sfc: Allocate SRAM between buffer table and descriptor caches at init time
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.c
CommitLineData
8e730c15
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2006-2011 Solarflare Communications Inc.
8e730c15
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
a6b7a407 13#include <linux/interrupt.h>
8e730c15
BH
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32/* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39#define TX_DC_ENTRIES 16
40#define TX_DC_ENTRIES_ORDER 1
41
42#define RX_DC_ENTRIES 64
43#define RX_DC_ENTRIES_ORDER 3
44
8e730c15
BH
45/* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49#define EFX_INT_ERROR_EXPIRE 3600
50#define EFX_MAX_INT_ERRORS 5
51
8e730c15
BH
52/* Depth of RX flush request fifo */
53#define EFX_RX_FLUSH_COUNT 4
54
4ef594eb
BH
55/* Driver generated events */
56#define _EFX_CHANNEL_MAGIC_TEST 0x000101
57#define _EFX_CHANNEL_MAGIC_FILL 0x000102
9f2cb71c
BH
58#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
d730dc52 60
4ef594eb
BH
61#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63
64#define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
2ae75dac
BH
66#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
9f2cb71c
BH
69#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
90d683af 75
8e730c15
BH
76/**************************************************************************
77 *
78 * Solarstorm hardware access
79 *
80 **************************************************************************/
81
82static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 unsigned int index)
84{
85 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 value, index);
87}
88
89/* Read the current event from the event queue */
90static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 unsigned int index)
92{
d4fabcc8
BH
93 return ((efx_qword_t *) (channel->eventq.addr)) +
94 (index & channel->eventq_mask);
8e730c15
BH
95}
96
97/* See if an event is present
98 *
99 * We check both the high and low dword of the event for all ones. We
100 * wrote all ones when we cleared the event, and no valid event can
101 * have all ones in either its high or low dwords. This approach is
102 * robust against reordering.
103 *
104 * Note that using a single 64-bit comparison is incorrect; even
105 * though the CPU read will be atomic, the DMA write may not be.
106 */
107static inline int efx_event_present(efx_qword_t *event)
108{
807540ba
ED
109 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
8e730c15
BH
111}
112
113static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 const efx_oword_t *mask)
115{
116 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118}
119
120int efx_nic_test_registers(struct efx_nic *efx,
121 const struct efx_nic_register_test *regs,
122 size_t n_regs)
123{
124 unsigned address = 0, i, j;
125 efx_oword_t mask, imask, original, reg, buf;
126
127 /* Falcon should be in loopback to isolate the XMAC from the PHY */
128 WARN_ON(!LOOPBACK_INTERNAL(efx));
129
130 for (i = 0; i < n_regs; ++i) {
131 address = regs[i].address;
132 mask = imask = regs[i].mask;
133 EFX_INVERT_OWORD(imask);
134
135 efx_reado(efx, &original, address);
136
137 /* bit sweep on and off */
138 for (j = 0; j < 128; j++) {
139 if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 continue;
141
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg, original, mask);
144 EFX_SET_OWORD32(reg, j, j, 1);
145
146 efx_writeo(efx, &reg, address);
147 efx_reado(efx, &buf, address);
148
149 if (efx_masked_compare_oword(&reg, &buf, &mask))
150 goto fail;
151
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg, original, mask);
154 EFX_SET_OWORD32(reg, j, j, 0);
155
156 efx_writeo(efx, &reg, address);
157 efx_reado(efx, &buf, address);
158
159 if (efx_masked_compare_oword(&reg, &buf, &mask))
160 goto fail;
161 }
162
163 efx_writeo(efx, &original, address);
164 }
165
166 return 0;
167
168fail:
62776d03
BH
169 netif_err(efx, hw, efx->net_dev,
170 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
8e730c15
BH
173 return -EIO;
174}
175
176/**************************************************************************
177 *
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
180 * descriptor rings.
181 *
182 *************************************************************************/
183
184/*
185 * Initialise a special buffer
186 *
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
190 */
191static void
192efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193{
194 efx_qword_t buf_desc;
5bbe2f4f 195 unsigned int index;
8e730c15
BH
196 dma_addr_t dma_addr;
197 int i;
198
199 EFX_BUG_ON_PARANOID(!buffer->addr);
200
201 /* Write buffer descriptors to NIC */
202 for (i = 0; i < buffer->entries; i++) {
203 index = buffer->index + i;
5b6262d0 204 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
62776d03
BH
205 netif_dbg(efx, probe, efx->net_dev,
206 "mapping special buffer %d at %llx\n",
207 index, (unsigned long long)dma_addr);
8e730c15
BH
208 EFX_POPULATE_QWORD_3(buf_desc,
209 FRF_AZ_BUF_ADR_REGION, 0,
210 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 efx_write_buf_tbl(efx, &buf_desc, index);
213 }
214}
215
216/* Unmaps a buffer and clears the buffer table entries */
217static void
218efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219{
220 efx_oword_t buf_tbl_upd;
221 unsigned int start = buffer->index;
222 unsigned int end = (buffer->index + buffer->entries - 1);
223
224 if (!buffer->entries)
225 return;
226
62776d03
BH
227 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 buffer->index, buffer->index + buffer->entries - 1);
8e730c15
BH
229
230 EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 FRF_AZ_BUF_UPD_CMD, 0,
232 FRF_AZ_BUF_CLR_CMD, 1,
233 FRF_AZ_BUF_CLR_END_ID, end,
234 FRF_AZ_BUF_CLR_START_ID, start);
235 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236}
237
238/*
239 * Allocate a new special buffer
240 *
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
243 *
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
246 */
247static int efx_alloc_special_buffer(struct efx_nic *efx,
248 struct efx_special_buffer *buffer,
249 unsigned int len)
250{
251 len = ALIGN(len, EFX_BUF_SIZE);
252
58758aa5
BH
253 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
254 &buffer->dma_addr, GFP_KERNEL);
8e730c15
BH
255 if (!buffer->addr)
256 return -ENOMEM;
257 buffer->len = len;
258 buffer->entries = len / EFX_BUF_SIZE;
259 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
260
261 /* All zeros is a potentially valid event so memset to 0xff */
262 memset(buffer->addr, 0xff, len);
263
264 /* Select new buffer ID */
265 buffer->index = efx->next_buffer_table;
266 efx->next_buffer_table += buffer->entries;
267
62776d03
BH
268 netif_dbg(efx, probe, efx->net_dev,
269 "allocating special buffers %d-%d at %llx+%x "
270 "(virt %p phys %llx)\n", buffer->index,
271 buffer->index + buffer->entries - 1,
272 (u64)buffer->dma_addr, len,
273 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15
BH
274
275 return 0;
276}
277
278static void
279efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280{
281 if (!buffer->addr)
282 return;
283
62776d03
BH
284 netif_dbg(efx, hw, efx->net_dev,
285 "deallocating special buffers %d-%d at %llx+%x "
286 "(virt %p phys %llx)\n", buffer->index,
287 buffer->index + buffer->entries - 1,
288 (u64)buffer->dma_addr, buffer->len,
289 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15 290
58758aa5
BH
291 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 buffer->dma_addr);
8e730c15
BH
293 buffer->addr = NULL;
294 buffer->entries = 0;
295}
296
297/**************************************************************************
298 *
299 * Generic buffer handling
300 * These buffers are used for interrupt status and MAC stats
301 *
302 **************************************************************************/
303
304int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 unsigned int len)
306{
307 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
308 &buffer->dma_addr);
309 if (!buffer->addr)
310 return -ENOMEM;
311 buffer->len = len;
312 memset(buffer->addr, 0, len);
313 return 0;
314}
315
316void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317{
318 if (buffer->addr) {
319 pci_free_consistent(efx->pci_dev, buffer->len,
320 buffer->addr, buffer->dma_addr);
321 buffer->addr = NULL;
322 }
323}
324
325/**************************************************************************
326 *
327 * TX path
328 *
329 **************************************************************************/
330
331/* Returns a pointer to the specified transmit descriptor in the TX
332 * descriptor queue belonging to the specified channel.
