Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
38f49e88
RL
35#define DRV_VERSION "1.5.0"
36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77#define TX_RING_SIZE 16
78#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 79#define RX_RING_SIZE 64
1da177e4
LT
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT (2*HZ)
85
86#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
1da177e4
LT
95#include <linux/interrupt.h>
96#include <linux/pci.h>
1e7f0bd8 97#include <linux/dma-mapping.h>
1da177e4
LT
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/init.h>
102#include <linux/delay.h>
103#include <linux/mii.h>
104#include <linux/ethtool.h>
105#include <linux/crc32.h>
38f49e88 106#include <linux/if_vlan.h>
1da177e4 107#include <linux/bitops.h>
c0d7a021 108#include <linux/workqueue.h>
1da177e4
LT
109#include <asm/processor.h> /* Processor type for cache alignment. */
110#include <asm/io.h>
111#include <asm/irq.h>
112#include <asm/uaccess.h>
e84df485 113#include <linux/dmi.h>
1da177e4
LT
114
115/* These identify the driver base version and may not be removed. */
76e239e1 116static const char version[] =
df4511fe 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4
LT
118
119/* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121#ifdef CONFIG_VIA_RHINE_MMIO
122#define USE_MMIO
123#else
124#endif
125
126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128MODULE_LICENSE("GPL");
129
1da177e4
LT
130module_param(debug, int, 0);
131module_param(rx_copybreak, int, 0);
b933b4d9 132module_param(avoid_D3, bool, 0);
fc3e0f8a 133MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 134MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 135MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 136
38f49e88
RL
137#define MCAM_SIZE 32
138#define VCAM_SIZE 32
139
1da177e4
LT
140/*
141 Theory of Operation
142
143I. Board Compatibility
144
145This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146controller.
147
148II. Board-specific settings
149
150Boards with this chip are functional only in a bus-master PCI slot.
151
152Many operational settings are loaded from the EEPROM to the Config word at
153offset 0x78. For most of these settings, this driver assumes that they are
154correct.
155If this driver is compiled to use PCI memory space operations the EEPROM
156must be configured to enable memory ops.
157
158III. Driver operation
159
160IIIa. Ring buffers
161
162This driver uses two statically allocated fixed-size descriptor lists
163formed into rings by a branch from the final descriptor to the beginning of
164the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166IIIb/c. Transmit/Receive Structure
167
168This driver attempts to use a zero-copy receive and transmit scheme.
169
170Alas, all data buffers are required to start on a 32 bit boundary, so
171the driver must often copy transmit packets into bounce buffers.
172
173The driver allocates full frame size skbuffs for the Rx ring buffers at
174open() time and passes the skb->data field to the chip as receive data
175buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176a fresh skbuff is allocated and the frame is copied to the new skbuff.
177When the incoming frame is larger, the skbuff is passed directly up the
178protocol stack. Buffers consumed this way are replaced by newly allocated
179skbuffs in the last phase of rhine_rx().
180
181The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182using a full-sized skbuff for small frames vs. the copying costs of larger
183frames. New boards are typically used in generously configured machines
184and the underfilled buffers have negligible impact compared to the benefit of
185a single allocation size, so the default value of zero results in never
186copying packets. When copying is done, the cost is usually mitigated by using
187a combined copy/checksum routine. Copying also preloads the cache, which is
188most useful with small frames.
189
190Since the VIA chips are only able to transfer data to buffers on 32 bit
191boundaries, the IP header at offset 14 in an ethernet frame isn't
192longword aligned for further processing. Copying these unaligned buffers
193has the beneficial effect of 16-byte aligning the IP header.
194
195IIId. Synchronization
196
197The driver runs as two independent, single-threaded flows of control. One
198is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
199netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
201
202The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
203netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204the ring is not available it stops the transmit queue by
205calling netif_stop_queue.
1da177e4
LT
206
207The interrupt handler has exclusive control over the Rx ring and records stats
208from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209empty by incrementing the dirty_tx mark. If at least half of the entries in
210the Rx ring are available the transmit queue is woken up if it was stopped.
211
212IV. Notes
213
214IVb. References
215
216Preliminary VT86C100A manual from http://www.via.com.tw/
217http://www.scyld.com/expert/100mbps.html
218http://www.scyld.com/expert/NWay.html
219ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223IVc. Errata
224
225The VT86C100A manual is not reliable information.
226The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227in significant performance degradation for bounce buffer copies on transmit
228and unaligned IP headers on receive.
229The chip does not pad to minimum transmit length.
230
231*/
232
233
234/* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238*/
239
240enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255};
256
257enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263};
264/*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270/* Beware of PCI posted writes */
271#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
a3aa1884 273static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
278 { } /* terminate list */
279};
280MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283/* Offsets to the device registers. */
284enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 286 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299};
300
301/* Bits in ConfigD */
302enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305};
306
38f49e88
RL
307/* Bits in the TxConfig (TCR) register */
308enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317};
318
319/* Bits in the CamCon (CAMC) register */
320enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325};
326
327/* Bits in the PCIBusConfig1 (BCR1) register */
328enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339};
340
1da177e4
LT
341#ifdef USE_MMIO
342/* Registers we check that mmio and reg are the same. */
343static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346};
347#endif
348
349/* Bits in the interrupt status/mask registers. */
350enum intr_status_bits {
7ab87ff4
FR
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
1da177e4
LT
370};
371
372/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379};
380
381/* The Rx and Tx buffer descriptors. */
382struct rx_desc {
53c03f5c
AV
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
1da177e4
LT
387};
388struct tx_desc {
53c03f5c
AV
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
1da177e4
LT
393};
394
395/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396#define TXDESC 0x00e08000
397
398enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400};
401
402/* Bits in *_desc.*_status */
403enum desc_status_bits {
404 DescOwn=0x80000000
405};
406
38f49e88
RL
407/* Bits in *_desc.*_length */
408enum desc_length_bits {
409 DescTag=0x00010000
410};
411
1da177e4
LT
412/* Bits in ChipCmd. */
413enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418};
419
f7b5d1b9
JG
420struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424};
425
1da177e4 426struct rhine_private {
38f49e88
RL
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
1da177e4
LT
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
4be5de25 444 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
bea3348e
SH
451 struct net_device *dev;
452 struct napi_struct napi;
1da177e4 453 spinlock_t lock;
7ab87ff4
FR
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
c0d7a021 457 struct work_struct reset_task;
1da177e4 458
fc3e0f8a
FR
459 u32 msg_enable;
460
1da177e4
LT
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
1da177e4
LT
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475};
476
38f49e88
RL
477#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
1da177e4
LT
494static int mdio_read(struct net_device *dev, int phy_id, int location);
495static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496static int rhine_open(struct net_device *dev);
c0d7a021 497static void rhine_reset_task(struct work_struct *work);
7ab87ff4 498static void rhine_slow_event_task(struct work_struct *work);
1da177e4 499static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
500static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
7d12e780 502static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 503static void rhine_tx(struct net_device *dev);
633949a1 504static int rhine_rx(struct net_device *dev, int limit);
1da177e4 505static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
506static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
1da177e4 508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 509static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 510static int rhine_close(struct net_device *dev);
80d5c368
PM
511static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 __be16 proto, u16 vid);
513static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 __be16 proto, u16 vid);
7ab87ff4 515static void rhine_restart_tx(struct net_device *dev);
1da177e4 516
3f8c91a7 517static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
518{
519 void __iomem *ioaddr = rp->base;
520 int i;
521
522 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524
525 if (low ^ has_mask_bits)
a384a33b
FR
526 break;
527 udelay(10);
528 }
529 if (i > 64) {
fc3e0f8a 530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 531 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
532 }
533}
534
535static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536{
3f8c91a7 537 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
538}
539
540static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541{
3f8c91a7 542 rhine_wait_bit(rp, reg, mask, true);
a384a33b 543}
1da177e4 544
a20a28bc 545static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 546{
1da177e4
LT
547 void __iomem *ioaddr = rp->base;
548 u32 intr_status;
549
550 intr_status = ioread16(ioaddr + IntrStatus);
551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 if (rp->quirks & rqStatusWBRace)
553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 return intr_status;
555}
556
a20a28bc
FR
557static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558{
559 void __iomem *ioaddr = rp->base;
560
561 if (rp->quirks & rqStatusWBRace)
562 iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 564 mmiowb();
a20a28bc
FR
565}
566
1da177e4
LT
567/*
568 * Get power related registers into sane state.
569 * Notify user about past WOL event.
