Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b
SG
20 *
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
1da177e4 47
080853af 48#include <asm/cacheflush.h>
196719ec 49
b5680e0b 50#ifndef CONFIG_ARM
1da177e4
LT
51#include <asm/coldfire.h>
52#include <asm/mcfsim.h>
196719ec 53#endif
6f501b17 54
1da177e4 55#include "fec.h"
1da177e4 56
085e79ed 57#if defined(CONFIG_ARM)
196719ec
SH
58#define FEC_ALIGNMENT 0xf
59#else
60#define FEC_ALIGNMENT 0x3
61#endif
62
b5680e0b
SG
63#define DRIVER_NAME "fec"
64
65/* Controller is ENET-MAC */
66#define FEC_QUIRK_ENET_MAC (1 << 0)
67/* Controller needs driver to swap frame */
68#define FEC_QUIRK_SWAP_FRAME (1 << 1)
69
70static struct platform_device_id fec_devtype[] = {
71 {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
9eb0e6f2
AL
77 },
78 { }
b5680e0b
SG
79};
80
49da97dc
SG
81static unsigned char macaddr[ETH_ALEN];
82module_param_array(macaddr, byte, NULL, 0);
83MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 84
49da97dc 85#if defined(CONFIG_M5272)
1da177e4
LT
86/*
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
89 */
90#if defined(CONFIG_NETtel)
91#define FEC_FLASHMAC 0xf0006006
92#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
94#elif defined(CONFIG_CANCam)
95#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
96#elif defined (CONFIG_M5272C3)
97#define FEC_FLASHMAC (0xffe04000 + 4)
98#elif defined(CONFIG_MOD5272)
99#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
100#else
101#define FEC_FLASHMAC 0
102#endif
43be6366 103#endif /* CONFIG_M5272 */
ead73183 104
1da177e4
LT
105/* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
110 */
111#define FEC_ENET_RX_PAGES 8
112#define FEC_ENET_RX_FRSIZE 2048
113#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115#define FEC_ENET_TX_FRSIZE 2048
116#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117#define TX_RING_SIZE 16 /* Must be power of two */
118#define TX_RING_MOD_MASK 15 /* for this to work */
119
562d2f8c 120#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 121#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
122#endif
123
22f6b860 124/* Interrupt events/masks. */
1da177e4
LT
125#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
135
4bee1f9a
WS
136#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
137
1da177e4
LT
138/* The FEC stores dest/src/type, data, and checksum for receive packets.
139 */
140#define PKT_MAXBUF_SIZE 1518
141#define PKT_MINBUF_SIZE 64
142#define PKT_MAXBLR_SIZE 1520
143
144
145/*
6b265293 146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
149 */
562d2f8c 150#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
152#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
153#else
154#define OPT_FRAME_SIZE 0
155#endif
156
157/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
164 */
165struct fec_enet_private {
166 /* Hardware registers of the FEC device */
f44d6305 167 void __iomem *hwp;
1da177e4 168
cb84d6e7
GU
169 struct net_device *netdev;
170
ead73183
SH
171 struct clk *clk;
172
1da177e4
LT
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce[TX_RING_SIZE];
175 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 176 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
177 ushort skb_cur;
178 ushort skb_dirty;
179
22f6b860 180 /* CPM dual port RAM relative addresses */
4661e75b 181 dma_addr_t bd_dma;
22f6b860 182 /* Address of Rx and Tx buffers */
2e28532f
SH
183 struct bufdesc *rx_bd_base;
184 struct bufdesc *tx_bd_base;
185 /* The next free ring entry */
db8880bc 186 struct bufdesc *cur_rx, *cur_tx;
22f6b860 187 /* The ring entries to be free()ed */
2e28532f
SH
188 struct bufdesc *dirty_tx;
189
1da177e4 190 uint tx_full;
3b2b74ca
SS
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
192 spinlock_t hw_lock;
1da177e4 193
db8880bc 194 struct platform_device *pdev;
1da177e4 195
e6b043d5 196 int opened;
1da177e4 197
e6b043d5 198 /* Phylib and MDIO interface */
db8880bc
UKK
199 struct mii_bus *mii_bus;
200 struct phy_device *phy_dev;
201 int mii_timeout;
202 uint phy_speed;
5eb32bd0 203 phy_interface_t phy_interface;
1da177e4 204 int link;
1da177e4 205 int full_duplex;
97b72e43 206 struct completion mdio_done;
1da177e4
LT
207};
208
e6b043d5
BW
209/* FEC MII MMFR bits definition */
210#define FEC_MMFR_ST (1 << 30)
