pkt_sched: fq: Fair Queue packet scheduler
[deliverable/linux.git] / drivers / net / fddi / defxx.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
e89a2cfb
MR
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
1da177e4 15 *
e89a2cfb
MR
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
1da177e4
LT
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
feea1db2 196 * 14 Jun 2005 macro Use irqreturn_t.
b2e68aa3 197 * 23 Oct 2006 macro Big-endian host support.
e89a2cfb 198 * 14 Dec 2006 macro TURBOchannel support.
1da177e4
LT
199 */
200
201/* Include files */
e89a2cfb 202#include <linux/bitops.h>
fcdff139 203#include <linux/compiler.h>
1da177e4 204#include <linux/delay.h>
e89a2cfb
MR
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
1da177e4 209#include <linux/init.h>
e89a2cfb
MR
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
1da177e4 214#include <linux/netdevice.h>
e89a2cfb 215#include <linux/pci.h>
1da177e4 216#include <linux/skbuff.h>
e89a2cfb
MR
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
1da177e4
LT
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release! */
227#define DRV_NAME "defxx"
e89a2cfb
MR
228#define DRV_VERSION "v1.10"
229#define DRV_RELDATE "2006/12/14"
1da177e4 230
c354dfc3 231static char version[] =
1da177e4
LT
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
e89a2cfb
MR
244#ifdef CONFIG_PCI
245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246#else
247#define DFX_BUS_PCI(dev) 0
248#endif
249
250#ifdef CONFIG_EISA
251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252#else
253#define DFX_BUS_EISA(dev) 0
254#endif
255
256#ifdef CONFIG_TC
257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258#else
259#define DFX_BUS_TC(dev) 0
260#endif
261
262#ifdef CONFIG_DEFXX_MMIO
263#define DFX_MMIO 1
264#else
265#define DFX_MMIO 0
266#endif
267
1da177e4
LT
268/* Define module-wide (static) routines */
269
270static void dfx_bus_init(struct net_device *dev);
e89a2cfb 271static void dfx_bus_uninit(struct net_device *dev);
1da177e4
LT
272static void dfx_bus_config_check(DFX_board_t *bp);
273
e89a2cfb
MR
274static int dfx_driver_init(struct net_device *dev,
275 const char *print_name,
276 resource_size_t bar_start);
1da177e4
LT
277static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279static int dfx_open(struct net_device *dev);
280static int dfx_close(struct net_device *dev);
281
282static void dfx_int_pr_halt_id(DFX_board_t *bp);
283static void dfx_int_type_0_process(DFX_board_t *bp);
284static void dfx_int_common(struct net_device *dev);
7d12e780 285static irqreturn_t dfx_interrupt(int irq, void *dev_id);
1da177e4
LT
286
287static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288static void dfx_ctl_set_multicast_list(struct net_device *dev);
289static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290static int dfx_ctl_update_cam(DFX_board_t *bp);
291static int dfx_ctl_update_filters(DFX_board_t *bp);
292
293static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
294static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296static int dfx_hw_adap_state_rd(DFX_board_t *bp);
297static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300static void dfx_rcv_queue_process(DFX_board_t *bp);
301static void dfx_rcv_flush(DFX_board_t *bp);
302
61357325
SH
303static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
304 struct net_device *dev);
1da177e4
LT
305static int dfx_xmt_done(DFX_board_t *bp);
306static void dfx_xmt_flush(DFX_board_t *bp);
307
308/* Define module-wide (static) variables */
309
e89a2cfb
MR
310static struct pci_driver dfx_pci_driver;
311static struct eisa_driver dfx_eisa_driver;
312static struct tc_driver dfx_tc_driver;
1da177e4 313
6aa20a22 314
1da177e4
LT
315/*
316 * =======================
1da177e4
LT
317 * = dfx_port_write_long =
318 * = dfx_port_read_long =
319 * =======================
6aa20a22 320 *
1da177e4
LT
321 * Overview:
322 * Routines for reading and writing values from/to adapter
6aa20a22 323 *
1da177e4
LT
324 * Returns:
325 * None
6aa20a22 326 *
1da177e4 327 * Arguments:
e89a2cfb
MR
328 * bp - pointer to board information
329 * offset - register offset from base I/O address
330 * data - for dfx_port_write_long, this is a value to write;
331 * for dfx_port_read_long, this is a pointer to store
332 * the read value
1da177e4
LT
333 *
334 * Functional Description:
335 * These routines perform the correct operation to read or write
336 * the adapter register.
6aa20a22 337 *
1da177e4
LT
338 * EISA port block base addresses are based on the slot number in which the
339 * controller is installed. For example, if the EISA controller is installed
340 * in slot 4, the port block base address is 0x4000. If the controller is
341 * installed in slot 2, the port block base address is 0x2000, and so on.
342 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
343 * registers using the register offsets defined in DEFXX.H.
344 *
345 * PCI port block base addresses are assigned by the PCI BIOS or system
e89a2cfb 346 * firmware. There is one 128 byte port block which can be accessed. It
1da177e4
LT
347 * allows for I/O mapping of both PDQ and PFI registers using the register
348 * offsets defined in DEFXX.H.
349 *
350 * Return Codes:
351 * None
352 *
353 * Assumptions:
e89a2cfb 354 * bp->base is a valid base I/O address for this adapter.
1da177e4
LT
355 * offset is a valid register offset for this adapter.
356 *
357 * Side Effects:
358 * Rather than produce macros for these functions, these routines
359 * are defined using "inline" to ensure that the compiler will
360 * generate inline code and not waste a procedure call and return.
361 * This provides all the benefits of macros, but with the
362 * advantage of strict data type checking.
363 */
364
e89a2cfb
MR
365static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366{
367 writel(data, bp->base.mem + offset);
368 mb();
369}
1da177e4 370
e89a2cfb
MR
371static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372{
373 outl(data, bp->base.port + offset);
374}
1da177e4 375
e89a2cfb
MR
376static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377{
fcdff139 378 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
379 int dfx_bus_tc = DFX_BUS_TC(bdev);
380 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 381
e89a2cfb
MR
382 if (dfx_use_mmio)
383 dfx_writel(bp, offset, data);
384 else
385 dfx_outl(bp, offset, data);
386}
1da177e4 387
1da177e4 388
e89a2cfb
MR
389static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390{
391 mb();
392 *data = readl(bp->base.mem + offset);
393}
1da177e4 394
e89a2cfb
MR
395static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396{
397 *data = inl(bp->base.port + offset);
398}
1da177e4 399
e89a2cfb
MR
400static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401{
fcdff139 402 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
403 int dfx_bus_tc = DFX_BUS_TC(bdev);
404 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 405
e89a2cfb
MR
406 if (dfx_use_mmio)
407 dfx_readl(bp, offset, data);
408 else
409 dfx_inl(bp, offset, data);
410}
1da177e4 411
1da177e4 412
e89a2cfb
MR
413/*
414 * ================
415 * = dfx_get_bars =
416 * ================
417 *
418 * Overview:
419 * Retrieves the address range used to access control and status
420 * registers.
421 *
422 * Returns:
423 * None
424 *
425 * Arguments:
426 * bdev - pointer to device information
427 * bar_start - pointer to store the start address
428 * bar_len - pointer to store the length of the area
429 *
430 * Assumptions:
431 * I am sure there are some.
432 *
433 * Side Effects:
434 * None
435 */
436static void dfx_get_bars(struct device *bdev,
437 resource_size_t *bar_start, resource_size_t *bar_len)
438{
439 int dfx_bus_pci = DFX_BUS_PCI(bdev);
440 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441 int dfx_bus_tc = DFX_BUS_TC(bdev);
442 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 443
e89a2cfb
MR
444 if (dfx_bus_pci) {
445 int num = dfx_use_mmio ? 0 : 1;
1da177e4 446
e89a2cfb
MR
447 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
448 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
449 }
450 if (dfx_bus_eisa) {
451 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 resource_size_t bar;
453
454 if (dfx_use_mmio) {
455 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456 bar <<= 8;
457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458 bar <<= 8;
459 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460 bar <<= 16;
461 *bar_start = bar;
462 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463 bar <<= 8;
464 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465 bar <<= 8;
466 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467 bar <<= 16;
468 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469 } else {
470 *bar_start = base_addr;
471 *bar_len = PI_ESIC_K_CSR_IO_LEN;
472 }
473 }
474 if (dfx_bus_tc) {
475 *bar_start = to_tc_dev(bdev)->resource.start +
476 PI_TC_K_CSR_OFFSET;
477 *bar_len = PI_TC_K_CSR_LEN;
478 }
479}
6aa20a22 480
fd8f4997
SH
481static const struct net_device_ops dfx_netdev_ops = {
482 .ndo_open = dfx_open,
483 .ndo_stop = dfx_close,
484 .ndo_start_xmit = dfx_xmt_queue_pkt,
485 .ndo_get_stats = dfx_ctl_get_stats,
afc4b13d 486 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
fd8f4997
SH
487 .ndo_set_mac_address = dfx_ctl_set_mac_address,
488};
489
1da177e4 490/*
e89a2cfb
MR
491 * ================
492 * = dfx_register =
493 * ================
6aa20a22 494 *
1da177e4 495 * Overview:
e89a2cfb 496 * Initializes a supported FDDI controller
6aa20a22 497 *
1da177e4
LT
498 * Returns:
499 * Condition code
6aa20a22 500 *
1da177e4 501 * Arguments:
e89a2cfb 502 * bdev - pointer to device information
1da177e4
LT
503 *
504 * Functional Description:
505 *
506 * Return Codes:
507 * 0 - This device (fddi0, fddi1, etc) configured successfully
508 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
509 *
510 * Assumptions:
511 * It compiles so it should work :-( (PCI cards do :-)
512 *
513 * Side Effects:
514 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
515 * initialized and the board resources are read and stored in
516 * the device structure.
517 */
c354dfc3 518static int dfx_register(struct device *bdev)
1da177e4
LT
519{
520 static int version_disp;
e89a2cfb
MR
521 int dfx_bus_pci = DFX_BUS_PCI(bdev);
522 int dfx_bus_tc = DFX_BUS_TC(bdev);
523 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
fb28ad35 524 const char *print_name = dev_name(bdev);
1da177e4
LT
525 struct net_device *dev;
526 DFX_board_t *bp; /* board pointer */
e89a2cfb
MR
527 resource_size_t bar_start = 0; /* pointer to port */
528 resource_size_t bar_len = 0; /* resource length */
1da177e4 529 int alloc_size; /* total buffer size used */
e89a2cfb
MR
530 struct resource *region;
531 int err = 0;
1da177e4
LT
532
533 if (!version_disp) { /* display version info if adapter is found */
534 version_disp = 1; /* set display flag to TRUE so that */
535 printk(version); /* we only display this string ONCE */
536 }
537
1da177e4
LT
538 dev = alloc_fddidev(sizeof(*bp));
539 if (!dev) {
e89a2cfb 540 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
1da177e4
LT
541 print_name);
542 return -ENOMEM;
543 }
544
545 /* Enable PCI device. */
e89a2cfb
MR
546 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
547 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
548 print_name);
549 goto err_out;
1da177e4
LT
550 }
551
e89a2cfb
MR
552 SET_NETDEV_DEV(dev, bdev);
553
554 bp = netdev_priv(dev);
555 bp->bus_dev = bdev;
556 dev_set_drvdata(bdev, dev);
1da177e4 557
e89a2cfb 558 dfx_get_bars(bdev, &bar_start, &bar_len);
1da177e4 559
e89a2cfb
MR
560 if (dfx_use_mmio)
561 region = request_mem_region(bar_start, bar_len, print_name);
562 else
563 region = request_region(bar_start, bar_len, print_name);
564 if (!region) {
1da177e4 565 printk(KERN_ERR "%s: Cannot reserve I/O resource "
e89a2cfb
MR
566 "0x%lx @ 0x%lx, aborting\n",
567 print_name, (long)bar_len, (long)bar_start);
1da177e4 568 err = -EBUSY;
e89a2cfb 569 goto err_out_disable;
1da177e4
LT
570 }
571
e89a2cfb
MR
572 /* Set up I/O base address. */
573 if (dfx_use_mmio) {
574 bp->base.mem = ioremap_nocache(bar_start, bar_len);
575 if (!bp->base.mem) {
576 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
8a323526 577 err = -ENOMEM;
e89a2cfb
MR
578 goto err_out_region;
579 }
580 } else {
581 bp->base.port = bar_start;
582 dev->base_addr = bar_start;
583 }
1da177e4 584
e89a2cfb 585 /* Initialize new device structure */
fd8f4997 586 dev->netdev_ops = &dfx_netdev_ops;
1da177e4 587
e89a2cfb
MR
588 if (dfx_bus_pci)
589 pci_set_master(to_pci_dev(bdev));
1da177e4 590
e89a2cfb 591 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
1da177e4 592 err = -ENODEV;
e89a2cfb 593 goto err_out_unmap;
1da177e4
LT
594 }
595
596 err = register_netdev(dev);
597 if (err)
598 goto err_out_kfree;
599
600 printk("%s: registered as %s\n", print_name, dev->name);
601 return 0;
602
603err_out_kfree:
604 alloc_size = sizeof(PI_DESCR_BLOCK) +
605 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
606#ifndef DYNAMIC_BUFFERS
607 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608#endif
609 sizeof(PI_CONSUMER_BLOCK) +
610 (PI_ALIGN_K_DESC_BLK - 1);
611 if (bp->kmalloced)
e89a2cfb
MR
612 dma_free_coherent(bdev, alloc_size,
613 bp->kmalloced, bp->kmalloced_dma);
614
615err_out_unmap:
616 if (dfx_use_mmio)
617 iounmap(bp->base.mem);
618
1da177e4 619err_out_region:
e89a2cfb
MR
620 if (dfx_use_mmio)
621 release_mem_region(bar_start, bar_len);
622 else
623 release_region(bar_start, bar_len);
624
625err_out_disable:
626 if (dfx_bus_pci)
627 pci_disable_device(to_pci_dev(bdev));
628
1da177e4
LT
629err_out:
630 free_netdev(dev);
631 return err;
632}
633
6aa20a22 634
1da177e4
LT
635/*
636 * ================
637 * = dfx_bus_init =
638 * ================
6aa20a22 639 *
1da177e4 640 * Overview:
e89a2cfb 641 * Initializes the bus-specific controller logic.
