Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / net / ethernet / sfc / ptp.c
CommitLineData
7c236c43 1/****************************************************************************
f7a6d2c4
BH
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
7c236c43
SH
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10/* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36#include <linux/ip.h>
37#include <linux/udp.h>
38#include <linux/time.h>
39#include <linux/ktime.h>
40#include <linux/module.h>
41#include <linux/net_tstamp.h>
42#include <linux/pps_kernel.h>
43#include <linux/ptp_clock_kernel.h>
44#include "net_driver.h"
45#include "efx.h"
46#include "mcdi.h"
47#include "mcdi_pcol.h"
48#include "io.h"
8b8a95a1 49#include "farch_regs.h"
7c236c43
SH
50#include "nic.h"
51
52/* Maximum number of events expected to make up a PTP event */
53#define MAX_EVENT_FRAGS 3
54
55/* Maximum delay, ms, to begin synchronisation */
56#define MAX_SYNCHRONISE_WAIT_MS 2
57
58/* How long, at most, to spend synchronising */
59#define SYNCHRONISE_PERIOD_NS 250000
60
61/* How often to update the shared memory time */
62#define SYNCHRONISATION_GRANULARITY_NS 200
63
64/* Minimum permitted length of a (corrected) synchronisation time */
a6f73460 65#define DEFAULT_MIN_SYNCHRONISATION_NS 120
7c236c43
SH
66
67/* Maximum permitted length of a (corrected) synchronisation time */
68#define MAX_SYNCHRONISATION_NS 1000
69
70/* How many (MC) receive events that can be queued */
71#define MAX_RECEIVE_EVENTS 8
72
73/* Length of (modified) moving average. */
74#define AVERAGE_LENGTH 16
75
76/* How long an unmatched event or packet can be held */
77#define PKT_EVENT_LIFETIME_MS 10
78
79/* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83#define PTP_DPORT_OFFSET 22
84
85#define PTP_V1_VERSION_LENGTH 2
86#define PTP_V1_VERSION_OFFSET 28
87
88#define PTP_V1_UUID_LENGTH 6
89#define PTP_V1_UUID_OFFSET 50
90
91#define PTP_V1_SEQUENCE_LENGTH 2
92#define PTP_V1_SEQUENCE_OFFSET 58
93
94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97#define PTP_V1_MIN_LENGTH 64
98
99#define PTP_V2_VERSION_LENGTH 1
100#define PTP_V2_VERSION_OFFSET 29
101
c939a316
LE
102#define PTP_V2_UUID_LENGTH 8
103#define PTP_V2_UUID_OFFSET 48
104
7c236c43
SH
105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110#define PTP_V2_MC_UUID_LENGTH 6
111#define PTP_V2_MC_UUID_OFFSET 50
112
113#define PTP_V2_SEQUENCE_LENGTH 2
114#define PTP_V2_SEQUENCE_OFFSET 58
115
116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119#define PTP_V2_MIN_LENGTH 63
120
121#define PTP_MIN_LENGTH 63
122
123#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124#define PTP_EVENT_PORT 319
125#define PTP_GENERAL_PORT 320
126
127/* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130#define PTP_VERSION_V1 1
131
132#define PTP_VERSION_V2 2
133#define PTP_VERSION_V2_MASK 0x0f
134
135enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140};
141
142/* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145#define MC_NANOSECOND_BITS 30
146#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149/* Maximum parts-per-billion adjustment that is acceptable */
150#define MAX_PPB 1000000
151
152/* Number of bits required to hold the above */
153#define MAX_PPB_BITS 20
154
155/* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159#define PPB_EXTRA_BITS 2
160
161/* Precalculate scale word to avoid long long division at runtime */
162#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165#define PTP_SYNC_ATTEMPTS 4
166
167/**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179};
180
181/**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193};
194
195/**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
a6f73460
LE
198 * @major: Hardware timestamp, major
199 * @minor: Hardware timestamp, minor
7c236c43 200 * @host_end: Host time immediately after hardware timestamp taken
a6f73460 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
7c236c43
SH
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206struct efx_ptp_timeset {
207 u32 host_start;
a6f73460
LE
208 u32 major;
209 u32 minor;
7c236c43 210 u32 host_end;
a6f73460 211 u32 wait;
7c236c43
SH
212 u32 window; /* Derived: end - start, allowing for wrap */
213};
214
215/**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
ac36baf8
BH
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
bd9a265d
JC
219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
220 * separate events)
7c236c43
SH
221 * @rxq: Receive queue (awaiting timestamps)
222 * @txq: Transmit queue
223 * @evt_list: List of MC receive events awaiting packets
224 * @evt_free_list: List of free events
225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
f3211600 226 * @evt_overflow: Boolean indicating that event list has overflowed
7c236c43
SH
227 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
228 * @workwq: Work queue for processing pending PTP operations
229 * @work: Work task
230 * @reset_required: A serious error has occurred and the PTP task needs to be
231 * reset (disable, enable).
232 * @rxfilter_event: Receive filter when operating
233 * @rxfilter_general: Receive filter when operating
234 * @config: Current timestamp configuration
235 * @enabled: PTP operation enabled
236 * @mode: Mode in which PTP operating (PTP version)
a6f73460
LE
237 * @time_format: Time format supported by this NIC
238 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
239 * @nic_to_kernel_time: Function to convert from NIC to kernel time
240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
241 * @ts_corrections.tx: Required driver correction of transmit timestamps
242 * @ts_corrections.rx: Required driver correction of receive timestamps
243 * @ts_corrections.pps_out: PPS output error (information only)
244 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
7c236c43
SH
245 * @evt_frags: Partly assembled PTP events
246 * @evt_frag_idx: Current fragment number
247 * @evt_code: Last event code
248 * @start: Address at which MC indicates ready for synchronisation
249 * @host_time_pps: Host time at last PPS
7c236c43 250 * @current_adjfreq: Current ppb adjustment.
9aecda95 251 * @phc_clock: Pointer to registered phc device (if primary function)
7c236c43
SH
252 * @phc_clock_info: Registration structure for phc device
253 * @pps_work: pps work task for handling pps events
254 * @pps_workwq: pps work queue
255 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
256 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
257 * allocations in main data path).
99691c4a
BH
258 * @good_syncs: Number of successful synchronisations.
259 * @fast_syncs: Number of synchronisations requiring short delay
260 * @bad_syncs: Number of failed synchronisations.
261 * @sync_timeouts: Number of synchronisation timeouts
262 * @no_time_syncs: Number of synchronisations with no good times.
263 * @invalid_sync_windows: Number of sync windows with bad durations.
264 * @undersize_sync_windows: Number of corrected sync windows that are too small
265 * @oversize_sync_windows: Number of corrected sync windows that are too large
266 * @rx_no_timestamp: Number of packets received without a timestamp.
7c236c43
SH
267 * @timeset: Last set of synchronisation statistics.
