drivers/video/backlight/platform_lcd.c: add support for device tree based probe
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.c
CommitLineData
8e730c15
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2006-2011 Solarflare Communications Inc.
8e730c15
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
a6b7a407 13#include <linux/interrupt.h>
8e730c15
BH
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32/* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39#define TX_DC_ENTRIES 16
40#define TX_DC_ENTRIES_ORDER 1
41
42#define RX_DC_ENTRIES 64
43#define RX_DC_ENTRIES_ORDER 3
44
8e730c15
BH
45/* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49#define EFX_INT_ERROR_EXPIRE 3600
50#define EFX_MAX_INT_ERRORS 5
51
8e730c15
BH
52/* Depth of RX flush request fifo */
53#define EFX_RX_FLUSH_COUNT 4
54
4ef594eb
BH
55/* Driver generated events */
56#define _EFX_CHANNEL_MAGIC_TEST 0x000101
57#define _EFX_CHANNEL_MAGIC_FILL 0x000102
9f2cb71c
BH
58#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
d730dc52 60
4ef594eb
BH
61#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63
64#define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
2ae75dac
BH
66#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
9f2cb71c
BH
69#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
90d683af 75
8e730c15
BH
76/**************************************************************************
77 *
78 * Solarstorm hardware access
79 *
80 **************************************************************************/
81
82static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 unsigned int index)
84{
85 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 value, index);
87}
88
89/* Read the current event from the event queue */
90static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 unsigned int index)
92{
d4fabcc8
BH
93 return ((efx_qword_t *) (channel->eventq.addr)) +
94 (index & channel->eventq_mask);
8e730c15
BH
95}
96
97/* See if an event is present
98 *
99 * We check both the high and low dword of the event for all ones. We
100 * wrote all ones when we cleared the event, and no valid event can
101 * have all ones in either its high or low dwords. This approach is
102 * robust against reordering.
103 *
104 * Note that using a single 64-bit comparison is incorrect; even
105 * though the CPU read will be atomic, the DMA write may not be.
106 */
107static inline int efx_event_present(efx_qword_t *event)
108{
807540ba
ED
109 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
8e730c15
BH
111}
112
113static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 const efx_oword_t *mask)
115{
116 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118}
119
120int efx_nic_test_registers(struct efx_nic *efx,
121 const struct efx_nic_register_test *regs,
122 size_t n_regs)
123{
124 unsigned address = 0, i, j;
125 efx_oword_t mask, imask, original, reg, buf;
126
8e730c15
BH
127 for (i = 0; i < n_regs; ++i) {
128 address = regs[i].address;
129 mask = imask = regs[i].mask;
130 EFX_INVERT_OWORD(imask);
131
132 efx_reado(efx, &original, address);
133
134 /* bit sweep on and off */
135 for (j = 0; j < 128; j++) {
136 if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 continue;
138
139 /* Test this testable bit can be set in isolation */
140 EFX_AND_OWORD(reg, original, mask);
141 EFX_SET_OWORD32(reg, j, j, 1);
142
143 efx_writeo(efx, &reg, address);
144 efx_reado(efx, &buf, address);
145
146 if (efx_masked_compare_oword(&reg, &buf, &mask))
147 goto fail;
148
149 /* Test this testable bit can be cleared in isolation */
150 EFX_OR_OWORD(reg, original, mask);
151 EFX_SET_OWORD32(reg, j, j, 0);
152
153 efx_writeo(efx, &reg, address);
154 efx_reado(efx, &buf, address);
155
156 if (efx_masked_compare_oword(&reg, &buf, &mask))
157 goto fail;
158 }
159
160 efx_writeo(efx, &original, address);
161 }
162
163 return 0;
164
165fail:
62776d03
BH
166 netif_err(efx, hw, efx->net_dev,
167 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
8e730c15
BH
170 return -EIO;
171}
172
173/**************************************************************************
174 *
175 * Special buffer handling
176 * Special buffers are used for event queues and the TX and RX
177 * descriptor rings.
178 *
179 *************************************************************************/
180
181/*
182 * Initialise a special buffer
183 *
184 * This will define a buffer (previously allocated via
185 * efx_alloc_special_buffer()) in the buffer table, allowing
186 * it to be used for event queues, descriptor rings etc.
187 */
188static void
189efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190{
191 efx_qword_t buf_desc;
5bbe2f4f 192 unsigned int index;
8e730c15
BH
193 dma_addr_t dma_addr;
194 int i;
195
196 EFX_BUG_ON_PARANOID(!buffer->addr);
197
198 /* Write buffer descriptors to NIC */
199 for (i = 0; i < buffer->entries; i++) {
200 index = buffer->index + i;
5b6262d0 201 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
62776d03
BH
202 netif_dbg(efx, probe, efx->net_dev,
203 "mapping special buffer %d at %llx\n",
204 index, (unsigned long long)dma_addr);
8e730c15
BH
205 EFX_POPULATE_QWORD_3(buf_desc,
206 FRF_AZ_BUF_ADR_REGION, 0,
207 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 efx_write_buf_tbl(efx, &buf_desc, index);
210 }
211}
212
213/* Unmaps a buffer and clears the buffer table entries */
214static void
215efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216{
217 efx_oword_t buf_tbl_upd;
218 unsigned int start = buffer->index;
219 unsigned int end = (buffer->index + buffer->entries - 1);
220
221 if (!buffer->entries)
222 return;
223
62776d03
BH
224 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 buffer->index, buffer->index + buffer->entries - 1);
8e730c15
BH
226
227 EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 FRF_AZ_BUF_UPD_CMD, 0,
229 FRF_AZ_BUF_CLR_CMD, 1,
230 FRF_AZ_BUF_CLR_END_ID, end,
231 FRF_AZ_BUF_CLR_START_ID, start);
232 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233}
234
235/*
236 * Allocate a new special buffer
237 *
238 * This allocates memory for a new buffer, clears it and allocates a
239 * new buffer ID range. It does not write into the buffer table.
240 *
241 * This call will allocate 4KB buffers, since 8KB buffers can't be
242 * used for event queues and descriptor rings.
243 */
244static int efx_alloc_special_buffer(struct efx_nic *efx,
245 struct efx_special_buffer *buffer,
246 unsigned int len)
247{
248 len = ALIGN(len, EFX_BUF_SIZE);
249
58758aa5
BH
250 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 &buffer->dma_addr, GFP_KERNEL);
8e730c15
BH
252 if (!buffer->addr)
253 return -ENOMEM;
254 buffer->len = len;
255 buffer->entries = len / EFX_BUF_SIZE;
256 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257
258 /* All zeros is a potentially valid event so memset to 0xff */
259 memset(buffer->addr, 0xff, len);
260
261 /* Select new buffer ID */
262 buffer->index = efx->next_buffer_table;
263 efx->next_buffer_table += buffer->entries;
cd2d5b52
BH
264#ifdef CONFIG_SFC_SRIOV
265 BUG_ON(efx_sriov_enabled(efx) &&
266 efx->vf_buftbl_base < efx->next_buffer_table);
267#endif
8e730c15 268
62776d03
BH
269 netif_dbg(efx, probe, efx->net_dev,
270 "allocating special buffers %d-%d at %llx+%x "
271 "(virt %p phys %llx)\n", buffer->index,
272 buffer->index + buffer->entries - 1,
273 (u64)buffer->dma_addr, len,
274 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15
BH
275
276 return 0;
277}
278
279static void
280efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281{
282 if (!buffer->addr)
283 return;
284
62776d03
BH
285 netif_dbg(efx, hw, efx->net_dev,
286 "deallocating special buffers %d-%d at %llx+%x "
287 "(virt %p phys %llx)\n", buffer->index,
288 buffer->index + buffer->entries - 1,
289 (u64)buffer->dma_addr, buffer->len,
290 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15 291
58758aa5
BH
292 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 buffer->dma_addr);
8e730c15
BH
294 buffer->addr = NULL;
295 buffer->entries = 0;
296}
297
298/**************************************************************************
299 *
300 * Generic buffer handling
f7251a9c 301 * These buffers are used for interrupt status, MAC stats, etc.
8e730c15
BH
302 *
303 **************************************************************************/
304
305int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 unsigned int len)
307{
0e33d870
BH
308 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 &buffer->dma_addr, GFP_ATOMIC);
8e730c15
BH
310 if (!buffer->addr)
311 return -ENOMEM;
312 buffer->len = len;
313 memset(buffer->addr, 0, len);
314 return 0;
315}
316
317void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318{
319 if (buffer->addr) {
0e33d870
BH
320 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 buffer->addr, buffer->dma_addr);
8e730c15
BH
322 buffer->addr = NULL;
323 }
324}
325
326/**************************************************************************
327 *
328 * TX path
329 *
330 **************************************************************************/
331
332/* Returns a pointer to the specified transmit descriptor in the TX
333 * descriptor queue belonging to the specified channel.