570 */
571static void rhine_power_init(struct net_device *dev)
572{
573 struct rhine_private *rp = netdev_priv(dev);
574 void __iomem *ioaddr = rp->base;
575 u16 wolstat;
576
577 if (rp->quirks & rqWOL) {
578 /* Make sure chip is in power state D0 */
579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580
581 /* Disable "force PME-enable" */
582 iowrite8(0x80, ioaddr + WOLcgClr);
583
584 /* Clear power-event config bits (WOL) */
585 iowrite8(0xFF, ioaddr + WOLcrClr);
586 /* More recent cards can manage two additional patterns */
587 if (rp->quirks & rq6patterns)
588 iowrite8(0x03, ioaddr + WOLcrClr1);
589
590 /* Save power-event status bits */
591 wolstat = ioread8(ioaddr + PwrcsrSet);
592 if (rp->quirks & rq6patterns)
593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594
595 /* Clear power-event status bits */
596 iowrite8(0xFF, ioaddr + PwrcsrClr);
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + PwrcsrClr1);
599
600 if (wolstat) {
601 char *reason;
602 switch (wolstat) {
603 case WOLmagic:
604 reason = "Magic packet";
605 break;
606 case WOLlnkon:
607 reason = "Link went up";
608 break;
609 case WOLlnkoff:
610 reason = "Link went down";
611 break;
612 case WOLucast:
613 reason = "Unicast packet";
614 break;
615 case WOLbmcast:
616 reason = "Multicast/broadcast packet";
617 break;
618 default:
619 reason = "Unknown";
620 }
df4511fe
JP
621 netdev_info(dev, "Woke system up. Reason: %s\n",
622 reason);
1da177e4
LT
623 }
624 }
625}
626
627static void rhine_chip_reset(struct net_device *dev)
628{
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
fc3e0f8a 631 u8 cmd1;
1da177e4
LT
632
633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 IOSYNC;
635
636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 637 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
638
639 /* Force reset */
640 if (rp->quirks & rqForceReset)
641 iowrite8(0x40, ioaddr + MiscCmd);
642
643 /* Reset can take somewhat longer (rare) */
a384a33b 644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
645 }
646
fc3e0f8a
FR
647 cmd1 = ioread8(ioaddr + ChipCmd1);
648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 "failed" : "succeeded");
1da177e4
LT
650}
651
652#ifdef USE_MMIO
653static void enable_mmio(long pioaddr, u32 quirks)
654{
655 int n;
656 if (quirks & rqRhineI) {
657 /* More recent docs say that this bit is reserved ... */
658 n = inb(pioaddr + ConfigA) | 0x20;
659 outb(n, pioaddr + ConfigA);
660 } else {
661 n = inb(pioaddr + ConfigD) | 0x80;
662 outb(n, pioaddr + ConfigD);
663 }
664}
665#endif
666
667/*
668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669 * (plus 0x6C for Rhine-I/II)
670 */
76e239e1 671static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
672{
673 struct rhine_private *rp = netdev_priv(dev);
674 void __iomem *ioaddr = rp->base;
a384a33b 675 int i;
1da177e4
LT
676
677 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
678 for (i = 0; i < 1024; i++) {
679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 break;
681 }
682 if (i > 512)
683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4
LT
684
685#ifdef USE_MMIO
686 /*
687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 * it is not known if that still works with the "win98-reboot" problem.
690 */
691 enable_mmio(pioaddr, rp->quirks);
692#endif
693
694 /* Turn off EEPROM-controlled wake-up (magic packet) */
695 if (rp->quirks & rqWOL)
696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697
698}
699
700#ifdef CONFIG_NET_POLL_CONTROLLER
701static void rhine_poll(struct net_device *dev)
702{
05d334ec
FR
703 struct rhine_private *rp = netdev_priv(dev);
704 const int irq = rp->pdev->irq;
705
706 disable_irq(irq);
707 rhine_interrupt(irq, dev);
708 enable_irq(irq);
1da177e4
LT
709}
710#endif
711
269f3114
FR
712static void rhine_kick_tx_threshold(struct rhine_private *rp)
713{
714 if (rp->tx_thresh < 0xe0) {
715 void __iomem *ioaddr = rp->base;
716
717 rp->tx_thresh += 0x20;
718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 }
720}
721
7ab87ff4
FR
722static void rhine_tx_err(struct rhine_private *rp, u32 status)
723{
724 struct net_device *dev = rp->dev;
725
726 if (status & IntrTxAborted) {
fc3e0f8a
FR
727 netif_info(rp, tx_err, dev,
728 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
729 }
730
731 if (status & IntrTxUnderrun) {
732 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
733 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
735 }
736
fc3e0f8a
FR
737 if (status & IntrTxDescRace)
738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
739
740 if ((status & IntrTxError) &&
741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
743 netif_info(rp, tx_err, dev, "Unspecified error. "
744 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
745 }
746
747 rhine_restart_tx(dev);
748}
749
750static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751{
752 void __iomem *ioaddr = rp->base;
753 struct net_device_stats *stats = &rp->dev->stats;
754
755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757
758 /*
759 * Clears the "tally counters" for CRC errors and missed frames(?).
760 * It has been reported that some chips need a write of 0 to clear
761 * these, for others the counters are set to 1 when written to and
762 * instead cleared when read. So we clear them both ways ...
763 */
764 iowrite32(0, ioaddr + RxMissed);
765 ioread16(ioaddr + RxCRCErrs);
766 ioread16(ioaddr + RxMissed);
767}
768
769#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
770 IntrRxErr | \
771 IntrRxEmpty | \
772 IntrRxOverflow | \
773 IntrRxDropped | \
774 IntrRxNoBuf | \
775 IntrRxWakeUp)
776
777#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
778 IntrTxAborted | \
779 IntrTxUnderrun | \
780 IntrTxDescRace)
781#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782
783#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
784 RHINE_EVENT_NAPI_TX | \
785 IntrStatsMax)
786#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
787#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788
bea3348e 789static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 790{
bea3348e
SH
791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 struct net_device *dev = rp->dev;
633949a1 793 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
794 u16 enable_mask = RHINE_EVENT & 0xffff;
795 int work_done = 0;
796 u32 status;
797
798 status = rhine_get_events(rp);
799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800
801 if (status & RHINE_EVENT_NAPI_RX)
802 work_done += rhine_rx(dev, budget);
803
804 if (status & RHINE_EVENT_NAPI_TX) {
805 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 806 /* Avoid scavenging before Tx engine turned off */
a384a33b 807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 810 }
fc3e0f8a 811
7ab87ff4
FR
812 rhine_tx(dev);
813
814 if (status & RHINE_EVENT_NAPI_TX_ERR)
815 rhine_tx_err(rp, status);
816 }
817
818 if (status & IntrStatsMax) {
819 spin_lock(&rp->lock);
820 rhine_update_rx_crc_and_missed_errord(rp);
821 spin_unlock(&rp->lock);
822 }
633949a1 823
7ab87ff4
FR
824 if (status & RHINE_EVENT_SLOW) {
825 enable_mask &= ~RHINE_EVENT_SLOW;
826 schedule_work(&rp->slow_event_task);
827 }
633949a1 828
bea3348e 829 if (work_done < budget) {
288379f0 830 napi_complete(napi);
7ab87ff4
FR
831 iowrite16(enable_mask, ioaddr + IntrEnable);
832 mmiowb();
633949a1 833 }
bea3348e 834 return work_done;
633949a1 835}
633949a1 836
76e239e1 837static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
838{
839 struct rhine_private *rp = netdev_priv(dev);
840
841 /* Reset the chip to erase previous misconfiguration. */
842 rhine_chip_reset(dev);
843
844 /* Rhine-I needs extra time to recuperate before EEPROM reload */
845 if (rp->quirks & rqRhineI)
846 msleep(5);
847
848 /* Reload EEPROM controlled bytes cleared by soft reset */
849 rhine_reload_eeprom(pioaddr, dev);
850}
851
5d1d07d8
SH
852static const struct net_device_ops rhine_netdev_ops = {
853 .ndo_open = rhine_open,
854 .ndo_stop = rhine_close,
