net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / ptp.c
CommitLineData
7c236c43 1/****************************************************************************
f7a6d2c4
BH
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
7c236c43
SH
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10/* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36#include <linux/ip.h>
37#include <linux/udp.h>
38#include <linux/time.h>
39#include <linux/ktime.h>
40#include <linux/module.h>
41#include <linux/net_tstamp.h>
42#include <linux/pps_kernel.h>
43#include <linux/ptp_clock_kernel.h>
44#include "net_driver.h"
45#include "efx.h"
46#include "mcdi.h"
47#include "mcdi_pcol.h"
48#include "io.h"
8b8a95a1 49#include "farch_regs.h"
7c236c43
SH
50#include "nic.h"
51
52/* Maximum number of events expected to make up a PTP event */
53#define MAX_EVENT_FRAGS 3
54
55/* Maximum delay, ms, to begin synchronisation */
56#define MAX_SYNCHRONISE_WAIT_MS 2
57
58/* How long, at most, to spend synchronising */
59#define SYNCHRONISE_PERIOD_NS 250000
60
61/* How often to update the shared memory time */
62#define SYNCHRONISATION_GRANULARITY_NS 200
63
64/* Minimum permitted length of a (corrected) synchronisation time */
a6f73460 65#define DEFAULT_MIN_SYNCHRONISATION_NS 120
7c236c43
SH
66
67/* Maximum permitted length of a (corrected) synchronisation time */
68#define MAX_SYNCHRONISATION_NS 1000
69
70/* How many (MC) receive events that can be queued */
71#define MAX_RECEIVE_EVENTS 8
72
73/* Length of (modified) moving average. */
74#define AVERAGE_LENGTH 16
75
76/* How long an unmatched event or packet can be held */
77#define PKT_EVENT_LIFETIME_MS 10
78
79/* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83#define PTP_DPORT_OFFSET 22
84
85#define PTP_V1_VERSION_LENGTH 2
86#define PTP_V1_VERSION_OFFSET 28
87
88#define PTP_V1_UUID_LENGTH 6
89#define PTP_V1_UUID_OFFSET 50
90
91#define PTP_V1_SEQUENCE_LENGTH 2
92#define PTP_V1_SEQUENCE_OFFSET 58
93
94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97#define PTP_V1_MIN_LENGTH 64
98
99#define PTP_V2_VERSION_LENGTH 1
100#define PTP_V2_VERSION_OFFSET 29
101
c939a316
LE
102#define PTP_V2_UUID_LENGTH 8
103#define PTP_V2_UUID_OFFSET 48
104
7c236c43
SH
105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110#define PTP_V2_MC_UUID_LENGTH 6
111#define PTP_V2_MC_UUID_OFFSET 50
112
113#define PTP_V2_SEQUENCE_LENGTH 2
114#define PTP_V2_SEQUENCE_OFFSET 58
115
116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119#define PTP_V2_MIN_LENGTH 63
120
121#define PTP_MIN_LENGTH 63
122
123#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124#define PTP_EVENT_PORT 319
125#define PTP_GENERAL_PORT 320
126
127/* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130#define PTP_VERSION_V1 1
131
132#define PTP_VERSION_V2 2
133#define PTP_VERSION_V2_MASK 0x0f
134
135enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140};
141
142/* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145#define MC_NANOSECOND_BITS 30
146#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149/* Maximum parts-per-billion adjustment that is acceptable */
150#define MAX_PPB 1000000
151
152/* Number of bits required to hold the above */
153#define MAX_PPB_BITS 20
154
155/* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159#define PPB_EXTRA_BITS 2
160
161/* Precalculate scale word to avoid long long division at runtime */
162#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165#define PTP_SYNC_ATTEMPTS 4
166
167/**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179};
180
181/**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193};
194
195/**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
a6f73460
LE
198 * @major: Hardware timestamp, major
199 * @minor: Hardware timestamp, minor
7c236c43 200 * @host_end: Host time immediately after hardware timestamp taken
a6f73460 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
7c236c43
SH
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206struct efx_ptp_timeset {
207 u32 host_start;
a6f73460
LE
208 u32 major;
209 u32 minor;
7c236c43 210 u32 host_end;
a6f73460 211 u32 wait;
7c236c43
SH
212 u32 window; /* Derived: end - start, allowing for wrap */
213};
214
215/**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
ac36baf8
BH
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
bd9a265d
JC
219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
220 * separate events)
7c236c43
SH
221 * @rxq: Receive queue (awaiting timestamps)
222 * @txq: Transmit queue
223 * @evt_list: List of MC receive events awaiting packets
224 * @evt_free_list: List of free events
225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
226 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
227 * @workwq: Work queue for processing pending PTP operations
228 * @work: Work task
229 * @reset_required: A serious error has occurred and the PTP task needs to be
230 * reset (disable, enable).
231 * @rxfilter_event: Receive filter when operating
232 * @rxfilter_general: Receive filter when operating
233 * @config: Current timestamp configuration
234 * @enabled: PTP operation enabled
235 * @mode: Mode in which PTP operating (PTP version)
a6f73460
LE
236 * @time_format: Time format supported by this NIC
237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
239 * @min_synchronisation_ns: Minimum acceptable corrected sync window
240 * @ts_corrections.tx: Required driver correction of transmit timestamps
241 * @ts_corrections.rx: Required driver correction of receive timestamps
242 * @ts_corrections.pps_out: PPS output error (information only)
243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
7c236c43
SH
244 * @evt_frags: Partly assembled PTP events
245 * @evt_frag_idx: Current fragment number
246 * @evt_code: Last event code
247 * @start: Address at which MC indicates ready for synchronisation
248 * @host_time_pps: Host time at last PPS
7c236c43 249 * @current_adjfreq: Current ppb adjustment.
9aecda95 250 * @phc_clock: Pointer to registered phc device (if primary function)
7c236c43
SH
251 * @phc_clock_info: Registration structure for phc device
252 * @pps_work: pps work task for handling pps events
253 * @pps_workwq: pps work queue
254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
256 * allocations in main data path).
99691c4a
BH
257 * @good_syncs: Number of successful synchronisations.
258 * @fast_syncs: Number of synchronisations requiring short delay
259 * @bad_syncs: Number of failed synchronisations.
260 * @sync_timeouts: Number of synchronisation timeouts
261 * @no_time_syncs: Number of synchronisations with no good times.
262 * @invalid_sync_windows: Number of sync windows with bad durations.
263 * @undersize_sync_windows: Number of corrected sync windows that are too small
264 * @oversize_sync_windows: Number of corrected sync windows that are too large
265 * @rx_no_timestamp: Number of packets received without a timestamp.
7c236c43
SH
266 * @timeset: Last set of synchronisation statistics.