211#define FEC_MMFR_OP_READ (2 << 28)
212#define FEC_MMFR_OP_WRITE (1 << 28)
213#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215#define FEC_MMFR_TA (2 << 16)
216#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 217
97b72e43 218#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 219
22f6b860
SH
220/* Transmitter timeout */
221#define TX_TIMEOUT (2 * HZ)
1da177e4 222
b5680e0b
SG
223static void *swap_buffer(void *bufaddr, int len)
224{
225 int i;
226 unsigned int *buf = bufaddr;
227
228 for (i = 0; i < (len + 3) / 4; i++, buf++)
229 *buf = cpu_to_be32(*buf);
230
231 return bufaddr;
232}
233
c7621cb3 234static netdev_tx_t
c556167f 235fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1da177e4 236{
c556167f 237 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
238 const struct platform_device_id *id_entry =
239 platform_get_device_id(fep->pdev);
2e28532f 240 struct bufdesc *bdp;
9555b31e 241 void *bufaddr;
0e702ab3 242 unsigned short status;
3b2b74ca 243 unsigned long flags;
1da177e4 244
1da177e4
LT
245 if (!fep->link) {
246 /* Link is down or autonegotiation is in progress. */
5b548140 247 return NETDEV_TX_BUSY;
1da177e4
LT
248 }
249
3b2b74ca 250 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
251 /* Fill in a Tx ring entry */
252 bdp = fep->cur_tx;
253
0e702ab3 254 status = bdp->cbd_sc;
22f6b860 255
0e702ab3 256 if (status & BD_ENET_TX_READY) {
1da177e4 257 /* Ooops. All transmit buffers are full. Bail out.
c556167f 258 * This should not happen, since ndev->tbusy should be set.
1da177e4 259 */
c556167f 260 printk("%s: tx queue full!.\n", ndev->name);
3b2b74ca 261 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 262 return NETDEV_TX_BUSY;
1da177e4 263 }
1da177e4 264
22f6b860 265 /* Clear all of the status flags */
0e702ab3 266 status &= ~BD_ENET_TX_STATS;
1da177e4 267
22f6b860 268 /* Set buffer length and buffer pointer */
9555b31e 269 bufaddr = skb->data;
1da177e4
LT
270 bdp->cbd_datlen = skb->len;
271
272 /*
22f6b860
SH
273 * On some FEC implementations data must be aligned on
274 * 4-byte boundaries. Use bounce buffers to copy data
275 * and get it aligned. Ugh.
1da177e4 276 */
9555b31e 277 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
278 unsigned int index;
279 index = bdp - fep->tx_bd_base;
8a73b0bc 280 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 281 bufaddr = fep->tx_bounce[index];
1da177e4
LT
282 }
283
b5680e0b
SG
284 /*
285 * Some design made an incorrect assumption on endian mode of
286 * the system that it's running on. As the result, driver has to
287 * swap every frame going to and coming from the controller.
288 */
289 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
290 swap_buffer(bufaddr, skb->len);
291
22f6b860 292 /* Save skb pointer */
1da177e4
LT
293 fep->tx_skbuff[fep->skb_cur] = skb;
294
c556167f 295 ndev->stats.tx_bytes += skb->len;
1da177e4 296 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 297
1da177e4
LT
298 /* Push the data cache so the CPM does not get stale memory
299 * data.
300 */
d1ab1f54 301 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
f0b3fbea 302 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 303
0e702ab3
GU
304 /* Send it on its way. Tell FEC it's ready, interrupt when done,
305 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 306 */
0e702ab3 307 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 308 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 309 bdp->cbd_sc = status;
1da177e4 310
1da177e4 311 /* Trigger transmission start */
f44d6305 312 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 313
22f6b860
SH
314 /* If this was the last BD in the ring, start at the beginning again. */
315 if (status & BD_ENET_TX_WRAP)
1da177e4 316 bdp = fep->tx_bd_base;
22f6b860 317 else
1da177e4 318 bdp++;
1da177e4
LT
319
320 if (bdp == fep->dirty_tx) {
321 fep->tx_full = 1;
c556167f 322 netif_stop_queue(ndev);
1da177e4
LT
323 }
324
2e28532f 325 fep->cur_tx = bdp;
1da177e4 326
18a03b97
RC
327 skb_tx_timestamp(skb);
328
a0087a36
RC
329 spin_unlock_irqrestore(&fep->hw_lock, flags);
330
6ed10654 331 return NETDEV_TX_OK;
1da177e4
LT
332}
333
45993653
UKK
334/* This function is called to start or restart the FEC during a link
335 * change. This only happens when switching between half and full
336 * duplex.
