net: Replace u64_stats_fetch_begin_bh to u64_stats_fetch_begin_irq
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
207070f5 35#define DRV_VERSION "1.5.1"
38f49e88 36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77#define TX_RING_SIZE 16
78#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 79#define RX_RING_SIZE 64
1da177e4
LT
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT (2*HZ)
85
86#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
1da177e4
LT
95#include <linux/interrupt.h>
96#include <linux/pci.h>
1e7f0bd8 97#include <linux/dma-mapping.h>
1da177e4
LT
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/init.h>
102#include <linux/delay.h>
103#include <linux/mii.h>
104#include <linux/ethtool.h>
105#include <linux/crc32.h>
38f49e88 106#include <linux/if_vlan.h>
1da177e4 107#include <linux/bitops.h>
c0d7a021 108#include <linux/workqueue.h>
1da177e4
LT
109#include <asm/processor.h> /* Processor type for cache alignment. */
110#include <asm/io.h>
111#include <asm/irq.h>
112#include <asm/uaccess.h>
e84df485 113#include <linux/dmi.h>
1da177e4
LT
114
115/* These identify the driver base version and may not be removed. */
76e239e1 116static const char version[] =
df4511fe 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4
LT
118
119/* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121#ifdef CONFIG_VIA_RHINE_MMIO
122#define USE_MMIO
123#else
124#endif
125
126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128MODULE_LICENSE("GPL");
129
1da177e4
LT
130module_param(debug, int, 0);
131module_param(rx_copybreak, int, 0);
b933b4d9 132module_param(avoid_D3, bool, 0);
fc3e0f8a 133MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 134MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 135MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 136
38f49e88
RL
137#define MCAM_SIZE 32
138#define VCAM_SIZE 32
139
1da177e4
LT
140/*
141 Theory of Operation
142
143I. Board Compatibility
144
145This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146controller.
147
148II. Board-specific settings
149
150Boards with this chip are functional only in a bus-master PCI slot.
151
152Many operational settings are loaded from the EEPROM to the Config word at
153offset 0x78. For most of these settings, this driver assumes that they are
154correct.
155If this driver is compiled to use PCI memory space operations the EEPROM
156must be configured to enable memory ops.
157
158III. Driver operation
159
160IIIa. Ring buffers
161
162This driver uses two statically allocated fixed-size descriptor lists
163formed into rings by a branch from the final descriptor to the beginning of
164the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166IIIb/c. Transmit/Receive Structure
167
168This driver attempts to use a zero-copy receive and transmit scheme.
169
170Alas, all data buffers are required to start on a 32 bit boundary, so
171the driver must often copy transmit packets into bounce buffers.
172
173The driver allocates full frame size skbuffs for the Rx ring buffers at
174open() time and passes the skb->data field to the chip as receive data
175buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176a fresh skbuff is allocated and the frame is copied to the new skbuff.
177When the incoming frame is larger, the skbuff is passed directly up the
178protocol stack. Buffers consumed this way are replaced by newly allocated
179skbuffs in the last phase of rhine_rx().
180
181The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182using a full-sized skbuff for small frames vs. the copying costs of larger
183frames. New boards are typically used in generously configured machines
184and the underfilled buffers have negligible impact compared to the benefit of
185a single allocation size, so the default value of zero results in never
186copying packets. When copying is done, the cost is usually mitigated by using
187a combined copy/checksum routine. Copying also preloads the cache, which is
188most useful with small frames.
189
190Since the VIA chips are only able to transfer data to buffers on 32 bit
191boundaries, the IP header at offset 14 in an ethernet frame isn't
192longword aligned for further processing. Copying these unaligned buffers
193has the beneficial effect of 16-byte aligning the IP header.
194
195IIId. Synchronization
196
197The driver runs as two independent, single-threaded flows of control. One
198is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
199netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
201
202The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
203netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204the ring is not available it stops the transmit queue by
205calling netif_stop_queue.
1da177e4
LT
206
207The interrupt handler has exclusive control over the Rx ring and records stats
208from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209empty by incrementing the dirty_tx mark. If at least half of the entries in
210the Rx ring are available the transmit queue is woken up if it was stopped.
211
212IV. Notes
213
214IVb. References
215
216Preliminary VT86C100A manual from http://www.via.com.tw/
217http://www.scyld.com/expert/100mbps.html
218http://www.scyld.com/expert/NWay.html
219ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223IVc. Errata
224
225The VT86C100A manual is not reliable information.
226The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227in significant performance degradation for bounce buffer copies on transmit
228and unaligned IP headers on receive.
229The chip does not pad to minimum transmit length.
230
231*/
232
233
234/* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238*/
239
240enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255};
256
257enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263};
264/*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270/* Beware of PCI posted writes */
271#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
a3aa1884 273static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
278 { } /* terminate list */
279};
280MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283/* Offsets to the device registers. */
284enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 286 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299};
300
301/* Bits in ConfigD */
302enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305};
306
38f49e88
RL
307/* Bits in the TxConfig (TCR) register */
308enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317};
318
319/* Bits in the CamCon (CAMC) register */
320enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325};
326
327/* Bits in the PCIBusConfig1 (BCR1) register */
328enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339};
340
1da177e4
LT
341#ifdef USE_MMIO
342/* Registers we check that mmio and reg are the same. */
343static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346};
347#endif
348
349/* Bits in the interrupt status/mask registers. */
350enum intr_status_bits {
7ab87ff4
FR
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
1da177e4
LT
370};
371
372/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379};
380
381/* The Rx and Tx buffer descriptors. */
382struct rx_desc {
53c03f5c
AV
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
1da177e4
LT
387};
388struct tx_desc {
53c03f5c
AV
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
1da177e4
LT
393};
394
395/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396#define TXDESC 0x00e08000
397
398enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400};
401
402/* Bits in *_desc.*_status */
403enum desc_status_bits {
404 DescOwn=0x80000000
405};
406
38f49e88
RL
407/* Bits in *_desc.*_length */
408enum desc_length_bits {
409 DescTag=0x00010000
410};
411
1da177e4
LT
412/* Bits in ChipCmd. */
413enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418};
419
f7b5d1b9
JG
420struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424};
425
1da177e4 426struct rhine_private {
38f49e88
RL
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
1da177e4
LT
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
4be5de25 444 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
bea3348e
SH
451 struct net_device *dev;
452 struct napi_struct napi;
1da177e4 453 spinlock_t lock;
7ab87ff4
FR
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
c0d7a021 457 struct work_struct reset_task;
1da177e4 458
fc3e0f8a
FR
459 u32 msg_enable;
460
1da177e4
LT
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
1da177e4
LT
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475};
476
38f49e88
RL
477#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
1da177e4
LT
494static int mdio_read(struct net_device *dev, int phy_id, int location);
495static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496static int rhine_open(struct net_device *dev);
c0d7a021 497static void rhine_reset_task(struct work_struct *work);
7ab87ff4 498static void rhine_slow_event_task(struct work_struct *work);
1da177e4 499static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
500static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
7d12e780 502static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 503static void rhine_tx(struct net_device *dev);
633949a1 504static int rhine_rx(struct net_device *dev, int limit);
1da177e4 505static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
506static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
1da177e4 508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 509static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 510static int rhine_close(struct net_device *dev);
80d5c368
PM
511static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 __be16 proto, u16 vid);
513static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 __be16 proto, u16 vid);
7ab87ff4 515static void rhine_restart_tx(struct net_device *dev);
1da177e4 516
3f8c91a7 517static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
518{
519 void __iomem *ioaddr = rp->base;
520 int i;
521
522 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524
525 if (low ^ has_mask_bits)
a384a33b
FR
526 break;
527 udelay(10);
528 }
529 if (i > 64) {
fc3e0f8a 530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 531 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
532 }
533}
534
535static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536{
3f8c91a7 537 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
538}
539
540static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541{
3f8c91a7 542 rhine_wait_bit(rp, reg, mask, true);
a384a33b 543}
1da177e4 544
a20a28bc 545static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 546{
1da177e4
LT
547 void __iomem *ioaddr = rp->base;
548 u32 intr_status;
549
550 intr_status = ioread16(ioaddr + IntrStatus);
551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 if (rp->quirks & rqStatusWBRace)
553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 return intr_status;
555}
556
a20a28bc
FR
557static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558{
559 void __iomem *ioaddr = rp->base;
560
561 if (rp->quirks & rqStatusWBRace)
562 iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 564 mmiowb();
a20a28bc
FR
565}
566
1da177e4
LT
567/*
568 * Get power related registers into sane state.
569 * Notify user about past WOL event.