855 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 856 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 857 .ndo_set_rx_mode = rhine_set_rx_mode,
635ecaa7 858 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 859 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 860 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
861 .ndo_do_ioctl = netdev_ioctl,
862 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
865#ifdef CONFIG_NET_POLL_CONTROLLER
866 .ndo_poll_controller = rhine_poll,
867#endif
868};
869
1dd06ae8 870static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
871{
872 struct net_device *dev;
873 struct rhine_private *rp;
874 int i, rc;
1da177e4
LT
875 u32 quirks;
876 long pioaddr;
877 long memaddr;
878 void __iomem *ioaddr;
879 int io_size, phy_id;
880 const char *name;
881#ifdef USE_MMIO
882 int bar = 1;
883#else
884 int bar = 0;
885#endif
886
887/* when built into the kernel, we only print version if device is found */
888#ifndef MODULE
df4511fe 889 pr_info_once("%s\n", version);
1da177e4
LT
890#endif
891
1da177e4
LT
892 io_size = 256;
893 phy_id = 0;
894 quirks = 0;
895 name = "Rhine";
44c10138 896 if (pdev->revision < VTunknown0) {
1da177e4
LT
897 quirks = rqRhineI;
898 io_size = 128;
899 }
44c10138 900 else if (pdev->revision >= VT6102) {
1da177e4 901 quirks = rqWOL | rqForceReset;
44c10138 902 if (pdev->revision < VT6105) {
1da177e4
LT
903 name = "Rhine II";
904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
905 }
906 else {
907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 908 if (pdev->revision >= VT6105_B0)
1da177e4 909 quirks |= rq6patterns;
44c10138 910 if (pdev->revision < VT6105M)
1da177e4
LT
911 name = "Rhine III";
912 else
913 name = "Rhine III (Management Adapter)";
914 }
915 }
916
917 rc = pci_enable_device(pdev);
918 if (rc)
919 goto err_out;
920
921 /* this should always be supported */
284901a9 922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4 923 if (rc) {
df4511fe
JP
924 dev_err(&pdev->dev,
925 "32-bit PCI DMA addresses not supported by the card!?\n");
1da177e4
LT
926 goto err_out;
927 }
928
929 /* sanity check */
930 if ((pci_resource_len(pdev, 0) < io_size) ||
931 (pci_resource_len(pdev, 1) < io_size)) {
932 rc = -EIO;
df4511fe 933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
1da177e4
LT
934 goto err_out;
935 }
936
937 pioaddr = pci_resource_start(pdev, 0);
938 memaddr = pci_resource_start(pdev, 1);
939
940 pci_set_master(pdev);
941
942 dev = alloc_etherdev(sizeof(struct rhine_private));
943 if (!dev) {
944 rc = -ENOMEM;
1da177e4
LT
945 goto err_out;
946 }
1da177e4
LT
947 SET_NETDEV_DEV(dev, &pdev->dev);
948
949 rp = netdev_priv(dev);
bea3348e 950 rp->dev = dev;
1da177e4
LT
951 rp->quirks = quirks;
952 rp->pioaddr = pioaddr;
953 rp->pdev = pdev;
fc3e0f8a 954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4
LT
955
956 rc = pci_request_regions(pdev, DRV_NAME);
957 if (rc)
958 goto err_out_free_netdev;
959
960 ioaddr = pci_iomap(pdev, bar, io_size);
961 if (!ioaddr) {
962 rc = -EIO;
df4511fe
JP
963 dev_err(&pdev->dev,
964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 pci_name(pdev), io_size, memaddr);
1da177e4
LT
966 goto err_out_free_res;
967 }
968
969#ifdef USE_MMIO
970 enable_mmio(pioaddr, quirks);
971
972 /* Check that selected MMIO registers match the PIO ones */
973 i = 0;
974 while (mmio_verify_registers[i]) {
975 int reg = mmio_verify_registers[i++];
976 unsigned char a = inb(pioaddr+reg);
977 unsigned char b = readb(ioaddr+reg);
978 if (a != b) {
979 rc = -EIO;
df4511fe
JP
980 dev_err(&pdev->dev,
981 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 reg, a, b);
1da177e4
LT
983 goto err_out_unmap;
984 }
985 }
986#endif /* USE_MMIO */
987
1da177e4
LT
988 rp->base = ioaddr;
989
990 /* Get chip registers into a sane state */
991 rhine_power_init(dev);
992 rhine_hw_init(dev, pioaddr);
993
994 for (i = 0; i < 6; i++)
995 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
996
482e3feb
JP
997 if (!is_valid_ether_addr(dev->dev_addr)) {
998 /* Report it and use a random ethernet address instead */
999 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 1000 eth_hw_addr_random(dev);
482e3feb
JP
1001 netdev_info(dev, "Using random MAC address: %pM\n",
1002 dev->dev_addr);
1da177e4
LT
1003 }
1004
1005 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1006 if (!phy_id)
1007 phy_id = ioread8(ioaddr + 0x6C);
1008
1da177e4 1009 spin_lock_init(&rp->lock);
7ab87ff4 1010 mutex_init(&rp->task_lock);
c0d7a021 1011 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 1012 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 1013
1da177e4
LT
1014 rp->mii_if.dev = dev;
1015 rp->mii_if.mdio_read = mdio_read;
1016 rp->mii_if.mdio_write = mdio_write;
1017 rp->mii_if.phy_id_mask = 0x1f;
1018 rp->mii_if.reg_num_mask = 0x1f;
1019
1020 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
1021 dev->netdev_ops = &rhine_netdev_ops;
1022 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 1023 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 1024
bea3348e 1025 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 1026
1da177e4
LT
1027 if (rp->quirks & rqRhineI)
1028 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1029
38f49e88 1030 if (pdev->revision >= VT6105M)
f646968f
PM
1031 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1032 NETIF_F_HW_VLAN_CTAG_RX |
1033 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 1034
1da177e4
LT
1035 /* dev->name not defined before register_netdev()! */
1036 rc = register_netdev(dev);
1037 if (rc)
1038 goto err_out_unmap;
1039
df4511fe
JP
1040 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1041 name,
1da177e4 1042#ifdef USE_MMIO
df4511fe 1043 memaddr,
1da177e4 1044#else
df4511fe 1045 (long)ioaddr,
1da177e4 1046#endif
df4511fe 1047 dev->dev_addr, pdev->irq);
1da177e4
LT
1048
1049 pci_set_drvdata(pdev, dev);
1050
1051 {
1052 u16 mii_cmd;
1053 int mii_status = mdio_read(dev, phy_id, 1);
1054 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1055 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1056 if (mii_status != 0xffff && mii_status != 0x0000) {
1057 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1058 netdev_info(dev,
1059 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1060 phy_id,
1061 mii_status, rp->mii_if.advertising,
1062 mdio_read(dev, phy_id, 5));
1da177e4
LT
1063
1064 /* set IFF_RUNNING */
1065 if (mii_status & BMSR_LSTATUS)
1066 netif_carrier_on(dev);
1067 else
1068 netif_carrier_off(dev);
1069
1070 }
1071 }
1072 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1073 if (avoid_D3)
1074 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1075
1076 return 0;
1077
1078err_out_unmap:
1079 pci_iounmap(pdev, ioaddr);
1080err_out_free_res:
1081 pci_release_regions(pdev);
1082err_out_free_netdev:
1083 free_netdev(dev);
1084err_out:
1085 return rc;
1086}
1087
1088static int alloc_ring(struct net_device* dev)
1089{
1090 struct rhine_private *rp = netdev_priv(dev);
1091 void *ring;
1092 dma_addr_t ring_dma;
1093
1094 ring = pci_alloc_consistent(rp->pdev,
1095 RX_RING_SIZE * sizeof(struct rx_desc) +
1096 TX_RING_SIZE * sizeof(struct tx_desc),
1097 &ring_dma);
1098 if (!ring) {
df4511fe 1099 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1100 return -ENOMEM;
1101 }
1102 if (rp->quirks & rqRhineI) {
1103 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1104 PKT_BUF_SZ * TX_RING_SIZE,
1105 &rp->tx_bufs_dma);
1106 if (rp->tx_bufs == NULL) {
1107 pci_free_consistent(rp->pdev,
1108 RX_RING_SIZE * sizeof(struct rx_desc) +
1109 TX_RING_SIZE * sizeof(struct tx_desc),
1110 ring, ring_dma);
1111 return -ENOMEM;
1112 }
1113 }
1114
1115 rp->rx_ring = ring;
1116 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1117 rp->rx_ring_dma = ring_dma;
1118 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1119
1120 return 0;
1121}
1122
1123static void free_ring(struct net_device* dev)
1124{
1125 struct rhine_private *rp = netdev_priv(dev);
1126
1127 pci_free_consistent(rp->pdev,
1128 RX_RING_SIZE * sizeof(struct rx_desc) +
1129 TX_RING_SIZE * sizeof(struct tx_desc),
1130 rp->rx_ring, rp->rx_ring_dma);
1131 rp->tx_ring = NULL;