267 */
268struct efx_ptp_data {
ac36baf8 269 struct efx_nic *efx;
7c236c43 270 struct efx_channel *channel;
bd9a265d 271 bool rx_ts_inline;
7c236c43
SH
272 struct sk_buff_head rxq;
273 struct sk_buff_head txq;
274 struct list_head evt_list;
275 struct list_head evt_free_list;
276 spinlock_t evt_lock;
277 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
278 struct workqueue_struct *workwq;
279 struct work_struct work;
280 bool reset_required;
281 u32 rxfilter_event;
282 u32 rxfilter_general;
283 bool rxfilter_installed;
284 struct hwtstamp_config config;
285 bool enabled;
286 unsigned int mode;
a6f73460
LE
287 unsigned int time_format;
288 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
289 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
290 s32 correction);
291 unsigned int min_synchronisation_ns;
292 struct {
293 s32 tx;
294 s32 rx;
295 s32 pps_out;
296 s32 pps_in;
297 } ts_corrections;
7c236c43
SH
298 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
299 int evt_frag_idx;
300 int evt_code;
301 struct efx_buffer start;
302 struct pps_event_time host_time_pps;
7c236c43
SH
303 s64 current_adjfreq;
304 struct ptp_clock *phc_clock;
305 struct ptp_clock_info phc_clock_info;
306 struct work_struct pps_work;
307 struct workqueue_struct *pps_workwq;
308 bool nic_ts_enabled;
c5bb0e98 309 MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
99691c4a
BH
310
311 unsigned int good_syncs;
312 unsigned int fast_syncs;
313 unsigned int bad_syncs;
314 unsigned int sync_timeouts;
315 unsigned int no_time_syncs;
316 unsigned int invalid_sync_windows;
317 unsigned int undersize_sync_windows;
318 unsigned int oversize_sync_windows;
319 unsigned int rx_no_timestamp;
7c236c43
SH
320 struct efx_ptp_timeset
321 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
322};
323
324static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
325static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
326static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
327static int efx_phc_settime(struct ptp_clock_info *ptp,
328 const struct timespec *e_ts);
329static int efx_phc_enable(struct ptp_clock_info *ptp,
330 struct ptp_clock_request *request, int on);
331
99691c4a
BH
332#define PTP_SW_STAT(ext_name, field_name) \
333 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
334#define PTP_MC_STAT(ext_name, mcdi_name) \
335 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
336static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
337 PTP_SW_STAT(ptp_good_syncs, good_syncs),
338 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
339 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
340 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
341 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
342 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
343 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
344 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
345 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
346 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
347 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
348 PTP_MC_STAT(ptp_timestamp_packets, TS),
349 PTP_MC_STAT(ptp_filter_matches, FM),
350 PTP_MC_STAT(ptp_non_filter_matches, NFM),
351};
352#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
353static const unsigned long efx_ptp_stat_mask[] = {
354 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
355};
356
357size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
358{
359 if (!efx->ptp_data)
360 return 0;
361
362 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
363 efx_ptp_stat_mask, strings);
364}
365
366size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
367{
368 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
369 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
370 size_t i;
371 int rc;
372
373 if (!efx->ptp_data)
374 return 0;
375
376 /* Copy software statistics */
377 for (i = 0; i < PTP_STAT_COUNT; i++) {
378 if (efx_ptp_stat_desc[i].dma_width)
379 continue;
380 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
381 efx_ptp_stat_desc[i].offset);
382 }
383
384 /* Fetch MC statistics. We *must* fill in all statistics or
385 * risk leaking kernel memory to userland, so if the MCDI
386 * request fails we pretend we got zeroes.
387 */
388 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
389 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
390 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
391 outbuf, sizeof(outbuf), NULL);
392 if (rc) {
393 netif_err(efx, hw, efx->net_dev,
394 "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc);
395 memset(outbuf, 0, sizeof(outbuf));
396 }
397 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
398 efx_ptp_stat_mask,
399 stats, _MCDI_PTR(outbuf, 0), false);
400
401 return PTP_STAT_COUNT;
402}
403
a6f73460
LE
404/* For Siena platforms NIC time is s and ns */
405static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
406{
407 struct timespec ts = ns_to_timespec(ns);
408 *nic_major = ts.tv_sec;
409 *nic_minor = ts.tv_nsec;
410}
411
bd9a265d
JC
412static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
413 s32 correction)
a6f73460
LE
414{
415 ktime_t kt = ktime_set(nic_major, nic_minor);
416 if (correction >= 0)
417 kt = ktime_add_ns(kt, (u64)correction);
418 else
419 kt = ktime_sub_ns(kt, (u64)-correction);
420 return kt;
421}
422
423/* To convert from s27 format to ns we multiply then divide by a power of 2.
424 * For the conversion from ns to s27, the operation is also converted to a
425 * multiply and shift.
426 */
427#define S27_TO_NS_SHIFT (27)
428#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
429#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
430#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
431
432/* For Huntington platforms NIC time is in seconds and fractions of a second
433 * where the minor register only uses 27 bits in units of 2^-27s.
434 */
435static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
436{
437 struct timespec ts = ns_to_timespec(ns);
438 u32 maj = ts.tv_sec;
439 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
440 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
441
442 /* The conversion can result in the minor value exceeding the maximum.
443 * In this case, round up to the next second.
444 */
445 if (min >= S27_MINOR_MAX) {
446 min -= S27_MINOR_MAX;
447 maj++;
448 }
449
450 *nic_major = maj;
451 *nic_minor = min;
452}
453
bd9a265d 454static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
a6f73460 455{
bd9a265d
JC
456 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
457 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
458 return ktime_set(nic_major, ns);
459}
a6f73460 460
bd9a265d
JC
461static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
462 s32 correction)
463{
a6f73460
LE
464 /* Apply the correction and deal with carry */
465 nic_minor += correction;
466 if ((s32)nic_minor < 0) {
467 nic_minor += S27_MINOR_MAX;
468 nic_major--;
469 } else if (nic_minor >= S27_MINOR_MAX) {
470 nic_minor -= S27_MINOR_MAX;
471 nic_major++;
472 }
473
bd9a265d 474 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
a6f73460
LE
475}
476
477/* Get PTP attributes and set up time conversions */
478static int efx_ptp_get_attributes(struct efx_nic *efx)
479{
480 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
481 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
482 struct efx_ptp_data *ptp = efx->ptp_data;
483 int rc;
484 u32 fmt;
485 size_t out_len;
486
487 /* Get the PTP attributes. If the NIC doesn't support the operation we
488 * use the default format for compatibility with older NICs i.e.
489 * seconds and nanoseconds.
490 */
491 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
492 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
493 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
494 outbuf, sizeof(outbuf), &out_len);
495 if (rc == 0)
496 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
497 else if (rc == -EINVAL)
498 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
499 else
500 return rc;
501
502 if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
503 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
bd9a265d 504 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
a6f73460
LE
505 } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
506 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
bd9a265d 507 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
a6f73460
LE
508 } else {
509 return -ERANGE;
510 }
511
512 ptp->time_format = fmt;
513
514 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
515 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
516 * to use for the minimum acceptable corrected synchronization window.
517 * If we have the extra information store it. For older firmware that
518 * does not implement the extended command use the default value.
519 */
520 if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
521 ptp->min_synchronisation_ns =
522 MCDI_DWORD(outbuf,
523 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
524 else
525 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
526
527 return 0;
528}
529
530/* Get PTP timestamp corrections */
531static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
532{
533 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
534 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
535 int rc;
536
537 /* Get the timestamp corrections from the NIC. If this operation is
538 * not supported (older NICs) then no correction is required.
539 */
540 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
541 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
542 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
543
544 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
545 outbuf, sizeof(outbuf), NULL);
546 if (rc == 0) {
547 efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
548 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
549 efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
550 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
551 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
552 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
553 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
554 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
555 } else if (rc == -EINVAL) {
556 efx->ptp_data->ts_corrections.tx = 0;
557 efx->ptp_data->ts_corrections.rx = 0;
558 efx->ptp_data->ts_corrections.pps_out = 0;
559 efx->ptp_data->ts_corrections.pps_in = 0;
560 } else {
561 return rc;
562 }
563
564 return 0;
565}
566
7c236c43
SH
567/* Enable MCDI PTP support. */
568static int efx_ptp_enable(struct efx_nic *efx)
569{
59cfc479 570 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
1e0b8120
EC
571 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
572 int rc;
7c236c43
SH
573
574 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
c1d828bd 575 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43 576 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
ac36baf8
BH
577 efx->ptp_data->channel ?