6aa20a22 642 *
1da177e4
LT
643 * Returns:
644 * None
6aa20a22 645 *
1da177e4
LT
646 * Arguments:
647 * dev - pointer to device information
648 *
649 * Functional Description:
650 * Determine and save adapter IRQ in device table,
651 * then perform bus-specific logic initialization.
652 *
653 * Return Codes:
654 * None
655 *
656 * Assumptions:
e89a2cfb 657 * bp->base has already been set with the proper
1da177e4
LT
658 * base I/O address for this device.
659 *
660 * Side Effects:
661 * Interrupts are enabled at the adapter bus-specific logic.
662 * Note: Interrupts at the DMA engine (PDQ chip) are not
663 * enabled yet.
664 */
665
c354dfc3 666static void dfx_bus_init(struct net_device *dev)
1da177e4 667{
e89a2cfb
MR
668 DFX_board_t *bp = netdev_priv(dev);
669 struct device *bdev = bp->bus_dev;
670 int dfx_bus_pci = DFX_BUS_PCI(bdev);
671 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
672 int dfx_bus_tc = DFX_BUS_TC(bdev);
673 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
674 u8 val;
1da177e4
LT
675
676 DBG_printk("In dfx_bus_init...\n");
677
e89a2cfb 678 /* Initialize a pointer back to the net_device struct */
1da177e4
LT
679 bp->dev = dev;
680
681 /* Initialize adapter based on bus type */
682
e89a2cfb
MR
683 if (dfx_bus_tc)
684 dev->irq = to_tc_dev(bdev)->interrupt;
685 if (dfx_bus_eisa) {
686 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1da177e4 687
e89a2cfb
MR
688 /* Get the interrupt level from the ESIC chip. */
689 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
690 val &= PI_CONFIG_STAT_0_M_IRQ;
691 val >>= PI_CONFIG_STAT_0_V_IRQ;
1da177e4 692
e89a2cfb
MR
693 switch (val) {
694 case PI_CONFIG_STAT_0_IRQ_K_9:
695 dev->irq = 9;
696 break;
1da177e4 697
e89a2cfb
MR
698 case PI_CONFIG_STAT_0_IRQ_K_10:
699 dev->irq = 10;
700 break;
1da177e4 701
e89a2cfb
MR
702 case PI_CONFIG_STAT_0_IRQ_K_11:
703 dev->irq = 11;
704 break;
1da177e4 705
e89a2cfb
MR
706 case PI_CONFIG_STAT_0_IRQ_K_15:
707 dev->irq = 15;
708 break;
709 }
1da177e4 710
e89a2cfb
MR
711 /*
712 * Enable memory decoding (MEMCS0) and/or port decoding
713 * (IOCS1/IOCS0) as appropriate in Function Control
714 * Register. One of the port chip selects seems to be
715 * used for the Burst Holdoff register, but this bit of
716 * documentation is missing and as yet it has not been
717 * determined which of the two. This is also the reason
718 * the size of the decoded port range is twice as large
719 * as one required by the PDQ.
720 */
1da177e4 721
e89a2cfb
MR
722 /* Set the decode range of the board. */
723 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
725 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
726 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
727 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
728 val = PI_ESIC_K_CSR_IO_LEN - 1;
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
730 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
731 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
732 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733
734 /* Enable the decoders. */
735 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736 if (dfx_use_mmio)
737 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
738 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
1da177e4
LT
739
740 /*
e89a2cfb
MR
741 * Enable access to the rest of the module
742 * (including PDQ and packet memory).
1da177e4 743 */
e89a2cfb
MR
744 val = PI_SLOT_CNTRL_M_ENB;
745 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
1da177e4 746
e89a2cfb
MR
747 /*
748 * Map PDQ registers into memory or port space. This is
749 * done with a bit in the Burst Holdoff register.
750 */
751 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752 if (dfx_use_mmio)
753 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754 else
755 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
756 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
1da177e4
LT
757
758 /* Enable interrupts at EISA bus interface chip (ESIC) */
e89a2cfb
MR
759 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
760 val |= PI_CONFIG_STAT_0_M_INT_ENB;
761 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
762 }
763 if (dfx_bus_pci) {
764 struct pci_dev *pdev = to_pci_dev(bdev);
1da177e4
LT
765
766 /* Get the interrupt level from the PCI Configuration Table */
767
768 dev->irq = pdev->irq;
769
770 /* Check Latency Timer and set if less than minimal */
771
772 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
e89a2cfb 773 if (val < PFI_K_LAT_TIMER_MIN) {
1da177e4
LT
774 val = PFI_K_LAT_TIMER_DEF;
775 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
e89a2cfb 776 }
1da177e4
LT
777
778 /* Enable interrupts at PCI bus interface chip (PFI) */
e89a2cfb
MR
779 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
780 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
781 }
782}
1da177e4 783
e89a2cfb
MR
784/*
785 * ==================
786 * = dfx_bus_uninit =
787 * ==================
788 *
789 * Overview:
790 * Uninitializes the bus-specific controller logic.
791 *
792 * Returns:
793 * None
794 *
795 * Arguments:
796 * dev - pointer to device information
797 *
798 * Functional Description:
799 * Perform bus-specific logic uninitialization.
800 *
801 * Return Codes:
802 * None
803 *
804 * Assumptions:
805 * bp->base has already been set with the proper
806 * base I/O address for this device.
807 *
808 * Side Effects:
809 * Interrupts are disabled at the adapter bus-specific logic.
810 */
811
c354dfc3 812static void dfx_bus_uninit(struct net_device *dev)
e89a2cfb
MR
813{
814 DFX_board_t *bp = netdev_priv(dev);
815 struct device *bdev = bp->bus_dev;
816 int dfx_bus_pci = DFX_BUS_PCI(bdev);
817 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
818 u8 val;
819
820 DBG_printk("In dfx_bus_uninit...\n");
821
822 /* Uninitialize adapter based on bus type */
823
824 if (dfx_bus_eisa) {
825 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826
827 /* Disable interrupts at EISA bus interface chip (ESIC) */
828 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
829 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
830 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
831 }
832 if (dfx_bus_pci) {
833 /* Disable interrupts at PCI bus interface chip (PFI) */
834 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
1da177e4 835 }
e89a2cfb 836}
1da177e4 837
6aa20a22 838
1da177e4
LT
839/*
840 * ========================
841 * = dfx_bus_config_check =
842 * ========================
6aa20a22 843 *
1da177e4
LT
844 * Overview:
845 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
846 * are illegal, then this routine will set new defaults.
6aa20a22 847 *
1da177e4
LT
848 * Returns:
849 * None
6aa20a22 850 *
1da177e4
LT
851 * Arguments:
852 * bp - pointer to board information
853 *
854 * Functional Description:
855 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
856 * PDQ, and all FDDI PCI controllers, all values are legal.
857 *
858 * Return Codes:
859 * None
860 *
861 * Assumptions:
862 * dfx_adap_init has NOT been called yet so burst size and other items have
863 * not been set.
864 *
865 * Side Effects:
866 * None
867 */
868
c354dfc3 869static void dfx_bus_config_check(DFX_board_t *bp)
1da177e4 870{
fcdff139 871 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb 872 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1da177e4 873 int status; /* return code from adapter port control call */
1da177e4
LT
874 u32 host_data; /* LW data returned from port control call */
875
876 DBG_printk("In dfx_bus_config_check...\n");
877
878 /* Configuration check only valid for EISA adapter */
879
e89a2cfb 880 if (dfx_bus_eisa) {
1da177e4
LT
881 /*
882 * First check if revision 2 EISA controller. Rev. 1 cards used
883 * PDQ revision B, so no workaround needed in this case. Rev. 3
884 * cards used PDQ revision E, so no workaround needed in this
885 * case, either. Only Rev. 2 cards used either Rev. D or E
886 * chips, so we must verify the chip revision on Rev. 2 cards.
887 */
e89a2cfb 888 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
1da177e4 889 /*
e89a2cfb
MR
890 * Revision 2 FDDI EISA controller found,
891 * so let's check PDQ revision of adapter.
1da177e4 892 */
1da177e4
LT
893 status = dfx_hw_port_ctrl_req(bp,
894 PI_PCTRL_M_SUB_CMD,
895 PI_SUB_CMD_K_PDQ_REV_GET,
896 0,
897 &host_data);
898 if ((status != DFX_K_SUCCESS) || (host_data == 2))
899 {
900 /*
901 * Either we couldn't determine the PDQ revision, or
902 * we determined that it is at revision D. In either case,
903 * we need to implement the workaround.
904 */
905
906 /* Ensure that the burst size is set to 8 longwords or less */
907
908 switch (bp->burst_size)
909 {
910 case PI_PDATA_B_DMA_BURST_SIZE_32:
911 case PI_PDATA_B_DMA_BURST_SIZE_16:
912 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
913 break;
914
915 default:
916 break;
917 }
918
919 /* Ensure that full-duplex mode is not enabled */
920
921 bp->full_duplex_enb = PI_SNMP_K_FALSE;
922 }
923 }
924 }
925 }
926
6aa20a22 927
1da177e4
LT
928/*
929 * ===================
930 * = dfx_driver_init =
931 * ===================
6aa20a22 932 *
1da177e4
LT
933 * Overview:
934 * Initializes remaining adapter board structure information
935 * and makes sure adapter is in a safe state prior to dfx_open().
6aa20a22 936 *
1da177e4
LT
937 * Returns:
938 * Condition code
6aa20a22 939 *
1da177e4
LT
940 * Arguments:
941 * dev - pointer to device information
942 * print_name - printable device name
943 *
944 * Functional Description:
945 * This function allocates additional resources such as the host memory
946 * blocks needed by the adapter (eg. descriptor and consumer blocks).
947 * Remaining bus initialization steps are also completed. The adapter
948 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
949 * must call dfx_open() to open the adapter and bring it on-line.
950 *
951 * Return Codes:
952 * DFX_K_SUCCESS - initialization succeeded
953 * DFX_K_FAILURE - initialization failed - could not allocate memory
954 * or read adapter MAC address
955 *
956 * Assumptions:
957 * Memory allocated from pci_alloc_consistent() call is physically
958 * contiguous, locked memory.
959 *
960 * Side Effects:
961 * Adapter is reset and should be in DMA_UNAVAILABLE state before
962 * returning from this routine.
963 */
964
1dd06ae8
GKH
965static int dfx_driver_init(struct net_device *dev, const char *print_name,
966 resource_size_t bar_start)
1da177e4 967{
e89a2cfb
MR
968 DFX_board_t *bp = netdev_priv(dev);
969 struct device *bdev = bp->bus_dev;
970 int dfx_bus_pci = DFX_BUS_PCI(bdev);
971 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
972 int dfx_bus_tc = DFX_BUS_TC(bdev);
973 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
974 int alloc_size; /* total buffer size needed */
975 char *top_v, *curr_v; /* virtual addrs into memory block */
976 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
eca1ad82
AV
977 u32 data; /* host data register value */
978 __le32 le32;
e89a2cfb 979 char *board_name = NULL;
1da177e4
LT
980
981 DBG_printk("In dfx_driver_init...\n");
982
983 /* Initialize bus-specific hardware registers */
984
985 dfx_bus_init(dev);
986
987 /*
988 * Initialize default values for configurable parameters
989 *
990 * Note: All of these parameters are ones that a user may
991 * want to customize. It'd be nice to break these
992 * out into Space.c or someplace else that's more
993 * accessible/understandable than this file.
994 */
995
996 bp->full_duplex_enb = PI_SNMP_K_FALSE;
997 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
998 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
999 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
1000
1001 /*
1002 * Ensure that HW configuration is OK
1003 *
1004 * Note: Depending on the hardware revision, we may need to modify
1005 * some of the configurable parameters to workaround hardware
1006 * limitations. We'll perform this configuration check AFTER
1007 * setting the parameters to their default values.