1132
1133 if (rp->tx_bufs)
1134 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1135 rp->tx_bufs, rp->tx_bufs_dma);
1136
1137 rp->tx_bufs = NULL;
1138
1139}
1140
1141static void alloc_rbufs(struct net_device *dev)
1142{
1143 struct rhine_private *rp = netdev_priv(dev);
1144 dma_addr_t next;
1145 int i;
1146
1147 rp->dirty_rx = rp->cur_rx = 0;
1148
1149 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1150 rp->rx_head_desc = &rp->rx_ring[0];
1151 next = rp->rx_ring_dma;
1152
1153 /* Init the ring entries */
1154 for (i = 0; i < RX_RING_SIZE; i++) {
1155 rp->rx_ring[i].rx_status = 0;
1156 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1157 next += sizeof(struct rx_desc);
1158 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1159 rp->rx_skbuff[i] = NULL;
1160 }
1161 /* Mark the last entry as wrapping the ring. */
1162 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1163
1164 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1165 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 1166 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1167 rp->rx_skbuff[i] = skb;
1168 if (skb == NULL)
1169 break;
1da177e4
LT
1170
1171 rp->rx_skbuff_dma[i] =
689be439 1172 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4 1173 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1174 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1175 rp->rx_skbuff_dma[i] = 0;
1176 dev_kfree_skb(skb);
1177 break;
1178 }
1da177e4
LT
1179 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1180 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1181 }
1182 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1183}
1184
1185static void free_rbufs(struct net_device* dev)
1186{
1187 struct rhine_private *rp = netdev_priv(dev);
1188 int i;
1189
1190 /* Free all the skbuffs in the Rx queue. */
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1192 rp->rx_ring[i].rx_status = 0;
1193 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1194 if (rp->rx_skbuff[i]) {
1195 pci_unmap_single(rp->pdev,
1196 rp->rx_skbuff_dma[i],
1197 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1198 dev_kfree_skb(rp->rx_skbuff[i]);
1199 }
1200 rp->rx_skbuff[i] = NULL;
1201 }
1202}
1203
1204static void alloc_tbufs(struct net_device* dev)
1205{
1206 struct rhine_private *rp = netdev_priv(dev);
1207 dma_addr_t next;
1208 int i;
1209
1210 rp->dirty_tx = rp->cur_tx = 0;
1211 next = rp->tx_ring_dma;
1212 for (i = 0; i < TX_RING_SIZE; i++) {
1213 rp->tx_skbuff[i] = NULL;
1214 rp->tx_ring[i].tx_status = 0;
1215 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1216 next += sizeof(struct tx_desc);
1217 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1218 if (rp->quirks & rqRhineI)
1219 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1220 }
1221 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1222
1223}
1224
1225static void free_tbufs(struct net_device* dev)
1226{
1227 struct rhine_private *rp = netdev_priv(dev);
1228 int i;
1229
1230 for (i = 0; i < TX_RING_SIZE; i++) {
1231 rp->tx_ring[i].tx_status = 0;
1232 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1233 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1234 if (rp->tx_skbuff[i]) {
1235 if (rp->tx_skbuff_dma[i]) {
1236 pci_unmap_single(rp->pdev,
1237 rp->tx_skbuff_dma[i],
1238 rp->tx_skbuff[i]->len,
1239 PCI_DMA_TODEVICE);
1240 }
1241 dev_kfree_skb(rp->tx_skbuff[i]);
1242 }
1243 rp->tx_skbuff[i] = NULL;
1244 rp->tx_buf[i] = NULL;
1245 }
1246}
1247
1248static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1249{
1250 struct rhine_private *rp = netdev_priv(dev);
1251 void __iomem *ioaddr = rp->base;
1252
fc3e0f8a 1253 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1254
1255 if (rp->mii_if.full_duplex)
1256 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1257 ioaddr + ChipCmd1);
1258 else
1259 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1260 ioaddr + ChipCmd1);
fc3e0f8a
FR
1261
1262 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1263 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1264}
1265
1266/* Called after status of force_media possibly changed */
0761be4f 1267static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1268{
fc3e0f8a
FR
1269 struct net_device *dev = mii->dev;
1270 struct rhine_private *rp = netdev_priv(dev);
1271
00b428c2
RL
1272 if (mii->force_media) {
1273 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1274 if (!netif_carrier_ok(dev))
1275 netif_carrier_on(dev);
1276 } else /* Let MMI library update carrier status */
1277 rhine_check_media(dev, 0);
1278
1279 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1280 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1281}
1282
38f49e88
RL
1283/**
1284 * rhine_set_cam - set CAM multicast filters
1285 * @ioaddr: register block of this Rhine
1286 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1287 * @addr: multicast address (6 bytes)
1288 *
1289 * Load addresses into multicast filters.
1290 */
1291static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1292{
1293 int i;
1294
1295 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1296 wmb();
1297
1298 /* Paranoid -- idx out of range should never happen */
1299 idx &= (MCAM_SIZE - 1);
1300
1301 iowrite8((u8) idx, ioaddr + CamAddr);
1302
1303 for (i = 0; i < 6; i++, addr++)
1304 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1305 udelay(10);
1306 wmb();
1307
1308 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1309 udelay(10);
1310
1311 iowrite8(0, ioaddr + CamCon);
1312}
1313
1314/**
1315 * rhine_set_vlan_cam - set CAM VLAN filters
1316 * @ioaddr: register block of this Rhine
1317 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1318 * @addr: VLAN ID (2 bytes)
1319 *
1320 * Load addresses into VLAN filters.
1321 */
1322static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1323{
1324 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1325 wmb();
1326
1327 /* Paranoid -- idx out of range should never happen */
1328 idx &= (VCAM_SIZE - 1);
1329
1330 iowrite8((u8) idx, ioaddr + CamAddr);
1331
1332 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1333 udelay(10);
1334 wmb();
1335
1336 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1337 udelay(10);
1338
1339 iowrite8(0, ioaddr + CamCon);
1340}
1341
1342/**
1343 * rhine_set_cam_mask - set multicast CAM mask
1344 * @ioaddr: register block of this Rhine
1345 * @mask: multicast CAM mask
1346 *
1347 * Mask sets multicast filters active/inactive.
1348 */
1349static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1350{
1351 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1352 wmb();
1353
1354 /* write mask */
1355 iowrite32(mask, ioaddr + CamMask);
1356
1357 /* disable CAMEN */
1358 iowrite8(0, ioaddr + CamCon);
1359}
1360
1361/**
1362 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1363 * @ioaddr: register block of this Rhine
1364 * @mask: VLAN CAM mask
1365 *
1366 * Mask sets VLAN filters active/inactive.
1367 */
1368static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1369{
1370 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1371 wmb();
1372
1373 /* write mask */
1374 iowrite32(mask, ioaddr + CamMask);
1375
1376 /* disable CAMEN */
1377 iowrite8(0, ioaddr + CamCon);
1378}
1379
1380/**
1381 * rhine_init_cam_filter - initialize CAM filters
1382 * @dev: network device
1383 *
1384 * Initialize (disable) hardware VLAN and multicast support on this
1385 * Rhine.
1386 */
1387static void rhine_init_cam_filter(struct net_device *dev)
1388{
1389 struct rhine_private *rp = netdev_priv(dev);
1390 void __iomem *ioaddr = rp->base;
1391
1392 /* Disable all CAMs */
1393 rhine_set_vlan_cam_mask(ioaddr, 0);
1394 rhine_set_cam_mask(ioaddr, 0);
1395
1396 /* disable hardware VLAN support */
1397 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1398 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1399}
1400
1401/**
1402 * rhine_update_vcam - update VLAN CAM filters
1403 * @rp: rhine_private data of this Rhine
1404 *
1405 * Update VLAN CAM filters to match configuration change.