578 efx->ptp_data->channel->channel : 0);
7c236c43
SH
579 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
580
1e0b8120
EC
581 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
582 outbuf, sizeof(outbuf), NULL);
583 rc = (rc == -EALREADY) ? 0 : rc;
584 if (rc)
585 efx_mcdi_display_error(efx, MC_CMD_PTP,
586 MC_CMD_PTP_IN_ENABLE_LEN,
587 outbuf, sizeof(outbuf), rc);
588 return rc;
7c236c43
SH
589}
590
591/* Disable MCDI PTP support.
592 *
593 * Note that this function should never rely on the presence of ptp_data -
594 * may be called before that exists.
595 */
596static int efx_ptp_disable(struct efx_nic *efx)
597{
59cfc479 598 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
1e0b8120
EC
599 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
600 int rc;
7c236c43
SH
601
602 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
c1d828bd 603 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1e0b8120
EC
604 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
605 outbuf, sizeof(outbuf), NULL);
606 rc = (rc == -EALREADY) ? 0 : rc;
607 if (rc)
608 efx_mcdi_display_error(efx, MC_CMD_PTP,
609 MC_CMD_PTP_IN_DISABLE_LEN,
610 outbuf, sizeof(outbuf), rc);
611 return rc;
7c236c43
SH
612}
613
614static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
615{
616 struct sk_buff *skb;
617
618 while ((skb = skb_dequeue(q))) {
619 local_bh_disable();
620 netif_receive_skb(skb);
621 local_bh_enable();
622 }
623}
624
625static void efx_ptp_handle_no_channel(struct efx_nic *efx)
626{
627 netif_err(efx, drv, efx->net_dev,
628 "ERROR: PTP requires MSI-X and 1 additional interrupt"
629 "vector. PTP disabled\n");
630}
631
632/* Repeatedly send the host time to the MC which will capture the hardware
633 * time.
634 */
635static void efx_ptp_send_times(struct efx_nic *efx,
636 struct pps_event_time *last_time)
637{
638 struct pps_event_time now;
639 struct timespec limit;
640 struct efx_ptp_data *ptp = efx->ptp_data;
641 struct timespec start;
642 int *mc_running = ptp->start.addr;
643
644 pps_get_ts(&now);
645 start = now.ts_real;
646 limit = now.ts_real;
647 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
648
649 /* Write host time for specified period or until MC is done */
650 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
651 ACCESS_ONCE(*mc_running)) {
652 struct timespec update_time;
653 unsigned int host_time;
654
655 /* Don't update continuously to avoid saturating the PCIe bus */
656 update_time = now.ts_real;
657 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
658 do {
659 pps_get_ts(&now);
660 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
661 ACCESS_ONCE(*mc_running));
662
663 /* Synchronise NIC with single word of time only */
664 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
665 now.ts_real.tv_nsec);
666 /* Update host time in NIC memory */
977a5d5d 667 efx->type->ptp_write_host_time(efx, host_time);
7c236c43
SH
668 }
669 *last_time = now;
670}
671
672/* Read a timeset from the MC's results and partial process. */
c5bb0e98
BH
673static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
674 struct efx_ptp_timeset *timeset)
7c236c43
SH
675{
676 unsigned start_ns, end_ns;
677
678 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
a6f73460
LE
679 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
680 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
7c236c43 681 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
a6f73460 682 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
7c236c43
SH
683
684 /* Ignore seconds */
685 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
686 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
687 /* Allow for rollover */
688 if (end_ns < start_ns)
689 end_ns += NSEC_PER_SEC;
690 /* Determine duration of operation */
691 timeset->window = end_ns - start_ns;
692}
693
694/* Process times received from MC.
695 *
696 * Extract times from returned results, and establish the minimum value
697 * seen. The minimum value represents the "best" possible time and events
698 * too much greater than this are rejected - the machine is, perhaps, too
699 * busy. A number of readings are taken so that, hopefully, at least one good
700 * synchronisation will be seen in the results.
701 */
c5bb0e98
BH
702static int
703efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
704 size_t response_length,
705 const struct pps_event_time *last_time)
7c236c43 706{
c5bb0e98
BH
707 unsigned number_readings =
708 MCDI_VAR_ARRAY_LEN(response_length,
709 PTP_OUT_SYNCHRONIZE_TIMESET);
7c236c43 710 unsigned i;
7c236c43
SH
711 unsigned ngood = 0;
712 unsigned last_good = 0;
713 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
714 u32 last_sec;
715 u32 start_sec;
716 struct timespec delta;
a6f73460 717 ktime_t mc_time;
7c236c43
SH
718
719 if (number_readings == 0)
720 return -EAGAIN;
721
dfd8d581
LE
722 /* Read the set of results and find the last good host-MC
723 * synchronization result. The MC times when it finishes reading the
724 * host time so the corrected window time should be fairly constant
99691c4a
BH
725 * for a given platform. Increment stats for any results that appear
726 * to be erroneous.
7c236c43
SH
727 */
728 for (i = 0; i < number_readings; i++) {
dfd8d581 729 s32 window, corrected;
a6f73460 730 struct timespec wait;
dfd8d581 731
c5bb0e98
BH
732 efx_ptp_read_timeset(
733 MCDI_ARRAY_STRUCT_PTR(synch_buf,
734 PTP_OUT_SYNCHRONIZE_TIMESET, i),
735 &ptp->timeset[i]);
7c236c43 736
a6f73460
LE
737 wait = ktime_to_timespec(
738 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
dfd8d581 739 window = ptp->timeset[i].window;
a6f73460 740 corrected = window - wait.tv_nsec;
dfd8d581
LE
741
742 /* We expect the uncorrected synchronization window to be at
743 * least as large as the interval between host start and end
744 * times. If it is smaller than this then this is mostly likely
745 * to be a consequence of the host's time being adjusted.
746 * Check that the corrected sync window is in a reasonable
747 * range. If it is out of range it is likely to be because an
748 * interrupt or other delay occurred between reading the system
749 * time and writing it to MC memory.
750 */
99691c4a
BH
751 if (window < SYNCHRONISATION_GRANULARITY_NS) {
752 ++ptp->invalid_sync_windows;
753 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
99691c4a 754 ++ptp->oversize_sync_windows;
13c92e82
BH
755 } else if (corrected < ptp->min_synchronisation_ns) {
756 ++ptp->undersize_sync_windows;
99691c4a 757 } else {
dfd8d581
LE
758 ngood++;
759 last_good = i;
7c236c43 760 }
dfd8d581 761 }
7c236c43
SH
762
763 if (ngood == 0) {
764 netif_warn(efx, drv, efx->net_dev,
94cd60d0 765 "PTP no suitable synchronisations\n");
7c236c43
SH
766 return -EAGAIN;
767 }
768
92d8f766
BH
769 /* Calculate delay from last good sync (host time) to last_time.
770 * It is possible that the seconds rolled over between taking
7c236c43
SH
771 * the start reading and the last value written by the host. The
772 * timescales are such that a gap of more than one second is never
92d8f766 773 * expected. delta is *not* normalised.
7c236c43
SH
774 */
775 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
776 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
92d8f766
BH
777 if (start_sec != last_sec &&
778 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
779 netif_warn(efx, hw, efx->net_dev,
780 "PTP bad synchronisation seconds\n");
781 return -EAGAIN;
7c236c43 782 }
92d8f766
BH
783 delta.tv_sec = (last_sec - start_sec) & 1;
784 delta.tv_nsec =
785 last_time->ts_real.tv_nsec -
786 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
787
788 /* Convert the NIC time at last good sync into kernel time.
789 * No correction is required - this time is the output of a
790 * firmware process.
