be2net: Use new F/W mailbox cmd to manipulate interrupts.
[deliverable/linux.git] / drivers / net / fddi / defxx.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
e89a2cfb
MR
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
1da177e4 15 *
e89a2cfb
MR
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
1da177e4
LT
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
feea1db2 196 * 14 Jun 2005 macro Use irqreturn_t.
b2e68aa3 197 * 23 Oct 2006 macro Big-endian host support.
e89a2cfb 198 * 14 Dec 2006 macro TURBOchannel support.
1da177e4
LT
199 */
200
201/* Include files */
e89a2cfb 202#include <linux/bitops.h>
fcdff139 203#include <linux/compiler.h>
1da177e4 204#include <linux/delay.h>
e89a2cfb
MR
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
1da177e4 209#include <linux/init.h>
e89a2cfb
MR
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
1da177e4 214#include <linux/netdevice.h>
e89a2cfb 215#include <linux/pci.h>
1da177e4 216#include <linux/skbuff.h>
e89a2cfb
MR
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
1da177e4
LT
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release! */
227#define DRV_NAME "defxx"
e89a2cfb
MR
228#define DRV_VERSION "v1.10"
229#define DRV_RELDATE "2006/12/14"
1da177e4 230
c354dfc3 231static char version[] =
1da177e4
LT
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
e89a2cfb
MR
244#ifdef CONFIG_PCI
245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246#else
247#define DFX_BUS_PCI(dev) 0
248#endif
249
250#ifdef CONFIG_EISA
251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252#else
253#define DFX_BUS_EISA(dev) 0
254#endif
255
256#ifdef CONFIG_TC
257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258#else
259#define DFX_BUS_TC(dev) 0
260#endif
261
262#ifdef CONFIG_DEFXX_MMIO
263#define DFX_MMIO 1
264#else
265#define DFX_MMIO 0
266#endif
267
1da177e4
LT
268/* Define module-wide (static) routines */
269
270static void dfx_bus_init(struct net_device *dev);
e89a2cfb 271static void dfx_bus_uninit(struct net_device *dev);
1da177e4
LT
272static void dfx_bus_config_check(DFX_board_t *bp);
273
e89a2cfb
MR
274static int dfx_driver_init(struct net_device *dev,
275 const char *print_name,
276 resource_size_t bar_start);
1da177e4
LT
277static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279static int dfx_open(struct net_device *dev);
280static int dfx_close(struct net_device *dev);
281
282static void dfx_int_pr_halt_id(DFX_board_t *bp);
283static void dfx_int_type_0_process(DFX_board_t *bp);
284static void dfx_int_common(struct net_device *dev);
7d12e780 285static irqreturn_t dfx_interrupt(int irq, void *dev_id);
1da177e4
LT
286
287static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288static void dfx_ctl_set_multicast_list(struct net_device *dev);
289static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290static int dfx_ctl_update_cam(DFX_board_t *bp);
291static int dfx_ctl_update_filters(DFX_board_t *bp);
292
293static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
294static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296static int dfx_hw_adap_state_rd(DFX_board_t *bp);
297static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300static void dfx_rcv_queue_process(DFX_board_t *bp);
301static void dfx_rcv_flush(DFX_board_t *bp);
302
61357325
SH
303static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
304 struct net_device *dev);
1da177e4
LT
305static int dfx_xmt_done(DFX_board_t *bp);
306static void dfx_xmt_flush(DFX_board_t *bp);
307
308/* Define module-wide (static) variables */
309
e89a2cfb
MR
310static struct pci_driver dfx_pci_driver;
311static struct eisa_driver dfx_eisa_driver;
312static struct tc_driver dfx_tc_driver;
1da177e4 313
6aa20a22 314
1da177e4
LT
315/*
316 * =======================
1da177e4
LT
317 * = dfx_port_write_long =
318 * = dfx_port_read_long =
319 * =======================
6aa20a22 320 *
1da177e4
LT
321 * Overview:
322 * Routines for reading and writing values from/to adapter
6aa20a22 323 *
1da177e4
LT
324 * Returns:
325 * None
6aa20a22 326 *
1da177e4 327 * Arguments:
e89a2cfb
MR
328 * bp - pointer to board information
329 * offset - register offset from base I/O address
330 * data - for dfx_port_write_long, this is a value to write;
331 * for dfx_port_read_long, this is a pointer to store
332 * the read value
1da177e4
LT
333 *
334 * Functional Description:
335 * These routines perform the correct operation to read or write
336 * the adapter register.
6aa20a22 337 *
1da177e4
LT
338 * EISA port block base addresses are based on the slot number in which the
339 * controller is installed. For example, if the EISA controller is installed
340 * in slot 4, the port block base address is 0x4000. If the controller is
341 * installed in slot 2, the port block base address is 0x2000, and so on.
342 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
343 * registers using the register offsets defined in DEFXX.H.
344 *
345 * PCI port block base addresses are assigned by the PCI BIOS or system
e89a2cfb 346 * firmware. There is one 128 byte port block which can be accessed. It
1da177e4
LT
347 * allows for I/O mapping of both PDQ and PFI registers using the register
348 * offsets defined in DEFXX.H.
349 *
350 * Return Codes:
351 * None
352 *
353 * Assumptions:
e89a2cfb 354 * bp->base is a valid base I/O address for this adapter.
1da177e4
LT
355 * offset is a valid register offset for this adapter.
356 *
357 * Side Effects:
358 * Rather than produce macros for these functions, these routines
359 * are defined using "inline" to ensure that the compiler will
360 * generate inline code and not waste a procedure call and return.
361 * This provides all the benefits of macros, but with the
362 * advantage of strict data type checking.
363 */
364
e89a2cfb
MR
365static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366{
367 writel(data, bp->base.mem + offset);
368 mb();
369}
1da177e4 370
e89a2cfb
MR
371static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372{
373 outl(data, bp->base.port + offset);
374}
1da177e4 375
e89a2cfb
MR
376static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377{
fcdff139 378 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
379 int dfx_bus_tc = DFX_BUS_TC(bdev);
380 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 381
e89a2cfb
MR
382 if (dfx_use_mmio)
383 dfx_writel(bp, offset, data);
384 else
385 dfx_outl(bp, offset, data);
386}
1da177e4 387
1da177e4 388
e89a2cfb
MR
389static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390{
391 mb();
392 *data = readl(bp->base.mem + offset);
393}
1da177e4 394
e89a2cfb
MR
395static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396{
397 *data = inl(bp->base.port + offset);
398}
1da177e4 399
e89a2cfb
MR
400static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401{
fcdff139 402 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
403 int dfx_bus_tc = DFX_BUS_TC(bdev);
404 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 405
e89a2cfb
MR
406 if (dfx_use_mmio)
407 dfx_readl(bp, offset, data);
408 else
409 dfx_inl(bp, offset, data);
410}
1da177e4 411
1da177e4 412
e89a2cfb
MR
413/*
414 * ================
415 * = dfx_get_bars =
416 * ================
417 *
418 * Overview:
419 * Retrieves the address range used to access control and status
420 * registers.
421 *
422 * Returns:
423 * None
424 *
425 * Arguments:
426 * bdev - pointer to device information
427 * bar_start - pointer to store the start address
428 * bar_len - pointer to store the length of the area
429 *
430 * Assumptions:
431 * I am sure there are some.
432 *
433 * Side Effects:
434 * None
435 */
436static void dfx_get_bars(struct device *bdev,
437 resource_size_t *bar_start, resource_size_t *bar_len)
438{
439 int dfx_bus_pci = DFX_BUS_PCI(bdev);
440 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441 int dfx_bus_tc = DFX_BUS_TC(bdev);
442 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 443
e89a2cfb
MR
444 if (dfx_bus_pci) {
445 int num = dfx_use_mmio ? 0 : 1;
1da177e4 446
e89a2cfb
MR
447 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
448 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
449 }
450 if (dfx_bus_eisa) {
451 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 resource_size_t bar;
453
454 if (dfx_use_mmio) {
455 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456 bar <<= 8;
457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458 bar <<= 8;
459 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460 bar <<= 16;
461 *bar_start = bar;
462 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463 bar <<= 8;
464 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465 bar <<= 8;
466 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467 bar <<= 16;
468 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469 } else {
470 *bar_start = base_addr;
471 *bar_len = PI_ESIC_K_CSR_IO_LEN;
472 }
473 }
474 if (dfx_bus_tc) {
475 *bar_start = to_tc_dev(bdev)->resource.start +
476 PI_TC_K_CSR_OFFSET;
477 *bar_len = PI_TC_K_CSR_LEN;
478 }
479}
6aa20a22 480
fd8f4997
SH
481static const struct net_device_ops dfx_netdev_ops = {
482 .ndo_open = dfx_open,
483 .ndo_stop = dfx_close,
484 .ndo_start_xmit = dfx_xmt_queue_pkt,
485 .ndo_get_stats = dfx_ctl_get_stats,
afc4b13d 486 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
fd8f4997
SH
487 .ndo_set_mac_address = dfx_ctl_set_mac_address,
488};
489
1da177e4 490/*
e89a2cfb
MR
491 * ================
492 * = dfx_register =
493 * ================
6aa20a22 494 *
1da177e4 495 * Overview:
e89a2cfb 496 * Initializes a supported FDDI controller
6aa20a22 497 *
1da177e4
LT
498 * Returns:
499 * Condition code
6aa20a22 500 *
1da177e4 501 * Arguments:
e89a2cfb 502 * bdev - pointer to device information
1da177e4
LT
503 *
504 * Functional Description:
505 *
506 * Return Codes:
507 * 0 - This device (fddi0, fddi1, etc) configured successfully
508 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
509 *
510 * Assumptions:
511 * It compiles so it should work :-( (PCI cards do :-)
512 *
513 * Side Effects:
514 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
515 * initialized and the board resources are read and stored in
516 * the device structure.
517 */
c354dfc3 518static int dfx_register(struct device *bdev)
1da177e4
LT
519{
520 static int version_disp;
e89a2cfb
MR
521 int dfx_bus_pci = DFX_BUS_PCI(bdev);
522 int dfx_bus_tc = DFX_BUS_TC(bdev);
523 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
fb28ad35 524 const char *print_name = dev_name(bdev);
1da177e4
LT
525 struct net_device *dev;
526 DFX_board_t *bp; /* board pointer */
e89a2cfb
MR
527 resource_size_t bar_start = 0; /* pointer to port */
528 resource_size_t bar_len = 0; /* resource length */
1da177e4 529 int alloc_size; /* total buffer size used */
e89a2cfb
MR
530 struct resource *region;
531 int err = 0;
1da177e4
LT
532
533 if (!version_disp) { /* display version info if adapter is found */
534 version_disp = 1; /* set display flag to TRUE so that */
535 printk(version); /* we only display this string ONCE */
536 }
537
1da177e4
LT
538 dev = alloc_fddidev(sizeof(*bp));
539 if (!dev) {
e89a2cfb 540 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
1da177e4
LT
541 print_name);
542 return -ENOMEM;
543 }
544
545 /* Enable PCI device. */
e89a2cfb
MR
546 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
547 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
548 print_name);
549 goto err_out;
1da177e4
LT
550 }
551
e89a2cfb
MR
552 SET_NETDEV_DEV(dev, bdev);
553
554 bp = netdev_priv(dev);
555 bp->bus_dev = bdev;
556 dev_set_drvdata(bdev, dev);
1da177e4 557
e89a2cfb 558 dfx_get_bars(bdev, &bar_start, &bar_len);
1da177e4 559
e89a2cfb
MR
560 if (dfx_use_mmio)
561 region = request_mem_region(bar_start, bar_len, print_name);
562 else
563 region = request_region(bar_start, bar_len, print_name);
564 if (!region) {
1da177e4 565 printk(KERN_ERR "%s: Cannot reserve I/O resource "
e89a2cfb
MR
566 "0x%lx @ 0x%lx, aborting\n",
567 print_name, (long)bar_len, (long)bar_start);
1da177e4 568 err = -EBUSY;
e89a2cfb 569 goto err_out_disable;
1da177e4
LT
570 }
571
e89a2cfb
MR
572 /* Set up I/O base address. */
573 if (dfx_use_mmio) {
574 bp->base.mem = ioremap_nocache(bar_start, bar_len);
575 if (!bp->base.mem) {
576 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
8a323526 577 err = -ENOMEM;
e89a2cfb
MR
578 goto err_out_region;
579 }
580 } else {
581 bp->base.port = bar_start;
582 dev->base_addr = bar_start;
583 }
1da177e4 584
e89a2cfb 585 /* Initialize new device structure */
fd8f4997 586 dev->netdev_ops = &dfx_netdev_ops;
1da177e4 587
e89a2cfb
MR
588 if (dfx_bus_pci)
589 pci_set_master(to_pci_dev(bdev));
1da177e4 590
e89a2cfb 591 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
1da177e4 592 err = -ENODEV;
e89a2cfb 593 goto err_out_unmap;
1da177e4
LT
594 }
595
596 err = register_netdev(dev);
597 if (err)
598 goto err_out_kfree;
599
600 printk("%s: registered as %s\n", print_name, dev->name);
601 return 0;
602
603err_out_kfree:
604 alloc_size = sizeof(PI_DESCR_BLOCK) +
605 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
606#ifndef DYNAMIC_BUFFERS
607 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608#endif
609 sizeof(PI_CONSUMER_BLOCK) +
610 (PI_ALIGN_K_DESC_BLK - 1);
611 if (bp->kmalloced)
e89a2cfb
MR
612 dma_free_coherent(bdev, alloc_size,
613 bp->kmalloced, bp->kmalloced_dma);
614
615err_out_unmap:
616 if (dfx_use_mmio)
617 iounmap(bp->base.mem);
618
1da177e4 619err_out_region:
e89a2cfb
MR
620 if (dfx_use_mmio)
621 release_mem_region(bar_start, bar_len);
622 else
623 release_region(bar_start, bar_len);
624
625err_out_disable:
626 if (dfx_bus_pci)
627 pci_disable_device(to_pci_dev(bdev));
628
1da177e4
LT
629err_out:
630 free_netdev(dev);
631 return err;
632}
633
6aa20a22 634
1da177e4
LT
635/*
636 * ================
637 * = dfx_bus_init =
638 * ================
6aa20a22 639 *
1da177e4 640 * Overview:
e89a2cfb 641 * Initializes the bus-specific controller logic.
