defxx: Correct the receive DMA map size
[deliverable/linux.git] / drivers / net / fddi / defxx.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
e89a2cfb
MR
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
1da177e4 15 *
e89a2cfb
MR
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
1da177e4
LT
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
feea1db2 196 * 14 Jun 2005 macro Use irqreturn_t.
b2e68aa3 197 * 23 Oct 2006 macro Big-endian host support.
e89a2cfb 198 * 14 Dec 2006 macro TURBOchannel support.
1da177e4
LT
199 */
200
201/* Include files */
e89a2cfb 202#include <linux/bitops.h>
fcdff139 203#include <linux/compiler.h>
1da177e4 204#include <linux/delay.h>
e89a2cfb
MR
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
e89a2cfb
MR
209#include <linux/interrupt.h>
210#include <linux/ioport.h>
211#include <linux/kernel.h>
212#include <linux/module.h>
1da177e4 213#include <linux/netdevice.h>
e89a2cfb 214#include <linux/pci.h>
1da177e4 215#include <linux/skbuff.h>
e89a2cfb
MR
216#include <linux/slab.h>
217#include <linux/string.h>
218#include <linux/tc.h>
1da177e4
LT
219
220#include <asm/byteorder.h>
221#include <asm/io.h>
222
223#include "defxx.h"
224
225/* Version information string should be updated prior to each new release! */
226#define DRV_NAME "defxx"
e89a2cfb
MR
227#define DRV_VERSION "v1.10"
228#define DRV_RELDATE "2006/12/14"
1da177e4 229
c354dfc3 230static char version[] =
1da177e4
LT
231 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
232 " Lawrence V. Stefani and others\n";
233
234#define DYNAMIC_BUFFERS 1
235
236#define SKBUFF_RX_COPYBREAK 200
237/*
238 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239 * alignment for compatibility with old EISA boards.
240 */
241#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
242
e89a2cfb
MR
243#ifdef CONFIG_EISA
244#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
245#else
246#define DFX_BUS_EISA(dev) 0
247#endif
248
249#ifdef CONFIG_TC
250#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
251#else
252#define DFX_BUS_TC(dev) 0
253#endif
254
255#ifdef CONFIG_DEFXX_MMIO
256#define DFX_MMIO 1
257#else
258#define DFX_MMIO 0
259#endif
260
1da177e4
LT
261/* Define module-wide (static) routines */
262
263static void dfx_bus_init(struct net_device *dev);
e89a2cfb 264static void dfx_bus_uninit(struct net_device *dev);
1da177e4
LT
265static void dfx_bus_config_check(DFX_board_t *bp);
266
e89a2cfb
MR
267static int dfx_driver_init(struct net_device *dev,
268 const char *print_name,
269 resource_size_t bar_start);
1da177e4
LT
270static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
271
272static int dfx_open(struct net_device *dev);
273static int dfx_close(struct net_device *dev);
274
275static void dfx_int_pr_halt_id(DFX_board_t *bp);
276static void dfx_int_type_0_process(DFX_board_t *bp);
277static void dfx_int_common(struct net_device *dev);
7d12e780 278static irqreturn_t dfx_interrupt(int irq, void *dev_id);
1da177e4
LT
279
280static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
281static void dfx_ctl_set_multicast_list(struct net_device *dev);
282static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
283static int dfx_ctl_update_cam(DFX_board_t *bp);
284static int dfx_ctl_update_filters(DFX_board_t *bp);
285
286static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
287static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
288static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
289static int dfx_hw_adap_state_rd(DFX_board_t *bp);
290static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
291
292static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
293static void dfx_rcv_queue_process(DFX_board_t *bp);
294static void dfx_rcv_flush(DFX_board_t *bp);
295
61357325
SH
296static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
297 struct net_device *dev);
1da177e4
LT
298static int dfx_xmt_done(DFX_board_t *bp);
299static void dfx_xmt_flush(DFX_board_t *bp);
300
301/* Define module-wide (static) variables */
302
e89a2cfb
MR
303static struct pci_driver dfx_pci_driver;
304static struct eisa_driver dfx_eisa_driver;
305static struct tc_driver dfx_tc_driver;
1da177e4 306
6aa20a22 307
1da177e4
LT
308/*
309 * =======================
1da177e4
LT
310 * = dfx_port_write_long =
311 * = dfx_port_read_long =
312 * =======================
6aa20a22 313 *
1da177e4
LT
314 * Overview:
315 * Routines for reading and writing values from/to adapter
6aa20a22 316 *
1da177e4
LT
317 * Returns:
318 * None
6aa20a22 319 *
1da177e4 320 * Arguments:
e89a2cfb
MR
321 * bp - pointer to board information
322 * offset - register offset from base I/O address
323 * data - for dfx_port_write_long, this is a value to write;
324 * for dfx_port_read_long, this is a pointer to store
325 * the read value
1da177e4
LT
326 *
327 * Functional Description:
328 * These routines perform the correct operation to read or write
329 * the adapter register.
6aa20a22 330 *
1da177e4
LT
331 * EISA port block base addresses are based on the slot number in which the
332 * controller is installed. For example, if the EISA controller is installed
333 * in slot 4, the port block base address is 0x4000. If the controller is
334 * installed in slot 2, the port block base address is 0x2000, and so on.
335 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
336 * registers using the register offsets defined in DEFXX.H.
337 *
338 * PCI port block base addresses are assigned by the PCI BIOS or system
e89a2cfb 339 * firmware. There is one 128 byte port block which can be accessed. It
1da177e4
LT
340 * allows for I/O mapping of both PDQ and PFI registers using the register
341 * offsets defined in DEFXX.H.
342 *
343 * Return Codes:
344 * None
345 *
346 * Assumptions:
e89a2cfb 347 * bp->base is a valid base I/O address for this adapter.
1da177e4
LT
348 * offset is a valid register offset for this adapter.
349 *
350 * Side Effects:
351 * Rather than produce macros for these functions, these routines
352 * are defined using "inline" to ensure that the compiler will
353 * generate inline code and not waste a procedure call and return.
354 * This provides all the benefits of macros, but with the
355 * advantage of strict data type checking.
356 */
357
e89a2cfb
MR
358static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
359{
360 writel(data, bp->base.mem + offset);
361 mb();
362}
1da177e4 363
e89a2cfb
MR
364static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
365{
366 outl(data, bp->base.port + offset);
367}
1da177e4 368
e89a2cfb
MR
369static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
370{
fcdff139 371 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
372 int dfx_bus_tc = DFX_BUS_TC(bdev);
373 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 374
e89a2cfb
MR
375 if (dfx_use_mmio)
376 dfx_writel(bp, offset, data);
377 else
378 dfx_outl(bp, offset, data);
379}
1da177e4 380
1da177e4 381
e89a2cfb
MR
382static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
383{
384 mb();
385 *data = readl(bp->base.mem + offset);
386}
1da177e4 387
e89a2cfb
MR
388static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
389{
390 *data = inl(bp->base.port + offset);
391}
1da177e4 392
e89a2cfb
MR
393static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
394{
fcdff139 395 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
396 int dfx_bus_tc = DFX_BUS_TC(bdev);
397 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 398
e89a2cfb
MR
399 if (dfx_use_mmio)
400 dfx_readl(bp, offset, data);
401 else
402 dfx_inl(bp, offset, data);
403}
1da177e4 404
1da177e4 405
e89a2cfb
MR
406/*
407 * ================
408 * = dfx_get_bars =
409 * ================
410 *
411 * Overview:
412 * Retrieves the address range used to access control and status
413 * registers.
414 *
415 * Returns:
416 * None
417 *
418 * Arguments:
419 * bdev - pointer to device information
420 * bar_start - pointer to store the start address
421 * bar_len - pointer to store the length of the area
422 *
423 * Assumptions:
424 * I am sure there are some.
425 *
426 * Side Effects:
427 * None
428 */
429static void dfx_get_bars(struct device *bdev,
430 resource_size_t *bar_start, resource_size_t *bar_len)
431{
5349d937 432 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
433 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
434 int dfx_bus_tc = DFX_BUS_TC(bdev);
435 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 436
e89a2cfb
MR
437 if (dfx_bus_pci) {
438 int num = dfx_use_mmio ? 0 : 1;
1da177e4 439
e89a2cfb
MR
440 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
441 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
442 }
443 if (dfx_bus_eisa) {
444 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
445 resource_size_t bar;
446
447 if (dfx_use_mmio) {
448 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
449 bar <<= 8;
450 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
451 bar <<= 8;
452 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
453 bar <<= 16;
454 *bar_start = bar;
455 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
456 bar <<= 8;
457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
458 bar <<= 8;
459 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
460 bar <<= 16;
461 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
462 } else {
463 *bar_start = base_addr;
464 *bar_len = PI_ESIC_K_CSR_IO_LEN;
465 }
466 }
467 if (dfx_bus_tc) {
468 *bar_start = to_tc_dev(bdev)->resource.start +
469 PI_TC_K_CSR_OFFSET;
470 *bar_len = PI_TC_K_CSR_LEN;
471 }
472}
6aa20a22 473
fd8f4997
SH
474static const struct net_device_ops dfx_netdev_ops = {
475 .ndo_open = dfx_open,
476 .ndo_stop = dfx_close,
477 .ndo_start_xmit = dfx_xmt_queue_pkt,
478 .ndo_get_stats = dfx_ctl_get_stats,
afc4b13d 479 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
fd8f4997
SH
480 .ndo_set_mac_address = dfx_ctl_set_mac_address,
481};
482
1da177e4 483/*
e89a2cfb
MR
484 * ================
485 * = dfx_register =
486 * ================
6aa20a22 487 *
1da177e4 488 * Overview:
e89a2cfb 489 * Initializes a supported FDDI controller
6aa20a22 490 *
1da177e4
LT
491 * Returns:
492 * Condition code
6aa20a22 493 *
1da177e4 494 * Arguments:
e89a2cfb 495 * bdev - pointer to device information
1da177e4
LT
496 *
497 * Functional Description:
498 *
499 * Return Codes:
500 * 0 - This device (fddi0, fddi1, etc) configured successfully
501 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
502 *
503 * Assumptions:
504 * It compiles so it should work :-( (PCI cards do :-)
505 *
506 * Side Effects:
507 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
508 * initialized and the board resources are read and stored in
509 * the device structure.
510 */
c354dfc3 511static int dfx_register(struct device *bdev)
1da177e4
LT
512{
513 static int version_disp;
5349d937 514 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
515 int dfx_bus_tc = DFX_BUS_TC(bdev);
516 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
fb28ad35 517 const char *print_name = dev_name(bdev);
1da177e4
LT
518 struct net_device *dev;
519 DFX_board_t *bp; /* board pointer */
e89a2cfb
MR
520 resource_size_t bar_start = 0; /* pointer to port */
521 resource_size_t bar_len = 0; /* resource length */
1da177e4 522 int alloc_size; /* total buffer size used */
e89a2cfb
MR
523 struct resource *region;
524 int err = 0;
1da177e4
LT
525
526 if (!version_disp) { /* display version info if adapter is found */
527 version_disp = 1; /* set display flag to TRUE so that */
528 printk(version); /* we only display this string ONCE */
529 }
530
1da177e4
LT
531 dev = alloc_fddidev(sizeof(*bp));
532 if (!dev) {
e89a2cfb 533 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
1da177e4
LT
534 print_name);
535 return -ENOMEM;
536 }
537
538 /* Enable PCI device. */
e89a2cfb
MR
539 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
540 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
541 print_name);
542 goto err_out;
1da177e4
LT
543 }
544
e89a2cfb
MR
545 SET_NETDEV_DEV(dev, bdev);
546
547 bp = netdev_priv(dev);
548 bp->bus_dev = bdev;
549 dev_set_drvdata(bdev, dev);
1da177e4 550
e89a2cfb 551 dfx_get_bars(bdev, &bar_start, &bar_len);
1da177e4 552
e89a2cfb
MR
553 if (dfx_use_mmio)
554 region = request_mem_region(bar_start, bar_len, print_name);
555 else
556 region = request_region(bar_start, bar_len, print_name);
557 if (!region) {
1da177e4 558 printk(KERN_ERR "%s: Cannot reserve I/O resource "
e89a2cfb
MR
559 "0x%lx @ 0x%lx, aborting\n",
560 print_name, (long)bar_len, (long)bar_start);
1da177e4 561 err = -EBUSY;
e89a2cfb 562 goto err_out_disable;
1da177e4
LT
563 }
564
e89a2cfb
MR
565 /* Set up I/O base address. */
566 if (dfx_use_mmio) {
567 bp->base.mem = ioremap_nocache(bar_start, bar_len);
568 if (!bp->base.mem) {
569 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
8a323526 570 err = -ENOMEM;
e89a2cfb
MR
571 goto err_out_region;
572 }
573 } else {
574 bp->base.port = bar_start;
575 dev->base_addr = bar_start;
576 }
1da177e4 577
e89a2cfb 578 /* Initialize new device structure */
fd8f4997 579 dev->netdev_ops = &dfx_netdev_ops;
1da177e4 580
e89a2cfb
MR
581 if (dfx_bus_pci)
582 pci_set_master(to_pci_dev(bdev));
1da177e4 583
e89a2cfb 584 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
1da177e4 585 err = -ENODEV;
e89a2cfb 586 goto err_out_unmap;
1da177e4
LT
587 }
588
589 err = register_netdev(dev);
590 if (err)
591 goto err_out_kfree;
592
593 printk("%s: registered as %s\n", print_name, dev->name);
594 return 0;
595
596err_out_kfree:
597 alloc_size = sizeof(PI_DESCR_BLOCK) +
598 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
599#ifndef DYNAMIC_BUFFERS
600 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
601#endif
602 sizeof(PI_CONSUMER_BLOCK) +
603 (PI_ALIGN_K_DESC_BLK - 1);
604 if (bp->kmalloced)
e89a2cfb
MR
605 dma_free_coherent(bdev, alloc_size,
606 bp->kmalloced, bp->kmalloced_dma);
607
608err_out_unmap:
609 if (dfx_use_mmio)
610 iounmap(bp->base.mem);
611
1da177e4 612err_out_region:
e89a2cfb
MR
613 if (dfx_use_mmio)
614 release_mem_region(bar_start, bar_len);
615 else
616 release_region(bar_start, bar_len);
617
618err_out_disable:
619 if (dfx_bus_pci)
620 pci_disable_device(to_pci_dev(bdev));
621
1da177e4
LT
622err_out:
623 free_netdev(dev);
624 return err;
625}
626
6aa20a22 627
1da177e4
LT
628/*
629 * ================
630 * = dfx_bus_init =
631 * ================
6aa20a22 632 *
1da177e4 633 * Overview:
e89a2cfb 634 * Initializes the bus-specific controller logic.