333 */
334static inline efx_qword_t *
335efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336{
807540ba 337 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
8e730c15
BH
338}
339
340/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342{
343 unsigned write_ptr;
344 efx_dword_t reg;
345
ecc910f5 346 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
347 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 efx_writed_page(tx_queue->efx, &reg,
349 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350}
351
cd38557d
BH
352/* Write pointer and first descriptor for TX descriptor ring */
353static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 const efx_qword_t *txd)
355{
356 unsigned write_ptr;
357 efx_oword_t reg;
358
359 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 FRF_AZ_TX_DESC_WPTR, write_ptr);
365 reg.qword[0] = *txd;
366 efx_writeo_page(tx_queue->efx, &reg,
367 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368}
369
370static inline bool
371efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372{
373 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375 if (empty_read_count == 0)
376 return false;
377
378 tx_queue->empty_read_count = 0;
379 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
380}
8e730c15
BH
381
382/* For each entry inserted into the software descriptor ring, create a
383 * descriptor in the hardware TX descriptor ring (in host memory), and
384 * write a doorbell.
385 */
386void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
387{
388
389 struct efx_tx_buffer *buffer;
390 efx_qword_t *txd;
391 unsigned write_ptr;
cd38557d 392 unsigned old_write_count = tx_queue->write_count;
8e730c15
BH
393
394 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
395
396 do {
ecc910f5 397 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
398 buffer = &tx_queue->buffer[write_ptr];
399 txd = efx_tx_desc(tx_queue, write_ptr);
400 ++tx_queue->write_count;
401
402 /* Create TX descriptor ring entry */
403 EFX_POPULATE_QWORD_4(*txd,
404 FSF_AZ_TX_KER_CONT, buffer->continuation,
405 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
406 FSF_AZ_TX_KER_BUF_REGION, 0,
407 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
408 } while (tx_queue->write_count != tx_queue->insert_count);
409
410 wmb(); /* Ensure descriptors are written before they are fetched */
cd38557d
BH
411
412 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
413 txd = efx_tx_desc(tx_queue,
414 old_write_count & tx_queue->ptr_mask);
415 efx_push_tx_desc(tx_queue, txd);
416 ++tx_queue->pushes;
417 } else {
418 efx_notify_tx_desc(tx_queue);
419 }
8e730c15
BH
420}
421
422/* Allocate hardware resources for a TX queue */
423int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
424{
425 struct efx_nic *efx = tx_queue->efx;
ecc910f5
SH
426 unsigned entries;
427
428 entries = tx_queue->ptr_mask + 1;
8e730c15 429 return efx_alloc_special_buffer(efx, &tx_queue->txd,
ecc910f5 430 entries * sizeof(efx_qword_t));
8e730c15
BH
431}
432
433void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
434{
8e730c15 435 struct efx_nic *efx = tx_queue->efx;
94b274bf 436 efx_oword_t reg;
8e730c15 437
8e730c15
BH
438 /* Pin TX descriptor ring */
439 efx_init_special_buffer(efx, &tx_queue->txd);
440
441 /* Push TX descriptor ring to card */
94b274bf 442 EFX_POPULATE_OWORD_10(reg,
8e730c15
BH
443 FRF_AZ_TX_DESCQ_EN, 1,
444 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
445 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
446 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
447 FRF_AZ_TX_DESCQ_EVQ_ID,
448 tx_queue->channel->channel,
449 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
450 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
451 FRF_AZ_TX_DESCQ_SIZE,
452 __ffs(tx_queue->txd.entries),
453 FRF_AZ_TX_DESCQ_TYPE, 0,
454 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
455
456 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
a4900ac9 457 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
94b274bf
BH
458 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
459 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
8e730c15
BH
460 !csum);
461 }
462
94b274bf 463 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
8e730c15
BH
464 tx_queue->queue);
465
466 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
8e730c15 467 /* Only 128 bits in this register */
a4900ac9 468 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
8e730c15
BH
469
470 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
a4900ac9 471 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
8e730c15
BH
472 clear_bit_le(tx_queue->queue, (void *)&reg);
473 else
474 set_bit_le(tx_queue->queue, (void *)&reg);
475 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
476 }
94b274bf
BH
477
478 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
479 EFX_POPULATE_OWORD_1(reg,
480 FRF_BZ_TX_PACE,
481 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
482 FFE_BZ_TX_PACE_OFF :
483 FFE_BZ_TX_PACE_RESERVED);
484 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
485 tx_queue->queue);
486 }
8e730c15
BH
487}
488
489static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
490{
491 struct efx_nic *efx = tx_queue->efx;
492 efx_oword_t tx_flush_descq;
493
8e730c15
BH
494 EFX_POPULATE_OWORD_2(tx_flush_descq,
495 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
496 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
497 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
498}
499
500void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
501{
502 struct efx_nic *efx = tx_queue->efx;
503 efx_oword_t tx_desc_ptr;
504
8e730c15
BH
505 /* Remove TX descriptor ring from card */
506 EFX_ZERO_OWORD(tx_desc_ptr);
507 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
508 tx_queue->queue);
509
510 /* Unpin TX descriptor ring */
511 efx_fini_special_buffer(efx, &tx_queue->txd);
512}
513
514/* Free buffers backing TX queue */
515void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
516{
517 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
518}
519
520/**************************************************************************
521 *
522 * RX path
523 *
524 **************************************************************************/
525
526/* Returns a pointer to the specified descriptor in the RX descriptor queue */
527static inline efx_qword_t *
528efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
529{
807540ba 530 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
8e730c15
BH
531}
532
533/* This creates an entry in the RX descriptor queue */
534static inline void
535efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
536{
537 struct efx_rx_buffer *rx_buf;
538 efx_qword_t *rxd;
539
540 rxd = efx_rx_desc(rx_queue, index);
541 rx_buf = efx_rx_buffer(rx_queue, index);
542 EFX_POPULATE_QWORD_3(*rxd,
543 FSF_AZ_RX_KER_BUF_SIZE,
544 rx_buf->len -
545 rx_queue->efx->type->rx_buffer_padding,
546 FSF_AZ_RX_KER_BUF_REGION, 0,
547 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
548}
549
550/* This writes to the RX_DESC_WPTR register for the specified receive
551 * descriptor ring.
552 */
553void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
554{
ecc910f5 555 struct efx_nic *efx = rx_queue->efx;
8e730c15
BH
556 efx_dword_t reg;
557 unsigned write_ptr;
558
559 while (rx_queue->notified_count != rx_queue->added_count) {
ecc910f5
SH
560 efx_build_rx_desc(
561 rx_queue,
562 rx_queue->notified_count & rx_queue->ptr_mask);
8e730c15
BH
563 ++rx_queue->notified_count;
564 }
565
566 wmb();
ecc910f5 567 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
8e730c15 568 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
ecc910f5 569 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
ba1e8a35 570 efx_rx_queue_index(rx_queue));
8e730c15
BH
571}
572
573int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
574{
575 struct efx_nic *efx = rx_queue->efx;
ecc910f5
SH
576 unsigned entries;
577
578 entries = rx_queue->ptr_mask + 1;
8e730c15 579 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
ecc910f5 580 entries * sizeof(efx_qword_t));
8e730c15
BH
581}
582
583void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
584{
585 efx_oword_t rx_desc_ptr;
586 struct efx_nic *efx = rx_queue->efx;
587 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
588 bool iscsi_digest_en = is_b0;
589
62776d03
BH
590 netif_dbg(efx, hw, efx->net_dev,
591 "RX queue %d ring in special buffers %d-%d\n",
ba1e8a35 592 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
62776d03 593 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
8e730c15 594
8e730c15
BH
595 /* Pin RX descriptor ring */
596 efx_init_special_buffer(efx, &rx_queue->rxd);
597
598 /* Push RX descriptor ring to card */
599 EFX_POPULATE_OWORD_10(rx_desc_ptr,
600 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
601 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
602 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
603 FRF_AZ_RX_DESCQ_EVQ_ID,
ba1e8a35 604 efx_rx_queue_channel(rx_queue)->channel,
8e730c15 605 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
ba1e8a35
BH
606 FRF_AZ_RX_DESCQ_LABEL,
607 efx_rx_queue_index(rx_queue),
8e730c15
BH
608 FRF_AZ_RX_DESCQ_SIZE,
609 __ffs(rx_queue->rxd.entries),
610 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
611 /* For >=B0 this is scatter so disable */
612 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
613 FRF_AZ_RX_DESCQ_EN, 1);
614 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 615 efx_rx_queue_index(rx_queue));
8e730c15
BH
616}
617
618static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
619{
620 struct efx_nic *efx = rx_queue->efx;
621 efx_oword_t rx_flush_descq;
622
8e730c15
BH
623 EFX_POPULATE_OWORD_2(rx_flush_descq,
624 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
ba1e8a35
BH
625 FRF_AZ_RX_FLUSH_DESCQ,
626 efx_rx_queue_index(rx_queue));
8e730c15
BH
627 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
628}
629
630void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
631{
632 efx_oword_t rx_desc_ptr;
633 struct efx_nic *efx = rx_queue->efx;
634
8e730c15
BH
635 /* Remove RX descriptor ring from card */
636 EFX_ZERO_OWORD(rx_desc_ptr);
637 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 638 efx_rx_queue_index(rx_queue));
8e730c15
BH
639
640 /* Unpin RX descriptor ring */
641 efx_fini_special_buffer(efx, &rx_queue->rxd);
642}
643
644/* Free buffers backing RX queue */
645void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
646{
647 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
648}
649
9f2cb71c
BH
650/**************************************************************************
651 *
652 * Flush handling
653 *
654 **************************************************************************/
655
656/* efx_nic_flush_queues() must be woken up when all flushes are completed,
657 * or more RX flushes can be kicked off.