791 */
792 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
793 ptp->timeset[last_good].minor, 0);
794
795 /* Calculate delay from NIC top of second to last_time */
796 delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec;
7c236c43 797
92d8f766 798 /* Set PPS timestamp to match NIC top of second */
7c236c43
SH
799 ptp->host_time_pps = *last_time;
800 pps_sub_ts(&ptp->host_time_pps, delta);
801
802 return 0;
803}
804
805/* Synchronize times between the host and the MC */
806static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
807{
808 struct efx_ptp_data *ptp = efx->ptp_data;
59cfc479 809 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
7c236c43
SH
810 size_t response_length;
811 int rc;
812 unsigned long timeout;
813 struct pps_event_time last_time = {};
814 unsigned int loops = 0;
815 int *start = ptp->start.addr;
816
817 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
c1d828bd 818 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
819 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
820 num_readings);
338f74df
BH
821 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
822 ptp->start.dma_addr);
7c236c43
SH
823
824 /* Clear flag that signals MC ready */
825 ACCESS_ONCE(*start) = 0;
df2cd8af
BH
826 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
827 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
828 EFX_BUG_ON_PARANOID(rc);
7c236c43
SH
829
830 /* Wait for start from MCDI (or timeout) */
831 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
832 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
833 udelay(20); /* Usually start MCDI execution quickly */
834 loops++;
835 }
836
99691c4a
BH
837 if (loops <= 1)
838 ++ptp->fast_syncs;
839 if (!time_before(jiffies, timeout))
840 ++ptp->sync_timeouts;
841
7c236c43
SH
842 if (ACCESS_ONCE(*start))
843 efx_ptp_send_times(efx, &last_time);
844
845 /* Collect results */
846 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
847 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
848 synch_buf, sizeof(synch_buf),
849 &response_length);
99691c4a 850 if (rc == 0) {
7c236c43
SH
851 rc = efx_ptp_process_times(efx, synch_buf, response_length,
852 &last_time);
99691c4a
BH
853 if (rc == 0)
854 ++ptp->good_syncs;
855 else
856 ++ptp->no_time_syncs;
857 }
858
859 /* Increment the bad syncs counter if the synchronize fails, whatever
860 * the reason.
861 */
862 if (rc != 0)
863 ++ptp->bad_syncs;
7c236c43
SH
864
865 return rc;
866}
867
868/* Transmit a PTP packet, via the MCDI interface, to the wire. */
869static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
870{
c5bb0e98 871 struct efx_ptp_data *ptp_data = efx->ptp_data;
7c236c43
SH
872 struct skb_shared_hwtstamps timestamps;
873 int rc = -EIO;
59cfc479 874 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
9528b921 875 size_t len;
7c236c43 876
c5bb0e98 877 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
c1d828bd 878 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
c5bb0e98 879 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
7c236c43
SH
880 if (skb_shinfo(skb)->nr_frags != 0) {
881 rc = skb_linearize(skb);
882 if (rc != 0)
883 goto fail;
884 }
885
886 if (skb->ip_summed == CHECKSUM_PARTIAL) {
887 rc = skb_checksum_help(skb);
888 if (rc != 0)
889 goto fail;
890 }
891 skb_copy_from_linear_data(skb,
c5bb0e98
BH
892 MCDI_PTR(ptp_data->txbuf,
893 PTP_IN_TRANSMIT_PACKET),
9528b921
BH
894 skb->len);
895 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
896 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
897 txtime, sizeof(txtime), &len);
7c236c43
SH
898 if (rc != 0)
899 goto fail;
900
901 memset(&timestamps, 0, sizeof(timestamps));
a6f73460
LE
902 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
903 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
904 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
905 ptp_data->ts_corrections.tx);
7c236c43
SH
906
907 skb_tstamp_tx(skb, &timestamps);
908
909 rc = 0;
910
911fail:
912 dev_kfree_skb(skb);
913
914 return rc;
915}
916
917static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
918{
919 struct efx_ptp_data *ptp = efx->ptp_data;
920 struct list_head *cursor;
921 struct list_head *next;
922
bd9a265d
JC
923 if (ptp->rx_ts_inline)
924 return;
925
7c236c43
SH
926 /* Drop time-expired events */
927 spin_lock_bh(&ptp->evt_lock);
928 if (!list_empty(&ptp->evt_list)) {
929 list_for_each_safe(cursor, next, &ptp->evt_list) {
930 struct efx_ptp_event_rx *evt;
931
932 evt = list_entry(cursor, struct efx_ptp_event_rx,
933 link);
934 if (time_after(jiffies, evt->expiry)) {
9545f4e2 935 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
936 netif_warn(efx, hw, efx->net_dev,
937 "PTP rx event dropped\n");
938 }
939 }
940 }
941 spin_unlock_bh(&ptp->evt_lock);
942}
943
944static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
945 struct sk_buff *skb)
946{
947 struct efx_ptp_data *ptp = efx->ptp_data;
948 bool evts_waiting;
949 struct list_head *cursor;
950 struct list_head *next;
951 struct efx_ptp_match *match;
952 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
953
bd9a265d
JC
954 WARN_ON_ONCE(ptp->rx_ts_inline);
955
7c236c43
SH
956 spin_lock_bh(&ptp->evt_lock);
957 evts_waiting = !list_empty(&ptp->evt_list);
958 spin_unlock_bh(&ptp->evt_lock);
959
960 if (!evts_waiting)
961 return PTP_PACKET_STATE_UNMATCHED;
962
963 match = (struct efx_ptp_match *)skb->cb;
964 /* Look for a matching timestamp in the event queue */
965 spin_lock_bh(&ptp->evt_lock);
966 list_for_each_safe(cursor, next, &ptp->evt_list) {
967 struct efx_ptp_event_rx *evt;
968
969 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
970 if ((evt->seq0 == match->words[0]) &&
971 (evt->seq1 == match->words[1])) {
972 struct skb_shared_hwtstamps *timestamps;
973
974 /* Match - add in hardware timestamp */
975 timestamps = skb_hwtstamps(skb);
976 timestamps->hwtstamp = evt->hwtimestamp;
977
978 match->state = PTP_PACKET_STATE_MATCHED;
979 rc = PTP_PACKET_STATE_MATCHED;
9545f4e2 980 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
981 break;
982 }
983 }
984 spin_unlock_bh(&ptp->evt_lock);
985
986 return rc;
987}
988
989/* Process any queued receive events and corresponding packets
990 *
991 * q is returned with all the packets that are ready for delivery.
7c236c43 992 */
bbbe7149 993static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
7c236c43
SH
994{
995 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
996 struct sk_buff *skb;
997
998 while ((skb = skb_dequeue(&ptp->rxq))) {
999 struct efx_ptp_match *match;
1000
1001 match = (struct efx_ptp_match *)skb->cb;
1002 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1003 __skb_queue_tail(q, skb);
1004 } else if (efx_ptp_match_rx(efx, skb) ==
1005 PTP_PACKET_STATE_MATCHED) {
7c236c43
SH
1006 __skb_queue_tail(q, skb);
1007 } else if (time_after(jiffies, match->expiry)) {
1008 match->state = PTP_PACKET_STATE_TIMED_OUT;
99691c4a 1009 ++ptp->rx_no_timestamp;
7c236c43
SH
1010 __skb_queue_tail(q, skb);
1011 } else {
1012 /* Replace unprocessed entry and stop */
1013 skb_queue_head(&ptp->rxq, skb);
1014 break;
1015 }
1016 }
7c236c43
SH
1017}
1018
1019/* Complete processing of a received packet */
1020static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1021{
1022 local_bh_disable();
1023 netif_receive_skb(skb);
1024 local_bh_enable();
1025}
1026
62a1c703
BH
1027static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1028{
1029 struct efx_ptp_data *ptp = efx->ptp_data;
1030
1031 if (ptp->rxfilter_installed) {
1032 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1033 ptp->rxfilter_general);
1034 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1035 ptp->rxfilter_event);
1036 ptp->rxfilter_installed = false;
1037 }
1038}
1039
1040static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
7c236c43
SH
1041{
1042 struct efx_ptp_data *ptp = efx->ptp_data;
1043 struct efx_filter_spec rxfilter;
1044 int rc;
1045
ac36baf8 1046 if (!ptp->channel || ptp->rxfilter_installed)
62a1c703 1047 return 0;
7c236c43
SH
1048
1049 /* Must filter on both event and general ports to ensure
1050 * that there is no packet re-ordering.
