net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
738a8f4b 15#include <linux/ipv6.h>
5a0e3ad6 16#include <linux/slab.h>
738a8f4b 17#include <net/ipv6.h>
8ceee660
BH
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
183233be 20#include <linux/cache.h>
8ceee660 21#include "net_driver.h"
8ceee660 22#include "efx.h"
183233be 23#include "io.h"
744093c9 24#include "nic.h"
8ceee660 25#include "workarounds.h"
dfa50be9 26#include "ef10_regs.h"
8ceee660 27
183233be
BH
28#ifdef EFX_USE_PIO
29
30#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34#endif /* EFX_USE_PIO */
35
0fe5565b
BH
36static inline unsigned int
37efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38{
39 return tx_queue->insert_count & tx_queue->ptr_mask;
40}
41
42static inline struct efx_tx_buffer *
43__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44{
45 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46}
47
48static inline struct efx_tx_buffer *
49efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50{
51 struct efx_tx_buffer *buffer =
52 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54 EFX_BUG_ON_PARANOID(buffer->len);
55 EFX_BUG_ON_PARANOID(buffer->flags);
56 EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58 return buffer;
59}
60
4d566063 61static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
c3940999
TH
62 struct efx_tx_buffer *buffer,
63 unsigned int *pkts_compl,
64 unsigned int *bytes_compl)
8ceee660
BH
65{
66 if (buffer->unmap_len) {
0e33d870 67 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
2acdb92e 68 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
7668ff9c 69 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
70 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 DMA_TO_DEVICE);
8ceee660 72 else
0e33d870
BH
73 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 DMA_TO_DEVICE);
8ceee660 75 buffer->unmap_len = 0;
8ceee660
BH
76 }
77
7668ff9c 78 if (buffer->flags & EFX_TX_BUF_SKB) {
c3940999
TH
79 (*pkts_compl)++;
80 (*bytes_compl) += buffer->skb->len;
4ef6dae4 81 dev_consume_skb_any((struct sk_buff *)buffer->skb);
62776d03
BH
82 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue->queue, tx_queue->read_count);
f7251a9c
BH
85 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 kfree(buffer->heap_buf);
8ceee660 87 }
7668ff9c 88
f7251a9c
BH
89 buffer->len = 0;
90 buffer->flags = 0;
8ceee660
BH
91}
92
b9b39b62 93static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 94 struct sk_buff *skb);
8ceee660 95
63f19884
BH
96static inline unsigned
97efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98{
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
104 */
5b6262d0 105 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
63f19884
BH
106
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111 return len;
112}
113
7e6d06f0
BH
114unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115{
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
118 */
119 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
dfa50be9
BH
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
123 */
124 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
7e6d06f0
BH
125 max_descs += EFX_TSO_MAX_SEGS;
126
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE > EFX_PAGE_SIZE)
129 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132 return max_descs;
133}
134
14bf718f
BH
135static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136{
137 /* We need to consider both queues that the net core sees as one */
138 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139 struct efx_nic *efx = txq1->efx;
140 unsigned int fill_level;
141
142 fill_level = max(txq1->insert_count - txq1->old_read_count,
143 txq2->insert_count - txq2->old_read_count);
144 if (likely(fill_level < efx->txq_stop_thresh))
145 return;
146
147 /* We used the stale old_read_count above, which gives us a
148 * pessimistic estimate of the fill level (which may even
149 * validly be >= efx->txq_entries). Now try again using
150 * read_count (more likely to be a cache miss).
151 *
152 * If we read read_count and then conditionally stop the
153 * queue, it is possible for the completion path to race with
154 * us and complete all outstanding descriptors in the middle,
155 * after which there will be no more completions to wake it.
156 * Therefore we stop the queue first, then read read_count
157 * (with a memory barrier to ensure the ordering), then
158 * restart the queue if the fill level turns out to be low
159 * enough.
160 */
161 netif_tx_stop_queue(txq1->core_txq);
162 smp_mb();
163 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166 fill_level = max(txq1->insert_count - txq1->old_read_count,
167 txq2->insert_count - txq2->old_read_count);
168 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169 if (likely(fill_level < efx->txq_stop_thresh)) {
170 smp_mb();
171 if (likely(!efx->loopback_selftest))
172 netif_tx_start_queue(txq1->core_txq);
173 }
174}
175
ee45fd92
JC
176#ifdef EFX_USE_PIO
177
178struct efx_short_copy_buffer {
179 int used;
180 u8 buf[L1_CACHE_BYTES];
181};
182
183/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
185 */
186static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187 u8 *data, int len,
188 struct efx_short_copy_buffer *copy_buf)
189{
190 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
4984c237 192 __iowrite64_copy(*piobuf, data, block_len >> 3);
ee45fd92
JC
193 *piobuf += block_len;
194 len -= block_len;
195
196 if (len) {
197 data += block_len;
198 BUG_ON(copy_buf->used);
199 BUG_ON(len > sizeof(copy_buf->buf));
200 memcpy(copy_buf->buf, data, len);
201 copy_buf->used = len;
202 }
203}
204
205/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
207 */
208static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209 u8 *data, int len,
210 struct efx_short_copy_buffer *copy_buf)
211{
212 if (copy_buf->used) {
213 /* if the copy buffer is partially full, fill it up and write */
214 int copy_to_buf =
215 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218 copy_buf->used += copy_to_buf;
219
220 /* if we didn't fill it up then we're done for now */
221 if (copy_buf->used < sizeof(copy_buf->buf))
222 return;
223
4984c237
BH
224 __iowrite64_copy(*piobuf, copy_buf->buf,
225 sizeof(copy_buf->buf) >> 3);
ee45fd92
JC
226 *piobuf += sizeof(copy_buf->buf);
227 data += copy_to_buf;
228 len -= copy_to_buf;
229 copy_buf->used = 0;
230 }
231
232 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233}
234
235static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236 struct efx_short_copy_buffer *copy_buf)
237{
238 /* if there's anything in it, write the whole buffer, including junk */
239 if (copy_buf->used)
4984c237
BH
240 __iowrite64_copy(piobuf, copy_buf->buf,
241 sizeof(copy_buf->buf) >> 3);
ee45fd92
JC
242}
243
244/* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
246 */
247static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248 u8 __iomem **piobuf,
249 struct efx_short_copy_buffer *copy_buf)
250{
251 int i;
252
253 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254 copy_buf);
255
256 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258 u8 *vaddr;
259
260 vaddr = kmap_atomic(skb_frag_page(f));
261
262 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263 skb_frag_size(f), copy_buf);
264 kunmap_atomic(vaddr);
265 }
266
267 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268}
269
270static struct efx_tx_buffer *
271efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272{
273 struct efx_tx_buffer *buffer =
274 efx_tx_queue_get_insert_buffer(tx_queue);
275 u8 __iomem *piobuf = tx_queue->piobuf;
276
277 /* Copy to PIO buffer. Ensure the writes are padded to the end
278 * of a cache line, as this is required for write-combining to be
279 * effective on at least x86.