6aa20a22 635 *
1da177e4
LT
636 * Returns:
637 * None
6aa20a22 638 *
1da177e4
LT
639 * Arguments:
640 * dev - pointer to device information
641 *
642 * Functional Description:
643 * Determine and save adapter IRQ in device table,
644 * then perform bus-specific logic initialization.
645 *
646 * Return Codes:
647 * None
648 *
649 * Assumptions:
e89a2cfb 650 * bp->base has already been set with the proper
1da177e4
LT
651 * base I/O address for this device.
652 *
653 * Side Effects:
654 * Interrupts are enabled at the adapter bus-specific logic.
655 * Note: Interrupts at the DMA engine (PDQ chip) are not
656 * enabled yet.
657 */
658
c354dfc3 659static void dfx_bus_init(struct net_device *dev)
1da177e4 660{
e89a2cfb
MR
661 DFX_board_t *bp = netdev_priv(dev);
662 struct device *bdev = bp->bus_dev;
5349d937 663 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
664 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
665 int dfx_bus_tc = DFX_BUS_TC(bdev);
666 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
667 u8 val;
1da177e4
LT
668
669 DBG_printk("In dfx_bus_init...\n");
670
e89a2cfb 671 /* Initialize a pointer back to the net_device struct */
1da177e4
LT
672 bp->dev = dev;
673
674 /* Initialize adapter based on bus type */
675
e89a2cfb
MR
676 if (dfx_bus_tc)
677 dev->irq = to_tc_dev(bdev)->interrupt;
678 if (dfx_bus_eisa) {
679 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1da177e4 680
e89a2cfb
MR
681 /* Get the interrupt level from the ESIC chip. */
682 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
683 val &= PI_CONFIG_STAT_0_M_IRQ;
684 val >>= PI_CONFIG_STAT_0_V_IRQ;
1da177e4 685
e89a2cfb
MR
686 switch (val) {
687 case PI_CONFIG_STAT_0_IRQ_K_9:
688 dev->irq = 9;
689 break;
1da177e4 690
e89a2cfb
MR
691 case PI_CONFIG_STAT_0_IRQ_K_10:
692 dev->irq = 10;
693 break;
1da177e4 694
e89a2cfb
MR
695 case PI_CONFIG_STAT_0_IRQ_K_11:
696 dev->irq = 11;
697 break;
1da177e4 698
e89a2cfb
MR
699 case PI_CONFIG_STAT_0_IRQ_K_15:
700 dev->irq = 15;
701 break;
702 }
1da177e4 703
e89a2cfb
MR
704 /*
705 * Enable memory decoding (MEMCS0) and/or port decoding
706 * (IOCS1/IOCS0) as appropriate in Function Control
707 * Register. One of the port chip selects seems to be
708 * used for the Burst Holdoff register, but this bit of
709 * documentation is missing and as yet it has not been
710 * determined which of the two. This is also the reason
711 * the size of the decoded port range is twice as large
712 * as one required by the PDQ.
713 */
1da177e4 714
e89a2cfb
MR
715 /* Set the decode range of the board. */
716 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
717 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
718 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
719 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
720 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
721 val = PI_ESIC_K_CSR_IO_LEN - 1;
722 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
723 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
724 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
725 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
726
727 /* Enable the decoders. */
728 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
729 if (dfx_use_mmio)
730 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
731 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
1da177e4
LT
732
733 /*
e89a2cfb
MR
734 * Enable access to the rest of the module
735 * (including PDQ and packet memory).
1da177e4 736 */
e89a2cfb
MR
737 val = PI_SLOT_CNTRL_M_ENB;
738 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
1da177e4 739
e89a2cfb
MR
740 /*
741 * Map PDQ registers into memory or port space. This is
742 * done with a bit in the Burst Holdoff register.
743 */
744 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
745 if (dfx_use_mmio)
746 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
747 else
748 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
749 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
1da177e4
LT
750
751 /* Enable interrupts at EISA bus interface chip (ESIC) */
e89a2cfb
MR
752 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
753 val |= PI_CONFIG_STAT_0_M_INT_ENB;
754 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
755 }
756 if (dfx_bus_pci) {
757 struct pci_dev *pdev = to_pci_dev(bdev);
1da177e4
LT
758
759 /* Get the interrupt level from the PCI Configuration Table */
760
761 dev->irq = pdev->irq;
762
763 /* Check Latency Timer and set if less than minimal */
764
765 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
e89a2cfb 766 if (val < PFI_K_LAT_TIMER_MIN) {
1da177e4
LT
767 val = PFI_K_LAT_TIMER_DEF;
768 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
e89a2cfb 769 }
1da177e4
LT
770
771 /* Enable interrupts at PCI bus interface chip (PFI) */
e89a2cfb
MR
772 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
773 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
774 }
775}
1da177e4 776
e89a2cfb
MR
777/*
778 * ==================
779 * = dfx_bus_uninit =
780 * ==================
781 *
782 * Overview:
783 * Uninitializes the bus-specific controller logic.
784 *
785 * Returns:
786 * None
787 *
788 * Arguments:
789 * dev - pointer to device information
790 *
791 * Functional Description:
792 * Perform bus-specific logic uninitialization.
793 *
794 * Return Codes:
795 * None
796 *
797 * Assumptions:
798 * bp->base has already been set with the proper
799 * base I/O address for this device.
800 *
801 * Side Effects:
802 * Interrupts are disabled at the adapter bus-specific logic.
803 */
804
c354dfc3 805static void dfx_bus_uninit(struct net_device *dev)
e89a2cfb
MR
806{
807 DFX_board_t *bp = netdev_priv(dev);
808 struct device *bdev = bp->bus_dev;
5349d937 809 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
810 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
811 u8 val;
812
813 DBG_printk("In dfx_bus_uninit...\n");
814
815 /* Uninitialize adapter based on bus type */
816
817 if (dfx_bus_eisa) {
818 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
819
820 /* Disable interrupts at EISA bus interface chip (ESIC) */
821 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
822 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
823 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
824 }
825 if (dfx_bus_pci) {
826 /* Disable interrupts at PCI bus interface chip (PFI) */
827 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
1da177e4 828 }
e89a2cfb 829}
1da177e4 830
6aa20a22 831
1da177e4
LT
832/*
833 * ========================
834 * = dfx_bus_config_check =
835 * ========================
6aa20a22 836 *
1da177e4
LT
837 * Overview:
838 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
839 * are illegal, then this routine will set new defaults.
6aa20a22 840 *
1da177e4
LT
841 * Returns:
842 * None
6aa20a22 843 *
1da177e4
LT
844 * Arguments:
845 * bp - pointer to board information
846 *
847 * Functional Description:
848 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
849 * PDQ, and all FDDI PCI controllers, all values are legal.
850 *
851 * Return Codes:
852 * None
853 *
854 * Assumptions:
855 * dfx_adap_init has NOT been called yet so burst size and other items have
856 * not been set.
857 *
858 * Side Effects:
859 * None
860 */
861
c354dfc3 862static void dfx_bus_config_check(DFX_board_t *bp)
1da177e4 863{
fcdff139 864 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb 865 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1da177e4 866 int status; /* return code from adapter port control call */
1da177e4
LT
867 u32 host_data; /* LW data returned from port control call */
868
869 DBG_printk("In dfx_bus_config_check...\n");
870
871 /* Configuration check only valid for EISA adapter */
872
e89a2cfb 873 if (dfx_bus_eisa) {
1da177e4
LT
874 /*
875 * First check if revision 2 EISA controller. Rev. 1 cards used
876 * PDQ revision B, so no workaround needed in this case. Rev. 3
877 * cards used PDQ revision E, so no workaround needed in this
878 * case, either. Only Rev. 2 cards used either Rev. D or E
879 * chips, so we must verify the chip revision on Rev. 2 cards.
880 */
e89a2cfb 881 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
1da177e4 882 /*
e89a2cfb
MR
883 * Revision 2 FDDI EISA controller found,
884 * so let's check PDQ revision of adapter.
1da177e4 885 */
1da177e4
LT
886 status = dfx_hw_port_ctrl_req(bp,
887 PI_PCTRL_M_SUB_CMD,
888 PI_SUB_CMD_K_PDQ_REV_GET,
889 0,
890 &host_data);
891 if ((status != DFX_K_SUCCESS) || (host_data == 2))
892 {
893 /*
894 * Either we couldn't determine the PDQ revision, or
895 * we determined that it is at revision D. In either case,
896 * we need to implement the workaround.
897 */
898
899 /* Ensure that the burst size is set to 8 longwords or less */
900
901 switch (bp->burst_size)
902 {
903 case PI_PDATA_B_DMA_BURST_SIZE_32:
904 case PI_PDATA_B_DMA_BURST_SIZE_16:
905 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
906 break;
907
908 default:
909 break;
910 }
911
912 /* Ensure that full-duplex mode is not enabled */
913
914 bp->full_duplex_enb = PI_SNMP_K_FALSE;
915 }
916 }
917 }
918 }
919
6aa20a22 920
1da177e4
LT
921/*
922 * ===================
923 * = dfx_driver_init =
924 * ===================
6aa20a22 925 *
1da177e4
LT
926 * Overview:
927 * Initializes remaining adapter board structure information
928 * and makes sure adapter is in a safe state prior to dfx_open().
6aa20a22 929 *
1da177e4
LT
930 * Returns:
931 * Condition code
6aa20a22 932 *
1da177e4
LT
933 * Arguments:
934 * dev - pointer to device information
935 * print_name - printable device name
936 *
937 * Functional Description:
938 * This function allocates additional resources such as the host memory
939 * blocks needed by the adapter (eg. descriptor and consumer blocks).
940 * Remaining bus initialization steps are also completed. The adapter
941 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
942 * must call dfx_open() to open the adapter and bring it on-line.
943 *
944 * Return Codes:
945 * DFX_K_SUCCESS - initialization succeeded
946 * DFX_K_FAILURE - initialization failed - could not allocate memory
947 * or read adapter MAC address
948 *
949 * Assumptions:
950 * Memory allocated from pci_alloc_consistent() call is physically
951 * contiguous, locked memory.
952 *
953 * Side Effects:
954 * Adapter is reset and should be in DMA_UNAVAILABLE state before
955 * returning from this routine.
956 */
957
1dd06ae8
GKH
958static int dfx_driver_init(struct net_device *dev, const char *print_name,
959 resource_size_t bar_start)
1da177e4 960{
e89a2cfb
MR
961 DFX_board_t *bp = netdev_priv(dev);
962 struct device *bdev = bp->bus_dev;
5349d937 963 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
964 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
965 int dfx_bus_tc = DFX_BUS_TC(bdev);
966 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
967 int alloc_size; /* total buffer size needed */
968 char *top_v, *curr_v; /* virtual addrs into memory block */
969 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
eca1ad82
AV
970 u32 data; /* host data register value */
971 __le32 le32;
e89a2cfb 972 char *board_name = NULL;
1da177e4
LT
973
974 DBG_printk("In dfx_driver_init...\n");
975
976 /* Initialize bus-specific hardware registers */
977
978 dfx_bus_init(dev);
979
980 /*
981 * Initialize default values for configurable parameters
982 *
983 * Note: All of these parameters are ones that a user may
984 * want to customize. It'd be nice to break these
985 * out into Space.c or someplace else that's more
986 * accessible/understandable than this file.
987 */
988
989 bp->full_duplex_enb = PI_SNMP_K_FALSE;
990 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
991 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
992 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
993
994 /*
995 * Ensure that HW configuration is OK
996 *
997 * Note: Depending on the hardware revision, we may need to modify
998 * some of the configurable parameters to workaround hardware
999 * limitations. We'll perform this configuration check AFTER
1000 * setting the parameters to their default values.