268 */
269struct efx_ptp_data {
ac36baf8 270 struct efx_nic *efx;
7c236c43 271 struct efx_channel *channel;
bd9a265d 272 bool rx_ts_inline;
7c236c43
SH
273 struct sk_buff_head rxq;
274 struct sk_buff_head txq;
275 struct list_head evt_list;
276 struct list_head evt_free_list;
277 spinlock_t evt_lock;
f3211600 278 bool evt_overflow;
7c236c43
SH
279 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
280 struct workqueue_struct *workwq;
281 struct work_struct work;
282 bool reset_required;
283 u32 rxfilter_event;
284 u32 rxfilter_general;
285 bool rxfilter_installed;
286 struct hwtstamp_config config;
287 bool enabled;
288 unsigned int mode;
a6f73460
LE
289 unsigned int time_format;
290 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
291 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
292 s32 correction);
293 unsigned int min_synchronisation_ns;
294 struct {
295 s32 tx;
296 s32 rx;
297 s32 pps_out;
298 s32 pps_in;
299 } ts_corrections;
7c236c43
SH
300 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
301 int evt_frag_idx;
302 int evt_code;
303 struct efx_buffer start;
304 struct pps_event_time host_time_pps;
7c236c43
SH
305 s64 current_adjfreq;
306 struct ptp_clock *phc_clock;
307 struct ptp_clock_info phc_clock_info;
308 struct work_struct pps_work;
309 struct workqueue_struct *pps_workwq;
310 bool nic_ts_enabled;
c5bb0e98 311 MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
99691c4a
BH
312
313 unsigned int good_syncs;
314 unsigned int fast_syncs;
315 unsigned int bad_syncs;
316 unsigned int sync_timeouts;
317 unsigned int no_time_syncs;
318 unsigned int invalid_sync_windows;
319 unsigned int undersize_sync_windows;
320 unsigned int oversize_sync_windows;
321 unsigned int rx_no_timestamp;
7c236c43
SH
322 struct efx_ptp_timeset
323 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
324};
325
326static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
327static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
328static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
329static int efx_phc_settime(struct ptp_clock_info *ptp,
330 const struct timespec *e_ts);
331static int efx_phc_enable(struct ptp_clock_info *ptp,
332 struct ptp_clock_request *request, int on);
333
99691c4a
BH
334#define PTP_SW_STAT(ext_name, field_name) \
335 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
336#define PTP_MC_STAT(ext_name, mcdi_name) \
337 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
338static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
339 PTP_SW_STAT(ptp_good_syncs, good_syncs),
340 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
341 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
342 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
343 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
344 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
345 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
346 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
347 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
348 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
349 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
350 PTP_MC_STAT(ptp_timestamp_packets, TS),
351 PTP_MC_STAT(ptp_filter_matches, FM),
352 PTP_MC_STAT(ptp_non_filter_matches, NFM),
353};
354#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
355static const unsigned long efx_ptp_stat_mask[] = {
356 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
357};
358
359size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
360{
361 if (!efx->ptp_data)
362 return 0;
363
364 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
365 efx_ptp_stat_mask, strings);
366}
367
368size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
369{
370 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
371 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
372 size_t i;
373 int rc;
374
375 if (!efx->ptp_data)
376 return 0;
377
378 /* Copy software statistics */
379 for (i = 0; i < PTP_STAT_COUNT; i++) {
380 if (efx_ptp_stat_desc[i].dma_width)
381 continue;
382 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
383 efx_ptp_stat_desc[i].offset);
384 }
385
386 /* Fetch MC statistics. We *must* fill in all statistics or
387 * risk leaking kernel memory to userland, so if the MCDI
388 * request fails we pretend we got zeroes.
389 */
390 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
391 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
392 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
393 outbuf, sizeof(outbuf), NULL);
394 if (rc) {
395 netif_err(efx, hw, efx->net_dev,
396 "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc);
397 memset(outbuf, 0, sizeof(outbuf));
398 }
399 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
400 efx_ptp_stat_mask,
401 stats, _MCDI_PTR(outbuf, 0), false);
402
403 return PTP_STAT_COUNT;
404}
405
a6f73460
LE
406/* For Siena platforms NIC time is s and ns */
407static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
408{
409 struct timespec ts = ns_to_timespec(ns);
410 *nic_major = ts.tv_sec;
411 *nic_minor = ts.tv_nsec;
412}
413
bd9a265d
JC
414static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
415 s32 correction)
a6f73460
LE
416{
417 ktime_t kt = ktime_set(nic_major, nic_minor);
418 if (correction >= 0)
419 kt = ktime_add_ns(kt, (u64)correction);
420 else
421 kt = ktime_sub_ns(kt, (u64)-correction);
422 return kt;
423}
424
425/* To convert from s27 format to ns we multiply then divide by a power of 2.
426 * For the conversion from ns to s27, the operation is also converted to a
427 * multiply and shift.
428 */
429#define S27_TO_NS_SHIFT (27)
430#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
431#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
432#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
433
434/* For Huntington platforms NIC time is in seconds and fractions of a second
435 * where the minor register only uses 27 bits in units of 2^-27s.
436 */
437static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
438{
439 struct timespec ts = ns_to_timespec(ns);
440 u32 maj = ts.tv_sec;
441 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
442 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
443
444 /* The conversion can result in the minor value exceeding the maximum.
445 * In this case, round up to the next second.
446 */
447 if (min >= S27_MINOR_MAX) {
448 min -= S27_MINOR_MAX;
449 maj++;
450 }
451
452 *nic_major = maj;
453 *nic_minor = min;
454}
455
bd9a265d 456static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
a6f73460 457{
bd9a265d
JC
458 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
459 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
460 return ktime_set(nic_major, ns);
461}
a6f73460 462
bd9a265d
JC
463static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
464 s32 correction)
465{
a6f73460
LE
466 /* Apply the correction and deal with carry */
467 nic_minor += correction;
468 if ((s32)nic_minor < 0) {
469 nic_minor += S27_MINOR_MAX;
470 nic_major--;
471 } else if (nic_minor >= S27_MINOR_MAX) {
472 nic_minor -= S27_MINOR_MAX;
473 nic_major++;
474 }
475
bd9a265d 476 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
a6f73460
LE
477}
478
479/* Get PTP attributes and set up time conversions */
480static int efx_ptp_get_attributes(struct efx_nic *efx)
481{
482 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
483 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
484 struct efx_ptp_data *ptp = efx->ptp_data;
485 int rc;
486 u32 fmt;
487 size_t out_len;
488
489 /* Get the PTP attributes. If the NIC doesn't support the operation we
490 * use the default format for compatibility with older NICs i.e.
491 * seconds and nanoseconds.
492 */
493 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
494 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
495 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
496 outbuf, sizeof(outbuf), &out_len);
497 if (rc == 0)
498 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
499 else if (rc == -EINVAL)
500 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
501 else
502 return rc;
503
504 if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
505 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
bd9a265d 506 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
a6f73460
LE
507 } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
508 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
bd9a265d 509 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
a6f73460
LE
510 } else {
511 return -ERANGE;
512 }
513
514 ptp->time_format = fmt;
515
516 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
517 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
518 * to use for the minimum acceptable corrected synchronization window.
519 * If we have the extra information store it. For older firmware that
520 * does not implement the extended command use the default value.
521 */
522 if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
523 ptp->min_synchronisation_ns =
524 MCDI_DWORD(outbuf,
525 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
526 else
527 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
528
529 return 0;
530}
531
532/* Get PTP timestamp corrections */
533static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
534{
535 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
536 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
537 int rc;
538
539 /* Get the timestamp corrections from the NIC. If this operation is
540 * not supported (older NICs) then no correction is required.
541 */
542 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
543 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
544 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
545
546 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
547 outbuf, sizeof(outbuf), NULL);
548 if (rc == 0) {
549 efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
550 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
551 efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
552 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
553 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
554 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
555 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
556 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
557 } else if (rc == -EINVAL) {
558 efx->ptp_data->ts_corrections.tx = 0;
559 efx->ptp_data->ts_corrections.rx = 0;
560 efx->ptp_data->ts_corrections.pps_out = 0;
561 efx->ptp_data->ts_corrections.pps_in = 0;
562 } else {
563 return rc;
564 }
565
566 return 0;
567}
568
7c236c43
SH
569/* Enable MCDI PTP support. */
570static int efx_ptp_enable(struct efx_nic *efx)
571{
59cfc479 572 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
1e0b8120
EC
573 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
574 int rc;
7c236c43
SH
575
576 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
c1d828bd 577 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43 578 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
ac36baf8
BH
579 efx->ptp_data->channel ?