280 */
281
282 if (skb_shinfo(skb)->nr_frags) {
283 /* The size of the copy buffer will ensure all writes
284 * are the size of a cache line.
285 */
286 struct efx_short_copy_buffer copy_buf;
287
288 copy_buf.used = 0;
289
290 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291 &piobuf, &copy_buf);
292 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293 } else {
294 /* Pad the write to the size of a cache line.
295 * We can do this because we know the skb_shared_info sruct is
296 * after the source, and the destination buffer is big enough.
297 */
298 BUILD_BUG_ON(L1_CACHE_BYTES >
299 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
4984c237
BH
300 __iowrite64_copy(tx_queue->piobuf, skb->data,
301 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
ee45fd92
JC
302 }
303
304 EFX_POPULATE_QWORD_5(buffer->option,
305 ESF_DZ_TX_DESC_IS_OPT, 1,
306 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307 ESF_DZ_TX_PIO_CONT, 0,
308 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309 ESF_DZ_TX_PIO_BUF_ADDR,
310 tx_queue->piobuf_offset);
311 ++tx_queue->pio_packets;
312 ++tx_queue->insert_count;
313 return buffer;
314}
315#endif /* EFX_USE_PIO */
316
8ceee660
BH
317/*
318 * Add a socket buffer to a TX queue
319 *
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue. The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
323 *
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
326 *
497f5ba3
BH
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
329 *
14bf718f 330 * Returns NETDEV_TX_OK.
8ceee660
BH
331 * You must hold netif_tx_lock() to call this function.
332 */
497f5ba3 333netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
334{
335 struct efx_nic *efx = tx_queue->efx;
0e33d870 336 struct device *dma_dev = &efx->pci_dev->dev;
8ceee660 337 struct efx_tx_buffer *buffer;
70b33fb0 338 unsigned int old_insert_count = tx_queue->insert_count;
8ceee660 339 skb_frag_t *fragment;
0fe5565b 340 unsigned int len, unmap_len = 0;
8ceee660
BH
341 dma_addr_t dma_addr, unmap_addr = 0;
342 unsigned int dma_len;
7668ff9c 343 unsigned short dma_flags;
14bf718f 344 int i = 0;
8ceee660 345
9bc183d7 346 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
347 return efx_enqueue_skb_tso(tx_queue, skb);
348
8ceee660
BH
349 /* Get size of the initial fragment */
350 len = skb_headlen(skb);
351
bb145a9e
BH
352 /* Pad if necessary */
353 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354 EFX_BUG_ON_PARANOID(skb->data_len);
355 len = 32 + 1;
356 if (skb_pad(skb, len - skb->len))
357 return NETDEV_TX_OK;
358 }
359
ee45fd92
JC
360 /* Consider using PIO for short packets */
361#ifdef EFX_USE_PIO
70b33fb0
EC
362 if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363 efx_nic_may_tx_pio(tx_queue)) {
ee45fd92
JC
364 buffer = efx_enqueue_skb_pio(tx_queue, skb);
365 dma_flags = EFX_TX_BUF_OPTION;
366 goto finish_packet;
367 }
368#endif
369
0e33d870 370 /* Map for DMA. Use dma_map_single rather than dma_map_page
8ceee660
BH
371 * since this is more efficient on machines with sparse
372 * memory.