570 */
571static void rhine_power_init(struct net_device *dev)
572{
573 struct rhine_private *rp = netdev_priv(dev);
574 void __iomem *ioaddr = rp->base;
575 u16 wolstat;
576
577 if (rp->quirks & rqWOL) {
578 /* Make sure chip is in power state D0 */
579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580
581 /* Disable "force PME-enable" */
582 iowrite8(0x80, ioaddr + WOLcgClr);
583
584 /* Clear power-event config bits (WOL) */
585 iowrite8(0xFF, ioaddr + WOLcrClr);
586 /* More recent cards can manage two additional patterns */
587 if (rp->quirks & rq6patterns)
588 iowrite8(0x03, ioaddr + WOLcrClr1);
589
590 /* Save power-event status bits */
591 wolstat = ioread8(ioaddr + PwrcsrSet);
592 if (rp->quirks & rq6patterns)
593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594
595 /* Clear power-event status bits */
596 iowrite8(0xFF, ioaddr + PwrcsrClr);
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + PwrcsrClr1);
599
600 if (wolstat) {
601 char *reason;
602 switch (wolstat) {
603 case WOLmagic:
604 reason = "Magic packet";
605 break;
606 case WOLlnkon:
607 reason = "Link went up";
608 break;
609 case WOLlnkoff:
610 reason = "Link went down";
611 break;
612 case WOLucast:
613 reason = "Unicast packet";
614 break;
615 case WOLbmcast:
616 reason = "Multicast/broadcast packet";
617 break;
618 default:
619 reason = "Unknown";
620 }
df4511fe
JP
621 netdev_info(dev, "Woke system up. Reason: %s\n",
622 reason);
1da177e4
LT
623 }
624 }
625}
626
627static void rhine_chip_reset(struct net_device *dev)
628{
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
fc3e0f8a 631 u8 cmd1;
1da177e4
LT
632
633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 IOSYNC;
635
636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 637 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
638
639 /* Force reset */
640 if (rp->quirks & rqForceReset)
641 iowrite8(0x40, ioaddr + MiscCmd);
642
643 /* Reset can take somewhat longer (rare) */
a384a33b 644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
645 }
646
fc3e0f8a
FR
647 cmd1 = ioread8(ioaddr + ChipCmd1);
648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 "failed" : "succeeded");
1da177e4
LT
650}
651
652#ifdef USE_MMIO
653static void enable_mmio(long pioaddr, u32 quirks)
654{
655 int n;
656 if (quirks & rqRhineI) {
657 /* More recent docs say that this bit is reserved ... */
658 n = inb(pioaddr + ConfigA) | 0x20;
659 outb(n, pioaddr + ConfigA);
660 } else {
661 n = inb(pioaddr + ConfigD) | 0x80;
662 outb(n, pioaddr + ConfigD);
663 }
664}
665#endif
666
667/*
668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669 * (plus 0x6C for Rhine-I/II)
670 */
76e239e1 671static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
672{
673 struct rhine_private *rp = netdev_priv(dev);
674 void __iomem *ioaddr = rp->base;
a384a33b 675 int i;
1da177e4
LT
676
677 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
678 for (i = 0; i < 1024; i++) {
679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 break;
681 }
682 if (i > 512)
683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4
LT
684
685#ifdef USE_MMIO
686 /*
687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 * it is not known if that still works with the "win98-reboot" problem.
690 */
691 enable_mmio(pioaddr, rp->quirks);
692#endif
693
694 /* Turn off EEPROM-controlled wake-up (magic packet) */
695 if (rp->quirks & rqWOL)
696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697
698}
699
700#ifdef CONFIG_NET_POLL_CONTROLLER
701static void rhine_poll(struct net_device *dev)
702{
05d334ec
FR
703 struct rhine_private *rp = netdev_priv(dev);
704 const int irq = rp->pdev->irq;
705
706 disable_irq(irq);
707 rhine_interrupt(irq, dev);
708 enable_irq(irq);
1da177e4
LT
709}
710#endif
711
269f3114
FR
712static void rhine_kick_tx_threshold(struct rhine_private *rp)
713{
714 if (rp->tx_thresh < 0xe0) {
715 void __iomem *ioaddr = rp->base;
716
717 rp->tx_thresh += 0x20;
718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 }
720}
721
7ab87ff4
FR
722static void rhine_tx_err(struct rhine_private *rp, u32 status)
723{
724 struct net_device *dev = rp->dev;
725
726 if (status & IntrTxAborted) {
fc3e0f8a
FR
727 netif_info(rp, tx_err, dev,
728 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
729 }
730
731 if (status & IntrTxUnderrun) {
732 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
733 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
735 }
736
fc3e0f8a
FR
737 if (status & IntrTxDescRace)
738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
739
740 if ((status & IntrTxError) &&
741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
743 netif_info(rp, tx_err, dev, "Unspecified error. "
744 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
745 }
746
747 rhine_restart_tx(dev);
748}
749
750static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751{
752 void __iomem *ioaddr = rp->base;
753 struct net_device_stats *stats = &rp->dev->stats;
754
755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757
758 /*
759 * Clears the "tally counters" for CRC errors and missed frames(?).
760 * It has been reported that some chips need a write of 0 to clear
761 * these, for others the counters are set to 1 when written to and
762 * instead cleared when read. So we clear them both ways ...
763 */
764 iowrite32(0, ioaddr + RxMissed);
765 ioread16(ioaddr + RxCRCErrs);
766 ioread16(ioaddr + RxMissed);
767}
768
769#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
770 IntrRxErr | \
771 IntrRxEmpty | \
772 IntrRxOverflow | \
773 IntrRxDropped | \
774 IntrRxNoBuf | \
775 IntrRxWakeUp)
776
777#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
778 IntrTxAborted | \
779 IntrTxUnderrun | \
780 IntrTxDescRace)
781#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782
783#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
784 RHINE_EVENT_NAPI_TX | \
785 IntrStatsMax)
786#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
787#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788
bea3348e 789static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 790{
bea3348e
SH
791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 struct net_device *dev = rp->dev;
633949a1 793 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
794 u16 enable_mask = RHINE_EVENT & 0xffff;
795 int work_done = 0;
796 u32 status;
797
798 status = rhine_get_events(rp);
799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800
801 if (status & RHINE_EVENT_NAPI_RX)
802 work_done += rhine_rx(dev, budget);
803
804 if (status & RHINE_EVENT_NAPI_TX) {
805 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 806 /* Avoid scavenging before Tx engine turned off */
a384a33b 807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 810 }
fc3e0f8a 811
7ab87ff4
FR
812 rhine_tx(dev);
813
814 if (status & RHINE_EVENT_NAPI_TX_ERR)
815 rhine_tx_err(rp, status);
816 }
817
818 if (status & IntrStatsMax) {
819 spin_lock(&rp->lock);
820 rhine_update_rx_crc_and_missed_errord(rp);
821 spin_unlock(&rp->lock);
822 }
633949a1 823
7ab87ff4
FR
824 if (status & RHINE_EVENT_SLOW) {
825 enable_mask &= ~RHINE_EVENT_SLOW;
826 schedule_work(&rp->slow_event_task);
827 }
633949a1 828
bea3348e 829 if (work_done < budget) {
288379f0 830 napi_complete(napi);
7ab87ff4
FR
831 iowrite16(enable_mask, ioaddr + IntrEnable);
832 mmiowb();
633949a1 833 }
bea3348e 834 return work_done;
633949a1 835}
633949a1 836
76e239e1 837static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
838{
839 struct rhine_private *rp = netdev_priv(dev);
840
841 /* Reset the chip to erase previous misconfiguration. */
842 rhine_chip_reset(dev);
843
844 /* Rhine-I needs extra time to recuperate before EEPROM reload */
845 if (rp->quirks & rqRhineI)
846 msleep(5);
847
848 /* Reload EEPROM controlled bytes cleared by soft reset */
849 rhine_reload_eeprom(pioaddr, dev);
850}
851
5d1d07d8
SH
852static const struct net_device_ops rhine_netdev_ops = {
853 .ndo_open = rhine_open,
854 .ndo_stop = rhine_close,
855 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 856 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 857 .ndo_set_rx_mode = rhine_set_rx_mode,