1001 */
1002
1003 dfx_bus_config_check(bp);
1004
1005 /* Disable PDQ interrupts first */
1006
1007 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1008
1009 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1010
1011 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1012
1013 /* Read the factory MAC address from the adapter then save it */
1014
1015 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1016 &data) != DFX_K_SUCCESS) {
1017 printk("%s: Could not read adapter factory MAC address!\n",
1018 print_name);
807540ba 1019 return DFX_K_FAILURE;
1da177e4 1020 }
e89a2cfb
MR
1021 le32 = cpu_to_le32(data);
1022 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1da177e4
LT
1023
1024 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1025 &data) != DFX_K_SUCCESS) {
1026 printk("%s: Could not read adapter factory MAC address!\n",
1027 print_name);
807540ba 1028 return DFX_K_FAILURE;
1da177e4 1029 }
e89a2cfb
MR
1030 le32 = cpu_to_le32(data);
1031 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1da177e4
LT
1032
1033 /*
1034 * Set current address to factory address
1035 *
1036 * Note: Node address override support is handled through
1037 * dfx_ctl_set_mac_address.
1038 */
1039
1040 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
e89a2cfb
MR
1041 if (dfx_bus_tc)
1042 board_name = "DEFTA";
1043 if (dfx_bus_eisa)
1044 board_name = "DEFEA";
1045 if (dfx_bus_pci)
1046 board_name = "DEFPA";
69d279ea 1047 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
e89a2cfb 1048 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
69d279ea 1049 (long long)bar_start, dev->irq, dev->dev_addr);
1da177e4
LT
1050
1051 /*
1052 * Get memory for descriptor block, consumer block, and other buffers
1053 * that need to be DMA read or written to by the adapter.
1054 */
1055
1056 alloc_size = sizeof(PI_DESCR_BLOCK) +
1057 PI_CMD_REQ_K_SIZE_MAX +
1058 PI_CMD_RSP_K_SIZE_MAX +
1059#ifndef DYNAMIC_BUFFERS
1060 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1061#endif
1062 sizeof(PI_CONSUMER_BLOCK) +
1063 (PI_ALIGN_K_DESC_BLK - 1);
ede23fa8
JP
1064 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1065 &bp->kmalloced_dma,
1066 GFP_ATOMIC);
d0320f75 1067 if (top_v == NULL)
807540ba 1068 return DFX_K_FAILURE;
d0320f75 1069
1da177e4
LT
1070 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1071
1072 /*
1073 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1074 * plus the amount of memory needed was allocated. The physical address
1075 * is now 8K aligned. By carving up the memory in a specific order,
1076 * we'll guarantee the alignment requirements for all other structures.
1077 *
1078 * Note: If the assumptions change regarding the non-paged, non-cached,
1079 * physically contiguous nature of the memory block or the address
1080 * alignments, then we'll need to implement a different algorithm
1081 * for allocating the needed memory.
1082 */
1083
1084 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1085 curr_v = top_v + (curr_p - top_p);
1086
1087 /* Reserve space for descriptor block */
1088
1089 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1090 bp->descr_block_phys = curr_p;
1091 curr_v += sizeof(PI_DESCR_BLOCK);
1092 curr_p += sizeof(PI_DESCR_BLOCK);
1093
1094 /* Reserve space for command request buffer */
1095
1096 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1097 bp->cmd_req_phys = curr_p;
1098 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1099 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1100
1101 /* Reserve space for command response buffer */
1102
1103 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1104 bp->cmd_rsp_phys = curr_p;
1105 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1106 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1107
1108 /* Reserve space for the LLC host receive queue buffers */
1109
1110 bp->rcv_block_virt = curr_v;
1111 bp->rcv_block_phys = curr_p;
1112
1113#ifndef DYNAMIC_BUFFERS
1114 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1115 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1116#endif
1117
1118 /* Reserve space for the consumer block */
1119
1120 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1121 bp->cons_block_phys = curr_p;
1122
1123 /* Display virtual and physical addresses if debug driver */
1124
1125 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1126 print_name,
1127 (long)bp->descr_block_virt, bp->descr_block_phys);
1128 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1129 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1130 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1131 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1132 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1133 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1134 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1135 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1136
807540ba 1137 return DFX_K_SUCCESS;
1da177e4
LT
1138}
1139
6aa20a22 1140
1da177e4
LT
1141/*
1142 * =================
1143 * = dfx_adap_init =
1144 * =================
6aa20a22 1145 *
1da177e4
LT
1146 * Overview:
1147 * Brings the adapter to the link avail/link unavailable state.
6aa20a22 1148 *
1da177e4
LT
1149 * Returns:
1150 * Condition code
6aa20a22 1151 *
1da177e4
LT
1152 * Arguments:
1153 * bp - pointer to board information
1154 * get_buffers - non-zero if buffers to be allocated
1155 *
1156 * Functional Description:
1157 * Issues the low-level firmware/hardware calls necessary to bring
1158 * the adapter up, or to properly reset and restore adapter during
1159 * run-time.
1160 *
1161 * Return Codes:
1162 * DFX_K_SUCCESS - Adapter brought up successfully
1163 * DFX_K_FAILURE - Adapter initialization failed
1164 *
1165 * Assumptions:
1166 * bp->reset_type should be set to a valid reset type value before
1167 * calling this routine.
1168 *
1169 * Side Effects:
1170 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1171 * upon a successful return of this routine.
1172 */
1173
1174static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1175 {
1176 DBG_printk("In dfx_adap_init...\n");
1177
1178 /* Disable PDQ interrupts first */
1179
1180 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1181
1182 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1183
1184 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1185 {
1186 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
807540ba 1187 return DFX_K_FAILURE;
1da177e4
LT
1188 }
1189
1190 /*
1191 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1192 * so we'll acknowledge all Type 0 interrupts now before continuing.
1193 */
1194
1195 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1196
1197 /*
1198 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1199 *
1200 * Note: We only need to clear host copies of these registers. The PDQ reset
1201 * takes care of the on-board register values.
1202 */
1203
1204 bp->cmd_req_reg.lword = 0;
1205 bp->cmd_rsp_reg.lword = 0;
1206 bp->rcv_xmt_reg.lword = 0;
1207
1208 /* Clear consumer block before going to DMA_AVAILABLE state */
1209
1210 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1211
1212 /* Initialize the DMA Burst Size */
1213
1214 if (dfx_hw_port_ctrl_req(bp,
1215 PI_PCTRL_M_SUB_CMD,
1216 PI_SUB_CMD_K_BURST_SIZE_SET,
1217 bp->burst_size,
1218 NULL) != DFX_K_SUCCESS)
1219 {
1220 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
807540ba 1221 return DFX_K_FAILURE;
1da177e4
LT
1222 }
1223
1224 /*
1225 * Set base address of Consumer Block
1226 *
1227 * Assumption: 32-bit physical address of consumer block is 64 byte
1228 * aligned. That is, bits 0-5 of the address must be zero.
1229 */
1230
1231 if (dfx_hw_port_ctrl_req(bp,
1232 PI_PCTRL_M_CONS_BLOCK,
1233 bp->cons_block_phys,
1234 0,
1235 NULL) != DFX_K_SUCCESS)
1236 {
1237 printk("%s: Could not set consumer block address!\n", bp->dev->name);
807540ba 1238 return DFX_K_FAILURE;
1da177e4
LT
1239 }
1240
1241 /*
b2e68aa3
MR
1242 * Set the base address of Descriptor Block and bring adapter
1243 * to DMA_AVAILABLE state.
1da177e4 1244 *
b2e68aa3
MR
1245 * Note: We also set the literal and data swapping requirements
1246 * in this command.
1da177e4 1247 *
b2e68aa3
MR
1248 * Assumption: 32-bit physical address of descriptor block
1249 * is 8Kbyte aligned.
1da177e4 1250 */
b2e68aa3
MR
1251 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1252 (u32)(bp->descr_block_phys |
1253 PI_PDATA_A_INIT_M_BSWAP_INIT),
1254 0, NULL) != DFX_K_SUCCESS) {
1255 printk("%s: Could not set descriptor block address!\n",
1256 bp->dev->name);
1257 return DFX_K_FAILURE;
1258 }
1da177e4
LT
1259
1260 /* Set transmit flush timeout value */
1261
1262 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1263 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1264 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1265 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1266 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1267 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1268 {
1269 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1270 return DFX_K_FAILURE;
1da177e4
LT
1271 }
1272
1273 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1274
1275 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1276 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1277 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1278 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1279 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1280 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1281 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1282 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1283 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1284 {
1285 printk("%s: DMA command request failed!\n", bp->dev->name);
807540ba 1286 return DFX_K_FAILURE;
1da177e4
LT
1287 }
1288
1289 /* Initialize adapter CAM */
1290
1291 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1292 {
1293 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
807540ba 1294 return DFX_K_FAILURE;
1da177e4
LT
1295 }
1296
1297 /* Initialize adapter filters */
1298
1299 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1300 {
1301 printk("%s: Adapter filters update failed!\n", bp->dev->name);
807540ba 1302 return DFX_K_FAILURE;
1da177e4
LT
1303 }
1304
1305 /*
1306 * Remove any existing dynamic buffers (i.e. if the adapter is being
1307 * reinitialized)
1308 */
1309
1310 if (get_buffers)
1311 dfx_rcv_flush(bp);
1312
1313 /* Initialize receive descriptor block and produce buffers */
1314
1315 if (dfx_rcv_init(bp, get_buffers))
1316 {
1317 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1318 if (get_buffers)
1319 dfx_rcv_flush(bp);
807540ba 1320 return DFX_K_FAILURE;
1da177e4
LT
1321 }
1322
1323 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1324
1325 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1326 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1327 {
1328 printk("%s: Start command failed\n", bp->dev->name);
1329 if (get_buffers)
1330 dfx_rcv_flush(bp);
807540ba 1331 return DFX_K_FAILURE;
1da177e4
LT
1332 }
1333
1334 /* Initialization succeeded, reenable PDQ interrupts */
1335
1336 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
807540ba 1337 return DFX_K_SUCCESS;
1da177e4
LT
1338 }
1339
6aa20a22 1340
1da177e4
LT
1341/*
1342 * ============
1343 * = dfx_open =
1344 * ============
6aa20a22 1345 *
1da177e4
LT
1346 * Overview:
1347 * Opens the adapter
6aa20a22 1348 *
1da177e4
LT
1349 * Returns:
1350 * Condition code
6aa20a22 1351 *
1da177e4
LT
1352 * Arguments:
1353 * dev - pointer to device information
1354 *
1355 * Functional Description:
1356 * This function brings the adapter to an operational state.
1357 *
1358 * Return Codes:
1359 * 0 - Adapter was successfully opened
1360 * -EAGAIN - Could not register IRQ or adapter initialization failed
1361 *
1362 * Assumptions:
1363 * This routine should only be called for a device that was
1364 * initialized successfully.
1365 *
1366 * Side Effects:
1367 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1368 * if the open is successful.
1369 */
1370
1371static int dfx_open(struct net_device *dev)
1372{
e89a2cfb 1373 DFX_board_t *bp = netdev_priv(dev);
1da177e4 1374 int ret;
1da177e4
LT
1375
1376 DBG_printk("In dfx_open...\n");
6aa20a22 1377
1da177e4
LT
1378 /* Register IRQ - support shared interrupts by passing device ptr */
1379
e89a2cfb
MR
1380 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1381 dev);
1da177e4
LT
1382 if (ret) {
1383 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1384 return ret;
1385 }
1386
1387 /*
1388 * Set current address to factory MAC address
1389 *
1390 * Note: We've already done this step in dfx_driver_init.
1391 * However, it's possible that a user has set a node
1392 * address override, then closed and reopened the
1393 * adapter. Unless we reset the device address field
1394 * now, we'll continue to use the existing modified
1395 * address.
1396 */
1397
1398 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1399
1400 /* Clear local unicast/multicast address tables and counts */
1401
1402 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1403 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1404 bp->uc_count = 0;
1405 bp->mc_count = 0;
1406
1407 /* Disable promiscuous filter settings */
1408
1409 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1410 bp->group_prom = PI_FSTATE_K_BLOCK;
1411
1412 spin_lock_init(&bp->lock);
1413
1414 /* Reset and initialize adapter */
1415
1416 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1417 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1418 {
1419 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1420 free_irq(dev->irq, dev);
1421 return -EAGAIN;
1422 }
1423
1424 /* Set device structure info */
1425 netif_start_queue(dev);
807540ba 1426 return 0;
1da177e4
LT
1427}
1428
6aa20a22 1429
1da177e4
LT
1430/*
1431 * =============
1432 * = dfx_close =
1433 * =============
6aa20a22 1434 *
1da177e4
LT
1435 * Overview:
1436 * Closes the device/module.
6aa20a22 1437 *
1da177e4
LT
1438 * Returns:
1439 * Condition code
6aa20a22 1440 *
1da177e4
LT
1441 * Arguments:
1442 * dev - pointer to device information
1443 *
1444 * Functional Description:
1445 * This routine closes the adapter and brings it to a safe state.
1446 * The interrupt service routine is deregistered with the OS.
1447 * The adapter can be opened again with another call to dfx_open().
1448 *
1449 * Return Codes:
1450 * Always return 0.
1451 *
1452 * Assumptions:
1453 * No further requests for this adapter are made after this routine is
1454 * called. dfx_open() can be called to reset and reinitialize the
1455 * adapter.
1456 *
1457 * Side Effects:
1458 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1459 * routine.
1460 */
1461
1462static int dfx_close(struct net_device *dev)
1463{
e89a2cfb 1464 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1465
1466 DBG_printk("In dfx_close...\n");
1467
1468 /* Disable PDQ interrupts first */
1469
1470 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1471
1472 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1473
1474 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1475
1476 /*
1477 * Flush any pending transmit buffers
1478 *
1479 * Note: It's important that we flush the transmit buffers
1480 * BEFORE we clear our copy of the Type 2 register.