6aa20a22 642 *
1da177e4
LT
643 * Returns:
644 * None
6aa20a22 645 *
1da177e4
LT
646 * Arguments:
647 * dev - pointer to device information
648 *
649 * Functional Description:
650 * Determine and save adapter IRQ in device table,
651 * then perform bus-specific logic initialization.
652 *
653 * Return Codes:
654 * None
655 *
656 * Assumptions:
e89a2cfb 657 * bp->base has already been set with the proper
1da177e4
LT
658 * base I/O address for this device.
659 *
660 * Side Effects:
661 * Interrupts are enabled at the adapter bus-specific logic.
662 * Note: Interrupts at the DMA engine (PDQ chip) are not
663 * enabled yet.
664 */
665
c354dfc3 666static void dfx_bus_init(struct net_device *dev)
1da177e4 667{
e89a2cfb
MR
668 DFX_board_t *bp = netdev_priv(dev);
669 struct device *bdev = bp->bus_dev;
670 int dfx_bus_pci = DFX_BUS_PCI(bdev);
671 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
672 int dfx_bus_tc = DFX_BUS_TC(bdev);
673 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
674 u8 val;
1da177e4
LT
675
676 DBG_printk("In dfx_bus_init...\n");
677
e89a2cfb 678 /* Initialize a pointer back to the net_device struct */
1da177e4
LT
679 bp->dev = dev;
680
681 /* Initialize adapter based on bus type */
682
e89a2cfb
MR
683 if (dfx_bus_tc)
684 dev->irq = to_tc_dev(bdev)->interrupt;
685 if (dfx_bus_eisa) {
686 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1da177e4 687
e89a2cfb
MR
688 /* Get the interrupt level from the ESIC chip. */
689 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
690 val &= PI_CONFIG_STAT_0_M_IRQ;
691 val >>= PI_CONFIG_STAT_0_V_IRQ;
1da177e4 692
e89a2cfb
MR
693 switch (val) {
694 case PI_CONFIG_STAT_0_IRQ_K_9:
695 dev->irq = 9;
696 break;
1da177e4 697
e89a2cfb
MR
698 case PI_CONFIG_STAT_0_IRQ_K_10:
699 dev->irq = 10;
700 break;
1da177e4 701
e89a2cfb
MR
702 case PI_CONFIG_STAT_0_IRQ_K_11:
703 dev->irq = 11;
704 break;
1da177e4 705
e89a2cfb
MR
706 case PI_CONFIG_STAT_0_IRQ_K_15:
707 dev->irq = 15;
708 break;
709 }
1da177e4 710
e89a2cfb
MR
711 /*
712 * Enable memory decoding (MEMCS0) and/or port decoding
713 * (IOCS1/IOCS0) as appropriate in Function Control
714 * Register. One of the port chip selects seems to be
715 * used for the Burst Holdoff register, but this bit of
716 * documentation is missing and as yet it has not been
717 * determined which of the two. This is also the reason
718 * the size of the decoded port range is twice as large
719 * as one required by the PDQ.
720 */
1da177e4 721
e89a2cfb
MR
722 /* Set the decode range of the board. */
723 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
725 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
726 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
727 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
728 val = PI_ESIC_K_CSR_IO_LEN - 1;
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
730 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
731 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
732 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733
734 /* Enable the decoders. */
735 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736 if (dfx_use_mmio)
737 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
738 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
1da177e4
LT
739
740 /*
e89a2cfb
MR
741 * Enable access to the rest of the module
742 * (including PDQ and packet memory).
1da177e4 743 */
e89a2cfb
MR
744 val = PI_SLOT_CNTRL_M_ENB;
745 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
1da177e4 746
e89a2cfb
MR
747 /*
748 * Map PDQ registers into memory or port space. This is
749 * done with a bit in the Burst Holdoff register.
750 */
751 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752 if (dfx_use_mmio)
753 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754 else
755 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
756 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
1da177e4
LT
757
758 /* Enable interrupts at EISA bus interface chip (ESIC) */
e89a2cfb
MR
759 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
760 val |= PI_CONFIG_STAT_0_M_INT_ENB;
761 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
762 }
763 if (dfx_bus_pci) {
764 struct pci_dev *pdev = to_pci_dev(bdev);
1da177e4
LT
765
766 /* Get the interrupt level from the PCI Configuration Table */
767
768 dev->irq = pdev->irq;
769
770 /* Check Latency Timer and set if less than minimal */
771
772 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
e89a2cfb 773 if (val < PFI_K_LAT_TIMER_MIN) {
1da177e4
LT
774 val = PFI_K_LAT_TIMER_DEF;
775 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
e89a2cfb 776 }
1da177e4
LT
777
778 /* Enable interrupts at PCI bus interface chip (PFI) */
e89a2cfb
MR
779 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
780 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
781 }
782}
1da177e4 783
e89a2cfb
MR
784/*
785 * ==================
786 * = dfx_bus_uninit =
787 * ==================
788 *
789 * Overview:
790 * Uninitializes the bus-specific controller logic.
791 *
792 * Returns:
793 * None
794 *
795 * Arguments:
796 * dev - pointer to device information
797 *
798 * Functional Description:
799 * Perform bus-specific logic uninitialization.
800 *
801 * Return Codes:
802 * None
803 *
804 * Assumptions:
805 * bp->base has already been set with the proper
806 * base I/O address for this device.
807 *
808 * Side Effects:
809 * Interrupts are disabled at the adapter bus-specific logic.
810 */
811
c354dfc3 812static void dfx_bus_uninit(struct net_device *dev)
e89a2cfb
MR
813{
814 DFX_board_t *bp = netdev_priv(dev);
815 struct device *bdev = bp->bus_dev;
816 int dfx_bus_pci = DFX_BUS_PCI(bdev);
817 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
818 u8 val;
819
820 DBG_printk("In dfx_bus_uninit...\n");
821
822 /* Uninitialize adapter based on bus type */
823
824 if (dfx_bus_eisa) {
825 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826
827 /* Disable interrupts at EISA bus interface chip (ESIC) */
828 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
829 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
830 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
831 }
832 if (dfx_bus_pci) {
833 /* Disable interrupts at PCI bus interface chip (PFI) */
834 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
1da177e4 835 }
e89a2cfb 836}
1da177e4 837
6aa20a22 838
1da177e4
LT
839/*
840 * ========================
841 * = dfx_bus_config_check =
842 * ========================
6aa20a22 843 *
1da177e4
LT
844 * Overview:
845 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
846 * are illegal, then this routine will set new defaults.
6aa20a22 847 *
1da177e4
LT
848 * Returns:
849 * None
6aa20a22 850 *
1da177e4
LT
851 * Arguments:
852 * bp - pointer to board information
853 *
854 * Functional Description:
855 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
856 * PDQ, and all FDDI PCI controllers, all values are legal.
857 *
858 * Return Codes:
859 * None
860 *
861 * Assumptions:
862 * dfx_adap_init has NOT been called yet so burst size and other items have
863 * not been set.
864 *
865 * Side Effects:
866 * None
867 */
868
c354dfc3 869static void dfx_bus_config_check(DFX_board_t *bp)
1da177e4 870{
fcdff139 871 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb 872 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1da177e4 873 int status; /* return code from adapter port control call */
1da177e4
LT
874 u32 host_data; /* LW data returned from port control call */
875
876 DBG_printk("In dfx_bus_config_check...\n");
877
878 /* Configuration check only valid for EISA adapter */
879
e89a2cfb 880 if (dfx_bus_eisa) {
1da177e4
LT
881 /*
882 * First check if revision 2 EISA controller. Rev. 1 cards used
883 * PDQ revision B, so no workaround needed in this case. Rev. 3
884 * cards used PDQ revision E, so no workaround needed in this
885 * case, either. Only Rev. 2 cards used either Rev. D or E
886 * chips, so we must verify the chip revision on Rev. 2 cards.
887 */
e89a2cfb 888 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
1da177e4 889 /*
e89a2cfb
MR
890 * Revision 2 FDDI EISA controller found,
891 * so let's check PDQ revision of adapter.
1da177e4 892 */
1da177e4
LT
893 status = dfx_hw_port_ctrl_req(bp,
894 PI_PCTRL_M_SUB_CMD,
895 PI_SUB_CMD_K_PDQ_REV_GET,
896 0,
897 &host_data);
898 if ((status != DFX_K_SUCCESS) || (host_data == 2))
899 {
900 /*
901 * Either we couldn't determine the PDQ revision, or
902 * we determined that it is at revision D. In either case,
903 * we need to implement the workaround.
904 */
905
906 /* Ensure that the burst size is set to 8 longwords or less */
907
908 switch (bp->burst_size)
909 {
910 case PI_PDATA_B_DMA_BURST_SIZE_32:
911 case PI_PDATA_B_DMA_BURST_SIZE_16:
912 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
913 break;
914
915 default:
916 break;
917 }
918
919 /* Ensure that full-duplex mode is not enabled */
920
921 bp->full_duplex_enb = PI_SNMP_K_FALSE;
922 }
923 }
924 }
925 }
926
6aa20a22 927
1da177e4
LT
928/*
929 * ===================
930 * = dfx_driver_init =
931 * ===================
6aa20a22 932 *
1da177e4
LT
933 * Overview:
934 * Initializes remaining adapter board structure information
935 * and makes sure adapter is in a safe state prior to dfx_open().
6aa20a22 936 *
1da177e4
LT
937 * Returns:
938 * Condition code
6aa20a22 939 *
1da177e4
LT
940 * Arguments:
941 * dev - pointer to device information
942 * print_name - printable device name
943 *
944 * Functional Description:
945 * This function allocates additional resources such as the host memory
946 * blocks needed by the adapter (eg. descriptor and consumer blocks).
947 * Remaining bus initialization steps are also completed. The adapter
948 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
949 * must call dfx_open() to open the adapter and bring it on-line.
950 *
951 * Return Codes:
952 * DFX_K_SUCCESS - initialization succeeded
953 * DFX_K_FAILURE - initialization failed - could not allocate memory
954 * or read adapter MAC address
955 *
956 * Assumptions:
957 * Memory allocated from pci_alloc_consistent() call is physically
958 * contiguous, locked memory.
959 *
960 * Side Effects:
961 * Adapter is reset and should be in DMA_UNAVAILABLE state before
962 * returning from this routine.
963 */
964
1dd06ae8
GKH
965static int dfx_driver_init(struct net_device *dev, const char *print_name,
966 resource_size_t bar_start)
1da177e4 967{
e89a2cfb
MR
968 DFX_board_t *bp = netdev_priv(dev);
969 struct device *bdev = bp->bus_dev;
970 int dfx_bus_pci = DFX_BUS_PCI(bdev);
971 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
972 int dfx_bus_tc = DFX_BUS_TC(bdev);
973 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
974 int alloc_size; /* total buffer size needed */
975 char *top_v, *curr_v; /* virtual addrs into memory block */
976 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
eca1ad82
AV
977 u32 data; /* host data register value */
978 __le32 le32;
e89a2cfb 979 char *board_name = NULL;
1da177e4
LT
980
981 DBG_printk("In dfx_driver_init...\n");
982
983 /* Initialize bus-specific hardware registers */
984
985 dfx_bus_init(dev);
986
987 /*
988 * Initialize default values for configurable parameters
989 *
990 * Note: All of these parameters are ones that a user may
991 * want to customize. It'd be nice to break these
992 * out into Space.c or someplace else that's more
993 * accessible/understandable than this file.
994 */
995
996 bp->full_duplex_enb = PI_SNMP_K_FALSE;
997 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
998 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
999 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
1000
1001 /*
1002 * Ensure that HW configuration is OK
1003 *
1004 * Note: Depending on the hardware revision, we may need to modify
1005 * some of the configurable parameters to workaround hardware
1006 * limitations. We'll perform this configuration check AFTER
1007 * setting the parameters to their default values.