580 efx->ptp_data->channel->channel : 0);
7c236c43
SH
581 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
582
1e0b8120
EC
583 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
584 outbuf, sizeof(outbuf), NULL);
585 rc = (rc == -EALREADY) ? 0 : rc;
586 if (rc)
587 efx_mcdi_display_error(efx, MC_CMD_PTP,
588 MC_CMD_PTP_IN_ENABLE_LEN,
589 outbuf, sizeof(outbuf), rc);
590 return rc;
7c236c43
SH
591}
592
593/* Disable MCDI PTP support.
594 *
595 * Note that this function should never rely on the presence of ptp_data -
596 * may be called before that exists.
597 */
598static int efx_ptp_disable(struct efx_nic *efx)
599{
59cfc479 600 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
1e0b8120
EC
601 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
602 int rc;
7c236c43
SH
603
604 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
c1d828bd 605 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1e0b8120
EC
606 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
607 outbuf, sizeof(outbuf), NULL);
608 rc = (rc == -EALREADY) ? 0 : rc;
609 if (rc)
610 efx_mcdi_display_error(efx, MC_CMD_PTP,
611 MC_CMD_PTP_IN_DISABLE_LEN,
612 outbuf, sizeof(outbuf), rc);
613 return rc;
7c236c43
SH
614}
615
616static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
617{
618 struct sk_buff *skb;
619
620 while ((skb = skb_dequeue(q))) {
621 local_bh_disable();
622 netif_receive_skb(skb);
623 local_bh_enable();
624 }
625}
626
627static void efx_ptp_handle_no_channel(struct efx_nic *efx)
628{
629 netif_err(efx, drv, efx->net_dev,
630 "ERROR: PTP requires MSI-X and 1 additional interrupt"
631 "vector. PTP disabled\n");
632}
633
634/* Repeatedly send the host time to the MC which will capture the hardware
635 * time.
636 */
637static void efx_ptp_send_times(struct efx_nic *efx,
638 struct pps_event_time *last_time)
639{
640 struct pps_event_time now;
641 struct timespec limit;
642 struct efx_ptp_data *ptp = efx->ptp_data;
643 struct timespec start;
644 int *mc_running = ptp->start.addr;
645
646 pps_get_ts(&now);
647 start = now.ts_real;
648 limit = now.ts_real;
649 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
650
651 /* Write host time for specified period or until MC is done */
652 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
653 ACCESS_ONCE(*mc_running)) {
654 struct timespec update_time;
655 unsigned int host_time;
656
657 /* Don't update continuously to avoid saturating the PCIe bus */
658 update_time = now.ts_real;
659 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
660 do {
661 pps_get_ts(&now);
662 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
663 ACCESS_ONCE(*mc_running));
664
665 /* Synchronise NIC with single word of time only */
666 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
667 now.ts_real.tv_nsec);
668 /* Update host time in NIC memory */
977a5d5d 669 efx->type->ptp_write_host_time(efx, host_time);
7c236c43
SH
670 }
671 *last_time = now;
672}
673
674/* Read a timeset from the MC's results and partial process. */
c5bb0e98
BH
675static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
676 struct efx_ptp_timeset *timeset)
7c236c43
SH
677{
678 unsigned start_ns, end_ns;
679
680 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
a6f73460
LE
681 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
682 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
7c236c43 683 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
a6f73460 684 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
7c236c43
SH
685
686 /* Ignore seconds */
687 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
688 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
689 /* Allow for rollover */
690 if (end_ns < start_ns)
691 end_ns += NSEC_PER_SEC;
692 /* Determine duration of operation */
693 timeset->window = end_ns - start_ns;
694}
695
696/* Process times received from MC.
697 *
698 * Extract times from returned results, and establish the minimum value
699 * seen. The minimum value represents the "best" possible time and events
700 * too much greater than this are rejected - the machine is, perhaps, too
701 * busy. A number of readings are taken so that, hopefully, at least one good
702 * synchronisation will be seen in the results.
703 */
c5bb0e98
BH
704static int
705efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
706 size_t response_length,
707 const struct pps_event_time *last_time)
7c236c43 708{
c5bb0e98
BH
709 unsigned number_readings =
710 MCDI_VAR_ARRAY_LEN(response_length,
711 PTP_OUT_SYNCHRONIZE_TIMESET);
7c236c43 712 unsigned i;
7c236c43
SH
713 unsigned ngood = 0;
714 unsigned last_good = 0;
715 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
716 u32 last_sec;
717 u32 start_sec;
718 struct timespec delta;
a6f73460 719 ktime_t mc_time;
7c236c43
SH
720
721 if (number_readings == 0)
722 return -EAGAIN;
723
dfd8d581
LE
724 /* Read the set of results and find the last good host-MC
725 * synchronization result. The MC times when it finishes reading the
726 * host time so the corrected window time should be fairly constant
99691c4a
BH
727 * for a given platform. Increment stats for any results that appear
728 * to be erroneous.
7c236c43
SH
729 */
730 for (i = 0; i < number_readings; i++) {
dfd8d581 731 s32 window, corrected;
a6f73460 732 struct timespec wait;
dfd8d581 733
c5bb0e98
BH
734 efx_ptp_read_timeset(
735 MCDI_ARRAY_STRUCT_PTR(synch_buf,
736 PTP_OUT_SYNCHRONIZE_TIMESET, i),
737 &ptp->timeset[i]);
7c236c43 738
a6f73460
LE
739 wait = ktime_to_timespec(
740 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
dfd8d581 741 window = ptp->timeset[i].window;
a6f73460 742 corrected = window - wait.tv_nsec;
dfd8d581
LE
743
744 /* We expect the uncorrected synchronization window to be at
745 * least as large as the interval between host start and end
746 * times. If it is smaller than this then this is mostly likely
747 * to be a consequence of the host's time being adjusted.
748 * Check that the corrected sync window is in a reasonable
749 * range. If it is out of range it is likely to be because an
750 * interrupt or other delay occurred between reading the system
751 * time and writing it to MC memory.
752 */
99691c4a
BH
753 if (window < SYNCHRONISATION_GRANULARITY_NS) {
754 ++ptp->invalid_sync_windows;
755 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
99691c4a 756 ++ptp->oversize_sync_windows;
13c92e82
BH
757 } else if (corrected < ptp->min_synchronisation_ns) {
758 ++ptp->undersize_sync_windows;
99691c4a 759 } else {
dfd8d581
LE
760 ngood++;
761 last_good = i;
7c236c43 762 }
dfd8d581 763 }
7c236c43
SH
764
765 if (ngood == 0) {
766 netif_warn(efx, drv, efx->net_dev,
94cd60d0 767 "PTP no suitable synchronisations\n");
7c236c43
SH
768 return -EAGAIN;
769 }
770
a6f73460
LE
771 /* Convert the NIC time into kernel time. No correction is required-
772 * this time is the output of a firmware process.
773 */
774 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
775 ptp->timeset[last_good].minor, 0);
776
7c236c43 777 /* Calculate delay from actual PPS to last_time */
a6f73460
LE
778 delta = ktime_to_timespec(mc_time);
779 delta.tv_nsec +=
7c236c43
SH
780 last_time->ts_real.tv_nsec -
781 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
782
783 /* It is possible that the seconds rolled over between taking
784 * the start reading and the last value written by the host. The
785 * timescales are such that a gap of more than one second is never
786 * expected.