1481 * Otherwise, we'll have no idea how many buffers
1482 * we need to free.
1483 */
1484
1485 dfx_xmt_flush(bp);
1486
1487 /*
1488 * Clear Type 1 and Type 2 registers after adapter reset
1489 *
1490 * Note: Even though we're closing the adapter, it's
1491 * possible that an interrupt will occur after
1492 * dfx_close is called. Without some assurance to
1493 * the contrary we want to make sure that we don't
1494 * process receive and transmit LLC frames and update
1495 * the Type 2 register with bad information.
1496 */
1497
1498 bp->cmd_req_reg.lword = 0;
1499 bp->cmd_rsp_reg.lword = 0;
1500 bp->rcv_xmt_reg.lword = 0;
1501
1502 /* Clear consumer block for the same reason given above */
1503
1504 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1505
1506 /* Release all dynamically allocate skb in the receive ring. */
1507
1508 dfx_rcv_flush(bp);
1509
1510 /* Clear device structure flags */
1511
1512 netif_stop_queue(dev);
6aa20a22 1513
1da177e4
LT
1514 /* Deregister (free) IRQ */
1515
1516 free_irq(dev->irq, dev);
6aa20a22 1517
807540ba 1518 return 0;
1da177e4
LT
1519}
1520
6aa20a22 1521
1da177e4
LT
1522/*
1523 * ======================
1524 * = dfx_int_pr_halt_id =
1525 * ======================
6aa20a22 1526 *
1da177e4
LT
1527 * Overview:
1528 * Displays halt id's in string form.
6aa20a22 1529 *
1da177e4
LT
1530 * Returns:
1531 * None
6aa20a22 1532 *
1da177e4
LT
1533 * Arguments:
1534 * bp - pointer to board information
1535 *
1536 * Functional Description:
1537 * Determine current halt id and display appropriate string.
1538 *
1539 * Return Codes:
1540 * None
1541 *
1542 * Assumptions:
1543 * None
1544 *
1545 * Side Effects:
1546 * None
1547 */
1548
1549static void dfx_int_pr_halt_id(DFX_board_t *bp)
1550 {
1551 PI_UINT32 port_status; /* PDQ port status register value */
1552 PI_UINT32 halt_id; /* PDQ port status halt ID */
1553
1554 /* Read the latest port status */
1555
1556 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1557
1558 /* Display halt state transition information */
1559
1560 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1561 switch (halt_id)
1562 {
1563 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1564 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1565 break;
1566
1567 case PI_HALT_ID_K_PARITY_ERROR:
1568 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1569 break;
1570
1571 case PI_HALT_ID_K_HOST_DIR_HALT:
1572 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1573 break;
1574
1575 case PI_HALT_ID_K_SW_FAULT:
1576 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1577 break;
1578
1579 case PI_HALT_ID_K_HW_FAULT:
1580 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1581 break;
1582
1583 case PI_HALT_ID_K_PC_TRACE:
1584 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1585 break;
1586
1587 case PI_HALT_ID_K_DMA_ERROR:
1588 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1589 break;
1590
1591 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1592 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1593 break;
1594
1595 case PI_HALT_ID_K_BUS_EXCEPTION:
1596 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1597 break;
1598
1599 default:
1600 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1601 break;
1602 }
1603 }
1604
6aa20a22 1605
1da177e4
LT
1606/*
1607 * ==========================
1608 * = dfx_int_type_0_process =
1609 * ==========================
6aa20a22 1610 *
1da177e4
LT
1611 * Overview:
1612 * Processes Type 0 interrupts.
6aa20a22 1613 *
1da177e4
LT
1614 * Returns:
1615 * None
6aa20a22 1616 *
1da177e4
LT
1617 * Arguments:
1618 * bp - pointer to board information
1619 *
1620 * Functional Description:
1621 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1622 * is a serious fault on the adapter, then an error message is displayed
1623 * and the adapter is reset.
1624 *
1625 * One tricky potential timing window is the rapid succession of "link avail"
1626 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1627 * interrupt must be done before reading the state from the Port Status
1628 * register. This is true because a state change could occur after reading
1629 * the data, but before acknowledging the interrupt. If this state change
1630 * does happen, it would be lost because the driver is using the old state,
1631 * and it will never know about the new state because it subsequently
1632 * acknowledges the state change interrupt.
1633 *
1634 * INCORRECT CORRECT
1635 * read type 0 int reasons read type 0 int reasons
1636 * read adapter state ack type 0 interrupts
1637 * ack type 0 interrupts read adapter state
1638 * ... process interrupt ... ... process interrupt ...
1639 *
1640 * Return Codes:
1641 * None
1642 *
1643 * Assumptions:
1644 * None
1645 *
1646 * Side Effects:
1647 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1648 * or if the port status indicates that the adapter is halted. The driver
1649 * is responsible for reinitializing the adapter with the current CAM
1650 * contents and adapter filter settings.
1651 */
1652
1653static void dfx_int_type_0_process(DFX_board_t *bp)
1654
1655 {
1656 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1657 PI_UINT32 state; /* current adap state (from port status) */
1658
1659 /*
1660 * Read host interrupt Type 0 register to determine which Type 0
1661 * interrupts are pending. Immediately write it back out to clear
1662 * those interrupts.
1663 */
1664
1665 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1666 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1667
1668 /* Check for Type 0 error interrupts */
1669
1670 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1671 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1672 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1673 {
1674 /* Check for Non-Existent Memory error */
1675
1676 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1677 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1678
1679 /* Check for Packet Memory Parity error */
1680
1681 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1682 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1683
1684 /* Check for Host Bus Parity error */
1685
1686 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1687 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1688
1689 /* Reset adapter and bring it back on-line */
1690
1691 bp->link_available = PI_K_FALSE; /* link is no longer available */
1692 bp->reset_type = 0; /* rerun on-board diagnostics */
1693 printk("%s: Resetting adapter...\n", bp->dev->name);
1694 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1695 {
1696 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1697 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1698 return;
1699 }
1700 printk("%s: Adapter reset successful!\n", bp->dev->name);
1701 return;
1702 }
1703
1704 /* Check for transmit flush interrupt */
1705
1706 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1707 {
1708 /* Flush any pending xmt's and acknowledge the flush interrupt */
1709
1710 bp->link_available = PI_K_FALSE; /* link is no longer available */
1711 dfx_xmt_flush(bp); /* flush any outstanding packets */
1712 (void) dfx_hw_port_ctrl_req(bp,
1713 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1714 0,
1715 0,
1716 NULL);
1717 }
1718
1719 /* Check for adapter state change */
1720
1721 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
6aa20a22 1722 {
1da177e4
LT
1723 /* Get latest adapter state */
1724
1725 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1726 if (state == PI_STATE_K_HALTED)
1727 {
1728 /*
1729 * Adapter has transitioned to HALTED state, try to reset
1730 * adapter to bring it back on-line. If reset fails,
1731 * leave the adapter in the broken state.
1732 */
1733
1734 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1735 dfx_int_pr_halt_id(bp); /* display halt id as string */
1736
1737 /* Reset adapter and bring it back on-line */
1738
1739 bp->link_available = PI_K_FALSE; /* link is no longer available */
1740 bp->reset_type = 0; /* rerun on-board diagnostics */
1741 printk("%s: Resetting adapter...\n", bp->dev->name);
1742 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1743 {
1744 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1745 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1746 return;
1747 }
1748 printk("%s: Adapter reset successful!\n", bp->dev->name);
1749 }
1750 else if (state == PI_STATE_K_LINK_AVAIL)
1751 {
1752 bp->link_available = PI_K_TRUE; /* set link available flag */
1753 }
1754 }
1755 }
1756
6aa20a22 1757
1da177e4
LT
1758/*
1759 * ==================
1760 * = dfx_int_common =
1761 * ==================
6aa20a22 1762 *
1da177e4
LT
1763 * Overview:
1764 * Interrupt service routine (ISR)
6aa20a22 1765 *
1da177e4
LT
1766 * Returns:
1767 * None
6aa20a22 1768 *
1da177e4
LT
1769 * Arguments:
1770 * bp - pointer to board information
1771 *
1772 * Functional Description:
1773 * This is the ISR which processes incoming adapter interrupts.
1774 *
1775 * Return Codes:
1776 * None
1777 *
1778 * Assumptions:
1779 * This routine assumes PDQ interrupts have not been disabled.
1780 * When interrupts are disabled at the PDQ, the Port Status register
1781 * is automatically cleared. This routine uses the Port Status
1782 * register value to determine whether a Type 0 interrupt occurred,
1783 * so it's important that adapter interrupts are not normally
1784 * enabled/disabled at the PDQ.
1785 *
1786 * It's vital that this routine is NOT reentered for the
1787 * same board and that the OS is not in another section of
1788 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1789 * different thread.
1790 *
1791 * Side Effects:
1792 * Pending interrupts are serviced. Depending on the type of
1793 * interrupt, acknowledging and clearing the interrupt at the
1794 * PDQ involves writing a register to clear the interrupt bit
1795 * or updating completion indices.
1796 */
1797
1798static void dfx_int_common(struct net_device *dev)
1799{
e89a2cfb 1800 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1801 PI_UINT32 port_status; /* Port Status register */
1802
1803 /* Process xmt interrupts - frequent case, so always call this routine */
1804
1805 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1806 netif_wake_queue(dev);
1807
1808 /* Process rcv interrupts - frequent case, so always call this routine */
1809
1810 dfx_rcv_queue_process(bp); /* service received LLC frames */
1811
1812 /*
1813 * Transmit and receive producer and completion indices are updated on the
1814 * adapter by writing to the Type 2 Producer register. Since the frequent
1815 * case is that we'll be processing either LLC transmit or receive buffers,
1816 * we'll optimize I/O writes by doing a single register write here.
1817 */
1818
1819 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1820
1821 /* Read PDQ Port Status register to find out which interrupts need processing */
1822
1823 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1824
1825 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1826
1827 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1828 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1829 }
1830
6aa20a22 1831
1da177e4
LT
1832/*
1833 * =================
1834 * = dfx_interrupt =
1835 * =================
feea1db2 1836 *
1da177e4
LT
1837 * Overview:
1838 * Interrupt processing routine
feea1db2 1839 *
1da177e4 1840 * Returns:
feea1db2
MR
1841 * Whether a valid interrupt was seen.
1842 *
1da177e4
LT
1843 * Arguments:
1844 * irq - interrupt vector
1845 * dev_id - pointer to device information
1da177e4
LT
1846 *
1847 * Functional Description:
1848 * This routine calls the interrupt processing routine for this adapter. It
1849 * disables and reenables adapter interrupts, as appropriate. We can support
1850 * shared interrupts since the incoming dev_id pointer provides our device
1851 * structure context.
1852 *
1853 * Return Codes:
feea1db2
MR
1854 * IRQ_HANDLED - an IRQ was handled.
1855 * IRQ_NONE - no IRQ was handled.
1da177e4
LT
1856 *
1857 * Assumptions:
1858 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1859 * on Intel-based systems) is done by the operating system outside this
1860 * routine.
1861 *
1862 * System interrupts are enabled through this call.
1863 *
1864 * Side Effects:
1865 * Interrupts are disabled, then reenabled at the adapter.
1866 */
1867
7d12e780 1868static irqreturn_t dfx_interrupt(int irq, void *dev_id)
feea1db2 1869{
e89a2cfb
MR
1870 struct net_device *dev = dev_id;
1871 DFX_board_t *bp = netdev_priv(dev);
1872 struct device *bdev = bp->bus_dev;
5349d937 1873 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
1874 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1875 int dfx_bus_tc = DFX_BUS_TC(bdev);
1da177e4
LT
1876
1877 /* Service adapter interrupts */
1878
e89a2cfb 1879 if (dfx_bus_pci) {
feea1db2 1880 u32 status;
1da177e4 1881
feea1db2
MR
1882 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1883 if (!(status & PFI_STATUS_M_PDQ_INT))
1884 return IRQ_NONE;
1da177e4 1885
feea1db2
MR
1886 spin_lock(&bp->lock);
1887
1888 /* Disable PDQ-PFI interrupts at PFI */
1889 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1890 PFI_MODE_M_DMA_ENB);
1da177e4 1891
feea1db2 1892 /* Call interrupt service routine for this adapter */
1da177e4
LT
1893 dfx_int_common(dev);
1894
1895 /* Clear PDQ interrupt status bit and reenable interrupts */
feea1db2
MR
1896 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1897 PFI_STATUS_M_PDQ_INT);
1da177e4 1898 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
feea1db2
MR
1899 (PFI_MODE_M_PDQ_INT_ENB |
1900 PFI_MODE_M_DMA_ENB));
1da177e4 1901
feea1db2 1902 spin_unlock(&bp->lock);
e89a2cfb
MR
1903 }
1904 if (dfx_bus_eisa) {
1905 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
feea1db2 1906 u8 status;
1da177e4 1907
e89a2cfb 1908 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2
MR
1909 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1910 return IRQ_NONE;
1da177e4 1911
feea1db2
MR
1912 spin_lock(&bp->lock);
1913
1914 /* Disable interrupts at the ESIC */
1915 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb 1916 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
feea1db2
MR
1917
1918 /* Call interrupt service routine for this adapter */
1da177e4
LT
1919 dfx_int_common(dev);
1920
1921 /* Reenable interrupts at the ESIC */
e89a2cfb 1922 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2 1923 status |= PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb
MR
1924 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1925
1926 spin_unlock(&bp->lock);
1927 }
1928 if (dfx_bus_tc) {
1929 u32 status;
1930
1931 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1932 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1933 PI_PSTATUS_M_XMT_DATA_PENDING |
1934 PI_PSTATUS_M_SMT_HOST_PENDING |
1935 PI_PSTATUS_M_UNSOL_PENDING |
1936 PI_PSTATUS_M_CMD_RSP_PENDING |
1937 PI_PSTATUS_M_CMD_REQ_PENDING |
1938 PI_PSTATUS_M_TYPE_0_PENDING)))
1939 return IRQ_NONE;
1940
1941 spin_lock(&bp->lock);
1942
1943 /* Call interrupt service routine for this adapter */
1944 dfx_int_common(dev);
1da177e4 1945
feea1db2 1946 spin_unlock(&bp->lock);
1da177e4
LT
1947 }
1948
feea1db2
MR
1949 return IRQ_HANDLED;
1950}
1951
6aa20a22 1952
1da177e4
LT
1953/*
1954 * =====================
1955 * = dfx_ctl_get_stats =
1956 * =====================
6aa20a22 1957 *
1da177e4
LT
1958 * Overview:
1959 * Get statistics for FDDI adapter
6aa20a22 1960 *
1da177e4
LT
1961 * Returns:
1962 * Pointer to FDDI statistics structure
6aa20a22 1963 *
1da177e4
LT
1964 * Arguments:
1965 * dev - pointer to device information
1966 *
1967 * Functional Description:
1968 * Gets current MIB objects from adapter, then
1969 * returns FDDI statistics structure as defined
1970 * in if_fddi.h.