1008 */
1009
1010 dfx_bus_config_check(bp);
1011
1012 /* Disable PDQ interrupts first */
1013
1014 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1015
1016 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1017
1018 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1019
1020 /* Read the factory MAC address from the adapter then save it */
1021
1022 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023 &data) != DFX_K_SUCCESS) {
1024 printk("%s: Could not read adapter factory MAC address!\n",
1025 print_name);
807540ba 1026 return DFX_K_FAILURE;
1da177e4 1027 }
e89a2cfb
MR
1028 le32 = cpu_to_le32(data);
1029 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1da177e4
LT
1030
1031 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032 &data) != DFX_K_SUCCESS) {
1033 printk("%s: Could not read adapter factory MAC address!\n",
1034 print_name);
807540ba 1035 return DFX_K_FAILURE;
1da177e4 1036 }
e89a2cfb
MR
1037 le32 = cpu_to_le32(data);
1038 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1da177e4
LT
1039
1040 /*
1041 * Set current address to factory address
1042 *
1043 * Note: Node address override support is handled through
1044 * dfx_ctl_set_mac_address.
1045 */
1046
1047 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
e89a2cfb
MR
1048 if (dfx_bus_tc)
1049 board_name = "DEFTA";
1050 if (dfx_bus_eisa)
1051 board_name = "DEFEA";
1052 if (dfx_bus_pci)
1053 board_name = "DEFPA";
69d279ea 1054 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
e89a2cfb 1055 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
69d279ea 1056 (long long)bar_start, dev->irq, dev->dev_addr);
1da177e4
LT
1057
1058 /*
1059 * Get memory for descriptor block, consumer block, and other buffers
1060 * that need to be DMA read or written to by the adapter.
1061 */
1062
1063 alloc_size = sizeof(PI_DESCR_BLOCK) +
1064 PI_CMD_REQ_K_SIZE_MAX +
1065 PI_CMD_RSP_K_SIZE_MAX +
1066#ifndef DYNAMIC_BUFFERS
1067 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068#endif
1069 sizeof(PI_CONSUMER_BLOCK) +
1070 (PI_ALIGN_K_DESC_BLK - 1);
e89a2cfb
MR
1071 bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072 &bp->kmalloced_dma,
1073 GFP_ATOMIC);
1da177e4
LT
1074 if (top_v == NULL) {
1075 printk("%s: Could not allocate memory for host buffers "
1076 "and structures!\n", print_name);
807540ba 1077 return DFX_K_FAILURE;
1da177e4
LT
1078 }
1079 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
1080 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1081
1082 /*
1083 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1084 * plus the amount of memory needed was allocated. The physical address
1085 * is now 8K aligned. By carving up the memory in a specific order,
1086 * we'll guarantee the alignment requirements for all other structures.
1087 *
1088 * Note: If the assumptions change regarding the non-paged, non-cached,
1089 * physically contiguous nature of the memory block or the address
1090 * alignments, then we'll need to implement a different algorithm
1091 * for allocating the needed memory.
1092 */
1093
1094 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1095 curr_v = top_v + (curr_p - top_p);
1096
1097 /* Reserve space for descriptor block */
1098
1099 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1100 bp->descr_block_phys = curr_p;
1101 curr_v += sizeof(PI_DESCR_BLOCK);
1102 curr_p += sizeof(PI_DESCR_BLOCK);
1103
1104 /* Reserve space for command request buffer */
1105
1106 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1107 bp->cmd_req_phys = curr_p;
1108 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1109 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1110
1111 /* Reserve space for command response buffer */
1112
1113 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1114 bp->cmd_rsp_phys = curr_p;
1115 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1116 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1117
1118 /* Reserve space for the LLC host receive queue buffers */
1119
1120 bp->rcv_block_virt = curr_v;
1121 bp->rcv_block_phys = curr_p;
1122
1123#ifndef DYNAMIC_BUFFERS
1124 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1125 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126#endif
1127
1128 /* Reserve space for the consumer block */
1129
1130 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1131 bp->cons_block_phys = curr_p;
1132
1133 /* Display virtual and physical addresses if debug driver */
1134
1135 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1136 print_name,
1137 (long)bp->descr_block_virt, bp->descr_block_phys);
1138 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1139 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1140 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1141 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1142 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1143 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1144 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1145 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1146
807540ba 1147 return DFX_K_SUCCESS;
1da177e4
LT
1148}
1149
6aa20a22 1150
1da177e4
LT
1151/*
1152 * =================
1153 * = dfx_adap_init =
1154 * =================
6aa20a22 1155 *
1da177e4
LT
1156 * Overview:
1157 * Brings the adapter to the link avail/link unavailable state.
6aa20a22 1158 *
1da177e4
LT
1159 * Returns:
1160 * Condition code
6aa20a22 1161 *
1da177e4
LT
1162 * Arguments:
1163 * bp - pointer to board information
1164 * get_buffers - non-zero if buffers to be allocated
1165 *
1166 * Functional Description:
1167 * Issues the low-level firmware/hardware calls necessary to bring
1168 * the adapter up, or to properly reset and restore adapter during
1169 * run-time.
1170 *
1171 * Return Codes:
1172 * DFX_K_SUCCESS - Adapter brought up successfully
1173 * DFX_K_FAILURE - Adapter initialization failed
1174 *
1175 * Assumptions:
1176 * bp->reset_type should be set to a valid reset type value before
1177 * calling this routine.
1178 *
1179 * Side Effects:
1180 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1181 * upon a successful return of this routine.
1182 */
1183
1184static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1185 {
1186 DBG_printk("In dfx_adap_init...\n");
1187
1188 /* Disable PDQ interrupts first */
1189
1190 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1191
1192 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1193
1194 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1195 {
1196 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
807540ba 1197 return DFX_K_FAILURE;
1da177e4
LT
1198 }
1199
1200 /*
1201 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1202 * so we'll acknowledge all Type 0 interrupts now before continuing.
1203 */
1204
1205 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1206
1207 /*
1208 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1209 *
1210 * Note: We only need to clear host copies of these registers. The PDQ reset
1211 * takes care of the on-board register values.
1212 */
1213
1214 bp->cmd_req_reg.lword = 0;
1215 bp->cmd_rsp_reg.lword = 0;
1216 bp->rcv_xmt_reg.lword = 0;
1217
1218 /* Clear consumer block before going to DMA_AVAILABLE state */
1219
1220 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1221
1222 /* Initialize the DMA Burst Size */
1223
1224 if (dfx_hw_port_ctrl_req(bp,
1225 PI_PCTRL_M_SUB_CMD,
1226 PI_SUB_CMD_K_BURST_SIZE_SET,
1227 bp->burst_size,
1228 NULL) != DFX_K_SUCCESS)
1229 {
1230 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
807540ba 1231 return DFX_K_FAILURE;
1da177e4
LT
1232 }
1233
1234 /*
1235 * Set base address of Consumer Block
1236 *
1237 * Assumption: 32-bit physical address of consumer block is 64 byte
1238 * aligned. That is, bits 0-5 of the address must be zero.
1239 */
1240
1241 if (dfx_hw_port_ctrl_req(bp,
1242 PI_PCTRL_M_CONS_BLOCK,
1243 bp->cons_block_phys,
1244 0,
1245 NULL) != DFX_K_SUCCESS)
1246 {
1247 printk("%s: Could not set consumer block address!\n", bp->dev->name);
807540ba 1248 return DFX_K_FAILURE;
1da177e4
LT
1249 }
1250
1251 /*
b2e68aa3
MR
1252 * Set the base address of Descriptor Block and bring adapter
1253 * to DMA_AVAILABLE state.
1da177e4 1254 *
b2e68aa3
MR
1255 * Note: We also set the literal and data swapping requirements
1256 * in this command.
1da177e4 1257 *
b2e68aa3
MR
1258 * Assumption: 32-bit physical address of descriptor block
1259 * is 8Kbyte aligned.
1da177e4 1260 */
b2e68aa3
MR
1261 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1262 (u32)(bp->descr_block_phys |
1263 PI_PDATA_A_INIT_M_BSWAP_INIT),
1264 0, NULL) != DFX_K_SUCCESS) {
1265 printk("%s: Could not set descriptor block address!\n",
1266 bp->dev->name);
1267 return DFX_K_FAILURE;
1268 }
1da177e4
LT
1269
1270 /* Set transmit flush timeout value */
1271
1272 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1273 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1274 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1275 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1276 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1277 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1278 {
1279 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1280 return DFX_K_FAILURE;
1da177e4
LT
1281 }
1282
1283 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1284
1285 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1286 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1287 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1288 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1289 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1290 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1291 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1292 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1293 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1294 {
1295 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1296 return DFX_K_FAILURE;
1da177e4
LT
1297 }
1298
1299 /* Initialize adapter CAM */
1300
1301 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1302 {
1303 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
807540ba 1304 return DFX_K_FAILURE;
1da177e4
LT
1305 }
1306
1307 /* Initialize adapter filters */
1308
1309 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1310 {
1311 printk("%s: Adapter filters update failed!\n", bp->dev->name);
807540ba 1312 return DFX_K_FAILURE;
1da177e4
LT
1313 }
1314
1315 /*
1316 * Remove any existing dynamic buffers (i.e. if the adapter is being
1317 * reinitialized)
1318 */
1319
1320 if (get_buffers)
1321 dfx_rcv_flush(bp);
1322
1323 /* Initialize receive descriptor block and produce buffers */
1324
1325 if (dfx_rcv_init(bp, get_buffers))
1326 {
1327 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1328 if (get_buffers)
1329 dfx_rcv_flush(bp);
807540ba 1330 return DFX_K_FAILURE;
1da177e4
LT
1331 }
1332
1333 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1334
1335 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1336 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1337 {
1338 printk("%s: Start command failed\n", bp->dev->name);
1339 if (get_buffers)
1340 dfx_rcv_flush(bp);
807540ba 1341 return DFX_K_FAILURE;
1da177e4
LT
1342 }
1343
1344 /* Initialization succeeded, reenable PDQ interrupts */
1345
1346 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
807540ba 1347 return DFX_K_SUCCESS;
1da177e4
LT
1348 }
1349
6aa20a22 1350
1da177e4
LT
1351/*
1352 * ============
1353 * = dfx_open =
1354 * ============
6aa20a22 1355 *
1da177e4
LT
1356 * Overview:
1357 * Opens the adapter
6aa20a22 1358 *
1da177e4
LT
1359 * Returns:
1360 * Condition code
6aa20a22 1361 *
1da177e4
LT
1362 * Arguments:
1363 * dev - pointer to device information
1364 *
1365 * Functional Description:
1366 * This function brings the adapter to an operational state.
1367 *
1368 * Return Codes:
1369 * 0 - Adapter was successfully opened
1370 * -EAGAIN - Could not register IRQ or adapter initialization failed
1371 *
1372 * Assumptions:
1373 * This routine should only be called for a device that was
1374 * initialized successfully.
1375 *
1376 * Side Effects:
1377 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1378 * if the open is successful.
1379 */
1380
1381static int dfx_open(struct net_device *dev)
1382{
e89a2cfb 1383 DFX_board_t *bp = netdev_priv(dev);
1da177e4 1384 int ret;
1da177e4
LT
1385
1386 DBG_printk("In dfx_open...\n");
6aa20a22 1387
1da177e4
LT
1388 /* Register IRQ - support shared interrupts by passing device ptr */
1389
e89a2cfb
MR
1390 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1391 dev);
1da177e4
LT
1392 if (ret) {
1393 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1394 return ret;
1395 }
1396
1397 /*
1398 * Set current address to factory MAC address
1399 *
1400 * Note: We've already done this step in dfx_driver_init.
1401 * However, it's possible that a user has set a node
1402 * address override, then closed and reopened the
1403 * adapter. Unless we reset the device address field
1404 * now, we'll continue to use the existing modified
1405 * address.
1406 */
1407
1408 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1409
1410 /* Clear local unicast/multicast address tables and counts */
1411
1412 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1413 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1414 bp->uc_count = 0;
1415 bp->mc_count = 0;
1416
1417 /* Disable promiscuous filter settings */
1418
1419 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1420 bp->group_prom = PI_FSTATE_K_BLOCK;
1421
1422 spin_lock_init(&bp->lock);
1423
1424 /* Reset and initialize adapter */
1425
1426 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1427 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1428 {
1429 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1430 free_irq(dev->irq, dev);
1431 return -EAGAIN;
1432 }
1433
1434 /* Set device structure info */
1435 netif_start_queue(dev);
807540ba 1436 return 0;
1da177e4
LT
1437}
1438
6aa20a22 1439
1da177e4
LT
1440/*
1441 * =============
1442 * = dfx_close =
1443 * =============
6aa20a22 1444 *
1da177e4
LT
1445 * Overview:
1446 * Closes the device/module.
6aa20a22 1447 *
1da177e4
LT
1448 * Returns:
1449 * Condition code
6aa20a22 1450 *
1da177e4
LT
1451 * Arguments:
1452 * dev - pointer to device information
1453 *
1454 * Functional Description:
1455 * This routine closes the adapter and brings it to a safe state.
1456 * The interrupt service routine is deregistered with the OS.
1457 * The adapter can be opened again with another call to dfx_open().
1458 *
1459 * Return Codes:
1460 * Always return 0.
1461 *
1462 * Assumptions:
1463 * No further requests for this adapter are made after this routine is
1464 * called. dfx_open() can be called to reset and reinitialize the
1465 * adapter.
1466 *
1467 * Side Effects:
1468 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1469 * routine.
1470 */
1471
1472static int dfx_close(struct net_device *dev)
1473{
e89a2cfb 1474 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1475
1476 DBG_printk("In dfx_close...\n");
1477
1478 /* Disable PDQ interrupts first */
1479
1480 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1481
1482 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1483
1484 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1485
1486 /*
1487 * Flush any pending transmit buffers
1488 *
1489 * Note: It's important that we flush the transmit buffers
1490 * BEFORE we clear our copy of the Type 2 register.