658 */
659static bool efx_flush_wake(struct efx_nic *efx)
660{
661 /* Ensure that all updates are visible to efx_nic_flush_queues() */
662 smp_mb();
663
664 return (atomic_read(&efx->drain_pending) == 0 ||
665 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
666 && atomic_read(&efx->rxq_flush_pending) > 0));
667}
668
669/* Flush all the transmit queues, and continue flushing receive queues until
670 * they're all flushed. Wait for the DRAIN events to be recieved so that there
671 * are no more RX and TX events left on any channel. */
672int efx_nic_flush_queues(struct efx_nic *efx)
673{
674 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
675 struct efx_channel *channel;
676 struct efx_rx_queue *rx_queue;
677 struct efx_tx_queue *tx_queue;
678 int rc = 0;
679
a606f432 680 efx->fc_disable++;
9f2cb71c
BH
681 efx->type->prepare_flush(efx);
682
683 efx_for_each_channel(channel, efx) {
684 efx_for_each_channel_tx_queue(tx_queue, channel) {
685 atomic_inc(&efx->drain_pending);
686 efx_flush_tx_queue(tx_queue);
687 }
688 efx_for_each_channel_rx_queue(rx_queue, channel) {
689 atomic_inc(&efx->drain_pending);
690 rx_queue->flush_pending = true;
691 atomic_inc(&efx->rxq_flush_pending);
692 }
693 }
694
695 while (timeout && atomic_read(&efx->drain_pending) > 0) {
696 /* The hardware supports four concurrent rx flushes, each of
697 * which may need to be retried if there is an outstanding
698 * descriptor fetch
699 */
700 efx_for_each_channel(channel, efx) {
701 efx_for_each_channel_rx_queue(rx_queue, channel) {
702 if (atomic_read(&efx->rxq_flush_outstanding) >=
703 EFX_RX_FLUSH_COUNT)
704 break;
705
706 if (rx_queue->flush_pending) {
707 rx_queue->flush_pending = false;
708 atomic_dec(&efx->rxq_flush_pending);
709 atomic_inc(&efx->rxq_flush_outstanding);
710 efx_flush_rx_queue(rx_queue);
711 }
712 }
713 }
714
715 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
716 timeout);
717 }
718
719 if (atomic_read(&efx->drain_pending)) {
720 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
721 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
722 atomic_read(&efx->rxq_flush_outstanding),
723 atomic_read(&efx->rxq_flush_pending));
724 rc = -ETIMEDOUT;
725
726 atomic_set(&efx->drain_pending, 0);
727 atomic_set(&efx->rxq_flush_pending, 0);
728 atomic_set(&efx->rxq_flush_outstanding, 0);
729 }
730
a606f432
SH
731 efx->fc_disable--;
732
9f2cb71c
BH
733 return rc;
734}
735
8e730c15
BH
736/**************************************************************************
737 *
738 * Event queue processing
739 * Event queues are processed by per-channel tasklets.
740 *
741 **************************************************************************/
742
743/* Update a channel's event queue's read pointer (RPTR) register
744 *
745 * This writes the EVQ_RPTR_REG register for the specified channel's
746 * event queue.
8e730c15
BH
747 */
748void efx_nic_eventq_read_ack(struct efx_channel *channel)
749{
750 efx_dword_t reg;
751 struct efx_nic *efx = channel->efx;
752
d4fabcc8
BH
753 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
754 channel->eventq_read_ptr & channel->eventq_mask);
8e730c15
BH
755 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
756 channel->channel);
757}
758
759/* Use HW to insert a SW defined event */
90893000
BH
760void efx_generate_event(struct efx_nic *efx, unsigned int evq,
761 efx_qword_t *event)
8e730c15
BH
762{
763 efx_oword_t drv_ev_reg;
764
765 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
766 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
767 drv_ev_reg.u32[0] = event->u32[0];
768 drv_ev_reg.u32[1] = event->u32[1];
769 drv_ev_reg.u32[2] = 0;
770 drv_ev_reg.u32[3] = 0;
90893000
BH
771 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
772 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
8e730c15
BH
773}
774
4ef594eb
BH
775static void efx_magic_event(struct efx_channel *channel, u32 magic)
776{
777 efx_qword_t event;
778
779 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
780 FSE_AZ_EV_CODE_DRV_GEN_EV,
781 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
90893000 782 efx_generate_event(channel->efx, channel->channel, &event);
4ef594eb
BH
783}
784
8e730c15
BH
785/* Handle a transmit completion event
786 *
787 * The NIC batches TX completion events; the message we receive is of
788 * the form "complete all TX events up to this index".
789 */
fa236e18 790static int
8e730c15
BH
791efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
792{
793 unsigned int tx_ev_desc_ptr;
794 unsigned int tx_ev_q_label;
795 struct efx_tx_queue *tx_queue;
796 struct efx_nic *efx = channel->efx;
fa236e18 797 int tx_packets = 0;
8e730c15 798
9f2cb71c
BH
799 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
800 return 0;
801
8e730c15
BH
802 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
803 /* Transmit completion */
804 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
805 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
806 tx_queue = efx_channel_get_tx_queue(
807 channel, tx_ev_q_label % EFX_TXQ_TYPES);
fa236e18 808 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
ecc910f5 809 tx_queue->ptr_mask);
fa236e18 810 channel->irq_mod_score += tx_packets;
8e730c15
BH
811 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
812 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
813 /* Rewrite the FIFO write pointer */
814 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
815 tx_queue = efx_channel_get_tx_queue(
816 channel, tx_ev_q_label % EFX_TXQ_TYPES);
8e730c15 817
73ba7b68 818 netif_tx_lock(efx->net_dev);
8e730c15 819 efx_notify_tx_desc(tx_queue);
73ba7b68 820 netif_tx_unlock(efx->net_dev);
8e730c15
BH
821 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
822 EFX_WORKAROUND_10727(efx)) {
823 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
824 } else {
62776d03
BH
825 netif_err(efx, tx_err, efx->net_dev,
826 "channel %d unexpected TX event "
827 EFX_QWORD_FMT"\n", channel->channel,
828 EFX_QWORD_VAL(*event));
8e730c15 829 }
fa236e18
BH
830
831 return tx_packets;
8e730c15
BH
832}
833
834/* Detect errors included in the rx_evt_pkt_ok bit. */
db339569
BH
835static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
836 const efx_qword_t *event)
8e730c15 837{
ba1e8a35 838 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
839 struct efx_nic *efx = rx_queue->efx;
840 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
841 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
842 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
843 bool rx_ev_other_err, rx_ev_pause_frm;
844 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
845 unsigned rx_ev_pkt_type;
846
847 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
848 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
849 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
850 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
851 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
852 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
853 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
854 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
855 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
856 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
857 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
858 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
859 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
860 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
861 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
862
863 /* Every error apart from tobe_disc and pause_frm */
864 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
865 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
866 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
867
868 /* Count errors that are not in MAC stats. Ignore expected
869 * checksum errors during self-test. */
870 if (rx_ev_frm_trunc)
ba1e8a35 871 ++channel->n_rx_frm_trunc;
8e730c15 872 else if (rx_ev_tobe_disc)
ba1e8a35 873 ++channel->n_rx_tobe_disc;
8e730c15
BH
874 else if (!efx->loopback_selftest) {
875 if (rx_ev_ip_hdr_chksum_err)
ba1e8a35 876 ++channel->n_rx_ip_hdr_chksum_err;
8e730c15 877 else if (rx_ev_tcp_udp_chksum_err)
ba1e8a35 878 ++channel->n_rx_tcp_udp_chksum_err;
8e730c15
BH
879 }
880
8e730c15
BH
881 /* TOBE_DISC is expected on unicast mismatches; don't print out an
882 * error message. FRM_TRUNC indicates RXDP dropped the packet due
883 * to a FIFO overflow.