1406 */
1407static void rhine_update_vcam(struct net_device *dev)
1408{
1409 struct rhine_private *rp = netdev_priv(dev);
1410 void __iomem *ioaddr = rp->base;
1411 u16 vid;
1412 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1413 unsigned int i = 0;
1414
1415 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1416 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1417 vCAMmask |= 1 << i;
1418 if (++i >= VCAM_SIZE)
1419 break;
1420 }
1421 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1422}
1423
80d5c368 1424static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1425{
1426 struct rhine_private *rp = netdev_priv(dev);
1427
7ab87ff4 1428 spin_lock_bh(&rp->lock);
38f49e88
RL
1429 set_bit(vid, rp->active_vlans);
1430 rhine_update_vcam(dev);
7ab87ff4 1431 spin_unlock_bh(&rp->lock);
8e586137 1432 return 0;
38f49e88
RL
1433}
1434
80d5c368 1435static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1436{
1437 struct rhine_private *rp = netdev_priv(dev);
1438
7ab87ff4 1439 spin_lock_bh(&rp->lock);
38f49e88
RL
1440 clear_bit(vid, rp->active_vlans);
1441 rhine_update_vcam(dev);
7ab87ff4 1442 spin_unlock_bh(&rp->lock);
8e586137 1443 return 0;
38f49e88
RL
1444}
1445
1da177e4
LT
1446static void init_registers(struct net_device *dev)
1447{
1448 struct rhine_private *rp = netdev_priv(dev);
1449 void __iomem *ioaddr = rp->base;
1450 int i;
1451
1452 for (i = 0; i < 6; i++)
1453 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1454
1455 /* Initialize other registers. */
1456 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1457 /* Configure initial FIFO thresholds. */
1458 iowrite8(0x20, ioaddr + TxConfig);
1459 rp->tx_thresh = 0x20;
1460 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1461
1462 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1463 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1464
1465 rhine_set_rx_mode(dev);
1466
38f49e88
RL
1467 if (rp->pdev->revision >= VT6105M)
1468 rhine_init_cam_filter(dev);
1469
bea3348e 1470 napi_enable(&rp->napi);
ab197668 1471
7ab87ff4 1472 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1473
1474 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1475 ioaddr + ChipCmd);
1476 rhine_check_media(dev, 1);
1477}
1478
1479/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1480static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1481{
a384a33b
FR
1482 void __iomem *ioaddr = rp->base;
1483
1da177e4
LT
1484 iowrite8(0, ioaddr + MIICmd);
1485 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1486 iowrite8(0x80, ioaddr + MIICmd);
1487
a384a33b 1488 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1489
1490 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1491}
1492
1493/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1494static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1495{
a384a33b
FR
1496 void __iomem *ioaddr = rp->base;
1497
1da177e4
LT
1498 iowrite8(0, ioaddr + MIICmd);
1499
a384a33b 1500 if (rp->quirks & rqRhineI) {
1da177e4
LT
1501 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1502
38bb6b28
JL
1503 /* Can be called from ISR. Evil. */
1504 mdelay(1);
1da177e4
LT
1505
1506 /* 0x80 must be set immediately before turning it off */
1507 iowrite8(0x80, ioaddr + MIICmd);
1508
a384a33b 1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1510
1511 /* Heh. Now clear 0x80 again. */
1512 iowrite8(0, ioaddr + MIICmd);
1513 }
1514 else
a384a33b 1515 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1516}
1517
1518/* Read and write over the MII Management Data I/O (MDIO) interface. */
1519
1520static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1521{
1522 struct rhine_private *rp = netdev_priv(dev);
1523 void __iomem *ioaddr = rp->base;
1524 int result;
1525
a384a33b 1526 rhine_disable_linkmon(rp);
1da177e4
LT
1527
1528 /* rhine_disable_linkmon already cleared MIICmd */
1529 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1530 iowrite8(regnum, ioaddr + MIIRegAddr);
1531 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1532 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1533 result = ioread16(ioaddr + MIIData);
1534
a384a33b 1535 rhine_enable_linkmon(rp);
1da177e4
LT
1536 return result;
1537}
1538
1539static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1540{
1541 struct rhine_private *rp = netdev_priv(dev);
1542 void __iomem *ioaddr = rp->base;
1543
a384a33b 1544 rhine_disable_linkmon(rp);
1da177e4
LT
1545
1546 /* rhine_disable_linkmon already cleared MIICmd */
1547 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1548 iowrite8(regnum, ioaddr + MIIRegAddr);
1549 iowrite16(value, ioaddr + MIIData);
1550 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1551 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1552
a384a33b 1553 rhine_enable_linkmon(rp);
1da177e4
LT
1554}
1555
7ab87ff4
FR
1556static void rhine_task_disable(struct rhine_private *rp)
1557{
1558 mutex_lock(&rp->task_lock);
1559 rp->task_enable = false;
1560 mutex_unlock(&rp->task_lock);
1561
1562 cancel_work_sync(&rp->slow_event_task);
1563 cancel_work_sync(&rp->reset_task);
1564}
1565
1566static void rhine_task_enable(struct rhine_private *rp)
1567{
1568 mutex_lock(&rp->task_lock);
1569 rp->task_enable = true;
1570 mutex_unlock(&rp->task_lock);
1571}
1572
1da177e4
LT
1573static int rhine_open(struct net_device *dev)
1574{
1575 struct rhine_private *rp = netdev_priv(dev);
1576 void __iomem *ioaddr = rp->base;
1577 int rc;
1578
76781382 1579 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1580 dev);
1581 if (rc)
1582 return rc;
1583
fc3e0f8a 1584 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1da177e4
LT
1585
1586 rc = alloc_ring(dev);
1587 if (rc) {
1588 free_irq(rp->pdev->irq, dev);
1589 return rc;
1590 }
1591 alloc_rbufs(dev);
1592 alloc_tbufs(dev);
1593 rhine_chip_reset(dev);
7ab87ff4 1594 rhine_task_enable(rp);
1da177e4 1595 init_registers(dev);
fc3e0f8a
FR
1596
1597 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1598 __func__, ioread16(ioaddr + ChipCmd),
1599 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1600
1601 netif_start_queue(dev);
1602
1603 return 0;
1604}
1605
c0d7a021 1606static void rhine_reset_task(struct work_struct *work)
1da177e4 1607{
c0d7a021
JP
1608 struct rhine_private *rp = container_of(work, struct rhine_private,
1609 reset_task);
1610 struct net_device *dev = rp->dev;
1da177e4 1611
7ab87ff4 1612 mutex_lock(&rp->task_lock);
1da177e4 1613
7ab87ff4
FR
1614 if (!rp->task_enable)
1615 goto out_unlock;
bea3348e 1616
7ab87ff4 1617 napi_disable(&rp->napi);
c0d7a021 1618 spin_lock_bh(&rp->lock);
1da177e4
LT
1619
1620 /* clear all descriptors */
1621 free_tbufs(dev);
1622 free_rbufs(dev);
1623 alloc_tbufs(dev);
1624 alloc_rbufs(dev);
1625
1626 /* Reinitialize the hardware. */
1627 rhine_chip_reset(dev);
1628 init_registers(dev);
1629
c0d7a021 1630 spin_unlock_bh(&rp->lock);
1da177e4 1631
1ae5dc34 1632 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1633 dev->stats.tx_errors++;
1da177e4 1634 netif_wake_queue(dev);
7ab87ff4
FR
1635
1636out_unlock:
1637 mutex_unlock(&rp->task_lock);
1da177e4
LT
1638}
1639
c0d7a021
JP
1640static void rhine_tx_timeout(struct net_device *dev)
1641{
1642 struct rhine_private *rp = netdev_priv(dev);
1643 void __iomem *ioaddr = rp->base;
1644
df4511fe
JP
1645 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1646 ioread16(ioaddr + IntrStatus),
1647 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1648
1649 schedule_work(&rp->reset_task);
1650}
1651
61357325
SH
1652static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1653 struct net_device *dev)
1da177e4
LT
1654{
1655 struct rhine_private *rp = netdev_priv(dev);
1656 void __iomem *ioaddr = rp->base;
1657 unsigned entry;
1658
1659 /* Caution: the write order is important here, set the field
1660 with the "ownership" bits last. */
1661
1662 /* Calculate the next Tx descriptor entry. */
1663 entry = rp->cur_tx % TX_RING_SIZE;
1664
5b057c6b 1665 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1666 return NETDEV_TX_OK;
1da177e4
LT
1667
1668 rp->tx_skbuff[entry] = skb;
1669
1670 if ((rp->quirks & rqRhineI) &&
84fa7933 1671 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1672 /* Must use alignment buffer. */
1673 if (skb->len > PKT_BUF_SZ) {
1674 /* packet too long, drop it */
1675 dev_kfree_skb(skb);
1676 rp->tx_skbuff[entry] = NULL;
