2401 * (2) the insertion point (ins_index): (1) or any
2402 * free slot before it or up to the maximum search
2403 * depth for this priority
2404 * We fail if we cannot find (2).
2405 *
2406 * We can stop once either
2407 * (a) we find (1), in which case we have definitely
2408 * found (2) as well; or
2409 * (b) we have searched exhaustively for (1), and have
2410 * either found (2) or searched exhaustively for it
2411 */
2412 u32 key = efx_farch_filter_build(&filter, &spec);
2413 unsigned int hash = efx_farch_filter_hash(key);
2414 unsigned int incr = efx_farch_filter_increment(key);
2415 unsigned int max_rep_depth = table->search_limit[spec.type];
2416 unsigned int max_ins_depth =
2417 spec.priority <= EFX_FILTER_PRI_HINT ?
2418 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2419 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2420 unsigned int i = hash & (table->size - 1);
2421
2422 ins_index = -1;
2423 depth = 1;
2424
2425 spin_lock_bh(&efx->filter_lock);
2426
2427 for (;;) {
2428 if (!test_bit(i, table->used_bitmap)) {
2429 if (ins_index < 0)
2430 ins_index = i;
2431 } else if (efx_farch_filter_equal(&spec,
2432 &table->spec[i])) {
2433 /* Case (a) */
2434 if (ins_index < 0)
2435 ins_index = i;
2436 rep_index = i;
2437 break;
2438 }
2439
2440 if (depth >= max_rep_depth &&
2441 (ins_index >= 0 || depth >= max_ins_depth)) {
2442 /* Case (b) */
2443 if (ins_index < 0) {
2444 rc = -EBUSY;
2445 goto out;
2446 }
2447 rep_index = -1;
2448 break;
2449 }
2450
2451 i = (i + incr) & (table->size - 1);
2452 ++depth;
2453 }
2454 }
2455
2456 /* If we found a filter to be replaced, check whether we
2457 * should do so
2458 */
2459 if (rep_index >= 0) {
2460 struct efx_farch_filter_spec *saved_spec =
2461 &table->spec[rep_index];
2462
2463 if (spec.priority == saved_spec->priority && !replace_equal) {
2464 rc = -EEXIST;
2465 goto out;
2466 }
2467 if (spec.priority < saved_spec->priority) {
2468 rc = -EPERM;
2469 goto out;
2470 }
2471 }
2472
2473 /* Insert the filter */
2474 if (ins_index != rep_index) {
2475 __set_bit(ins_index, table->used_bitmap);
2476 ++table->used;
2477 }
2478 table->spec[ins_index] = spec;
2479
2480 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2481 efx_farch_filter_push_rx_config(efx);
2482 } else {
2483 if (table->search_limit[spec.type] < depth) {
2484 table->search_limit[spec.type] = depth;
2485 if (spec.flags & EFX_FILTER_FLAG_TX)
2486 efx_farch_filter_push_tx_limits(efx);
2487 else
2488 efx_farch_filter_push_rx_config(efx);
2489 }
2490
2491 efx_writeo(efx, &filter,
2492 table->offset + table->step * ins_index);
2493
2494 /* If we were able to replace a filter by inserting
2495 * at a lower depth, clear the replaced filter
2496 */
2497 if (ins_index != rep_index && rep_index >= 0)
2498 efx_farch_filter_table_clear_entry(efx, table,
2499 rep_index);
2500 }
2501
2502 netif_vdbg(efx, hw, efx->net_dev,
2503 "%s: filter type %d index %d rxq %u set",
2504 __func__, spec.type, ins_index, spec.dmaq_id);
2505 rc = efx_farch_filter_make_id(&spec, ins_index);
2506
2507out:
2508 spin_unlock_bh(&efx->filter_lock);
2509 return rc;
2510}
2511
2512static void
2513efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2514 struct efx_farch_filter_table *table,
2515 unsigned int filter_idx)
2516{
2517 static efx_oword_t filter;
2518
14990a5d
BH
2519 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2520
2521 __clear_bit(filter_idx, table->used_bitmap);
2522 --table->used;
2523 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2524
2525 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2526
2527 /* If this filter required a greater search depth than
2528 * any other, the search limit for its type can now be
2529 * decreased. However, it is hard to determine that
2530 * unless the table has become completely empty - in
2531 * which case, all its search limits can be set to 0.