1491 * Otherwise, we'll have no idea how many buffers
1492 * we need to free.
1493 */
1494
1495 dfx_xmt_flush(bp);
1496
1497 /*
1498 * Clear Type 1 and Type 2 registers after adapter reset
1499 *
1500 * Note: Even though we're closing the adapter, it's
1501 * possible that an interrupt will occur after
1502 * dfx_close is called. Without some assurance to
1503 * the contrary we want to make sure that we don't
1504 * process receive and transmit LLC frames and update
1505 * the Type 2 register with bad information.
1506 */
1507
1508 bp->cmd_req_reg.lword = 0;
1509 bp->cmd_rsp_reg.lword = 0;
1510 bp->rcv_xmt_reg.lword = 0;
1511
1512 /* Clear consumer block for the same reason given above */
1513
1514 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1515
1516 /* Release all dynamically allocate skb in the receive ring. */
1517
1518 dfx_rcv_flush(bp);
1519
1520 /* Clear device structure flags */
1521
1522 netif_stop_queue(dev);
6aa20a22 1523
1da177e4
LT
1524 /* Deregister (free) IRQ */
1525
1526 free_irq(dev->irq, dev);
6aa20a22 1527
807540ba 1528 return 0;
1da177e4
LT
1529}
1530
6aa20a22 1531
1da177e4
LT
1532/*
1533 * ======================
1534 * = dfx_int_pr_halt_id =
1535 * ======================
6aa20a22 1536 *
1da177e4
LT
1537 * Overview:
1538 * Displays halt id's in string form.
6aa20a22 1539 *
1da177e4
LT
1540 * Returns:
1541 * None
6aa20a22 1542 *
1da177e4
LT
1543 * Arguments:
1544 * bp - pointer to board information
1545 *
1546 * Functional Description:
1547 * Determine current halt id and display appropriate string.
1548 *
1549 * Return Codes:
1550 * None
1551 *
1552 * Assumptions:
1553 * None
1554 *
1555 * Side Effects:
1556 * None
1557 */
1558
1559static void dfx_int_pr_halt_id(DFX_board_t *bp)
1560 {
1561 PI_UINT32 port_status; /* PDQ port status register value */
1562 PI_UINT32 halt_id; /* PDQ port status halt ID */
1563
1564 /* Read the latest port status */
1565
1566 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1567
1568 /* Display halt state transition information */
1569
1570 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1571 switch (halt_id)
1572 {
1573 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1574 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1575 break;
1576
1577 case PI_HALT_ID_K_PARITY_ERROR:
1578 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1579 break;
1580
1581 case PI_HALT_ID_K_HOST_DIR_HALT:
1582 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1583 break;
1584
1585 case PI_HALT_ID_K_SW_FAULT:
1586 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1587 break;
1588
1589 case PI_HALT_ID_K_HW_FAULT:
1590 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1591 break;
1592
1593 case PI_HALT_ID_K_PC_TRACE:
1594 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1595 break;
1596
1597 case PI_HALT_ID_K_DMA_ERROR:
1598 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1599 break;
1600
1601 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1602 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1603 break;
1604
1605 case PI_HALT_ID_K_BUS_EXCEPTION:
1606 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1607 break;
1608
1609 default:
1610 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1611 break;
1612 }
1613 }
1614
6aa20a22 1615
1da177e4
LT
1616/*
1617 * ==========================
1618 * = dfx_int_type_0_process =
1619 * ==========================
6aa20a22 1620 *
1da177e4
LT
1621 * Overview:
1622 * Processes Type 0 interrupts.
6aa20a22 1623 *
1da177e4
LT
1624 * Returns:
1625 * None
6aa20a22 1626 *
1da177e4
LT
1627 * Arguments:
1628 * bp - pointer to board information
1629 *
1630 * Functional Description:
1631 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1632 * is a serious fault on the adapter, then an error message is displayed
1633 * and the adapter is reset.
1634 *
1635 * One tricky potential timing window is the rapid succession of "link avail"
1636 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1637 * interrupt must be done before reading the state from the Port Status
1638 * register. This is true because a state change could occur after reading
1639 * the data, but before acknowledging the interrupt. If this state change
1640 * does happen, it would be lost because the driver is using the old state,
1641 * and it will never know about the new state because it subsequently
1642 * acknowledges the state change interrupt.
1643 *
1644 * INCORRECT CORRECT
1645 * read type 0 int reasons read type 0 int reasons
1646 * read adapter state ack type 0 interrupts
1647 * ack type 0 interrupts read adapter state
1648 * ... process interrupt ... ... process interrupt ...
1649 *
1650 * Return Codes:
1651 * None
1652 *
1653 * Assumptions:
1654 * None
1655 *
1656 * Side Effects:
1657 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1658 * or if the port status indicates that the adapter is halted. The driver
1659 * is responsible for reinitializing the adapter with the current CAM
1660 * contents and adapter filter settings.
1661 */
1662
1663static void dfx_int_type_0_process(DFX_board_t *bp)
1664
1665 {
1666 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1667 PI_UINT32 state; /* current adap state (from port status) */
1668
1669 /*
1670 * Read host interrupt Type 0 register to determine which Type 0
1671 * interrupts are pending. Immediately write it back out to clear
1672 * those interrupts.
1673 */
1674
1675 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1676 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1677
1678 /* Check for Type 0 error interrupts */
1679
1680 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1681 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1682 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1683 {
1684 /* Check for Non-Existent Memory error */
1685
1686 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1687 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1688
1689 /* Check for Packet Memory Parity error */
1690
1691 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1692 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1693
1694 /* Check for Host Bus Parity error */
1695
1696 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1697 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1698
1699 /* Reset adapter and bring it back on-line */
1700
1701 bp->link_available = PI_K_FALSE; /* link is no longer available */
1702 bp->reset_type = 0; /* rerun on-board diagnostics */
1703 printk("%s: Resetting adapter...\n", bp->dev->name);
1704 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1705 {
1706 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1707 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1708 return;
1709 }
1710 printk("%s: Adapter reset successful!\n", bp->dev->name);
1711 return;
1712 }
1713
1714 /* Check for transmit flush interrupt */
1715
1716 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1717 {
1718 /* Flush any pending xmt's and acknowledge the flush interrupt */
1719
1720 bp->link_available = PI_K_FALSE; /* link is no longer available */
1721 dfx_xmt_flush(bp); /* flush any outstanding packets */
1722 (void) dfx_hw_port_ctrl_req(bp,
1723 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1724 0,
1725 0,
1726 NULL);
1727 }
1728
1729 /* Check for adapter state change */
1730
1731 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
6aa20a22 1732 {
1da177e4
LT
1733 /* Get latest adapter state */
1734
1735 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1736 if (state == PI_STATE_K_HALTED)
1737 {
1738 /*
1739 * Adapter has transitioned to HALTED state, try to reset
1740 * adapter to bring it back on-line. If reset fails,
1741 * leave the adapter in the broken state.
1742 */
1743
1744 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1745 dfx_int_pr_halt_id(bp); /* display halt id as string */
1746
1747 /* Reset adapter and bring it back on-line */
1748
1749 bp->link_available = PI_K_FALSE; /* link is no longer available */
1750 bp->reset_type = 0; /* rerun on-board diagnostics */
1751 printk("%s: Resetting adapter...\n", bp->dev->name);
1752 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1753 {
1754 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1755 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1756 return;
1757 }
1758 printk("%s: Adapter reset successful!\n", bp->dev->name);
1759 }
1760 else if (state == PI_STATE_K_LINK_AVAIL)
1761 {
1762 bp->link_available = PI_K_TRUE; /* set link available flag */
1763 }
1764 }
1765 }
1766
6aa20a22 1767
1da177e4
LT
1768/*
1769 * ==================
1770 * = dfx_int_common =
1771 * ==================
6aa20a22 1772 *
1da177e4
LT
1773 * Overview:
1774 * Interrupt service routine (ISR)
6aa20a22 1775 *
1da177e4
LT
1776 * Returns:
1777 * None
6aa20a22 1778 *
1da177e4
LT
1779 * Arguments:
1780 * bp - pointer to board information
1781 *
1782 * Functional Description:
1783 * This is the ISR which processes incoming adapter interrupts.
1784 *
1785 * Return Codes:
1786 * None
1787 *
1788 * Assumptions:
1789 * This routine assumes PDQ interrupts have not been disabled.
1790 * When interrupts are disabled at the PDQ, the Port Status register
1791 * is automatically cleared. This routine uses the Port Status
1792 * register value to determine whether a Type 0 interrupt occurred,
1793 * so it's important that adapter interrupts are not normally
1794 * enabled/disabled at the PDQ.
1795 *
1796 * It's vital that this routine is NOT reentered for the
1797 * same board and that the OS is not in another section of
1798 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1799 * different thread.
1800 *
1801 * Side Effects:
1802 * Pending interrupts are serviced. Depending on the type of
1803 * interrupt, acknowledging and clearing the interrupt at the
1804 * PDQ involves writing a register to clear the interrupt bit
1805 * or updating completion indices.
1806 */
1807
1808static void dfx_int_common(struct net_device *dev)
1809{
e89a2cfb 1810 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1811 PI_UINT32 port_status; /* Port Status register */
1812
1813 /* Process xmt interrupts - frequent case, so always call this routine */
1814
1815 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1816 netif_wake_queue(dev);
1817
1818 /* Process rcv interrupts - frequent case, so always call this routine */
1819
1820 dfx_rcv_queue_process(bp); /* service received LLC frames */
1821
1822 /*
1823 * Transmit and receive producer and completion indices are updated on the
1824 * adapter by writing to the Type 2 Producer register. Since the frequent
1825 * case is that we'll be processing either LLC transmit or receive buffers,
1826 * we'll optimize I/O writes by doing a single register write here.
1827 */
1828
1829 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1830
1831 /* Read PDQ Port Status register to find out which interrupts need processing */
1832
1833 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1834
1835 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1836
1837 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1838 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1839 }
1840
6aa20a22 1841
1da177e4
LT
1842/*
1843 * =================
1844 * = dfx_interrupt =
1845 * =================
feea1db2 1846 *
1da177e4
LT
1847 * Overview:
1848 * Interrupt processing routine
feea1db2 1849 *
1da177e4 1850 * Returns:
feea1db2
MR
1851 * Whether a valid interrupt was seen.
1852 *
1da177e4
LT
1853 * Arguments:
1854 * irq - interrupt vector
1855 * dev_id - pointer to device information
1da177e4
LT
1856 *
1857 * Functional Description:
1858 * This routine calls the interrupt processing routine for this adapter. It
1859 * disables and reenables adapter interrupts, as appropriate. We can support
1860 * shared interrupts since the incoming dev_id pointer provides our device
1861 * structure context.
1862 *
1863 * Return Codes:
feea1db2
MR
1864 * IRQ_HANDLED - an IRQ was handled.
1865 * IRQ_NONE - no IRQ was handled.
1da177e4
LT
1866 *
1867 * Assumptions:
1868 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1869 * on Intel-based systems) is done by the operating system outside this
1870 * routine.
1871 *
1872 * System interrupts are enabled through this call.
1873 *
1874 * Side Effects:
1875 * Interrupts are disabled, then reenabled at the adapter.
1876 */
1877
7d12e780 1878static irqreturn_t dfx_interrupt(int irq, void *dev_id)
feea1db2 1879{
e89a2cfb
MR
1880 struct net_device *dev = dev_id;
1881 DFX_board_t *bp = netdev_priv(dev);
1882 struct device *bdev = bp->bus_dev;
1883 int dfx_bus_pci = DFX_BUS_PCI(bdev);
1884 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1885 int dfx_bus_tc = DFX_BUS_TC(bdev);
1da177e4
LT
1886
1887 /* Service adapter interrupts */
1888
e89a2cfb 1889 if (dfx_bus_pci) {
feea1db2 1890 u32 status;
1da177e4 1891
feea1db2
MR
1892 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1893 if (!(status & PFI_STATUS_M_PDQ_INT))
1894 return IRQ_NONE;
1da177e4 1895
feea1db2
MR
1896 spin_lock(&bp->lock);
1897
1898 /* Disable PDQ-PFI interrupts at PFI */
1899 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1900 PFI_MODE_M_DMA_ENB);
1da177e4 1901
feea1db2 1902 /* Call interrupt service routine for this adapter */
1da177e4
LT
1903 dfx_int_common(dev);
1904
1905 /* Clear PDQ interrupt status bit and reenable interrupts */
feea1db2
MR
1906 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1907 PFI_STATUS_M_PDQ_INT);
1da177e4 1908 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
feea1db2
MR
1909 (PFI_MODE_M_PDQ_INT_ENB |
1910 PFI_MODE_M_DMA_ENB));
1da177e4 1911
feea1db2 1912 spin_unlock(&bp->lock);
e89a2cfb
MR
1913 }
1914 if (dfx_bus_eisa) {
1915 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
feea1db2 1916 u8 status;
1da177e4 1917
e89a2cfb 1918 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2
MR
1919 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1920 return IRQ_NONE;
1da177e4 1921
feea1db2
MR
1922 spin_lock(&bp->lock);
1923
1924 /* Disable interrupts at the ESIC */
1925 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb 1926 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
feea1db2
MR
1927
1928 /* Call interrupt service routine for this adapter */
1da177e4
LT
1929 dfx_int_common(dev);
1930
1931 /* Reenable interrupts at the ESIC */
e89a2cfb 1932 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2 1933 status |= PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb
MR
1934 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1935
1936 spin_unlock(&bp->lock);
1937 }
1938 if (dfx_bus_tc) {
1939 u32 status;
1940
1941 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1942 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1943 PI_PSTATUS_M_XMT_DATA_PENDING |
1944 PI_PSTATUS_M_SMT_HOST_PENDING |
1945 PI_PSTATUS_M_UNSOL_PENDING |
1946 PI_PSTATUS_M_CMD_RSP_PENDING |
1947 PI_PSTATUS_M_CMD_REQ_PENDING |
1948 PI_PSTATUS_M_TYPE_0_PENDING)))
1949 return IRQ_NONE;
1950
1951 spin_lock(&bp->lock);
1952
1953 /* Call interrupt service routine for this adapter */
1954 dfx_int_common(dev);
1da177e4 1955
feea1db2 1956 spin_unlock(&bp->lock);
1da177e4
LT
1957 }
1958
feea1db2
MR
1959 return IRQ_HANDLED;
1960}
1961
6aa20a22 1962
1da177e4
LT
1963/*
1964 * =====================
1965 * = dfx_ctl_get_stats =
1966 * =====================
6aa20a22 1967 *
1da177e4
LT
1968 * Overview:
1969 * Get statistics for FDDI adapter
6aa20a22 1970 *
1da177e4
LT
1971 * Returns:
1972 * Pointer to FDDI statistics structure
6aa20a22 1973 *
1da177e4
LT
1974 * Arguments:
1975 * dev - pointer to device information
1976 *
1977 * Functional Description:
1978 * Gets current MIB objects from adapter, then
1979 * returns FDDI statistics structure as defined
1980 * in if_fddi.h.