1008 */
1009
1010 dfx_bus_config_check(bp);
1011
1012 /* Disable PDQ interrupts first */
1013
1014 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1015
1016 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1017
1018 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1019
1020 /* Read the factory MAC address from the adapter then save it */
1021
1022 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023 &data) != DFX_K_SUCCESS) {
1024 printk("%s: Could not read adapter factory MAC address!\n",
1025 print_name);
807540ba 1026 return DFX_K_FAILURE;
1da177e4 1027 }
e89a2cfb
MR
1028 le32 = cpu_to_le32(data);
1029 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1da177e4
LT
1030
1031 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032 &data) != DFX_K_SUCCESS) {
1033 printk("%s: Could not read adapter factory MAC address!\n",
1034 print_name);
807540ba 1035 return DFX_K_FAILURE;
1da177e4 1036 }
e89a2cfb
MR
1037 le32 = cpu_to_le32(data);
1038 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1da177e4
LT
1039
1040 /*
1041 * Set current address to factory address
1042 *
1043 * Note: Node address override support is handled through
1044 * dfx_ctl_set_mac_address.
1045 */
1046
1047 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
e89a2cfb
MR
1048 if (dfx_bus_tc)
1049 board_name = "DEFTA";
1050 if (dfx_bus_eisa)
1051 board_name = "DEFEA";
1052 if (dfx_bus_pci)
1053 board_name = "DEFPA";
69d279ea 1054 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
e89a2cfb 1055 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
69d279ea 1056 (long long)bar_start, dev->irq, dev->dev_addr);
1da177e4
LT
1057
1058 /*
1059 * Get memory for descriptor block, consumer block, and other buffers
1060 * that need to be DMA read or written to by the adapter.
1061 */
1062
1063 alloc_size = sizeof(PI_DESCR_BLOCK) +
1064 PI_CMD_REQ_K_SIZE_MAX +
1065 PI_CMD_RSP_K_SIZE_MAX +
1066#ifndef DYNAMIC_BUFFERS
1067 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068#endif
1069 sizeof(PI_CONSUMER_BLOCK) +
1070 (PI_ALIGN_K_DESC_BLK - 1);
e89a2cfb
MR
1071 bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072 &bp->kmalloced_dma,
1f9061d2 1073 GFP_ATOMIC | __GFP_ZERO);
d0320f75 1074 if (top_v == NULL)
807540ba 1075 return DFX_K_FAILURE;
d0320f75 1076
1da177e4
LT
1077 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1078
1079 /*
1080 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1081 * plus the amount of memory needed was allocated. The physical address
1082 * is now 8K aligned. By carving up the memory in a specific order,
1083 * we'll guarantee the alignment requirements for all other structures.
1084 *
1085 * Note: If the assumptions change regarding the non-paged, non-cached,
1086 * physically contiguous nature of the memory block or the address
1087 * alignments, then we'll need to implement a different algorithm
1088 * for allocating the needed memory.
1089 */
1090
1091 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1092 curr_v = top_v + (curr_p - top_p);
1093
1094 /* Reserve space for descriptor block */
1095
1096 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1097 bp->descr_block_phys = curr_p;
1098 curr_v += sizeof(PI_DESCR_BLOCK);
1099 curr_p += sizeof(PI_DESCR_BLOCK);
1100
1101 /* Reserve space for command request buffer */
1102
1103 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1104 bp->cmd_req_phys = curr_p;
1105 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1106 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1107
1108 /* Reserve space for command response buffer */
1109
1110 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1111 bp->cmd_rsp_phys = curr_p;
1112 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1113 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1114
1115 /* Reserve space for the LLC host receive queue buffers */
1116
1117 bp->rcv_block_virt = curr_v;
1118 bp->rcv_block_phys = curr_p;
1119
1120#ifndef DYNAMIC_BUFFERS
1121 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1122 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1123#endif
1124
1125 /* Reserve space for the consumer block */
1126
1127 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1128 bp->cons_block_phys = curr_p;
1129
1130 /* Display virtual and physical addresses if debug driver */
1131
1132 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1133 print_name,
1134 (long)bp->descr_block_virt, bp->descr_block_phys);
1135 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1136 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1137 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1138 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1139 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1140 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1141 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1142 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1143
807540ba 1144 return DFX_K_SUCCESS;
1da177e4
LT
1145}
1146
6aa20a22 1147
1da177e4
LT
1148/*
1149 * =================
1150 * = dfx_adap_init =
1151 * =================
6aa20a22 1152 *
1da177e4
LT
1153 * Overview:
1154 * Brings the adapter to the link avail/link unavailable state.
6aa20a22 1155 *
1da177e4
LT
1156 * Returns:
1157 * Condition code
6aa20a22 1158 *
1da177e4
LT
1159 * Arguments:
1160 * bp - pointer to board information
1161 * get_buffers - non-zero if buffers to be allocated
1162 *
1163 * Functional Description:
1164 * Issues the low-level firmware/hardware calls necessary to bring
1165 * the adapter up, or to properly reset and restore adapter during
1166 * run-time.
1167 *
1168 * Return Codes:
1169 * DFX_K_SUCCESS - Adapter brought up successfully
1170 * DFX_K_FAILURE - Adapter initialization failed
1171 *
1172 * Assumptions:
1173 * bp->reset_type should be set to a valid reset type value before
1174 * calling this routine.
1175 *
1176 * Side Effects:
1177 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1178 * upon a successful return of this routine.
1179 */
1180
1181static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1182 {
1183 DBG_printk("In dfx_adap_init...\n");
1184
1185 /* Disable PDQ interrupts first */
1186
1187 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1188
1189 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1190
1191 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1192 {
1193 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
807540ba 1194 return DFX_K_FAILURE;
1da177e4
LT
1195 }
1196
1197 /*
1198 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1199 * so we'll acknowledge all Type 0 interrupts now before continuing.
1200 */
1201
1202 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1203
1204 /*
1205 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1206 *
1207 * Note: We only need to clear host copies of these registers. The PDQ reset
1208 * takes care of the on-board register values.
1209 */
1210
1211 bp->cmd_req_reg.lword = 0;
1212 bp->cmd_rsp_reg.lword = 0;
1213 bp->rcv_xmt_reg.lword = 0;
1214
1215 /* Clear consumer block before going to DMA_AVAILABLE state */
1216
1217 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1218
1219 /* Initialize the DMA Burst Size */
1220
1221 if (dfx_hw_port_ctrl_req(bp,
1222 PI_PCTRL_M_SUB_CMD,
1223 PI_SUB_CMD_K_BURST_SIZE_SET,
1224 bp->burst_size,
1225 NULL) != DFX_K_SUCCESS)
1226 {
1227 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
807540ba 1228 return DFX_K_FAILURE;
1da177e4
LT
1229 }
1230
1231 /*
1232 * Set base address of Consumer Block
1233 *
1234 * Assumption: 32-bit physical address of consumer block is 64 byte
1235 * aligned. That is, bits 0-5 of the address must be zero.
1236 */
1237
1238 if (dfx_hw_port_ctrl_req(bp,
1239 PI_PCTRL_M_CONS_BLOCK,
1240 bp->cons_block_phys,
1241 0,
1242 NULL) != DFX_K_SUCCESS)
1243 {
1244 printk("%s: Could not set consumer block address!\n", bp->dev->name);
807540ba 1245 return DFX_K_FAILURE;
1da177e4
LT
1246 }
1247
1248 /*
b2e68aa3
MR
1249 * Set the base address of Descriptor Block and bring adapter
1250 * to DMA_AVAILABLE state.
1da177e4 1251 *
b2e68aa3
MR
1252 * Note: We also set the literal and data swapping requirements
1253 * in this command.
1da177e4 1254 *
b2e68aa3
MR
1255 * Assumption: 32-bit physical address of descriptor block
1256 * is 8Kbyte aligned.
1da177e4 1257 */
b2e68aa3
MR
1258 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1259 (u32)(bp->descr_block_phys |
1260 PI_PDATA_A_INIT_M_BSWAP_INIT),
1261 0, NULL) != DFX_K_SUCCESS) {
1262 printk("%s: Could not set descriptor block address!\n",
1263 bp->dev->name);
1264 return DFX_K_FAILURE;
1265 }
1da177e4
LT
1266
1267 /* Set transmit flush timeout value */
1268
1269 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1270 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1271 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1272 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1273 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1274 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1275 {
1276 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1277 return DFX_K_FAILURE;
1da177e4
LT
1278 }
1279
1280 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1281
1282 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1283 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1284 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1285 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1286 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1287 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1288 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1289 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1290 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1291 {
1292 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1293 return DFX_K_FAILURE;
1da177e4
LT
1294 }
1295
1296 /* Initialize adapter CAM */
1297
1298 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1299 {
1300 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
807540ba 1301 return DFX_K_FAILURE;
1da177e4
LT
1302 }
1303
1304 /* Initialize adapter filters */
1305
1306 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1307 {
1308 printk("%s: Adapter filters update failed!\n", bp->dev->name);
807540ba 1309 return DFX_K_FAILURE;
1da177e4
LT
1310 }
1311
1312 /*
1313 * Remove any existing dynamic buffers (i.e. if the adapter is being
1314 * reinitialized)
1315 */
1316
1317 if (get_buffers)
1318 dfx_rcv_flush(bp);
1319
1320 /* Initialize receive descriptor block and produce buffers */
1321
1322 if (dfx_rcv_init(bp, get_buffers))
1323 {
1324 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1325 if (get_buffers)
1326 dfx_rcv_flush(bp);
807540ba 1327 return DFX_K_FAILURE;
1da177e4
LT
1328 }
1329
1330 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1331
1332 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1333 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1334 {
1335 printk("%s: Start command failed\n", bp->dev->name);
1336 if (get_buffers)
1337 dfx_rcv_flush(bp);
807540ba 1338 return DFX_K_FAILURE;
1da177e4
LT
1339 }
1340
1341 /* Initialization succeeded, reenable PDQ interrupts */
1342
1343 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
807540ba 1344 return DFX_K_SUCCESS;
1da177e4
LT
1345 }
1346
6aa20a22 1347
1da177e4
LT
1348/*
1349 * ============
1350 * = dfx_open =
1351 * ============
6aa20a22 1352 *
1da177e4
LT
1353 * Overview:
1354 * Opens the adapter
6aa20a22 1355 *
1da177e4
LT
1356 * Returns:
1357 * Condition code
6aa20a22 1358 *
1da177e4
LT
1359 * Arguments:
1360 * dev - pointer to device information
1361 *
1362 * Functional Description:
1363 * This function brings the adapter to an operational state.
1364 *
1365 * Return Codes:
1366 * 0 - Adapter was successfully opened
1367 * -EAGAIN - Could not register IRQ or adapter initialization failed
1368 *
1369 * Assumptions:
1370 * This routine should only be called for a device that was
1371 * initialized successfully.
1372 *
1373 * Side Effects:
1374 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1375 * if the open is successful.
1376 */
1377
1378static int dfx_open(struct net_device *dev)
1379{
e89a2cfb 1380 DFX_board_t *bp = netdev_priv(dev);
1da177e4 1381 int ret;
1da177e4
LT
1382
1383 DBG_printk("In dfx_open...\n");
6aa20a22 1384
1da177e4
LT
1385 /* Register IRQ - support shared interrupts by passing device ptr */
1386
e89a2cfb
MR
1387 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1388 dev);
1da177e4
LT
1389 if (ret) {
1390 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1391 return ret;
1392 }
1393
1394 /*
1395 * Set current address to factory MAC address
1396 *
1397 * Note: We've already done this step in dfx_driver_init.
1398 * However, it's possible that a user has set a node
1399 * address override, then closed and reopened the
1400 * adapter. Unless we reset the device address field
1401 * now, we'll continue to use the existing modified
1402 * address.
1403 */
1404
1405 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1406
1407 /* Clear local unicast/multicast address tables and counts */
1408
1409 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1410 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1411 bp->uc_count = 0;
1412 bp->mc_count = 0;
1413
1414 /* Disable promiscuous filter settings */
1415
1416 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1417 bp->group_prom = PI_FSTATE_K_BLOCK;
1418
1419 spin_lock_init(&bp->lock);
1420
1421 /* Reset and initialize adapter */
1422
1423 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1424 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1425 {
1426 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1427 free_irq(dev->irq, dev);
1428 return -EAGAIN;
1429 }
1430
1431 /* Set device structure info */
1432 netif_start_queue(dev);
807540ba 1433 return 0;
1da177e4
LT
1434}
1435
6aa20a22 1436
1da177e4
LT
1437/*
1438 * =============
1439 * = dfx_close =
1440 * =============
6aa20a22 1441 *
1da177e4
LT
1442 * Overview:
1443 * Closes the device/module.
6aa20a22 1444 *
1da177e4
LT
1445 * Returns:
1446 * Condition code
6aa20a22 1447 *
1da177e4
LT
1448 * Arguments:
1449 * dev - pointer to device information
1450 *
1451 * Functional Description:
1452 * This routine closes the adapter and brings it to a safe state.
1453 * The interrupt service routine is deregistered with the OS.
1454 * The adapter can be opened again with another call to dfx_open().
1455 *
1456 * Return Codes:
1457 * Always return 0.
1458 *
1459 * Assumptions:
1460 * No further requests for this adapter are made after this routine is
1461 * called. dfx_open() can be called to reset and reinitialize the
1462 * adapter.
1463 *
1464 * Side Effects:
1465 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1466 * routine.
1467 */
1468
1469static int dfx_close(struct net_device *dev)
1470{
e89a2cfb 1471 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1472
1473 DBG_printk("In dfx_close...\n");
1474
1475 /* Disable PDQ interrupts first */
1476
1477 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1478
1479 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1480
1481 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1482
1483 /*
1484 * Flush any pending transmit buffers
1485 *
1486 * Note: It's important that we flush the transmit buffers
1487 * BEFORE we clear our copy of the Type 2 register.