1051 */
1052 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1053 efx_rx_queue_index(
1054 efx_channel_get_rx_queue(ptp->channel)));
1055 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1056 htonl(PTP_ADDRESS),
1057 htons(PTP_EVENT_PORT));
1058 if (rc != 0)
1059 return rc;
1060
1061 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1062 if (rc < 0)
1063 return rc;
1064 ptp->rxfilter_event = rc;
1065
1066 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1067 efx_rx_queue_index(
1068 efx_channel_get_rx_queue(ptp->channel)));
1069 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1070 htonl(PTP_ADDRESS),
1071 htons(PTP_GENERAL_PORT));
1072 if (rc != 0)
1073 goto fail;
1074
1075 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1076 if (rc < 0)
1077 goto fail;
1078 ptp->rxfilter_general = rc;
1079
62a1c703
BH
1080 ptp->rxfilter_installed = true;
1081 return 0;
1082
1083fail:
1084 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1085 ptp->rxfilter_event);
1086 return rc;
1087}
1088
1089static int efx_ptp_start(struct efx_nic *efx)
1090{
1091 struct efx_ptp_data *ptp = efx->ptp_data;
1092 int rc;
1093
1094 ptp->reset_required = false;
1095
1096 rc = efx_ptp_insert_multicast_filters(efx);
1097 if (rc)
1098 return rc;
1099
7c236c43
SH
1100 rc = efx_ptp_enable(efx);
1101 if (rc != 0)
62a1c703 1102 goto fail;
7c236c43
SH
1103
1104 ptp->evt_frag_idx = 0;
1105 ptp->current_adjfreq = 0;
7c236c43
SH
1106
1107 return 0;
1108
7c236c43 1109fail:
62a1c703 1110 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1111 return rc;
1112}
1113
1114static int efx_ptp_stop(struct efx_nic *efx)
1115{
1116 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
1117 struct list_head *cursor;
1118 struct list_head *next;
2ea4dc28
AR
1119 int rc;
1120
1121 if (ptp == NULL)
1122 return 0;
1123
1124 rc = efx_ptp_disable(efx);
7c236c43 1125
62a1c703 1126 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1127
1128 /* Make sure RX packets are really delivered */
1129 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1130 skb_queue_purge(&efx->ptp_data->txq);
1131
1132 /* Drop any pending receive events */
1133 spin_lock_bh(&efx->ptp_data->evt_lock);
1134 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
9545f4e2 1135 list_move(cursor, &efx->ptp_data->evt_free_list);
7c236c43
SH
1136 }
1137 spin_unlock_bh(&efx->ptp_data->evt_lock);
1138
1139 return rc;
1140}
1141
2ea4dc28
AR
1142static int efx_ptp_restart(struct efx_nic *efx)
1143{
1144 if (efx->ptp_data && efx->ptp_data->enabled)
1145 return efx_ptp_start(efx);
1146 return 0;
1147}
1148
7c236c43
SH
1149static void efx_ptp_pps_worker(struct work_struct *work)
1150{
1151 struct efx_ptp_data *ptp =
1152 container_of(work, struct efx_ptp_data, pps_work);
ac36baf8 1153 struct efx_nic *efx = ptp->efx;
7c236c43
SH
1154 struct ptp_clock_event ptp_evt;
1155
1156 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1157 return;
1158
1159 ptp_evt.type = PTP_CLOCK_PPSUSR;
1160 ptp_evt.pps_times = ptp->host_time_pps;
1161 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1162}
1163
7c236c43
SH
1164static void efx_ptp_worker(struct work_struct *work)
1165{
1166 struct efx_ptp_data *ptp_data =
1167 container_of(work, struct efx_ptp_data, work);
ac36baf8 1168 struct efx_nic *efx = ptp_data->efx;
7c236c43
SH
1169 struct sk_buff *skb;
1170 struct sk_buff_head tempq;
1171
1172 if (ptp_data->reset_required) {
1173 efx_ptp_stop(efx);
1174 efx_ptp_start(efx);
1175 return;
1176 }
1177
1178 efx_ptp_drop_time_expired_events(efx);
1179
1180 __skb_queue_head_init(&tempq);
bbbe7149 1181 efx_ptp_process_events(efx, &tempq);
7c236c43 1182
bbbe7149
BH
1183 while ((skb = skb_dequeue(&ptp_data->txq)))
1184 efx_ptp_xmit_skb(efx, skb);
7c236c43
SH
1185
1186 while ((skb = __skb_dequeue(&tempq)))
1187 efx_ptp_process_rx(efx, skb);
1188}
1189
5d0dab01
BH
1190static const struct ptp_clock_info efx_phc_clock_info = {
1191 .owner = THIS_MODULE,
1192 .name = "sfc",
1193 .max_adj = MAX_PPB,
1194 .n_alarm = 0,
1195 .n_ext_ts = 0,
1196 .n_per_out = 0,
4986b4f0 1197 .n_pins = 0,
5d0dab01
BH
1198 .pps = 1,
1199 .adjfreq = efx_phc_adjfreq,
1200 .adjtime = efx_phc_adjtime,
1201 .gettime = efx_phc_gettime,
1202 .settime = efx_phc_settime,
1203 .enable = efx_phc_enable,
1204};
1205
ac36baf8
BH
1206/* Initialise PTP state. */
1207int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
7c236c43 1208{
7c236c43
SH
1209 struct efx_ptp_data *ptp;
1210 int rc = 0;
1211 unsigned int pos;
1212
7c236c43
SH
1213 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1214 efx->ptp_data = ptp;
1215 if (!efx->ptp_data)
1216 return -ENOMEM;
1217
ac36baf8
BH
1218 ptp->efx = efx;
1219 ptp->channel = channel;
bd9a265d 1220 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
ac36baf8 1221
0d19a540 1222 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
7c236c43
SH
1223 if (rc != 0)
1224 goto fail1;
1225
7c236c43
SH
1226 skb_queue_head_init(&ptp->rxq);
1227 skb_queue_head_init(&ptp->txq);
1228 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1229 if (!ptp->workwq) {
1230 rc = -ENOMEM;
1231 goto fail2;
1232 }
1233
1234 INIT_WORK(&ptp->work, efx_ptp_worker);
1235 ptp->config.flags = 0;
1236 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1237 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1238 INIT_LIST_HEAD(&ptp->evt_list);
1239 INIT_LIST_HEAD(&ptp->evt_free_list);
1240 spin_lock_init(&ptp->evt_lock);
1241 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1242 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1243
a6f73460
LE
1244 /* Get the NIC PTP attributes and set up time conversions */
1245 rc = efx_ptp_get_attributes(efx);
1246 if (rc < 0)
1247 goto fail3;
1248
1249 /* Get the timestamp corrections */
1250 rc = efx_ptp_get_timestamp_corrections(efx);
1251 if (rc < 0)
1252 goto fail3;
1253
9aecda95
BH
1254 if (efx->mcdi->fn_flags &
1255 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1256 ptp->phc_clock_info = efx_phc_clock_info;
1257 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1258 &efx->pci_dev->dev);
1259 if (IS_ERR(ptp->phc_clock)) {
1260 rc = PTR_ERR(ptp->phc_clock);
1261 goto fail3;
1262 }
7c236c43 1263
9aecda95
BH
1264 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1265 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1266 if (!ptp->pps_workwq) {
1267 rc = -ENOMEM;
1268 goto fail4;
1269 }
7c236c43
SH
1270 }
1271 ptp->nic_ts_enabled = false;
1272
1273 return 0;
1274fail4:
1275 ptp_clock_unregister(efx->ptp_data->phc_clock);
1276
1277fail3:
1278 destroy_workqueue(efx->ptp_data->workwq);
1279
1280fail2:
1281 efx_nic_free_buffer(efx, &ptp->start);
1282
1283fail1:
1284 kfree(efx->ptp_data);
1285 efx->ptp_data = NULL;
1286
1287 return rc;
1288}
1289
ac36baf8
BH
1290/* Initialise PTP channel.