553e2335 1677 dev->stats.tx_dropped++;
6ed10654 1678 return NETDEV_TX_OK;
1da177e4 1679 }
3e0d167a
CB
1680
1681 /* Padding is not copied and so must be redone. */
1da177e4 1682 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1683 if (skb->len < ETH_ZLEN)
1684 memset(rp->tx_buf[entry] + skb->len, 0,
1685 ETH_ZLEN - skb->len);
1da177e4
LT
1686 rp->tx_skbuff_dma[entry] = 0;
1687 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1688 (rp->tx_buf[entry] -
1689 rp->tx_bufs));
1690 } else {
1691 rp->tx_skbuff_dma[entry] =
1692 pci_map_single(rp->pdev, skb->data, skb->len,
1693 PCI_DMA_TODEVICE);
9b4fe5fb
NH
1694 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1695 dev_kfree_skb(skb);
1696 rp->tx_skbuff_dma[entry] = 0;
1697 dev->stats.tx_dropped++;
1698 return NETDEV_TX_OK;
1699 }
1da177e4
LT
1700 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1701 }
1702
1703 rp->tx_ring[entry].desc_length =
1704 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1705
38f49e88
RL
1706 if (unlikely(vlan_tx_tag_present(skb))) {
1707 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1708 /* request tagging */
1709 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1710 }
1711 else
1712 rp->tx_ring[entry].tx_status = 0;
1713
1da177e4 1714 /* lock eth irq */
1da177e4 1715 wmb();
38f49e88 1716 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1717 wmb();
1718
1719 rp->cur_tx++;
1720
1721 /* Non-x86 Todo: explicitly flush cache lines here. */
1722
38f49e88
RL
1723 if (vlan_tx_tag_present(skb))
1724 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1725 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1726
1da177e4
LT
1727 /* Wake the potentially-idle transmit channel */
1728 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1729 ioaddr + ChipCmd1);
1730 IOSYNC;
1731
1732 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1733 netif_stop_queue(dev);
1734
fc3e0f8a
FR
1735 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1736 rp->cur_tx - 1, entry);
1737
6ed10654 1738 return NETDEV_TX_OK;
1da177e4
LT
1739}
1740
7ab87ff4
FR
1741static void rhine_irq_disable(struct rhine_private *rp)
1742{
1743 iowrite16(0x0000, rp->base + IntrEnable);
1744 mmiowb();
1745}
1746
1da177e4
LT
1747/* The interrupt handler does all of the Rx thread work and cleans up
1748 after the Tx thread. */
7d12e780 1749static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1750{
1751 struct net_device *dev = dev_instance;
1752 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1753 u32 status;
1da177e4
LT
1754 int handled = 0;
1755
7ab87ff4 1756 status = rhine_get_events(rp);
1da177e4 1757
fc3e0f8a 1758 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1759
7ab87ff4
FR
1760 if (status & RHINE_EVENT) {
1761 handled = 1;
1da177e4 1762
7ab87ff4
FR
1763 rhine_irq_disable(rp);
1764 napi_schedule(&rp->napi);
1765 }
1da177e4 1766
7ab87ff4 1767 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1768 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1769 status);
1da177e4
LT
1770 }
1771
1da177e4
LT
1772 return IRQ_RETVAL(handled);
1773}
1774
1775/* This routine is logically part of the interrupt handler, but isolated
1776 for clarity. */
1777static void rhine_tx(struct net_device *dev)
1778{
1779 struct rhine_private *rp = netdev_priv(dev);
1780 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1781
1da177e4
LT
1782 /* find and cleanup dirty tx descriptors */
1783 while (rp->dirty_tx != rp->cur_tx) {
1784 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
fc3e0f8a
FR
1785 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1786 entry, txstatus);
1da177e4
LT
1787 if (txstatus & DescOwn)
1788 break;
1789 if (txstatus & 0x8000) {
fc3e0f8a
FR
1790 netif_dbg(rp, tx_done, dev,
1791 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1792 dev->stats.tx_errors++;
1793 if (txstatus & 0x0400)
1794 dev->stats.tx_carrier_errors++;
1795 if (txstatus & 0x0200)
1796 dev->stats.tx_window_errors++;
1797 if (txstatus & 0x0100)
1798 dev->stats.tx_aborted_errors++;
1799 if (txstatus & 0x0080)
1800 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1801 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1802 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1803 dev->stats.tx_fifo_errors++;
1da177e4
LT
1804 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1805 break; /* Keep the skb - we try again */
1806 }
1807 /* Transmitter restarted in 'abnormal' handler. */
1808 } else {
1809 if (rp->quirks & rqRhineI)
553e2335 1810 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1811 else
553e2335 1812 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1813 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1814 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1815
1816 u64_stats_update_begin(&rp->tx_stats.syncp);
1817 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1818 rp->tx_stats.packets++;
1819 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1820 }
1821 /* Free the original skb. */
1822 if (rp->tx_skbuff_dma[entry]) {
1823 pci_unmap_single(rp->pdev,
1824 rp->tx_skbuff_dma[entry],
1825 rp->tx_skbuff[entry]->len,
1826 PCI_DMA_TODEVICE);
1827 }
559bcac3 1828 dev_kfree_skb(rp->tx_skbuff[entry]);
1da177e4
LT
1829 rp->tx_skbuff[entry] = NULL;
1830 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1831 }
1832 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1833 netif_wake_queue(dev);
1da177e4
LT
1834}
1835
38f49e88
RL
1836/**
1837 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1838 * @skb: pointer to sk_buff
1839 * @data_size: used data area of the buffer including CRC
1840 *
1841 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1842 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1843 * aligned following the CRC.
1844 */
1845static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1846{
1847 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 1848 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
1849}
1850
633949a1
RL
1851/* Process up to limit frames from receive ring */
1852static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1853{
1854 struct rhine_private *rp = netdev_priv(dev);
633949a1 1855 int count;
1da177e4 1856 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4 1857
fc3e0f8a
FR
1858 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1859 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1da177e4
LT
1860
1861 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1862 for (count = 0; count < limit; ++count) {
1da177e4
LT
1863 struct rx_desc *desc = rp->rx_head_desc;
1864 u32 desc_status = le32_to_cpu(desc->rx_status);
38f49e88 1865 u32 desc_length = le32_to_cpu(desc->desc_length);
1da177e4
LT
1866 int data_size = desc_status >> 16;
1867
633949a1
RL
1868 if (desc_status & DescOwn)
1869 break;
1870
fc3e0f8a
FR
1871 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1872 desc_status);
633949a1 1873
1da177e4
LT
1874 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1875 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
1876 netdev_warn(dev,
1877 "Oversized Ethernet frame spanned multiple buffers, "
1878 "entry %#x length %d status %08x!\n",
1879 entry, data_size,
1880 desc_status);
1881 netdev_warn(dev,
1882 "Oversized Ethernet frame %p vs %p\n",
1883 rp->rx_head_desc,
1884 &rp->rx_ring[entry]);
553e2335 1885 dev->stats.rx_length_errors++;
1da177e4
LT
1886 } else if (desc_status & RxErr) {
1887 /* There was a error. */
fc3e0f8a
FR
1888 netif_dbg(rp, rx_err, dev,
1889 "%s() Rx error %08x\n", __func__,
1890 desc_status);
553e2335
ED
1891 dev->stats.rx_errors++;
1892 if (desc_status & 0x0030)
1893 dev->stats.rx_length_errors++;
1894 if (desc_status & 0x0048)
1895 dev->stats.rx_fifo_errors++;
1896 if (desc_status & 0x0004)
1897 dev->stats.rx_frame_errors++;
1da177e4
LT
1898 if (desc_status & 0x0002) {
1899 /* this can also be updated outside the interrupt handler */
1900 spin_lock(&rp->lock);
553e2335 1901 dev->stats.rx_crc_errors++;
1da177e4
LT
1902 spin_unlock(&rp->lock);
1903 }
1904 }
1905 } else {
89d71a66 1906 struct sk_buff *skb = NULL;
1da177e4
LT
1907 /* Length should omit the CRC */
1908 int pkt_len = data_size - 4;
38f49e88 1909 u16 vlan_tci = 0;
1da177e4
LT
1910
1911 /* Check if the packet is long enough to accept without
1912 copying to a minimally-sized skbuff. */
89d71a66
ED
1913 if (pkt_len < rx_copybreak)