337 */
1da177e4 338static void
45993653 339fec_restart(struct net_device *ndev, int duplex)
1da177e4 340{
c556167f 341 struct fec_enet_private *fep = netdev_priv(ndev);
45993653
UKK
342 const struct platform_device_id *id_entry =
343 platform_get_device_id(fep->pdev);
344 int i;
cd1f402c
UKK
345 u32 temp_mac[2];
346 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1da177e4 347
45993653
UKK
348 /* Whack a reset. We should wait for this. */
349 writel(1, fep->hwp + FEC_ECNTRL);
350 udelay(10);
1da177e4 351
45993653
UKK
352 /*
353 * enet-mac reset will reset mac address registers too,
354 * so need to reconfigure it.
355 */
356 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
357 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
358 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
359 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
360 }
1da177e4 361
45993653
UKK
362 /* Clear any outstanding interrupt. */
363 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 364
45993653
UKK
365 /* Reset all multicast. */
366 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
367 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
368#ifndef CONFIG_M5272
369 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
370 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
371#endif
1da177e4 372
45993653
UKK
373 /* Set maximum receive buffer size. */
374 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 375
45993653
UKK
376 /* Set receive and transmit descriptor base. */
377 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
378 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
379 fep->hwp + FEC_X_DES_START);
380
381 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
382 fep->cur_rx = fep->rx_bd_base;
383
384 /* Reset SKB transmit buffers. */
385 fep->skb_cur = fep->skb_dirty = 0;
386 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
387 if (fep->tx_skbuff[i]) {
388 dev_kfree_skb_any(fep->tx_skbuff[i]);
389 fep->tx_skbuff[i] = NULL;
1da177e4 390 }
45993653 391 }
97b72e43 392
45993653
UKK
393 /* Enable MII mode */
394 if (duplex) {
cd1f402c 395 /* FD enable */
45993653
UKK
396 writel(0x04, fep->hwp + FEC_X_CNTRL);
397 } else {
cd1f402c
UKK
398 /* No Rcv on Xmit */
399 rcntl |= 0x02;
45993653
UKK
400 writel(0x0, fep->hwp + FEC_X_CNTRL);
401 }
cd1f402c 402
45993653
UKK
403 fep->full_duplex = duplex;
404
405 /* Set MII speed */
406 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
407
408 /*
409 * The phy interface and speed need to get configured
410 * differently on enet-mac.
411 */
412 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
cd1f402c
UKK
413 /* Enable flow control and length check */
414 rcntl |= 0x40000000 | 0x00000020;
45993653
UKK
415
416 /* MII or RMII */
417 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
cd1f402c 418 rcntl |= (1 << 8);
45993653 419 else
cd1f402c 420 rcntl &= ~(1 << 8);
45993653
UKK
421
422 /* 10M or 100M */
423 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
cd1f402c 424 rcntl &= ~(1 << 9);
45993653 425 else
cd1f402c 426 rcntl |= (1 << 9);
45993653 427
45993653
UKK
428 } else {
429#ifdef FEC_MIIGSK_ENR
430 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
431 /* disable the gasket and wait */
432 writel(0, fep->hwp + FEC_MIIGSK_ENR);
433 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
434 udelay(1);
435
436 /*
437 * configure the gasket:
438 * RMII, 50 MHz, no loopback, no echo
439 */
440 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
441
442 /* re-enable the gasket */
443 writel(2, fep->hwp + FEC_MIIGSK_ENR);
97b72e43 444 }
45993653
UKK
445#endif
446 }
cd1f402c 447 writel(rcntl, fep->hwp + FEC_R_CNTRL);
3b2b74ca 448
45993653
UKK
449 /* And last, enable the transmit and receive processing */
450 writel(2, fep->hwp + FEC_ECNTRL);
451 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
452
453 /* Enable interrupts we wish to service */
454 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
455}
456
457static void