1981 *
1982 * Note: Since the FDDI statistics structure is
1983 * still new and the device structure doesn't
1984 * have an FDDI-specific get statistics handler,
1985 * we'll return the FDDI statistics structure as
1986 * a pointer to an Ethernet statistics structure.
1987 * That way, at least the first part of the statistics
1988 * structure can be decoded properly, and it allows
1989 * "smart" applications to perform a second cast to
1990 * decode the FDDI-specific statistics.
1991 *
1992 * We'll have to pay attention to this routine as the
1993 * device structure becomes more mature and LAN media
1994 * independent.
1995 *
1996 * Return Codes:
1997 * None
1998 *
1999 * Assumptions:
2000 * None
2001 *
2002 * Side Effects:
2003 * None
2004 */
2005
2006static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2007 {
e89a2cfb 2008 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2009
2010 /* Fill the bp->stats structure with driver-maintained counters */
2011
2012 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2013 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2014 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2015 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2016 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2017 bp->rcv_frame_status_errors +
2018 bp->rcv_length_errors;
2019 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2020 bp->stats.gen.rx_dropped = bp->rcv_discards;
2021 bp->stats.gen.tx_dropped = bp->xmt_discards;
2022 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2023 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2024
2025 /* Get FDDI SMT MIB objects */
2026
2027 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2028 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2029 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2030
2031 /* Fill the bp->stats structure with the SMT MIB object values */
2032
2033 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2034 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2035 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2036 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2037 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2038 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2039 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2040 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2041 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2042 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2043 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2044 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2045 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2046 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2047 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2048 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2049 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2050 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2051 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2052 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2053 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2054 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2055 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2056 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2057 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2058 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2059 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2060 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2061 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2062 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2063 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2064 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2065 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2066 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2067 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2068 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2069 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2070 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2071 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2072 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2073 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2074 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2075 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2076 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2077 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2078 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2079 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2080 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2081 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2082 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2083 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2084 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2085 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2086 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2087 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2088 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2089 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2090 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2091 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2092 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2093 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2094 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2095 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2096 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2097 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2098 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2099 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2100 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2101 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2102 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2103 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2104 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2105 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2106 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2107 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2108 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2109 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2110 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2111 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2112 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2113 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2114 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2115 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2116 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2117 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2118 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2119 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2120 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2121 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2122 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2123 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2124 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2125
2126 /* Get FDDI counters */
2127
2128 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2129 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2130 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2131
2132 /* Fill the bp->stats structure with the FDDI counter values */
2133
2134 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2135 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2136 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2137 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2138 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2139 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2140 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2141 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2142 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2143 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2144 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2145
807540ba 2146 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2147 }
2148
6aa20a22 2149
1da177e4
LT
2150/*
2151 * ==============================
2152 * = dfx_ctl_set_multicast_list =
2153 * ==============================
6aa20a22 2154 *
1da177e4
LT
2155 * Overview:
2156 * Enable/Disable LLC frame promiscuous mode reception
2157 * on the adapter and/or update multicast address table.
6aa20a22 2158 *
1da177e4
LT
2159 * Returns:
2160 * None
6aa20a22 2161 *
1da177e4
LT
2162 * Arguments:
2163 * dev - pointer to device information
2164 *
2165 * Functional Description:
2166 * This routine follows a fairly simple algorithm for setting the
2167 * adapter filters and CAM:
2168 *
2169 * if IFF_PROMISC flag is set
2170 * enable LLC individual/group promiscuous mode
2171 * else
2172 * disable LLC individual/group promiscuous mode
2173 * if number of incoming multicast addresses >
2174 * (CAM max size - number of unicast addresses in CAM)
2175 * enable LLC group promiscuous mode
2176 * set driver-maintained multicast address count to zero
2177 * else
2178 * disable LLC group promiscuous mode
2179 * set driver-maintained multicast address count to incoming count
2180 * update adapter CAM
2181 * update adapter filters
2182 *
2183 * Return Codes:
2184 * None
2185 *
2186 * Assumptions:
2187 * Multicast addresses are presented in canonical (LSB) format.
2188 *
2189 * Side Effects:
2190 * On-board adapter CAM and filters are updated.
2191 */
2192
2193static void dfx_ctl_set_multicast_list(struct net_device *dev)
e89a2cfb
MR
2194{
2195 DFX_board_t *bp = netdev_priv(dev);
1da177e4 2196 int i; /* used as index in for loop */
22bedad3 2197 struct netdev_hw_addr *ha;
1da177e4
LT
2198
2199 /* Enable LLC frame promiscuous mode, if necessary */
2200
2201 if (dev->flags & IFF_PROMISC)
2202 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2203
2204 /* Else, update multicast address table */
2205
2206 else
2207 {
2208 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2209 /*
2210 * Check whether incoming multicast address count exceeds table size
2211 *
2212 * Note: The adapters utilize an on-board 64 entry CAM for
2213 * supporting perfect filtering of multicast packets
2214 * and bridge functions when adding unicast addresses.
2215 * There is no hash function available. To support
2216 * additional multicast addresses, the all multicast
2217 * filter (LLC group promiscuous mode) must be enabled.
2218 *
2219 * The firmware reserves two CAM entries for SMT-related
2220 * multicast addresses, which leaves 62 entries available.
2221 * The following code ensures that we're not being asked
2222 * to add more than 62 addresses to the CAM. If we are,
2223 * the driver will enable the all multicast filter.
2224 * Should the number of multicast addresses drop below
2225 * the high water mark, the filter will be disabled and
2226 * perfect filtering will be used.
2227 */
2228
4cd24eaf 2229 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
1da177e4
LT
2230 {
2231 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2232 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2233 }
2234 else
2235 {
2236 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
4cd24eaf 2237 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
1da177e4
LT
2238 }
2239
2240 /* Copy addresses to multicast address table, then update adapter CAM */
2241
e1d44477 2242 i = 0;
22bedad3 2243 netdev_for_each_mc_addr(ha, dev)
e1d44477 2244 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
22bedad3 2245 ha->addr, FDDI_K_ALEN);
e1d44477 2246
1da177e4
LT
2247 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2248 {
2249 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2250 }
2251 else
2252 {
2253 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2254 }
2255 }
2256
2257 /* Update adapter filters */
2258
2259 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2260 {
2261 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2262 }
2263 else
2264 {
2265 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2266 }
2267 }
2268
6aa20a22 2269
1da177e4
LT
2270/*
2271 * ===========================
2272 * = dfx_ctl_set_mac_address =
2273 * ===========================
6aa20a22 2274 *
1da177e4
LT
2275 * Overview:
2276 * Add node address override (unicast address) to adapter
2277 * CAM and update dev_addr field in device table.
6aa20a22 2278 *
1da177e4
LT
2279 * Returns:
2280 * None
6aa20a22 2281 *
1da177e4
LT
2282 * Arguments:
2283 * dev - pointer to device information
2284 * addr - pointer to sockaddr structure containing unicast address to add
2285 *
2286 * Functional Description:
2287 * The adapter supports node address overrides by adding one or more
2288 * unicast addresses to the adapter CAM. This is similar to adding
2289 * multicast addresses. In this routine we'll update the driver and
2290 * device structures with the new address, then update the adapter CAM
2291 * to ensure that the adapter will copy and strip frames destined and
2292 * sourced by that address.
2293 *
2294 * Return Codes:
2295 * Always returns zero.
2296 *
2297 * Assumptions:
2298 * The address pointed to by addr->sa_data is a valid unicast
2299 * address and is presented in canonical (LSB) format.
2300 *
2301 * Side Effects:
2302 * On-board adapter CAM is updated. On-board adapter filters
2303 * may be updated.
2304 */
2305
2306static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2307 {
1da177e4 2308 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
e89a2cfb 2309 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2310
2311 /* Copy unicast address to driver-maintained structs and update count */
2312
2313 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2314 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2315 bp->uc_count = 1;
2316
2317 /*
2318 * Verify we're not exceeding the CAM size by adding unicast address
2319 *
2320 * Note: It's possible that before entering this routine we've
2321 * already filled the CAM with 62 multicast addresses.
2322 * Since we need to place the node address override into
2323 * the CAM, we have to check to see that we're not
2324 * exceeding the CAM size. If we are, we have to enable
2325 * the LLC group (multicast) promiscuous mode filter as
2326 * in dfx_ctl_set_multicast_list.
2327 */
2328
2329 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2330 {
2331 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2332 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2333
2334 /* Update adapter filters */
2335
2336 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2337 {
2338 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2339 }
2340 else
2341 {
2342 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2343 }
2344 }
2345
2346 /* Update adapter CAM with new unicast address */
2347
2348 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2349 {
2350 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2351 }
2352 else
2353 {
2354 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2355 }
807540ba 2356 return 0; /* always return zero */
1da177e4
LT
2357 }
2358
6aa20a22 2359
1da177e4
LT
2360/*
2361 * ======================
2362 * = dfx_ctl_update_cam =
2363 * ======================
2364 *
2365 * Overview:
2366 * Procedure to update adapter CAM (Content Addressable Memory)
2367 * with desired unicast and multicast address entries.
2368 *
2369 * Returns:
2370 * Condition code
2371 *
2372 * Arguments:
2373 * bp - pointer to board information
2374 *
2375 * Functional Description:
2376 * Updates adapter CAM with current contents of board structure
2377 * unicast and multicast address tables. Since there are only 62
2378 * free entries in CAM, this routine ensures that the command
2379 * request buffer is not overrun.
2380 *
2381 * Return Codes:
2382 * DFX_K_SUCCESS - Request succeeded
2383 * DFX_K_FAILURE - Request failed
2384 *
2385 * Assumptions:
2386 * All addresses being added (unicast and multicast) are in canonical
2387 * order.
2388 *
2389 * Side Effects:
2390 * On-board adapter CAM is updated.
2391 */
2392
2393static int dfx_ctl_update_cam(DFX_board_t *bp)
2394 {
2395 int i; /* used as index */
2396 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2397
2398 /*
2399 * Fill in command request information
2400 *
2401 * Note: Even though both the unicast and multicast address
2402 * table entries are stored as contiguous 6 byte entries,
2403 * the firmware address filter set command expects each
2404 * entry to be two longwords (8 bytes total). We must be
2405 * careful to only copy the six bytes of each unicast and
2406 * multicast table entry into each command entry. This
2407 * is also why we must first clear the entire command
2408 * request buffer.
2409 */
2410
2411 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2412 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2413 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2414
2415 /* Now add unicast addresses to command request buffer, if any */
2416
2417 for (i=0; i < (int)bp->uc_count; i++)
2418 {
2419 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2420 {
2421 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2422 p_addr++; /* point to next command entry */
2423 }
2424 }
2425
2426 /* Now add multicast addresses to command request buffer, if any */
2427
2428 for (i=0; i < (int)bp->mc_count; i++)
2429 {
2430 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2431 {
2432 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2433 p_addr++; /* point to next command entry */
2434 }
2435 }
2436
2437 /* Issue command to update adapter CAM, then return */
2438
2439 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2440 return DFX_K_FAILURE;
2441 return DFX_K_SUCCESS;
1da177e4
LT
2442 }
2443
6aa20a22 2444
1da177e4
LT
2445/*
2446 * ==========================
2447 * = dfx_ctl_update_filters =
2448 * ==========================
2449 *
2450 * Overview:
2451 * Procedure to update adapter filters with desired
2452 * filter settings.
6aa20a22 2453 *
1da177e4
LT
2454 * Returns:
2455 * Condition code
6aa20a22 2456 *
1da177e4
LT
2457 * Arguments:
2458 * bp - pointer to board information
2459 *
2460 * Functional Description:
2461 * Enables or disables filter using current filter settings.