787 */
788 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
789 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
790 if (start_sec != last_sec) {
791 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
792 netif_warn(efx, hw, efx->net_dev,
793 "PTP bad synchronisation seconds\n");
794 return -EAGAIN;
795 } else {
796 delta.tv_sec = 1;
797 }
798 } else {
799 delta.tv_sec = 0;
800 }
801
802 ptp->host_time_pps = *last_time;
803 pps_sub_ts(&ptp->host_time_pps, delta);
804
805 return 0;
806}
807
808/* Synchronize times between the host and the MC */
809static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
810{
811 struct efx_ptp_data *ptp = efx->ptp_data;
59cfc479 812 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
7c236c43
SH
813 size_t response_length;
814 int rc;
815 unsigned long timeout;
816 struct pps_event_time last_time = {};
817 unsigned int loops = 0;
818 int *start = ptp->start.addr;
819
820 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
c1d828bd 821 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
822 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
823 num_readings);
338f74df
BH
824 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
825 ptp->start.dma_addr);
7c236c43
SH
826
827 /* Clear flag that signals MC ready */
828 ACCESS_ONCE(*start) = 0;
df2cd8af
BH
829 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
830 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
831 EFX_BUG_ON_PARANOID(rc);
7c236c43
SH
832
833 /* Wait for start from MCDI (or timeout) */
834 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
835 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
836 udelay(20); /* Usually start MCDI execution quickly */
837 loops++;
838 }
839
99691c4a
BH
840 if (loops <= 1)
841 ++ptp->fast_syncs;
842 if (!time_before(jiffies, timeout))
843 ++ptp->sync_timeouts;
844
7c236c43
SH
845 if (ACCESS_ONCE(*start))
846 efx_ptp_send_times(efx, &last_time);
847
848 /* Collect results */
849 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
850 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
851 synch_buf, sizeof(synch_buf),
852 &response_length);
99691c4a 853 if (rc == 0) {
7c236c43
SH
854 rc = efx_ptp_process_times(efx, synch_buf, response_length,
855 &last_time);
99691c4a
BH
856 if (rc == 0)
857 ++ptp->good_syncs;
858 else
859 ++ptp->no_time_syncs;
860 }
861
862 /* Increment the bad syncs counter if the synchronize fails, whatever
863 * the reason.
864 */
865 if (rc != 0)
866 ++ptp->bad_syncs;
7c236c43
SH
867
868 return rc;
869}
870
871/* Transmit a PTP packet, via the MCDI interface, to the wire. */
872static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
873{
c5bb0e98 874 struct efx_ptp_data *ptp_data = efx->ptp_data;
7c236c43
SH
875 struct skb_shared_hwtstamps timestamps;
876 int rc = -EIO;
59cfc479 877 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
9528b921 878 size_t len;
7c236c43 879
c5bb0e98 880 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
c1d828bd 881 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
c5bb0e98 882 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
7c236c43
SH
883 if (skb_shinfo(skb)->nr_frags != 0) {
884 rc = skb_linearize(skb);
885 if (rc != 0)
886 goto fail;
887 }
888
889 if (skb->ip_summed == CHECKSUM_PARTIAL) {
890 rc = skb_checksum_help(skb);
891 if (rc != 0)
892 goto fail;
893 }
894 skb_copy_from_linear_data(skb,
c5bb0e98
BH
895 MCDI_PTR(ptp_data->txbuf,
896 PTP_IN_TRANSMIT_PACKET),
9528b921
BH
897 skb->len);
898 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
899 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
900 txtime, sizeof(txtime), &len);
7c236c43
SH
901 if (rc != 0)
902 goto fail;
903
904 memset(&timestamps, 0, sizeof(timestamps));
a6f73460
LE
905 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
906 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
907 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
908 ptp_data->ts_corrections.tx);
7c236c43
SH
909
910 skb_tstamp_tx(skb, &timestamps);
911
912 rc = 0;
913
914fail:
915 dev_kfree_skb(skb);
916
917 return rc;
918}
919
920static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
921{
922 struct efx_ptp_data *ptp = efx->ptp_data;
923 struct list_head *cursor;
924 struct list_head *next;
925
bd9a265d
JC
926 if (ptp->rx_ts_inline)
927 return;
928
7c236c43
SH
929 /* Drop time-expired events */
930 spin_lock_bh(&ptp->evt_lock);
931 if (!list_empty(&ptp->evt_list)) {
932 list_for_each_safe(cursor, next, &ptp->evt_list) {
933 struct efx_ptp_event_rx *evt;
934
935 evt = list_entry(cursor, struct efx_ptp_event_rx,
936 link);
937 if (time_after(jiffies, evt->expiry)) {
9545f4e2 938 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
939 netif_warn(efx, hw, efx->net_dev,
940 "PTP rx event dropped\n");
941 }
942 }
943 }
f3211600
LE
944 /* If the event overflow flag is set and the event list is now empty
945 * clear the flag to re-enable the overflow warning message.
946 */
947 if (ptp->evt_overflow && list_empty(&ptp->evt_list))
948 ptp->evt_overflow = false;
7c236c43
SH
949 spin_unlock_bh(&ptp->evt_lock);
950}
951
952static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
953 struct sk_buff *skb)
954{
955 struct efx_ptp_data *ptp = efx->ptp_data;
956 bool evts_waiting;
957 struct list_head *cursor;
958 struct list_head *next;
959 struct efx_ptp_match *match;
960 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
961
bd9a265d
JC
962 WARN_ON_ONCE(ptp->rx_ts_inline);
963
7c236c43
SH
964 spin_lock_bh(&ptp->evt_lock);
965 evts_waiting = !list_empty(&ptp->evt_list);
966 spin_unlock_bh(&ptp->evt_lock);
967
968 if (!evts_waiting)
969 return PTP_PACKET_STATE_UNMATCHED;
970
971 match = (struct efx_ptp_match *)skb->cb;
972 /* Look for a matching timestamp in the event queue */
973 spin_lock_bh(&ptp->evt_lock);
974 list_for_each_safe(cursor, next, &ptp->evt_list) {
975 struct efx_ptp_event_rx *evt;
976
977 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
978 if ((evt->seq0 == match->words[0]) &&
979 (evt->seq1 == match->words[1])) {
980 struct skb_shared_hwtstamps *timestamps;
981
982 /* Match - add in hardware timestamp */
983 timestamps = skb_hwtstamps(skb);
984 timestamps->hwtstamp = evt->hwtimestamp;
985
986 match->state = PTP_PACKET_STATE_MATCHED;
987 rc = PTP_PACKET_STATE_MATCHED;
9545f4e2 988 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
989 break;
990 }
991 }
f3211600
LE
992 /* If the event overflow flag is set and the event list is now empty
993 * clear the flag to re-enable the overflow warning message.
994 */
995 if (ptp->evt_overflow && list_empty(&ptp->evt_list))
996 ptp->evt_overflow = false;
7c236c43
SH
997 spin_unlock_bh(&ptp->evt_lock);
998
999 return rc;
1000}
1001
1002/* Process any queued receive events and corresponding packets
1003 *
1004 * q is returned with all the packets that are ready for delivery.