884 */
5f3f9d6c 885#ifdef DEBUG
62776d03
BH
886 if (rx_ev_other_err && net_ratelimit()) {
887 netif_dbg(efx, rx_err, efx->net_dev,
888 " RX queue %d unexpected RX event "
889 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
ba1e8a35 890 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
62776d03
BH
891 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
892 rx_ev_ip_hdr_chksum_err ?
893 " [IP_HDR_CHKSUM_ERR]" : "",
894 rx_ev_tcp_udp_chksum_err ?
895 " [TCP_UDP_CHKSUM_ERR]" : "",
896 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
897 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
898 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
899 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
900 rx_ev_pause_frm ? " [PAUSE]" : "");
8e730c15
BH
901 }
902#endif
db339569
BH
903
904 /* The frame must be discarded if any of these are true. */
905 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
906 rx_ev_tobe_disc | rx_ev_pause_frm) ?
907 EFX_RX_PKT_DISCARD : 0;
8e730c15
BH
908}
909
910/* Handle receive events that are not in-order. */
911static void
912efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
913{
914 struct efx_nic *efx = rx_queue->efx;
915 unsigned expected, dropped;
916
ecc910f5
SH
917 expected = rx_queue->removed_count & rx_queue->ptr_mask;
918 dropped = (index - expected) & rx_queue->ptr_mask;
62776d03
BH
919 netif_info(efx, rx_err, efx->net_dev,
920 "dropped %d events (index=%d expected=%d)\n",
921 dropped, index, expected);
8e730c15
BH
922
923 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
924 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
925}
926
927/* Handle a packet received event
928 *
929 * The NIC gives a "discard" flag if it's a unicast packet with the
930 * wrong destination address
931 * Also "is multicast" and "matches multicast filter" flags can be used to
932 * discard non-matching multicast packets.
933 */
934static void
935efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
936{
937 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
938 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
939 unsigned expected_ptr;
db339569
BH
940 bool rx_ev_pkt_ok;
941 u16 flags;
8e730c15 942 struct efx_rx_queue *rx_queue;
9f2cb71c
BH
943 struct efx_nic *efx = channel->efx;
944
945 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
946 return;
8e730c15
BH
947
948 /* Basic packet information */
949 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
950 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
951 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
952 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
953 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
954 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
955 channel->channel);
956
f7d12cdc 957 rx_queue = efx_channel_get_rx_queue(channel);
8e730c15
BH
958
959 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
ecc910f5 960 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
8e730c15
BH
961 if (unlikely(rx_ev_desc_ptr != expected_ptr))
962 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
963
964 if (likely(rx_ev_pkt_ok)) {
965 /* If packet is marked as OK and packet type is TCP/IP or
966 * UDP/IP, then we can rely on the hardware checksum.
967 */
db339569
BH
968 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
969 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
970 EFX_RX_PKT_CSUMMED : 0;
8e730c15 971 } else {
db339569 972 flags = efx_handle_rx_not_ok(rx_queue, event);
8e730c15
BH
973 }
974
975 /* Detect multicast packets that didn't match the filter */
976 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
977 if (rx_ev_mcast_pkt) {
978 unsigned int rx_ev_mcast_hash_match =
979 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
980
981 if (unlikely(!rx_ev_mcast_hash_match)) {
982 ++channel->n_rx_mcast_mismatch;
db339569 983 flags |= EFX_RX_PKT_DISCARD;
8e730c15
BH
984 }
985 }
986
987 channel->irq_mod_score += 2;
988
989 /* Handle received packet */
db339569 990 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
8e730c15
BH
991}
992
9f2cb71c
BH
993/* If this flush done event corresponds to a &struct efx_tx_queue, then
994 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
995 * of all transmit completions.
996 */
997static void
998efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
999{
1000 struct efx_tx_queue *tx_queue;
1001 int qid;
1002
1003 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1004 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1005 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1006 qid % EFX_TXQ_TYPES);
1007
1008 efx_magic_event(tx_queue->channel,
1009 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1010 }
1011}
1012
1013/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1014 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1015 * the RX queue back to the mask of RX queues in need of flushing.
1016 */
1017static void
1018efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1019{
1020 struct efx_channel *channel;
1021 struct efx_rx_queue *rx_queue;
1022 int qid;
1023 bool failed;
1024
1025 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1026 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1027 if (qid >= efx->n_channels)
1028 return;
1029 channel = efx_get_channel(efx, qid);
1030 if (!efx_channel_has_rx_queue(channel))
1031 return;
1032 rx_queue = efx_channel_get_rx_queue(channel);
1033
1034 if (failed) {
1035 netif_info(efx, hw, efx->net_dev,
1036 "RXQ %d flush retry\n", qid);
1037 rx_queue->flush_pending = true;
1038 atomic_inc(&efx->rxq_flush_pending);
1039 } else {
1040 efx_magic_event(efx_rx_queue_channel(rx_queue),
1041 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1042 }
1043 atomic_dec(&efx->rxq_flush_outstanding);
1044 if (efx_flush_wake(efx))
1045 wake_up(&efx->flush_wq);
1046}
1047
1048static void
1049efx_handle_drain_event(struct efx_channel *channel)
1050{
1051 struct efx_nic *efx = channel->efx;
1052
1053 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1054 atomic_dec(&efx->drain_pending);
1055 if (efx_flush_wake(efx))
1056 wake_up(&efx->flush_wq);
1057}
1058
90d683af
SH
1059static void
1060efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1061{
1062 struct efx_nic *efx = channel->efx;
2ae75dac
BH
1063 struct efx_rx_queue *rx_queue =
1064 efx_channel_has_rx_queue(channel) ?
1065 efx_channel_get_rx_queue(channel) : NULL;
9f2cb71c 1066 unsigned magic, code;
90d683af 1067
4ef594eb 1068 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
9f2cb71c 1069 code = _EFX_CHANNEL_MAGIC_CODE(magic);
4ef594eb 1070
9f2cb71c
BH
1071 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1072 /* ignore */
1073 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
90d683af
SH
1074 /* The queue must be empty, so we won't receive any rx
1075 * events, so efx_process_channel() won't refill the
1076 * queue. Refill it here */
2ae75dac 1077 efx_fast_push_rx_descriptors(rx_queue);
9f2cb71c
BH
1078 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1079 rx_queue->enabled = false;
1080 efx_handle_drain_event(channel);
1081 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1082 efx_handle_drain_event(channel);
1083 } else {
62776d03
BH
1084 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1085 "generated event "EFX_QWORD_FMT"\n",
1086 channel->channel, EFX_QWORD_VAL(*event));
9f2cb71c 1087 }
90d683af
SH
1088}
1089
8e730c15
BH
1090static void
1091efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1092{
1093 struct efx_nic *efx = channel->efx;
1094 unsigned int ev_sub_code;
1095 unsigned int ev_sub_data;
1096
1097 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1098 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1099
1100 switch (ev_sub_code) {
1101 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
62776d03
BH
1102 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1103 channel->channel, ev_sub_data);
9f2cb71c 1104 efx_handle_tx_flush_done(efx, event);
8e730c15
BH
1105 break;
1106 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
62776d03
BH
1107 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1108 channel->channel, ev_sub_data);
9f2cb71c 1109 efx_handle_rx_flush_done(efx, event);
8e730c15
BH
1110 break;
1111 case FSE_AZ_EVQ_INIT_DONE_EV:
62776d03
BH
1112 netif_dbg(efx, hw, efx->net_dev,
1113 "channel %d EVQ %d initialised\n",
1114 channel->channel, ev_sub_data);
8e730c15
BH
1115 break;
1116 case FSE_AZ_SRM_UPD_DONE_EV:
62776d03
BH
1117 netif_vdbg(efx, hw, efx->net_dev,
1118 "channel %d SRAM update done\n", channel->channel);
8e730c15
BH
1119 break;
1120 case FSE_AZ_WAKE_UP_EV:
62776d03
BH
1121 netif_vdbg(efx, hw, efx->net_dev,
1122 "channel %d RXQ %d wakeup event\n",
1123 channel->channel, ev_sub_data);
8e730c15
BH
1124 break;
1125 case FSE_AZ_TIMER_EV:
62776d03
BH
1126 netif_vdbg(efx, hw, efx->net_dev,
1127 "channel %d RX queue %d timer expired\n",
1128 channel->channel, ev_sub_data);
8e730c15
BH
1129 break;
1130 case FSE_AA_RX_RECOVER_EV:
62776d03
BH
1131 netif_err(efx, rx_err, efx->net_dev,
1132 "channel %d seen DRIVER RX_RESET event. "
8e730c15
BH
1133 "Resetting.\n", channel->channel);
1134 atomic_inc(&efx->rx_reset);