1971 *
1972 * Note: Since the FDDI statistics structure is
1973 * still new and the device structure doesn't
1974 * have an FDDI-specific get statistics handler,
1975 * we'll return the FDDI statistics structure as
1976 * a pointer to an Ethernet statistics structure.
1977 * That way, at least the first part of the statistics
1978 * structure can be decoded properly, and it allows
1979 * "smart" applications to perform a second cast to
1980 * decode the FDDI-specific statistics.
1981 *
1982 * We'll have to pay attention to this routine as the
1983 * device structure becomes more mature and LAN media
1984 * independent.
1985 *
1986 * Return Codes:
1987 * None
1988 *
1989 * Assumptions:
1990 * None
1991 *
1992 * Side Effects:
1993 * None
1994 */
1995
1996static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1997 {
e89a2cfb 1998 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1999
2000 /* Fill the bp->stats structure with driver-maintained counters */
2001
2002 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2003 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2004 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2005 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2006 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2007 bp->rcv_frame_status_errors +
2008 bp->rcv_length_errors;
2009 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2010 bp->stats.gen.rx_dropped = bp->rcv_discards;
2011 bp->stats.gen.tx_dropped = bp->xmt_discards;
2012 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2013 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2014
2015 /* Get FDDI SMT MIB objects */
2016
2017 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2018 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2019 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2020
2021 /* Fill the bp->stats structure with the SMT MIB object values */
2022
2023 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2024 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2025 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2026 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2027 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2028 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2029 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2030 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2031 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2032 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2033 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2034 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2035 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2036 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2037 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2038 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2039 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2040 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2041 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2042 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2043 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2044 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2045 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2046 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2047 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2048 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2049 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2050 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2051 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2052 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2053 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2054 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2055 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2056 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2057 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2058 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2059 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2060 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2061 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2062 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2063 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2064 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2065 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2066 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2067 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2068 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2069 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2070 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2071 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2072 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2073 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2074 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2075 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2076 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2077 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2078 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2079 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2080 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2081 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2082 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2083 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2084 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2085 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2086 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2087 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2088 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2089 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2090 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2091 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2092 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2093 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2094 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2095 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2096 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2097 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2098 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2099 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2100 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2101 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2102 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2103 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2104 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2105 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2106 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2107 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2108 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2109 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2110 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2111 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2112 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2113 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2114 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2115
2116 /* Get FDDI counters */
2117
2118 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2119 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba 2120 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2121
2122 /* Fill the bp->stats structure with the FDDI counter values */
2123
2124 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2125 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2126 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2127 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2128 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2129 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2130 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2131 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2132 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2133 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2134 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2135
807540ba 2136 return (struct net_device_stats *)&bp->stats;
1da177e4
LT
2137 }
2138
6aa20a22 2139
1da177e4
LT
2140/*
2141 * ==============================
2142 * = dfx_ctl_set_multicast_list =
2143 * ==============================
6aa20a22 2144 *
1da177e4
LT
2145 * Overview:
2146 * Enable/Disable LLC frame promiscuous mode reception
2147 * on the adapter and/or update multicast address table.
6aa20a22 2148 *
1da177e4
LT
2149 * Returns:
2150 * None
6aa20a22 2151 *
1da177e4
LT
2152 * Arguments:
2153 * dev - pointer to device information
2154 *
2155 * Functional Description:
2156 * This routine follows a fairly simple algorithm for setting the
2157 * adapter filters and CAM:
2158 *
2159 * if IFF_PROMISC flag is set
2160 * enable LLC individual/group promiscuous mode
2161 * else
2162 * disable LLC individual/group promiscuous mode
2163 * if number of incoming multicast addresses >
2164 * (CAM max size - number of unicast addresses in CAM)
2165 * enable LLC group promiscuous mode
2166 * set driver-maintained multicast address count to zero
2167 * else
2168 * disable LLC group promiscuous mode
2169 * set driver-maintained multicast address count to incoming count
2170 * update adapter CAM
2171 * update adapter filters
2172 *
2173 * Return Codes:
2174 * None
2175 *
2176 * Assumptions:
2177 * Multicast addresses are presented in canonical (LSB) format.
2178 *
2179 * Side Effects:
2180 * On-board adapter CAM and filters are updated.
2181 */
2182
2183static void dfx_ctl_set_multicast_list(struct net_device *dev)
e89a2cfb
MR
2184{
2185 DFX_board_t *bp = netdev_priv(dev);
1da177e4 2186 int i; /* used as index in for loop */
22bedad3 2187 struct netdev_hw_addr *ha;
1da177e4
LT
2188
2189 /* Enable LLC frame promiscuous mode, if necessary */
2190
2191 if (dev->flags & IFF_PROMISC)
2192 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2193
2194 /* Else, update multicast address table */
2195
2196 else
2197 {
2198 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2199 /*
2200 * Check whether incoming multicast address count exceeds table size
2201 *
2202 * Note: The adapters utilize an on-board 64 entry CAM for
2203 * supporting perfect filtering of multicast packets
2204 * and bridge functions when adding unicast addresses.
2205 * There is no hash function available. To support
2206 * additional multicast addresses, the all multicast
2207 * filter (LLC group promiscuous mode) must be enabled.
2208 *
2209 * The firmware reserves two CAM entries for SMT-related
2210 * multicast addresses, which leaves 62 entries available.
2211 * The following code ensures that we're not being asked
2212 * to add more than 62 addresses to the CAM. If we are,
2213 * the driver will enable the all multicast filter.
2214 * Should the number of multicast addresses drop below
2215 * the high water mark, the filter will be disabled and
2216 * perfect filtering will be used.
2217 */
2218
4cd24eaf 2219 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
1da177e4
LT
2220 {
2221 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2222 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2223 }
2224 else
2225 {
2226 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
4cd24eaf 2227 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
1da177e4
LT
2228 }
2229
2230 /* Copy addresses to multicast address table, then update adapter CAM */
2231
e1d44477 2232 i = 0;
22bedad3 2233 netdev_for_each_mc_addr(ha, dev)
e1d44477 2234 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
22bedad3 2235 ha->addr, FDDI_K_ALEN);
e1d44477 2236
1da177e4
LT
2237 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2238 {
2239 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2240 }
2241 else
2242 {
2243 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2244 }
2245 }
2246
2247 /* Update adapter filters */
2248
2249 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2250 {
2251 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2252 }
2253 else
2254 {
2255 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2256 }
2257 }
2258
6aa20a22 2259
1da177e4
LT
2260/*
2261 * ===========================
2262 * = dfx_ctl_set_mac_address =
2263 * ===========================
6aa20a22 2264 *
1da177e4
LT
2265 * Overview:
2266 * Add node address override (unicast address) to adapter
2267 * CAM and update dev_addr field in device table.
6aa20a22 2268 *
1da177e4
LT
2269 * Returns:
2270 * None
6aa20a22 2271 *
1da177e4
LT
2272 * Arguments:
2273 * dev - pointer to device information
2274 * addr - pointer to sockaddr structure containing unicast address to add
2275 *
2276 * Functional Description:
2277 * The adapter supports node address overrides by adding one or more
2278 * unicast addresses to the adapter CAM. This is similar to adding
2279 * multicast addresses. In this routine we'll update the driver and
2280 * device structures with the new address, then update the adapter CAM
2281 * to ensure that the adapter will copy and strip frames destined and
2282 * sourced by that address.
2283 *
2284 * Return Codes:
2285 * Always returns zero.
2286 *
2287 * Assumptions:
2288 * The address pointed to by addr->sa_data is a valid unicast
2289 * address and is presented in canonical (LSB) format.
2290 *
2291 * Side Effects:
2292 * On-board adapter CAM is updated. On-board adapter filters
2293 * may be updated.
2294 */
2295
2296static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2297 {
1da177e4 2298 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
e89a2cfb 2299 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2300
2301 /* Copy unicast address to driver-maintained structs and update count */
2302
2303 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2304 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2305 bp->uc_count = 1;
2306
2307 /*
2308 * Verify we're not exceeding the CAM size by adding unicast address
2309 *
2310 * Note: It's possible that before entering this routine we've
2311 * already filled the CAM with 62 multicast addresses.
2312 * Since we need to place the node address override into
2313 * the CAM, we have to check to see that we're not
2314 * exceeding the CAM size. If we are, we have to enable
2315 * the LLC group (multicast) promiscuous mode filter as
2316 * in dfx_ctl_set_multicast_list.
2317 */
2318
2319 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2320 {
2321 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2322 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2323
2324 /* Update adapter filters */
2325
2326 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327 {
2328 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329 }
2330 else
2331 {
2332 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333 }
2334 }
2335
2336 /* Update adapter CAM with new unicast address */
2337
2338 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2339 {
2340 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2341 }
2342 else
2343 {
2344 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2345 }
807540ba 2346 return 0; /* always return zero */
1da177e4
LT
2347 }
2348
6aa20a22 2349
1da177e4
LT
2350/*
2351 * ======================
2352 * = dfx_ctl_update_cam =
2353 * ======================
2354 *
2355 * Overview:
2356 * Procedure to update adapter CAM (Content Addressable Memory)
2357 * with desired unicast and multicast address entries.
2358 *
2359 * Returns:
2360 * Condition code
2361 *
2362 * Arguments:
2363 * bp - pointer to board information
2364 *
2365 * Functional Description:
2366 * Updates adapter CAM with current contents of board structure
2367 * unicast and multicast address tables. Since there are only 62
2368 * free entries in CAM, this routine ensures that the command
2369 * request buffer is not overrun.
2370 *
2371 * Return Codes:
2372 * DFX_K_SUCCESS - Request succeeded
2373 * DFX_K_FAILURE - Request failed
2374 *
2375 * Assumptions:
2376 * All addresses being added (unicast and multicast) are in canonical
2377 * order.
2378 *
2379 * Side Effects:
2380 * On-board adapter CAM is updated.
2381 */
2382
2383static int dfx_ctl_update_cam(DFX_board_t *bp)
2384 {
2385 int i; /* used as index */
2386 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2387
2388 /*
2389 * Fill in command request information
2390 *
2391 * Note: Even though both the unicast and multicast address
2392 * table entries are stored as contiguous 6 byte entries,
2393 * the firmware address filter set command expects each
2394 * entry to be two longwords (8 bytes total). We must be
2395 * careful to only copy the six bytes of each unicast and
2396 * multicast table entry into each command entry. This
2397 * is also why we must first clear the entire command
2398 * request buffer.
2399 */
2400
2401 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2402 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2403 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2404
2405 /* Now add unicast addresses to command request buffer, if any */
2406
2407 for (i=0; i < (int)bp->uc_count; i++)
2408 {
2409 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2410 {
2411 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2412 p_addr++; /* point to next command entry */
2413 }
2414 }
2415
2416 /* Now add multicast addresses to command request buffer, if any */
2417
2418 for (i=0; i < (int)bp->mc_count; i++)
2419 {
2420 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2421 {
2422 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2423 p_addr++; /* point to next command entry */
2424 }
2425 }
2426
2427 /* Issue command to update adapter CAM, then return */
2428
2429 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2430 return DFX_K_FAILURE;
2431 return DFX_K_SUCCESS;
1da177e4
LT
2432 }
2433
6aa20a22 2434
1da177e4
LT
2435/*
2436 * ==========================
2437 * = dfx_ctl_update_filters =
2438 * ==========================
2439 *
2440 * Overview:
2441 * Procedure to update adapter filters with desired
2442 * filter settings.
6aa20a22 2443 *
1da177e4
LT
2444 * Returns:
2445 * Condition code
6aa20a22 2446 *
1da177e4
LT
2447 * Arguments:
2448 * bp - pointer to board information
2449 *
2450 * Functional Description:
2451 * Enables or disables filter using current filter settings.