334 */
335static inline efx_qword_t *
336efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337{
807540ba 338 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
8e730c15
BH
339}
340
341/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343{
344 unsigned write_ptr;
345 efx_dword_t reg;
346
ecc910f5 347 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
348 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 efx_writed_page(tx_queue->efx, &reg,
350 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351}
352
cd38557d
BH
353/* Write pointer and first descriptor for TX descriptor ring */
354static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 const efx_qword_t *txd)
356{
357 unsigned write_ptr;
358 efx_oword_t reg;
359
360 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362
363 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 FRF_AZ_TX_DESC_WPTR, write_ptr);
366 reg.qword[0] = *txd;
367 efx_writeo_page(tx_queue->efx, &reg,
368 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369}
370
371static inline bool
372efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373{
374 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375
376 if (empty_read_count == 0)
377 return false;
378
379 tx_queue->empty_read_count = 0;
380 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381}
8e730c15
BH
382
383/* For each entry inserted into the software descriptor ring, create a
384 * descriptor in the hardware TX descriptor ring (in host memory), and
385 * write a doorbell.
386 */
387void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388{
389
390 struct efx_tx_buffer *buffer;
391 efx_qword_t *txd;
392 unsigned write_ptr;
cd38557d 393 unsigned old_write_count = tx_queue->write_count;
8e730c15
BH
394
395 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397 do {
ecc910f5 398 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
399 buffer = &tx_queue->buffer[write_ptr];
400 txd = efx_tx_desc(tx_queue, write_ptr);
401 ++tx_queue->write_count;
402
403 /* Create TX descriptor ring entry */
7668ff9c 404 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
8e730c15 405 EFX_POPULATE_QWORD_4(*txd,
7668ff9c
BH
406 FSF_AZ_TX_KER_CONT,
407 buffer->flags & EFX_TX_BUF_CONT,
8e730c15
BH
408 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 FSF_AZ_TX_KER_BUF_REGION, 0,
410 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 } while (tx_queue->write_count != tx_queue->insert_count);
412
413 wmb(); /* Ensure descriptors are written before they are fetched */
cd38557d
BH
414
415 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 txd = efx_tx_desc(tx_queue,
417 old_write_count & tx_queue->ptr_mask);
418 efx_push_tx_desc(tx_queue, txd);
419 ++tx_queue->pushes;
420 } else {
421 efx_notify_tx_desc(tx_queue);
422 }
8e730c15
BH
423}
424
425/* Allocate hardware resources for a TX queue */
426int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427{
428 struct efx_nic *efx = tx_queue->efx;
ecc910f5
SH
429 unsigned entries;
430
431 entries = tx_queue->ptr_mask + 1;
8e730c15 432 return efx_alloc_special_buffer(efx, &tx_queue->txd,
ecc910f5 433 entries * sizeof(efx_qword_t));
8e730c15
BH
434}
435
436void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437{
8e730c15 438 struct efx_nic *efx = tx_queue->efx;
94b274bf 439 efx_oword_t reg;
8e730c15 440
8e730c15
BH
441 /* Pin TX descriptor ring */
442 efx_init_special_buffer(efx, &tx_queue->txd);
443
444 /* Push TX descriptor ring to card */
94b274bf 445 EFX_POPULATE_OWORD_10(reg,
8e730c15
BH
446 FRF_AZ_TX_DESCQ_EN, 1,
447 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 FRF_AZ_TX_DESCQ_EVQ_ID,
451 tx_queue->channel->channel,
452 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 FRF_AZ_TX_DESCQ_SIZE,
455 __ffs(tx_queue->txd.entries),
456 FRF_AZ_TX_DESCQ_TYPE, 0,
457 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
a4900ac9 460 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
94b274bf
BH
461 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
8e730c15
BH
463 !csum);
464 }
465
94b274bf 466 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
8e730c15
BH
467 tx_queue->queue);
468
469 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
8e730c15 470 /* Only 128 bits in this register */
a4900ac9 471 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
8e730c15
BH
472
473 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
a4900ac9 474 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
8e730c15
BH
475 clear_bit_le(tx_queue->queue, (void *)&reg);
476 else
477 set_bit_le(tx_queue->queue, (void *)&reg);
478 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 }
94b274bf
BH
480
481 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 EFX_POPULATE_OWORD_1(reg,
483 FRF_BZ_TX_PACE,
484 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 FFE_BZ_TX_PACE_OFF :
486 FFE_BZ_TX_PACE_RESERVED);
487 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 tx_queue->queue);
489 }
8e730c15
BH
490}
491
492static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493{
494 struct efx_nic *efx = tx_queue->efx;
495 efx_oword_t tx_flush_descq;
496
8e730c15
BH
497 EFX_POPULATE_OWORD_2(tx_flush_descq,
498 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501}
502
503void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504{
505 struct efx_nic *efx = tx_queue->efx;
506 efx_oword_t tx_desc_ptr;
507
8e730c15
BH
508 /* Remove TX descriptor ring from card */
509 EFX_ZERO_OWORD(tx_desc_ptr);
510 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511 tx_queue->queue);
512
513 /* Unpin TX descriptor ring */
514 efx_fini_special_buffer(efx, &tx_queue->txd);
515}
516
517/* Free buffers backing TX queue */
518void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519{
520 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521}
522
523/**************************************************************************
524 *
525 * RX path
526 *
527 **************************************************************************/
528
529/* Returns a pointer to the specified descriptor in the RX descriptor queue */
530static inline efx_qword_t *
531efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532{
807540ba 533 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
8e730c15
BH
534}
535
536/* This creates an entry in the RX descriptor queue */
537static inline void
538efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539{
540 struct efx_rx_buffer *rx_buf;
541 efx_qword_t *rxd;
542
543 rxd = efx_rx_desc(rx_queue, index);
544 rx_buf = efx_rx_buffer(rx_queue, index);
545 EFX_POPULATE_QWORD_3(*rxd,
546 FSF_AZ_RX_KER_BUF_SIZE,
547 rx_buf->len -
548 rx_queue->efx->type->rx_buffer_padding,
549 FSF_AZ_RX_KER_BUF_REGION, 0,
550 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551}
552
553/* This writes to the RX_DESC_WPTR register for the specified receive
554 * descriptor ring.
555 */
556void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557{
ecc910f5 558 struct efx_nic *efx = rx_queue->efx;
8e730c15
BH
559 efx_dword_t reg;
560 unsigned write_ptr;
561
562 while (rx_queue->notified_count != rx_queue->added_count) {
ecc910f5
SH
563 efx_build_rx_desc(
564 rx_queue,
565 rx_queue->notified_count & rx_queue->ptr_mask);
8e730c15
BH
566 ++rx_queue->notified_count;
567 }
568
569 wmb();
ecc910f5 570 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
8e730c15 571 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
ecc910f5 572 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
ba1e8a35 573 efx_rx_queue_index(rx_queue));
8e730c15
BH
574}
575
576int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577{
578 struct efx_nic *efx = rx_queue->efx;
ecc910f5
SH
579 unsigned entries;
580
581 entries = rx_queue->ptr_mask + 1;
8e730c15 582 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
ecc910f5 583 entries * sizeof(efx_qword_t));
8e730c15
BH
584}
585
586void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587{
588 efx_oword_t rx_desc_ptr;
589 struct efx_nic *efx = rx_queue->efx;
590 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591 bool iscsi_digest_en = is_b0;
592
62776d03
BH
593 netif_dbg(efx, hw, efx->net_dev,
594 "RX queue %d ring in special buffers %d-%d\n",
ba1e8a35 595 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
62776d03 596 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
8e730c15 597
8e730c15
BH
598 /* Pin RX descriptor ring */
599 efx_init_special_buffer(efx, &rx_queue->rxd);
600
601 /* Push RX descriptor ring to card */
602 EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 FRF_AZ_RX_DESCQ_EVQ_ID,
ba1e8a35 607 efx_rx_queue_channel(rx_queue)->channel,
8e730c15 608 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
ba1e8a35
BH
609 FRF_AZ_RX_DESCQ_LABEL,
610 efx_rx_queue_index(rx_queue),
8e730c15
BH
611 FRF_AZ_RX_DESCQ_SIZE,
612 __ffs(rx_queue->rxd.entries),
613 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 /* For >=B0 this is scatter so disable */
615 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 FRF_AZ_RX_DESCQ_EN, 1);
617 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 618 efx_rx_queue_index(rx_queue));
8e730c15
BH
619}
620
621static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622{
623 struct efx_nic *efx = rx_queue->efx;
624 efx_oword_t rx_flush_descq;
625
8e730c15
BH
626 EFX_POPULATE_OWORD_2(rx_flush_descq,
627 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
ba1e8a35
BH
628 FRF_AZ_RX_FLUSH_DESCQ,
629 efx_rx_queue_index(rx_queue));
8e730c15
BH
630 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631}
632
633void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634{
635 efx_oword_t rx_desc_ptr;
636 struct efx_nic *efx = rx_queue->efx;
637
8e730c15
BH
638 /* Remove RX descriptor ring from card */
639 EFX_ZERO_OWORD(rx_desc_ptr);
640 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 641 efx_rx_queue_index(rx_queue));
8e730c15
BH
642
643 /* Unpin RX descriptor ring */
644 efx_fini_special_buffer(efx, &rx_queue->rxd);
645}
646
647/* Free buffers backing RX queue */
648void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649{
650 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651}
652
9f2cb71c
BH
653/**************************************************************************
654 *
655 * Flush handling
656 *
657 **************************************************************************/
658
659/* efx_nic_flush_queues() must be woken up when all flushes are completed,
660 * or more RX flushes can be kicked off.