1135 efx_schedule_reset(efx,
1136 EFX_WORKAROUND_6555(efx) ?
1137 RESET_TYPE_RX_RECOVERY :
1138 RESET_TYPE_DISABLE);
1139 break;
1140 case FSE_BZ_RX_DSC_ERROR_EV:
62776d03
BH
1141 netif_err(efx, rx_err, efx->net_dev,
1142 "RX DMA Q %d reports descriptor fetch error."
1143 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
1144 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1145 break;
1146 case FSE_BZ_TX_DSC_ERROR_EV:
62776d03
BH
1147 netif_err(efx, tx_err, efx->net_dev,
1148 "TX DMA Q %d reports descriptor fetch error."
1149 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
1150 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1151 break;
1152 default:
62776d03
BH
1153 netif_vdbg(efx, hw, efx->net_dev,
1154 "channel %d unknown driver event code %d "
1155 "data %04x\n", channel->channel, ev_sub_code,
1156 ev_sub_data);
8e730c15
BH
1157 break;
1158 }
1159}
1160
fa236e18 1161int efx_nic_process_eventq(struct efx_channel *channel, int budget)
8e730c15 1162{
ecc910f5 1163 struct efx_nic *efx = channel->efx;
8e730c15
BH
1164 unsigned int read_ptr;
1165 efx_qword_t event, *p_event;
1166 int ev_code;
fa236e18
BH
1167 int tx_packets = 0;
1168 int spent = 0;
8e730c15
BH
1169
1170 read_ptr = channel->eventq_read_ptr;
1171
fa236e18 1172 for (;;) {
8e730c15
BH
1173 p_event = efx_event(channel, read_ptr);
1174 event = *p_event;
1175
1176 if (!efx_event_present(&event))
1177 /* End of events */
1178 break;
1179
62776d03
BH
1180 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1181 "channel %d event is "EFX_QWORD_FMT"\n",
1182 channel->channel, EFX_QWORD_VAL(event));
8e730c15
BH
1183
1184 /* Clear this event by marking it all ones */
1185 EFX_SET_QWORD(*p_event);
1186
d4fabcc8 1187 ++read_ptr;
fa236e18 1188
8e730c15
BH
1189 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1190
1191 switch (ev_code) {
1192 case FSE_AZ_EV_CODE_RX_EV:
1193 efx_handle_rx_event(channel, &event);
fa236e18
BH
1194 if (++spent == budget)
1195 goto out;
8e730c15
BH
1196 break;
1197 case FSE_AZ_EV_CODE_TX_EV:
fa236e18 1198 tx_packets += efx_handle_tx_event(channel, &event);
ecc910f5 1199 if (tx_packets > efx->txq_entries) {
fa236e18
BH
1200 spent = budget;
1201 goto out;
1202 }
8e730c15
BH
1203 break;
1204 case FSE_AZ_EV_CODE_DRV_GEN_EV:
90d683af 1205 efx_handle_generated_event(channel, &event);
8e730c15 1206 break;
8e730c15
BH
1207 case FSE_AZ_EV_CODE_DRIVER_EV:
1208 efx_handle_driver_event(channel, &event);
1209 break;
8880f4ec
BH
1210 case FSE_CZ_EV_CODE_MCDI_EV:
1211 efx_mcdi_process_event(channel, &event);
1212 break;
40641ed9
BH
1213 case FSE_AZ_EV_CODE_GLOBAL_EV:
1214 if (efx->type->handle_global_event &&
1215 efx->type->handle_global_event(channel, &event))
1216 break;
1217 /* else fall through */
8e730c15 1218 default:
62776d03
BH
1219 netif_err(channel->efx, hw, channel->efx->net_dev,
1220 "channel %d unknown event type %d (data "
1221 EFX_QWORD_FMT ")\n", channel->channel,
1222 ev_code, EFX_QWORD_VAL(event));
8e730c15 1223 }
fa236e18 1224 }
8e730c15 1225
fa236e18 1226out:
8e730c15 1227 channel->eventq_read_ptr = read_ptr;
fa236e18 1228 return spent;
8e730c15
BH
1229}
1230
d4fabcc8
BH
1231/* Check whether an event is present in the eventq at the current
1232 * read pointer. Only useful for self-test.
1233 */
1234bool efx_nic_event_present(struct efx_channel *channel)
1235{
1236 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1237}
8e730c15
BH
1238
1239/* Allocate buffer table entries for event queue */
1240int efx_nic_probe_eventq(struct efx_channel *channel)
1241{
1242 struct efx_nic *efx = channel->efx;
ecc910f5
SH
1243 unsigned entries;
1244
1245 entries = channel->eventq_mask + 1;
8e730c15 1246 return efx_alloc_special_buffer(efx, &channel->eventq,
ecc910f5 1247 entries * sizeof(efx_qword_t));
8e730c15
BH
1248}
1249
1250void efx_nic_init_eventq(struct efx_channel *channel)
1251{
8880f4ec 1252 efx_oword_t reg;
8e730c15
BH
1253 struct efx_nic *efx = channel->efx;
1254
62776d03
BH
1255 netif_dbg(efx, hw, efx->net_dev,
1256 "channel %d event queue in special buffers %d-%d\n",
1257 channel->channel, channel->eventq.index,
1258 channel->eventq.index + channel->eventq.entries - 1);
8e730c15 1259
8880f4ec
BH
1260 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1261 EFX_POPULATE_OWORD_3(reg,
1262 FRF_CZ_TIMER_Q_EN, 1,
1263 FRF_CZ_HOST_NOTIFY_MODE, 0,
1264 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1265 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1266 }
1267
8e730c15
BH
1268 /* Pin event queue buffer */
1269 efx_init_special_buffer(efx, &channel->eventq);
1270
1271 /* Fill event queue with all ones (i.e. empty events) */
1272 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1273
1274 /* Push event queue to card */
8880f4ec 1275 EFX_POPULATE_OWORD_3(reg,
8e730c15
BH
1276 FRF_AZ_EVQ_EN, 1,
1277 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1278 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
8880f4ec 1279 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15
BH
1280 channel->channel);
1281
1282 efx->type->push_irq_moderation(channel);
1283}
1284
1285void efx_nic_fini_eventq(struct efx_channel *channel)
1286{
8880f4ec 1287 efx_oword_t reg;
8e730c15
BH
1288 struct efx_nic *efx = channel->efx;
1289
1290 /* Remove event queue from card */
8880f4ec
BH
1291 EFX_ZERO_OWORD(reg);
1292 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15 1293 channel->channel);
8880f4ec
BH
1294 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1295 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
8e730c15
BH
1296
1297 /* Unpin event queue */
1298 efx_fini_special_buffer(efx, &channel->eventq);
1299}
1300
1301/* Free buffers backing event queue */
1302void efx_nic_remove_eventq(struct efx_channel *channel)
1303{
1304 efx_free_special_buffer(channel->efx, &channel->eventq);
1305}
1306
1307
d730dc52 1308void efx_nic_generate_test_event(struct efx_channel *channel)
8e730c15 1309{
4ef594eb 1310 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
90d683af
SH
1311}
1312
2ae75dac 1313void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
90d683af 1314{
2ae75dac
BH
1315 efx_magic_event(efx_rx_queue_channel(rx_queue),
1316 EFX_CHANNEL_MAGIC_FILL(rx_queue));
8e730c15
BH
1317}
1318
8e730c15
BH
1319/**************************************************************************
1320 *
1321 * Hardware interrupts
1322 * The hardware interrupt handler does very little work; all the event
1323 * queue processing is carried out by per-channel tasklets.