7c236c43 1005 */
bbbe7149 1006static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
7c236c43
SH
1007{
1008 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
1009 struct sk_buff *skb;
1010
1011 while ((skb = skb_dequeue(&ptp->rxq))) {
1012 struct efx_ptp_match *match;
1013
1014 match = (struct efx_ptp_match *)skb->cb;
1015 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1016 __skb_queue_tail(q, skb);
1017 } else if (efx_ptp_match_rx(efx, skb) ==
1018 PTP_PACKET_STATE_MATCHED) {
7c236c43
SH
1019 __skb_queue_tail(q, skb);
1020 } else if (time_after(jiffies, match->expiry)) {
1021 match->state = PTP_PACKET_STATE_TIMED_OUT;
99691c4a 1022 ++ptp->rx_no_timestamp;
7c236c43
SH
1023 __skb_queue_tail(q, skb);
1024 } else {
1025 /* Replace unprocessed entry and stop */
1026 skb_queue_head(&ptp->rxq, skb);
1027 break;
1028 }
1029 }
7c236c43
SH
1030}
1031
1032/* Complete processing of a received packet */
1033static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1034{
1035 local_bh_disable();
1036 netif_receive_skb(skb);
1037 local_bh_enable();
1038}
1039
62a1c703
BH
1040static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1041{
1042 struct efx_ptp_data *ptp = efx->ptp_data;
1043
1044 if (ptp->rxfilter_installed) {
1045 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1046 ptp->rxfilter_general);
1047 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1048 ptp->rxfilter_event);
1049 ptp->rxfilter_installed = false;
1050 }
1051}
1052
1053static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
7c236c43
SH
1054{
1055 struct efx_ptp_data *ptp = efx->ptp_data;
1056 struct efx_filter_spec rxfilter;
1057 int rc;
1058
ac36baf8 1059 if (!ptp->channel || ptp->rxfilter_installed)
62a1c703 1060 return 0;
7c236c43
SH
1061
1062 /* Must filter on both event and general ports to ensure
1063 * that there is no packet re-ordering.
1064 */
1065 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1066 efx_rx_queue_index(
1067 efx_channel_get_rx_queue(ptp->channel)));
1068 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1069 htonl(PTP_ADDRESS),
1070 htons(PTP_EVENT_PORT));
1071 if (rc != 0)
1072 return rc;
1073
1074 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1075 if (rc < 0)
1076 return rc;
1077 ptp->rxfilter_event = rc;
1078
1079 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1080 efx_rx_queue_index(
1081 efx_channel_get_rx_queue(ptp->channel)));
1082 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1083 htonl(PTP_ADDRESS),
1084 htons(PTP_GENERAL_PORT));
1085 if (rc != 0)
1086 goto fail;
1087
1088 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1089 if (rc < 0)
1090 goto fail;
1091 ptp->rxfilter_general = rc;
1092
62a1c703
BH
1093 ptp->rxfilter_installed = true;
1094 return 0;
1095
1096fail:
1097 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1098 ptp->rxfilter_event);
1099 return rc;
1100}
1101
1102static int efx_ptp_start(struct efx_nic *efx)
1103{
1104 struct efx_ptp_data *ptp = efx->ptp_data;
1105 int rc;
1106
1107 ptp->reset_required = false;
1108
1109 rc = efx_ptp_insert_multicast_filters(efx);
1110 if (rc)
1111 return rc;
1112
7c236c43
SH
1113 rc = efx_ptp_enable(efx);
1114 if (rc != 0)
62a1c703 1115 goto fail;
7c236c43
SH
1116
1117 ptp->evt_frag_idx = 0;
1118 ptp->current_adjfreq = 0;
7c236c43
SH
1119
1120 return 0;
1121
7c236c43 1122fail:
62a1c703 1123 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1124 return rc;
1125}
1126
1127static int efx_ptp_stop(struct efx_nic *efx)
1128{
1129 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
1130 struct list_head *cursor;
1131 struct list_head *next;
2ea4dc28
AR
1132 int rc;
1133
1134 if (ptp == NULL)
1135 return 0;
1136
1137 rc = efx_ptp_disable(efx);
7c236c43 1138
62a1c703 1139 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1140
1141 /* Make sure RX packets are really delivered */
1142 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1143 skb_queue_purge(&efx->ptp_data->txq);
1144
1145 /* Drop any pending receive events */
1146 spin_lock_bh(&efx->ptp_data->evt_lock);
1147 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
9545f4e2 1148 list_move(cursor, &efx->ptp_data->evt_free_list);
7c236c43 1149 }
f3211600 1150 ptp->evt_overflow = false;
7c236c43
SH
1151 spin_unlock_bh(&efx->ptp_data->evt_lock);
1152
1153 return rc;
1154}
1155
2ea4dc28
AR
1156static int efx_ptp_restart(struct efx_nic *efx)
1157{
1158 if (efx->ptp_data && efx->ptp_data->enabled)
1159 return efx_ptp_start(efx);
1160 return 0;
1161}
1162
7c236c43
SH
1163static void efx_ptp_pps_worker(struct work_struct *work)
1164{
1165 struct efx_ptp_data *ptp =
1166 container_of(work, struct efx_ptp_data, pps_work);
ac36baf8 1167 struct efx_nic *efx = ptp->efx;
7c236c43
SH
1168 struct ptp_clock_event ptp_evt;
1169
1170 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1171 return;
1172
1173 ptp_evt.type = PTP_CLOCK_PPSUSR;
1174 ptp_evt.pps_times = ptp->host_time_pps;
1175 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1176}
1177
7c236c43
SH
1178static void efx_ptp_worker(struct work_struct *work)
1179{
1180 struct efx_ptp_data *ptp_data =
1181 container_of(work, struct efx_ptp_data, work);
ac36baf8 1182 struct efx_nic *efx = ptp_data->efx;
7c236c43
SH
1183 struct sk_buff *skb;
1184 struct sk_buff_head tempq;
1185
1186 if (ptp_data->reset_required) {
1187 efx_ptp_stop(efx);
1188 efx_ptp_start(efx);
1189 return;
1190 }
1191
1192 efx_ptp_drop_time_expired_events(efx);
1193
1194 __skb_queue_head_init(&tempq);
bbbe7149 1195 efx_ptp_process_events(efx, &tempq);
7c236c43 1196
bbbe7149
BH
1197 while ((skb = skb_dequeue(&ptp_data->txq)))
1198 efx_ptp_xmit_skb(efx, skb);
7c236c43
SH
1199
1200 while ((skb = __skb_dequeue(&tempq)))
1201 efx_ptp_process_rx(efx, skb);
1202}
1203
5d0dab01
BH
1204static const struct ptp_clock_info efx_phc_clock_info = {
1205 .owner = THIS_MODULE,
1206 .name = "sfc",
1207 .max_adj = MAX_PPB,
1208 .n_alarm = 0,
1209 .n_ext_ts = 0,
1210 .n_per_out = 0,
1211 .pps = 1,
1212 .adjfreq = efx_phc_adjfreq,
1213 .adjtime = efx_phc_adjtime,
1214 .gettime = efx_phc_gettime,
1215 .settime = efx_phc_settime,
1216 .enable = efx_phc_enable,
1217};
1218
ac36baf8
BH
1219/* Initialise PTP state. */
1220int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
7c236c43 1221{
7c236c43
SH
1222 struct efx_ptp_data *ptp;
1223 int rc = 0;
1224 unsigned int pos;
1225
7c236c43
SH
1226 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1227 efx->ptp_data = ptp;
1228 if (!efx->ptp_data)
1229 return -ENOMEM;
1230
ac36baf8
BH
1231 ptp->efx = efx;
1232 ptp->channel = channel;
bd9a265d 1233 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
ac36baf8 1234
0d19a540 1235 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
7c236c43
SH
1236 if (rc != 0)
1237 goto fail1;
1238
7c236c43
SH
1239 skb_queue_head_init(&ptp->rxq);
1240 skb_queue_head_init(&ptp->txq);
1241 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1242 if (!ptp->workwq) {
1243 rc = -ENOMEM;
1244 goto fail2;
1245 }
1246
1247 INIT_WORK(&ptp->work, efx_ptp_worker);
1248 ptp->config.flags = 0;
1249 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1250 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1251 INIT_LIST_HEAD(&ptp->evt_list);
1252 INIT_LIST_HEAD(&ptp->evt_free_list);
1253 spin_lock_init(&ptp->evt_lock);
1254 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1255 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
f3211600 1256 ptp->evt_overflow = false;
7c236c43 1257
a6f73460
LE
1258 /* Get the NIC PTP attributes and set up time conversions */
1259 rc = efx_ptp_get_attributes(efx);
1260 if (rc < 0)
1261 goto fail3;
1262
1263 /* Get the timestamp corrections */
1264 rc = efx_ptp_get_timestamp_corrections(efx);
1265 if (rc < 0)
1266 goto fail3;
1267
9aecda95
BH
1268 if (efx->mcdi->fn_flags &
1269 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1270 ptp->phc_clock_info = efx_phc_clock_info;
1271 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1272 &efx->pci_dev->dev);
1273 if (IS_ERR(ptp->phc_clock)) {
1274 rc = PTR_ERR(ptp->phc_clock);
1275 goto fail3;
1276 }
7c236c43 1277
9aecda95
BH
1278 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1279 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1280 if (!ptp->pps_workwq) {
1281 rc = -ENOMEM;
1282 goto fail4;
1283 }
7c236c43
SH
1284 }
1285 ptp->nic_ts_enabled = false;
1286
1287 return 0;
1288fail4:
1289 ptp_clock_unregister(efx->ptp_data->phc_clock);
1290
1291fail3:
1292 destroy_workqueue(efx->ptp_data->workwq);
1293
1294fail2:
1295 efx_nic_free_buffer(efx, &ptp->start);
1296
1297fail1:
1298 kfree(efx->ptp_data);
1299 efx->ptp_data = NULL;
1300
1301 return rc;
1302}
1303
ac36baf8
BH
1304/* Initialise PTP channel.