1488 * Otherwise, we'll have no idea how many buffers
1489 * we need to free.
1490 */
1491
1492 dfx_xmt_flush(bp);
1493
1494 /*
1495 * Clear Type 1 and Type 2 registers after adapter reset
1496 *
1497 * Note: Even though we're closing the adapter, it's
1498 * possible that an interrupt will occur after
1499 * dfx_close is called. Without some assurance to
1500 * the contrary we want to make sure that we don't
1501 * process receive and transmit LLC frames and update
1502 * the Type 2 register with bad information.
1503 */
1504
1505 bp->cmd_req_reg.lword = 0;
1506 bp->cmd_rsp_reg.lword = 0;
1507 bp->rcv_xmt_reg.lword = 0;
1508
1509 /* Clear consumer block for the same reason given above */
1510
1511 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1512
1513 /* Release all dynamically allocate skb in the receive ring. */
1514
1515 dfx_rcv_flush(bp);
1516
1517 /* Clear device structure flags */
1518
1519 netif_stop_queue(dev);
6aa20a22 1520
1da177e4
LT
1521 /* Deregister (free) IRQ */
1522
1523 free_irq(dev->irq, dev);
6aa20a22 1524
807540ba 1525 return 0;
1da177e4
LT
1526}
1527
6aa20a22 1528
1da177e4
LT
1529/*
1530 * ======================
1531 * = dfx_int_pr_halt_id =
1532 * ======================
6aa20a22 1533 *
1da177e4
LT
1534 * Overview:
1535 * Displays halt id's in string form.
6aa20a22 1536 *
1da177e4
LT
1537 * Returns:
1538 * None
6aa20a22 1539 *
1da177e4
LT
1540 * Arguments:
1541 * bp - pointer to board information
1542 *
1543 * Functional Description:
1544 * Determine current halt id and display appropriate string.
1545 *
1546 * Return Codes:
1547 * None
1548 *
1549 * Assumptions:
1550 * None
1551 *
1552 * Side Effects:
1553 * None
1554 */
1555
1556static void dfx_int_pr_halt_id(DFX_board_t *bp)
1557 {
1558 PI_UINT32 port_status; /* PDQ port status register value */
1559 PI_UINT32 halt_id; /* PDQ port status halt ID */
1560
1561 /* Read the latest port status */
1562
1563 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1564
1565 /* Display halt state transition information */
1566
1567 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1568 switch (halt_id)
1569 {
1570 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1571 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1572 break;
1573
1574 case PI_HALT_ID_K_PARITY_ERROR:
1575 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1576 break;
1577
1578 case PI_HALT_ID_K_HOST_DIR_HALT:
1579 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1580 break;
1581
1582 case PI_HALT_ID_K_SW_FAULT:
1583 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1584 break;
1585
1586 case PI_HALT_ID_K_HW_FAULT:
1587 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1588 break;
1589
1590 case PI_HALT_ID_K_PC_TRACE:
1591 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1592 break;
1593
1594 case PI_HALT_ID_K_DMA_ERROR:
1595 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1596 break;
1597
1598 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1599 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1600 break;
1601
1602 case PI_HALT_ID_K_BUS_EXCEPTION:
1603 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1604 break;
1605
1606 default:
1607 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1608 break;
1609 }
1610 }
1611
6aa20a22 1612
1da177e4
LT
1613/*
1614 * ==========================
1615 * = dfx_int_type_0_process =
1616 * ==========================
6aa20a22 1617 *
1da177e4
LT
1618 * Overview:
1619 * Processes Type 0 interrupts.
6aa20a22 1620 *
1da177e4
LT
1621 * Returns:
1622 * None
6aa20a22 1623 *
1da177e4
LT
1624 * Arguments:
1625 * bp - pointer to board information
1626 *
1627 * Functional Description:
1628 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1629 * is a serious fault on the adapter, then an error message is displayed
1630 * and the adapter is reset.
1631 *
1632 * One tricky potential timing window is the rapid succession of "link avail"
1633 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1634 * interrupt must be done before reading the state from the Port Status
1635 * register. This is true because a state change could occur after reading
1636 * the data, but before acknowledging the interrupt. If this state change
1637 * does happen, it would be lost because the driver is using the old state,
1638 * and it will never know about the new state because it subsequently
1639 * acknowledges the state change interrupt.
1640 *
1641 * INCORRECT CORRECT
1642 * read type 0 int reasons read type 0 int reasons
1643 * read adapter state ack type 0 interrupts
1644 * ack type 0 interrupts read adapter state
1645 * ... process interrupt ... ... process interrupt ...
1646 *
1647 * Return Codes:
1648 * None
1649 *
1650 * Assumptions:
1651 * None
1652 *
1653 * Side Effects:
1654 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1655 * or if the port status indicates that the adapter is halted. The driver
1656 * is responsible for reinitializing the adapter with the current CAM
1657 * contents and adapter filter settings.
1658 */
1659
1660static void dfx_int_type_0_process(DFX_board_t *bp)
1661
1662 {
1663 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1664 PI_UINT32 state; /* current adap state (from port status) */
1665
1666 /*
1667 * Read host interrupt Type 0 register to determine which Type 0
1668 * interrupts are pending. Immediately write it back out to clear
1669 * those interrupts.
1670 */
1671
1672 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1673 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1674
1675 /* Check for Type 0 error interrupts */
1676
1677 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1678 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1679 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1680 {
1681 /* Check for Non-Existent Memory error */
1682
1683 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1684 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1685
1686 /* Check for Packet Memory Parity error */
1687
1688 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1689 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1690
1691 /* Check for Host Bus Parity error */
1692
1693 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1694 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1695
1696 /* Reset adapter and bring it back on-line */
1697
1698 bp->link_available = PI_K_FALSE; /* link is no longer available */
1699 bp->reset_type = 0; /* rerun on-board diagnostics */
1700 printk("%s: Resetting adapter...\n", bp->dev->name);
1701 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1702 {
1703 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1704 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1705 return;
1706 }
1707 printk("%s: Adapter reset successful!\n", bp->dev->name);
1708 return;
1709 }
1710
1711 /* Check for transmit flush interrupt */
1712
1713 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1714 {
1715 /* Flush any pending xmt's and acknowledge the flush interrupt */
1716
1717 bp->link_available = PI_K_FALSE; /* link is no longer available */
1718 dfx_xmt_flush(bp); /* flush any outstanding packets */
1719 (void) dfx_hw_port_ctrl_req(bp,
1720 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1721 0,
1722 0,
1723 NULL);
1724 }
1725
1726 /* Check for adapter state change */
1727
1728 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
6aa20a22 1729 {
1da177e4
LT
1730 /* Get latest adapter state */
1731
1732 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1733 if (state == PI_STATE_K_HALTED)
1734 {
1735 /*
1736 * Adapter has transitioned to HALTED state, try to reset
1737 * adapter to bring it back on-line. If reset fails,
1738 * leave the adapter in the broken state.
1739 */
1740
1741 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1742 dfx_int_pr_halt_id(bp); /* display halt id as string */
1743
1744 /* Reset adapter and bring it back on-line */
1745
1746 bp->link_available = PI_K_FALSE; /* link is no longer available */
1747 bp->reset_type = 0; /* rerun on-board diagnostics */
1748 printk("%s: Resetting adapter...\n", bp->dev->name);
1749 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1750 {
1751 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1752 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1753 return;
1754 }
1755 printk("%s: Adapter reset successful!\n", bp->dev->name);
1756 }
1757 else if (state == PI_STATE_K_LINK_AVAIL)
1758 {
1759 bp->link_available = PI_K_TRUE; /* set link available flag */
1760 }
1761 }
1762 }
1763
6aa20a22 1764
1da177e4
LT
1765/*
1766 * ==================
1767 * = dfx_int_common =
1768 * ==================
6aa20a22 1769 *
1da177e4
LT
1770 * Overview:
1771 * Interrupt service routine (ISR)
6aa20a22 1772 *
1da177e4
LT
1773 * Returns:
1774 * None
6aa20a22 1775 *
1da177e4
LT
1776 * Arguments:
1777 * bp - pointer to board information
1778 *
1779 * Functional Description:
1780 * This is the ISR which processes incoming adapter interrupts.
1781 *
1782 * Return Codes:
1783 * None
1784 *
1785 * Assumptions:
1786 * This routine assumes PDQ interrupts have not been disabled.
1787 * When interrupts are disabled at the PDQ, the Port Status register
1788 * is automatically cleared. This routine uses the Port Status
1789 * register value to determine whether a Type 0 interrupt occurred,
1790 * so it's important that adapter interrupts are not normally
1791 * enabled/disabled at the PDQ.
1792 *
1793 * It's vital that this routine is NOT reentered for the
1794 * same board and that the OS is not in another section of
1795 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1796 * different thread.
1797 *
1798 * Side Effects:
1799 * Pending interrupts are serviced. Depending on the type of
1800 * interrupt, acknowledging and clearing the interrupt at the
1801 * PDQ involves writing a register to clear the interrupt bit
1802 * or updating completion indices.
1803 */
1804
1805static void dfx_int_common(struct net_device *dev)
1806{
e89a2cfb 1807 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1808 PI_UINT32 port_status; /* Port Status register */
1809
1810 /* Process xmt interrupts - frequent case, so always call this routine */
1811
1812 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1813 netif_wake_queue(dev);
1814
1815 /* Process rcv interrupts - frequent case, so always call this routine */
1816
1817 dfx_rcv_queue_process(bp); /* service received LLC frames */
1818
1819 /*
1820 * Transmit and receive producer and completion indices are updated on the
1821 * adapter by writing to the Type 2 Producer register. Since the frequent
1822 * case is that we'll be processing either LLC transmit or receive buffers,
1823 * we'll optimize I/O writes by doing a single register write here.
1824 */
1825
1826 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1827
1828 /* Read PDQ Port Status register to find out which interrupts need processing */
1829
1830 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1831
1832 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1833
1834 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1835 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1836 }
1837
6aa20a22 1838
1da177e4
LT
1839/*
1840 * =================
1841 * = dfx_interrupt =
1842 * =================
feea1db2 1843 *
1da177e4
LT
1844 * Overview:
1845 * Interrupt processing routine
feea1db2 1846 *
1da177e4 1847 * Returns:
feea1db2
MR
1848 * Whether a valid interrupt was seen.
1849 *
1da177e4
LT
1850 * Arguments:
1851 * irq - interrupt vector
1852 * dev_id - pointer to device information
1da177e4
LT
1853 *
1854 * Functional Description:
1855 * This routine calls the interrupt processing routine for this adapter. It
1856 * disables and reenables adapter interrupts, as appropriate. We can support
1857 * shared interrupts since the incoming dev_id pointer provides our device
1858 * structure context.
1859 *
1860 * Return Codes:
feea1db2
MR
1861 * IRQ_HANDLED - an IRQ was handled.
1862 * IRQ_NONE - no IRQ was handled.
1da177e4
LT
1863 *
1864 * Assumptions:
1865 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1866 * on Intel-based systems) is done by the operating system outside this
1867 * routine.
1868 *
1869 * System interrupts are enabled through this call.
1870 *
1871 * Side Effects:
1872 * Interrupts are disabled, then reenabled at the adapter.
1873 */
1874
7d12e780 1875static irqreturn_t dfx_interrupt(int irq, void *dev_id)
feea1db2 1876{
e89a2cfb
MR
1877 struct net_device *dev = dev_id;
1878 DFX_board_t *bp = netdev_priv(dev);
1879 struct device *bdev = bp->bus_dev;
1880 int dfx_bus_pci = DFX_BUS_PCI(bdev);
1881 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1882 int dfx_bus_tc = DFX_BUS_TC(bdev);
1da177e4
LT
1883
1884 /* Service adapter interrupts */
1885
e89a2cfb 1886 if (dfx_bus_pci) {
feea1db2 1887 u32 status;
1da177e4 1888
feea1db2
MR
1889 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1890 if (!(status & PFI_STATUS_M_PDQ_INT))
1891 return IRQ_NONE;
1da177e4 1892
feea1db2
MR
1893 spin_lock(&bp->lock);
1894
1895 /* Disable PDQ-PFI interrupts at PFI */
1896 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1897 PFI_MODE_M_DMA_ENB);
1da177e4 1898
feea1db2 1899 /* Call interrupt service routine for this adapter */
1da177e4
LT
1900 dfx_int_common(dev);
1901
1902 /* Clear PDQ interrupt status bit and reenable interrupts */
feea1db2
MR
1903 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1904 PFI_STATUS_M_PDQ_INT);
1da177e4 1905 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
feea1db2
MR
1906 (PFI_MODE_M_PDQ_INT_ENB |
1907 PFI_MODE_M_DMA_ENB));
1da177e4 1908
feea1db2 1909 spin_unlock(&bp->lock);
e89a2cfb
MR
1910 }
1911 if (dfx_bus_eisa) {
1912 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
feea1db2 1913 u8 status;
1da177e4 1914
e89a2cfb 1915 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2
MR
1916 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1917 return IRQ_NONE;
1da177e4 1918
feea1db2
MR
1919 spin_lock(&bp->lock);
1920
1921 /* Disable interrupts at the ESIC */
1922 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb 1923 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
feea1db2
MR
1924
1925 /* Call interrupt service routine for this adapter */
1da177e4
LT
1926 dfx_int_common(dev);
1927
1928 /* Reenable interrupts at the ESIC */
e89a2cfb 1929 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2 1930 status |= PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb
MR
1931 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1932
1933 spin_unlock(&bp->lock);
1934 }
1935 if (dfx_bus_tc) {
1936 u32 status;
1937
1938 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1939 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1940 PI_PSTATUS_M_XMT_DATA_PENDING |
1941 PI_PSTATUS_M_SMT_HOST_PENDING |
1942 PI_PSTATUS_M_UNSOL_PENDING |
1943 PI_PSTATUS_M_CMD_RSP_PENDING |
1944 PI_PSTATUS_M_CMD_REQ_PENDING |
1945 PI_PSTATUS_M_TYPE_0_PENDING)))
1946 return IRQ_NONE;
1947
1948 spin_lock(&bp->lock);
1949
1950 /* Call interrupt service routine for this adapter */
1951 dfx_int_common(dev);
1da177e4 1952
feea1db2 1953 spin_unlock(&bp->lock);
1da177e4
LT
1954 }
1955
feea1db2
MR
1956 return IRQ_HANDLED;
1957}
1958
6aa20a22 1959
1da177e4
LT
1960/*
1961 * =====================
1962 * = dfx_ctl_get_stats =
1963 * =====================
6aa20a22 1964 *
1da177e4
LT
1965 * Overview:
1966 * Get statistics for FDDI adapter
6aa20a22 1967 *
1da177e4
LT
1968 * Returns:
1969 * Pointer to FDDI statistics structure
6aa20a22 1970 *
1da177e4
LT
1971 * Arguments:
1972 * dev - pointer to device information
1973 *
1974 * Functional Description:
1975 * Gets current MIB objects from adapter, then
1976 * returns FDDI statistics structure as defined
1977 * in if_fddi.h.