1914 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1915 if (skb) {
1da177e4
LT
1916 pci_dma_sync_single_for_cpu(rp->pdev,
1917 rp->rx_skbuff_dma[entry],
1918 rp->rx_buf_sz,
1919 PCI_DMA_FROMDEVICE);
1920
8c7b7faa 1921 skb_copy_to_linear_data(skb,
689be439 1922 rp->rx_skbuff[entry]->data,
8c7b7faa 1923 pkt_len);
1da177e4
LT
1924 skb_put(skb, pkt_len);
1925 pci_dma_sync_single_for_device(rp->pdev,
1926 rp->rx_skbuff_dma[entry],
1927 rp->rx_buf_sz,
1928 PCI_DMA_FROMDEVICE);
1929 } else {
1930 skb = rp->rx_skbuff[entry];
1931 if (skb == NULL) {
df4511fe 1932 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1da177e4
LT
1933 break;
1934 }
1935 rp->rx_skbuff[entry] = NULL;
1936 skb_put(skb, pkt_len);
1937 pci_unmap_single(rp->pdev,
1938 rp->rx_skbuff_dma[entry],
1939 rp->rx_buf_sz,
1940 PCI_DMA_FROMDEVICE);
1941 }
38f49e88
RL
1942
1943 if (unlikely(desc_length & DescTag))
1944 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1945
1da177e4 1946 skb->protocol = eth_type_trans(skb, dev);
38f49e88
RL
1947
1948 if (unlikely(desc_length & DescTag))
86a9bad3 1949 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
633949a1 1950 netif_receive_skb(skb);
f7b5d1b9
JG
1951
1952 u64_stats_update_begin(&rp->rx_stats.syncp);
1953 rp->rx_stats.bytes += pkt_len;
1954 rp->rx_stats.packets++;
1955 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4
LT
1956 }
1957 entry = (++rp->cur_rx) % RX_RING_SIZE;
1958 rp->rx_head_desc = &rp->rx_ring[entry];
1959 }
1960
1961 /* Refill the Rx ring buffers. */
1962 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1963 struct sk_buff *skb;
1964 entry = rp->dirty_rx % RX_RING_SIZE;
1965 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1966 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1967 rp->rx_skbuff[entry] = skb;
1968 if (skb == NULL)
1969 break; /* Better luck next round. */
1da177e4 1970 rp->rx_skbuff_dma[entry] =
689be439 1971 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1972 rp->rx_buf_sz,
1973 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1974 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1975 dev_kfree_skb(skb);
1976 rp->rx_skbuff_dma[entry] = 0;
1977 break;
1978 }
1da177e4
LT
1979 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1980 }
1981 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1982 }
633949a1
RL
1983
1984 return count;
1da177e4
LT
1985}
1986
1da177e4
LT
1987static void rhine_restart_tx(struct net_device *dev) {
1988 struct rhine_private *rp = netdev_priv(dev);
1989 void __iomem *ioaddr = rp->base;
1990 int entry = rp->dirty_tx % TX_RING_SIZE;
1991 u32 intr_status;
1992
1993 /*
25985edc 1994 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
1995 * In that case the ISR will be back here RSN anyway.
1996 */
a20a28bc 1997 intr_status = rhine_get_events(rp);
1da177e4
LT
1998
1999 if ((intr_status & IntrTxErrSummary) == 0) {
2000
2001 /* We know better than the chip where it should continue. */
2002 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2003 ioaddr + TxRingPtr);
2004
2005 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2006 ioaddr + ChipCmd);
38f49e88
RL
2007
2008 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2009 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2010 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2011
1da177e4
LT
2012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2013 ioaddr + ChipCmd1);
2014 IOSYNC;
2015 }
2016 else {
2017 /* This should never happen */
fc3e0f8a
FR
2018 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2019 intr_status);
1da177e4
LT
2020 }
2021
2022}
2023
7ab87ff4 2024static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2025{
7ab87ff4
FR
2026 struct rhine_private *rp =
2027 container_of(work, struct rhine_private, slow_event_task);
2028 struct net_device *dev = rp->dev;
2029 u32 intr_status;
1da177e4 2030
7ab87ff4
FR
2031 mutex_lock(&rp->task_lock);
2032
2033 if (!rp->task_enable)
2034 goto out_unlock;
2035
2036 intr_status = rhine_get_events(rp);
2037 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2038
2039 if (intr_status & IntrLinkChange)
38bb6b28 2040 rhine_check_media(dev, 0);
1da177e4 2041
fc3e0f8a
FR
2042 if (intr_status & IntrPCIErr)
2043 netif_warn(rp, hw, dev, "PCI error\n");
2044
559bcac3 2045 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2046
7ab87ff4
FR
2047out_unlock:
2048 mutex_unlock(&rp->task_lock);
1da177e4
LT
2049}
2050
f7b5d1b9
JG
2051static struct rtnl_link_stats64 *
2052rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2053{
2054 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2055 unsigned int start;
1da177e4 2056
7ab87ff4
FR
2057 spin_lock_bh(&rp->lock);
2058 rhine_update_rx_crc_and_missed_errord(rp);
2059 spin_unlock_bh(&rp->lock);
1da177e4 2060
f7b5d1b9
JG
2061 netdev_stats_to_stats64(stats, &dev->stats);
2062
2063 do {
2064 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2065 stats->rx_packets = rp->rx_stats.packets;
2066 stats->rx_bytes = rp->rx_stats.bytes;
2067 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2068
2069 do {
2070 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2071 stats->tx_packets = rp->tx_stats.packets;
2072 stats->tx_bytes = rp->tx_stats.bytes;
2073 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2074
2075 return stats;
1da177e4
LT
2076}
2077
2078static void rhine_set_rx_mode(struct net_device *dev)
2079{
2080 struct rhine_private *rp = netdev_priv(dev);
2081 void __iomem *ioaddr = rp->base;
2082 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2083 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2084 struct netdev_hw_addr *ha;
1da177e4
LT
2085
2086 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2087 rx_mode = 0x1C;
2088 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2089 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2090 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2091 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2092 /* Too many to match, or accept all multicasts. */
2093 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2094 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
38f49e88
RL
2095 } else if (rp->pdev->revision >= VT6105M) {
2096 int i = 0;
2097 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2098 netdev_for_each_mc_addr(ha, dev) {
2099 if (i == MCAM_SIZE)
2100 break;
2101 rhine_set_cam(ioaddr, i, ha->addr);
2102 mCAMmask |= 1 << i;
2103 i++;
2104 }
2105 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2106 } else {
1da177e4 2107 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2108 netdev_for_each_mc_addr(ha, dev) {
2109 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2110
2111 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2112 }
2113 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2114 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2115 }
38f49e88
RL
2116 /* enable/disable VLAN receive filtering */
2117 if (rp->pdev->revision >= VT6105M) {
2118 if (dev->flags & IFF_PROMISC)
2119 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2120 else
2121 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2122 }
2123 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2124}
2125
2126static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2127{
2128 struct rhine_private *rp = netdev_priv(dev);
2129
23020ab3
RJ
2130 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2131 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2132 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
1da177e4
LT
2133}
2134
2135static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2136{
2137 struct rhine_private *rp = netdev_priv(dev);
2138 int rc;
2139
7ab87ff4 2140 mutex_lock(&rp->task_lock);
1da177e4 2141 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2142 mutex_unlock(&rp->task_lock);
1da177e4
LT
2143
2144 return rc;
2145}
2146
2147static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2148{
2149 struct rhine_private *rp = netdev_priv(dev);
2150 int rc;
2151
7ab87ff4 2152 mutex_lock(&rp->task_lock);
1da177e4 2153 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2154 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2155 mutex_unlock(&rp->task_lock);
1da177e4
LT
2156
2157 return rc;
2158}
2159
2160static int netdev_nway_reset(struct net_device *dev)
2161{
2162 struct rhine_private *rp = netdev_priv(dev);
2163