661 */
662static bool efx_flush_wake(struct efx_nic *efx)
663{
664 /* Ensure that all updates are visible to efx_nic_flush_queues() */
665 smp_mb();
666
667 return (atomic_read(&efx->drain_pending) == 0 ||
668 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
669 && atomic_read(&efx->rxq_flush_pending) > 0));
670}
671
672/* Flush all the transmit queues, and continue flushing receive queues until
673 * they're all flushed. Wait for the DRAIN events to be recieved so that there
674 * are no more RX and TX events left on any channel. */
675int efx_nic_flush_queues(struct efx_nic *efx)
676{
677 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678 struct efx_channel *channel;
679 struct efx_rx_queue *rx_queue;
680 struct efx_tx_queue *tx_queue;
681 int rc = 0;
682
a606f432 683 efx->fc_disable++;
9f2cb71c
BH
684 efx->type->prepare_flush(efx);
685
686 efx_for_each_channel(channel, efx) {
687 efx_for_each_channel_tx_queue(tx_queue, channel) {
688 atomic_inc(&efx->drain_pending);
689 efx_flush_tx_queue(tx_queue);
690 }
691 efx_for_each_channel_rx_queue(rx_queue, channel) {
692 atomic_inc(&efx->drain_pending);
693 rx_queue->flush_pending = true;
694 atomic_inc(&efx->rxq_flush_pending);
695 }
696 }
697
698 while (timeout && atomic_read(&efx->drain_pending) > 0) {
cd2d5b52
BH
699 /* If SRIOV is enabled, then offload receive queue flushing to
700 * the firmware (though we will still have to poll for
701 * completion). If that fails, fall back to the old scheme.
702 */
703 if (efx_sriov_enabled(efx)) {
704 rc = efx_mcdi_flush_rxqs(efx);
705 if (!rc)
706 goto wait;
707 }
708
9f2cb71c
BH
709 /* The hardware supports four concurrent rx flushes, each of
710 * which may need to be retried if there is an outstanding
711 * descriptor fetch
712 */
713 efx_for_each_channel(channel, efx) {
714 efx_for_each_channel_rx_queue(rx_queue, channel) {
715 if (atomic_read(&efx->rxq_flush_outstanding) >=
716 EFX_RX_FLUSH_COUNT)
717 break;
718
719 if (rx_queue->flush_pending) {
720 rx_queue->flush_pending = false;
721 atomic_dec(&efx->rxq_flush_pending);
722 atomic_inc(&efx->rxq_flush_outstanding);
723 efx_flush_rx_queue(rx_queue);
724 }
725 }
726 }
727
cd2d5b52 728 wait:
9f2cb71c
BH
729 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
730 timeout);
731 }
732
733 if (atomic_read(&efx->drain_pending)) {
734 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
735 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
736 atomic_read(&efx->rxq_flush_outstanding),
737 atomic_read(&efx->rxq_flush_pending));
738 rc = -ETIMEDOUT;
739
740 atomic_set(&efx->drain_pending, 0);
741 atomic_set(&efx->rxq_flush_pending, 0);
742 atomic_set(&efx->rxq_flush_outstanding, 0);
743 }
744
a606f432
SH
745 efx->fc_disable--;
746
9f2cb71c
BH
747 return rc;
748}
749
8e730c15
BH
750/**************************************************************************
751 *
752 * Event queue processing
753 * Event queues are processed by per-channel tasklets.
754 *
755 **************************************************************************/
756
757/* Update a channel's event queue's read pointer (RPTR) register
758 *
759 * This writes the EVQ_RPTR_REG register for the specified channel's
760 * event queue.
8e730c15
BH
761 */
762void efx_nic_eventq_read_ack(struct efx_channel *channel)
763{
764 efx_dword_t reg;
765 struct efx_nic *efx = channel->efx;
766
d4fabcc8
BH
767 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
768 channel->eventq_read_ptr & channel->eventq_mask);
8e730c15
BH
769 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
770 channel->channel);
771}
772
773/* Use HW to insert a SW defined event */
90893000
BH
774void efx_generate_event(struct efx_nic *efx, unsigned int evq,
775 efx_qword_t *event)
8e730c15
BH
776{
777 efx_oword_t drv_ev_reg;
778
779 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
780 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
781 drv_ev_reg.u32[0] = event->u32[0];
782 drv_ev_reg.u32[1] = event->u32[1];
783 drv_ev_reg.u32[2] = 0;
784 drv_ev_reg.u32[3] = 0;
90893000
BH
785 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
786 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
8e730c15
BH
787}
788
4ef594eb
BH
789static void efx_magic_event(struct efx_channel *channel, u32 magic)
790{
791 efx_qword_t event;
792
793 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
794 FSE_AZ_EV_CODE_DRV_GEN_EV,
795 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
90893000 796 efx_generate_event(channel->efx, channel->channel, &event);
4ef594eb
BH
797}
798
8e730c15
BH
799/* Handle a transmit completion event
800 *
801 * The NIC batches TX completion events; the message we receive is of
802 * the form "complete all TX events up to this index".
803 */
fa236e18 804static int
8e730c15
BH
805efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
806{
807 unsigned int tx_ev_desc_ptr;
808 unsigned int tx_ev_q_label;
809 struct efx_tx_queue *tx_queue;
810 struct efx_nic *efx = channel->efx;
fa236e18 811 int tx_packets = 0;
8e730c15 812
9f2cb71c
BH
813 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
814 return 0;
815
8e730c15
BH
816 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
817 /* Transmit completion */
818 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
819 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
820 tx_queue = efx_channel_get_tx_queue(
821 channel, tx_ev_q_label % EFX_TXQ_TYPES);
fa236e18 822 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
ecc910f5 823 tx_queue->ptr_mask);
8e730c15
BH
824 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
825 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
826 /* Rewrite the FIFO write pointer */
827 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
828 tx_queue = efx_channel_get_tx_queue(
829 channel, tx_ev_q_label % EFX_TXQ_TYPES);
8e730c15 830
73ba7b68 831 netif_tx_lock(efx->net_dev);
8e730c15 832 efx_notify_tx_desc(tx_queue);
73ba7b68 833 netif_tx_unlock(efx->net_dev);
8e730c15
BH
834 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
835 EFX_WORKAROUND_10727(efx)) {
836 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
837 } else {
62776d03
BH
838 netif_err(efx, tx_err, efx->net_dev,
839 "channel %d unexpected TX event "
840 EFX_QWORD_FMT"\n", channel->channel,
841 EFX_QWORD_VAL(*event));
8e730c15 842 }
fa236e18
BH
843
844 return tx_packets;
8e730c15
BH
845}
846
847/* Detect errors included in the rx_evt_pkt_ok bit. */
db339569
BH
848static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
849 const efx_qword_t *event)
8e730c15 850{
ba1e8a35 851 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
852 struct efx_nic *efx = rx_queue->efx;
853 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
854 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
855 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
856 bool rx_ev_other_err, rx_ev_pause_frm;
857 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
858 unsigned rx_ev_pkt_type;
859
860 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
862 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
863 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
864 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
865 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
866 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
867 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
868 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
869 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
870 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
871 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
872 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
873 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
874 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
875
876 /* Every error apart from tobe_disc and pause_frm */
877 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
878 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
879 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
880
881 /* Count errors that are not in MAC stats. Ignore expected
882 * checksum errors during self-test. */
883 if (rx_ev_frm_trunc)
ba1e8a35 884 ++channel->n_rx_frm_trunc;
8e730c15 885 else if (rx_ev_tobe_disc)
ba1e8a35 886 ++channel->n_rx_tobe_disc;
8e730c15
BH
887 else if (!efx->loopback_selftest) {
888 if (rx_ev_ip_hdr_chksum_err)
ba1e8a35 889 ++channel->n_rx_ip_hdr_chksum_err;
8e730c15 890 else if (rx_ev_tcp_udp_chksum_err)
ba1e8a35 891 ++channel->n_rx_tcp_udp_chksum_err;
8e730c15
BH
892 }
893
8e730c15
BH
894 /* TOBE_DISC is expected on unicast mismatches; don't print out an
895 * error message. FRM_TRUNC indicates RXDP dropped the packet due
896 * to a FIFO overflow.