2462 *
2463 * Return Codes:
2464 * DFX_K_SUCCESS - Request succeeded.
2465 * DFX_K_FAILURE - Request failed.
2466 *
2467 * Assumptions:
2468 * We must always pass up packets destined to the broadcast
2469 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2470 * broadcast filter enabled.
2471 *
2472 * Side Effects:
2473 * On-board adapter filters are updated.
2474 */
2475
2476static int dfx_ctl_update_filters(DFX_board_t *bp)
2477 {
2478 int i = 0; /* used as index */
2479
2480 /* Fill in command request information */
2481
2482 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2483
2484 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2485
2486 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2487 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2488
2489 /* Initialize LLC Individual/Group Promiscuous filter */
2490
2491 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2492 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2493
2494 /* Initialize LLC Group Promiscuous filter */
2495
2496 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2497 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2498
2499 /* Terminate the item code list */
2500
2501 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2502
2503 /* Issue command to update adapter filters, then return */
2504
2505 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2506 return DFX_K_FAILURE;
2507 return DFX_K_SUCCESS;
1da177e4
LT
2508 }
2509
6aa20a22 2510
1da177e4
LT
2511/*
2512 * ======================
2513 * = dfx_hw_dma_cmd_req =
2514 * ======================
6aa20a22 2515 *
1da177e4
LT
2516 * Overview:
2517 * Sends PDQ DMA command to adapter firmware
6aa20a22 2518 *
1da177e4
LT
2519 * Returns:
2520 * Condition code
6aa20a22 2521 *
1da177e4
LT
2522 * Arguments:
2523 * bp - pointer to board information
2524 *
2525 * Functional Description:
2526 * The command request and response buffers are posted to the adapter in the manner
2527 * described in the PDQ Port Specification:
2528 *
2529 * 1. Command Response Buffer is posted to adapter.
2530 * 2. Command Request Buffer is posted to adapter.
2531 * 3. Command Request consumer index is polled until it indicates that request
2532 * buffer has been DMA'd to adapter.
2533 * 4. Command Response consumer index is polled until it indicates that response
2534 * buffer has been DMA'd from adapter.
2535 *
2536 * This ordering ensures that a response buffer is already available for the firmware
2537 * to use once it's done processing the request buffer.
2538 *
2539 * Return Codes:
2540 * DFX_K_SUCCESS - DMA command succeeded
2541 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2542 * DFX_K_HW_TIMEOUT - DMA command timed out
2543 *
2544 * Assumptions:
2545 * Command request buffer has already been filled with desired DMA command.
2546 *
2547 * Side Effects:
2548 * None
2549 */
2550
2551static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2552 {
2553 int status; /* adapter status */
2554 int timeout_cnt; /* used in for loops */
6aa20a22 2555
1da177e4 2556 /* Make sure the adapter is in a state that we can issue the DMA command in */
6aa20a22 2557
1da177e4
LT
2558 status = dfx_hw_adap_state_rd(bp);
2559 if ((status == PI_STATE_K_RESET) ||
2560 (status == PI_STATE_K_HALTED) ||
2561 (status == PI_STATE_K_DMA_UNAVAIL) ||
2562 (status == PI_STATE_K_UPGRADE))
807540ba 2563 return DFX_K_OUTSTATE;
1da177e4
LT
2564
2565 /* Put response buffer on the command response queue */
2566
2567 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2568 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2569 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2570
2571 /* Bump (and wrap) the producer index and write out to register */
2572
2573 bp->cmd_rsp_reg.index.prod += 1;
2574 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2575 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2576
2577 /* Put request buffer on the command request queue */
6aa20a22 2578
1da177e4
LT
2579 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2580 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2581 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2582
2583 /* Bump (and wrap) the producer index and write out to register */
2584
2585 bp->cmd_req_reg.index.prod += 1;
2586 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2587 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2588
2589 /*
2590 * Here we wait for the command request consumer index to be equal
2591 * to the producer, indicating that the adapter has DMAed the request.
2592 */
2593
2594 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2595 {
2596 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2597 break;
2598 udelay(100); /* wait for 100 microseconds */
2599 }
6aa20a22 2600 if (timeout_cnt == 0)
807540ba 2601 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2602
2603 /* Bump (and wrap) the completion index and write out to register */
2604
2605 bp->cmd_req_reg.index.comp += 1;
2606 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2607 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2608
2609 /*
2610 * Here we wait for the command response consumer index to be equal
2611 * to the producer, indicating that the adapter has DMAed the response.
2612 */
2613
2614 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2615 {
2616 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2617 break;
2618 udelay(100); /* wait for 100 microseconds */
2619 }
6aa20a22 2620 if (timeout_cnt == 0)
807540ba 2621 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2622
2623 /* Bump (and wrap) the completion index and write out to register */
2624
2625 bp->cmd_rsp_reg.index.comp += 1;
2626 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2627 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
807540ba 2628 return DFX_K_SUCCESS;
1da177e4
LT
2629 }
2630
6aa20a22 2631
1da177e4
LT
2632/*
2633 * ========================
2634 * = dfx_hw_port_ctrl_req =
2635 * ========================
6aa20a22 2636 *
1da177e4
LT
2637 * Overview:
2638 * Sends PDQ port control command to adapter firmware
6aa20a22 2639 *
1da177e4
LT
2640 * Returns:
2641 * Host data register value in host_data if ptr is not NULL
6aa20a22 2642 *
1da177e4
LT
2643 * Arguments:
2644 * bp - pointer to board information
2645 * command - port control command
2646 * data_a - port data A register value
2647 * data_b - port data B register value
2648 * host_data - ptr to host data register value
2649 *
2650 * Functional Description:
2651 * Send generic port control command to adapter by writing
2652 * to various PDQ port registers, then polling for completion.
2653 *
2654 * Return Codes:
2655 * DFX_K_SUCCESS - port control command succeeded
2656 * DFX_K_HW_TIMEOUT - port control command timed out
2657 *
2658 * Assumptions:
2659 * None
2660 *
2661 * Side Effects:
2662 * None
2663 */
2664
2665static int dfx_hw_port_ctrl_req(
2666 DFX_board_t *bp,
2667 PI_UINT32 command,
2668 PI_UINT32 data_a,
2669 PI_UINT32 data_b,
2670 PI_UINT32 *host_data
2671 )
2672
2673 {
2674 PI_UINT32 port_cmd; /* Port Control command register value */
2675 int timeout_cnt; /* used in for loops */
2676
2677 /* Set Command Error bit in command longword */
6aa20a22 2678
1da177e4
LT
2679 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2680
2681 /* Issue port command to the adapter */
2682
2683 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2684 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2685 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2686
2687 /* Now wait for command to complete */
2688
2689 if (command == PI_PCTRL_M_BLAST_FLASH)
2690 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2691 else
2692 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2693
2694 for (; timeout_cnt > 0; timeout_cnt--)
2695 {
2696 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2697 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2698 break;
2699 udelay(100); /* wait for 100 microseconds */
2700 }
6aa20a22 2701 if (timeout_cnt == 0)
807540ba 2702 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2703
2704 /*
6aa20a22
JG
2705 * If the address of host_data is non-zero, assume caller has supplied a
2706 * non NULL pointer, and return the contents of the HOST_DATA register in
1da177e4
LT
2707 * it.
2708 */
2709
2710 if (host_data != NULL)
2711 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
807540ba 2712 return DFX_K_SUCCESS;
1da177e4
LT
2713 }
2714
6aa20a22 2715
1da177e4
LT
2716/*
2717 * =====================
2718 * = dfx_hw_adap_reset =
2719 * =====================
6aa20a22 2720 *
1da177e4
LT
2721 * Overview:
2722 * Resets adapter
6aa20a22 2723 *
1da177e4
LT
2724 * Returns:
2725 * None
6aa20a22 2726 *
1da177e4
LT
2727 * Arguments:
2728 * bp - pointer to board information
2729 * type - type of reset to perform
2730 *
2731 * Functional Description:
2732 * Issue soft reset to adapter by writing to PDQ Port Reset
2733 * register. Use incoming reset type to tell adapter what
2734 * kind of reset operation to perform.
2735 *
2736 * Return Codes:
2737 * None
2738 *
2739 * Assumptions:
2740 * This routine merely issues a soft reset to the adapter.
2741 * It is expected that after this routine returns, the caller
2742 * will appropriately poll the Port Status register for the
2743 * adapter to enter the proper state.
2744 *
2745 * Side Effects:
2746 * Internal adapter registers are cleared.
2747 */
2748
2749static void dfx_hw_adap_reset(
2750 DFX_board_t *bp,
2751 PI_UINT32 type
2752 )
2753
2754 {
2755 /* Set Reset type and assert reset */
2756
2757 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2758 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2759
2760 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2761
2762 udelay(20);
2763
2764 /* Deassert reset */
2765
2766 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2767 }
2768
6aa20a22 2769
1da177e4
LT
2770/*
2771 * ========================
2772 * = dfx_hw_adap_state_rd =
2773 * ========================
6aa20a22 2774 *
1da177e4
LT
2775 * Overview:
2776 * Returns current adapter state
6aa20a22 2777 *
1da177e4
LT
2778 * Returns:
2779 * Adapter state per PDQ Port Specification
6aa20a22 2780 *
1da177e4
LT
2781 * Arguments:
2782 * bp - pointer to board information
2783 *
2784 * Functional Description:
2785 * Reads PDQ Port Status register and returns adapter state.
2786 *
2787 * Return Codes:
2788 * None
2789 *
2790 * Assumptions:
2791 * None
2792 *
2793 * Side Effects:
2794 * None
2795 */
2796
2797static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2798 {
2799 PI_UINT32 port_status; /* Port Status register value */
2800
2801 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
807540ba 2802 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
1da177e4
LT
2803 }
2804
6aa20a22 2805
1da177e4
LT
2806/*
2807 * =====================
2808 * = dfx_hw_dma_uninit =
2809 * =====================
6aa20a22 2810 *
1da177e4
LT
2811 * Overview:
2812 * Brings adapter to DMA_UNAVAILABLE state
6aa20a22 2813 *
1da177e4
LT
2814 * Returns:
2815 * Condition code
6aa20a22 2816 *
1da177e4
LT
2817 * Arguments:
2818 * bp - pointer to board information
2819 * type - type of reset to perform
2820 *
2821 * Functional Description:
2822 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2823 * 1. Set reset type bit in Port Data A Register then reset adapter.
2824 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2825 *
2826 * Return Codes:
2827 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2828 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2829 *
2830 * Assumptions:
2831 * None
2832 *
2833 * Side Effects:
2834 * Internal adapter registers are cleared.
2835 */
2836
2837static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2838 {
2839 int timeout_cnt; /* used in for loops */
2840
2841 /* Set reset type bit and reset adapter */
2842
2843 dfx_hw_adap_reset(bp, type);
2844
2845 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2846
2847 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2848 {
2849 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2850 break;
2851 udelay(100); /* wait for 100 microseconds */
2852 }
6aa20a22 2853 if (timeout_cnt == 0)
807540ba
ED
2854 return DFX_K_HW_TIMEOUT;
2855 return DFX_K_SUCCESS;
1da177e4 2856 }
6aa20a22 2857
1da177e4
LT
2858/*
2859 * Align an sk_buff to a boundary power of 2
2860 *
2861 */
6aa20a22 2862
1da177e4
LT
2863static void my_skb_align(struct sk_buff *skb, int n)
2864{
2865 unsigned long x = (unsigned long)skb->data;
2866 unsigned long v;
6aa20a22 2867
1da177e4 2868 v = ALIGN(x, n); /* Where we want to be */
6aa20a22 2869
1da177e4
LT
2870 skb_reserve(skb, v - x);
2871}
2872
6aa20a22 2873
1da177e4
LT
2874/*
2875 * ================
2876 * = dfx_rcv_init =
2877 * ================
6aa20a22 2878 *
1da177e4
LT
2879 * Overview:
2880 * Produces buffers to adapter LLC Host receive descriptor block
6aa20a22 2881 *
1da177e4
LT
2882 * Returns:
2883 * None
6aa20a22 2884 *
1da177e4
LT
2885 * Arguments:
2886 * bp - pointer to board information
2887 * get_buffers - non-zero if buffers to be allocated
2888 *
2889 * Functional Description:
2890 * This routine can be called during dfx_adap_init() or during an adapter
2891 * reset. It initializes the descriptor block and produces all allocated
2892 * LLC Host queue receive buffers.
2893 *
2894 * Return Codes:
2895 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2896 * dynamic buffer allocation). If the buffer allocation failed, the
2897 * already allocated buffers will not be released and the caller should do
2898 * this.
2899 *
2900 * Assumptions:
2901 * The PDQ has been reset and the adapter and driver maintained Type 2
2902 * register indices are cleared.
2903 *
2904 * Side Effects:
2905 * Receive buffers are posted to the adapter LLC queue and the adapter
2906 * is notified.
2907 */
2908
2909static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2910 {
2911 int i, j; /* used in for loop */
2912
2913 /*
2914 * Since each receive buffer is a single fragment of same length, initialize
2915 * first longword in each receive descriptor for entire LLC Host descriptor
2916 * block. Also initialize second longword in each receive descriptor with
2917 * physical address of receive buffer. We'll always allocate receive
2918 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2919 * block and produce new receive buffers by simply updating the receive
2920 * producer index.