1305 *
1306 * Setting core_index to zero causes the queue to be initialised and doesn't
1307 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1308 */
1309static int efx_ptp_probe_channel(struct efx_channel *channel)
7c236c43
SH
1310{
1311 struct efx_nic *efx = channel->efx;
1312
ac36baf8
BH
1313 channel->irq_moderation = 0;
1314 channel->rx_queue.core_index = 0;
1315
1316 return efx_ptp_probe(efx, channel);
1317}
1318
1319void efx_ptp_remove(struct efx_nic *efx)
1320{
7c236c43
SH
1321 if (!efx->ptp_data)
1322 return;
1323
ac36baf8 1324 (void)efx_ptp_disable(efx);
7c236c43
SH
1325
1326 cancel_work_sync(&efx->ptp_data->work);
1327 cancel_work_sync(&efx->ptp_data->pps_work);
1328
1329 skb_queue_purge(&efx->ptp_data->rxq);
1330 skb_queue_purge(&efx->ptp_data->txq);
1331
9aecda95
BH
1332 if (efx->ptp_data->phc_clock) {
1333 destroy_workqueue(efx->ptp_data->pps_workwq);
1334 ptp_clock_unregister(efx->ptp_data->phc_clock);
1335 }
7c236c43
SH
1336
1337 destroy_workqueue(efx->ptp_data->workwq);
7c236c43
SH
1338
1339 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1340 kfree(efx->ptp_data);
1341}
1342
ac36baf8
BH
1343static void efx_ptp_remove_channel(struct efx_channel *channel)
1344{
1345 efx_ptp_remove(channel->efx);
1346}
1347
7c236c43
SH
1348static void efx_ptp_get_channel_name(struct efx_channel *channel,
1349 char *buf, size_t len)
1350{
1351 snprintf(buf, len, "%s-ptp", channel->efx->name);
1352}
1353
1354/* Determine whether this packet should be processed by the PTP module
1355 * or transmitted conventionally.
1356 */
1357bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1358{
1359 return efx->ptp_data &&
1360 efx->ptp_data->enabled &&
1361 skb->len >= PTP_MIN_LENGTH &&
1362 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1363 likely(skb->protocol == htons(ETH_P_IP)) &&
e5a498e9
BH
1364 skb_transport_header_was_set(skb) &&
1365 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
7c236c43 1366 ip_hdr(skb)->protocol == IPPROTO_UDP &&
e5a498e9
BH
1367 skb_headlen(skb) >=
1368 skb_transport_offset(skb) + sizeof(struct udphdr) &&
7c236c43
SH
1369 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1370}
1371
1372/* Receive a PTP packet. Packets are queued until the arrival of
1373 * the receive timestamp from the MC - this will probably occur after the
1374 * packet arrival because of the processing in the MC.
1375 */
4a74dc65 1376static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
7c236c43
SH
1377{
1378 struct efx_nic *efx = channel->efx;
1379 struct efx_ptp_data *ptp = efx->ptp_data;
1380 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
c939a316 1381 u8 *match_data_012, *match_data_345;
7c236c43
SH
1382 unsigned int version;
1383
1384 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1385
1386 /* Correct version? */
1387 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
97d48a10 1388 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
4a74dc65 1389 return false;
7c236c43
SH
1390 }
1391 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1392 if (version != PTP_VERSION_V1) {
4a74dc65 1393 return false;
7c236c43 1394 }
c939a316
LE
1395
1396 /* PTP V1 uses all six bytes of the UUID to match the packet
1397 * to the timestamp
1398 */
1399 match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1400 match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
7c236c43 1401 } else {
97d48a10 1402 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
4a74dc65 1403 return false;
7c236c43
SH
1404 }
1405 version = skb->data[PTP_V2_VERSION_OFFSET];
7c236c43 1406 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
4a74dc65 1407 return false;
7c236c43 1408 }
c939a316
LE
1409
1410 /* The original V2 implementation uses bytes 2-7 of
1411 * the UUID to match the packet to the timestamp. This
1412 * discards two of the bytes of the MAC address used
1413 * to create the UUID (SF bug 33070). The PTP V2
1414 * enhanced mode fixes this issue and uses bytes 0-2
1415 * and byte 5-7 of the UUID.
1416 */
1417 match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1418 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1419 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1420 } else {
1421 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1422 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1423 }
7c236c43
SH
1424 }
1425
1426 /* Does this packet require timestamping? */
1427 if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
7c236c43
SH
1428 match->state = PTP_PACKET_STATE_UNMATCHED;
1429
c939a316
LE
1430 /* We expect the sequence number to be in the same position in
1431 * the packet for PTP V1 and V2
1432 */
1433 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1434 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1435
7c236c43 1436 /* Extract UUID/Sequence information */
c939a316
LE
1437 match->words[0] = (match_data_012[0] |
1438 (match_data_012[1] << 8) |
1439 (match_data_012[2] << 16) |
1440 (match_data_345[0] << 24));
1441 match->words[1] = (match_data_345[1] |
1442 (match_data_345[2] << 8) |
7c236c43
SH
1443 (skb->data[PTP_V1_SEQUENCE_OFFSET +
1444 PTP_V1_SEQUENCE_LENGTH - 1] <<
1445 16));
1446 } else {
1447 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1448 }
1449
1450 skb_queue_tail(&ptp->rxq, skb);
1451 queue_work(ptp->workwq, &ptp->work);
4a74dc65
BH
1452
1453 return true;
7c236c43
SH
1454}
1455
1456/* Transmit a PTP packet. This has to be transmitted by the MC
1457 * itself, through an MCDI call. MCDI calls aren't permitted
1458 * in the transmit path so defer the actual transmission to a suitable worker.