1324 *
1325 **************************************************************************/
1326
1327/* Enable/disable/generate interrupts */
1328static inline void efx_nic_interrupts(struct efx_nic *efx,
1329 bool enabled, bool force)
1330{
1331 efx_oword_t int_en_reg_ker;
8880f4ec
BH
1332
1333 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1646a6f3 1334 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
8e730c15
BH
1335 FRF_AZ_KER_INT_KER, force,
1336 FRF_AZ_DRV_INT_EN_KER, enabled);
1337 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1338}
1339
1340void efx_nic_enable_interrupts(struct efx_nic *efx)
1341{
8e730c15
BH
1342 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1343 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1344
8e730c15 1345 efx_nic_interrupts(efx, true, false);
8e730c15
BH
1346}
1347
1348void efx_nic_disable_interrupts(struct efx_nic *efx)
1349{
1350 /* Disable interrupts */
1351 efx_nic_interrupts(efx, false, false);
1352}
1353
1354/* Generate a test interrupt
1355 * Interrupt must already have been enabled, otherwise nasty things
1356 * may happen.
1357 */
1358void efx_nic_generate_interrupt(struct efx_nic *efx)
1359{
1360 efx_nic_interrupts(efx, true, true);
1361}
1362
1363/* Process a fatal interrupt
1364 * Disable bus mastering ASAP and schedule a reset
1365 */
1366irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1367{
1368 struct falcon_nic_data *nic_data = efx->nic_data;
1369 efx_oword_t *int_ker = efx->irq_status.addr;
1370 efx_oword_t fatal_intr;
1371 int error, mem_perr;
1372
1373 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1374 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1375
62776d03
BH
1376 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1377 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1378 EFX_OWORD_VAL(fatal_intr),
1379 error ? "disabling bus mastering" : "no recognised error");
8e730c15
BH
1380
1381 /* If this is a memory parity error dump which blocks are offending */
97e1eaa0
SH
1382 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1383 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
8e730c15
BH
1384 if (mem_perr) {
1385 efx_oword_t reg;
1386 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
62776d03
BH
1387 netif_err(efx, hw, efx->net_dev,
1388 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1389 EFX_OWORD_VAL(reg));
8e730c15
BH
1390 }
1391
1392 /* Disable both devices */
1393 pci_clear_master(efx->pci_dev);
1394 if (efx_nic_is_dual_func(efx))
1395 pci_clear_master(nic_data->pci_dev2);
1396 efx_nic_disable_interrupts(efx);
1397
1398 /* Count errors and reset or disable the NIC accordingly */
1399 if (efx->int_error_count == 0 ||
1400 time_after(jiffies, efx->int_error_expire)) {
1401 efx->int_error_count = 0;
1402 efx->int_error_expire =
1403 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1404 }
1405 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
62776d03
BH
1406 netif_err(efx, hw, efx->net_dev,
1407 "SYSTEM ERROR - reset scheduled\n");
8e730c15
BH
1408 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1409 } else {
62776d03
BH
1410 netif_err(efx, hw, efx->net_dev,
1411 "SYSTEM ERROR - max number of errors seen."
1412 "NIC will be disabled\n");
8e730c15
BH
1413 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1414 }
63695459 1415
8e730c15
BH
1416 return IRQ_HANDLED;
1417}
1418
1419/* Handle a legacy interrupt
1420 * Acknowledges the interrupt and schedule event queue processing.
1421 */
1422static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1423{
1424 struct efx_nic *efx = dev_id;
1425 efx_oword_t *int_ker = efx->irq_status.addr;
1426 irqreturn_t result = IRQ_NONE;
1427 struct efx_channel *channel;
1428 efx_dword_t reg;
1429 u32 queues;
1430 int syserr;
1431
94dec6a2
BH
1432 /* Could this be ours? If interrupts are disabled then the
1433 * channel state may not be valid.
1434 */
1435 if (!efx->legacy_irq_enabled)
1436 return result;
1437
8e730c15
BH
1438 /* Read the ISR which also ACKs the interrupts */
1439 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1440 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1441
1646a6f3
BH
1442 /* Handle non-event-queue sources */
1443 if (queues & (1U << efx->irq_level)) {
63695459
SH
1444 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1445 if (unlikely(syserr))
1446 return efx_nic_fatal_interrupt(efx);
1646a6f3 1447 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1448 }
8e730c15 1449
8880f4ec
BH
1450 if (queues != 0) {
1451 if (EFX_WORKAROUND_15783(efx))
1452 efx->irq_zero_count = 0;
1453
1454 /* Schedule processing of any interrupting queues */
1455 efx_for_each_channel(channel, efx) {
1456 if (queues & 1)
1646a6f3 1457 efx_schedule_channel_irq(channel);
8880f4ec 1458 queues >>= 1;
8e730c15 1459 }
8880f4ec
BH
1460 result = IRQ_HANDLED;
1461
41b7e4c3 1462 } else if (EFX_WORKAROUND_15783(efx)) {
8880f4ec
BH
1463 efx_qword_t *event;
1464
41b7e4c3
SH
1465 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1466 * because this might be a shared interrupt. */
1467 if (efx->irq_zero_count++ == 0)
1468 result = IRQ_HANDLED;
1469
1470 /* Ensure we schedule or rearm all event queues */
8880f4ec
BH
1471 efx_for_each_channel(channel, efx) {
1472 event = efx_event(channel, channel->eventq_read_ptr);
1473 if (efx_event_present(event))
1646a6f3 1474 efx_schedule_channel_irq(channel);
41b7e4c3
SH
1475 else
1476 efx_nic_eventq_read_ack(channel);
8880f4ec 1477 }
8e730c15
BH
1478 }
1479
1646a6f3 1480 if (result == IRQ_HANDLED)
62776d03
BH
1481 netif_vdbg(efx, intr, efx->net_dev,
1482 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1483 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
8e730c15
BH
1484
1485 return result;
1486}
1487
1488/* Handle an MSI interrupt
1489 *
1490 * Handle an MSI hardware interrupt. This routine schedules event
1491 * queue processing. No interrupt acknowledgement cycle is necessary.
1492 * Also, we never need to check that the interrupt is for us, since
1493 * MSI interrupts cannot be shared.
1494 */
1495static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1496{
4642610c 1497 struct efx_channel *channel = *(struct efx_channel **)dev_id;
8e730c15
BH
1498 struct efx_nic *efx = channel->efx;
1499 efx_oword_t *int_ker = efx->irq_status.addr;
1500 int syserr;
1501
62776d03
BH
1502 netif_vdbg(efx, intr, efx->net_dev,
1503 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1504 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
8e730c15 1505
1646a6f3
BH
1506 /* Handle non-event-queue sources */
1507 if (channel->channel == efx->irq_level) {
63695459
SH
1508 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1509 if (unlikely(syserr))
1510 return efx_nic_fatal_interrupt(efx);
1646a6f3 1511 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1512 }
8e730c15
BH
1513
1514 /* Schedule processing of the channel */
1646a6f3 1515 efx_schedule_channel_irq(channel);
8e730c15
BH
1516
1517 return IRQ_HANDLED;
1518}
1519
1520
1521/* Setup RSS indirection table.
1522 * This maps from the hash value of the packet to RXQ
1523 */
765c9f46 1524void efx_nic_push_rx_indir_table(struct efx_nic *efx)
8e730c15 1525{
765c9f46 1526 size_t i = 0;
8e730c15
BH
1527 efx_dword_t dword;
1528
1529 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1530 return;
1531
765c9f46
BH
1532 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1533 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1534
1535 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
8e730c15 1536 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
765c9f46
BH
1537 efx->rx_indir_table[i]);
1538 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
8e730c15
BH
1539 }
1540}
1541
1542/* Hook interrupt handler(s)
1543 * Try MSI and then legacy interrupts.