635ecaa7 858 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 859 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 860 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
861 .ndo_do_ioctl = netdev_ioctl,
862 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
865#ifdef CONFIG_NET_POLL_CONTROLLER
866 .ndo_poll_controller = rhine_poll,
867#endif
868};
869
1dd06ae8 870static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
871{
872 struct net_device *dev;
873 struct rhine_private *rp;
874 int i, rc;
1da177e4
LT
875 u32 quirks;
876 long pioaddr;
877 long memaddr;
878 void __iomem *ioaddr;
879 int io_size, phy_id;
880 const char *name;
881#ifdef USE_MMIO
882 int bar = 1;
883#else
884 int bar = 0;
885#endif
886
887/* when built into the kernel, we only print version if device is found */
888#ifndef MODULE
df4511fe 889 pr_info_once("%s\n", version);
1da177e4
LT
890#endif
891
1da177e4
LT
892 io_size = 256;
893 phy_id = 0;
894 quirks = 0;
895 name = "Rhine";
44c10138 896 if (pdev->revision < VTunknown0) {
1da177e4
LT
897 quirks = rqRhineI;
898 io_size = 128;
899 }
44c10138 900 else if (pdev->revision >= VT6102) {
1da177e4 901 quirks = rqWOL | rqForceReset;
44c10138 902 if (pdev->revision < VT6105) {
1da177e4
LT
903 name = "Rhine II";
904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
905 }
906 else {
907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 908 if (pdev->revision >= VT6105_B0)
1da177e4 909 quirks |= rq6patterns;
44c10138 910 if (pdev->revision < VT6105M)
1da177e4
LT
911 name = "Rhine III";
912 else
913 name = "Rhine III (Management Adapter)";
914 }
915 }
916
917 rc = pci_enable_device(pdev);
918 if (rc)
919 goto err_out;
920
921 /* this should always be supported */
284901a9 922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4 923 if (rc) {
df4511fe
JP
924 dev_err(&pdev->dev,
925 "32-bit PCI DMA addresses not supported by the card!?\n");
1da177e4
LT
926 goto err_out;
927 }
928
929 /* sanity check */
930 if ((pci_resource_len(pdev, 0) < io_size) ||
931 (pci_resource_len(pdev, 1) < io_size)) {
932 rc = -EIO;
df4511fe 933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
1da177e4
LT
934 goto err_out;
935 }
936
937 pioaddr = pci_resource_start(pdev, 0);
938 memaddr = pci_resource_start(pdev, 1);
939
940 pci_set_master(pdev);
941
942 dev = alloc_etherdev(sizeof(struct rhine_private));
943 if (!dev) {
944 rc = -ENOMEM;
1da177e4
LT
945 goto err_out;
946 }
1da177e4
LT
947 SET_NETDEV_DEV(dev, &pdev->dev);
948
949 rp = netdev_priv(dev);
bea3348e 950 rp->dev = dev;
1da177e4
LT
951 rp->quirks = quirks;
952 rp->pioaddr = pioaddr;
953 rp->pdev = pdev;
fc3e0f8a 954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4
LT
955
956 rc = pci_request_regions(pdev, DRV_NAME);
957 if (rc)
958 goto err_out_free_netdev;
959
960 ioaddr = pci_iomap(pdev, bar, io_size);
961 if (!ioaddr) {
962 rc = -EIO;
df4511fe
JP
963 dev_err(&pdev->dev,
964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 pci_name(pdev), io_size, memaddr);
1da177e4
LT
966 goto err_out_free_res;
967 }
968
969#ifdef USE_MMIO
970 enable_mmio(pioaddr, quirks);
971
972 /* Check that selected MMIO registers match the PIO ones */
973 i = 0;
974 while (mmio_verify_registers[i]) {
975 int reg = mmio_verify_registers[i++];
976 unsigned char a = inb(pioaddr+reg);
977 unsigned char b = readb(ioaddr+reg);
978 if (a != b) {
979 rc = -EIO;
df4511fe
JP
980 dev_err(&pdev->dev,
981 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 reg, a, b);
1da177e4
LT
983 goto err_out_unmap;
984 }
985 }
986#endif /* USE_MMIO */
987
1da177e4
LT
988 rp->base = ioaddr;
989
827da44c
JS
990 u64_stats_init(&rp->tx_stats.syncp);
991 u64_stats_init(&rp->rx_stats.syncp);
992
1da177e4
LT
993 /* Get chip registers into a sane state */
994 rhine_power_init(dev);
995 rhine_hw_init(dev, pioaddr);
996
997 for (i = 0; i < 6; i++)
998 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
999
482e3feb
JP
1000 if (!is_valid_ether_addr(dev->dev_addr)) {
1001 /* Report it and use a random ethernet address instead */
1002 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 1003 eth_hw_addr_random(dev);
482e3feb
JP
1004 netdev_info(dev, "Using random MAC address: %pM\n",
1005 dev->dev_addr);
1da177e4
LT
1006 }
1007
1008 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1009 if (!phy_id)
1010 phy_id = ioread8(ioaddr + 0x6C);
1011
1da177e4 1012 spin_lock_init(&rp->lock);
7ab87ff4 1013 mutex_init(&rp->task_lock);
c0d7a021 1014 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 1015 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 1016
1da177e4
LT
1017 rp->mii_if.dev = dev;
1018 rp->mii_if.mdio_read = mdio_read;
1019 rp->mii_if.mdio_write = mdio_write;
1020 rp->mii_if.phy_id_mask = 0x1f;
1021 rp->mii_if.reg_num_mask = 0x1f;
1022
1023 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
1024 dev->netdev_ops = &rhine_netdev_ops;
1025 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 1026 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 1027
bea3348e 1028 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 1029
1da177e4
LT
1030 if (rp->quirks & rqRhineI)
1031 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1032
38f49e88 1033 if (pdev->revision >= VT6105M)
f646968f
PM
1034 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1035 NETIF_F_HW_VLAN_CTAG_RX |
1036 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 1037
1da177e4
LT
1038 /* dev->name not defined before register_netdev()! */
1039 rc = register_netdev(dev);
1040 if (rc)
1041 goto err_out_unmap;
1042
df4511fe
JP
1043 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1044 name,
1da177e4 1045#ifdef USE_MMIO
df4511fe 1046 memaddr,
1da177e4 1047#else
df4511fe 1048 (long)ioaddr,
1da177e4 1049#endif
df4511fe 1050 dev->dev_addr, pdev->irq);
1da177e4
LT
1051
1052 pci_set_drvdata(pdev, dev);
1053
1054 {
1055 u16 mii_cmd;
1056 int mii_status = mdio_read(dev, phy_id, 1);
1057 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1058 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1059 if (mii_status != 0xffff && mii_status != 0x0000) {
1060 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1061 netdev_info(dev,
1062 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1063 phy_id,
1064 mii_status, rp->mii_if.advertising,
1065 mdio_read(dev, phy_id, 5));
1da177e4
LT
1066
1067 /* set IFF_RUNNING */
1068 if (mii_status & BMSR_LSTATUS)
1069 netif_carrier_on(dev);
1070 else
1071 netif_carrier_off(dev);
1072
1073 }
1074 }
1075 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1076 if (avoid_D3)
1077 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1078
1079 return 0;
1080
1081err_out_unmap:
1082 pci_iounmap(pdev, ioaddr);
1083err_out_free_res:
1084 pci_release_regions(pdev);
1085err_out_free_netdev:
1086 free_netdev(dev);
1087err_out:
1088 return rc;
1089}
1090
1091static int alloc_ring(struct net_device* dev)
1092{
1093 struct rhine_private *rp = netdev_priv(dev);
1094 void *ring;
1095 dma_addr_t ring_dma;
1096
1097 ring = pci_alloc_consistent(rp->pdev,
1098 RX_RING_SIZE * sizeof(struct rx_desc) +
1099 TX_RING_SIZE * sizeof(struct tx_desc),
1100 &ring_dma);
1101 if (!ring) {
df4511fe 1102 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1103 return -ENOMEM;
1104 }
1105 if (rp->quirks & rqRhineI) {
1106 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1107 PKT_BUF_SZ * TX_RING_SIZE,
1108 &rp->tx_bufs_dma);
1109 if (rp->tx_bufs == NULL) {
1110 pci_free_consistent(rp->pdev,
1111 RX_RING_SIZE * sizeof(struct rx_desc) +
1112 TX_RING_SIZE * sizeof(struct tx_desc),
1113 ring, ring_dma);
1114 return -ENOMEM;
1115 }
1116 }
1117
1118 rp->rx_ring = ring;
1119 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1120 rp->rx_ring_dma = ring_dma;
1121 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1122
1123 return 0;
1124}
1125
1126static void free_ring(struct net_device* dev)
1127{
1128 struct rhine_private *rp = netdev_priv(dev);
1129
1130 pci_free_consistent(rp->pdev,
1131 RX_RING_SIZE * sizeof(struct rx_desc) +
1132 TX_RING_SIZE * sizeof(struct tx_desc),