2532 */
2533 if (unlikely(table->used == 0)) {
2534 memset(table->search_limit, 0, sizeof(table->search_limit));
2535 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2536 efx_farch_filter_push_tx_limits(efx);
2537 else
2538 efx_farch_filter_push_rx_config(efx);
2539 }
2540}
2541
2542static int efx_farch_filter_remove(struct efx_nic *efx,
2543 struct efx_farch_filter_table *table,
2544 unsigned int filter_idx,
2545 enum efx_filter_priority priority)
2546{
2547 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2548
2549 if (!test_bit(filter_idx, table->used_bitmap) ||
2550 spec->priority > priority)
2551 return -ENOENT;
2552
add72477
BH
2553 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2554 /* RX default filters must always exist */
2555 efx_farch_filter_reset_rx_def(efx, filter_idx);
2556 efx_farch_filter_push_rx_config(efx);
14990a5d
BH
2557 } else {
2558 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
add72477 2559 }
14990a5d
BH
2560
2561 return 0;
add72477
BH
2562}
2563
2564int efx_farch_filter_remove_safe(struct efx_nic *efx,
2565 enum efx_filter_priority priority,
2566 u32 filter_id)
2567{
2568 struct efx_farch_filter_state *state = efx->filter_state;
2569 enum efx_farch_filter_table_id table_id;
2570 struct efx_farch_filter_table *table;
2571 unsigned int filter_idx;
2572 struct efx_farch_filter_spec *spec;
2573 int rc;
2574
2575 table_id = efx_farch_filter_id_table_id(filter_id);
2576 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2577 return -ENOENT;
2578 table = &state->table[table_id];
2579
2580 filter_idx = efx_farch_filter_id_index(filter_id);
2581 if (filter_idx >= table->size)
2582 return -ENOENT;
2583 spec = &table->spec[filter_idx];
2584
2585 spin_lock_bh(&efx->filter_lock);
14990a5d 2586 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
add72477
BH
2587 spin_unlock_bh(&efx->filter_lock);
2588
2589 return rc;
2590}
2591
2592int efx_farch_filter_get_safe(struct efx_nic *efx,
2593 enum efx_filter_priority priority,
2594 u32 filter_id, struct efx_filter_spec *spec_buf)
2595{
2596 struct efx_farch_filter_state *state = efx->filter_state;
2597 enum efx_farch_filter_table_id table_id;
2598 struct efx_farch_filter_table *table;
2599 struct efx_farch_filter_spec *spec;
2600 unsigned int filter_idx;
2601 int rc;
2602
2603 table_id = efx_farch_filter_id_table_id(filter_id);
2604 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2605 return -ENOENT;
2606 table = &state->table[table_id];
2607
2608 filter_idx = efx_farch_filter_id_index(filter_id);
2609 if (filter_idx >= table->size)
2610 return -ENOENT;
2611 spec = &table->spec[filter_idx];
2612
2613 spin_lock_bh(&efx->filter_lock);
2614
2615 if (test_bit(filter_idx, table->used_bitmap) &&
2616 spec->priority == priority) {
2617 efx_farch_filter_to_gen_spec(spec_buf, spec);
2618 rc = 0;
2619 } else {
2620 rc = -ENOENT;
2621 }
2622
2623 spin_unlock_bh(&efx->filter_lock);
2624
2625 return rc;
2626}
2627
2628static void
2629efx_farch_filter_table_clear(struct efx_nic *efx,
2630 enum efx_farch_filter_table_id table_id,
2631 enum efx_filter_priority priority)
2632{
2633 struct efx_farch_filter_state *state = efx->filter_state;
2634 struct efx_farch_filter_table *table = &state->table[table_id];
2635 unsigned int filter_idx;
2636
2637 spin_lock_bh(&efx->filter_lock);
2638 for (filter_idx = 0; filter_idx < table->size; ++filter_idx)
14990a5d 2639 efx_farch_filter_remove(efx, table, filter_idx, priority);
add72477
BH
2640 spin_unlock_bh(&efx->filter_lock);
2641}
2642
2643void efx_farch_filter_clear_rx(struct efx_nic *efx,
2644 enum efx_filter_priority priority)
2645{
2646 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2647 priority);
2648 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2649 priority);
2650}
2651
2652u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2653 enum efx_filter_priority priority)
2654{
2655 struct efx_farch_filter_state *state = efx->filter_state;
2656 enum efx_farch_filter_table_id table_id;
2657 struct efx_farch_filter_table *table;
2658 unsigned int filter_idx;
2659 u32 count = 0;
2660
2661 spin_lock_bh(&efx->filter_lock);
2662
2663 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2664 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2665 table_id++) {
2666 table = &state->table[table_id];
2667 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2668 if (test_bit(filter_idx, table->used_bitmap) &&
2669 table->spec[filter_idx].priority == priority)
2670 ++count;
2671 }
2672 }
2673
2674 spin_unlock_bh(&efx->filter_lock);
2675
2676 return count;
2677}
2678
2679s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2680 enum efx_filter_priority priority,
2681 u32 *buf, u32 size)
2682{
2683 struct efx_farch_filter_state *state = efx->filter_state;
2684 enum efx_farch_filter_table_id table_id;
2685 struct efx_farch_filter_table *table;
2686 unsigned int filter_idx;
2687 s32 count = 0;
2688
2689 spin_lock_bh(&efx->filter_lock);
2690
2691 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2692 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2693 table_id++) {
2694 table = &state->table[table_id];
2695 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2696 if (test_bit(filter_idx, table->used_bitmap) &&
2697 table->spec[filter_idx].priority == priority) {
2698 if (count == size) {
2699 count = -EMSGSIZE;
2700 goto out;
2701 }
2702 buf[count++] = efx_farch_filter_make_id(
2703 &table->spec[filter_idx], filter_idx);
2704 }
2705 }
2706 }
2707out:
2708 spin_unlock_bh(&efx->filter_lock);
2709
2710 return count;
2711}
2712
2713/* Restore filter stater after reset */
2714void efx_farch_filter_table_restore(struct efx_nic *efx)
2715{
2716 struct efx_farch_filter_state *state = efx->filter_state;