2452 *
2453 * Return Codes:
2454 * DFX_K_SUCCESS - Request succeeded.
2455 * DFX_K_FAILURE - Request failed.
2456 *
2457 * Assumptions:
2458 * We must always pass up packets destined to the broadcast
2459 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2460 * broadcast filter enabled.
2461 *
2462 * Side Effects:
2463 * On-board adapter filters are updated.
2464 */
2465
2466static int dfx_ctl_update_filters(DFX_board_t *bp)
2467 {
2468 int i = 0; /* used as index */
2469
2470 /* Fill in command request information */
2471
2472 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2473
2474 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2475
2476 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2477 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2478
2479 /* Initialize LLC Individual/Group Promiscuous filter */
2480
2481 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2482 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2483
2484 /* Initialize LLC Group Promiscuous filter */
2485
2486 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2487 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2488
2489 /* Terminate the item code list */
2490
2491 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2492
2493 /* Issue command to update adapter filters, then return */
2494
2495 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
807540ba
ED
2496 return DFX_K_FAILURE;
2497 return DFX_K_SUCCESS;
1da177e4
LT
2498 }
2499
6aa20a22 2500
1da177e4
LT
2501/*
2502 * ======================
2503 * = dfx_hw_dma_cmd_req =
2504 * ======================
6aa20a22 2505 *
1da177e4
LT
2506 * Overview:
2507 * Sends PDQ DMA command to adapter firmware
6aa20a22 2508 *
1da177e4
LT
2509 * Returns:
2510 * Condition code
6aa20a22 2511 *
1da177e4
LT
2512 * Arguments:
2513 * bp - pointer to board information
2514 *
2515 * Functional Description:
2516 * The command request and response buffers are posted to the adapter in the manner
2517 * described in the PDQ Port Specification:
2518 *
2519 * 1. Command Response Buffer is posted to adapter.
2520 * 2. Command Request Buffer is posted to adapter.
2521 * 3. Command Request consumer index is polled until it indicates that request
2522 * buffer has been DMA'd to adapter.
2523 * 4. Command Response consumer index is polled until it indicates that response
2524 * buffer has been DMA'd from adapter.
2525 *
2526 * This ordering ensures that a response buffer is already available for the firmware
2527 * to use once it's done processing the request buffer.
2528 *
2529 * Return Codes:
2530 * DFX_K_SUCCESS - DMA command succeeded
2531 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2532 * DFX_K_HW_TIMEOUT - DMA command timed out
2533 *
2534 * Assumptions:
2535 * Command request buffer has already been filled with desired DMA command.
2536 *
2537 * Side Effects:
2538 * None
2539 */
2540
2541static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2542 {
2543 int status; /* adapter status */
2544 int timeout_cnt; /* used in for loops */
6aa20a22 2545
1da177e4 2546 /* Make sure the adapter is in a state that we can issue the DMA command in */
6aa20a22 2547
1da177e4
LT
2548 status = dfx_hw_adap_state_rd(bp);
2549 if ((status == PI_STATE_K_RESET) ||
2550 (status == PI_STATE_K_HALTED) ||
2551 (status == PI_STATE_K_DMA_UNAVAIL) ||
2552 (status == PI_STATE_K_UPGRADE))
807540ba 2553 return DFX_K_OUTSTATE;
1da177e4
LT
2554
2555 /* Put response buffer on the command response queue */
2556
2557 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2558 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2559 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2560
2561 /* Bump (and wrap) the producer index and write out to register */
2562
2563 bp->cmd_rsp_reg.index.prod += 1;
2564 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2565 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2566
2567 /* Put request buffer on the command request queue */
6aa20a22 2568
1da177e4
LT
2569 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2570 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2571 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2572
2573 /* Bump (and wrap) the producer index and write out to register */
2574
2575 bp->cmd_req_reg.index.prod += 1;
2576 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2577 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2578
2579 /*
2580 * Here we wait for the command request consumer index to be equal
2581 * to the producer, indicating that the adapter has DMAed the request.
2582 */
2583
2584 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2585 {
2586 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2587 break;
2588 udelay(100); /* wait for 100 microseconds */
2589 }
6aa20a22 2590 if (timeout_cnt == 0)
807540ba 2591 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2592
2593 /* Bump (and wrap) the completion index and write out to register */
2594
2595 bp->cmd_req_reg.index.comp += 1;
2596 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2597 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2598
2599 /*
2600 * Here we wait for the command response consumer index to be equal
2601 * to the producer, indicating that the adapter has DMAed the response.
2602 */
2603
2604 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2605 {
2606 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2607 break;
2608 udelay(100); /* wait for 100 microseconds */
2609 }
6aa20a22 2610 if (timeout_cnt == 0)
807540ba 2611 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2612
2613 /* Bump (and wrap) the completion index and write out to register */
2614
2615 bp->cmd_rsp_reg.index.comp += 1;
2616 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2617 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
807540ba 2618 return DFX_K_SUCCESS;
1da177e4
LT
2619 }
2620
6aa20a22 2621
1da177e4
LT
2622/*
2623 * ========================
2624 * = dfx_hw_port_ctrl_req =
2625 * ========================
6aa20a22 2626 *
1da177e4
LT
2627 * Overview:
2628 * Sends PDQ port control command to adapter firmware
6aa20a22 2629 *
1da177e4
LT
2630 * Returns:
2631 * Host data register value in host_data if ptr is not NULL
6aa20a22 2632 *
1da177e4
LT
2633 * Arguments:
2634 * bp - pointer to board information
2635 * command - port control command
2636 * data_a - port data A register value
2637 * data_b - port data B register value
2638 * host_data - ptr to host data register value
2639 *
2640 * Functional Description:
2641 * Send generic port control command to adapter by writing
2642 * to various PDQ port registers, then polling for completion.
2643 *
2644 * Return Codes:
2645 * DFX_K_SUCCESS - port control command succeeded
2646 * DFX_K_HW_TIMEOUT - port control command timed out
2647 *
2648 * Assumptions:
2649 * None
2650 *
2651 * Side Effects:
2652 * None
2653 */
2654
2655static int dfx_hw_port_ctrl_req(
2656 DFX_board_t *bp,
2657 PI_UINT32 command,
2658 PI_UINT32 data_a,
2659 PI_UINT32 data_b,
2660 PI_UINT32 *host_data
2661 )
2662
2663 {
2664 PI_UINT32 port_cmd; /* Port Control command register value */
2665 int timeout_cnt; /* used in for loops */
2666
2667 /* Set Command Error bit in command longword */
6aa20a22 2668
1da177e4
LT
2669 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2670
2671 /* Issue port command to the adapter */
2672
2673 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2674 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2675 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2676
2677 /* Now wait for command to complete */
2678
2679 if (command == PI_PCTRL_M_BLAST_FLASH)
2680 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2681 else
2682 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2683
2684 for (; timeout_cnt > 0; timeout_cnt--)
2685 {
2686 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2687 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2688 break;
2689 udelay(100); /* wait for 100 microseconds */
2690 }
6aa20a22 2691 if (timeout_cnt == 0)
807540ba 2692 return DFX_K_HW_TIMEOUT;
1da177e4
LT
2693
2694 /*
6aa20a22
JG
2695 * If the address of host_data is non-zero, assume caller has supplied a
2696 * non NULL pointer, and return the contents of the HOST_DATA register in
1da177e4
LT
2697 * it.
2698 */
2699
2700 if (host_data != NULL)
2701 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
807540ba 2702 return DFX_K_SUCCESS;
1da177e4
LT
2703 }
2704
6aa20a22 2705
1da177e4
LT
2706/*
2707 * =====================
2708 * = dfx_hw_adap_reset =
2709 * =====================
6aa20a22 2710 *
1da177e4
LT
2711 * Overview:
2712 * Resets adapter
6aa20a22 2713 *
1da177e4
LT
2714 * Returns:
2715 * None
6aa20a22 2716 *
1da177e4
LT
2717 * Arguments:
2718 * bp - pointer to board information
2719 * type - type of reset to perform
2720 *
2721 * Functional Description:
2722 * Issue soft reset to adapter by writing to PDQ Port Reset
2723 * register. Use incoming reset type to tell adapter what
2724 * kind of reset operation to perform.
2725 *
2726 * Return Codes:
2727 * None
2728 *
2729 * Assumptions:
2730 * This routine merely issues a soft reset to the adapter.
2731 * It is expected that after this routine returns, the caller
2732 * will appropriately poll the Port Status register for the
2733 * adapter to enter the proper state.
2734 *
2735 * Side Effects:
2736 * Internal adapter registers are cleared.
2737 */
2738
2739static void dfx_hw_adap_reset(
2740 DFX_board_t *bp,
2741 PI_UINT32 type
2742 )
2743
2744 {
2745 /* Set Reset type and assert reset */
2746
2747 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2748 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2749
2750 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2751
2752 udelay(20);
2753
2754 /* Deassert reset */
2755
2756 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2757 }
2758
6aa20a22 2759
1da177e4
LT
2760/*
2761 * ========================
2762 * = dfx_hw_adap_state_rd =
2763 * ========================
6aa20a22 2764 *
1da177e4
LT
2765 * Overview:
2766 * Returns current adapter state
6aa20a22 2767 *
1da177e4
LT
2768 * Returns:
2769 * Adapter state per PDQ Port Specification
6aa20a22 2770 *
1da177e4
LT
2771 * Arguments:
2772 * bp - pointer to board information
2773 *
2774 * Functional Description:
2775 * Reads PDQ Port Status register and returns adapter state.
2776 *
2777 * Return Codes:
2778 * None
2779 *
2780 * Assumptions:
2781 * None
2782 *
2783 * Side Effects:
2784 * None
2785 */
2786
2787static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2788 {
2789 PI_UINT32 port_status; /* Port Status register value */
2790
2791 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
807540ba 2792 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
1da177e4
LT
2793 }
2794
6aa20a22 2795
1da177e4
LT
2796/*
2797 * =====================
2798 * = dfx_hw_dma_uninit =
2799 * =====================
6aa20a22 2800 *
1da177e4
LT
2801 * Overview:
2802 * Brings adapter to DMA_UNAVAILABLE state
6aa20a22 2803 *
1da177e4
LT
2804 * Returns:
2805 * Condition code
6aa20a22 2806 *
1da177e4
LT
2807 * Arguments:
2808 * bp - pointer to board information
2809 * type - type of reset to perform
2810 *
2811 * Functional Description:
2812 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2813 * 1. Set reset type bit in Port Data A Register then reset adapter.
2814 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2815 *
2816 * Return Codes:
2817 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2818 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2819 *
2820 * Assumptions:
2821 * None
2822 *
2823 * Side Effects:
2824 * Internal adapter registers are cleared.
2825 */
2826
2827static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2828 {
2829 int timeout_cnt; /* used in for loops */
2830
2831 /* Set reset type bit and reset adapter */
2832
2833 dfx_hw_adap_reset(bp, type);
2834
2835 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2836
2837 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2838 {
2839 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2840 break;
2841 udelay(100); /* wait for 100 microseconds */
2842 }
6aa20a22 2843 if (timeout_cnt == 0)
807540ba
ED
2844 return DFX_K_HW_TIMEOUT;
2845 return DFX_K_SUCCESS;
1da177e4 2846 }
6aa20a22 2847
1da177e4
LT
2848/*
2849 * Align an sk_buff to a boundary power of 2
2850 *
2851 */
6aa20a22 2852
1da177e4
LT
2853static void my_skb_align(struct sk_buff *skb, int n)
2854{
2855 unsigned long x = (unsigned long)skb->data;
2856 unsigned long v;
6aa20a22 2857
1da177e4 2858 v = ALIGN(x, n); /* Where we want to be */
6aa20a22 2859
1da177e4
LT
2860 skb_reserve(skb, v - x);
2861}
2862
6aa20a22 2863
1da177e4
LT
2864/*
2865 * ================
2866 * = dfx_rcv_init =
2867 * ================
6aa20a22 2868 *
1da177e4
LT
2869 * Overview:
2870 * Produces buffers to adapter LLC Host receive descriptor block
6aa20a22 2871 *
1da177e4
LT
2872 * Returns:
2873 * None
6aa20a22 2874 *
1da177e4
LT
2875 * Arguments:
2876 * bp - pointer to board information
2877 * get_buffers - non-zero if buffers to be allocated
2878 *
2879 * Functional Description:
2880 * This routine can be called during dfx_adap_init() or during an adapter
2881 * reset. It initializes the descriptor block and produces all allocated
2882 * LLC Host queue receive buffers.
2883 *
2884 * Return Codes:
2885 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2886 * dynamic buffer allocation). If the buffer allocation failed, the
2887 * already allocated buffers will not be released and the caller should do
2888 * this.
2889 *
2890 * Assumptions:
2891 * The PDQ has been reset and the adapter and driver maintained Type 2
2892 * register indices are cleared.
2893 *
2894 * Side Effects:
2895 * Receive buffers are posted to the adapter LLC queue and the adapter
2896 * is notified.
2897 */
2898
2899static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2900 {
2901 int i, j; /* used in for loop */
2902
2903 /*
2904 * Since each receive buffer is a single fragment of same length, initialize
2905 * first longword in each receive descriptor for entire LLC Host descriptor
2906 * block. Also initialize second longword in each receive descriptor with
2907 * physical address of receive buffer. We'll always allocate receive
2908 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2909 * block and produce new receive buffers by simply updating the receive
2910 * producer index.