1133 rp->rx_ring, rp->rx_ring_dma);
1134 rp->tx_ring = NULL;
1135
1136 if (rp->tx_bufs)
1137 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1138 rp->tx_bufs, rp->tx_bufs_dma);
1139
1140 rp->tx_bufs = NULL;
1141
1142}
1143
1144static void alloc_rbufs(struct net_device *dev)
1145{
1146 struct rhine_private *rp = netdev_priv(dev);
1147 dma_addr_t next;
1148 int i;
1149
1150 rp->dirty_rx = rp->cur_rx = 0;
1151
1152 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1153 rp->rx_head_desc = &rp->rx_ring[0];
1154 next = rp->rx_ring_dma;
1155
1156 /* Init the ring entries */
1157 for (i = 0; i < RX_RING_SIZE; i++) {
1158 rp->rx_ring[i].rx_status = 0;
1159 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1160 next += sizeof(struct rx_desc);
1161 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1162 rp->rx_skbuff[i] = NULL;
1163 }
1164 /* Mark the last entry as wrapping the ring. */
1165 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1166
1167 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1168 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 1169 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1170 rp->rx_skbuff[i] = skb;
1171 if (skb == NULL)
1172 break;
1da177e4
LT
1173
1174 rp->rx_skbuff_dma[i] =
689be439 1175 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4 1176 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1177 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1178 rp->rx_skbuff_dma[i] = 0;
1179 dev_kfree_skb(skb);
1180 break;
1181 }
1da177e4
LT
1182 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1183 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1184 }
1185 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1186}
1187
1188static void free_rbufs(struct net_device* dev)
1189{
1190 struct rhine_private *rp = netdev_priv(dev);
1191 int i;
1192
1193 /* Free all the skbuffs in the Rx queue. */
1194 for (i = 0; i < RX_RING_SIZE; i++) {
1195 rp->rx_ring[i].rx_status = 0;
1196 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1197 if (rp->rx_skbuff[i]) {
1198 pci_unmap_single(rp->pdev,
1199 rp->rx_skbuff_dma[i],
1200 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1201 dev_kfree_skb(rp->rx_skbuff[i]);
1202 }
1203 rp->rx_skbuff[i] = NULL;
1204 }
1205}
1206
1207static void alloc_tbufs(struct net_device* dev)
1208{
1209 struct rhine_private *rp = netdev_priv(dev);
1210 dma_addr_t next;
1211 int i;
1212
1213 rp->dirty_tx = rp->cur_tx = 0;
1214 next = rp->tx_ring_dma;
1215 for (i = 0; i < TX_RING_SIZE; i++) {
1216 rp->tx_skbuff[i] = NULL;
1217 rp->tx_ring[i].tx_status = 0;
1218 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1219 next += sizeof(struct tx_desc);
1220 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1221 if (rp->quirks & rqRhineI)
1222 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1223 }
1224 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1225
1226}
1227
1228static void free_tbufs(struct net_device* dev)
1229{
1230 struct rhine_private *rp = netdev_priv(dev);
1231 int i;
1232
1233 for (i = 0; i < TX_RING_SIZE; i++) {
1234 rp->tx_ring[i].tx_status = 0;
1235 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1236 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1237 if (rp->tx_skbuff[i]) {
1238 if (rp->tx_skbuff_dma[i]) {
1239 pci_unmap_single(rp->pdev,
1240 rp->tx_skbuff_dma[i],
1241 rp->tx_skbuff[i]->len,
1242 PCI_DMA_TODEVICE);
1243 }
1244 dev_kfree_skb(rp->tx_skbuff[i]);
1245 }
1246 rp->tx_skbuff[i] = NULL;
1247 rp->tx_buf[i] = NULL;
1248 }
1249}
1250
1251static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1252{
1253 struct rhine_private *rp = netdev_priv(dev);
1254 void __iomem *ioaddr = rp->base;
1255
fc3e0f8a 1256 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1257
1258 if (rp->mii_if.full_duplex)
1259 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1260 ioaddr + ChipCmd1);
1261 else
1262 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1263 ioaddr + ChipCmd1);
fc3e0f8a
FR
1264
1265 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1266 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1267}
1268
1269/* Called after status of force_media possibly changed */
0761be4f 1270static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1271{
fc3e0f8a
FR
1272 struct net_device *dev = mii->dev;
1273 struct rhine_private *rp = netdev_priv(dev);
1274
00b428c2
RL
1275 if (mii->force_media) {
1276 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1277 if (!netif_carrier_ok(dev))
1278 netif_carrier_on(dev);
1279 } else /* Let MMI library update carrier status */
1280 rhine_check_media(dev, 0);
1281
1282 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1283 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1284}
1285
38f49e88
RL
1286/**
1287 * rhine_set_cam - set CAM multicast filters
1288 * @ioaddr: register block of this Rhine
1289 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1290 * @addr: multicast address (6 bytes)
1291 *
1292 * Load addresses into multicast filters.
1293 */
1294static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1295{
1296 int i;
1297
1298 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1299 wmb();
1300
1301 /* Paranoid -- idx out of range should never happen */
1302 idx &= (MCAM_SIZE - 1);
1303
1304 iowrite8((u8) idx, ioaddr + CamAddr);
1305
1306 for (i = 0; i < 6; i++, addr++)
1307 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1308 udelay(10);
1309 wmb();
1310
1311 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1312 udelay(10);
1313
1314 iowrite8(0, ioaddr + CamCon);
1315}
1316
1317/**
1318 * rhine_set_vlan_cam - set CAM VLAN filters
1319 * @ioaddr: register block of this Rhine
1320 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1321 * @addr: VLAN ID (2 bytes)
1322 *
1323 * Load addresses into VLAN filters.
1324 */
1325static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1326{
1327 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1328 wmb();
1329
1330 /* Paranoid -- idx out of range should never happen */
1331 idx &= (VCAM_SIZE - 1);
1332
1333 iowrite8((u8) idx, ioaddr + CamAddr);
1334
1335 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1336 udelay(10);
1337 wmb();
1338
1339 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1340 udelay(10);
1341
1342 iowrite8(0, ioaddr + CamCon);
1343}
1344
1345/**
1346 * rhine_set_cam_mask - set multicast CAM mask
1347 * @ioaddr: register block of this Rhine
1348 * @mask: multicast CAM mask
1349 *
1350 * Mask sets multicast filters active/inactive.
1351 */
1352static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1353{
1354 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1355 wmb();
1356
1357 /* write mask */
1358 iowrite32(mask, ioaddr + CamMask);
1359
1360 /* disable CAMEN */
1361 iowrite8(0, ioaddr + CamCon);
1362}
1363
1364/**
1365 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1366 * @ioaddr: register block of this Rhine
1367 * @mask: VLAN CAM mask
1368 *
1369 * Mask sets VLAN filters active/inactive.
1370 */
1371static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1372{
1373 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1374 wmb();
1375
1376 /* write mask */
1377 iowrite32(mask, ioaddr + CamMask);
1378
1379 /* disable CAMEN */
1380 iowrite8(0, ioaddr + CamCon);
1381}
1382
1383/**
1384 * rhine_init_cam_filter - initialize CAM filters
1385 * @dev: network device
1386 *
1387 * Initialize (disable) hardware VLAN and multicast support on this
1388 * Rhine.
1389 */
1390static void rhine_init_cam_filter(struct net_device *dev)
1391{
1392 struct rhine_private *rp = netdev_priv(dev);
1393 void __iomem *ioaddr = rp->base;
1394
1395 /* Disable all CAMs */
1396 rhine_set_vlan_cam_mask(ioaddr, 0);
1397 rhine_set_cam_mask(ioaddr, 0);
1398
1399 /* disable hardware VLAN support */
1400 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1401 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1402}
1403
1404/**
1405 * rhine_update_vcam - update VLAN CAM filters
1406 * @rp: rhine_private data of this Rhine
1407 *
1408 * Update VLAN CAM filters to match configuration change.