897 */
5f3f9d6c 898#ifdef DEBUG
62776d03
BH
899 if (rx_ev_other_err && net_ratelimit()) {
900 netif_dbg(efx, rx_err, efx->net_dev,
901 " RX queue %d unexpected RX event "
902 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
ba1e8a35 903 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
62776d03
BH
904 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
905 rx_ev_ip_hdr_chksum_err ?
906 " [IP_HDR_CHKSUM_ERR]" : "",
907 rx_ev_tcp_udp_chksum_err ?
908 " [TCP_UDP_CHKSUM_ERR]" : "",
909 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
910 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
911 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
912 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
913 rx_ev_pause_frm ? " [PAUSE]" : "");
8e730c15
BH
914 }
915#endif
db339569
BH
916
917 /* The frame must be discarded if any of these are true. */
918 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
919 rx_ev_tobe_disc | rx_ev_pause_frm) ?
920 EFX_RX_PKT_DISCARD : 0;
8e730c15
BH
921}
922
923/* Handle receive events that are not in-order. */
924static void
925efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
926{
927 struct efx_nic *efx = rx_queue->efx;
928 unsigned expected, dropped;
929
ecc910f5
SH
930 expected = rx_queue->removed_count & rx_queue->ptr_mask;
931 dropped = (index - expected) & rx_queue->ptr_mask;
62776d03
BH
932 netif_info(efx, rx_err, efx->net_dev,
933 "dropped %d events (index=%d expected=%d)\n",
934 dropped, index, expected);
8e730c15
BH
935
936 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
937 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
938}
939
940/* Handle a packet received event
941 *
942 * The NIC gives a "discard" flag if it's a unicast packet with the
943 * wrong destination address
944 * Also "is multicast" and "matches multicast filter" flags can be used to
945 * discard non-matching multicast packets.
946 */
947static void
948efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
949{
950 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
951 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
952 unsigned expected_ptr;
db339569
BH
953 bool rx_ev_pkt_ok;
954 u16 flags;
8e730c15 955 struct efx_rx_queue *rx_queue;
9f2cb71c
BH
956 struct efx_nic *efx = channel->efx;
957
958 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
959 return;
8e730c15
BH
960
961 /* Basic packet information */
962 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
963 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
964 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
965 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
966 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
967 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
968 channel->channel);
969
f7d12cdc 970 rx_queue = efx_channel_get_rx_queue(channel);
8e730c15
BH
971
972 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
ecc910f5 973 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
8e730c15
BH
974 if (unlikely(rx_ev_desc_ptr != expected_ptr))
975 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
976
977 if (likely(rx_ev_pkt_ok)) {
978 /* If packet is marked as OK and packet type is TCP/IP or
979 * UDP/IP, then we can rely on the hardware checksum.
980 */
db339569
BH
981 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
982 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
983 EFX_RX_PKT_CSUMMED : 0;
8e730c15 984 } else {
db339569 985 flags = efx_handle_rx_not_ok(rx_queue, event);
8e730c15
BH
986 }
987
988 /* Detect multicast packets that didn't match the filter */
989 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
990 if (rx_ev_mcast_pkt) {
991 unsigned int rx_ev_mcast_hash_match =
992 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
993
994 if (unlikely(!rx_ev_mcast_hash_match)) {
995 ++channel->n_rx_mcast_mismatch;
db339569 996 flags |= EFX_RX_PKT_DISCARD;
8e730c15
BH
997 }
998 }
999
1000 channel->irq_mod_score += 2;
1001
1002 /* Handle received packet */
db339569 1003 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
8e730c15
BH
1004}
1005
9f2cb71c
BH
1006/* If this flush done event corresponds to a &struct efx_tx_queue, then
1007 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1008 * of all transmit completions.
1009 */
1010static void
1011efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1012{
1013 struct efx_tx_queue *tx_queue;
1014 int qid;
1015
1016 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1017 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1018 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1019 qid % EFX_TXQ_TYPES);
1020
1021 efx_magic_event(tx_queue->channel,
1022 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1023 }
1024}
1025
1026/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1027 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1028 * the RX queue back to the mask of RX queues in need of flushing.
1029 */
1030static void
1031efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1032{
1033 struct efx_channel *channel;
1034 struct efx_rx_queue *rx_queue;
1035 int qid;
1036 bool failed;
1037
1038 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1039 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1040 if (qid >= efx->n_channels)
1041 return;
1042 channel = efx_get_channel(efx, qid);
1043 if (!efx_channel_has_rx_queue(channel))
1044 return;
1045 rx_queue = efx_channel_get_rx_queue(channel);
1046
1047 if (failed) {
1048 netif_info(efx, hw, efx->net_dev,
1049 "RXQ %d flush retry\n", qid);
1050 rx_queue->flush_pending = true;
1051 atomic_inc(&efx->rxq_flush_pending);
1052 } else {
1053 efx_magic_event(efx_rx_queue_channel(rx_queue),
1054 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1055 }
1056 atomic_dec(&efx->rxq_flush_outstanding);
1057 if (efx_flush_wake(efx))
1058 wake_up(&efx->flush_wq);
1059}
1060
1061static void
1062efx_handle_drain_event(struct efx_channel *channel)
1063{
1064 struct efx_nic *efx = channel->efx;
1065
1066 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1067 atomic_dec(&efx->drain_pending);
1068 if (efx_flush_wake(efx))
1069 wake_up(&efx->flush_wq);
1070}
1071
90d683af
SH
1072static void
1073efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1074{
1075 struct efx_nic *efx = channel->efx;
2ae75dac
BH
1076 struct efx_rx_queue *rx_queue =
1077 efx_channel_has_rx_queue(channel) ?
1078 efx_channel_get_rx_queue(channel) : NULL;
9f2cb71c 1079 unsigned magic, code;
90d683af 1080
4ef594eb 1081 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
9f2cb71c 1082 code = _EFX_CHANNEL_MAGIC_CODE(magic);
4ef594eb 1083
9f2cb71c 1084 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
dd40781e 1085 channel->event_test_cpu = raw_smp_processor_id();
9f2cb71c 1086 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
90d683af
SH
1087 /* The queue must be empty, so we won't receive any rx
1088 * events, so efx_process_channel() won't refill the
1089 * queue. Refill it here */
2ae75dac 1090 efx_fast_push_rx_descriptors(rx_queue);
9f2cb71c
BH
1091 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1092 rx_queue->enabled = false;
1093 efx_handle_drain_event(channel);
1094 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1095 efx_handle_drain_event(channel);
1096 } else {
62776d03
BH
1097 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1098 "generated event "EFX_QWORD_FMT"\n",
1099 channel->channel, EFX_QWORD_VAL(*event));
9f2cb71c 1100 }
90d683af
SH
1101}
1102
8e730c15
BH
1103static void
1104efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1105{
1106 struct efx_nic *efx = channel->efx;
1107 unsigned int ev_sub_code;
1108 unsigned int ev_sub_data;
1109
1110 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1111 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1112
1113 switch (ev_sub_code) {
1114 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
62776d03
BH
1115 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1116 channel->channel, ev_sub_data);
9f2cb71c 1117 efx_handle_tx_flush_done(efx, event);
cd2d5b52 1118 efx_sriov_tx_flush_done(efx, event);
8e730c15
BH
1119 break;
1120 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
62776d03
BH
1121 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1122 channel->channel, ev_sub_data);
9f2cb71c 1123 efx_handle_rx_flush_done(efx, event);
cd2d5b52 1124 efx_sriov_rx_flush_done(efx, event);
8e730c15
BH
1125 break;
1126 case FSE_AZ_EVQ_INIT_DONE_EV:
62776d03
BH
1127 netif_dbg(efx, hw, efx->net_dev,
1128 "channel %d EVQ %d initialised\n",
1129 channel->channel, ev_sub_data);
8e730c15
BH
1130 break;
1131 case FSE_AZ_SRM_UPD_DONE_EV:
62776d03
BH
1132 netif_vdbg(efx, hw, efx->net_dev,
1133 "channel %d SRAM update done\n", channel->channel);
8e730c15
BH
1134 break;
1135 case FSE_AZ_WAKE_UP_EV:
62776d03
BH
1136 netif_vdbg(efx, hw, efx->net_dev,
1137 "channel %d RXQ %d wakeup event\n",
1138 channel->channel, ev_sub_data);
8e730c15
BH
1139 break;
1140 case FSE_AZ_TIMER_EV:
62776d03
BH
1141 netif_vdbg(efx, hw, efx->net_dev,
1142 "channel %d RX queue %d timer expired\n",
1143 channel->channel, ev_sub_data);
8e730c15
BH
1144 break;
1145 case FSE_AA_RX_RECOVER_EV:
62776d03
BH
1146 netif_err(efx, rx_err, efx->net_dev,
1147 "channel %d seen DRIVER RX_RESET event. "
8e730c15
BH
1148 "Resetting.\n", channel->channel);
1149 atomic_inc(&efx->rx_reset);