2911 *
2912 * Assumptions:
2913 * To support all shipping versions of PDQ, the receive buffer size
2914 * must be mod 128 in length and the physical address must be 128 byte
2915 * aligned. In other words, bits 0-6 of the length and address must
2916 * be zero for the following descriptor field entries to be correct on
2917 * all PDQ-based boards. We guaranteed both requirements during
2918 * driver initialization when we allocated memory for the receive buffers.
2919 */
2920
2921 if (get_buffers) {
2922#ifdef DYNAMIC_BUFFERS
2923 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2924 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2925 {
9034f77b 2926 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
1da177e4
LT
2927 if (!newskb)
2928 return -ENOMEM;
2929 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2930 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2931 /*
2932 * align to 128 bytes for compatibility with
2933 * the old EISA boards.
2934 */
6aa20a22 2935
1da177e4
LT
2936 my_skb_align(newskb, 128);
2937 bp->descr_block_virt->rcv_data[i + j].long_1 =
e89a2cfb 2938 (u32)dma_map_single(bp->bus_dev, newskb->data,
d68ab591 2939 PI_RCV_DATA_K_SIZE_MAX,
e89a2cfb 2940 DMA_FROM_DEVICE);
1da177e4
LT
2941 /*
2942 * p_rcv_buff_va is only used inside the
2943 * kernel so we put the skb pointer here.
2944 */
2945 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2946 }
2947#else
2948 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2949 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2950 {
2951 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2952 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2953 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
c2fd03a0 2954 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
1da177e4
LT
2955 }
2956#endif
2957 }
2958
2959 /* Update receive producer and Type 2 register */
2960
2961 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2962 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2963 return 0;
2964 }
2965
6aa20a22 2966
1da177e4
LT
2967/*
2968 * =========================
2969 * = dfx_rcv_queue_process =
2970 * =========================
6aa20a22 2971 *
1da177e4
LT
2972 * Overview:
2973 * Process received LLC frames.
6aa20a22 2974 *
1da177e4
LT
2975 * Returns:
2976 * None
6aa20a22 2977 *
1da177e4
LT
2978 * Arguments:
2979 * bp - pointer to board information
2980 *
2981 * Functional Description:
2982 * Received LLC frames are processed until there are no more consumed frames.
2983 * Once all frames are processed, the receive buffers are returned to the
2984 * adapter. Note that this algorithm fixes the length of time that can be spent
2985 * in this routine, because there are a fixed number of receive buffers to
2986 * process and buffers are not produced until this routine exits and returns
2987 * to the ISR.
2988 *
2989 * Return Codes:
2990 * None
2991 *
2992 * Assumptions:
2993 * None
2994 *
2995 * Side Effects:
2996 * None
2997 */
2998
2999static void dfx_rcv_queue_process(
3000 DFX_board_t *bp
3001 )
3002
3003 {
3004 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3005 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3006 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3007 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3008
3009 /* Service all consumed LLC receive frames */
3010
3011 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3012 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3013 {
3014 /* Process any errors */
3015
3016 int entry;
3017
3018 entry = bp->rcv_xmt_reg.index.rcv_comp;
3019#ifdef DYNAMIC_BUFFERS
3020 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3021#else
c2fd03a0 3022 p_buff = bp->p_rcv_buff_va[entry];
1da177e4
LT
3023#endif
3024 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3025
3026 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3027 {
3028 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3029 bp->rcv_crc_errors++;
3030 else
3031 bp->rcv_frame_status_errors++;
3032 }
3033 else
3034 {
3035 int rx_in_place = 0;
3036
3037 /* The frame was received without errors - verify packet length */
3038
3039 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3040 pkt_len -= 4; /* subtract 4 byte CRC */
3041 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3042 bp->rcv_length_errors++;
3043 else{
3044#ifdef DYNAMIC_BUFFERS
3045 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3046 struct sk_buff *newskb;
3047
3048 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3049 if (newskb){
3050 rx_in_place = 1;
6aa20a22 3051
1da177e4
LT
3052 my_skb_align(newskb, 128);
3053 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
e89a2cfb 3054 dma_unmap_single(bp->bus_dev,
1da177e4 3055 bp->descr_block_virt->rcv_data[entry].long_1,
d68ab591 3056 PI_RCV_DATA_K_SIZE_MAX,
e89a2cfb 3057 DMA_FROM_DEVICE);
1da177e4
LT
3058 skb_reserve(skb, RCV_BUFF_K_PADDING);
3059 bp->p_rcv_buff_va[entry] = (char *)newskb;
3060 bp->descr_block_virt->rcv_data[entry].long_1 =
e89a2cfb 3061 (u32)dma_map_single(bp->bus_dev,
1da177e4 3062 newskb->data,
d68ab591 3063 PI_RCV_DATA_K_SIZE_MAX,
e89a2cfb 3064 DMA_FROM_DEVICE);
1da177e4
LT
3065 } else
3066 skb = NULL;
3067 } else
3068#endif
3069 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3070 if (skb == NULL)
3071 {
3072 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3073 bp->rcv_discards++;
3074 break;
3075 }
3076 else {
3077#ifndef DYNAMIC_BUFFERS
3078 if (! rx_in_place)
3079#endif
3080 {
3081 /* Receive buffer allocated, pass receive packet up */
3082
27d7ff46
ACM
3083 skb_copy_to_linear_data(skb,
3084 p_buff + RCV_BUFF_K_PADDING,
3085 pkt_len + 3);
1da177e4 3086 }
6aa20a22 3087
1da177e4
LT
3088 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3089 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
1da177e4
LT
3090 skb->protocol = fddi_type_trans(skb, bp->dev);
3091 bp->rcv_total_bytes += skb->len;
3092 netif_rx(skb);
3093
3094 /* Update the rcv counters */
1da177e4
LT
3095 bp->rcv_total_frames++;
3096 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3097 bp->rcv_multicast_frames++;
3098 }
3099 }
3100 }
3101
3102 /*
3103 * Advance the producer (for recycling) and advance the completion
3104 * (for servicing received frames). Note that it is okay to
3105 * advance the producer without checking that it passes the
3106 * completion index because they are both advanced at the same
3107 * rate.
3108 */
3109
3110 bp->rcv_xmt_reg.index.rcv_prod += 1;
3111 bp->rcv_xmt_reg.index.rcv_comp += 1;
3112 }
3113 }
3114
6aa20a22 3115
1da177e4
LT
3116/*
3117 * =====================
3118 * = dfx_xmt_queue_pkt =
3119 * =====================
6aa20a22 3120 *
1da177e4
LT
3121 * Overview:
3122 * Queues packets for transmission
6aa20a22 3123 *
1da177e4
LT
3124 * Returns:
3125 * Condition code
6aa20a22 3126 *
1da177e4
LT
3127 * Arguments:
3128 * skb - pointer to sk_buff to queue for transmission
3129 * dev - pointer to device information
3130 *
3131 * Functional Description:
3132 * Here we assume that an incoming skb transmit request
3133 * is contained in a single physically contiguous buffer
3134 * in which the virtual address of the start of packet
3135 * (skb->data) can be converted to a physical address
3136 * by using pci_map_single().
3137 *
3138 * Since the adapter architecture requires a three byte
3139 * packet request header to prepend the start of packet,
3140 * we'll write the three byte field immediately prior to
3141 * the FC byte. This assumption is valid because we've
3142 * ensured that dev->hard_header_len includes three pad
3143 * bytes. By posting a single fragment to the adapter,
3144 * we'll reduce the number of descriptor fetches and
3145 * bus traffic needed to send the request.
3146 *
3147 * Also, we can't free the skb until after it's been DMA'd
3148 * out by the adapter, so we'll queue it in the driver and
3149 * return it in dfx_xmt_done.
3150 *
3151 * Return Codes:
3152 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3153 * 1 - caller should requeue the sk_buff for later transmission
3154 *
3155 * Assumptions:
3156 * First and foremost, we assume the incoming skb pointer
3157 * is NOT NULL and is pointing to a valid sk_buff structure.
3158 *
3159 * The outgoing packet is complete, starting with the
3160 * frame control byte including the last byte of data,
3161 * but NOT including the 4 byte CRC. We'll let the
3162 * adapter hardware generate and append the CRC.
3163 *
3164 * The entire packet is stored in one physically
3165 * contiguous buffer which is not cached and whose
3166 * 32-bit physical address can be determined.
3167 *
3168 * It's vital that this routine is NOT reentered for the
3169 * same board and that the OS is not in another section of
3170 * code (eg. dfx_int_common) for the same board on a
3171 * different thread.
3172 *
3173 * Side Effects:
3174 * None
3175 */
3176
61357325
SH
3177static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3178 struct net_device *dev)
1da177e4 3179 {
e89a2cfb 3180 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
3181 u8 prod; /* local transmit producer index */
3182 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3183 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3184 unsigned long flags;
3185
3186 netif_stop_queue(dev);
6aa20a22 3187
1da177e4
LT
3188 /*
3189 * Verify that incoming transmit request is OK
3190 *
3191 * Note: The packet size check is consistent with other
3192 * Linux device drivers, although the correct packet
3193 * size should be verified before calling the
3194 * transmit routine.
3195 */
3196
3197 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3198 {
6aa20a22 3199 printk("%s: Invalid packet length - %u bytes\n",
1da177e4
LT
3200 dev->name, skb->len);
3201 bp->xmt_length_errors++; /* bump error counter */
3202 netif_wake_queue(dev);
3203 dev_kfree_skb(skb);
ec634fe3 3204 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3205 }
3206 /*
3207 * See if adapter link is available, if not, free buffer
3208 *
3209 * Note: If the link isn't available, free buffer and return 0
3210 * rather than tell the upper layer to requeue the packet.
3211 * The methodology here is that by the time the link
3212 * becomes available, the packet to be sent will be
3213 * fairly stale. By simply dropping the packet, the
3214 * higher layer protocols will eventually time out
3215 * waiting for response packets which it won't receive.
3216 */
3217
3218 if (bp->link_available == PI_K_FALSE)
3219 {
3220 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3221 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3222 else
3223 {
3224 bp->xmt_discards++; /* bump error counter */
3225 dev_kfree_skb(skb); /* free sk_buff now */
3226 netif_wake_queue(dev);
ec634fe3 3227 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
3228 }
3229 }
3230
3231 spin_lock_irqsave(&bp->lock, flags);
6aa20a22 3232
1da177e4
LT
3233 /* Get the current producer and the next free xmt data descriptor */
3234
3235 prod = bp->rcv_xmt_reg.index.xmt_prod;
3236 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3237
3238 /*
3239 * Get pointer to auxiliary queue entry to contain information
3240 * for this packet.
3241 *
3242 * Note: The current xmt producer index will become the
3243 * current xmt completion index when we complete this
3244 * packet later on. So, we'll get the pointer to the
3245 * next auxiliary queue entry now before we bump the
3246 * producer index.
3247 */
3248
3249 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3250
3251 /* Write the three PRH bytes immediately before the FC byte */
3252
3253 skb_push(skb,3);
3254 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3255 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3256 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3257
3258 /*
3259 * Write the descriptor with buffer info and bump producer
3260 *
3261 * Note: Since we need to start DMA from the packet request
3262 * header, we'll add 3 bytes to the DMA buffer length,
3263 * and we'll determine the physical address of the
3264 * buffer from the PRH, not skb->data.
3265 *
3266 * Assumptions:
3267 * 1. Packet starts with the frame control (FC) byte
3268 * at skb->data.
3269 * 2. The 4-byte CRC is not appended to the buffer or
3270 * included in the length.
3271 * 3. Packet length (skb->len) is from FC to end of
3272 * data, inclusive.
3273 * 4. The packet length does not exceed the maximum
3274 * FDDI LLC frame length of 4491 bytes.
3275 * 5. The entire packet is contained in a physically
3276 * contiguous, non-cached, locked memory space
3277 * comprised of a single buffer pointed to by
3278 * skb->data.
3279 * 6. The physical address of the start of packet
3280 * can be determined from the virtual address
3281 * by using pci_map_single() and is only 32-bits
3282 * wide.
3283 */
3284
3285 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
e89a2cfb
MR
3286 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3287 skb->len, DMA_TO_DEVICE);
1da177e4
LT
3288
3289 /*
3290 * Verify that descriptor is actually available
3291 *
3292 * Note: If descriptor isn't available, return 1 which tells
3293 * the upper layer to requeue the packet for later
3294 * transmission.
3295 *
3296 * We need to ensure that the producer never reaches the
3297 * completion, except to indicate that the queue is empty.
3298 */
3299
3300 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3301 {
3302 skb_pull(skb,3);
3303 spin_unlock_irqrestore(&bp->lock, flags);
5b548140 3304 return NETDEV_TX_BUSY; /* requeue packet for later */
1da177e4
LT
3305 }
3306
3307 /*
3308 * Save info for this packet for xmt done indication routine
3309 *
3310 * Normally, we'd save the producer index in the p_xmt_drv_descr
3311 * structure so that we'd have it handy when we complete this
3312 * packet later (in dfx_xmt_done). However, since the current
3313 * transmit architecture guarantees a single fragment for the
3314 * entire packet, we can simply bump the completion index by
3315 * one (1) for each completed packet.
3316 *
3317 * Note: If this assumption changes and we're presented with
3318 * an inconsistent number of transmit fragments for packet
3319 * data, we'll need to modify this code to save the current
3320 * transmit producer index.