1544 */
1545int efx_nic_init_interrupt(struct efx_nic *efx)
1546{
1547 struct efx_channel *channel;
1548 int rc;
1549
1550 if (!EFX_INT_MODE_USE_MSI(efx)) {
1551 irq_handler_t handler;
1552 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1553 handler = efx_legacy_interrupt;
1554 else
1555 handler = falcon_legacy_interrupt_a1;
1556
1557 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1558 efx->name, efx);
1559 if (rc) {
62776d03
BH
1560 netif_err(efx, drv, efx->net_dev,
1561 "failed to hook legacy IRQ %d\n",
1562 efx->pci_dev->irq);
8e730c15
BH
1563 goto fail1;
1564 }
1565 return 0;
1566 }
1567
1568 /* Hook MSI or MSI-X interrupt */
1569 efx_for_each_channel(channel, efx) {
1570 rc = request_irq(channel->irq, efx_msi_interrupt,
1571 IRQF_PROBE_SHARED, /* Not shared */
4642610c
BH
1572 efx->channel_name[channel->channel],
1573 &efx->channel[channel->channel]);
8e730c15 1574 if (rc) {
62776d03
BH
1575 netif_err(efx, drv, efx->net_dev,
1576 "failed to hook IRQ %d\n", channel->irq);
8e730c15
BH
1577 goto fail2;
1578 }
1579 }
1580
1581 return 0;
1582
1583 fail2:
1584 efx_for_each_channel(channel, efx)
4642610c 1585 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1586 fail1:
1587 return rc;
1588}
1589
1590void efx_nic_fini_interrupt(struct efx_nic *efx)
1591{
1592 struct efx_channel *channel;
1593 efx_oword_t reg;
1594
1595 /* Disable MSI/MSI-X interrupts */
1596 efx_for_each_channel(channel, efx) {
1597 if (channel->irq)
4642610c 1598 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1599 }
1600
1601 /* ACK legacy interrupt */
1602 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1603 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1604 else
1605 falcon_irq_ack_a1(efx);
1606
1607 /* Disable legacy interrupt */
1608 if (efx->legacy_irq)
1609 free_irq(efx->legacy_irq, efx);
1610}
1611
28e47c49
BH
1612void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1613{
1614 unsigned vi_count, buftbl_min;
1615
1616 /* Account for the buffer table entries backing the datapath channels
1617 * and the descriptor caches for those channels.
1618 */
1619 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1620 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1621 efx->n_channels * EFX_MAX_EVQ_SIZE)
1622 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1623 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1624
1625 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1626 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1627}
1628
8e730c15
BH
1629u32 efx_nic_fpga_ver(struct efx_nic *efx)
1630{
1631 efx_oword_t altera_build;
1632 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1633 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1634}
1635
1636void efx_nic_init_common(struct efx_nic *efx)
1637{
1638 efx_oword_t temp;
1639
1640 /* Set positions of descriptor caches in SRAM. */
28e47c49 1641 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
8e730c15 1642 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
28e47c49 1643 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
8e730c15
BH
1644 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1645
1646 /* Set TX descriptor cache size. */
1647 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1648 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1649 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1650
1651 /* Set RX descriptor cache size. Set low watermark to size-8, as
1652 * this allows most efficient prefetching.
1653 */
1654 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1655 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1656 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1657 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1658 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1659
1660 /* Program INT_KER address */
1661 EFX_POPULATE_OWORD_2(temp,
1662 FRF_AZ_NORM_INT_VEC_DIS_KER,
1663 EFX_INT_MODE_USE_MSI(efx),
1664 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1665 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1666
63695459
SH
1667 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1668 /* Use an interrupt level unused by event queues */
1646a6f3 1669 efx->irq_level = 0x1f;
63695459
SH
1670 else
1671 /* Use a valid MSI-X vector */
1646a6f3 1672 efx->irq_level = 0;
63695459 1673
8e730c15
BH
1674 /* Enable all the genuinely fatal interrupts. (They are still
1675 * masked by the overall interrupt mask, controlled by
1676 * falcon_interrupts()).
1677 *
1678 * Note: All other fatal interrupts are enabled
1679 */
1680 EFX_POPULATE_OWORD_3(temp,
1681 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1682 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1683 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
b17424b0
SH
1684 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1685 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
8e730c15
BH
1686 EFX_INVERT_OWORD(temp);
1687 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1688
765c9f46 1689 efx_nic_push_rx_indir_table(efx);
8e730c15
BH
1690
1691 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1692 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1693 */
1694 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1695 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1696 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1697 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
cd38557d 1698 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
8e730c15
BH
1699 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1700 /* Enable SW_EV to inherit in char driver - assume harmless here */
1701 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1702 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1703 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
286d47ba
BH
1704 /* Disable hardware watchdog which can misfire */
1705 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
8e730c15
BH
1706 /* Squash TX of packets of 16 bytes or less */
1707 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1708 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1709 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
94b274bf
BH
1710
1711 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1712 EFX_POPULATE_OWORD_4(temp,
1713 /* Default values */
1714 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1715 FRF_BZ_TX_PACE_SB_AF, 0xb,
1716 FRF_BZ_TX_PACE_FB_BASE, 0,
1717 /* Allow large pace values in the
1718 * fast bin. */
1719 FRF_BZ_TX_PACE_BIN_TH,
1720 FFE_BZ_TX_PACE_RESERVED);
1721 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1722 }
8e730c15 1723}
5b98c1bf
BH
1724
1725/* Register dump */
1726
1727#define REGISTER_REVISION_A 1
1728#define REGISTER_REVISION_B 2
1729#define REGISTER_REVISION_C 3
1730#define REGISTER_REVISION_Z 3 /* latest revision */
1731
1732struct efx_nic_reg {
1733 u32 offset:24;
1734 u32 min_revision:2, max_revision:2;
1735};
1736
1737#define REGISTER(name, min_rev, max_rev) { \
1738 FR_ ## min_rev ## max_rev ## _ ## name, \
1739 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1740}
1741#define REGISTER_AA(name) REGISTER(name, A, A)
1742#define REGISTER_AB(name) REGISTER(name, A, B)
1743#define REGISTER_AZ(name) REGISTER(name, A, Z)
1744#define REGISTER_BB(name) REGISTER(name, B, B)
1745#define REGISTER_BZ(name) REGISTER(name, B, Z)
1746#define REGISTER_CZ(name) REGISTER(name, C, Z)
1747
1748static const struct efx_nic_reg efx_nic_regs[] = {
1749 REGISTER_AZ(ADR_REGION),
1750 REGISTER_AZ(INT_EN_KER),
1751 REGISTER_BZ(INT_EN_CHAR),
1752 REGISTER_AZ(INT_ADR_KER),
1753 REGISTER_BZ(INT_ADR_CHAR),
1754 /* INT_ACK_KER is WO */
1755 /* INT_ISR0 is RC */
1756 REGISTER_AZ(HW_INIT),
1757 REGISTER_CZ(USR_EV_CFG),
1758 REGISTER_AB(EE_SPI_HCMD),
1759 REGISTER_AB(EE_SPI_HADR),
1760 REGISTER_AB(EE_SPI_HDATA),
1761 REGISTER_AB(EE_BASE_PAGE),
1762 REGISTER_AB(EE_VPD_CFG0),