1978 *
1979 * Note: Since the FDDI statistics structure is
1980 * still new and the device structure doesn't
1981 * have an FDDI-specific get statistics handler,
1982 * we'll return the FDDI statistics structure as
1983 * a pointer to an Ethernet statistics structure.
1984 * That way, at least the first part of the statistics
1985 * structure can be decoded properly, and it allows
1986 * "smart" applications to perform a second cast to
1987 * decode the FDDI-specific statistics.
1988 *
1989 * We'll have to pay attention to this routine as the
1990 * device structure becomes more mature and LAN media
1991 * independent.
1992 *
1993 * Return Codes:
1994 * None
1995 *
1996 * Assumptions:
1997 * None
1998 *
1999 * Side Effects:
2000 * None
2001 */
2002
2003static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2004 {
e89a2cfb 2005 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2006
2007 /* Fill the bp->stats structure with driver-maintained counters */
2008
2009 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2010 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2011 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2012 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2013 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2014 bp->rcv_frame_status_errors +
2015 bp->rcv_length_errors;
2016 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2017 bp->stats.gen.rx_dropped = bp->rcv_discards;
2018 bp->stats.gen.tx_dropped = bp->xmt_discards;
2019 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2020 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2021
2022 /* Get FDDI SMT MIB objects */
2023
2024 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2025 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2026 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2027
2028 /* Fill the bp->stats structure with the SMT MIB object values */
2029
2030 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2031 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2032 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2033 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2034 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2035 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2036 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2037 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2038 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2039 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2040 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2041 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2042 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2043 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2044 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2045 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2046 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2047 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2048 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2049 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2050 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2051 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2052 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2053 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2054 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2055 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2056 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2057 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2058 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2059 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2060 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2061 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2062 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2063 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2064 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2065 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2066 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2067 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2068 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2069 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2070 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2071 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2072 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2073 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2074 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2075 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2076 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2077 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2078 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2079 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2080 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2081 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2082 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2083 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2084 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2085 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2086 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2087 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2088 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2089 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2090 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2091 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2092 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2093 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2094 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2095 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2096 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2097 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2098 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2099 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2100 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2101 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2102 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2103 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2104 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2105 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2106 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2107 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2108 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2109 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2110 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2111 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2112 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2113 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2114 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2115 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2116 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2117 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2118 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2119 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2120 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2121 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2122
2123 /* Get FDDI counters */
2124
2125 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2126 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2127 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2128
2129 /* Fill the bp->stats structure with the FDDI counter values */
2130
2131 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2132 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2133 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2134 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2135 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2136 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2137 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2138 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2139 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2140 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2141 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2142
807540ba 2143 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2144 }
2145
6aa20a22 2146
1da177e4
LT
2147/*
2148 * ==============================
2149 * = dfx_ctl_set_multicast_list =
2150 * ==============================
6aa20a22 2151 *
1da177e4
LT
2152 * Overview:
2153 * Enable/Disable LLC frame promiscuous mode reception
2154 * on the adapter and/or update multicast address table.
6aa20a22 2155 *
1da177e4
LT
2156 * Returns:
2157 * None
6aa20a22 2158 *
1da177e4
LT
2159 * Arguments:
2160 * dev - pointer to device information
2161 *
2162 * Functional Description:
2163 * This routine follows a fairly simple algorithm for setting the
2164 * adapter filters and CAM:
2165 *
2166 * if IFF_PROMISC flag is set
2167 * enable LLC individual/group promiscuous mode
2168 * else
2169 * disable LLC individual/group promiscuous mode
2170 * if number of incoming multicast addresses >
2171 * (CAM max size - number of unicast addresses in CAM)
2172 * enable LLC group promiscuous mode
2173 * set driver-maintained multicast address count to zero
2174 * else
2175 * disable LLC group promiscuous mode
2176 * set driver-maintained multicast address count to incoming count
2177 * update adapter CAM
2178 * update adapter filters
2179 *
2180 * Return Codes:
2181 * None
2182 *
2183 * Assumptions:
2184 * Multicast addresses are presented in canonical (LSB) format.
2185 *
2186 * Side Effects:
2187 * On-board adapter CAM and filters are updated.
2188 */
2189
2190static void dfx_ctl_set_multicast_list(struct net_device *dev)
e89a2cfb
MR
2191{
2192 DFX_board_t *bp = netdev_priv(dev);
1da177e4 2193 int i; /* used as index in for loop */
22bedad3 2194 struct netdev_hw_addr *ha;
1da177e4
LT
2195
2196 /* Enable LLC frame promiscuous mode, if necessary */
2197
2198 if (dev->flags & IFF_PROMISC)
2199 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2200
2201 /* Else, update multicast address table */
2202
2203 else
2204 {
2205 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2206 /*
2207 * Check whether incoming multicast address count exceeds table size
2208 *
2209 * Note: The adapters utilize an on-board 64 entry CAM for
2210 * supporting perfect filtering of multicast packets
2211 * and bridge functions when adding unicast addresses.
2212 * There is no hash function available. To support
2213 * additional multicast addresses, the all multicast
2214 * filter (LLC group promiscuous mode) must be enabled.
2215 *
2216 * The firmware reserves two CAM entries for SMT-related
2217 * multicast addresses, which leaves 62 entries available.
2218 * The following code ensures that we're not being asked
2219 * to add more than 62 addresses to the CAM. If we are,
2220 * the driver will enable the all multicast filter.
2221 * Should the number of multicast addresses drop below
2222 * the high water mark, the filter will be disabled and
2223 * perfect filtering will be used.
2224 */
2225
4cd24eaf 2226 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
1da177e4
LT
2227 {
2228 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2229 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2230 }
2231 else
2232 {
2233 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
4cd24eaf 2234 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
1da177e4
LT
2235 }
2236
2237 /* Copy addresses to multicast address table, then update adapter CAM */
2238
e1d44477 2239 i = 0;
22bedad3 2240 netdev_for_each_mc_addr(ha, dev)
e1d44477 2241 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
22bedad3 2242 ha->addr, FDDI_K_ALEN);
e1d44477 2243
1da177e4
LT
2244 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2245 {
2246 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2247 }
2248 else
2249 {
2250 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2251 }
2252 }
2253
2254 /* Update adapter filters */
2255
2256 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2257 {
2258 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2259 }
2260 else
2261 {
2262 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2263 }
2264 }
2265
6aa20a22 2266
1da177e4
LT
2267/*
2268 * ===========================
2269 * = dfx_ctl_set_mac_address =
2270 * ===========================
6aa20a22 2271 *
1da177e4
LT
2272 * Overview:
2273 * Add node address override (unicast address) to adapter
2274 * CAM and update dev_addr field in device table.
6aa20a22 2275 *
1da177e4
LT
2276 * Returns:
2277 * None
6aa20a22 2278 *
1da177e4
LT
2279 * Arguments:
2280 * dev - pointer to device information
2281 * addr - pointer to sockaddr structure containing unicast address to add
2282 *
2283 * Functional Description:
2284 * The adapter supports node address overrides by adding one or more
2285 * unicast addresses to the adapter CAM. This is similar to adding
2286 * multicast addresses. In this routine we'll update the driver and
2287 * device structures with the new address, then update the adapter CAM
2288 * to ensure that the adapter will copy and strip frames destined and
2289 * sourced by that address.
2290 *
2291 * Return Codes:
2292 * Always returns zero.
2293 *
2294 * Assumptions:
2295 * The address pointed to by addr->sa_data is a valid unicast
2296 * address and is presented in canonical (LSB) format.
2297 *
2298 * Side Effects:
2299 * On-board adapter CAM is updated. On-board adapter filters
2300 * may be updated.
2301 */
2302
2303static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2304 {
1da177e4 2305 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
e89a2cfb 2306 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2307
2308 /* Copy unicast address to driver-maintained structs and update count */
2309
2310 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2311 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2312 bp->uc_count = 1;
2313
2314 /*
2315 * Verify we're not exceeding the CAM size by adding unicast address
2316 *
2317 * Note: It's possible that before entering this routine we've
2318 * already filled the CAM with 62 multicast addresses.
2319 * Since we need to place the node address override into
2320 * the CAM, we have to check to see that we're not
2321 * exceeding the CAM size. If we are, we have to enable
2322 * the LLC group (multicast) promiscuous mode filter as
2323 * in dfx_ctl_set_multicast_list.
2324 */
2325
2326 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2327 {
2328 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2329 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2330
2331 /* Update adapter filters */
2332
2333 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2334 {
2335 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2336 }
2337 else
2338 {
2339 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2340 }
2341 }
2342
2343 /* Update adapter CAM with new unicast address */
2344
2345 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2346 {
2347 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2348 }
2349 else
2350 {
2351 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2352 }
807540ba 2353 return 0; /* always return zero */
1da177e4
LT
2354 }
2355
6aa20a22 2356
1da177e4
LT
2357/*
2358 * ======================
2359 * = dfx_ctl_update_cam =
2360 * ======================
2361 *
2362 * Overview:
2363 * Procedure to update adapter CAM (Content Addressable Memory)
2364 * with desired unicast and multicast address entries.
2365 *
2366 * Returns:
2367 * Condition code
2368 *
2369 * Arguments:
2370 * bp - pointer to board information
2371 *
2372 * Functional Description:
2373 * Updates adapter CAM with current contents of board structure
2374 * unicast and multicast address tables. Since there are only 62
2375 * free entries in CAM, this routine ensures that the command
2376 * request buffer is not overrun.
2377 *
2378 * Return Codes:
2379 * DFX_K_SUCCESS - Request succeeded
2380 * DFX_K_FAILURE - Request failed
2381 *
2382 * Assumptions:
2383 * All addresses being added (unicast and multicast) are in canonical
2384 * order.
2385 *
2386 * Side Effects:
2387 * On-board adapter CAM is updated.
2388 */
2389
2390static int dfx_ctl_update_cam(DFX_board_t *bp)
2391 {
2392 int i; /* used as index */
2393 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2394
2395 /*
2396 * Fill in command request information
2397 *
2398 * Note: Even though both the unicast and multicast address
2399 * table entries are stored as contiguous 6 byte entries,
2400 * the firmware address filter set command expects each
2401 * entry to be two longwords (8 bytes total). We must be
2402 * careful to only copy the six bytes of each unicast and
2403 * multicast table entry into each command entry. This
2404 * is also why we must first clear the entire command
2405 * request buffer.
2406 */
2407
2408 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2409 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2410 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2411
2412 /* Now add unicast addresses to command request buffer, if any */
2413
2414 for (i=0; i < (int)bp->uc_count; i++)
2415 {
2416 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2417 {
2418 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2419 p_addr++; /* point to next command entry */
2420 }
2421 }
2422
2423 /* Now add multicast addresses to command request buffer, if any */
2424
2425 for (i=0; i < (int)bp->mc_count; i++)
2426 {
2427 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2428 {
2429 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2430 p_addr++; /* point to next command entry */
2431 }
2432 }
2433
2434 /* Issue command to update adapter CAM, then return */
2435
2436 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2437 return DFX_K_FAILURE;
2438 return DFX_K_SUCCESS;
1da177e4
LT
2439 }
2440
6aa20a22 2441
1da177e4
LT
2442/*
2443 * ==========================
2444 * = dfx_ctl_update_filters =
2445 * ==========================
2446 *
2447 * Overview:
2448 * Procedure to update adapter filters with desired
2449 * filter settings.
6aa20a22 2450 *
1da177e4
LT
2451 * Returns:
2452 * Condition code
6aa20a22 2453 *
1da177e4
LT
2454 * Arguments:
2455 * bp - pointer to board information
2456 *
2457 * Functional Description:
2458 * Enables or disables filter using current filter settings.