3321 */
3322
3323 p_xmt_drv_descr->p_skb = skb;
3324
3325 /* Update Type 2 register */
3326
3327 bp->rcv_xmt_reg.index.xmt_prod = prod;
3328 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3329 spin_unlock_irqrestore(&bp->lock, flags);
3330 netif_wake_queue(dev);
ec634fe3 3331 return NETDEV_TX_OK; /* packet queued to adapter */
1da177e4
LT
3332 }
3333
6aa20a22 3334
1da177e4
LT
3335/*
3336 * ================
3337 * = dfx_xmt_done =
3338 * ================
6aa20a22 3339 *
1da177e4
LT
3340 * Overview:
3341 * Processes all frames that have been transmitted.
6aa20a22 3342 *
1da177e4
LT
3343 * Returns:
3344 * None
6aa20a22 3345 *
1da177e4
LT
3346 * Arguments:
3347 * bp - pointer to board information
3348 *
3349 * Functional Description:
3350 * For all consumed transmit descriptors that have not
3351 * yet been completed, we'll free the skb we were holding
3352 * onto using dev_kfree_skb and bump the appropriate
3353 * counters.
3354 *
3355 * Return Codes:
3356 * None
3357 *
3358 * Assumptions:
3359 * The Type 2 register is not updated in this routine. It is
3360 * assumed that it will be updated in the ISR when dfx_xmt_done
3361 * returns.
3362 *
3363 * Side Effects:
3364 * None
3365 */
3366
3367static int dfx_xmt_done(DFX_board_t *bp)
3368 {
3369 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3370 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3371 u8 comp; /* local transmit completion index */
3372 int freed = 0; /* buffers freed */
3373
3374 /* Service all consumed transmit frames */
3375
3376 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3377 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3378 {
3379 /* Get pointer to the transmit driver descriptor block information */
3380
3381 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3382
3383 /* Increment transmit counters */
3384
3385 bp->xmt_total_frames++;
3386 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3387
3388 /* Return skb to operating system */
3389 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3390 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3391 bp->descr_block_virt->xmt_data[comp].long_1,
3392 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3393 DMA_TO_DEVICE);
1da177e4
LT
3394 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3395
3396 /*
3397 * Move to start of next packet by updating completion index
3398 *
3399 * Here we assume that a transmit packet request is always
3400 * serviced by posting one fragment. We can therefore
3401 * simplify the completion code by incrementing the
3402 * completion index by one. This code will need to be
3403 * modified if this assumption changes. See comments
3404 * in dfx_xmt_queue_pkt for more details.
3405 */
3406
3407 bp->rcv_xmt_reg.index.xmt_comp += 1;
3408 freed++;
3409 }
3410 return freed;
3411 }
3412
6aa20a22 3413
1da177e4
LT
3414/*
3415 * =================
3416 * = dfx_rcv_flush =
3417 * =================
6aa20a22 3418 *
1da177e4
LT
3419 * Overview:
3420 * Remove all skb's in the receive ring.
6aa20a22 3421 *
1da177e4
LT
3422 * Returns:
3423 * None
6aa20a22 3424 *
1da177e4
LT
3425 * Arguments:
3426 * bp - pointer to board information
3427 *
3428 * Functional Description:
3429 * Free's all the dynamically allocated skb's that are
3430 * currently attached to the device receive ring. This
3431 * function is typically only used when the device is
3432 * initialized or reinitialized.
3433 *
3434 * Return Codes:
3435 * None
3436 *
3437 * Side Effects:
3438 * None
3439 */
3440#ifdef DYNAMIC_BUFFERS
3441static void dfx_rcv_flush( DFX_board_t *bp )
3442 {
3443 int i, j;
3444
3445 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3446 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3447 {
3448 struct sk_buff *skb;
3449 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3450 if (skb)
3451 dev_kfree_skb(skb);
3452 bp->p_rcv_buff_va[i+j] = NULL;
3453 }
3454
3455 }
3456#else
3457static inline void dfx_rcv_flush( DFX_board_t *bp )
3458{
3459}
3460#endif /* DYNAMIC_BUFFERS */
3461
3462/*
3463 * =================
3464 * = dfx_xmt_flush =
3465 * =================
6aa20a22 3466 *
1da177e4
LT
3467 * Overview:
3468 * Processes all frames whether they've been transmitted
3469 * or not.
6aa20a22 3470 *
1da177e4
LT
3471 * Returns:
3472 * None
6aa20a22 3473 *
1da177e4
LT
3474 * Arguments:
3475 * bp - pointer to board information
3476 *
3477 * Functional Description:
3478 * For all produced transmit descriptors that have not
3479 * yet been completed, we'll free the skb we were holding
3480 * onto using dev_kfree_skb and bump the appropriate
3481 * counters. Of course, it's possible that some of
3482 * these transmit requests actually did go out, but we
3483 * won't make that distinction here. Finally, we'll
3484 * update the consumer index to match the producer.
3485 *
3486 * Return Codes:
3487 * None
3488 *
3489 * Assumptions:
3490 * This routine does NOT update the Type 2 register. It
3491 * is assumed that this routine is being called during a
3492 * transmit flush interrupt, or a shutdown or close routine.
3493 *
3494 * Side Effects:
3495 * None
3496 */
3497
3498static void dfx_xmt_flush( DFX_board_t *bp )
3499 {
3500 u32 prod_cons; /* rcv/xmt consumer block longword */
3501 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3502 u8 comp; /* local transmit completion index */
3503
3504 /* Flush all outstanding transmit frames */
3505
3506 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3507 {
3508 /* Get pointer to the transmit driver descriptor block information */
3509
3510 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3511
3512 /* Return skb to operating system */
3513 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3514 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3515 bp->descr_block_virt->xmt_data[comp].long_1,
3516 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3517 DMA_TO_DEVICE);
1da177e4
LT
3518 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3519
3520 /* Increment transmit error counter */
3521
3522 bp->xmt_discards++;
3523
3524 /*
3525 * Move to start of next packet by updating completion index
3526 *
3527 * Here we assume that a transmit packet request is always
3528 * serviced by posting one fragment. We can therefore
3529 * simplify the completion code by incrementing the
3530 * completion index by one. This code will need to be
3531 * modified if this assumption changes. See comments
3532 * in dfx_xmt_queue_pkt for more details.
3533 */
3534
3535 bp->rcv_xmt_reg.index.xmt_comp += 1;
3536 }
3537
3538 /* Update the transmit consumer index in the consumer block */
3539
3540 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3541 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3542 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3543 }
3544
e89a2cfb
MR
3545/*
3546 * ==================
3547 * = dfx_unregister =
3548 * ==================
3549 *
3550 * Overview:
3551 * Shuts down an FDDI controller
3552 *
3553 * Returns:
3554 * Condition code
3555 *
3556 * Arguments:
3557 * bdev - pointer to device information
3558 *
3559 * Functional Description:
3560 *
3561 * Return Codes:
3562 * None
3563 *
3564 * Assumptions:
3565 * It compiles so it should work :-( (PCI cards do :-)
3566 *
3567 * Side Effects:
3568 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3569 * freed.
3570 */
c354dfc3 3571static void dfx_unregister(struct device *bdev)
1da177e4 3572{
e89a2cfb
MR
3573 struct net_device *dev = dev_get_drvdata(bdev);
3574 DFX_board_t *bp = netdev_priv(dev);
5349d937 3575 int dfx_bus_pci = dev_is_pci(bdev);
e89a2cfb
MR
3576 int dfx_bus_tc = DFX_BUS_TC(bdev);
3577 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3578 resource_size_t bar_start = 0; /* pointer to port */
3579 resource_size_t bar_len = 0; /* resource length */
1da177e4
LT
3580 int alloc_size; /* total buffer size used */
3581
3582 unregister_netdev(dev);
1da177e4
LT
3583
3584 alloc_size = sizeof(PI_DESCR_BLOCK) +
3585 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3586#ifndef DYNAMIC_BUFFERS
3587 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3588#endif
3589 sizeof(PI_CONSUMER_BLOCK) +
3590 (PI_ALIGN_K_DESC_BLK - 1);
3591 if (bp->kmalloced)
e89a2cfb
MR
3592 dma_free_coherent(bdev, alloc_size,
3593 bp->kmalloced, bp->kmalloced_dma);
3594
3595 dfx_bus_uninit(dev);
3596
3597 dfx_get_bars(bdev, &bar_start, &bar_len);
3598 if (dfx_use_mmio) {
3599 iounmap(bp->base.mem);
3600 release_mem_region(bar_start, bar_len);
3601 } else
3602 release_region(bar_start, bar_len);
3603
3604 if (dfx_bus_pci)
3605 pci_disable_device(to_pci_dev(bdev));
3606
1da177e4
LT
3607 free_netdev(dev);
3608}
3609
1da177e4 3610
c354dfc3
BP
3611static int __maybe_unused dfx_dev_register(struct device *);
3612static int __maybe_unused dfx_dev_unregister(struct device *);
1da177e4 3613
e89a2cfb 3614#ifdef CONFIG_PCI
1dd06ae8 3615static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
c354dfc3 3616static void dfx_pci_unregister(struct pci_dev *);
e89a2cfb 3617
a3aa1884 3618static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
e89a2cfb
MR
3619 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3620 { }
1da177e4 3621};
e89a2cfb 3622MODULE_DEVICE_TABLE(pci, dfx_pci_table);
1da177e4 3623
e89a2cfb 3624static struct pci_driver dfx_pci_driver = {
1da177e4 3625 .name = "defxx",
e89a2cfb
MR
3626 .id_table = dfx_pci_table,
3627 .probe = dfx_pci_register,
c354dfc3 3628 .remove = dfx_pci_unregister,
1da177e4
LT
3629};
3630
c354dfc3 3631static int dfx_pci_register(struct pci_dev *pdev,
1dd06ae8 3632 const struct pci_device_id *ent)
e89a2cfb
MR
3633{
3634 return dfx_register(&pdev->dev);
3635}
1da177e4 3636
c354dfc3 3637static void dfx_pci_unregister(struct pci_dev *pdev)
1da177e4 3638{
e89a2cfb
MR
3639 dfx_unregister(&pdev->dev);
3640}
3641#endif /* CONFIG_PCI */
3642
3643#ifdef CONFIG_EISA
3644static struct eisa_device_id dfx_eisa_table[] = {
3645 { "DEC3001", DEFEA_PROD_ID_1 },
3646 { "DEC3002", DEFEA_PROD_ID_2 },
3647 { "DEC3003", DEFEA_PROD_ID_3 },
3648 { "DEC3004", DEFEA_PROD_ID_4 },
3649 { }
3650};
3651MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3652
3653static struct eisa_driver dfx_eisa_driver = {
3654 .id_table = dfx_eisa_table,
3655 .driver = {
3656 .name = "defxx",
3657 .bus = &eisa_bus_type,
3658 .probe = dfx_dev_register,
c354dfc3 3659 .remove = dfx_dev_unregister,
e89a2cfb
MR
3660 },
3661};
3662#endif /* CONFIG_EISA */
3663
3664#ifdef CONFIG_TC
3665static struct tc_device_id const dfx_tc_table[] = {
3666 { "DEC ", "PMAF-FA " },
3667 { "DEC ", "PMAF-FD " },
3668 { "DEC ", "PMAF-FS " },
3669 { "DEC ", "PMAF-FU " },
3670 { }
3671};
3672MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3673
3674static struct tc_driver dfx_tc_driver = {
3675 .id_table = dfx_tc_table,
3676 .driver = {
3677 .name = "defxx",
3678 .bus = &tc_bus_type,
3679 .probe = dfx_dev_register,
c354dfc3 3680 .remove = dfx_dev_unregister,
e89a2cfb
MR
3681 },
3682};
3683#endif /* CONFIG_TC */
1da177e4 3684
c354dfc3 3685static int __maybe_unused dfx_dev_register(struct device *dev)
e89a2cfb
MR
3686{
3687 int status;
1da177e4 3688
e89a2cfb
MR
3689 status = dfx_register(dev);
3690 if (!status)
3691 get_device(dev);
3692 return status;
1da177e4
LT
3693}
3694
c354dfc3 3695static int __maybe_unused dfx_dev_unregister(struct device *dev)
1da177e4 3696{
e89a2cfb
MR
3697 put_device(dev);
3698 dfx_unregister(dev);
3699 return 0;
3700}
6aa20a22 3701
1da177e4 3702
c354dfc3 3703static int dfx_init(void)
e89a2cfb
MR
3704{
3705 int status;
3706
3707 status = pci_register_driver(&dfx_pci_driver);
3708 if (!status)
3709 status = eisa_driver_register(&dfx_eisa_driver);
3710 if (!status)
3711 status = tc_register_driver(&dfx_tc_driver);
3712 return status;
1da177e4
LT
3713}
3714
c354dfc3 3715static void dfx_cleanup(void)
1da177e4 3716{
e89a2cfb
MR
3717 tc_unregister_driver(&dfx_tc_driver);
3718 eisa_driver_unregister(&dfx_eisa_driver);
3719 pci_unregister_driver(&dfx_pci_driver);
6aa20a22 3720}
1da177e4
LT
3721
3722module_init(dfx_init);
3723module_exit(dfx_cleanup);
3724MODULE_AUTHOR("Lawrence V. Stefani");
e89a2cfb 3725MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
1da177e4
LT
3726 DRV_VERSION " " DRV_RELDATE);
3727MODULE_LICENSE("GPL");
This page took 1.18777 seconds and 5 git commands to generate.