2921 *
2922 * Assumptions:
2923 * To support all shipping versions of PDQ, the receive buffer size
2924 * must be mod 128 in length and the physical address must be 128 byte
2925 * aligned. In other words, bits 0-6 of the length and address must
2926 * be zero for the following descriptor field entries to be correct on
2927 * all PDQ-based boards. We guaranteed both requirements during
2928 * driver initialization when we allocated memory for the receive buffers.
2929 */
2930
2931 if (get_buffers) {
2932#ifdef DYNAMIC_BUFFERS
2933 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2934 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2935 {
9034f77b 2936 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
1da177e4
LT
2937 if (!newskb)
2938 return -ENOMEM;
2939 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2940 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2941 /*
2942 * align to 128 bytes for compatibility with
2943 * the old EISA boards.
2944 */
6aa20a22 2945
1da177e4
LT
2946 my_skb_align(newskb, 128);
2947 bp->descr_block_virt->rcv_data[i + j].long_1 =
e89a2cfb 2948 (u32)dma_map_single(bp->bus_dev, newskb->data,
1da177e4 2949 NEW_SKB_SIZE,
e89a2cfb 2950 DMA_FROM_DEVICE);
1da177e4
LT
2951 /*
2952 * p_rcv_buff_va is only used inside the
2953 * kernel so we put the skb pointer here.
2954 */
2955 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2956 }
2957#else
2958 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2959 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2960 {
2961 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2962 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2963 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
c2fd03a0 2964 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
1da177e4
LT
2965 }
2966#endif
2967 }
2968
2969 /* Update receive producer and Type 2 register */
2970
2971 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2972 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2973 return 0;
2974 }
2975
6aa20a22 2976
1da177e4
LT
2977/*
2978 * =========================
2979 * = dfx_rcv_queue_process =
2980 * =========================
6aa20a22 2981 *
1da177e4
LT
2982 * Overview:
2983 * Process received LLC frames.
6aa20a22 2984 *
1da177e4
LT
2985 * Returns:
2986 * None
6aa20a22 2987 *
1da177e4
LT
2988 * Arguments:
2989 * bp - pointer to board information
2990 *
2991 * Functional Description:
2992 * Received LLC frames are processed until there are no more consumed frames.
2993 * Once all frames are processed, the receive buffers are returned to the
2994 * adapter. Note that this algorithm fixes the length of time that can be spent
2995 * in this routine, because there are a fixed number of receive buffers to
2996 * process and buffers are not produced until this routine exits and returns
2997 * to the ISR.
2998 *
2999 * Return Codes:
3000 * None
3001 *
3002 * Assumptions:
3003 * None
3004 *
3005 * Side Effects:
3006 * None
3007 */
3008
3009static void dfx_rcv_queue_process(
3010 DFX_board_t *bp
3011 )
3012
3013 {
3014 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3015 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3016 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3017 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3018
3019 /* Service all consumed LLC receive frames */
3020
3021 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3022 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3023 {
3024 /* Process any errors */
3025
3026 int entry;
3027
3028 entry = bp->rcv_xmt_reg.index.rcv_comp;
3029#ifdef DYNAMIC_BUFFERS
3030 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3031#else
c2fd03a0 3032 p_buff = bp->p_rcv_buff_va[entry];
1da177e4
LT
3033#endif
3034 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3035
3036 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3037 {
3038 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3039 bp->rcv_crc_errors++;
3040 else
3041 bp->rcv_frame_status_errors++;
3042 }
3043 else
3044 {
3045 int rx_in_place = 0;
3046
3047 /* The frame was received without errors - verify packet length */
3048
3049 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3050 pkt_len -= 4; /* subtract 4 byte CRC */
3051 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3052 bp->rcv_length_errors++;
3053 else{
3054#ifdef DYNAMIC_BUFFERS
3055 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3056 struct sk_buff *newskb;
3057
3058 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3059 if (newskb){
3060 rx_in_place = 1;
6aa20a22 3061
1da177e4
LT
3062 my_skb_align(newskb, 128);
3063 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
e89a2cfb 3064 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3065 bp->descr_block_virt->rcv_data[entry].long_1,
3066 NEW_SKB_SIZE,
e89a2cfb 3067 DMA_FROM_DEVICE);
1da177e4
LT
3068 skb_reserve(skb, RCV_BUFF_K_PADDING);
3069 bp->p_rcv_buff_va[entry] = (char *)newskb;
3070 bp->descr_block_virt->rcv_data[entry].long_1 =
e89a2cfb 3071 (u32)dma_map_single(bp->bus_dev,
1da177e4
LT
3072 newskb->data,
3073 NEW_SKB_SIZE,
e89a2cfb 3074 DMA_FROM_DEVICE);
1da177e4
LT
3075 } else
3076 skb = NULL;
3077 } else
3078#endif
3079 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3080 if (skb == NULL)
3081 {
3082 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3083 bp->rcv_discards++;
3084 break;
3085 }
3086 else {
3087#ifndef DYNAMIC_BUFFERS
3088 if (! rx_in_place)
3089#endif
3090 {
3091 /* Receive buffer allocated, pass receive packet up */
3092
27d7ff46
ACM
3093 skb_copy_to_linear_data(skb,
3094 p_buff + RCV_BUFF_K_PADDING,
3095 pkt_len + 3);
1da177e4 3096 }
6aa20a22 3097
1da177e4
LT
3098 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3099 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
1da177e4
LT
3100 skb->protocol = fddi_type_trans(skb, bp->dev);
3101 bp->rcv_total_bytes += skb->len;
3102 netif_rx(skb);
3103
3104 /* Update the rcv counters */
1da177e4
LT
3105 bp->rcv_total_frames++;
3106 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3107 bp->rcv_multicast_frames++;
3108 }
3109 }
3110 }
3111
3112 /*
3113 * Advance the producer (for recycling) and advance the completion
3114 * (for servicing received frames). Note that it is okay to
3115 * advance the producer without checking that it passes the
3116 * completion index because they are both advanced at the same
3117 * rate.
3118 */
3119
3120 bp->rcv_xmt_reg.index.rcv_prod += 1;
3121 bp->rcv_xmt_reg.index.rcv_comp += 1;
3122 }
3123 }
3124
6aa20a22 3125
1da177e4
LT
3126/*
3127 * =====================
3128 * = dfx_xmt_queue_pkt =
3129 * =====================
6aa20a22 3130 *
1da177e4
LT
3131 * Overview:
3132 * Queues packets for transmission
6aa20a22 3133 *
1da177e4
LT
3134 * Returns:
3135 * Condition code
6aa20a22 3136 *
1da177e4
LT
3137 * Arguments:
3138 * skb - pointer to sk_buff to queue for transmission
3139 * dev - pointer to device information
3140 *
3141 * Functional Description:
3142 * Here we assume that an incoming skb transmit request
3143 * is contained in a single physically contiguous buffer
3144 * in which the virtual address of the start of packet
3145 * (skb->data) can be converted to a physical address
3146 * by using pci_map_single().
3147 *
3148 * Since the adapter architecture requires a three byte
3149 * packet request header to prepend the start of packet,
3150 * we'll write the three byte field immediately prior to
3151 * the FC byte. This assumption is valid because we've
3152 * ensured that dev->hard_header_len includes three pad
3153 * bytes. By posting a single fragment to the adapter,
3154 * we'll reduce the number of descriptor fetches and
3155 * bus traffic needed to send the request.
3156 *
3157 * Also, we can't free the skb until after it's been DMA'd
3158 * out by the adapter, so we'll queue it in the driver and
3159 * return it in dfx_xmt_done.
3160 *
3161 * Return Codes:
3162 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3163 * 1 - caller should requeue the sk_buff for later transmission
3164 *
3165 * Assumptions:
3166 * First and foremost, we assume the incoming skb pointer
3167 * is NOT NULL and is pointing to a valid sk_buff structure.
3168 *
3169 * The outgoing packet is complete, starting with the
3170 * frame control byte including the last byte of data,
3171 * but NOT including the 4 byte CRC. We'll let the
3172 * adapter hardware generate and append the CRC.
3173 *
3174 * The entire packet is stored in one physically
3175 * contiguous buffer which is not cached and whose
3176 * 32-bit physical address can be determined.
3177 *
3178 * It's vital that this routine is NOT reentered for the
3179 * same board and that the OS is not in another section of
3180 * code (eg. dfx_int_common) for the same board on a
3181 * different thread.
3182 *
3183 * Side Effects:
3184 * None
3185 */
3186
61357325
SH
3187static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3188 struct net_device *dev)
1da177e4 3189 {
e89a2cfb 3190 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
3191 u8 prod; /* local transmit producer index */
3192 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3193 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3194 unsigned long flags;
3195
3196 netif_stop_queue(dev);
6aa20a22 3197
1da177e4
LT
3198 /*
3199 * Verify that incoming transmit request is OK
3200 *
3201 * Note: The packet size check is consistent with other
3202 * Linux device drivers, although the correct packet
3203 * size should be verified before calling the
3204 * transmit routine.
3205 */
3206
3207 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3208 {
6aa20a22 3209 printk("%s: Invalid packet length - %u bytes\n",
1da177e4
LT
3210 dev->name, skb->len);
3211 bp->xmt_length_errors++; /* bump error counter */
3212 netif_wake_queue(dev);
3213 dev_kfree_skb(skb);
ec634fe3 3214 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3215 }
3216 /*
3217 * See if adapter link is available, if not, free buffer
3218 *
3219 * Note: If the link isn't available, free buffer and return 0
3220 * rather than tell the upper layer to requeue the packet.
3221 * The methodology here is that by the time the link
3222 * becomes available, the packet to be sent will be
3223 * fairly stale. By simply dropping the packet, the
3224 * higher layer protocols will eventually time out
3225 * waiting for response packets which it won't receive.
3226 */
3227
3228 if (bp->link_available == PI_K_FALSE)
3229 {
3230 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3231 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3232 else
3233 {
3234 bp->xmt_discards++; /* bump error counter */
3235 dev_kfree_skb(skb); /* free sk_buff now */
3236 netif_wake_queue(dev);
ec634fe3 3237 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3238 }
3239 }
3240
3241 spin_lock_irqsave(&bp->lock, flags);
6aa20a22 3242
1da177e4
LT
3243 /* Get the current producer and the next free xmt data descriptor */
3244
3245 prod = bp->rcv_xmt_reg.index.xmt_prod;
3246 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3247
3248 /*
3249 * Get pointer to auxiliary queue entry to contain information
3250 * for this packet.
3251 *
3252 * Note: The current xmt producer index will become the
3253 * current xmt completion index when we complete this
3254 * packet later on. So, we'll get the pointer to the
3255 * next auxiliary queue entry now before we bump the
3256 * producer index.
3257 */
3258
3259 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3260
3261 /* Write the three PRH bytes immediately before the FC byte */
3262
3263 skb_push(skb,3);
3264 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3265 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3266 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3267
3268 /*
3269 * Write the descriptor with buffer info and bump producer
3270 *
3271 * Note: Since we need to start DMA from the packet request
3272 * header, we'll add 3 bytes to the DMA buffer length,
3273 * and we'll determine the physical address of the
3274 * buffer from the PRH, not skb->data.
3275 *
3276 * Assumptions:
3277 * 1. Packet starts with the frame control (FC) byte
3278 * at skb->data.
3279 * 2. The 4-byte CRC is not appended to the buffer or
3280 * included in the length.
3281 * 3. Packet length (skb->len) is from FC to end of
3282 * data, inclusive.
3283 * 4. The packet length does not exceed the maximum
3284 * FDDI LLC frame length of 4491 bytes.
3285 * 5. The entire packet is contained in a physically
3286 * contiguous, non-cached, locked memory space
3287 * comprised of a single buffer pointed to by
3288 * skb->data.
3289 * 6. The physical address of the start of packet
3290 * can be determined from the virtual address
3291 * by using pci_map_single() and is only 32-bits
3292 * wide.
3293 */
3294
3295 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
e89a2cfb
MR
3296 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3297 skb->len, DMA_TO_DEVICE);
1da177e4
LT
3298
3299 /*
3300 * Verify that descriptor is actually available
3301 *
3302 * Note: If descriptor isn't available, return 1 which tells
3303 * the upper layer to requeue the packet for later
3304 * transmission.
3305 *
3306 * We need to ensure that the producer never reaches the
3307 * completion, except to indicate that the queue is empty.
3308 */
3309
3310 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3311 {
3312 skb_pull(skb,3);
3313 spin_unlock_irqrestore(&bp->lock, flags);
5b548140 3314 return NETDEV_TX_BUSY; /* requeue packet for later */
1da177e4
LT
3315 }
3316
3317 /*
3318 * Save info for this packet for xmt done indication routine
3319 *
3320 * Normally, we'd save the producer index in the p_xmt_drv_descr
3321 * structure so that we'd have it handy when we complete this
3322 * packet later (in dfx_xmt_done). However, since the current
3323 * transmit architecture guarantees a single fragment for the
3324 * entire packet, we can simply bump the completion index by
3325 * one (1) for each completed packet.
3326 *
3327 * Note: If this assumption changes and we're presented with
3328 * an inconsistent number of transmit fragments for packet
3329 * data, we'll need to modify this code to save the current
3330 * transmit producer index.