2459 *
2460 * Return Codes:
2461 * DFX_K_SUCCESS - Request succeeded.
2462 * DFX_K_FAILURE - Request failed.
2463 *
2464 * Assumptions:
2465 * We must always pass up packets destined to the broadcast
2466 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2467 * broadcast filter enabled.
2468 *
2469 * Side Effects:
2470 * On-board adapter filters are updated.
2471 */
2472
2473static int dfx_ctl_update_filters(DFX_board_t *bp)
2474 {
2475 int i = 0; /* used as index */
2476
2477 /* Fill in command request information */
2478
2479 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2480
2481 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2482
2483 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2484 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2485
2486 /* Initialize LLC Individual/Group Promiscuous filter */
2487
2488 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2489 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2490
2491 /* Initialize LLC Group Promiscuous filter */
2492
2493 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2494 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2495
2496 /* Terminate the item code list */
2497
2498 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2499
2500 /* Issue command to update adapter filters, then return */
2501
2502 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2503 return DFX_K_FAILURE;
2504 return DFX_K_SUCCESS;
1da177e4
LT
2505 }
2506
6aa20a22 2507
1da177e4
LT
2508/*
2509 * ======================
2510 * = dfx_hw_dma_cmd_req =
2511 * ======================
6aa20a22 2512 *
1da177e4
LT
2513 * Overview:
2514 * Sends PDQ DMA command to adapter firmware
6aa20a22 2515 *
1da177e4
LT
2516 * Returns:
2517 * Condition code
6aa20a22 2518 *
1da177e4
LT
2519 * Arguments:
2520 * bp - pointer to board information
2521 *
2522 * Functional Description:
2523 * The command request and response buffers are posted to the adapter in the manner
2524 * described in the PDQ Port Specification:
2525 *
2526 * 1. Command Response Buffer is posted to adapter.
2527 * 2. Command Request Buffer is posted to adapter.
2528 * 3. Command Request consumer index is polled until it indicates that request
2529 * buffer has been DMA'd to adapter.
2530 * 4. Command Response consumer index is polled until it indicates that response
2531 * buffer has been DMA'd from adapter.
2532 *
2533 * This ordering ensures that a response buffer is already available for the firmware
2534 * to use once it's done processing the request buffer.
2535 *
2536 * Return Codes:
2537 * DFX_K_SUCCESS - DMA command succeeded
2538 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2539 * DFX_K_HW_TIMEOUT - DMA command timed out
2540 *
2541 * Assumptions:
2542 * Command request buffer has already been filled with desired DMA command.
2543 *
2544 * Side Effects:
2545 * None
2546 */
2547
2548static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2549 {
2550 int status; /* adapter status */
2551 int timeout_cnt; /* used in for loops */
6aa20a22 2552
1da177e4 2553 /* Make sure the adapter is in a state that we can issue the DMA command in */
6aa20a22 2554
1da177e4
LT
2555 status = dfx_hw_adap_state_rd(bp);
2556 if ((status == PI_STATE_K_RESET) ||
2557 (status == PI_STATE_K_HALTED) ||
2558 (status == PI_STATE_K_DMA_UNAVAIL) ||
2559 (status == PI_STATE_K_UPGRADE))
807540ba 2560 return DFX_K_OUTSTATE;
1da177e4
LT
2561
2562 /* Put response buffer on the command response queue */
2563
2564 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2565 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2566 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2567
2568 /* Bump (and wrap) the producer index and write out to register */
2569
2570 bp->cmd_rsp_reg.index.prod += 1;
2571 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2572 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2573
2574 /* Put request buffer on the command request queue */
6aa20a22 2575
1da177e4
LT
2576 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2577 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2578 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2579
2580 /* Bump (and wrap) the producer index and write out to register */
2581
2582 bp->cmd_req_reg.index.prod += 1;
2583 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2584 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2585
2586 /*
2587 * Here we wait for the command request consumer index to be equal
2588 * to the producer, indicating that the adapter has DMAed the request.
2589 */
2590
2591 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2592 {
2593 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2594 break;
2595 udelay(100); /* wait for 100 microseconds */
2596 }
6aa20a22 2597 if (timeout_cnt == 0)
807540ba 2598 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2599
2600 /* Bump (and wrap) the completion index and write out to register */
2601
2602 bp->cmd_req_reg.index.comp += 1;
2603 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2604 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2605
2606 /*
2607 * Here we wait for the command response consumer index to be equal
2608 * to the producer, indicating that the adapter has DMAed the response.
2609 */
2610
2611 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2612 {
2613 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2614 break;
2615 udelay(100); /* wait for 100 microseconds */
2616 }
6aa20a22 2617 if (timeout_cnt == 0)
807540ba 2618 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2619
2620 /* Bump (and wrap) the completion index and write out to register */
2621
2622 bp->cmd_rsp_reg.index.comp += 1;
2623 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2624 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
807540ba 2625 return DFX_K_SUCCESS;
1da177e4
LT
2626 }
2627
6aa20a22 2628
1da177e4
LT
2629/*
2630 * ========================
2631 * = dfx_hw_port_ctrl_req =
2632 * ========================
6aa20a22 2633 *
1da177e4
LT
2634 * Overview:
2635 * Sends PDQ port control command to adapter firmware
6aa20a22 2636 *
1da177e4
LT
2637 * Returns:
2638 * Host data register value in host_data if ptr is not NULL
6aa20a22 2639 *
1da177e4
LT
2640 * Arguments:
2641 * bp - pointer to board information
2642 * command - port control command
2643 * data_a - port data A register value
2644 * data_b - port data B register value
2645 * host_data - ptr to host data register value
2646 *
2647 * Functional Description:
2648 * Send generic port control command to adapter by writing
2649 * to various PDQ port registers, then polling for completion.
2650 *
2651 * Return Codes:
2652 * DFX_K_SUCCESS - port control command succeeded
2653 * DFX_K_HW_TIMEOUT - port control command timed out
2654 *
2655 * Assumptions:
2656 * None
2657 *
2658 * Side Effects:
2659 * None
2660 */
2661
2662static int dfx_hw_port_ctrl_req(
2663 DFX_board_t *bp,
2664 PI_UINT32 command,
2665 PI_UINT32 data_a,
2666 PI_UINT32 data_b,
2667 PI_UINT32 *host_data
2668 )
2669
2670 {
2671 PI_UINT32 port_cmd; /* Port Control command register value */
2672 int timeout_cnt; /* used in for loops */
2673
2674 /* Set Command Error bit in command longword */
6aa20a22 2675
1da177e4
LT
2676 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2677
2678 /* Issue port command to the adapter */
2679
2680 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2681 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2682 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2683
2684 /* Now wait for command to complete */
2685
2686 if (command == PI_PCTRL_M_BLAST_FLASH)
2687 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2688 else
2689 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2690
2691 for (; timeout_cnt > 0; timeout_cnt--)
2692 {
2693 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2694 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2695 break;
2696 udelay(100); /* wait for 100 microseconds */
2697 }
6aa20a22 2698 if (timeout_cnt == 0)
807540ba 2699 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2700
2701 /*
6aa20a22
JG
2702 * If the address of host_data is non-zero, assume caller has supplied a
2703 * non NULL pointer, and return the contents of the HOST_DATA register in
1da177e4
LT
2704 * it.
2705 */
2706
2707 if (host_data != NULL)
2708 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
807540ba 2709 return DFX_K_SUCCESS;
1da177e4
LT
2710 }
2711
6aa20a22 2712
1da177e4
LT
2713/*
2714 * =====================
2715 * = dfx_hw_adap_reset =
2716 * =====================
6aa20a22 2717 *
1da177e4
LT
2718 * Overview:
2719 * Resets adapter
6aa20a22 2720 *
1da177e4
LT
2721 * Returns:
2722 * None
6aa20a22 2723 *
1da177e4
LT
2724 * Arguments:
2725 * bp - pointer to board information
2726 * type - type of reset to perform
2727 *
2728 * Functional Description:
2729 * Issue soft reset to adapter by writing to PDQ Port Reset
2730 * register. Use incoming reset type to tell adapter what
2731 * kind of reset operation to perform.
2732 *
2733 * Return Codes:
2734 * None
2735 *
2736 * Assumptions:
2737 * This routine merely issues a soft reset to the adapter.
2738 * It is expected that after this routine returns, the caller
2739 * will appropriately poll the Port Status register for the
2740 * adapter to enter the proper state.
2741 *
2742 * Side Effects:
2743 * Internal adapter registers are cleared.
2744 */
2745
2746static void dfx_hw_adap_reset(
2747 DFX_board_t *bp,
2748 PI_UINT32 type
2749 )
2750
2751 {
2752 /* Set Reset type and assert reset */
2753
2754 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2755 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2756
2757 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2758
2759 udelay(20);
2760
2761 /* Deassert reset */
2762
2763 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2764 }
2765
6aa20a22 2766
1da177e4
LT
2767/*
2768 * ========================
2769 * = dfx_hw_adap_state_rd =
2770 * ========================
6aa20a22 2771 *
1da177e4
LT
2772 * Overview:
2773 * Returns current adapter state
6aa20a22 2774 *
1da177e4
LT
2775 * Returns:
2776 * Adapter state per PDQ Port Specification
6aa20a22 2777 *
1da177e4
LT
2778 * Arguments:
2779 * bp - pointer to board information
2780 *
2781 * Functional Description:
2782 * Reads PDQ Port Status register and returns adapter state.
2783 *
2784 * Return Codes:
2785 * None
2786 *
2787 * Assumptions:
2788 * None
2789 *
2790 * Side Effects:
2791 * None
2792 */
2793
2794static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2795 {
2796 PI_UINT32 port_status; /* Port Status register value */
2797
2798 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
807540ba 2799 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
1da177e4
LT
2800 }
2801
6aa20a22 2802
1da177e4
LT
2803/*
2804 * =====================
2805 * = dfx_hw_dma_uninit =
2806 * =====================
6aa20a22 2807 *
1da177e4
LT
2808 * Overview:
2809 * Brings adapter to DMA_UNAVAILABLE state
6aa20a22 2810 *
1da177e4
LT
2811 * Returns:
2812 * Condition code
6aa20a22 2813 *
1da177e4
LT
2814 * Arguments:
2815 * bp - pointer to board information
2816 * type - type of reset to perform
2817 *
2818 * Functional Description:
2819 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2820 * 1. Set reset type bit in Port Data A Register then reset adapter.
2821 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2822 *
2823 * Return Codes:
2824 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2825 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2826 *
2827 * Assumptions:
2828 * None
2829 *
2830 * Side Effects:
2831 * Internal adapter registers are cleared.
2832 */
2833
2834static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2835 {
2836 int timeout_cnt; /* used in for loops */
2837
2838 /* Set reset type bit and reset adapter */
2839
2840 dfx_hw_adap_reset(bp, type);
2841
2842 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2843
2844 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2845 {
2846 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2847 break;
2848 udelay(100); /* wait for 100 microseconds */
2849 }
6aa20a22 2850 if (timeout_cnt == 0)
807540ba
ED
2851 return DFX_K_HW_TIMEOUT;
2852 return DFX_K_SUCCESS;
1da177e4 2853 }
6aa20a22 2854
1da177e4
LT
2855/*
2856 * Align an sk_buff to a boundary power of 2
2857 *
2858 */
6aa20a22 2859
1da177e4
LT
2860static void my_skb_align(struct sk_buff *skb, int n)
2861{
2862 unsigned long x = (unsigned long)skb->data;
2863 unsigned long v;
6aa20a22 2864
1da177e4 2865 v = ALIGN(x, n); /* Where we want to be */
6aa20a22 2866
1da177e4
LT
2867 skb_reserve(skb, v - x);
2868}
2869
6aa20a22 2870
1da177e4
LT
2871/*
2872 * ================
2873 * = dfx_rcv_init =
2874 * ================
6aa20a22 2875 *
1da177e4
LT
2876 * Overview:
2877 * Produces buffers to adapter LLC Host receive descriptor block
6aa20a22 2878 *
1da177e4
LT
2879 * Returns:
2880 * None
6aa20a22 2881 *
1da177e4
LT
2882 * Arguments:
2883 * bp - pointer to board information
2884 * get_buffers - non-zero if buffers to be allocated
2885 *
2886 * Functional Description:
2887 * This routine can be called during dfx_adap_init() or during an adapter
2888 * reset. It initializes the descriptor block and produces all allocated
2889 * LLC Host queue receive buffers.
2890 *
2891 * Return Codes:
2892 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2893 * dynamic buffer allocation). If the buffer allocation failed, the
2894 * already allocated buffers will not be released and the caller should do
2895 * this.
2896 *
2897 * Assumptions:
2898 * The PDQ has been reset and the adapter and driver maintained Type 2
2899 * register indices are cleared.
2900 *
2901 * Side Effects:
2902 * Receive buffers are posted to the adapter LLC queue and the adapter
2903 * is notified.
2904 */
2905
2906static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2907 {
2908 int i, j; /* used in for loop */
2909
2910 /*
2911 * Since each receive buffer is a single fragment of same length, initialize
2912 * first longword in each receive descriptor for entire LLC Host descriptor
2913 * block. Also initialize second longword in each receive descriptor with
2914 * physical address of receive buffer. We'll always allocate receive
2915 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2916 * block and produce new receive buffers by simply updating the receive
2917 * producer index.