373 */
7668ff9c 374 dma_flags = EFX_TX_BUF_MAP_SINGLE;
0e33d870 375 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
8ceee660
BH
376
377 /* Process all fragments */
378 while (1) {
0e33d870
BH
379 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380 goto dma_err;
8ceee660
BH
381
382 /* Store fields for marking in the per-fragment final
383 * descriptor */
384 unmap_len = len;
385 unmap_addr = dma_addr;
386
387 /* Add to TX queue, splitting across DMA boundaries */
388 do {
0fe5565b 389 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
8ceee660 390
63f19884
BH
391 dma_len = efx_max_tx_len(efx, dma_addr);
392 if (likely(dma_len >= len))
8ceee660
BH
393 dma_len = len;
394
8ceee660
BH
395 /* Fill out per descriptor fields */
396 buffer->len = dma_len;
397 buffer->dma_addr = dma_addr;
7668ff9c 398 buffer->flags = EFX_TX_BUF_CONT;
8ceee660
BH
399 len -= dma_len;
400 dma_addr += dma_len;
401 ++tx_queue->insert_count;
402 } while (len);
403
404 /* Transfer ownership of the unmapping to the final buffer */
7668ff9c 405 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
8ceee660 406 buffer->unmap_len = unmap_len;
2acdb92e 407 buffer->dma_offset = buffer->dma_addr - unmap_addr;
8ceee660
BH
408 unmap_len = 0;
409
410 /* Get address and size of next fragment */
411 if (i >= skb_shinfo(skb)->nr_frags)
412 break;
413 fragment = &skb_shinfo(skb)->frags[i];
9e903e08 414 len = skb_frag_size(fragment);
8ceee660
BH
415 i++;
416 /* Map for DMA */
7668ff9c 417 dma_flags = 0;
0e33d870 418 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
5d6bcdfe 419 DMA_TO_DEVICE);
8ceee660
BH
420 }
421
422 /* Transfer ownership of the skb to the final buffer */
440b87ea 423#ifdef EFX_USE_PIO
ee45fd92 424finish_packet:
440b87ea 425#endif
8ceee660 426 buffer->skb = skb;
7668ff9c 427 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
8ceee660 428
c3940999
TH
429 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
70b33fb0
EC
431 efx_tx_maybe_stop_queue(tx_queue);
432
8ceee660 433 /* Pass off to hardware */
70b33fb0
EC
434 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
435 efx_nic_push_buffers(tx_queue);
8ceee660 436
8ccf3800
AR
437 tx_queue->tx_packets++;
438
8ceee660
BH
439 return NETDEV_TX_OK;
440
0e33d870 441 dma_err:
62776d03
BH
442 netif_err(efx, tx_err, efx->net_dev,
443 " TX queue %d could not map skb with %d bytes %d "
444 "fragments for DMA\n", tx_queue->queue, skb->len,
445 skb_shinfo(skb)->nr_frags + 1);
8ceee660
BH
446
447 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 448 dev_kfree_skb_any(skb);
8ceee660 449
8ceee660 450 /* Work backwards until we hit the original insert pointer value */
70b33fb0 451 while (tx_queue->insert_count != old_insert_count) {
c3940999 452 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 453 --tx_queue->insert_count;
0fe5565b 454 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
c3940999 455 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
456 }
457
458 /* Free the fragment we were mid-way through pushing */
ecbd95c1 459 if (unmap_len) {
7668ff9c 460 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
461 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
462 DMA_TO_DEVICE);
ecbd95c1 463 else
0e33d870
BH
464 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
465 DMA_TO_DEVICE);
ecbd95c1 466 }
8ceee660 467
14bf718f 468 return NETDEV_TX_OK;
8ceee660
BH
469}
470
471/* Remove packets from the TX queue
472 *
473 * This removes packets from the TX queue, up to and including the
474 * specified index.
475 */
4d566063 476static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
c3940999
TH
477 unsigned int index,
478 unsigned int *pkts_compl,
479 unsigned int *bytes_compl)
8ceee660
BH
480{
481 struct efx_nic *efx = tx_queue->efx;
482 unsigned int stop_index, read_ptr;
8ceee660 483
ecc910f5
SH
484 stop_index = (index + 1) & tx_queue->ptr_mask;
485 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
486
487 while (read_ptr != stop_index) {
488 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
ba8977bd
BH
489
490 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
491 unlikely(buffer->len == 0)) {
62776d03
BH
492 netif_err(efx, tx_err, efx->net_dev,
493 "TX queue %d spurious TX completion id %x\n",
494 tx_queue->queue, read_ptr);
8ceee660
BH
495 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
496 return;
497 }
498
c3940999 499 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
8ceee660
BH
500
501 ++tx_queue->read_count;
ecc910f5 502 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
503 }
504}
505
8ceee660
BH
506/* Initiate a packet transmission. We use one channel per CPU
507 * (sharing when we have more CPUs than channels). On Falcon, the TX
508 * completion events will be directed back to the CPU that transmitted
509 * the packet, which should be cache-efficient.
510 *
511 * Context: non-blocking.
512 * Note that returning anything other than NETDEV_TX_OK will cause the
513 * OS to free the skb.
514 */
61357325 515netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
2d0cc56d 516 struct net_device *net_dev)
8ceee660 517{
767e468c 518 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065 519 struct efx_tx_queue *tx_queue;
94b274bf 520 unsigned index, type;
60ac1065 521
e4abce85 522 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
a7ef5933 523
7c236c43
SH
524 /* PTP "event" packet */
525 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
526 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
527 return efx_ptp_tx(efx, skb);
528 }
529
94b274bf
BH
530 index = skb_get_queue_mapping(skb);
531 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
532 if (index >= efx->n_tx_channels) {
533 index -= efx->n_tx_channels;
534 type |= EFX_TXQ_TYPE_HIGHPRI;
535 }
536 tx_queue = efx_get_tx_queue(efx, index, type);
60ac1065 537
497f5ba3 538 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
539}
540
60031fcc
BH
541void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
542{
94b274bf
BH
543 struct efx_nic *efx = tx_queue->efx;
544
60031fcc 545 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
94b274bf
BH
546 tx_queue->core_txq =
547 netdev_get_tx_queue(efx->net_dev,
548 tx_queue->queue / EFX_TXQ_TYPES +
549 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
550 efx->n_tx_channels : 0));
551}
552
553int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
554{
555 struct efx_nic *efx = netdev_priv(net_dev);
556 struct efx_channel *channel;
557 struct efx_tx_queue *tx_queue;
558 unsigned tc;
559 int rc;
560
561 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
562 return -EINVAL;
563
564 if (num_tc == net_dev->num_tc)
565 return 0;
566
567 for (tc = 0; tc < num_tc; tc++) {
568 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
569 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
570 }
571
572 if (num_tc > net_dev->num_tc) {
573 /* Initialise high-priority queues as necessary */
574 efx_for_each_channel(channel, efx) {
575 efx_for_each_possible_channel_tx_queue(tx_queue,
576 channel) {
577 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
578 continue;
579 if (!tx_queue->buffer) {
580 rc = efx_probe_tx_queue(tx_queue);
581 if (rc)
582 return rc;
583 }
584 if (!tx_queue->initialised)
585 efx_init_tx_queue(tx_queue);
586 efx_init_tx_queue_core_txq(tx_queue);
587 }
588 }
589 } else {
590 /* Reduce number of classes before number of queues */
591 net_dev->num_tc = num_tc;
592 }
593
594 rc = netif_set_real_num_tx_queues(net_dev,
595 max_t(int, num_tc, 1) *
596 efx->n_tx_channels);
597 if (rc)
598 return rc;
599
600 /* Do not destroy high-priority queues when they become
601 * unused. We would have to flush them first, and it is
602 * fairly difficult to flush a subset of TX queues. Leave
603 * it to efx_fini_channels().