1150 efx_schedule_reset(efx,
1151 EFX_WORKAROUND_6555(efx) ?
1152 RESET_TYPE_RX_RECOVERY :
1153 RESET_TYPE_DISABLE);
1154 break;
1155 case FSE_BZ_RX_DSC_ERROR_EV:
cd2d5b52
BH
1156 if (ev_sub_data < EFX_VI_BASE) {
1157 netif_err(efx, rx_err, efx->net_dev,
1158 "RX DMA Q %d reports descriptor fetch error."
1159 " RX Q %d is disabled.\n", ev_sub_data,
1160 ev_sub_data);
1161 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1162 } else
1163 efx_sriov_desc_fetch_err(efx, ev_sub_data);
8e730c15
BH
1164 break;
1165 case FSE_BZ_TX_DSC_ERROR_EV:
cd2d5b52
BH
1166 if (ev_sub_data < EFX_VI_BASE) {
1167 netif_err(efx, tx_err, efx->net_dev,
1168 "TX DMA Q %d reports descriptor fetch error."
1169 " TX Q %d is disabled.\n", ev_sub_data,
1170 ev_sub_data);
1171 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1172 } else
1173 efx_sriov_desc_fetch_err(efx, ev_sub_data);
8e730c15
BH
1174 break;
1175 default:
62776d03
BH
1176 netif_vdbg(efx, hw, efx->net_dev,
1177 "channel %d unknown driver event code %d "
1178 "data %04x\n", channel->channel, ev_sub_code,
1179 ev_sub_data);
8e730c15
BH
1180 break;
1181 }
1182}
1183
fa236e18 1184int efx_nic_process_eventq(struct efx_channel *channel, int budget)
8e730c15 1185{
ecc910f5 1186 struct efx_nic *efx = channel->efx;
8e730c15
BH
1187 unsigned int read_ptr;
1188 efx_qword_t event, *p_event;
1189 int ev_code;
fa236e18
BH
1190 int tx_packets = 0;
1191 int spent = 0;
8e730c15
BH
1192
1193 read_ptr = channel->eventq_read_ptr;
1194
fa236e18 1195 for (;;) {
8e730c15
BH
1196 p_event = efx_event(channel, read_ptr);
1197 event = *p_event;
1198
1199 if (!efx_event_present(&event))
1200 /* End of events */
1201 break;
1202
62776d03
BH
1203 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1204 "channel %d event is "EFX_QWORD_FMT"\n",
1205 channel->channel, EFX_QWORD_VAL(event));
8e730c15
BH
1206
1207 /* Clear this event by marking it all ones */
1208 EFX_SET_QWORD(*p_event);
1209
d4fabcc8 1210 ++read_ptr;
fa236e18 1211
8e730c15
BH
1212 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1213
1214 switch (ev_code) {
1215 case FSE_AZ_EV_CODE_RX_EV:
1216 efx_handle_rx_event(channel, &event);
fa236e18
BH
1217 if (++spent == budget)
1218 goto out;
8e730c15
BH
1219 break;
1220 case FSE_AZ_EV_CODE_TX_EV:
fa236e18 1221 tx_packets += efx_handle_tx_event(channel, &event);
ecc910f5 1222 if (tx_packets > efx->txq_entries) {
fa236e18
BH
1223 spent = budget;
1224 goto out;
1225 }
8e730c15
BH
1226 break;
1227 case FSE_AZ_EV_CODE_DRV_GEN_EV:
90d683af 1228 efx_handle_generated_event(channel, &event);
8e730c15 1229 break;
8e730c15
BH
1230 case FSE_AZ_EV_CODE_DRIVER_EV:
1231 efx_handle_driver_event(channel, &event);
1232 break;
cd2d5b52
BH
1233 case FSE_CZ_EV_CODE_USER_EV:
1234 efx_sriov_event(channel, &event);
1235 break;
8880f4ec
BH
1236 case FSE_CZ_EV_CODE_MCDI_EV:
1237 efx_mcdi_process_event(channel, &event);
1238 break;
40641ed9
BH
1239 case FSE_AZ_EV_CODE_GLOBAL_EV:
1240 if (efx->type->handle_global_event &&
1241 efx->type->handle_global_event(channel, &event))
1242 break;
1243 /* else fall through */
8e730c15 1244 default:
62776d03
BH
1245 netif_err(channel->efx, hw, channel->efx->net_dev,
1246 "channel %d unknown event type %d (data "
1247 EFX_QWORD_FMT ")\n", channel->channel,
1248 ev_code, EFX_QWORD_VAL(event));
8e730c15 1249 }
fa236e18 1250 }
8e730c15 1251
fa236e18 1252out:
8e730c15 1253 channel->eventq_read_ptr = read_ptr;
fa236e18 1254 return spent;
8e730c15
BH
1255}
1256
d4fabcc8
BH
1257/* Check whether an event is present in the eventq at the current
1258 * read pointer. Only useful for self-test.
1259 */
1260bool efx_nic_event_present(struct efx_channel *channel)
1261{
1262 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1263}
8e730c15
BH
1264
1265/* Allocate buffer table entries for event queue */
1266int efx_nic_probe_eventq(struct efx_channel *channel)
1267{
1268 struct efx_nic *efx = channel->efx;
ecc910f5
SH
1269 unsigned entries;
1270
1271 entries = channel->eventq_mask + 1;
8e730c15 1272 return efx_alloc_special_buffer(efx, &channel->eventq,
ecc910f5 1273 entries * sizeof(efx_qword_t));
8e730c15
BH
1274}
1275
1276void efx_nic_init_eventq(struct efx_channel *channel)
1277{
8880f4ec 1278 efx_oword_t reg;
8e730c15
BH
1279 struct efx_nic *efx = channel->efx;
1280
62776d03
BH
1281 netif_dbg(efx, hw, efx->net_dev,
1282 "channel %d event queue in special buffers %d-%d\n",
1283 channel->channel, channel->eventq.index,
1284 channel->eventq.index + channel->eventq.entries - 1);
8e730c15 1285
8880f4ec
BH
1286 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1287 EFX_POPULATE_OWORD_3(reg,
1288 FRF_CZ_TIMER_Q_EN, 1,
1289 FRF_CZ_HOST_NOTIFY_MODE, 0,
1290 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1291 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1292 }
1293
8e730c15
BH
1294 /* Pin event queue buffer */
1295 efx_init_special_buffer(efx, &channel->eventq);
1296
1297 /* Fill event queue with all ones (i.e. empty events) */
1298 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1299
1300 /* Push event queue to card */
8880f4ec 1301 EFX_POPULATE_OWORD_3(reg,
8e730c15
BH
1302 FRF_AZ_EVQ_EN, 1,
1303 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1304 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
8880f4ec 1305 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15
BH
1306 channel->channel);
1307
1308 efx->type->push_irq_moderation(channel);
1309}
1310
1311void efx_nic_fini_eventq(struct efx_channel *channel)
1312{
8880f4ec 1313 efx_oword_t reg;
8e730c15
BH
1314 struct efx_nic *efx = channel->efx;
1315
1316 /* Remove event queue from card */
8880f4ec
BH
1317 EFX_ZERO_OWORD(reg);
1318 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15 1319 channel->channel);
8880f4ec
BH
1320 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1321 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
8e730c15
BH
1322
1323 /* Unpin event queue */
1324 efx_fini_special_buffer(efx, &channel->eventq);
1325}
1326
1327/* Free buffers backing event queue */
1328void efx_nic_remove_eventq(struct efx_channel *channel)
1329{
1330 efx_free_special_buffer(channel->efx, &channel->eventq);
1331}
1332
1333
eee6f6a9 1334void efx_nic_event_test_start(struct efx_channel *channel)
8e730c15 1335{
dd40781e 1336 channel->event_test_cpu = -1;
eee6f6a9 1337 smp_wmb();
4ef594eb 1338 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
90d683af
SH
1339}
1340
2ae75dac 1341void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
90d683af 1342{
2ae75dac
BH
1343 efx_magic_event(efx_rx_queue_channel(rx_queue),
1344 EFX_CHANNEL_MAGIC_FILL(rx_queue));
8e730c15
BH
1345}
1346
8e730c15
BH
1347/**************************************************************************
1348 *
1349 * Hardware interrupts
1350 * The hardware interrupt handler does very little work; all the event
1351 * queue processing is carried out by per-channel tasklets.