2918 *
2919 * Assumptions:
2920 * To support all shipping versions of PDQ, the receive buffer size
2921 * must be mod 128 in length and the physical address must be 128 byte
2922 * aligned. In other words, bits 0-6 of the length and address must
2923 * be zero for the following descriptor field entries to be correct on
2924 * all PDQ-based boards. We guaranteed both requirements during
2925 * driver initialization when we allocated memory for the receive buffers.
2926 */
2927
2928 if (get_buffers) {
2929#ifdef DYNAMIC_BUFFERS
2930 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2931 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2932 {
9034f77b 2933 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
1da177e4
LT
2934 if (!newskb)
2935 return -ENOMEM;
2936 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2937 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2938 /*
2939 * align to 128 bytes for compatibility with
2940 * the old EISA boards.
2941 */
6aa20a22 2942
1da177e4
LT
2943 my_skb_align(newskb, 128);
2944 bp->descr_block_virt->rcv_data[i + j].long_1 =
e89a2cfb 2945 (u32)dma_map_single(bp->bus_dev, newskb->data,
1da177e4 2946 NEW_SKB_SIZE,
e89a2cfb 2947 DMA_FROM_DEVICE);
1da177e4
LT
2948 /*
2949 * p_rcv_buff_va is only used inside the
2950 * kernel so we put the skb pointer here.
2951 */
2952 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2953 }
2954#else
2955 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2956 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2957 {
2958 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2959 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2960 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
c2fd03a0 2961 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
1da177e4
LT
2962 }
2963#endif
2964 }
2965
2966 /* Update receive producer and Type 2 register */
2967
2968 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2969 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2970 return 0;
2971 }
2972
6aa20a22 2973
1da177e4
LT
2974/*
2975 * =========================
2976 * = dfx_rcv_queue_process =
2977 * =========================
6aa20a22 2978 *
1da177e4
LT
2979 * Overview:
2980 * Process received LLC frames.
6aa20a22 2981 *
1da177e4
LT
2982 * Returns:
2983 * None
6aa20a22 2984 *
1da177e4
LT
2985 * Arguments:
2986 * bp - pointer to board information
2987 *
2988 * Functional Description:
2989 * Received LLC frames are processed until there are no more consumed frames.
2990 * Once all frames are processed, the receive buffers are returned to the
2991 * adapter. Note that this algorithm fixes the length of time that can be spent
2992 * in this routine, because there are a fixed number of receive buffers to
2993 * process and buffers are not produced until this routine exits and returns
2994 * to the ISR.
2995 *
2996 * Return Codes:
2997 * None
2998 *
2999 * Assumptions:
3000 * None
3001 *
3002 * Side Effects:
3003 * None
3004 */
3005
3006static void dfx_rcv_queue_process(
3007 DFX_board_t *bp
3008 )
3009
3010 {
3011 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3012 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3013 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3014 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3015
3016 /* Service all consumed LLC receive frames */
3017
3018 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3019 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3020 {
3021 /* Process any errors */
3022
3023 int entry;
3024
3025 entry = bp->rcv_xmt_reg.index.rcv_comp;
3026#ifdef DYNAMIC_BUFFERS
3027 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3028#else
c2fd03a0 3029 p_buff = bp->p_rcv_buff_va[entry];
1da177e4
LT
3030#endif
3031 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3032
3033 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3034 {
3035 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3036 bp->rcv_crc_errors++;
3037 else
3038 bp->rcv_frame_status_errors++;
3039 }
3040 else
3041 {
3042 int rx_in_place = 0;
3043
3044 /* The frame was received without errors - verify packet length */
3045
3046 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3047 pkt_len -= 4; /* subtract 4 byte CRC */
3048 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3049 bp->rcv_length_errors++;
3050 else{
3051#ifdef DYNAMIC_BUFFERS
3052 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3053 struct sk_buff *newskb;
3054
3055 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3056 if (newskb){
3057 rx_in_place = 1;
6aa20a22 3058
1da177e4
LT
3059 my_skb_align(newskb, 128);
3060 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
e89a2cfb 3061 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3062 bp->descr_block_virt->rcv_data[entry].long_1,
3063 NEW_SKB_SIZE,
e89a2cfb 3064 DMA_FROM_DEVICE);
1da177e4
LT
3065 skb_reserve(skb, RCV_BUFF_K_PADDING);
3066 bp->p_rcv_buff_va[entry] = (char *)newskb;
3067 bp->descr_block_virt->rcv_data[entry].long_1 =
e89a2cfb 3068 (u32)dma_map_single(bp->bus_dev,
1da177e4
LT
3069 newskb->data,
3070 NEW_SKB_SIZE,
e89a2cfb 3071 DMA_FROM_DEVICE);
1da177e4
LT
3072 } else
3073 skb = NULL;
3074 } else
3075#endif
3076 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3077 if (skb == NULL)
3078 {
3079 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3080 bp->rcv_discards++;
3081 break;
3082 }
3083 else {
3084#ifndef DYNAMIC_BUFFERS
3085 if (! rx_in_place)
3086#endif
3087 {
3088 /* Receive buffer allocated, pass receive packet up */
3089
27d7ff46
ACM
3090 skb_copy_to_linear_data(skb,
3091 p_buff + RCV_BUFF_K_PADDING,
3092 pkt_len + 3);
1da177e4 3093 }
6aa20a22 3094
1da177e4
LT
3095 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3096 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
1da177e4
LT
3097 skb->protocol = fddi_type_trans(skb, bp->dev);
3098 bp->rcv_total_bytes += skb->len;
3099 netif_rx(skb);
3100
3101 /* Update the rcv counters */
1da177e4
LT
3102 bp->rcv_total_frames++;
3103 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3104 bp->rcv_multicast_frames++;
3105 }
3106 }
3107 }
3108
3109 /*
3110 * Advance the producer (for recycling) and advance the completion
3111 * (for servicing received frames). Note that it is okay to
3112 * advance the producer without checking that it passes the
3113 * completion index because they are both advanced at the same
3114 * rate.
3115 */
3116
3117 bp->rcv_xmt_reg.index.rcv_prod += 1;
3118 bp->rcv_xmt_reg.index.rcv_comp += 1;
3119 }
3120 }
3121
6aa20a22 3122
1da177e4
LT
3123/*
3124 * =====================
3125 * = dfx_xmt_queue_pkt =
3126 * =====================
6aa20a22 3127 *
1da177e4
LT
3128 * Overview:
3129 * Queues packets for transmission
6aa20a22 3130 *
1da177e4
LT
3131 * Returns:
3132 * Condition code
6aa20a22 3133 *
1da177e4
LT
3134 * Arguments:
3135 * skb - pointer to sk_buff to queue for transmission
3136 * dev - pointer to device information
3137 *
3138 * Functional Description:
3139 * Here we assume that an incoming skb transmit request
3140 * is contained in a single physically contiguous buffer
3141 * in which the virtual address of the start of packet
3142 * (skb->data) can be converted to a physical address
3143 * by using pci_map_single().
3144 *
3145 * Since the adapter architecture requires a three byte
3146 * packet request header to prepend the start of packet,
3147 * we'll write the three byte field immediately prior to
3148 * the FC byte. This assumption is valid because we've
3149 * ensured that dev->hard_header_len includes three pad
3150 * bytes. By posting a single fragment to the adapter,
3151 * we'll reduce the number of descriptor fetches and
3152 * bus traffic needed to send the request.
3153 *
3154 * Also, we can't free the skb until after it's been DMA'd
3155 * out by the adapter, so we'll queue it in the driver and
3156 * return it in dfx_xmt_done.
3157 *
3158 * Return Codes:
3159 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3160 * 1 - caller should requeue the sk_buff for later transmission
3161 *
3162 * Assumptions:
3163 * First and foremost, we assume the incoming skb pointer
3164 * is NOT NULL and is pointing to a valid sk_buff structure.
3165 *
3166 * The outgoing packet is complete, starting with the
3167 * frame control byte including the last byte of data,
3168 * but NOT including the 4 byte CRC. We'll let the
3169 * adapter hardware generate and append the CRC.
3170 *
3171 * The entire packet is stored in one physically
3172 * contiguous buffer which is not cached and whose
3173 * 32-bit physical address can be determined.
3174 *
3175 * It's vital that this routine is NOT reentered for the
3176 * same board and that the OS is not in another section of
3177 * code (eg. dfx_int_common) for the same board on a
3178 * different thread.
3179 *
3180 * Side Effects:
3181 * None
3182 */
3183
61357325
SH
3184static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3185 struct net_device *dev)
1da177e4 3186 {
e89a2cfb 3187 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
3188 u8 prod; /* local transmit producer index */
3189 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3190 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3191 unsigned long flags;
3192
3193 netif_stop_queue(dev);
6aa20a22 3194
1da177e4
LT
3195 /*
3196 * Verify that incoming transmit request is OK
3197 *
3198 * Note: The packet size check is consistent with other
3199 * Linux device drivers, although the correct packet
3200 * size should be verified before calling the
3201 * transmit routine.
3202 */
3203
3204 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3205 {
6aa20a22 3206 printk("%s: Invalid packet length - %u bytes\n",
1da177e4
LT
3207 dev->name, skb->len);
3208 bp->xmt_length_errors++; /* bump error counter */
3209 netif_wake_queue(dev);
3210 dev_kfree_skb(skb);
ec634fe3 3211 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3212 }
3213 /*
3214 * See if adapter link is available, if not, free buffer
3215 *
3216 * Note: If the link isn't available, free buffer and return 0
3217 * rather than tell the upper layer to requeue the packet.
3218 * The methodology here is that by the time the link
3219 * becomes available, the packet to be sent will be
3220 * fairly stale. By simply dropping the packet, the
3221 * higher layer protocols will eventually time out
3222 * waiting for response packets which it won't receive.
3223 */
3224
3225 if (bp->link_available == PI_K_FALSE)
3226 {
3227 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3228 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3229 else
3230 {
3231 bp->xmt_discards++; /* bump error counter */
3232 dev_kfree_skb(skb); /* free sk_buff now */
3233 netif_wake_queue(dev);
ec634fe3 3234 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3235 }
3236 }
3237
3238 spin_lock_irqsave(&bp->lock, flags);
6aa20a22 3239
1da177e4
LT
3240 /* Get the current producer and the next free xmt data descriptor */
3241
3242 prod = bp->rcv_xmt_reg.index.xmt_prod;
3243 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3244
3245 /*
3246 * Get pointer to auxiliary queue entry to contain information
3247 * for this packet.
3248 *
3249 * Note: The current xmt producer index will become the
3250 * current xmt completion index when we complete this
3251 * packet later on. So, we'll get the pointer to the
3252 * next auxiliary queue entry now before we bump the
3253 * producer index.
3254 */
3255
3256 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3257
3258 /* Write the three PRH bytes immediately before the FC byte */
3259
3260 skb_push(skb,3);
3261 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3262 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3263 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3264
3265 /*
3266 * Write the descriptor with buffer info and bump producer
3267 *
3268 * Note: Since we need to start DMA from the packet request
3269 * header, we'll add 3 bytes to the DMA buffer length,
3270 * and we'll determine the physical address of the
3271 * buffer from the PRH, not skb->data.
3272 *
3273 * Assumptions:
3274 * 1. Packet starts with the frame control (FC) byte
3275 * at skb->data.
3276 * 2. The 4-byte CRC is not appended to the buffer or
3277 * included in the length.
3278 * 3. Packet length (skb->len) is from FC to end of
3279 * data, inclusive.
3280 * 4. The packet length does not exceed the maximum
3281 * FDDI LLC frame length of 4491 bytes.
3282 * 5. The entire packet is contained in a physically
3283 * contiguous, non-cached, locked memory space
3284 * comprised of a single buffer pointed to by
3285 * skb->data.
3286 * 6. The physical address of the start of packet
3287 * can be determined from the virtual address
3288 * by using pci_map_single() and is only 32-bits
3289 * wide.
3290 */
3291
3292 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
e89a2cfb
MR
3293 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3294 skb->len, DMA_TO_DEVICE);
1da177e4
LT
3295
3296 /*
3297 * Verify that descriptor is actually available
3298 *
3299 * Note: If descriptor isn't available, return 1 which tells
3300 * the upper layer to requeue the packet for later
3301 * transmission.
3302 *
3303 * We need to ensure that the producer never reaches the
3304 * completion, except to indicate that the queue is empty.
3305 */
3306
3307 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3308 {
3309 skb_pull(skb,3);
3310 spin_unlock_irqrestore(&bp->lock, flags);
5b548140 3311 return NETDEV_TX_BUSY; /* requeue packet for later */
1da177e4
LT
3312 }
3313
3314 /*
3315 * Save info for this packet for xmt done indication routine
3316 *
3317 * Normally, we'd save the producer index in the p_xmt_drv_descr
3318 * structure so that we'd have it handy when we complete this
3319 * packet later (in dfx_xmt_done). However, since the current
3320 * transmit architecture guarantees a single fragment for the
3321 * entire packet, we can simply bump the completion index by
3322 * one (1) for each completed packet.
3323 *
3324 * Note: If this assumption changes and we're presented with
3325 * an inconsistent number of transmit fragments for packet
3326 * data, we'll need to modify this code to save the current
3327 * transmit producer index.