2164 return mii_nway_restart(&rp->mii_if);
2165}
2166
2167static u32 netdev_get_link(struct net_device *dev)
2168{
2169 struct rhine_private *rp = netdev_priv(dev);
2170
2171 return mii_link_ok(&rp->mii_if);
2172}
2173
2174static u32 netdev_get_msglevel(struct net_device *dev)
2175{
fc3e0f8a
FR
2176 struct rhine_private *rp = netdev_priv(dev);
2177
2178 return rp->msg_enable;
1da177e4
LT
2179}
2180
2181static void netdev_set_msglevel(struct net_device *dev, u32 value)
2182{
fc3e0f8a
FR
2183 struct rhine_private *rp = netdev_priv(dev);
2184
2185 rp->msg_enable = value;
1da177e4
LT
2186}
2187
2188static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2189{
2190 struct rhine_private *rp = netdev_priv(dev);
2191
2192 if (!(rp->quirks & rqWOL))
2193 return;
2194
2195 spin_lock_irq(&rp->lock);
2196 wol->supported = WAKE_PHY | WAKE_MAGIC |
2197 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2198 wol->wolopts = rp->wolopts;
2199 spin_unlock_irq(&rp->lock);
2200}
2201
2202static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2203{
2204 struct rhine_private *rp = netdev_priv(dev);
2205 u32 support = WAKE_PHY | WAKE_MAGIC |
2206 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2207
2208 if (!(rp->quirks & rqWOL))
2209 return -EINVAL;
2210
2211 if (wol->wolopts & ~support)
2212 return -EINVAL;
2213
2214 spin_lock_irq(&rp->lock);
2215 rp->wolopts = wol->wolopts;
2216 spin_unlock_irq(&rp->lock);
2217
2218 return 0;
2219}
2220
7282d491 2221static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2222 .get_drvinfo = netdev_get_drvinfo,
2223 .get_settings = netdev_get_settings,
2224 .set_settings = netdev_set_settings,
2225 .nway_reset = netdev_nway_reset,
2226 .get_link = netdev_get_link,
2227 .get_msglevel = netdev_get_msglevel,
2228 .set_msglevel = netdev_set_msglevel,
2229 .get_wol = rhine_get_wol,
2230 .set_wol = rhine_set_wol,
1da177e4
LT
2231};
2232
2233static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2234{
2235 struct rhine_private *rp = netdev_priv(dev);
2236 int rc;
2237
2238 if (!netif_running(dev))
2239 return -EINVAL;
2240
7ab87ff4 2241 mutex_lock(&rp->task_lock);
1da177e4 2242 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2243 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2244 mutex_unlock(&rp->task_lock);
1da177e4
LT
2245
2246 return rc;
2247}
2248
2249static int rhine_close(struct net_device *dev)
2250{
2251 struct rhine_private *rp = netdev_priv(dev);
2252 void __iomem *ioaddr = rp->base;
2253
7ab87ff4 2254 rhine_task_disable(rp);
bea3348e 2255 napi_disable(&rp->napi);
c0d7a021
JP
2256 netif_stop_queue(dev);
2257
fc3e0f8a
FR
2258 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2259 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2260
2261 /* Switch to loopback mode to avoid hardware races. */
2262 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2263
7ab87ff4 2264 rhine_irq_disable(rp);
1da177e4
LT
2265
2266 /* Stop the chip's Tx and Rx processes. */
2267 iowrite16(CmdStop, ioaddr + ChipCmd);
2268
1da177e4
LT
2269 free_irq(rp->pdev->irq, dev);
2270 free_rbufs(dev);
2271 free_tbufs(dev);
2272 free_ring(dev);
2273
2274 return 0;
2275}
2276
2277
76e239e1 2278static void rhine_remove_one(struct pci_dev *pdev)
1da177e4
LT
2279{
2280 struct net_device *dev = pci_get_drvdata(pdev);
2281 struct rhine_private *rp = netdev_priv(dev);
2282
2283 unregister_netdev(dev);
2284
2285 pci_iounmap(pdev, rp->base);
2286 pci_release_regions(pdev);
2287
2288 free_netdev(dev);
2289 pci_disable_device(pdev);
2290 pci_set_drvdata(pdev, NULL);
2291}
2292
d18c3db5 2293static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 2294{
1da177e4
LT
2295 struct net_device *dev = pci_get_drvdata(pdev);
2296 struct rhine_private *rp = netdev_priv(dev);
2297 void __iomem *ioaddr = rp->base;
2298
2299 if (!(rp->quirks & rqWOL))
2300 return; /* Nothing to do for non-WOL adapters */
2301
2302 rhine_power_init(dev);
2303
2304 /* Make sure we use pattern 0, 1 and not 4, 5 */
2305 if (rp->quirks & rq6patterns)
f11cf25e 2306 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2307
7ab87ff4
FR
2308 spin_lock(&rp->lock);
2309
1da177e4
LT
2310 if (rp->wolopts & WAKE_MAGIC) {
2311 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2312 /*
2313 * Turn EEPROM-controlled wake-up back on -- some hardware may
2314 * not cooperate otherwise.
2315 */
2316 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2317 }
2318
2319 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2320 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2321
2322 if (rp->wolopts & WAKE_PHY)
2323 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2324
2325 if (rp->wolopts & WAKE_UCAST)
2326 iowrite8(WOLucast, ioaddr + WOLcrSet);
2327
2328 if (rp->wolopts) {
2329 /* Enable legacy WOL (for old motherboards) */
2330 iowrite8(0x01, ioaddr + PwcfgSet);
2331 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2332 }
2333
7ab87ff4
FR
2334 spin_unlock(&rp->lock);
2335
e92b9b3b 2336 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2337 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2338
e92b9b3b
FR
2339 pci_wake_from_d3(pdev, true);
2340 pci_set_power_state(pdev, PCI_D3hot);
2341 }
1da177e4
LT
2342}
2343
e92b9b3b
FR
2344#ifdef CONFIG_PM_SLEEP
2345static int rhine_suspend(struct device *device)
1da177e4 2346{
e92b9b3b 2347 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2348 struct net_device *dev = pci_get_drvdata(pdev);
2349 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2350
2351 if (!netif_running(dev))
2352 return 0;
2353
7ab87ff4
FR
2354 rhine_task_disable(rp);
2355 rhine_irq_disable(rp);
bea3348e 2356 napi_disable(&rp->napi);
32b0f53e 2357
1da177e4 2358 netif_device_detach(dev);
1da177e4 2359
d18c3db5 2360 rhine_shutdown(pdev);
1da177e4 2361
1da177e4
LT
2362 return 0;
2363}
2364
e92b9b3b 2365static int rhine_resume(struct device *device)
1da177e4 2366{
e92b9b3b 2367 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2368 struct net_device *dev = pci_get_drvdata(pdev);
2369 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2370
2371 if (!netif_running(dev))
2372 return 0;
2373
1da177e4
LT
2374#ifdef USE_MMIO
2375 enable_mmio(rp->pioaddr, rp->quirks);
2376#endif
2377 rhine_power_init(dev);
2378 free_tbufs(dev);
2379 free_rbufs(dev);
2380 alloc_tbufs(dev);
2381 alloc_rbufs(dev);
7ab87ff4
FR
2382 rhine_task_enable(rp);
2383 spin_lock_bh(&rp->lock);
1da177e4 2384 init_registers(dev);
7ab87ff4 2385 spin_unlock_bh(&rp->lock);
1da177e4
LT
2386
2387 netif_device_attach(dev);
2388
2389 return 0;
2390}
e92b9b3b
FR
2391
2392static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2393#define RHINE_PM_OPS (&rhine_pm_ops)
2394
2395#else
2396
2397#define RHINE_PM_OPS NULL
2398
2399#endif /* !CONFIG_PM_SLEEP */
1da177e4
LT
2400
2401static struct pci_driver rhine_driver = {
2402 .name = DRV_NAME,
2403 .id_table = rhine_pci_tbl,
2404 .probe = rhine_init_one,
76e239e1 2405 .remove = rhine_remove_one,
e92b9b3b
FR
2406 .shutdown = rhine_shutdown,
2407 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2408};
2409
e84df485
RL
2410static struct dmi_system_id __initdata rhine_dmi_table[] = {
2411 {
2412 .ident = "EPIA-M",
2413 .matches = {
2414 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2415 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2416 },
2417 },
2418 {
2419 .ident = "KV7",
2420 .matches = {
2421 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2422 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2423 },
2424 },
2425 { NULL }
2426};
1da177e4
LT
2427
2428static int __init rhine_init(void)
2429{
2430/* when a module, this is printed whether or not devices are found in probe */
2431#ifdef MODULE
df4511fe 2432 pr_info("%s\n", version);
1da177e4 2433#endif
e84df485
RL
2434 if (dmi_check_system(rhine_dmi_table)) {
2435 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2436 avoid_D3 = true;
df4511fe 2437 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2438 }
2439 else if (avoid_D3)
df4511fe 2440 pr_info("avoid_D3 set\n");
e84df485 2441
29917620 2442 return pci_register_driver(&rhine_driver);
1da177e4
LT
2443}
2444
2445
2446static void __exit rhine_cleanup(void)
2447{
2448 pci_unregister_driver(&rhine_driver);
2449}
2450
2451
2452module_init(rhine_init);
2453module_exit(rhine_cleanup);
This page took 1.139068 seconds and 5 git commands to generate.