604 */
605
606 net_dev->num_tc = num_tc;
607 return 0;
60031fcc
BH
608}
609
8ceee660
BH
610void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
611{
612 unsigned fill_level;
613 struct efx_nic *efx = tx_queue->efx;
14bf718f 614 struct efx_tx_queue *txq2;
c3940999 615 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 616
ecc910f5 617 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
8ceee660 618
c3940999
TH
619 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
620 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
8ceee660 621
02e12165
BH
622 if (pkts_compl > 1)
623 ++tx_queue->merge_events;
624
14bf718f
BH
625 /* See if we need to restart the netif queue. This memory
626 * barrier ensures that we write read_count (inside
627 * efx_dequeue_buffers()) before reading the queue status.
628 */
8ceee660 629 smp_mb();
c04bfc6b 630 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
9d1aea62 631 likely(efx->port_enabled) &&
e4abce85 632 likely(netif_device_present(efx->net_dev))) {
14bf718f
BH
633 txq2 = efx_tx_queue_partner(tx_queue);
634 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
635 txq2->insert_count - txq2->read_count);
636 if (fill_level <= efx->txq_wake_thresh)
c04bfc6b 637 netif_tx_wake_queue(tx_queue->core_txq);
8ceee660 638 }
cd38557d
BH
639
640 /* Check whether the hardware queue is now empty */
641 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
642 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
643 if (tx_queue->read_count == tx_queue->old_write_count) {
644 smp_mb();
645 tx_queue->empty_read_count =
646 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
647 }
648 }
8ceee660
BH
649}
650
f7251a9c
BH
651/* Size of page-based TSO header buffers. Larger blocks must be
652 * allocated from the heap.
653 */
654#define TSOH_STD_SIZE 128
655#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
656
657/* At most half the descriptors in the queue at any time will refer to
658 * a TSO header buffer, since they must always be followed by a
659 * payload descriptor referring to an skb.
660 */
661static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
662{
663 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
664}
665
8ceee660
BH
666int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
667{
668 struct efx_nic *efx = tx_queue->efx;
ecc910f5 669 unsigned int entries;
7668ff9c 670 int rc;
8ceee660 671
ecc910f5
SH
672 /* Create the smallest power-of-two aligned ring */
673 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
674 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
675 tx_queue->ptr_mask = entries - 1;
676
677 netif_dbg(efx, probe, efx->net_dev,
678 "creating TX queue %d size %#x mask %#x\n",
679 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
8ceee660
BH
680
681 /* Allocate software ring */
c2e4e25a 682 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
ecc910f5 683 GFP_KERNEL);
60ac1065
BH
684 if (!tx_queue->buffer)
685 return -ENOMEM;
8ceee660 686
f7251a9c
BH
687 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
688 tx_queue->tsoh_page =
689 kcalloc(efx_tsoh_page_count(tx_queue),
690 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
691 if (!tx_queue->tsoh_page) {
692 rc = -ENOMEM;
693 goto fail1;
694 }
695 }
696
8ceee660 697 /* Allocate hardware ring */
152b6a62 698 rc = efx_nic_probe_tx(tx_queue);
8ceee660 699 if (rc)
f7251a9c 700 goto fail2;
8ceee660
BH
701
702 return 0;
703
f7251a9c
BH
704fail2:
705 kfree(tx_queue->tsoh_page);
706 tx_queue->tsoh_page = NULL;
707fail1:
8ceee660
BH
708 kfree(tx_queue->buffer);
709 tx_queue->buffer = NULL;
8ceee660
BH
710 return rc;
711}
712
bc3c90a2 713void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660 714{
62776d03
BH
715 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
716 "initialising TX queue %d\n", tx_queue->queue);
8ceee660
BH
717
718 tx_queue->insert_count = 0;
719 tx_queue->write_count = 0;
cd38557d 720 tx_queue->old_write_count = 0;
8ceee660
BH
721 tx_queue->read_count = 0;
722 tx_queue->old_read_count = 0;
cd38557d 723 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
8ceee660
BH
724
725 /* Set up TX descriptor ring */
152b6a62 726 efx_nic_init_tx(tx_queue);
94b274bf
BH
727
728 tx_queue->initialised = true;
8ceee660
BH
729}
730
e42c3d85 731void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
732{
733 struct efx_tx_buffer *buffer;
734
e42c3d85
BH
735 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
736 "shutting down TX queue %d\n", tx_queue->queue);
737
8ceee660
BH
738 if (!tx_queue->buffer)
739 return;
740
741 /* Free any buffers left in the ring */
742 while (tx_queue->read_count != tx_queue->write_count) {
c3940999 743 unsigned int pkts_compl = 0, bytes_compl = 0;
ecc910f5 744 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
c3940999 745 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
746
747 ++tx_queue->read_count;
748 }
c3940999 749 netdev_tx_reset_queue(tx_queue->core_txq);
8ceee660
BH
750}
751
8ceee660
BH
752void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
753{
f7251a9c
BH
754 int i;
755
94b274bf
BH
756 if (!tx_queue->buffer)
757 return;
758
62776d03
BH
759 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
760 "destroying TX queue %d\n", tx_queue->queue);
152b6a62 761 efx_nic_remove_tx(tx_queue);
8ceee660 762
f7251a9c
BH
763 if (tx_queue->tsoh_page) {
764 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
765 efx_nic_free_buffer(tx_queue->efx,
766 &tx_queue->tsoh_page[i]);
767 kfree(tx_queue->tsoh_page);
768 tx_queue->tsoh_page = NULL;
769 }
770
8ceee660
BH
771 kfree(tx_queue->buffer);
772 tx_queue->buffer = NULL;
8ceee660
BH
773}
774
775
b9b39b62
BH
776/* Efx TCP segmentation acceleration.