1291 *
1292 * Setting core_index to zero causes the queue to be initialised and doesn't
1293 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1294 */
1295static int efx_ptp_probe_channel(struct efx_channel *channel)
7c236c43
SH
1296{
1297 struct efx_nic *efx = channel->efx;
1298
ac36baf8
BH
1299 channel->irq_moderation = 0;
1300 channel->rx_queue.core_index = 0;
1301
1302 return efx_ptp_probe(efx, channel);
1303}
1304
1305void efx_ptp_remove(struct efx_nic *efx)
1306{
7c236c43
SH
1307 if (!efx->ptp_data)
1308 return;
1309
ac36baf8 1310 (void)efx_ptp_disable(efx);
7c236c43
SH
1311
1312 cancel_work_sync(&efx->ptp_data->work);
1313 cancel_work_sync(&efx->ptp_data->pps_work);
1314
1315 skb_queue_purge(&efx->ptp_data->rxq);
1316 skb_queue_purge(&efx->ptp_data->txq);
1317
9aecda95
BH
1318 if (efx->ptp_data->phc_clock) {
1319 destroy_workqueue(efx->ptp_data->pps_workwq);
1320 ptp_clock_unregister(efx->ptp_data->phc_clock);
1321 }
7c236c43
SH
1322
1323 destroy_workqueue(efx->ptp_data->workwq);
7c236c43
SH
1324
1325 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1326 kfree(efx->ptp_data);
1327}
1328
ac36baf8
BH
1329static void efx_ptp_remove_channel(struct efx_channel *channel)
1330{
1331 efx_ptp_remove(channel->efx);
1332}
1333
7c236c43
SH
1334static void efx_ptp_get_channel_name(struct efx_channel *channel,
1335 char *buf, size_t len)
1336{
1337 snprintf(buf, len, "%s-ptp", channel->efx->name);
1338}
1339
1340/* Determine whether this packet should be processed by the PTP module
1341 * or transmitted conventionally.
1342 */
1343bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1344{
1345 return efx->ptp_data &&
1346 efx->ptp_data->enabled &&
1347 skb->len >= PTP_MIN_LENGTH &&
1348 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1349 likely(skb->protocol == htons(ETH_P_IP)) &&
e5a498e9
BH
1350 skb_transport_header_was_set(skb) &&
1351 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
7c236c43 1352 ip_hdr(skb)->protocol == IPPROTO_UDP &&
e5a498e9
BH
1353 skb_headlen(skb) >=
1354 skb_transport_offset(skb) + sizeof(struct udphdr) &&
7c236c43
SH
1355 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1356}
1357
1358/* Receive a PTP packet. Packets are queued until the arrival of
1359 * the receive timestamp from the MC - this will probably occur after the
1360 * packet arrival because of the processing in the MC.
1361 */
4a74dc65 1362static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
7c236c43
SH
1363{
1364 struct efx_nic *efx = channel->efx;
1365 struct efx_ptp_data *ptp = efx->ptp_data;
1366 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
c939a316 1367 u8 *match_data_012, *match_data_345;
7c236c43 1368 unsigned int version;
ce320f44 1369 u8 *data;
7c236c43
SH
1370
1371 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1372
1373 /* Correct version? */
1374 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
97d48a10 1375 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
4a74dc65 1376 return false;
7c236c43 1377 }
ce320f44
BH
1378 data = skb->data;
1379 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
7c236c43 1380 if (version != PTP_VERSION_V1) {
4a74dc65 1381 return false;
7c236c43 1382 }
c939a316
LE
1383
1384 /* PTP V1 uses all six bytes of the UUID to match the packet
1385 * to the timestamp
1386 */
ce320f44
BH
1387 match_data_012 = data + PTP_V1_UUID_OFFSET;
1388 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
7c236c43 1389 } else {
97d48a10 1390 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
4a74dc65 1391 return false;
7c236c43 1392 }
ce320f44
BH
1393 data = skb->data;
1394 version = data[PTP_V2_VERSION_OFFSET];
7c236c43 1395 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
4a74dc65 1396 return false;
7c236c43 1397 }
c939a316
LE
1398
1399 /* The original V2 implementation uses bytes 2-7 of
1400 * the UUID to match the packet to the timestamp. This
1401 * discards two of the bytes of the MAC address used
1402 * to create the UUID (SF bug 33070). The PTP V2
1403 * enhanced mode fixes this issue and uses bytes 0-2
1404 * and byte 5-7 of the UUID.
1405 */
ce320f44 1406 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
c939a316 1407 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
ce320f44 1408 match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
c939a316 1409 } else {
ce320f44 1410 match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
c939a316
LE
1411 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1412 }
7c236c43
SH
1413 }
1414
1415 /* Does this packet require timestamping? */
ce320f44 1416 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
7c236c43
SH
1417 match->state = PTP_PACKET_STATE_UNMATCHED;
1418
c939a316
LE
1419 /* We expect the sequence number to be in the same position in
1420 * the packet for PTP V1 and V2
1421 */
1422 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1423 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1424
7c236c43 1425 /* Extract UUID/Sequence information */
c939a316
LE
1426 match->words[0] = (match_data_012[0] |
1427 (match_data_012[1] << 8) |
1428 (match_data_012[2] << 16) |
1429 (match_data_345[0] << 24));
1430 match->words[1] = (match_data_345[1] |
1431 (match_data_345[2] << 8) |
ce320f44
BH
1432 (data[PTP_V1_SEQUENCE_OFFSET +
1433 PTP_V1_SEQUENCE_LENGTH - 1] <<
7c236c43
SH
1434 16));
1435 } else {
1436 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1437 }
1438
1439 skb_queue_tail(&ptp->rxq, skb);
1440 queue_work(ptp->workwq, &ptp->work);
4a74dc65
BH
1441
1442 return true;
7c236c43
SH
1443}
1444
1445/* Transmit a PTP packet. This has to be transmitted by the MC
1446 * itself, through an MCDI call. MCDI calls aren't permitted
1447 * in the transmit path so defer the actual transmission to a suitable worker.