1763 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1764 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1765 /* PCIE_CORE_INDIRECT is indirect */
1766 REGISTER_AB(NIC_STAT),
1767 REGISTER_AB(GPIO_CTL),
1768 REGISTER_AB(GLB_CTL),
1769 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1770 REGISTER_BZ(DP_CTRL),
1771 REGISTER_AZ(MEM_STAT),
1772 REGISTER_AZ(CS_DEBUG),
1773 REGISTER_AZ(ALTERA_BUILD),
1774 REGISTER_AZ(CSR_SPARE),
1775 REGISTER_AB(PCIE_SD_CTL0123),
1776 REGISTER_AB(PCIE_SD_CTL45),
1777 REGISTER_AB(PCIE_PCS_CTL_STAT),
1778 /* DEBUG_DATA_OUT is not used */
1779 /* DRV_EV is WO */
1780 REGISTER_AZ(EVQ_CTL),
1781 REGISTER_AZ(EVQ_CNT1),
1782 REGISTER_AZ(EVQ_CNT2),
1783 REGISTER_AZ(BUF_TBL_CFG),
1784 REGISTER_AZ(SRM_RX_DC_CFG),
1785 REGISTER_AZ(SRM_TX_DC_CFG),
1786 REGISTER_AZ(SRM_CFG),
1787 /* BUF_TBL_UPD is WO */
1788 REGISTER_AZ(SRM_UPD_EVQ),
1789 REGISTER_AZ(SRAM_PARITY),
1790 REGISTER_AZ(RX_CFG),
1791 REGISTER_BZ(RX_FILTER_CTL),
1792 /* RX_FLUSH_DESCQ is WO */
1793 REGISTER_AZ(RX_DC_CFG),
1794 REGISTER_AZ(RX_DC_PF_WM),
1795 REGISTER_BZ(RX_RSS_TKEY),
1796 /* RX_NODESC_DROP is RC */
1797 REGISTER_AA(RX_SELF_RST),
1798 /* RX_DEBUG, RX_PUSH_DROP are not used */
1799 REGISTER_CZ(RX_RSS_IPV6_REG1),
1800 REGISTER_CZ(RX_RSS_IPV6_REG2),
1801 REGISTER_CZ(RX_RSS_IPV6_REG3),
1802 /* TX_FLUSH_DESCQ is WO */
1803 REGISTER_AZ(TX_DC_CFG),
1804 REGISTER_AA(TX_CHKSM_CFG),
1805 REGISTER_AZ(TX_CFG),
1806 /* TX_PUSH_DROP is not used */
1807 REGISTER_AZ(TX_RESERVED),
1808 REGISTER_BZ(TX_PACE),
1809 /* TX_PACE_DROP_QID is RC */
1810 REGISTER_BB(TX_VLAN),
1811 REGISTER_BZ(TX_IPFIL_PORTEN),
1812 REGISTER_AB(MD_TXD),
1813 REGISTER_AB(MD_RXD),
1814 REGISTER_AB(MD_CS),
1815 REGISTER_AB(MD_PHY_ADR),
1816 REGISTER_AB(MD_ID),
1817 /* MD_STAT is RC */
1818 REGISTER_AB(MAC_STAT_DMA),
1819 REGISTER_AB(MAC_CTRL),
1820 REGISTER_BB(GEN_MODE),
1821 REGISTER_AB(MAC_MC_HASH_REG0),
1822 REGISTER_AB(MAC_MC_HASH_REG1),
1823 REGISTER_AB(GM_CFG1),
1824 REGISTER_AB(GM_CFG2),
1825 /* GM_IPG and GM_HD are not used */
1826 REGISTER_AB(GM_MAX_FLEN),
1827 /* GM_TEST is not used */
1828 REGISTER_AB(GM_ADR1),
1829 REGISTER_AB(GM_ADR2),
1830 REGISTER_AB(GMF_CFG0),
1831 REGISTER_AB(GMF_CFG1),
1832 REGISTER_AB(GMF_CFG2),
1833 REGISTER_AB(GMF_CFG3),
1834 REGISTER_AB(GMF_CFG4),
1835 REGISTER_AB(GMF_CFG5),
1836 REGISTER_BB(TX_SRC_MAC_CTL),
1837 REGISTER_AB(XM_ADR_LO),
1838 REGISTER_AB(XM_ADR_HI),
1839 REGISTER_AB(XM_GLB_CFG),
1840 REGISTER_AB(XM_TX_CFG),
1841 REGISTER_AB(XM_RX_CFG),
1842 REGISTER_AB(XM_MGT_INT_MASK),
1843 REGISTER_AB(XM_FC),
1844 REGISTER_AB(XM_PAUSE_TIME),
1845 REGISTER_AB(XM_TX_PARAM),
1846 REGISTER_AB(XM_RX_PARAM),
1847 /* XM_MGT_INT_MSK (note no 'A') is RC */
1848 REGISTER_AB(XX_PWR_RST),
1849 REGISTER_AB(XX_SD_CTL),
1850 REGISTER_AB(XX_TXDRV_CTL),
1851 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1852 /* XX_CORE_STAT is partly RC */
1853};
1854
1855struct efx_nic_reg_table {
1856 u32 offset:24;
1857 u32 min_revision:2, max_revision:2;
1858 u32 step:6, rows:21;
1859};
1860
1861#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1862 offset, \
1863 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1864 step, rows \
1865}
9c636baf 1866#define REGISTER_TABLE(name, min_rev, max_rev) \
5b98c1bf
BH
1867 REGISTER_TABLE_DIMENSIONS( \
1868 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1869 min_rev, max_rev, \
1870 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1871 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1872#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1873#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1874#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1875#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1876#define REGISTER_TABLE_BB_CZ(name) \
1877 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1878 FR_BZ_ ## name ## _STEP, \
1879 FR_BB_ ## name ## _ROWS), \
1880 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1881 FR_BZ_ ## name ## _STEP, \
1882 FR_CZ_ ## name ## _ROWS)
1883#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1884
1885static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1886 /* DRIVER is not used */
1887 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1888 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1889 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1890 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1891 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1892 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1893 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1894 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1895 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
75abc51c 1896 /* We can't reasonably read all of the buffer table (up to 8MB!).
5b98c1bf
BH
1897 * However this driver will only use a few entries. Reading
1898 * 1K entries allows for some expansion of queue count and
1899 * size before we need to change the version. */
1900 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1901 A, A, 8, 1024),
1902 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1903 B, Z, 8, 1024),
5b98c1bf
BH
1904 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1905 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1906 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1907 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1908 /* TX_FILTER_TBL0 is huge and not used by this driver */
1909 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1910 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1911 /* MSIX_PBA_TABLE is not mapped */
1912 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
75abc51c 1913 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
5b98c1bf
BH
1914};
1915
1916size_t efx_nic_get_regs_len(struct efx_nic *efx)
1917{
1918 const struct efx_nic_reg *reg;
1919 const struct efx_nic_reg_table *table;
1920 size_t len = 0;
1921
1922 for (reg = efx_nic_regs;
1923 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1924 reg++)
1925 if (efx->type->revision >= reg->min_revision &&
1926 efx->type->revision <= reg->max_revision)
1927 len += sizeof(efx_oword_t);
1928
1929 for (table = efx_nic_reg_tables;
1930 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1931 table++)
1932 if (efx->type->revision >= table->min_revision &&
1933 efx->type->revision <= table->max_revision)
1934 len += table->rows * min_t(size_t, table->step, 16);
1935
1936 return len;
1937}
1938
1939void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1940{
1941 const struct efx_nic_reg *reg;
1942 const struct efx_nic_reg_table *table;
1943
1944 for (reg = efx_nic_regs;
1945 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1946 reg++) {
1947 if (efx->type->revision >= reg->min_revision &&
1948 efx->type->revision <= reg->max_revision) {
1949 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1950 buf += sizeof(efx_oword_t);
1951 }
1952 }
1953
1954 for (table = efx_nic_reg_tables;
1955 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1956 table++) {
1957 size_t size, i;
1958
1959 if (!(efx->type->revision >= table->min_revision &&
1960 efx->type->revision <= table->max_revision))
1961 continue;
1962
1963 size = min_t(size_t, table->step, 16);
1964
1965 for (i = 0; i < table->rows; i++) {
1966 switch (table->step) {
1967 case 4: /* 32-bit register or SRAM */
1968 efx_readd_table(efx, buf, table->offset, i);
1969 break;
1970 case 8: /* 64-bit SRAM */
1971 efx_sram_readq(efx,
1972 efx->membase + table->offset,
1973 buf, i);
1974 break;
1975 case 16: /* 128-bit register */
1976 efx_reado_table(efx, buf, table->offset, i);
1977 break;
1978 case 32: /* 128-bit register, interleaved */
1979 efx_reado_table(efx, buf, table->offset, 2 * i);
1980 break;
1981 default:
1982 WARN_ON(1);
1983 return;
1984 }
1985 buf += size;
1986 }
1987 }
1988}
This page took 2.027676 seconds and 5 git commands to generate.