777 *
778 * Why? Because by doing it here in the driver we can go significantly
779 * faster than the GSO.
780 *
781 * Requires TX checksum offload support.
782 */
783
b9b39b62 784#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
b9b39b62
BH
785
786/**
787 * struct tso_state - TSO state for an SKB
23d9e60b 788 * @out_len: Remaining length in current segment
b9b39b62 789 * @seqnum: Current sequence number
23d9e60b 790 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 791 * @packet_space: Remaining space in current packet
23d9e60b
BH
792 * @dma_addr: DMA address of current position
793 * @in_len: Remaining length in current SKB fragment
794 * @unmap_len: Length of SKB fragment
795 * @unmap_addr: DMA address of SKB fragment
7668ff9c 796 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
738a8f4b 797 * @protocol: Network protocol (after any VLAN header)
9714284f
BH
798 * @ip_off: Offset of IP header
799 * @tcp_off: Offset of TCP header
23d9e60b 800 * @header_len: Number of bytes of header
53cb13c6 801 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
dfa50be9
BH
802 * @header_dma_addr: Header DMA address, when using option descriptors
803 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
804 * descriptors
b9b39b62
BH
805 *
806 * The state used during segmentation. It is put into this data structure
807 * just to make it easy to pass into inline functions.
808 */
809struct tso_state {
23d9e60b
BH
810 /* Output position */
811 unsigned out_len;
b9b39b62 812 unsigned seqnum;
dfa50be9 813 u16 ipv4_id;
b9b39b62
BH
814 unsigned packet_space;
815
23d9e60b
BH
816 /* Input position */
817 dma_addr_t dma_addr;
818 unsigned in_len;
819 unsigned unmap_len;
820 dma_addr_t unmap_addr;
7668ff9c 821 unsigned short dma_flags;
23d9e60b 822
738a8f4b 823 __be16 protocol;
9714284f
BH
824 unsigned int ip_off;
825 unsigned int tcp_off;
23d9e60b 826 unsigned header_len;
53cb13c6 827 unsigned int ip_base_len;
dfa50be9
BH
828 dma_addr_t header_dma_addr;
829 unsigned int header_unmap_len;
b9b39b62
BH
830};
831
832
833/*
834 * Verify that our various assumptions about sk_buffs and the conditions
738a8f4b 835 * under which TSO will be attempted hold true. Return the protocol number.
b9b39b62 836 */
738a8f4b 837static __be16 efx_tso_check_protocol(struct sk_buff *skb)
b9b39b62 838{
740847da
BH
839 __be16 protocol = skb->protocol;
840
b9b39b62 841 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
842 protocol);
843 if (protocol == htons(ETH_P_8021Q)) {
740847da
BH
844 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
845 protocol = veh->h_vlan_encapsulated_proto;
740847da
BH
846 }
847
738a8f4b
BH
848 if (protocol == htons(ETH_P_IP)) {
849 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
850 } else {
851 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
852 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
853 }
b9b39b62
BH
854 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
855 + (tcp_hdr(skb)->doff << 2u)) >
856 skb_headlen(skb));
738a8f4b
BH
857
858 return protocol;
b9b39b62
BH
859}
860
f7251a9c
BH
861static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
862 struct efx_tx_buffer *buffer, unsigned int len)
b9b39b62 863{
f7251a9c 864 u8 *result;
b9b39b62 865
f7251a9c
BH
866 EFX_BUG_ON_PARANOID(buffer->len);
867 EFX_BUG_ON_PARANOID(buffer->flags);
868 EFX_BUG_ON_PARANOID(buffer->unmap_len);
b9b39b62 869
0bdadad1 870 if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
f7251a9c
BH
871 unsigned index =
872 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
873 struct efx_buffer *page_buf =
874 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
875 unsigned offset =
0bdadad1 876 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
b9b39b62 877
f7251a9c 878 if (unlikely(!page_buf->addr) &&
0d19a540
BH
879 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
880 GFP_ATOMIC))
f7251a9c 881 return NULL;
b9b39b62 882
f7251a9c
BH
883 result = (u8 *)page_buf->addr + offset;
884 buffer->dma_addr = page_buf->dma_addr + offset;
885 buffer->flags = EFX_TX_BUF_CONT;
886 } else {
887 tx_queue->tso_long_headers++;
b9b39b62 888
0bdadad1 889 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
f7251a9c
BH
890 if (unlikely(!buffer->heap_buf))
891 return NULL;
0bdadad1 892 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
f7251a9c 893 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
b9b39b62
BH
894 }
895
f7251a9c 896 buffer->len = len;
b9b39b62 897
f7251a9c 898 return result;
b9b39b62
BH
899}
900
901/**
902 * efx_tx_queue_insert - push descriptors onto the TX queue
903 * @tx_queue: Efx TX queue
904 * @dma_addr: DMA address of fragment
905 * @len: Length of fragment
ecbd95c1 906 * @final_buffer: The final buffer inserted into the queue
b9b39b62 907 *
14bf718f 908 * Push descriptors onto the TX queue.