2717 enum efx_farch_filter_table_id table_id;
2718 struct efx_farch_filter_table *table;
2719 efx_oword_t filter;
2720 unsigned int filter_idx;
2721
2722 spin_lock_bh(&efx->filter_lock);
2723
2724 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2725 table = &state->table[table_id];
2726
2727 /* Check whether this is a regular register table */
2728 if (table->step == 0)
2729 continue;
2730
2731 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2732 if (!test_bit(filter_idx, table->used_bitmap))
2733 continue;
2734 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2735 efx_writeo(efx, &filter,
2736 table->offset + table->step * filter_idx);
2737 }
2738 }
2739
2740 efx_farch_filter_push_rx_config(efx);
2741 efx_farch_filter_push_tx_limits(efx);
2742
2743 spin_unlock_bh(&efx->filter_lock);
2744}
2745
2746void efx_farch_filter_table_remove(struct efx_nic *efx)
2747{
2748 struct efx_farch_filter_state *state = efx->filter_state;
2749 enum efx_farch_filter_table_id table_id;
2750
2751 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752 kfree(state->table[table_id].used_bitmap);
2753 vfree(state->table[table_id].spec);
2754 }
2755 kfree(state);
2756}
2757
2758int efx_farch_filter_table_probe(struct efx_nic *efx)
2759{
2760 struct efx_farch_filter_state *state;
2761 struct efx_farch_filter_table *table;
2762 unsigned table_id;
2763
2764 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2765 if (!state)
2766 return -ENOMEM;
2767 efx->filter_state = state;
2768
2769 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2770 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2771 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2772 table->offset = FR_BZ_RX_FILTER_TBL0;
2773 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2774 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2775 }
2776
2777 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2778 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2779 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2780 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2781 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2782 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2783
2784 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2785 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2786 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2787
2788 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2789 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2790 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2791 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2792 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2793 }
2794
2795 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2796 table = &state->table[table_id];
2797 if (table->size == 0)
2798 continue;
2799 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2800 sizeof(unsigned long),
2801 GFP_KERNEL);
2802 if (!table->used_bitmap)
2803 goto fail;
2804 table->spec = vzalloc(table->size * sizeof(*table->spec));
2805 if (!table->spec)
2806 goto fail;
2807 }
2808
2809 if (state->table[EFX_FARCH_FILTER_TABLE_RX_DEF].size) {
2810 /* RX default filters must always exist */
2811 unsigned i;
2812 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++)
2813 efx_farch_filter_reset_rx_def(efx, i);
2814 }
2815
2816 efx_farch_filter_push_rx_config(efx);
2817
2818 return 0;
2819
2820fail:
2821 efx_farch_filter_table_remove(efx);
2822 return -ENOMEM;
2823}
2824
2825/* Update scatter enable flags for filters pointing to our own RX queues */
2826void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2827{
2828 struct efx_farch_filter_state *state = efx->filter_state;
2829 enum efx_farch_filter_table_id table_id;
2830 struct efx_farch_filter_table *table;
2831 efx_oword_t filter;
2832 unsigned int filter_idx;
2833
2834 spin_lock_bh(&efx->filter_lock);
2835
2836 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2837 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2838 table_id++) {
2839 table = &state->table[table_id];
2840
2841 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2842 if (!test_bit(filter_idx, table->used_bitmap) ||
2843 table->spec[filter_idx].dmaq_id >=
2844 efx->n_rx_channels)
2845 continue;
2846
2847 if (efx->rx_scatter)
2848 table->spec[filter_idx].flags |=
2849 EFX_FILTER_FLAG_RX_SCATTER;
2850 else
2851 table->spec[filter_idx].flags &=
2852 ~EFX_FILTER_FLAG_RX_SCATTER;
2853
2854 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2855 /* Pushed by efx_farch_filter_push_rx_config() */
2856 continue;
2857
2858 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2859 efx_writeo(efx, &filter,
2860 table->offset + table->step * filter_idx);
2861 }
2862 }
2863
2864 efx_farch_filter_push_rx_config(efx);
2865
2866 spin_unlock_bh(&efx->filter_lock);
2867}
2868
2869#ifdef CONFIG_RFS_ACCEL
2870
2871s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2872 struct efx_filter_spec *gen_spec)
2873{
2874 return efx_farch_filter_insert(efx, gen_spec, true);
2875}
2876
2877bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2878 unsigned int index)
2879{
2880 struct efx_farch_filter_state *state = efx->filter_state;
2881 struct efx_farch_filter_table *table =
2882 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2883
2884 if (test_bit(index, table->used_bitmap) &&
2885 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2886 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2887 flow_id, index)) {
2888 efx_farch_filter_table_clear_entry(efx, table, index);
2889 return true;
2890 }
2891
2892 return false;
2893}
2894
2895#endif /* CONFIG_RFS_ACCEL */
This page took 0.139324 seconds and 5 git commands to generate.