1352 *
1353 **************************************************************************/
1354
1355/* Enable/disable/generate interrupts */
1356static inline void efx_nic_interrupts(struct efx_nic *efx,
1357 bool enabled, bool force)
1358{
1359 efx_oword_t int_en_reg_ker;
8880f4ec
BH
1360
1361 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1646a6f3 1362 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
8e730c15
BH
1363 FRF_AZ_KER_INT_KER, force,
1364 FRF_AZ_DRV_INT_EN_KER, enabled);
1365 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1366}
1367
1368void efx_nic_enable_interrupts(struct efx_nic *efx)
1369{
8e730c15
BH
1370 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1371 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1372
8e730c15 1373 efx_nic_interrupts(efx, true, false);
8e730c15
BH
1374}
1375
1376void efx_nic_disable_interrupts(struct efx_nic *efx)
1377{
1378 /* Disable interrupts */
1379 efx_nic_interrupts(efx, false, false);
1380}
1381
1382/* Generate a test interrupt
1383 * Interrupt must already have been enabled, otherwise nasty things
1384 * may happen.
1385 */
eee6f6a9 1386void efx_nic_irq_test_start(struct efx_nic *efx)
8e730c15 1387{
eee6f6a9
BH
1388 efx->last_irq_cpu = -1;
1389 smp_wmb();
8e730c15
BH
1390 efx_nic_interrupts(efx, true, true);
1391}
1392
1393/* Process a fatal interrupt
1394 * Disable bus mastering ASAP and schedule a reset
1395 */
1396irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1397{
1398 struct falcon_nic_data *nic_data = efx->nic_data;
1399 efx_oword_t *int_ker = efx->irq_status.addr;
1400 efx_oword_t fatal_intr;
1401 int error, mem_perr;
1402
1403 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1404 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1405
62776d03
BH
1406 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1407 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1408 EFX_OWORD_VAL(fatal_intr),
1409 error ? "disabling bus mastering" : "no recognised error");
8e730c15
BH
1410
1411 /* If this is a memory parity error dump which blocks are offending */
97e1eaa0
SH
1412 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1413 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
8e730c15
BH
1414 if (mem_perr) {
1415 efx_oword_t reg;
1416 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
62776d03
BH
1417 netif_err(efx, hw, efx->net_dev,
1418 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1419 EFX_OWORD_VAL(reg));
8e730c15
BH
1420 }
1421
1422 /* Disable both devices */
1423 pci_clear_master(efx->pci_dev);
1424 if (efx_nic_is_dual_func(efx))
1425 pci_clear_master(nic_data->pci_dev2);
1426 efx_nic_disable_interrupts(efx);
1427
1428 /* Count errors and reset or disable the NIC accordingly */
1429 if (efx->int_error_count == 0 ||
1430 time_after(jiffies, efx->int_error_expire)) {
1431 efx->int_error_count = 0;
1432 efx->int_error_expire =
1433 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1434 }
1435 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
62776d03
BH
1436 netif_err(efx, hw, efx->net_dev,
1437 "SYSTEM ERROR - reset scheduled\n");
8e730c15
BH
1438 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1439 } else {
62776d03
BH
1440 netif_err(efx, hw, efx->net_dev,
1441 "SYSTEM ERROR - max number of errors seen."
1442 "NIC will be disabled\n");
8e730c15
BH
1443 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1444 }
63695459 1445
8e730c15
BH
1446 return IRQ_HANDLED;
1447}
1448
1449/* Handle a legacy interrupt
1450 * Acknowledges the interrupt and schedule event queue processing.
1451 */
1452static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1453{
1454 struct efx_nic *efx = dev_id;
1455 efx_oword_t *int_ker = efx->irq_status.addr;
1456 irqreturn_t result = IRQ_NONE;
1457 struct efx_channel *channel;
1458 efx_dword_t reg;
1459 u32 queues;
1460 int syserr;
1461
94dec6a2
BH
1462 /* Could this be ours? If interrupts are disabled then the
1463 * channel state may not be valid.
1464 */
1465 if (!efx->legacy_irq_enabled)
1466 return result;
1467
8e730c15
BH
1468 /* Read the ISR which also ACKs the interrupts */
1469 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1470 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1471
1646a6f3
BH
1472 /* Handle non-event-queue sources */
1473 if (queues & (1U << efx->irq_level)) {
63695459
SH
1474 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1475 if (unlikely(syserr))
1476 return efx_nic_fatal_interrupt(efx);
1646a6f3 1477 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1478 }
8e730c15 1479
8880f4ec
BH
1480 if (queues != 0) {
1481 if (EFX_WORKAROUND_15783(efx))
1482 efx->irq_zero_count = 0;
1483
1484 /* Schedule processing of any interrupting queues */
1485 efx_for_each_channel(channel, efx) {
1486 if (queues & 1)
1646a6f3 1487 efx_schedule_channel_irq(channel);
8880f4ec 1488 queues >>= 1;
8e730c15 1489 }
8880f4ec
BH
1490 result = IRQ_HANDLED;
1491
41b7e4c3 1492 } else if (EFX_WORKAROUND_15783(efx)) {
8880f4ec
BH
1493 efx_qword_t *event;
1494
41b7e4c3
SH
1495 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1496 * because this might be a shared interrupt. */
1497 if (efx->irq_zero_count++ == 0)
1498 result = IRQ_HANDLED;
1499
1500 /* Ensure we schedule or rearm all event queues */
8880f4ec
BH
1501 efx_for_each_channel(channel, efx) {
1502 event = efx_event(channel, channel->eventq_read_ptr);
1503 if (efx_event_present(event))
1646a6f3 1504 efx_schedule_channel_irq(channel);
41b7e4c3
SH
1505 else
1506 efx_nic_eventq_read_ack(channel);
8880f4ec 1507 }
8e730c15
BH
1508 }
1509
1646a6f3 1510 if (result == IRQ_HANDLED)
62776d03
BH
1511 netif_vdbg(efx, intr, efx->net_dev,
1512 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1513 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
8e730c15
BH
1514
1515 return result;
1516}
1517
1518/* Handle an MSI interrupt
1519 *
1520 * Handle an MSI hardware interrupt. This routine schedules event
1521 * queue processing. No interrupt acknowledgement cycle is necessary.
1522 * Also, we never need to check that the interrupt is for us, since
1523 * MSI interrupts cannot be shared.
1524 */
1525static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1526{
4642610c 1527 struct efx_channel *channel = *(struct efx_channel **)dev_id;
8e730c15
BH
1528 struct efx_nic *efx = channel->efx;
1529 efx_oword_t *int_ker = efx->irq_status.addr;
1530 int syserr;
1531
62776d03
BH
1532 netif_vdbg(efx, intr, efx->net_dev,
1533 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1534 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
8e730c15 1535
1646a6f3
BH
1536 /* Handle non-event-queue sources */
1537 if (channel->channel == efx->irq_level) {
63695459
SH
1538 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539 if (unlikely(syserr))
1540 return efx_nic_fatal_interrupt(efx);
1646a6f3 1541 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1542 }
8e730c15
BH
1543
1544 /* Schedule processing of the channel */
1646a6f3 1545 efx_schedule_channel_irq(channel);
8e730c15
BH
1546
1547 return IRQ_HANDLED;
1548}
1549
1550
1551/* Setup RSS indirection table.
1552 * This maps from the hash value of the packet to RXQ
1553 */
765c9f46 1554void efx_nic_push_rx_indir_table(struct efx_nic *efx)
8e730c15 1555{
765c9f46 1556 size_t i = 0;
8e730c15
BH
1557 efx_dword_t dword;
1558
1559 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1560 return;
1561
765c9f46
BH
1562 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1563 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1564
1565 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
8e730c15 1566 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
765c9f46
BH
1567 efx->rx_indir_table[i]);
1568 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
8e730c15
BH
1569 }
1570}
1571
1572/* Hook interrupt handler(s)
1573 * Try MSI and then legacy interrupts.