1409 */
1410static void rhine_update_vcam(struct net_device *dev)
1411{
1412 struct rhine_private *rp = netdev_priv(dev);
1413 void __iomem *ioaddr = rp->base;
1414 u16 vid;
1415 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1416 unsigned int i = 0;
1417
1418 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1419 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1420 vCAMmask |= 1 << i;
1421 if (++i >= VCAM_SIZE)
1422 break;
1423 }
1424 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1425}
1426
80d5c368 1427static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1428{
1429 struct rhine_private *rp = netdev_priv(dev);
1430
7ab87ff4 1431 spin_lock_bh(&rp->lock);
38f49e88
RL
1432 set_bit(vid, rp->active_vlans);
1433 rhine_update_vcam(dev);
7ab87ff4 1434 spin_unlock_bh(&rp->lock);
8e586137 1435 return 0;
38f49e88
RL
1436}
1437
80d5c368 1438static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1439{
1440 struct rhine_private *rp = netdev_priv(dev);
1441
7ab87ff4 1442 spin_lock_bh(&rp->lock);
38f49e88
RL
1443 clear_bit(vid, rp->active_vlans);
1444 rhine_update_vcam(dev);
7ab87ff4 1445 spin_unlock_bh(&rp->lock);
8e586137 1446 return 0;
38f49e88
RL
1447}
1448
1da177e4
LT
1449static void init_registers(struct net_device *dev)
1450{
1451 struct rhine_private *rp = netdev_priv(dev);
1452 void __iomem *ioaddr = rp->base;
1453 int i;
1454
1455 for (i = 0; i < 6; i++)
1456 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1457
1458 /* Initialize other registers. */
1459 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1460 /* Configure initial FIFO thresholds. */
1461 iowrite8(0x20, ioaddr + TxConfig);
1462 rp->tx_thresh = 0x20;
1463 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1464
1465 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1466 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1467
1468 rhine_set_rx_mode(dev);
1469
38f49e88
RL
1470 if (rp->pdev->revision >= VT6105M)
1471 rhine_init_cam_filter(dev);
1472
bea3348e 1473 napi_enable(&rp->napi);
ab197668 1474
7ab87ff4 1475 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1476
1477 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1478 ioaddr + ChipCmd);
1479 rhine_check_media(dev, 1);
1480}
1481
1482/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1483static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1484{
a384a33b
FR
1485 void __iomem *ioaddr = rp->base;
1486
1da177e4
LT
1487 iowrite8(0, ioaddr + MIICmd);
1488 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1489 iowrite8(0x80, ioaddr + MIICmd);
1490
a384a33b 1491 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1492
1493 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1494}
1495
1496/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1497static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1498{
a384a33b
FR
1499 void __iomem *ioaddr = rp->base;
1500
1da177e4
LT
1501 iowrite8(0, ioaddr + MIICmd);
1502
a384a33b 1503 if (rp->quirks & rqRhineI) {
1da177e4
LT
1504 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1505
38bb6b28
JL
1506 /* Can be called from ISR. Evil. */
1507 mdelay(1);
1da177e4
LT
1508
1509 /* 0x80 must be set immediately before turning it off */
1510 iowrite8(0x80, ioaddr + MIICmd);
1511
a384a33b 1512 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1513
1514 /* Heh. Now clear 0x80 again. */
1515 iowrite8(0, ioaddr + MIICmd);
1516 }
1517 else
a384a33b 1518 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1519}
1520
1521/* Read and write over the MII Management Data I/O (MDIO) interface. */
1522
1523static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1524{
1525 struct rhine_private *rp = netdev_priv(dev);
1526 void __iomem *ioaddr = rp->base;
1527 int result;
1528
a384a33b 1529 rhine_disable_linkmon(rp);
1da177e4
LT
1530
1531 /* rhine_disable_linkmon already cleared MIICmd */
1532 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1533 iowrite8(regnum, ioaddr + MIIRegAddr);
1534 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1535 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1536 result = ioread16(ioaddr + MIIData);
1537
a384a33b 1538 rhine_enable_linkmon(rp);
1da177e4
LT
1539 return result;
1540}
1541
1542static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1543{
1544 struct rhine_private *rp = netdev_priv(dev);
1545 void __iomem *ioaddr = rp->base;
1546
a384a33b 1547 rhine_disable_linkmon(rp);
1da177e4
LT
1548
1549 /* rhine_disable_linkmon already cleared MIICmd */
1550 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1551 iowrite8(regnum, ioaddr + MIIRegAddr);
1552 iowrite16(value, ioaddr + MIIData);
1553 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1554 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1555
a384a33b 1556 rhine_enable_linkmon(rp);
1da177e4
LT
1557}
1558
7ab87ff4
FR
1559static void rhine_task_disable(struct rhine_private *rp)
1560{
1561 mutex_lock(&rp->task_lock);
1562 rp->task_enable = false;
1563 mutex_unlock(&rp->task_lock);
1564
1565 cancel_work_sync(&rp->slow_event_task);
1566 cancel_work_sync(&rp->reset_task);
1567}
1568
1569static void rhine_task_enable(struct rhine_private *rp)
1570{
1571 mutex_lock(&rp->task_lock);
1572 rp->task_enable = true;
1573 mutex_unlock(&rp->task_lock);
1574}
1575
1da177e4
LT
1576static int rhine_open(struct net_device *dev)
1577{
1578 struct rhine_private *rp = netdev_priv(dev);
1579 void __iomem *ioaddr = rp->base;
1580 int rc;
1581
76781382 1582 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1583 dev);
1584 if (rc)
1585 return rc;
1586
fc3e0f8a 1587 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1da177e4
LT
1588
1589 rc = alloc_ring(dev);
1590 if (rc) {
1591 free_irq(rp->pdev->irq, dev);
1592 return rc;
1593 }
1594 alloc_rbufs(dev);
1595 alloc_tbufs(dev);
1596 rhine_chip_reset(dev);
7ab87ff4 1597 rhine_task_enable(rp);
1da177e4 1598 init_registers(dev);
fc3e0f8a
FR
1599
1600 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1601 __func__, ioread16(ioaddr + ChipCmd),
1602 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1603
1604 netif_start_queue(dev);
1605
1606 return 0;
1607}
1608
c0d7a021 1609static void rhine_reset_task(struct work_struct *work)
1da177e4 1610{
c0d7a021
JP
1611 struct rhine_private *rp = container_of(work, struct rhine_private,
1612 reset_task);
1613 struct net_device *dev = rp->dev;
1da177e4 1614
7ab87ff4 1615 mutex_lock(&rp->task_lock);
1da177e4 1616
7ab87ff4
FR
1617 if (!rp->task_enable)
1618 goto out_unlock;
bea3348e 1619
7ab87ff4 1620 napi_disable(&rp->napi);
a926592f 1621 netif_tx_disable(dev);
c0d7a021 1622 spin_lock_bh(&rp->lock);
1da177e4
LT
1623
1624 /* clear all descriptors */
1625 free_tbufs(dev);
1626 free_rbufs(dev);
1627 alloc_tbufs(dev);
1628 alloc_rbufs(dev);
1629
1630 /* Reinitialize the hardware. */
1631 rhine_chip_reset(dev);
1632 init_registers(dev);
1633
c0d7a021 1634 spin_unlock_bh(&rp->lock);
1da177e4 1635
1ae5dc34 1636 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1637 dev->stats.tx_errors++;
1da177e4 1638 netif_wake_queue(dev);
7ab87ff4
FR
1639
1640out_unlock:
1641 mutex_unlock(&rp->task_lock);
1da177e4
LT
1642}
1643
c0d7a021
JP
1644static void rhine_tx_timeout(struct net_device *dev)
1645{
1646 struct rhine_private *rp = netdev_priv(dev);
1647 void __iomem *ioaddr = rp->base;
1648
df4511fe
JP
1649 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1650 ioread16(ioaddr + IntrStatus),
1651 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1652
1653 schedule_work(&rp->reset_task);
1654}
1655
61357325
SH
1656static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1657 struct net_device *dev)
1da177e4
LT
1658{
1659 struct rhine_private *rp = netdev_priv(dev);
1660 void __iomem *ioaddr = rp->base;
1661 unsigned entry;
1662
1663 /* Caution: the write order is important here, set the field
1664 with the "ownership" bits last. */
1665
1666 /* Calculate the next Tx descriptor entry. */
1667 entry = rp->cur_tx % TX_RING_SIZE;
1668
5b057c6b 1669 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1670 return NETDEV_TX_OK;
1da177e4
LT
1671
1672 rp->tx_skbuff[entry] = skb;
1673
1674 if ((rp->quirks & rqRhineI) &&
84fa7933 1675 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1676 /* Must use alignment buffer. */
1677 if (skb->len > PKT_BUF_SZ) {
1678 /* packet too long, drop it */
1679 dev_kfree_skb(skb);
1680 rp->tx_skbuff[entry] = NULL;
553e2335 1681 dev->stats.tx_dropped++;