1459 */
1460int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1461{
1462 struct efx_ptp_data *ptp = efx->ptp_data;
1463
1464 skb_queue_tail(&ptp->txq, skb);
1465
1466 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1467 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1468 efx_xmit_hwtstamp_pending(skb);
1469 queue_work(ptp->workwq, &ptp->work);
1470
1471 return NETDEV_TX_OK;
1472}
1473
9ec06595
DP
1474int efx_ptp_get_mode(struct efx_nic *efx)
1475{
1476 return efx->ptp_data->mode;
1477}
1478
1479int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1480 unsigned int new_mode)
7c236c43
SH
1481{
1482 if ((enable_wanted != efx->ptp_data->enabled) ||
1483 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
2ea4dc28 1484 int rc = 0;
7c236c43
SH
1485
1486 if (enable_wanted) {
1487 /* Change of mode requires disable */
1488 if (efx->ptp_data->enabled &&
1489 (efx->ptp_data->mode != new_mode)) {
1490 efx->ptp_data->enabled = false;
1491 rc = efx_ptp_stop(efx);
1492 if (rc != 0)
1493 return rc;
1494 }
1495
1496 /* Set new operating mode and establish
1497 * baseline synchronisation, which must
1498 * succeed.
1499 */
1500 efx->ptp_data->mode = new_mode;
2ea4dc28
AR
1501 if (netif_running(efx->net_dev))
1502 rc = efx_ptp_start(efx);
7c236c43
SH
1503 if (rc == 0) {
1504 rc = efx_ptp_synchronize(efx,
1505 PTP_SYNC_ATTEMPTS * 2);
1506 if (rc != 0)
1507 efx_ptp_stop(efx);
1508 }
1509 } else {
1510 rc = efx_ptp_stop(efx);
1511 }
1512
1513 if (rc != 0)
1514 return rc;
1515
1516 efx->ptp_data->enabled = enable_wanted;
1517 }
1518
1519 return 0;
1520}
1521
1522static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1523{
7c236c43
SH
1524 int rc;
1525
1526 if (init->flags)
1527 return -EINVAL;
1528
1529 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1530 (init->tx_type != HWTSTAMP_TX_ON))
1531 return -ERANGE;
1532
9ec06595
DP
1533 rc = efx->type->ptp_set_ts_config(efx, init);
1534 if (rc)
7c236c43
SH
1535 return rc;
1536
1537 efx->ptp_data->config = *init;
7c236c43
SH
1538 return 0;
1539}
1540
62ebac92 1541void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
7c236c43 1542{
7c236c43 1543 struct efx_ptp_data *ptp = efx->ptp_data;
9aecda95
BH
1544 struct efx_nic *primary = efx->primary;
1545
1546 ASSERT_RTNL();
7c236c43
SH
1547
1548 if (!ptp)
62ebac92 1549 return;
7c236c43 1550
62ebac92
BH
1551 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1552 SOF_TIMESTAMPING_RX_HARDWARE |
1553 SOF_TIMESTAMPING_RAW_HARDWARE);
9aecda95
BH
1554 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1555 ts_info->phc_index =
1556 ptp_clock_index(primary->ptp_data->phc_clock);
7c236c43 1557 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
9ec06595 1558 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
7c236c43
SH
1559}
1560
433dc9b3 1561int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
7c236c43
SH
1562{
1563 struct hwtstamp_config config;
1564 int rc;
1565
1566 /* Not a PTP enabled port */
1567 if (!efx->ptp_data)
1568 return -EOPNOTSUPP;
1569
1570 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1571 return -EFAULT;
1572
1573 rc = efx_ptp_ts_init(efx, &config);
1574 if (rc != 0)
1575 return rc;
1576
1577 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1578 ? -EFAULT : 0;
1579}
1580
433dc9b3
BH
1581int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1582{
1583 if (!efx->ptp_data)
1584 return -EOPNOTSUPP;
1585
1586 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1587 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1588}
1589
7c236c43
SH
1590static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1591{
1592 struct efx_ptp_data *ptp = efx->ptp_data;
1593
1594 netif_err(efx, hw, efx->net_dev,
1595 "PTP unexpected event length: got %d expected %d\n",
1596 ptp->evt_frag_idx, expected_frag_len);
1597 ptp->reset_required = true;
1598 queue_work(ptp->workwq, &ptp->work);
1599}
1600
1601/* Process a completed receive event. Put it on the event queue and
1602 * start worker thread. This is required because event and their
1603 * correspoding packets may come in either order.
1604 */
1605static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1606{
1607 struct efx_ptp_event_rx *evt = NULL;
1608
bd9a265d
JC
1609 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1610 return;
1611
7c236c43
SH
1612 if (ptp->evt_frag_idx != 3) {
1613 ptp_event_failure(efx, 3);
1614 return;
1615 }
1616
1617 spin_lock_bh(&ptp->evt_lock);
1618 if (!list_empty(&ptp->evt_free_list)) {
1619 evt = list_first_entry(&ptp->evt_free_list,
1620 struct efx_ptp_event_rx, link);
1621 list_del(&evt->link);
1622
1623 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1624 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1625 MCDI_EVENT_SRC) |
1626 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1627 MCDI_EVENT_SRC) << 8) |
1628 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1629 MCDI_EVENT_SRC) << 16));
a6f73460 1630 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
7c236c43 1631 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
a6f73460
LE
1632 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1633 ptp->ts_corrections.rx);
7c236c43
SH
1634 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1635 list_add_tail(&evt->link, &ptp->evt_list);
1636
1637 queue_work(ptp->workwq, &ptp->work);
f3211600
LE
1638 } else if (!ptp->evt_overflow) {
1639 /* Log a warning message and set the event overflow flag.
1640 * The message won't be logged again until the event queue
1641 * becomes empty.
1642 */
1643 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1644 ptp->evt_overflow = true;
7c236c43
SH
1645 }
1646 spin_unlock_bh(&ptp->evt_lock);
1647}
1648
1649static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1650{
1651 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1652 if (ptp->evt_frag_idx != 1) {
1653 ptp_event_failure(efx, 1);
1654 return;
1655 }
1656
1657 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1658}
1659
1660static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1661{
1662 if (ptp->nic_ts_enabled)
1663 queue_work(ptp->pps_workwq, &ptp->pps_work);
1664}
1665
1666void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1667{
1668 struct efx_ptp_data *ptp = efx->ptp_data;
1669 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1670
8f355e5c
EC
1671 if (!ptp) {
1672 if (net_ratelimit())
1673 netif_warn(efx, drv, efx->net_dev,
1674 "Received PTP event but PTP not set up\n");
1675 return;
1676 }
1677
7c236c43
SH
1678 if (!ptp->enabled)
1679 return;
1680
1681 if (ptp->evt_frag_idx == 0) {
1682 ptp->evt_code = code;
1683 } else if (ptp->evt_code != code) {
1684 netif_err(efx, hw, efx->net_dev,
1685 "PTP out of sequence event %d\n", code);
1686 ptp->evt_frag_idx = 0;
1687 }
1688
1689 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1690 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1691 /* Process resulting event */
1692 switch (code) {
1693 case MCDI_EVENT_CODE_PTP_RX:
1694 ptp_event_rx(efx, ptp);
1695 break;
1696 case MCDI_EVENT_CODE_PTP_FAULT:
1697 ptp_event_fault(efx, ptp);
1698 break;
1699 case MCDI_EVENT_CODE_PTP_PPS:
1700 ptp_event_pps(efx, ptp);
1701 break;
1702 default:
1703 netif_err(efx, hw, efx->net_dev,
1704 "PTP unknown event %d\n", code);
1705 break;
1706 }
1707 ptp->evt_frag_idx = 0;
1708 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1709 netif_err(efx, hw, efx->net_dev,
1710 "PTP too many event fragments\n");
1711 ptp->evt_frag_idx = 0;
1712 }
1713}
1714
bd9a265d
JC
1715void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1716{
1717 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1718 channel->sync_timestamp_minor =
1719 MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1720 /* if sync events have been disabled then we want to silently ignore
1721 * this event, so throw away result.