1574 */
1575int efx_nic_init_interrupt(struct efx_nic *efx)
1576{
1577 struct efx_channel *channel;
1578 int rc;
1579
1580 if (!EFX_INT_MODE_USE_MSI(efx)) {
1581 irq_handler_t handler;
1582 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1583 handler = efx_legacy_interrupt;
1584 else
1585 handler = falcon_legacy_interrupt_a1;
1586
1587 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1588 efx->name, efx);
1589 if (rc) {
62776d03
BH
1590 netif_err(efx, drv, efx->net_dev,
1591 "failed to hook legacy IRQ %d\n",
1592 efx->pci_dev->irq);
8e730c15
BH
1593 goto fail1;
1594 }
1595 return 0;
1596 }
1597
1598 /* Hook MSI or MSI-X interrupt */
1599 efx_for_each_channel(channel, efx) {
1600 rc = request_irq(channel->irq, efx_msi_interrupt,
1601 IRQF_PROBE_SHARED, /* Not shared */
4642610c
BH
1602 efx->channel_name[channel->channel],
1603 &efx->channel[channel->channel]);
8e730c15 1604 if (rc) {
62776d03
BH
1605 netif_err(efx, drv, efx->net_dev,
1606 "failed to hook IRQ %d\n", channel->irq);
8e730c15
BH
1607 goto fail2;
1608 }
1609 }
1610
1611 return 0;
1612
1613 fail2:
1614 efx_for_each_channel(channel, efx)
4642610c 1615 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1616 fail1:
1617 return rc;
1618}
1619
1620void efx_nic_fini_interrupt(struct efx_nic *efx)
1621{
1622 struct efx_channel *channel;
1623 efx_oword_t reg;
1624
1625 /* Disable MSI/MSI-X interrupts */
1626 efx_for_each_channel(channel, efx) {
1627 if (channel->irq)
4642610c 1628 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1629 }
1630
1631 /* ACK legacy interrupt */
1632 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1633 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1634 else
1635 falcon_irq_ack_a1(efx);
1636
1637 /* Disable legacy interrupt */
1638 if (efx->legacy_irq)
1639 free_irq(efx->legacy_irq, efx);
1640}
1641
cd2d5b52
BH
1642/* Looks at available SRAM resources and works out how many queues we
1643 * can support, and where things like descriptor caches should live.
1644 *
1645 * SRAM is split up as follows:
1646 * 0 buftbl entries for channels
1647 * efx->vf_buftbl_base buftbl entries for SR-IOV
1648 * efx->rx_dc_base RX descriptor caches
1649 * efx->tx_dc_base TX descriptor caches
1650 */
28e47c49
BH
1651void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1652{
1653 unsigned vi_count, buftbl_min;
1654
1655 /* Account for the buffer table entries backing the datapath channels
1656 * and the descriptor caches for those channels.
1657 */
1658 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1659 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1660 efx->n_channels * EFX_MAX_EVQ_SIZE)
1661 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1662 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1663
cd2d5b52
BH
1664#ifdef CONFIG_SFC_SRIOV
1665 if (efx_sriov_wanted(efx)) {
1666 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1667
1668 efx->vf_buftbl_base = buftbl_min;
1669
1670 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1671 vi_count = max(vi_count, EFX_VI_BASE);
1672 buftbl_free = (sram_lim_qw - buftbl_min -
1673 vi_count * vi_dc_entries);
1674
1675 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1676 efx_vf_size(efx));
1677 vf_limit = min(buftbl_free / entries_per_vf,
1678 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1679
1680 if (efx->vf_count > vf_limit) {
1681 netif_err(efx, probe, efx->net_dev,
1682 "Reducing VF count from from %d to %d\n",
1683 efx->vf_count, vf_limit);
1684 efx->vf_count = vf_limit;
1685 }
1686 vi_count += efx->vf_count * efx_vf_size(efx);
1687 }
1688#endif
1689
28e47c49
BH
1690 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1691 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1692}
1693
8e730c15
BH
1694u32 efx_nic_fpga_ver(struct efx_nic *efx)
1695{
1696 efx_oword_t altera_build;
1697 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1698 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1699}
1700
1701void efx_nic_init_common(struct efx_nic *efx)
1702{
1703 efx_oword_t temp;
1704
1705 /* Set positions of descriptor caches in SRAM. */
28e47c49 1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
8e730c15 1707 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
28e47c49 1708 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
8e730c15
BH
1709 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1710
1711 /* Set TX descriptor cache size. */
1712 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1714 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1715
1716 /* Set RX descriptor cache size. Set low watermark to size-8, as
1717 * this allows most efficient prefetching.
1718 */
1719 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1720 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1721 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1722 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1723 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1724
1725 /* Program INT_KER address */
1726 EFX_POPULATE_OWORD_2(temp,
1727 FRF_AZ_NORM_INT_VEC_DIS_KER,
1728 EFX_INT_MODE_USE_MSI(efx),
1729 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1730 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1731
63695459
SH
1732 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1733 /* Use an interrupt level unused by event queues */
1646a6f3 1734 efx->irq_level = 0x1f;
63695459
SH
1735 else
1736 /* Use a valid MSI-X vector */
1646a6f3 1737 efx->irq_level = 0;
63695459 1738
8e730c15
BH
1739 /* Enable all the genuinely fatal interrupts. (They are still
1740 * masked by the overall interrupt mask, controlled by
1741 * falcon_interrupts()).
1742 *
1743 * Note: All other fatal interrupts are enabled
1744 */
1745 EFX_POPULATE_OWORD_3(temp,
1746 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1747 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1748 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
b17424b0
SH
1749 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1750 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
8e730c15
BH
1751 EFX_INVERT_OWORD(temp);
1752 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1753
765c9f46 1754 efx_nic_push_rx_indir_table(efx);
8e730c15
BH
1755
1756 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1757 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1758 */
1759 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1760 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1762 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
cd38557d 1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
8e730c15
BH
1764 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1765 /* Enable SW_EV to inherit in char driver - assume harmless here */
1766 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1767 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1768 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
286d47ba
BH
1769 /* Disable hardware watchdog which can misfire */
1770 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
8e730c15
BH
1771 /* Squash TX of packets of 16 bytes or less */
1772 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1773 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1774 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
94b274bf
BH
1775
1776 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1777 EFX_POPULATE_OWORD_4(temp,
1778 /* Default values */
1779 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1780 FRF_BZ_TX_PACE_SB_AF, 0xb,
1781 FRF_BZ_TX_PACE_FB_BASE, 0,
1782 /* Allow large pace values in the
1783 * fast bin. */
1784 FRF_BZ_TX_PACE_BIN_TH,
1785 FFE_BZ_TX_PACE_RESERVED);
1786 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1787 }
8e730c15 1788}
5b98c1bf
BH
1789
1790/* Register dump */
1791
1792#define REGISTER_REVISION_A 1
1793#define REGISTER_REVISION_B 2
1794#define REGISTER_REVISION_C 3
1795#define REGISTER_REVISION_Z 3 /* latest revision */
1796
1797struct efx_nic_reg {
1798 u32 offset:24;
1799 u32 min_revision:2, max_revision:2;
1800};
1801
1802#define REGISTER(name, min_rev, max_rev) { \
1803 FR_ ## min_rev ## max_rev ## _ ## name, \
1804 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1805}
1806#define REGISTER_AA(name) REGISTER(name, A, A)
1807#define REGISTER_AB(name) REGISTER(name, A, B)
1808#define REGISTER_AZ(name) REGISTER(name, A, Z)
1809#define REGISTER_BB(name) REGISTER(name, B, B)
1810#define REGISTER_BZ(name) REGISTER(name, B, Z)