6ed10654 1682 return NETDEV_TX_OK;
1da177e4 1683 }
3e0d167a
CB
1684
1685 /* Padding is not copied and so must be redone. */
1da177e4 1686 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1687 if (skb->len < ETH_ZLEN)
1688 memset(rp->tx_buf[entry] + skb->len, 0,
1689 ETH_ZLEN - skb->len);
1da177e4
LT
1690 rp->tx_skbuff_dma[entry] = 0;
1691 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1692 (rp->tx_buf[entry] -
1693 rp->tx_bufs));
1694 } else {
1695 rp->tx_skbuff_dma[entry] =
1696 pci_map_single(rp->pdev, skb->data, skb->len,
1697 PCI_DMA_TODEVICE);
9b4fe5fb
NH
1698 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1699 dev_kfree_skb(skb);
1700 rp->tx_skbuff_dma[entry] = 0;
1701 dev->stats.tx_dropped++;
1702 return NETDEV_TX_OK;
1703 }
1da177e4
LT
1704 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1705 }
1706
1707 rp->tx_ring[entry].desc_length =
1708 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1709
38f49e88 1710 if (unlikely(vlan_tx_tag_present(skb))) {
207070f5
RL
1711 u16 vid_pcp = vlan_tx_tag_get(skb);
1712
1713 /* drop CFI/DEI bit, register needs VID and PCP */
1714 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1715 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1716 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
38f49e88
RL
1717 /* request tagging */
1718 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1719 }
1720 else
1721 rp->tx_ring[entry].tx_status = 0;
1722
1da177e4 1723 /* lock eth irq */
1da177e4 1724 wmb();
38f49e88 1725 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1726 wmb();
1727
1728 rp->cur_tx++;
1729
1730 /* Non-x86 Todo: explicitly flush cache lines here. */
1731
38f49e88
RL
1732 if (vlan_tx_tag_present(skb))
1733 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1734 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1735
1da177e4
LT
1736 /* Wake the potentially-idle transmit channel */
1737 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1738 ioaddr + ChipCmd1);
1739 IOSYNC;
1740
1741 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1742 netif_stop_queue(dev);
1743
fc3e0f8a
FR
1744 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1745 rp->cur_tx - 1, entry);
1746
6ed10654 1747 return NETDEV_TX_OK;
1da177e4
LT
1748}
1749
7ab87ff4
FR
1750static void rhine_irq_disable(struct rhine_private *rp)
1751{
1752 iowrite16(0x0000, rp->base + IntrEnable);
1753 mmiowb();
1754}
1755
1da177e4
LT
1756/* The interrupt handler does all of the Rx thread work and cleans up
1757 after the Tx thread. */
7d12e780 1758static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1759{
1760 struct net_device *dev = dev_instance;
1761 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1762 u32 status;
1da177e4
LT
1763 int handled = 0;
1764
7ab87ff4 1765 status = rhine_get_events(rp);
1da177e4 1766
fc3e0f8a 1767 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1768
7ab87ff4
FR
1769 if (status & RHINE_EVENT) {
1770 handled = 1;
1da177e4 1771
7ab87ff4
FR
1772 rhine_irq_disable(rp);
1773 napi_schedule(&rp->napi);
1774 }
1da177e4 1775
7ab87ff4 1776 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1777 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1778 status);
1da177e4
LT
1779 }
1780
1da177e4
LT
1781 return IRQ_RETVAL(handled);
1782}
1783
1784/* This routine is logically part of the interrupt handler, but isolated
1785 for clarity. */
1786static void rhine_tx(struct net_device *dev)
1787{
1788 struct rhine_private *rp = netdev_priv(dev);
1789 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1790
1da177e4
LT
1791 /* find and cleanup dirty tx descriptors */
1792 while (rp->dirty_tx != rp->cur_tx) {
1793 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
fc3e0f8a
FR
1794 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1795 entry, txstatus);
1da177e4
LT
1796 if (txstatus & DescOwn)
1797 break;
1798 if (txstatus & 0x8000) {
fc3e0f8a
FR
1799 netif_dbg(rp, tx_done, dev,
1800 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1801 dev->stats.tx_errors++;
1802 if (txstatus & 0x0400)
1803 dev->stats.tx_carrier_errors++;
1804 if (txstatus & 0x0200)
1805 dev->stats.tx_window_errors++;
1806 if (txstatus & 0x0100)
1807 dev->stats.tx_aborted_errors++;
1808 if (txstatus & 0x0080)
1809 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1810 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1811 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1812 dev->stats.tx_fifo_errors++;
1da177e4
LT
1813 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1814 break; /* Keep the skb - we try again */
1815 }
1816 /* Transmitter restarted in 'abnormal' handler. */
1817 } else {
1818 if (rp->quirks & rqRhineI)
553e2335 1819 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1820 else
553e2335 1821 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1822 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1823 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1824
1825 u64_stats_update_begin(&rp->tx_stats.syncp);
1826 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1827 rp->tx_stats.packets++;
1828 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1829 }
1830 /* Free the original skb. */
1831 if (rp->tx_skbuff_dma[entry]) {
1832 pci_unmap_single(rp->pdev,
1833 rp->tx_skbuff_dma[entry],
1834 rp->tx_skbuff[entry]->len,
1835 PCI_DMA_TODEVICE);
1836 }
559bcac3 1837 dev_kfree_skb(rp->tx_skbuff[entry]);
1da177e4
LT
1838 rp->tx_skbuff[entry] = NULL;
1839 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1840 }
1841 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1842 netif_wake_queue(dev);
1da177e4
LT
1843}
1844
38f49e88
RL
1845/**
1846 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1847 * @skb: pointer to sk_buff
1848 * @data_size: used data area of the buffer including CRC
1849 *
1850 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1851 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1852 * aligned following the CRC.
1853 */
1854static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1855{
1856 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 1857 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
1858}
1859
633949a1
RL
1860/* Process up to limit frames from receive ring */
1861static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1862{
1863 struct rhine_private *rp = netdev_priv(dev);
633949a1 1864 int count;
1da177e4 1865 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4 1866
fc3e0f8a
FR
1867 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1868 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1da177e4
LT
1869
1870 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1871 for (count = 0; count < limit; ++count) {
1da177e4
LT
1872 struct rx_desc *desc = rp->rx_head_desc;
1873 u32 desc_status = le32_to_cpu(desc->rx_status);
38f49e88 1874 u32 desc_length = le32_to_cpu(desc->desc_length);
1da177e4
LT
1875 int data_size = desc_status >> 16;
1876
633949a1
RL
1877 if (desc_status & DescOwn)
1878 break;
1879
fc3e0f8a
FR
1880 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1881 desc_status);
633949a1 1882
1da177e4
LT
1883 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1884 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
1885 netdev_warn(dev,
1886 "Oversized Ethernet frame spanned multiple buffers, "
1887 "entry %#x length %d status %08x!\n",
1888 entry, data_size,
1889 desc_status);
1890 netdev_warn(dev,
1891 "Oversized Ethernet frame %p vs %p\n",
1892 rp->rx_head_desc,
1893 &rp->rx_ring[entry]);
553e2335 1894 dev->stats.rx_length_errors++;
1da177e4
LT
1895 } else if (desc_status & RxErr) {
1896 /* There was a error. */
fc3e0f8a
FR
1897 netif_dbg(rp, rx_err, dev,
1898 "%s() Rx error %08x\n", __func__,
1899 desc_status);
553e2335
ED
1900 dev->stats.rx_errors++;
1901 if (desc_status & 0x0030)
1902 dev->stats.rx_length_errors++;
1903 if (desc_status & 0x0048)
1904 dev->stats.rx_fifo_errors++;
1905 if (desc_status & 0x0004)
1906 dev->stats.rx_frame_errors++;
1da177e4
LT
1907 if (desc_status & 0x0002) {
1908 /* this can also be updated outside the interrupt handler */
1909 spin_lock(&rp->lock);
553e2335 1910 dev->stats.rx_crc_errors++;
1da177e4
LT
1911 spin_unlock(&rp->lock);
1912 }
1913 }
1914 } else {
89d71a66 1915 struct sk_buff *skb = NULL;
1da177e4
LT
1916 /* Length should omit the CRC */
1917 int pkt_len = data_size - 4;
38f49e88 1918 u16 vlan_tci = 0;
1da177e4
LT
1919
1920 /* Check if the packet is long enough to accept without