b9b39b62 909 */
14bf718f
BH
910static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
911 dma_addr_t dma_addr, unsigned len,
912 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
913{
914 struct efx_tx_buffer *buffer;
915 struct efx_nic *efx = tx_queue->efx;
0fe5565b 916 unsigned dma_len;
b9b39b62
BH
917
918 EFX_BUG_ON_PARANOID(len <= 0);
919
b9b39b62 920 while (1) {
0fe5565b 921 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
b9b39b62
BH
922 ++tx_queue->insert_count;
923
924 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
ecc910f5
SH
925 tx_queue->read_count >=
926 efx->txq_entries);
b9b39b62 927
b9b39b62
BH
928 buffer->dma_addr = dma_addr;
929
63f19884 930 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
931
932 /* If there is enough space to send then do so */
933 if (dma_len >= len)
934 break;
935
7668ff9c
BH
936 buffer->len = dma_len;
937 buffer->flags = EFX_TX_BUF_CONT;
b9b39b62
BH
938 dma_addr += dma_len;
939 len -= dma_len;
940 }
941
942 EFX_BUG_ON_PARANOID(!len);
943 buffer->len = len;
ecbd95c1 944 *final_buffer = buffer;
b9b39b62
BH
945}
946
947
948/*
949 * Put a TSO header into the TX queue.
950 *
951 * This is special-cased because we know that it is small enough to fit in
952 * a single fragment, and we know it doesn't cross a page boundary. It
953 * also allows us to not worry about end-of-packet etc.
954 */
f7251a9c
BH
955static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
956 struct efx_tx_buffer *buffer, u8 *header)
b9b39b62 957{
f7251a9c
BH
958 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
959 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
960 header, buffer->len,
961 DMA_TO_DEVICE);
962 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
963 buffer->dma_addr))) {
964 kfree(buffer->heap_buf);
965 buffer->len = 0;
966 buffer->flags = 0;
967 return -ENOMEM;
968 }
969 buffer->unmap_len = buffer->len;
2acdb92e 970 buffer->dma_offset = 0;
f7251a9c
BH
971 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
972 }
b9b39b62
BH
973
974 ++tx_queue->insert_count;
f7251a9c 975 return 0;
b9b39b62
BH
976}
977
978
f7251a9c
BH
979/* Remove buffers put into a tx_queue. None of the buffers must have
980 * an skb attached.
981 */
70b33fb0
EC
982static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
983 unsigned int insert_count)
b9b39b62
BH
984{
985 struct efx_tx_buffer *buffer;
986
987 /* Work backwards until we hit the original insert pointer value */
70b33fb0 988 while (tx_queue->insert_count != insert_count) {
b9b39b62 989 --tx_queue->insert_count;
0fe5565b 990 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
f7251a9c 991 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
b9b39b62
BH
992 }
993}
994
995
996/* Parse the SKB header and initialise state. */
c78c39e6
BH
997static int tso_start(struct tso_state *st, struct efx_nic *efx,
998 const struct sk_buff *skb)
b9b39b62 999{
93413f50 1000 bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
dfa50be9 1001 struct device *dma_dev = &efx->pci_dev->dev;
c78c39e6 1002 unsigned int header_len, in_len;
dfa50be9 1003 dma_addr_t dma_addr;
c78c39e6 1004
9714284f
BH
1005 st->ip_off = skb_network_header(skb) - skb->data;
1006 st->tcp_off = skb_transport_header(skb) - skb->data;
c78c39e6
BH
1007 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1008 in_len = skb_headlen(skb) - header_len;
1009 st->header_len = header_len;
1010 st->in_len = in_len;
53cb13c6 1011 if (st->protocol == htons(ETH_P_IP)) {
9714284f 1012 st->ip_base_len = st->header_len - st->ip_off;
738a8f4b 1013 st->ipv4_id = ntohs(ip_hdr(skb)->id);
53cb13c6 1014 } else {
9714284f 1015 st->ip_base_len = st->header_len - st->tcp_off;
738a8f4b 1016 st->ipv4_id = 0;
53cb13c6 1017 }
b9b39b62
BH
1018 st->seqnum = ntohl(tcp_hdr(skb)->seq);
1019
1020 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1021 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1022 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1023
c78c39e6
BH
1024 st->out_len = skb->len - header_len;
1025
93413f50 1026 if (!use_opt_desc) {
dfa50be9
BH
1027 st->header_unmap_len = 0;
1028
1029 if (likely(in_len == 0)) {
1030 st->dma_flags = 0;
1031 st->unmap_len = 0;
1032 return 0;
1033 }
1034
1035 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1036 in_len, DMA_TO_DEVICE);
1037 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1038 st->dma_addr = dma_addr;
1039 st->unmap_addr = dma_addr;
1040 st->unmap_len = in_len;
1041 } else {
1042 dma_addr = dma_map_single(dma_dev, skb->data,
1043 skb_headlen(skb), DMA_TO_DEVICE);
1044 st->header_dma_addr = dma_addr;
1045 st->header_unmap_len = skb_headlen(skb);
c78c39e6 1046 st->dma_flags = 0;
dfa50be9
BH
1047 st->dma_addr = dma_addr + header_len;
1048 st->unmap_len = 0;
c78c39e6
BH
1049 }
1050
dfa50be9 1051 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
b9b39b62
BH
1052}
1053
4d566063
BH
1054static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1055 skb_frag_t *frag)
b9b39b62 1056{
4a22c4c9 1057 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
9e903e08 1058 skb_frag_size(frag), DMA_TO_DEVICE);
5d6bcdfe 1059 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
7668ff9c 1060 st->dma_flags = 0;
9e903e08
ED
1061 st->unmap_len = skb_frag_size(frag);
1062 st->in_len = skb_frag_size(frag);
23d9e60b 1063 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
1064 return 0;
1065 }
1066 return -ENOMEM;
1067}
1068
b9b39b62
BH
1069
1070/**
1071 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1072 * @tx_queue: Efx TX queue
1073 * @skb: Socket buffer
1074 * @st: TSO state
1075 *
1076 * Form descriptors for the current fragment, until we reach the end
14bf718f 1077 * of fragment or end-of-packet.