1811#define REGISTER_CZ(name) REGISTER(name, C, Z)
1812
1813static const struct efx_nic_reg efx_nic_regs[] = {
1814 REGISTER_AZ(ADR_REGION),
1815 REGISTER_AZ(INT_EN_KER),
1816 REGISTER_BZ(INT_EN_CHAR),
1817 REGISTER_AZ(INT_ADR_KER),
1818 REGISTER_BZ(INT_ADR_CHAR),
1819 /* INT_ACK_KER is WO */
1820 /* INT_ISR0 is RC */
1821 REGISTER_AZ(HW_INIT),
1822 REGISTER_CZ(USR_EV_CFG),
1823 REGISTER_AB(EE_SPI_HCMD),
1824 REGISTER_AB(EE_SPI_HADR),
1825 REGISTER_AB(EE_SPI_HDATA),
1826 REGISTER_AB(EE_BASE_PAGE),
1827 REGISTER_AB(EE_VPD_CFG0),
1828 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1829 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1830 /* PCIE_CORE_INDIRECT is indirect */
1831 REGISTER_AB(NIC_STAT),
1832 REGISTER_AB(GPIO_CTL),
1833 REGISTER_AB(GLB_CTL),
1834 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1835 REGISTER_BZ(DP_CTRL),
1836 REGISTER_AZ(MEM_STAT),
1837 REGISTER_AZ(CS_DEBUG),
1838 REGISTER_AZ(ALTERA_BUILD),
1839 REGISTER_AZ(CSR_SPARE),
1840 REGISTER_AB(PCIE_SD_CTL0123),
1841 REGISTER_AB(PCIE_SD_CTL45),
1842 REGISTER_AB(PCIE_PCS_CTL_STAT),
1843 /* DEBUG_DATA_OUT is not used */
1844 /* DRV_EV is WO */
1845 REGISTER_AZ(EVQ_CTL),
1846 REGISTER_AZ(EVQ_CNT1),
1847 REGISTER_AZ(EVQ_CNT2),
1848 REGISTER_AZ(BUF_TBL_CFG),
1849 REGISTER_AZ(SRM_RX_DC_CFG),
1850 REGISTER_AZ(SRM_TX_DC_CFG),
1851 REGISTER_AZ(SRM_CFG),
1852 /* BUF_TBL_UPD is WO */
1853 REGISTER_AZ(SRM_UPD_EVQ),
1854 REGISTER_AZ(SRAM_PARITY),
1855 REGISTER_AZ(RX_CFG),
1856 REGISTER_BZ(RX_FILTER_CTL),
1857 /* RX_FLUSH_DESCQ is WO */
1858 REGISTER_AZ(RX_DC_CFG),
1859 REGISTER_AZ(RX_DC_PF_WM),
1860 REGISTER_BZ(RX_RSS_TKEY),
1861 /* RX_NODESC_DROP is RC */
1862 REGISTER_AA(RX_SELF_RST),
1863 /* RX_DEBUG, RX_PUSH_DROP are not used */
1864 REGISTER_CZ(RX_RSS_IPV6_REG1),
1865 REGISTER_CZ(RX_RSS_IPV6_REG2),
1866 REGISTER_CZ(RX_RSS_IPV6_REG3),
1867 /* TX_FLUSH_DESCQ is WO */
1868 REGISTER_AZ(TX_DC_CFG),
1869 REGISTER_AA(TX_CHKSM_CFG),
1870 REGISTER_AZ(TX_CFG),
1871 /* TX_PUSH_DROP is not used */
1872 REGISTER_AZ(TX_RESERVED),
1873 REGISTER_BZ(TX_PACE),
1874 /* TX_PACE_DROP_QID is RC */
1875 REGISTER_BB(TX_VLAN),
1876 REGISTER_BZ(TX_IPFIL_PORTEN),
1877 REGISTER_AB(MD_TXD),
1878 REGISTER_AB(MD_RXD),
1879 REGISTER_AB(MD_CS),
1880 REGISTER_AB(MD_PHY_ADR),
1881 REGISTER_AB(MD_ID),
1882 /* MD_STAT is RC */
1883 REGISTER_AB(MAC_STAT_DMA),
1884 REGISTER_AB(MAC_CTRL),
1885 REGISTER_BB(GEN_MODE),
1886 REGISTER_AB(MAC_MC_HASH_REG0),
1887 REGISTER_AB(MAC_MC_HASH_REG1),
1888 REGISTER_AB(GM_CFG1),
1889 REGISTER_AB(GM_CFG2),
1890 /* GM_IPG and GM_HD are not used */
1891 REGISTER_AB(GM_MAX_FLEN),
1892 /* GM_TEST is not used */
1893 REGISTER_AB(GM_ADR1),
1894 REGISTER_AB(GM_ADR2),
1895 REGISTER_AB(GMF_CFG0),
1896 REGISTER_AB(GMF_CFG1),
1897 REGISTER_AB(GMF_CFG2),
1898 REGISTER_AB(GMF_CFG3),
1899 REGISTER_AB(GMF_CFG4),
1900 REGISTER_AB(GMF_CFG5),
1901 REGISTER_BB(TX_SRC_MAC_CTL),
1902 REGISTER_AB(XM_ADR_LO),
1903 REGISTER_AB(XM_ADR_HI),
1904 REGISTER_AB(XM_GLB_CFG),
1905 REGISTER_AB(XM_TX_CFG),
1906 REGISTER_AB(XM_RX_CFG),
1907 REGISTER_AB(XM_MGT_INT_MASK),
1908 REGISTER_AB(XM_FC),
1909 REGISTER_AB(XM_PAUSE_TIME),
1910 REGISTER_AB(XM_TX_PARAM),
1911 REGISTER_AB(XM_RX_PARAM),
1912 /* XM_MGT_INT_MSK (note no 'A') is RC */
1913 REGISTER_AB(XX_PWR_RST),
1914 REGISTER_AB(XX_SD_CTL),
1915 REGISTER_AB(XX_TXDRV_CTL),
1916 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1917 /* XX_CORE_STAT is partly RC */
1918};
1919
1920struct efx_nic_reg_table {
1921 u32 offset:24;
1922 u32 min_revision:2, max_revision:2;
1923 u32 step:6, rows:21;
1924};
1925
1926#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1927 offset, \
1928 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1929 step, rows \
1930}
9c636baf 1931#define REGISTER_TABLE(name, min_rev, max_rev) \
5b98c1bf
BH
1932 REGISTER_TABLE_DIMENSIONS( \
1933 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1934 min_rev, max_rev, \
1935 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1936 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1937#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1938#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1939#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1940#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1941#define REGISTER_TABLE_BB_CZ(name) \
1942 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1943 FR_BZ_ ## name ## _STEP, \
1944 FR_BB_ ## name ## _ROWS), \
1945 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1946 FR_BZ_ ## name ## _STEP, \
1947 FR_CZ_ ## name ## _ROWS)
1948#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1949
1950static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1951 /* DRIVER is not used */
1952 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1953 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1954 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1955 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1956 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1957 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1958 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1959 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1960 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
75abc51c 1961 /* We can't reasonably read all of the buffer table (up to 8MB!).
5b98c1bf
BH
1962 * However this driver will only use a few entries. Reading
1963 * 1K entries allows for some expansion of queue count and
1964 * size before we need to change the version. */
1965 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1966 A, A, 8, 1024),
1967 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1968 B, Z, 8, 1024),
5b98c1bf
BH
1969 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1970 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1971 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1972 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1973 /* TX_FILTER_TBL0 is huge and not used by this driver */
1974 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1975 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1976 /* MSIX_PBA_TABLE is not mapped */
1977 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
75abc51c 1978 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
5b98c1bf
BH
1979};
1980
1981size_t efx_nic_get_regs_len(struct efx_nic *efx)
1982{
1983 const struct efx_nic_reg *reg;
1984 const struct efx_nic_reg_table *table;
1985 size_t len = 0;
1986
1987 for (reg = efx_nic_regs;
1988 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1989 reg++)
1990 if (efx->type->revision >= reg->min_revision &&
1991 efx->type->revision <= reg->max_revision)
1992 len += sizeof(efx_oword_t);
1993
1994 for (table = efx_nic_reg_tables;
1995 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1996 table++)
1997 if (efx->type->revision >= table->min_revision &&
1998 efx->type->revision <= table->max_revision)
1999 len += table->rows * min_t(size_t, table->step, 16);
2000
2001 return len;
2002}
2003
2004void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2005{
2006 const struct efx_nic_reg *reg;
2007 const struct efx_nic_reg_table *table;
2008
2009 for (reg = efx_nic_regs;
2010 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2011 reg++) {
2012 if (efx->type->revision >= reg->min_revision &&
2013 efx->type->revision <= reg->max_revision) {
2014 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2015 buf += sizeof(efx_oword_t);
2016 }
2017 }
2018
2019 for (table = efx_nic_reg_tables;
2020 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2021 table++) {
2022 size_t size, i;
2023
2024 if (!(efx->type->revision >= table->min_revision &&
2025 efx->type->revision <= table->max_revision))
2026 continue;
2027
2028 size = min_t(size_t, table->step, 16);
2029
2030 for (i = 0; i < table->rows; i++) {
2031 switch (table->step) {
2032 case 4: /* 32-bit register or SRAM */
2033 efx_readd_table(efx, buf, table->offset, i);
2034 break;
2035 case 8: /* 64-bit SRAM */
2036 efx_sram_readq(efx,
2037 efx->membase + table->offset,
2038 buf, i);
2039 break;
2040 case 16: /* 128-bit register */
2041 efx_reado_table(efx, buf, table->offset, i);
2042 break;
2043 case 32: /* 128-bit register, interleaved */
2044 efx_reado_table(efx, buf, table->offset, 2 * i);
2045 break;
2046 default:
2047 WARN_ON(1);
2048 return;
2049 }
2050 buf += size;
2051 }
2052 }
2053}
This page took 2.048288 seconds and 5 git commands to generate.