3331 */
3332
3333 p_xmt_drv_descr->p_skb = skb;
3334
3335 /* Update Type 2 register */
3336
3337 bp->rcv_xmt_reg.index.xmt_prod = prod;
3338 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3339 spin_unlock_irqrestore(&bp->lock, flags);
3340 netif_wake_queue(dev);
ec634fe3 3341 return NETDEV_TX_OK; /* packet queued to adapter */
1da177e4
LT
3342 }
3343
6aa20a22 3344
1da177e4
LT
3345/*
3346 * ================
3347 * = dfx_xmt_done =
3348 * ================
6aa20a22 3349 *
1da177e4
LT
3350 * Overview:
3351 * Processes all frames that have been transmitted.
6aa20a22 3352 *
1da177e4
LT
3353 * Returns:
3354 * None
6aa20a22 3355 *
1da177e4
LT
3356 * Arguments:
3357 * bp - pointer to board information
3358 *
3359 * Functional Description:
3360 * For all consumed transmit descriptors that have not
3361 * yet been completed, we'll free the skb we were holding
3362 * onto using dev_kfree_skb and bump the appropriate
3363 * counters.
3364 *
3365 * Return Codes:
3366 * None
3367 *
3368 * Assumptions:
3369 * The Type 2 register is not updated in this routine. It is
3370 * assumed that it will be updated in the ISR when dfx_xmt_done
3371 * returns.
3372 *
3373 * Side Effects:
3374 * None
3375 */
3376
3377static int dfx_xmt_done(DFX_board_t *bp)
3378 {
3379 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3380 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3381 u8 comp; /* local transmit completion index */
3382 int freed = 0; /* buffers freed */
3383
3384 /* Service all consumed transmit frames */
3385
3386 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3387 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3388 {
3389 /* Get pointer to the transmit driver descriptor block information */
3390
3391 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3392
3393 /* Increment transmit counters */
3394
3395 bp->xmt_total_frames++;
3396 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3397
3398 /* Return skb to operating system */
3399 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3400 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3401 bp->descr_block_virt->xmt_data[comp].long_1,
3402 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3403 DMA_TO_DEVICE);
1da177e4
LT
3404 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3405
3406 /*
3407 * Move to start of next packet by updating completion index
3408 *
3409 * Here we assume that a transmit packet request is always
3410 * serviced by posting one fragment. We can therefore
3411 * simplify the completion code by incrementing the
3412 * completion index by one. This code will need to be
3413 * modified if this assumption changes. See comments
3414 * in dfx_xmt_queue_pkt for more details.
3415 */
3416
3417 bp->rcv_xmt_reg.index.xmt_comp += 1;
3418 freed++;
3419 }
3420 return freed;
3421 }
3422
6aa20a22 3423
1da177e4
LT
3424/*
3425 * =================
3426 * = dfx_rcv_flush =
3427 * =================
6aa20a22 3428 *
1da177e4
LT
3429 * Overview:
3430 * Remove all skb's in the receive ring.
6aa20a22 3431 *
1da177e4
LT
3432 * Returns:
3433 * None
6aa20a22 3434 *
1da177e4
LT
3435 * Arguments:
3436 * bp - pointer to board information
3437 *
3438 * Functional Description:
3439 * Free's all the dynamically allocated skb's that are
3440 * currently attached to the device receive ring. This
3441 * function is typically only used when the device is
3442 * initialized or reinitialized.
3443 *
3444 * Return Codes:
3445 * None
3446 *
3447 * Side Effects:
3448 * None
3449 */
3450#ifdef DYNAMIC_BUFFERS
3451static void dfx_rcv_flush( DFX_board_t *bp )
3452 {
3453 int i, j;
3454
3455 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3456 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3457 {
3458 struct sk_buff *skb;
3459 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3460 if (skb)
3461 dev_kfree_skb(skb);
3462 bp->p_rcv_buff_va[i+j] = NULL;
3463 }
3464
3465 }
3466#else
3467static inline void dfx_rcv_flush( DFX_board_t *bp )
3468{
3469}
3470#endif /* DYNAMIC_BUFFERS */
3471
3472/*
3473 * =================
3474 * = dfx_xmt_flush =
3475 * =================
6aa20a22 3476 *
1da177e4
LT
3477 * Overview:
3478 * Processes all frames whether they've been transmitted
3479 * or not.
6aa20a22 3480 *
1da177e4
LT
3481 * Returns:
3482 * None
6aa20a22 3483 *
1da177e4
LT
3484 * Arguments:
3485 * bp - pointer to board information
3486 *
3487 * Functional Description:
3488 * For all produced transmit descriptors that have not
3489 * yet been completed, we'll free the skb we were holding
3490 * onto using dev_kfree_skb and bump the appropriate
3491 * counters. Of course, it's possible that some of
3492 * these transmit requests actually did go out, but we
3493 * won't make that distinction here. Finally, we'll
3494 * update the consumer index to match the producer.
3495 *
3496 * Return Codes:
3497 * None
3498 *
3499 * Assumptions:
3500 * This routine does NOT update the Type 2 register. It
3501 * is assumed that this routine is being called during a
3502 * transmit flush interrupt, or a shutdown or close routine.
3503 *
3504 * Side Effects:
3505 * None
3506 */
3507
3508static void dfx_xmt_flush( DFX_board_t *bp )
3509 {
3510 u32 prod_cons; /* rcv/xmt consumer block longword */
3511 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3512 u8 comp; /* local transmit completion index */
3513
3514 /* Flush all outstanding transmit frames */
3515
3516 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3517 {
3518 /* Get pointer to the transmit driver descriptor block information */
3519
3520 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3521
3522 /* Return skb to operating system */
3523 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3524 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3525 bp->descr_block_virt->xmt_data[comp].long_1,
3526 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3527 DMA_TO_DEVICE);
1da177e4
LT
3528 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3529
3530 /* Increment transmit error counter */
3531
3532 bp->xmt_discards++;
3533
3534 /*
3535 * Move to start of next packet by updating completion index
3536 *
3537 * Here we assume that a transmit packet request is always
3538 * serviced by posting one fragment. We can therefore
3539 * simplify the completion code by incrementing the
3540 * completion index by one. This code will need to be
3541 * modified if this assumption changes. See comments
3542 * in dfx_xmt_queue_pkt for more details.
3543 */
3544
3545 bp->rcv_xmt_reg.index.xmt_comp += 1;
3546 }
3547
3548 /* Update the transmit consumer index in the consumer block */
3549
3550 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3551 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3552 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3553 }
3554
e89a2cfb
MR
3555/*
3556 * ==================
3557 * = dfx_unregister =
3558 * ==================
3559 *
3560 * Overview:
3561 * Shuts down an FDDI controller
3562 *
3563 * Returns:
3564 * Condition code
3565 *
3566 * Arguments:
3567 * bdev - pointer to device information
3568 *
3569 * Functional Description:
3570 *
3571 * Return Codes:
3572 * None
3573 *
3574 * Assumptions:
3575 * It compiles so it should work :-( (PCI cards do :-)
3576 *
3577 * Side Effects:
3578 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3579 * freed.
3580 */
c354dfc3 3581static void dfx_unregister(struct device *bdev)
1da177e4 3582{
e89a2cfb
MR
3583 struct net_device *dev = dev_get_drvdata(bdev);
3584 DFX_board_t *bp = netdev_priv(dev);
3585 int dfx_bus_pci = DFX_BUS_PCI(bdev);
3586 int dfx_bus_tc = DFX_BUS_TC(bdev);
3587 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3588 resource_size_t bar_start = 0; /* pointer to port */
3589 resource_size_t bar_len = 0; /* resource length */
1da177e4
LT
3590 int alloc_size; /* total buffer size used */
3591
3592 unregister_netdev(dev);
1da177e4
LT
3593
3594 alloc_size = sizeof(PI_DESCR_BLOCK) +
3595 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3596#ifndef DYNAMIC_BUFFERS
3597 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3598#endif
3599 sizeof(PI_CONSUMER_BLOCK) +
3600 (PI_ALIGN_K_DESC_BLK - 1);
3601 if (bp->kmalloced)
e89a2cfb
MR
3602 dma_free_coherent(bdev, alloc_size,
3603 bp->kmalloced, bp->kmalloced_dma);
3604
3605 dfx_bus_uninit(dev);
3606
3607 dfx_get_bars(bdev, &bar_start, &bar_len);
3608 if (dfx_use_mmio) {
3609 iounmap(bp->base.mem);
3610 release_mem_region(bar_start, bar_len);
3611 } else
3612 release_region(bar_start, bar_len);
3613
3614 if (dfx_bus_pci)
3615 pci_disable_device(to_pci_dev(bdev));
3616
1da177e4
LT
3617 free_netdev(dev);
3618}
3619
1da177e4 3620
c354dfc3
BP
3621static int __maybe_unused dfx_dev_register(struct device *);
3622static int __maybe_unused dfx_dev_unregister(struct device *);
1da177e4 3623
e89a2cfb 3624#ifdef CONFIG_PCI
1dd06ae8 3625static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
c354dfc3 3626static void dfx_pci_unregister(struct pci_dev *);
e89a2cfb 3627
a3aa1884 3628static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
e89a2cfb
MR
3629 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3630 { }
1da177e4 3631};
e89a2cfb 3632MODULE_DEVICE_TABLE(pci, dfx_pci_table);
1da177e4 3633
e89a2cfb 3634static struct pci_driver dfx_pci_driver = {
1da177e4 3635 .name = "defxx",
e89a2cfb
MR
3636 .id_table = dfx_pci_table,
3637 .probe = dfx_pci_register,
c354dfc3 3638 .remove = dfx_pci_unregister,
1da177e4
LT
3639};
3640
c354dfc3 3641static int dfx_pci_register(struct pci_dev *pdev,
1dd06ae8 3642 const struct pci_device_id *ent)
e89a2cfb
MR
3643{
3644 return dfx_register(&pdev->dev);
3645}
1da177e4 3646
c354dfc3 3647static void dfx_pci_unregister(struct pci_dev *pdev)
1da177e4 3648{
e89a2cfb
MR
3649 dfx_unregister(&pdev->dev);
3650}
3651#endif /* CONFIG_PCI */
3652
3653#ifdef CONFIG_EISA
3654static struct eisa_device_id dfx_eisa_table[] = {
3655 { "DEC3001", DEFEA_PROD_ID_1 },
3656 { "DEC3002", DEFEA_PROD_ID_2 },
3657 { "DEC3003", DEFEA_PROD_ID_3 },
3658 { "DEC3004", DEFEA_PROD_ID_4 },
3659 { }
3660};
3661MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3662
3663static struct eisa_driver dfx_eisa_driver = {
3664 .id_table = dfx_eisa_table,
3665 .driver = {
3666 .name = "defxx",
3667 .bus = &eisa_bus_type,
3668 .probe = dfx_dev_register,
c354dfc3 3669 .remove = dfx_dev_unregister,
e89a2cfb
MR
3670 },
3671};
3672#endif /* CONFIG_EISA */
3673
3674#ifdef CONFIG_TC
3675static struct tc_device_id const dfx_tc_table[] = {
3676 { "DEC ", "PMAF-FA " },
3677 { "DEC ", "PMAF-FD " },
3678 { "DEC ", "PMAF-FS " },
3679 { "DEC ", "PMAF-FU " },
3680 { }
3681};
3682MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3683
3684static struct tc_driver dfx_tc_driver = {
3685 .id_table = dfx_tc_table,
3686 .driver = {
3687 .name = "defxx",
3688 .bus = &tc_bus_type,
3689 .probe = dfx_dev_register,
c354dfc3 3690 .remove = dfx_dev_unregister,
e89a2cfb
MR
3691 },
3692};
3693#endif /* CONFIG_TC */
1da177e4 3694
c354dfc3 3695static int __maybe_unused dfx_dev_register(struct device *dev)
e89a2cfb
MR
3696{
3697 int status;
1da177e4 3698
e89a2cfb
MR
3699 status = dfx_register(dev);
3700 if (!status)
3701 get_device(dev);
3702 return status;
1da177e4
LT
3703}
3704
c354dfc3 3705static int __maybe_unused dfx_dev_unregister(struct device *dev)
1da177e4 3706{
e89a2cfb
MR
3707 put_device(dev);
3708 dfx_unregister(dev);
3709 return 0;
3710}
6aa20a22 3711
1da177e4 3712
c354dfc3 3713static int dfx_init(void)
e89a2cfb
MR
3714{
3715 int status;
3716
3717 status = pci_register_driver(&dfx_pci_driver);
3718 if (!status)
3719 status = eisa_driver_register(&dfx_eisa_driver);
3720 if (!status)
3721 status = tc_register_driver(&dfx_tc_driver);
3722 return status;
1da177e4
LT
3723}
3724
c354dfc3 3725static void dfx_cleanup(void)
1da177e4 3726{
e89a2cfb
MR
3727 tc_unregister_driver(&dfx_tc_driver);
3728 eisa_driver_unregister(&dfx_eisa_driver);
3729 pci_unregister_driver(&dfx_pci_driver);
6aa20a22 3730}
1da177e4
LT
3731
3732module_init(dfx_init);
3733module_exit(dfx_cleanup);
3734MODULE_AUTHOR("Lawrence V. Stefani");
e89a2cfb 3735MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
1da177e4
LT
3736 DRV_VERSION " " DRV_RELDATE);
3737MODULE_LICENSE("GPL");
This page took 1.01424 seconds and 5 git commands to generate.