1448 */
1449int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1450{
1451 struct efx_ptp_data *ptp = efx->ptp_data;
1452
1453 skb_queue_tail(&ptp->txq, skb);
1454
1455 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1456 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1457 efx_xmit_hwtstamp_pending(skb);
1458 queue_work(ptp->workwq, &ptp->work);
1459
1460 return NETDEV_TX_OK;
1461}
1462
9ec06595
DP
1463int efx_ptp_get_mode(struct efx_nic *efx)
1464{
1465 return efx->ptp_data->mode;
1466}
1467
1468int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1469 unsigned int new_mode)
7c236c43
SH
1470{
1471 if ((enable_wanted != efx->ptp_data->enabled) ||
1472 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
2ea4dc28 1473 int rc = 0;
7c236c43
SH
1474
1475 if (enable_wanted) {
1476 /* Change of mode requires disable */
1477 if (efx->ptp_data->enabled &&
1478 (efx->ptp_data->mode != new_mode)) {
1479 efx->ptp_data->enabled = false;
1480 rc = efx_ptp_stop(efx);
1481 if (rc != 0)
1482 return rc;
1483 }
1484
1485 /* Set new operating mode and establish
1486 * baseline synchronisation, which must
1487 * succeed.
1488 */
1489 efx->ptp_data->mode = new_mode;
2ea4dc28
AR
1490 if (netif_running(efx->net_dev))
1491 rc = efx_ptp_start(efx);
7c236c43
SH
1492 if (rc == 0) {
1493 rc = efx_ptp_synchronize(efx,
1494 PTP_SYNC_ATTEMPTS * 2);
1495 if (rc != 0)
1496 efx_ptp_stop(efx);
1497 }
1498 } else {
1499 rc = efx_ptp_stop(efx);
1500 }
1501
1502 if (rc != 0)
1503 return rc;
1504
1505 efx->ptp_data->enabled = enable_wanted;
1506 }
1507
1508 return 0;
1509}
1510
1511static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1512{
7c236c43
SH
1513 int rc;
1514
1515 if (init->flags)
1516 return -EINVAL;
1517
1518 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1519 (init->tx_type != HWTSTAMP_TX_ON))
1520 return -ERANGE;
1521
9ec06595
DP
1522 rc = efx->type->ptp_set_ts_config(efx, init);
1523 if (rc)
7c236c43
SH
1524 return rc;
1525
1526 efx->ptp_data->config = *init;
7c236c43
SH
1527 return 0;
1528}
1529
62ebac92 1530void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
7c236c43 1531{
7c236c43 1532 struct efx_ptp_data *ptp = efx->ptp_data;
9aecda95
BH
1533 struct efx_nic *primary = efx->primary;
1534
1535 ASSERT_RTNL();
7c236c43
SH
1536
1537 if (!ptp)
62ebac92 1538 return;
7c236c43 1539
62ebac92
BH
1540 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1541 SOF_TIMESTAMPING_RX_HARDWARE |
1542 SOF_TIMESTAMPING_RAW_HARDWARE);
9aecda95
BH
1543 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1544 ts_info->phc_index =
1545 ptp_clock_index(primary->ptp_data->phc_clock);
7c236c43 1546 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
9ec06595 1547 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
7c236c43
SH
1548}
1549
433dc9b3 1550int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
7c236c43
SH
1551{
1552 struct hwtstamp_config config;
1553 int rc;
1554
1555 /* Not a PTP enabled port */
1556 if (!efx->ptp_data)
1557 return -EOPNOTSUPP;
1558
1559 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1560 return -EFAULT;
1561
1562 rc = efx_ptp_ts_init(efx, &config);
1563 if (rc != 0)
1564 return rc;
1565
1566 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1567 ? -EFAULT : 0;
1568}
1569
433dc9b3
BH
1570int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1571{
1572 if (!efx->ptp_data)
1573 return -EOPNOTSUPP;
1574
1575 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1576 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1577}
1578
7c236c43
SH
1579static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1580{
1581 struct efx_ptp_data *ptp = efx->ptp_data;
1582
1583 netif_err(efx, hw, efx->net_dev,
1584 "PTP unexpected event length: got %d expected %d\n",
1585 ptp->evt_frag_idx, expected_frag_len);
1586 ptp->reset_required = true;
1587 queue_work(ptp->workwq, &ptp->work);
1588}
1589
1590/* Process a completed receive event. Put it on the event queue and
1591 * start worker thread. This is required because event and their
1592 * correspoding packets may come in either order.
1593 */
1594static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1595{
1596 struct efx_ptp_event_rx *evt = NULL;
1597
bd9a265d
JC
1598 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1599 return;
1600
7c236c43
SH
1601 if (ptp->evt_frag_idx != 3) {
1602 ptp_event_failure(efx, 3);
1603 return;
1604 }
1605
1606 spin_lock_bh(&ptp->evt_lock);
1607 if (!list_empty(&ptp->evt_free_list)) {
1608 evt = list_first_entry(&ptp->evt_free_list,
1609 struct efx_ptp_event_rx, link);
1610 list_del(&evt->link);
1611
1612 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1613 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1614 MCDI_EVENT_SRC) |
1615 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1616 MCDI_EVENT_SRC) << 8) |
1617 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1618 MCDI_EVENT_SRC) << 16));
a6f73460 1619 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
7c236c43 1620 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
a6f73460
LE
1621 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1622 ptp->ts_corrections.rx);
7c236c43
SH
1623 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1624 list_add_tail(&evt->link, &ptp->evt_list);
1625
1626 queue_work(ptp->workwq, &ptp->work);
f9fd7ec7
LE
1627 } else if (net_ratelimit()) {
1628 /* Log a rate-limited warning message. */
f3211600 1629 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
7c236c43
SH
1630 }
1631 spin_unlock_bh(&ptp->evt_lock);
1632}
1633
1634static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1635{
1636 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1637 if (ptp->evt_frag_idx != 1) {
1638 ptp_event_failure(efx, 1);
1639 return;
1640 }
1641
1642 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1643}
1644
1645static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1646{
1647 if (ptp->nic_ts_enabled)
1648 queue_work(ptp->pps_workwq, &ptp->pps_work);
1649}
1650
1651void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1652{
1653 struct efx_ptp_data *ptp = efx->ptp_data;
1654 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1655
8f355e5c
EC
1656 if (!ptp) {
1657 if (net_ratelimit())
1658 netif_warn(efx, drv, efx->net_dev,
1659 "Received PTP event but PTP not set up\n");
1660 return;
1661 }
1662
7c236c43
SH
1663 if (!ptp->enabled)
1664 return;
1665
1666 if (ptp->evt_frag_idx == 0) {
1667 ptp->evt_code = code;
1668 } else if (ptp->evt_code != code) {
1669 netif_err(efx, hw, efx->net_dev,
1670 "PTP out of sequence event %d\n", code);
1671 ptp->evt_frag_idx = 0;
1672 }
1673
1674 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1675 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1676 /* Process resulting event */
1677 switch (code) {
1678 case MCDI_EVENT_CODE_PTP_RX:
1679 ptp_event_rx(efx, ptp);
1680 break;
1681 case MCDI_EVENT_CODE_PTP_FAULT:
1682 ptp_event_fault(efx, ptp);
1683 break;
1684 case MCDI_EVENT_CODE_PTP_PPS:
1685 ptp_event_pps(efx, ptp);
1686 break;
1687 default:
1688 netif_err(efx, hw, efx->net_dev,
1689 "PTP unknown event %d\n", code);
1690 break;
1691 }
1692 ptp->evt_frag_idx = 0;
1693 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1694 netif_err(efx, hw, efx->net_dev,
1695 "PTP too many event fragments\n");
1696 ptp->evt_frag_idx = 0;
1697 }
1698}
1699
bd9a265d
JC
1700void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1701{
1702 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1703 channel->sync_timestamp_minor =
1704 MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1705 /* if sync events have been disabled then we want to silently ignore
1706 * this event, so throw away result.
1707 */
1708 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1709 SYNC_EVENTS_VALID);
1710}
1711
1712/* make some assumptions about the time representation rather than abstract it,
1713 * since we currently only support one type of inline timestamping and only on
1714 * EF10.