b9b39b62 1078 */
14bf718f
BH
1079static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1080 const struct sk_buff *skb,
1081 struct tso_state *st)
b9b39b62 1082{
ecbd95c1 1083 struct efx_tx_buffer *buffer;
14bf718f 1084 int n;
b9b39b62 1085
23d9e60b 1086 if (st->in_len == 0)
14bf718f 1087 return;
b9b39b62 1088 if (st->packet_space == 0)
14bf718f 1089 return;
b9b39b62 1090
23d9e60b 1091 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
1092 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1093
23d9e60b 1094 n = min(st->in_len, st->packet_space);
b9b39b62
BH
1095
1096 st->packet_space -= n;
23d9e60b
BH
1097 st->out_len -= n;
1098 st->in_len -= n;
b9b39b62 1099
14bf718f 1100 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
b9b39b62 1101
14bf718f
BH
1102 if (st->out_len == 0) {
1103 /* Transfer ownership of the skb */
1104 buffer->skb = skb;
1105 buffer->flags = EFX_TX_BUF_SKB;
1106 } else if (st->packet_space != 0) {
1107 buffer->flags = EFX_TX_BUF_CONT;
1108 }
1109
1110 if (st->in_len == 0) {
1111 /* Transfer ownership of the DMA mapping */
1112 buffer->unmap_len = st->unmap_len;
2acdb92e 1113 buffer->dma_offset = buffer->unmap_len - buffer->len;
14bf718f
BH
1114 buffer->flags |= st->dma_flags;
1115 st->unmap_len = 0;
ecbd95c1
BH
1116 }
1117
23d9e60b 1118 st->dma_addr += n;
b9b39b62
BH
1119}
1120
1121
1122/**
1123 * tso_start_new_packet - generate a new header and prepare for the new packet
1124 * @tx_queue: Efx TX queue
1125 * @skb: Socket buffer
1126 * @st: TSO state
1127 *
1128 * Generate a new header and prepare for the new packet. Return 0 on
f7251a9c 1129 * success, or -%ENOMEM if failed to alloc header.
b9b39b62 1130 */
4d566063
BH
1131static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1132 const struct sk_buff *skb,
1133 struct tso_state *st)
b9b39b62 1134{
f7251a9c 1135 struct efx_tx_buffer *buffer =
0fe5565b 1136 efx_tx_queue_get_insert_buffer(tx_queue);
dfa50be9
BH
1137 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1138 u8 tcp_flags_clear;
b9b39b62 1139
dfa50be9 1140 if (!is_last) {
53cb13c6 1141 st->packet_space = skb_shinfo(skb)->gso_size;
dfa50be9 1142 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
b9b39b62 1143 } else {
53cb13c6 1144 st->packet_space = st->out_len;
dfa50be9 1145 tcp_flags_clear = 0x00;
b9b39b62 1146 }
b9b39b62 1147
dfa50be9
BH
1148 if (!st->header_unmap_len) {
1149 /* Allocate and insert a DMA-mapped header buffer. */
1150 struct tcphdr *tsoh_th;
1151 unsigned ip_length;
1152 u8 *header;
1153 int rc;
738a8f4b 1154
dfa50be9
BH
1155 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1156 if (!header)
1157 return -ENOMEM;
738a8f4b 1158
dfa50be9
BH
1159 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1160
1161 /* Copy and update the headers. */
1162 memcpy(header, skb->data, st->header_len);
1163
1164 tsoh_th->seq = htonl(st->seqnum);
1165 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1166
1167 ip_length = st->ip_base_len + st->packet_space;
1168
1169 if (st->protocol == htons(ETH_P_IP)) {
1170 struct iphdr *tsoh_iph =
1171 (struct iphdr *)(header + st->ip_off);
1172
1173 tsoh_iph->tot_len = htons(ip_length);
1174 tsoh_iph->id = htons(st->ipv4_id);
1175 } else {
1176 struct ipv6hdr *tsoh_iph =
1177 (struct ipv6hdr *)(header + st->ip_off);
1178
1179 tsoh_iph->payload_len = htons(ip_length);
1180 }
1181
1182 rc = efx_tso_put_header(tx_queue, buffer, header);
1183 if (unlikely(rc))
1184 return rc;
738a8f4b 1185 } else {
dfa50be9
BH
1186 /* Send the original headers with a TSO option descriptor
1187 * in front
1188 */
1189 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1190
1191 buffer->flags = EFX_TX_BUF_OPTION;
1192 buffer->len = 0;
1193 buffer->unmap_len = 0;
1194 EFX_POPULATE_QWORD_5(buffer->option,
1195 ESF_DZ_TX_DESC_IS_OPT, 1,
1196 ESF_DZ_TX_OPTION_TYPE,
1197 ESE_DZ_TX_OPTION_DESC_TSO,
1198 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1199 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1200 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1201 ++tx_queue->insert_count;
738a8f4b 1202
dfa50be9
BH
1203 /* We mapped the headers in tso_start(). Unmap them
1204 * when the last segment is completed.