1722 */
1723 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1724 SYNC_EVENTS_VALID);
1725}
1726
1727/* make some assumptions about the time representation rather than abstract it,
1728 * since we currently only support one type of inline timestamping and only on
1729 * EF10.
1730 */
1731#define MINOR_TICKS_PER_SECOND 0x8000000
1732/* Fuzz factor for sync events to be out of order with RX events */
1733#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1734#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1735
1736static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1737{
1738#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1739 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1740#else
1741 const u8 *data = eh + efx->rx_packet_ts_offset;
1742 return (u32)data[0] |
1743 (u32)data[1] << 8 |
1744 (u32)data[2] << 16 |
1745 (u32)data[3] << 24;
1746#endif
1747}
1748
1749void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1750 struct sk_buff *skb)
1751{
1752 struct efx_nic *efx = channel->efx;
1753 u32 pkt_timestamp_major, pkt_timestamp_minor;
1754 u32 diff, carry;
1755 struct skb_shared_hwtstamps *timestamps;
1756
1757 pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1758 skb_mac_header(skb)) +
1759 (u32) efx->ptp_data->ts_corrections.rx) &
1760 (MINOR_TICKS_PER_SECOND - 1);
1761
1762 /* get the difference between the packet and sync timestamps,
1763 * modulo one second
1764 */
1765 diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1766 (MINOR_TICKS_PER_SECOND - 1);
1767 /* do we roll over a second boundary and need to carry the one? */
1768 carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1769 1 : 0;
1770
1771 if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1772 FUZZ) {
1773 /* packet is ahead of the sync event by a quarter of a second or
1774 * less (allowing for fuzz)
1775 */
1776 pkt_timestamp_major = channel->sync_timestamp_major + carry;
1777 } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1778 /* packet is behind the sync event but within the fuzz factor.
1779 * This means the RX packet and sync event crossed as they were
1780 * placed on the event queue, which can sometimes happen.
1781 */
1782 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1783 } else {
1784 /* it's outside tolerance in both directions. this might be
1785 * indicative of us missing sync events for some reason, so
1786 * we'll call it an error rather than risk giving a bogus
1787 * timestamp.
1788 */
1789 netif_vdbg(efx, drv, efx->net_dev,
1790 "packet timestamp %x too far from sync event %x:%x\n",
1791 pkt_timestamp_minor, channel->sync_timestamp_major,
1792 channel->sync_timestamp_minor);
1793 return;
1794 }
1795
1796 /* attach the timestamps to the skb */
1797 timestamps = skb_hwtstamps(skb);
1798 timestamps->hwtstamp =
1799 efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1800}
1801
7c236c43
SH
1802static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1803{
1804 struct efx_ptp_data *ptp_data = container_of(ptp,
1805 struct efx_ptp_data,
1806 phc_clock_info);
ac36baf8 1807 struct efx_nic *efx = ptp_data->efx;
59cfc479 1808 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43
SH
1809 s64 adjustment_ns;
1810 int rc;
1811
1812 if (delta > MAX_PPB)
1813 delta = MAX_PPB;
1814 else if (delta < -MAX_PPB)
1815 delta = -MAX_PPB;
1816
1817 /* Convert ppb to fixed point ns. */
1818 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1819 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1820
1821 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1822 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
338f74df 1823 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
7c236c43
SH
1824 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1825 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1826 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1827 NULL, 0, NULL);
1828 if (rc != 0)
1829 return rc;
1830
cd6fe65e 1831 ptp_data->current_adjfreq = adjustment_ns;
7c236c43
SH
1832 return 0;
1833}
1834
1835static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1836{
a6f73460 1837 u32 nic_major, nic_minor;
7c236c43
SH
1838 struct efx_ptp_data *ptp_data = container_of(ptp,
1839 struct efx_ptp_data,
1840 phc_clock_info);
ac36baf8 1841 struct efx_nic *efx = ptp_data->efx;
59cfc479 1842 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43 1843
a6f73460
LE
1844 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1845
7c236c43 1846 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1847 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
cd6fe65e 1848 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
a6f73460
LE
1849 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1850 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
7c236c43
SH
1851 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1852 NULL, 0, NULL);
1853}
1854
1855static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1856{
1857 struct efx_ptp_data *ptp_data = container_of(ptp,
1858 struct efx_ptp_data,
1859 phc_clock_info);
ac36baf8 1860 struct efx_nic *efx = ptp_data->efx;
59cfc479
BH
1861 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1862 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
7c236c43 1863 int rc;
a6f73460 1864 ktime_t kt;
7c236c43
SH
1865
1866 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
c1d828bd 1867 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
1868
1869 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1870 outbuf, sizeof(outbuf), NULL);
1871 if (rc != 0)
1872 return rc;
1873
a6f73460
LE
1874 kt = ptp_data->nic_to_kernel_time(
1875 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1876 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1877 *ts = ktime_to_timespec(kt);
7c236c43
SH
1878 return 0;
1879}
1880
1881static int efx_phc_settime(struct ptp_clock_info *ptp,
1882 const struct timespec *e_ts)
1883{
1884 /* Get the current NIC time, efx_phc_gettime.
1885 * Subtract from the desired time to get the offset
1886 * call efx_phc_adjtime with the offset
1887 */
1888 int rc;
1889 struct timespec time_now;
1890 struct timespec delta;
1891
1892 rc = efx_phc_gettime(ptp, &time_now);
1893 if (rc != 0)
1894 return rc;
1895
1896 delta = timespec_sub(*e_ts, time_now);
1897
56567c6f 1898 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
7c236c43
SH
1899 if (rc != 0)
1900 return rc;
1901
1902 return 0;
1903}
1904
1905static int efx_phc_enable(struct ptp_clock_info *ptp,
1906 struct ptp_clock_request *request,
1907 int enable)
1908{
1909 struct efx_ptp_data *ptp_data = container_of(ptp,
1910 struct efx_ptp_data,
1911 phc_clock_info);
1912 if (request->type != PTP_CLK_REQ_PPS)
1913 return -EOPNOTSUPP;
1914
1915 ptp_data->nic_ts_enabled = !!enable;
1916 return 0;
1917}
1918
1919static const struct efx_channel_type efx_ptp_channel_type = {
1920 .handle_no_channel = efx_ptp_handle_no_channel,
1921 .pre_probe = efx_ptp_probe_channel,
1922 .post_remove = efx_ptp_remove_channel,
1923 .get_name = efx_ptp_get_channel_name,
1924 /* no copy operation; there is no need to reallocate this channel */
1925 .receive_skb = efx_ptp_rx,
1926 .keep_eventq = false,
1927};
1928
ac36baf8 1929void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
7c236c43
SH
1930{
1931 /* Check whether PTP is implemented on this NIC. The DISABLE
1932 * operation will succeed if and only if it is implemented.
1933 */
1934 if (efx_ptp_disable(efx) == 0)
1935 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1936 &efx_ptp_channel_type;
1937}
2ea4dc28
AR
1938
1939void efx_ptp_start_datapath(struct efx_nic *efx)
1940{
1941 if (efx_ptp_restart(efx))
1942 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
bd9a265d
JC
1943 /* re-enable timestamping if it was previously enabled */
1944 if (efx->type->ptp_set_ts_sync_events)
1945 efx->type->ptp_set_ts_sync_events(efx, true, true);
2ea4dc28
AR
1946}
1947
1948void efx_ptp_stop_datapath(struct efx_nic *efx)
1949{
bd9a265d
JC
1950 /* temporarily disable timestamping */
1951 if (efx->type->ptp_set_ts_sync_events)
1952 efx->type->ptp_set_ts_sync_events(efx, false, true);
2ea4dc28
AR
1953 efx_ptp_stop(efx);
1954}
This page took 0.28455 seconds and 5 git commands to generate.