1715 */
1716#define MINOR_TICKS_PER_SECOND 0x8000000
1717/* Fuzz factor for sync events to be out of order with RX events */
1718#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1719#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1720
1721static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1722{
1723#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1724 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1725#else
1726 const u8 *data = eh + efx->rx_packet_ts_offset;
1727 return (u32)data[0] |
1728 (u32)data[1] << 8 |
1729 (u32)data[2] << 16 |
1730 (u32)data[3] << 24;
1731#endif
1732}
1733
1734void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1735 struct sk_buff *skb)
1736{
1737 struct efx_nic *efx = channel->efx;
1738 u32 pkt_timestamp_major, pkt_timestamp_minor;
1739 u32 diff, carry;
1740 struct skb_shared_hwtstamps *timestamps;
1741
1742 pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1743 skb_mac_header(skb)) +
1744 (u32) efx->ptp_data->ts_corrections.rx) &
1745 (MINOR_TICKS_PER_SECOND - 1);
1746
1747 /* get the difference between the packet and sync timestamps,
1748 * modulo one second
1749 */
1750 diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1751 (MINOR_TICKS_PER_SECOND - 1);
1752 /* do we roll over a second boundary and need to carry the one? */
1753 carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1754 1 : 0;
1755
1756 if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1757 FUZZ) {
1758 /* packet is ahead of the sync event by a quarter of a second or
1759 * less (allowing for fuzz)
1760 */
1761 pkt_timestamp_major = channel->sync_timestamp_major + carry;
1762 } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1763 /* packet is behind the sync event but within the fuzz factor.
1764 * This means the RX packet and sync event crossed as they were
1765 * placed on the event queue, which can sometimes happen.
1766 */
1767 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1768 } else {
1769 /* it's outside tolerance in both directions. this might be
1770 * indicative of us missing sync events for some reason, so
1771 * we'll call it an error rather than risk giving a bogus
1772 * timestamp.
1773 */
1774 netif_vdbg(efx, drv, efx->net_dev,
1775 "packet timestamp %x too far from sync event %x:%x\n",
1776 pkt_timestamp_minor, channel->sync_timestamp_major,
1777 channel->sync_timestamp_minor);
1778 return;
1779 }
1780
1781 /* attach the timestamps to the skb */
1782 timestamps = skb_hwtstamps(skb);
1783 timestamps->hwtstamp =
1784 efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1785}
1786
7c236c43
SH
1787static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1788{
1789 struct efx_ptp_data *ptp_data = container_of(ptp,
1790 struct efx_ptp_data,
1791 phc_clock_info);
ac36baf8 1792 struct efx_nic *efx = ptp_data->efx;
59cfc479 1793 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43
SH
1794 s64 adjustment_ns;
1795 int rc;
1796
1797 if (delta > MAX_PPB)
1798 delta = MAX_PPB;
1799 else if (delta < -MAX_PPB)
1800 delta = -MAX_PPB;
1801
1802 /* Convert ppb to fixed point ns. */
1803 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1804 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1805
1806 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1807 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
338f74df 1808 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
7c236c43
SH
1809 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1810 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1811 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1812 NULL, 0, NULL);
1813 if (rc != 0)
1814 return rc;
1815
cd6fe65e 1816 ptp_data->current_adjfreq = adjustment_ns;
7c236c43
SH
1817 return 0;
1818}
1819
1820static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1821{
a6f73460 1822 u32 nic_major, nic_minor;
7c236c43
SH
1823 struct efx_ptp_data *ptp_data = container_of(ptp,
1824 struct efx_ptp_data,
1825 phc_clock_info);
ac36baf8 1826 struct efx_nic *efx = ptp_data->efx;
59cfc479 1827 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43 1828
a6f73460
LE
1829 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1830
7c236c43 1831 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1832 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
cd6fe65e 1833 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
a6f73460
LE
1834 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1835 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
7c236c43
SH
1836 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1837 NULL, 0, NULL);
1838}
1839
1840static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1841{
1842 struct efx_ptp_data *ptp_data = container_of(ptp,
1843 struct efx_ptp_data,
1844 phc_clock_info);
ac36baf8 1845 struct efx_nic *efx = ptp_data->efx;
59cfc479
BH
1846 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1847 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
7c236c43 1848 int rc;
a6f73460 1849 ktime_t kt;
7c236c43
SH
1850
1851 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
c1d828bd 1852 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
1853
1854 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1855 outbuf, sizeof(outbuf), NULL);
1856 if (rc != 0)
1857 return rc;
1858
a6f73460
LE
1859 kt = ptp_data->nic_to_kernel_time(
1860 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1861 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1862 *ts = ktime_to_timespec(kt);
7c236c43
SH
1863 return 0;
1864}
1865
1866static int efx_phc_settime(struct ptp_clock_info *ptp,
1867 const struct timespec *e_ts)
1868{
1869 /* Get the current NIC time, efx_phc_gettime.
1870 * Subtract from the desired time to get the offset
1871 * call efx_phc_adjtime with the offset
1872 */
1873 int rc;
1874 struct timespec time_now;
1875 struct timespec delta;
1876
1877 rc = efx_phc_gettime(ptp, &time_now);
1878 if (rc != 0)
1879 return rc;
1880
1881 delta = timespec_sub(*e_ts, time_now);
1882
56567c6f 1883 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
7c236c43
SH
1884 if (rc != 0)
1885 return rc;
1886
1887 return 0;
1888}
1889
1890static int efx_phc_enable(struct ptp_clock_info *ptp,
1891 struct ptp_clock_request *request,
1892 int enable)
1893{
1894 struct efx_ptp_data *ptp_data = container_of(ptp,
1895 struct efx_ptp_data,
1896 phc_clock_info);
1897 if (request->type != PTP_CLK_REQ_PPS)
1898 return -EOPNOTSUPP;
1899
1900 ptp_data->nic_ts_enabled = !!enable;
1901 return 0;
1902}
1903
1904static const struct efx_channel_type efx_ptp_channel_type = {
1905 .handle_no_channel = efx_ptp_handle_no_channel,
1906 .pre_probe = efx_ptp_probe_channel,
1907 .post_remove = efx_ptp_remove_channel,
1908 .get_name = efx_ptp_get_channel_name,
1909 /* no copy operation; there is no need to reallocate this channel */
1910 .receive_skb = efx_ptp_rx,
1911 .keep_eventq = false,
1912};
1913
ac36baf8 1914void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
7c236c43
SH
1915{
1916 /* Check whether PTP is implemented on this NIC. The DISABLE
1917 * operation will succeed if and only if it is implemented.
1918 */
1919 if (efx_ptp_disable(efx) == 0)
1920 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1921 &efx_ptp_channel_type;
1922}
2ea4dc28
AR
1923
1924void efx_ptp_start_datapath(struct efx_nic *efx)
1925{
1926 if (efx_ptp_restart(efx))
1927 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
bd9a265d
JC
1928 /* re-enable timestamping if it was previously enabled */
1929 if (efx->type->ptp_set_ts_sync_events)
1930 efx->type->ptp_set_ts_sync_events(efx, true, true);
2ea4dc28
AR
1931}
1932
1933void efx_ptp_stop_datapath(struct efx_nic *efx)
1934{
bd9a265d
JC
1935 /* temporarily disable timestamping */
1936 if (efx->type->ptp_set_ts_sync_events)
1937 efx->type->ptp_set_ts_sync_events(efx, false, true);
2ea4dc28
AR
1938 efx_ptp_stop(efx);
1939}
This page took 0.268269 seconds and 5 git commands to generate.