1205 */
0fe5565b 1206 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
dfa50be9
BH
1207 buffer->dma_addr = st->header_dma_addr;
1208 buffer->len = st->header_len;
1209 if (is_last) {
1210 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1211 buffer->unmap_len = st->header_unmap_len;
2acdb92e 1212 buffer->dma_offset = 0;
dfa50be9
BH
1213 /* Ensure we only unmap them once in case of a
1214 * later DMA mapping error and rollback
1215 */
1216 st->header_unmap_len = 0;
1217 } else {
1218 buffer->flags = EFX_TX_BUF_CONT;
1219 buffer->unmap_len = 0;
1220 }
1221 ++tx_queue->insert_count;
738a8f4b 1222 }
b9b39b62 1223
dfa50be9
BH
1224 st->seqnum += skb_shinfo(skb)->gso_size;
1225
1226 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1227 ++st->ipv4_id;
f7251a9c 1228
b9b39b62
BH
1229 ++tx_queue->tso_packets;
1230
8ccf3800
AR
1231 ++tx_queue->tx_packets;
1232
b9b39b62
BH
1233 return 0;
1234}
1235
1236
1237/**
1238 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1239 * @tx_queue: Efx TX queue
1240 * @skb: Socket buffer
1241 *
1242 * Context: You must hold netif_tx_lock() to call this function.
1243 *
1244 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1245 * @skb was not enqueued. In all cases @skb is consumed. Return
14bf718f 1246 * %NETDEV_TX_OK.
b9b39b62
BH
1247 */
1248static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1249 struct sk_buff *skb)
b9b39b62 1250{
ecbd95c1 1251 struct efx_nic *efx = tx_queue->efx;
70b33fb0 1252 unsigned int old_insert_count = tx_queue->insert_count;
14bf718f 1253 int frag_i, rc;
b9b39b62 1254 struct tso_state state;
b9b39b62 1255
738a8f4b
BH
1256 /* Find the packet protocol and sanity-check it */
1257 state.protocol = efx_tso_check_protocol(skb);
b9b39b62 1258
c78c39e6
BH
1259 rc = tso_start(&state, efx, skb);
1260 if (rc)
1261 goto mem_err;
b9b39b62 1262
c78c39e6 1263 if (likely(state.in_len == 0)) {
b9b39b62
BH
1264 /* Grab the first payload fragment. */
1265 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1266 frag_i = 0;
ecbd95c1
BH
1267 rc = tso_get_fragment(&state, efx,
1268 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1269 if (rc)
1270 goto mem_err;
1271 } else {
c78c39e6 1272 /* Payload starts in the header area. */
b9b39b62
BH
1273 frag_i = -1;
1274 }
1275
1276 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1277 goto mem_err;
1278
1279 while (1) {
14bf718f 1280 tso_fill_packet_with_fragment(tx_queue, skb, &state);
b9b39b62
BH
1281
1282 /* Move onto the next fragment? */
23d9e60b 1283 if (state.in_len == 0) {
b9b39b62
BH
1284 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1285 /* End of payload reached. */
1286 break;
ecbd95c1
BH
1287 rc = tso_get_fragment(&state, efx,
1288 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1289 if (rc)
1290 goto mem_err;
1291 }
1292
1293 /* Start at new packet? */
1294 if (state.packet_space == 0 &&
1295 tso_start_new_packet(tx_queue, skb, &state) < 0)
1296 goto mem_err;
1297 }
1298
449fa023
ED
1299 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1300
14bf718f
BH
1301 efx_tx_maybe_stop_queue(tx_queue);
1302
70b33fb0
EC
1303 /* Pass off to hardware */
1304 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
1305 efx_nic_push_buffers(tx_queue);
1306
b9b39b62
BH
1307 tx_queue->tso_bursts++;
1308 return NETDEV_TX_OK;
1309
1310 mem_err:
62776d03 1311 netif_err(efx, tx_err, efx->net_dev,
0e33d870 1312 "Out of memory for TSO headers, or DMA mapping error\n");
9bc183d7 1313 dev_kfree_skb_any(skb);
b9b39b62 1314
5988b63a 1315 /* Free the DMA mapping we were in the process of writing out */
23d9e60b 1316 if (state.unmap_len) {
7668ff9c 1317 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
1318 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1319 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1320 else
0e33d870
BH
1321 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1322 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1323 }
5988b63a 1324
dfa50be9
BH
1325 /* Free the header DMA mapping, if using option descriptors */
1326 if (state.header_unmap_len)
1327 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1328 state.header_unmap_len, DMA_TO_DEVICE);
1329
70b33fb0 1330 efx_enqueue_unwind(tx_queue, old_insert_count);
14bf718f 1331 return NETDEV_TX_OK;
b9b39b62 1332}
This page took 0.757925 seconds and 5 git commands to generate.