1921 copying to a minimally-sized skbuff. */
89d71a66
ED
1922 if (pkt_len < rx_copybreak)
1923 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1924 if (skb) {
1da177e4
LT
1925 pci_dma_sync_single_for_cpu(rp->pdev,
1926 rp->rx_skbuff_dma[entry],
1927 rp->rx_buf_sz,
1928 PCI_DMA_FROMDEVICE);
1929
8c7b7faa 1930 skb_copy_to_linear_data(skb,
689be439 1931 rp->rx_skbuff[entry]->data,
8c7b7faa 1932 pkt_len);
1da177e4
LT
1933 skb_put(skb, pkt_len);
1934 pci_dma_sync_single_for_device(rp->pdev,
1935 rp->rx_skbuff_dma[entry],
1936 rp->rx_buf_sz,
1937 PCI_DMA_FROMDEVICE);
1938 } else {
1939 skb = rp->rx_skbuff[entry];
1940 if (skb == NULL) {
df4511fe 1941 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1da177e4
LT
1942 break;
1943 }
1944 rp->rx_skbuff[entry] = NULL;
1945 skb_put(skb, pkt_len);
1946 pci_unmap_single(rp->pdev,
1947 rp->rx_skbuff_dma[entry],
1948 rp->rx_buf_sz,
1949 PCI_DMA_FROMDEVICE);
1950 }
38f49e88
RL
1951
1952 if (unlikely(desc_length & DescTag))
1953 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1954
1da177e4 1955 skb->protocol = eth_type_trans(skb, dev);
38f49e88
RL
1956
1957 if (unlikely(desc_length & DescTag))
86a9bad3 1958 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
633949a1 1959 netif_receive_skb(skb);
f7b5d1b9
JG
1960
1961 u64_stats_update_begin(&rp->rx_stats.syncp);
1962 rp->rx_stats.bytes += pkt_len;
1963 rp->rx_stats.packets++;
1964 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4
LT
1965 }
1966 entry = (++rp->cur_rx) % RX_RING_SIZE;
1967 rp->rx_head_desc = &rp->rx_ring[entry];
1968 }
1969
1970 /* Refill the Rx ring buffers. */
1971 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1972 struct sk_buff *skb;
1973 entry = rp->dirty_rx % RX_RING_SIZE;
1974 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1975 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1976 rp->rx_skbuff[entry] = skb;
1977 if (skb == NULL)
1978 break; /* Better luck next round. */
1da177e4 1979 rp->rx_skbuff_dma[entry] =
689be439 1980 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1981 rp->rx_buf_sz,
1982 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1983 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1984 dev_kfree_skb(skb);
1985 rp->rx_skbuff_dma[entry] = 0;
1986 break;
1987 }
1da177e4
LT
1988 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1989 }
1990 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1991 }
633949a1
RL
1992
1993 return count;
1da177e4
LT
1994}
1995
1da177e4
LT
1996static void rhine_restart_tx(struct net_device *dev) {
1997 struct rhine_private *rp = netdev_priv(dev);
1998 void __iomem *ioaddr = rp->base;
1999 int entry = rp->dirty_tx % TX_RING_SIZE;
2000 u32 intr_status;
2001
2002 /*
25985edc 2003 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
2004 * In that case the ISR will be back here RSN anyway.
2005 */
a20a28bc 2006 intr_status = rhine_get_events(rp);
1da177e4
LT
2007
2008 if ((intr_status & IntrTxErrSummary) == 0) {
2009
2010 /* We know better than the chip where it should continue. */
2011 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2012 ioaddr + TxRingPtr);
2013
2014 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2015 ioaddr + ChipCmd);
38f49e88
RL
2016
2017 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2018 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2019 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2020
1da177e4
LT
2021 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2022 ioaddr + ChipCmd1);
2023 IOSYNC;
2024 }
2025 else {
2026 /* This should never happen */
fc3e0f8a
FR
2027 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2028 intr_status);
1da177e4
LT
2029 }
2030
2031}
2032
7ab87ff4 2033static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2034{
7ab87ff4
FR
2035 struct rhine_private *rp =
2036 container_of(work, struct rhine_private, slow_event_task);
2037 struct net_device *dev = rp->dev;
2038 u32 intr_status;
1da177e4 2039
7ab87ff4
FR
2040 mutex_lock(&rp->task_lock);
2041
2042 if (!rp->task_enable)
2043 goto out_unlock;
2044
2045 intr_status = rhine_get_events(rp);
2046 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2047
2048 if (intr_status & IntrLinkChange)
38bb6b28 2049 rhine_check_media(dev, 0);
1da177e4 2050
fc3e0f8a
FR
2051 if (intr_status & IntrPCIErr)
2052 netif_warn(rp, hw, dev, "PCI error\n");
2053
559bcac3 2054 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2055
7ab87ff4
FR
2056out_unlock:
2057 mutex_unlock(&rp->task_lock);
1da177e4
LT
2058}
2059
f7b5d1b9
JG
2060static struct rtnl_link_stats64 *
2061rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2062{
2063 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2064 unsigned int start;
1da177e4 2065
7ab87ff4
FR
2066 spin_lock_bh(&rp->lock);
2067 rhine_update_rx_crc_and_missed_errord(rp);
2068 spin_unlock_bh(&rp->lock);
1da177e4 2069
f7b5d1b9
JG
2070 netdev_stats_to_stats64(stats, &dev->stats);
2071
2072 do {
57a7744e 2073 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
f7b5d1b9
JG
2074 stats->rx_packets = rp->rx_stats.packets;
2075 stats->rx_bytes = rp->rx_stats.bytes;
57a7744e 2076 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
f7b5d1b9
JG
2077
2078 do {
57a7744e 2079 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
f7b5d1b9
JG
2080 stats->tx_packets = rp->tx_stats.packets;
2081 stats->tx_bytes = rp->tx_stats.bytes;
57a7744e 2082 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
f7b5d1b9
JG
2083
2084 return stats;
1da177e4
LT
2085}
2086
2087static void rhine_set_rx_mode(struct net_device *dev)
2088{
2089 struct rhine_private *rp = netdev_priv(dev);
2090 void __iomem *ioaddr = rp->base;
2091 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2092 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2093 struct netdev_hw_addr *ha;
1da177e4
LT
2094
2095 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2096 rx_mode = 0x1C;
2097 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2098 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2099 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2100 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2101 /* Too many to match, or accept all multicasts. */
2102 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2103 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
38f49e88
RL
2104 } else if (rp->pdev->revision >= VT6105M) {
2105 int i = 0;
2106 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2107 netdev_for_each_mc_addr(ha, dev) {
2108 if (i == MCAM_SIZE)
2109 break;
2110 rhine_set_cam(ioaddr, i, ha->addr);
2111 mCAMmask |= 1 << i;
2112 i++;
2113 }
2114 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2115 } else {
1da177e4 2116 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2117 netdev_for_each_mc_addr(ha, dev) {
2118 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2119
2120 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2121 }
2122 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2123 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2124 }
38f49e88
RL
2125 /* enable/disable VLAN receive filtering */
2126 if (rp->pdev->revision >= VT6105M) {
2127 if (dev->flags & IFF_PROMISC)
2128 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2129 else
2130 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2131 }
2132 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2133}
2134
2135static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2136{
2137 struct rhine_private *rp = netdev_priv(dev);
2138
23020ab3
RJ
2139 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2140 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2141 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
1da177e4
LT
2142}
2143
2144static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2145{
2146 struct rhine_private *rp = netdev_priv(dev);
2147 int rc;
2148
7ab87ff4 2149 mutex_lock(&rp->task_lock);
1da177e4 2150 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2151 mutex_unlock(&rp->task_lock);
1da177e4
LT
2152
2153 return rc;
2154}
2155
2156static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2157{
2158 struct rhine_private *rp = netdev_priv(dev);
2159 int rc;
2160
7ab87ff4 2161 mutex_lock(&rp->task_lock);
1da177e4 2162 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2163 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2164 mutex_unlock(&rp->task_lock);
1da177e4
LT
2165
2166 return rc;
2167}
2168