3328 */
3329
3330 p_xmt_drv_descr->p_skb = skb;
3331
3332 /* Update Type 2 register */
3333
3334 bp->rcv_xmt_reg.index.xmt_prod = prod;
3335 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3336 spin_unlock_irqrestore(&bp->lock, flags);
3337 netif_wake_queue(dev);
ec634fe3 3338 return NETDEV_TX_OK; /* packet queued to adapter */
1da177e4
LT
3339 }
3340
6aa20a22 3341
1da177e4
LT
3342/*
3343 * ================
3344 * = dfx_xmt_done =
3345 * ================
6aa20a22 3346 *
1da177e4
LT
3347 * Overview:
3348 * Processes all frames that have been transmitted.
6aa20a22 3349 *
1da177e4
LT
3350 * Returns:
3351 * None
6aa20a22 3352 *
1da177e4
LT
3353 * Arguments:
3354 * bp - pointer to board information
3355 *
3356 * Functional Description:
3357 * For all consumed transmit descriptors that have not
3358 * yet been completed, we'll free the skb we were holding
3359 * onto using dev_kfree_skb and bump the appropriate
3360 * counters.
3361 *
3362 * Return Codes:
3363 * None
3364 *
3365 * Assumptions:
3366 * The Type 2 register is not updated in this routine. It is
3367 * assumed that it will be updated in the ISR when dfx_xmt_done
3368 * returns.
3369 *
3370 * Side Effects:
3371 * None
3372 */
3373
3374static int dfx_xmt_done(DFX_board_t *bp)
3375 {
3376 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3377 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3378 u8 comp; /* local transmit completion index */
3379 int freed = 0; /* buffers freed */
3380
3381 /* Service all consumed transmit frames */
3382
3383 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3384 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3385 {
3386 /* Get pointer to the transmit driver descriptor block information */
3387
3388 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3389
3390 /* Increment transmit counters */
3391
3392 bp->xmt_total_frames++;
3393 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3394
3395 /* Return skb to operating system */
3396 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3397 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3398 bp->descr_block_virt->xmt_data[comp].long_1,
3399 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3400 DMA_TO_DEVICE);
1da177e4
LT
3401 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3402
3403 /*
3404 * Move to start of next packet by updating completion index
3405 *
3406 * Here we assume that a transmit packet request is always
3407 * serviced by posting one fragment. We can therefore
3408 * simplify the completion code by incrementing the
3409 * completion index by one. This code will need to be
3410 * modified if this assumption changes. See comments
3411 * in dfx_xmt_queue_pkt for more details.
3412 */
3413
3414 bp->rcv_xmt_reg.index.xmt_comp += 1;
3415 freed++;
3416 }
3417 return freed;
3418 }
3419
6aa20a22 3420
1da177e4
LT
3421/*
3422 * =================
3423 * = dfx_rcv_flush =
3424 * =================
6aa20a22 3425 *
1da177e4
LT
3426 * Overview:
3427 * Remove all skb's in the receive ring.
6aa20a22 3428 *
1da177e4
LT
3429 * Returns:
3430 * None
6aa20a22 3431 *
1da177e4
LT
3432 * Arguments:
3433 * bp - pointer to board information
3434 *
3435 * Functional Description:
3436 * Free's all the dynamically allocated skb's that are
3437 * currently attached to the device receive ring. This
3438 * function is typically only used when the device is
3439 * initialized or reinitialized.
3440 *
3441 * Return Codes:
3442 * None
3443 *
3444 * Side Effects:
3445 * None
3446 */
3447#ifdef DYNAMIC_BUFFERS
3448static void dfx_rcv_flush( DFX_board_t *bp )
3449 {
3450 int i, j;
3451
3452 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3453 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3454 {
3455 struct sk_buff *skb;
3456 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3457 if (skb)
3458 dev_kfree_skb(skb);
3459 bp->p_rcv_buff_va[i+j] = NULL;
3460 }
3461
3462 }
3463#else
3464static inline void dfx_rcv_flush( DFX_board_t *bp )
3465{
3466}
3467#endif /* DYNAMIC_BUFFERS */
3468
3469/*
3470 * =================
3471 * = dfx_xmt_flush =
3472 * =================
6aa20a22 3473 *
1da177e4
LT
3474 * Overview:
3475 * Processes all frames whether they've been transmitted
3476 * or not.
6aa20a22 3477 *
1da177e4
LT
3478 * Returns:
3479 * None
6aa20a22 3480 *
1da177e4
LT
3481 * Arguments:
3482 * bp - pointer to board information
3483 *
3484 * Functional Description:
3485 * For all produced transmit descriptors that have not
3486 * yet been completed, we'll free the skb we were holding
3487 * onto using dev_kfree_skb and bump the appropriate
3488 * counters. Of course, it's possible that some of
3489 * these transmit requests actually did go out, but we
3490 * won't make that distinction here. Finally, we'll
3491 * update the consumer index to match the producer.
3492 *
3493 * Return Codes:
3494 * None
3495 *
3496 * Assumptions:
3497 * This routine does NOT update the Type 2 register. It
3498 * is assumed that this routine is being called during a
3499 * transmit flush interrupt, or a shutdown or close routine.
3500 *
3501 * Side Effects:
3502 * None
3503 */
3504
3505static void dfx_xmt_flush( DFX_board_t *bp )
3506 {
3507 u32 prod_cons; /* rcv/xmt consumer block longword */
3508 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3509 u8 comp; /* local transmit completion index */
3510
3511 /* Flush all outstanding transmit frames */
3512
3513 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3514 {
3515 /* Get pointer to the transmit driver descriptor block information */
3516
3517 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3518
3519 /* Return skb to operating system */
3520 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3521 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3522 bp->descr_block_virt->xmt_data[comp].long_1,
3523 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3524 DMA_TO_DEVICE);
1da177e4
LT
3525 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3526
3527 /* Increment transmit error counter */
3528
3529 bp->xmt_discards++;
3530
3531 /*
3532 * Move to start of next packet by updating completion index
3533 *
3534 * Here we assume that a transmit packet request is always
3535 * serviced by posting one fragment. We can therefore
3536 * simplify the completion code by incrementing the
3537 * completion index by one. This code will need to be
3538 * modified if this assumption changes. See comments
3539 * in dfx_xmt_queue_pkt for more details.
3540 */
3541
3542 bp->rcv_xmt_reg.index.xmt_comp += 1;
3543 }
3544
3545 /* Update the transmit consumer index in the consumer block */
3546
3547 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3548 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3549 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3550 }
3551
e89a2cfb
MR
3552/*
3553 * ==================
3554 * = dfx_unregister =
3555 * ==================
3556 *
3557 * Overview:
3558 * Shuts down an FDDI controller
3559 *
3560 * Returns:
3561 * Condition code
3562 *
3563 * Arguments:
3564 * bdev - pointer to device information
3565 *
3566 * Functional Description:
3567 *
3568 * Return Codes:
3569 * None
3570 *
3571 * Assumptions:
3572 * It compiles so it should work :-( (PCI cards do :-)
3573 *
3574 * Side Effects:
3575 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3576 * freed.
3577 */
c354dfc3 3578static void dfx_unregister(struct device *bdev)
1da177e4 3579{
e89a2cfb
MR
3580 struct net_device *dev = dev_get_drvdata(bdev);
3581 DFX_board_t *bp = netdev_priv(dev);
3582 int dfx_bus_pci = DFX_BUS_PCI(bdev);
3583 int dfx_bus_tc = DFX_BUS_TC(bdev);
3584 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3585 resource_size_t bar_start = 0; /* pointer to port */
3586 resource_size_t bar_len = 0; /* resource length */
1da177e4
LT
3587 int alloc_size; /* total buffer size used */
3588
3589 unregister_netdev(dev);
1da177e4
LT
3590
3591 alloc_size = sizeof(PI_DESCR_BLOCK) +
3592 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3593#ifndef DYNAMIC_BUFFERS
3594 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3595#endif
3596 sizeof(PI_CONSUMER_BLOCK) +
3597 (PI_ALIGN_K_DESC_BLK - 1);
3598 if (bp->kmalloced)
e89a2cfb
MR
3599 dma_free_coherent(bdev, alloc_size,
3600 bp->kmalloced, bp->kmalloced_dma);
3601
3602 dfx_bus_uninit(dev);
3603
3604 dfx_get_bars(bdev, &bar_start, &bar_len);
3605 if (dfx_use_mmio) {
3606 iounmap(bp->base.mem);
3607 release_mem_region(bar_start, bar_len);
3608 } else
3609 release_region(bar_start, bar_len);
3610
3611 if (dfx_bus_pci)
3612 pci_disable_device(to_pci_dev(bdev));
3613
1da177e4
LT
3614 free_netdev(dev);
3615}
3616
1da177e4 3617
c354dfc3
BP
3618static int __maybe_unused dfx_dev_register(struct device *);
3619static int __maybe_unused dfx_dev_unregister(struct device *);
1da177e4 3620
e89a2cfb 3621#ifdef CONFIG_PCI
1dd06ae8 3622static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
c354dfc3 3623static void dfx_pci_unregister(struct pci_dev *);
e89a2cfb 3624
a3aa1884 3625static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
e89a2cfb
MR
3626 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3627 { }
1da177e4 3628};
e89a2cfb 3629MODULE_DEVICE_TABLE(pci, dfx_pci_table);
1da177e4 3630
e89a2cfb 3631static struct pci_driver dfx_pci_driver = {
1da177e4 3632 .name = "defxx",
e89a2cfb
MR
3633 .id_table = dfx_pci_table,
3634 .probe = dfx_pci_register,
c354dfc3 3635 .remove = dfx_pci_unregister,
1da177e4
LT
3636};
3637
c354dfc3 3638static int dfx_pci_register(struct pci_dev *pdev,
1dd06ae8 3639 const struct pci_device_id *ent)
e89a2cfb
MR
3640{
3641 return dfx_register(&pdev->dev);
3642}
1da177e4 3643
c354dfc3 3644static void dfx_pci_unregister(struct pci_dev *pdev)
1da177e4 3645{
e89a2cfb
MR
3646 dfx_unregister(&pdev->dev);
3647}
3648#endif /* CONFIG_PCI */
3649
3650#ifdef CONFIG_EISA
3651static struct eisa_device_id dfx_eisa_table[] = {
3652 { "DEC3001", DEFEA_PROD_ID_1 },
3653 { "DEC3002", DEFEA_PROD_ID_2 },
3654 { "DEC3003", DEFEA_PROD_ID_3 },
3655 { "DEC3004", DEFEA_PROD_ID_4 },
3656 { }
3657};
3658MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3659
3660static struct eisa_driver dfx_eisa_driver = {
3661 .id_table = dfx_eisa_table,
3662 .driver = {
3663 .name = "defxx",
3664 .bus = &eisa_bus_type,
3665 .probe = dfx_dev_register,
c354dfc3 3666 .remove = dfx_dev_unregister,
e89a2cfb
MR
3667 },
3668};
3669#endif /* CONFIG_EISA */
3670
3671#ifdef CONFIG_TC
3672static struct tc_device_id const dfx_tc_table[] = {
3673 { "DEC ", "PMAF-FA " },
3674 { "DEC ", "PMAF-FD " },
3675 { "DEC ", "PMAF-FS " },
3676 { "DEC ", "PMAF-FU " },
3677 { }
3678};
3679MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3680
3681static struct tc_driver dfx_tc_driver = {
3682 .id_table = dfx_tc_table,
3683 .driver = {
3684 .name = "defxx",
3685 .bus = &tc_bus_type,
3686 .probe = dfx_dev_register,
c354dfc3 3687 .remove = dfx_dev_unregister,
e89a2cfb
MR
3688 },
3689};
3690#endif /* CONFIG_TC */
1da177e4 3691
c354dfc3 3692static int __maybe_unused dfx_dev_register(struct device *dev)
e89a2cfb
MR
3693{
3694 int status;
1da177e4 3695
e89a2cfb
MR
3696 status = dfx_register(dev);
3697 if (!status)
3698 get_device(dev);
3699 return status;
1da177e4
LT
3700}
3701
c354dfc3 3702static int __maybe_unused dfx_dev_unregister(struct device *dev)
1da177e4 3703{
e89a2cfb
MR
3704 put_device(dev);
3705 dfx_unregister(dev);
3706 return 0;
3707}
6aa20a22 3708
1da177e4 3709
c354dfc3 3710static int dfx_init(void)
e89a2cfb
MR
3711{
3712 int status;
3713
3714 status = pci_register_driver(&dfx_pci_driver);
3715 if (!status)
3716 status = eisa_driver_register(&dfx_eisa_driver);
3717 if (!status)
3718 status = tc_register_driver(&dfx_tc_driver);
3719 return status;
1da177e4
LT
3720}
3721
c354dfc3 3722static void dfx_cleanup(void)
1da177e4 3723{
e89a2cfb
MR
3724 tc_unregister_driver(&dfx_tc_driver);
3725 eisa_driver_unregister(&dfx_eisa_driver);
3726 pci_unregister_driver(&dfx_pci_driver);
6aa20a22 3727}
1da177e4
LT
3728
3729module_init(dfx_init);
3730module_exit(dfx_cleanup);
3731MODULE_AUTHOR("Lawrence V. Stefani");
e89a2cfb 3732MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
1da177e4
LT
3733 DRV_VERSION " " DRV_RELDATE);
3734MODULE_LICENSE("GPL");
This page took 1.184375 seconds and 5 git commands to generate.