2169static int netdev_nway_reset(struct net_device *dev)
2170{
2171 struct rhine_private *rp = netdev_priv(dev);
2172
2173 return mii_nway_restart(&rp->mii_if);
2174}
2175
2176static u32 netdev_get_link(struct net_device *dev)
2177{
2178 struct rhine_private *rp = netdev_priv(dev);
2179
2180 return mii_link_ok(&rp->mii_if);
2181}
2182
2183static u32 netdev_get_msglevel(struct net_device *dev)
2184{
fc3e0f8a
FR
2185 struct rhine_private *rp = netdev_priv(dev);
2186
2187 return rp->msg_enable;
1da177e4
LT
2188}
2189
2190static void netdev_set_msglevel(struct net_device *dev, u32 value)
2191{
fc3e0f8a
FR
2192 struct rhine_private *rp = netdev_priv(dev);
2193
2194 rp->msg_enable = value;
1da177e4
LT
2195}
2196
2197static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2198{
2199 struct rhine_private *rp = netdev_priv(dev);
2200
2201 if (!(rp->quirks & rqWOL))
2202 return;
2203
2204 spin_lock_irq(&rp->lock);
2205 wol->supported = WAKE_PHY | WAKE_MAGIC |
2206 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2207 wol->wolopts = rp->wolopts;
2208 spin_unlock_irq(&rp->lock);
2209}
2210
2211static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2212{
2213 struct rhine_private *rp = netdev_priv(dev);
2214 u32 support = WAKE_PHY | WAKE_MAGIC |
2215 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2216
2217 if (!(rp->quirks & rqWOL))
2218 return -EINVAL;
2219
2220 if (wol->wolopts & ~support)
2221 return -EINVAL;
2222
2223 spin_lock_irq(&rp->lock);
2224 rp->wolopts = wol->wolopts;
2225 spin_unlock_irq(&rp->lock);
2226
2227 return 0;
2228}
2229
7282d491 2230static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2231 .get_drvinfo = netdev_get_drvinfo,
2232 .get_settings = netdev_get_settings,
2233 .set_settings = netdev_set_settings,
2234 .nway_reset = netdev_nway_reset,
2235 .get_link = netdev_get_link,
2236 .get_msglevel = netdev_get_msglevel,
2237 .set_msglevel = netdev_set_msglevel,
2238 .get_wol = rhine_get_wol,
2239 .set_wol = rhine_set_wol,
1da177e4
LT
2240};
2241
2242static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2243{
2244 struct rhine_private *rp = netdev_priv(dev);
2245 int rc;
2246
2247 if (!netif_running(dev))
2248 return -EINVAL;
2249
7ab87ff4 2250 mutex_lock(&rp->task_lock);
1da177e4 2251 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2252 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2253 mutex_unlock(&rp->task_lock);
1da177e4
LT
2254
2255 return rc;
2256}
2257
2258static int rhine_close(struct net_device *dev)
2259{
2260 struct rhine_private *rp = netdev_priv(dev);
2261 void __iomem *ioaddr = rp->base;
2262
7ab87ff4 2263 rhine_task_disable(rp);
bea3348e 2264 napi_disable(&rp->napi);
c0d7a021
JP
2265 netif_stop_queue(dev);
2266
fc3e0f8a
FR
2267 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2268 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2269
2270 /* Switch to loopback mode to avoid hardware races. */
2271 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2272
7ab87ff4 2273 rhine_irq_disable(rp);
1da177e4
LT
2274
2275 /* Stop the chip's Tx and Rx processes. */
2276 iowrite16(CmdStop, ioaddr + ChipCmd);
2277
1da177e4
LT
2278 free_irq(rp->pdev->irq, dev);
2279 free_rbufs(dev);
2280 free_tbufs(dev);
2281 free_ring(dev);
2282
2283 return 0;
2284}
2285
2286
76e239e1 2287static void rhine_remove_one(struct pci_dev *pdev)
1da177e4
LT
2288{
2289 struct net_device *dev = pci_get_drvdata(pdev);
2290 struct rhine_private *rp = netdev_priv(dev);
2291
2292 unregister_netdev(dev);
2293
2294 pci_iounmap(pdev, rp->base);
2295 pci_release_regions(pdev);
2296
2297 free_netdev(dev);
2298 pci_disable_device(pdev);
1da177e4
LT
2299}
2300
d18c3db5 2301static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 2302{
1da177e4
LT
2303 struct net_device *dev = pci_get_drvdata(pdev);
2304 struct rhine_private *rp = netdev_priv(dev);
2305 void __iomem *ioaddr = rp->base;
2306
2307 if (!(rp->quirks & rqWOL))
2308 return; /* Nothing to do for non-WOL adapters */
2309
2310 rhine_power_init(dev);
2311
2312 /* Make sure we use pattern 0, 1 and not 4, 5 */
2313 if (rp->quirks & rq6patterns)
f11cf25e 2314 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2315
7ab87ff4
FR
2316 spin_lock(&rp->lock);
2317
1da177e4
LT
2318 if (rp->wolopts & WAKE_MAGIC) {
2319 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2320 /*
2321 * Turn EEPROM-controlled wake-up back on -- some hardware may
2322 * not cooperate otherwise.
2323 */
2324 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2325 }
2326
2327 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2328 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2329
2330 if (rp->wolopts & WAKE_PHY)
2331 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2332
2333 if (rp->wolopts & WAKE_UCAST)
2334 iowrite8(WOLucast, ioaddr + WOLcrSet);
2335
2336 if (rp->wolopts) {
2337 /* Enable legacy WOL (for old motherboards) */
2338 iowrite8(0x01, ioaddr + PwcfgSet);
2339 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2340 }
2341
7ab87ff4
FR
2342 spin_unlock(&rp->lock);
2343
e92b9b3b 2344 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2345 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2346
e92b9b3b
FR
2347 pci_wake_from_d3(pdev, true);
2348 pci_set_power_state(pdev, PCI_D3hot);
2349 }
1da177e4
LT
2350}
2351
e92b9b3b
FR
2352#ifdef CONFIG_PM_SLEEP
2353static int rhine_suspend(struct device *device)
1da177e4 2354{
e92b9b3b 2355 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2356 struct net_device *dev = pci_get_drvdata(pdev);
2357 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2358
2359 if (!netif_running(dev))
2360 return 0;
2361
7ab87ff4
FR
2362 rhine_task_disable(rp);
2363 rhine_irq_disable(rp);
bea3348e 2364 napi_disable(&rp->napi);
32b0f53e 2365
1da177e4 2366 netif_device_detach(dev);
1da177e4 2367
d18c3db5 2368 rhine_shutdown(pdev);
1da177e4 2369
1da177e4
LT
2370 return 0;
2371}
2372
e92b9b3b 2373static int rhine_resume(struct device *device)
1da177e4 2374{
e92b9b3b 2375 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2376 struct net_device *dev = pci_get_drvdata(pdev);
2377 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2378
2379 if (!netif_running(dev))
2380 return 0;
2381
1da177e4
LT
2382#ifdef USE_MMIO
2383 enable_mmio(rp->pioaddr, rp->quirks);
2384#endif
2385 rhine_power_init(dev);
2386 free_tbufs(dev);
2387 free_rbufs(dev);
2388 alloc_tbufs(dev);
2389 alloc_rbufs(dev);
7ab87ff4
FR
2390 rhine_task_enable(rp);
2391 spin_lock_bh(&rp->lock);
1da177e4 2392 init_registers(dev);
7ab87ff4 2393 spin_unlock_bh(&rp->lock);
1da177e4
LT
2394
2395 netif_device_attach(dev);
2396
2397 return 0;
2398}
e92b9b3b
FR
2399
2400static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2401#define RHINE_PM_OPS (&rhine_pm_ops)
2402
2403#else
2404
2405#define RHINE_PM_OPS NULL
2406
2407#endif /* !CONFIG_PM_SLEEP */
1da177e4
LT
2408
2409static struct pci_driver rhine_driver = {
2410 .name = DRV_NAME,
2411 .id_table = rhine_pci_tbl,
2412 .probe = rhine_init_one,
76e239e1 2413 .remove = rhine_remove_one,
e92b9b3b
FR
2414 .shutdown = rhine_shutdown,
2415 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2416};
2417
77273eaa 2418static struct dmi_system_id rhine_dmi_table[] __initdata = {
e84df485
RL
2419 {
2420 .ident = "EPIA-M",
2421 .matches = {
2422 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2423 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2424 },
2425 },
2426 {
2427 .ident = "KV7",
2428 .matches = {
2429 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2430 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2431 },
2432 },
2433 { NULL }
2434};
1da177e4
LT
2435
2436static int __init rhine_init(void)
2437{
2438/* when a module, this is printed whether or not devices are found in probe */
2439#ifdef MODULE
df4511fe 2440 pr_info("%s\n", version);
1da177e4 2441#endif
e84df485
RL
2442 if (dmi_check_system(rhine_dmi_table)) {
2443 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2444 avoid_D3 = true;
df4511fe 2445 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2446 }
2447 else if (avoid_D3)
df4511fe 2448 pr_info("avoid_D3 set\n");
e84df485 2449
29917620 2450 return pci_register_driver(&rhine_driver);
1da177e4
LT
2451}
2452
2453
2454static void __exit rhine_cleanup(void)
2455{
2456 pci_unregister_driver(&rhine_driver);
2457}
2458
2459
2460module_init(rhine_init);
2461module_exit(rhine_cleanup);
This page took 1.151156 seconds and 5 git commands to generate.