458fec_stop(struct net_device *ndev)
459{
460 struct fec_enet_private *fep = netdev_priv(ndev);
461
462 /* We cannot expect a graceful transmit stop without link !!! */
463 if (fep->link) {
464 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
465 udelay(10);
466 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
467 printk("fec_stop : Graceful transmit stop did not complete !\n");
468 }
469
470 /* Whack a reset. We should wait for this. */
471 writel(1, fep->hwp + FEC_ECNTRL);
472 udelay(10);
473 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
474 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
475}
476
477
45993653
UKK
478static void
479fec_timeout(struct net_device *ndev)
480{
481 struct fec_enet_private *fep = netdev_priv(ndev);
482
483 ndev->stats.tx_errors++;
484
485 fec_restart(ndev, fep->full_duplex);
486 netif_wake_queue(ndev);
487}
488
1da177e4 489static void
c556167f 490fec_enet_tx(struct net_device *ndev)
1da177e4
LT
491{
492 struct fec_enet_private *fep;
2e28532f 493 struct bufdesc *bdp;
0e702ab3 494 unsigned short status;
1da177e4
LT
495 struct sk_buff *skb;
496
c556167f 497 fep = netdev_priv(ndev);
81538e74 498 spin_lock(&fep->hw_lock);
1da177e4
LT
499 bdp = fep->dirty_tx;
500
0e702ab3 501 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
502 if (bdp == fep->cur_tx && fep->tx_full == 0)
503 break;
504
d1ab1f54
UKK
505 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
506 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
f0b3fbea 507 bdp->cbd_bufaddr = 0;
1da177e4
LT
508
509 skb = fep->tx_skbuff[fep->skb_dirty];
510 /* Check for errors. */
0e702ab3 511 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
512 BD_ENET_TX_RL | BD_ENET_TX_UN |
513 BD_ENET_TX_CSL)) {
c556167f 514 ndev->stats.tx_errors++;
0e702ab3 515 if (status & BD_ENET_TX_HB) /* No heartbeat */
c556167f 516 ndev->stats.tx_heartbeat_errors++;
0e702ab3 517 if (status & BD_ENET_TX_LC) /* Late collision */
c556167f 518 ndev->stats.tx_window_errors++;
0e702ab3 519 if (status & BD_ENET_TX_RL) /* Retrans limit */
c556167f 520 ndev->stats.tx_aborted_errors++;
0e702ab3 521 if (status & BD_ENET_TX_UN) /* Underrun */
c556167f 522 ndev->stats.tx_fifo_errors++;
0e702ab3 523 if (status & BD_ENET_TX_CSL) /* Carrier lost */
c556167f 524 ndev->stats.tx_carrier_errors++;
1da177e4 525 } else {
c556167f 526 ndev->stats.tx_packets++;
1da177e4
LT
527 }
528
0e702ab3 529 if (status & BD_ENET_TX_READY)
1da177e4 530 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 531
1da177e4
LT
532 /* Deferred means some collisions occurred during transmit,
533 * but we eventually sent the packet OK.
534 */
0e702ab3 535 if (status & BD_ENET_TX_DEF)
c556167f 536 ndev->stats.collisions++;
6aa20a22 537
22f6b860 538 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
539 dev_kfree_skb_any(skb);
540 fep->tx_skbuff[fep->skb_dirty] = NULL;
541 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 542
22f6b860 543 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 544 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
545 bdp = fep->tx_bd_base;
546 else
547 bdp++;
6aa20a22 548
22f6b860 549 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
550 */
551 if (fep->tx_full) {
552 fep->tx_full = 0;
c556167f
UKK
553 if (netif_queue_stopped(ndev))
554 netif_wake_queue(ndev);
1da177e4
LT
555 }
556 }
2e28532f 557 fep->dirty_tx = bdp;
81538e74 558 spin_unlock(&fep->hw_lock);
1da177e4
LT
559}
560
561
562/* During a receive, the cur_rx points to the current incoming buffer.
563 * When we update through the ring, if the next incoming buffer has
564 * not been given to the system, we just set the empty indicator,
565 * effectively tossing the packet.
566 */
567static void
c556167f 568fec_enet_rx(struct net_device *ndev)
1da177e4 569{
c556167f 570 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
571 const struct platform_device_id *id_entry =
572 platform_get_device_id(fep->pdev);
2e28532f 573 struct bufdesc *bdp;
0e702ab3 574 unsigned short status;
1da177e4
LT
575 struct sk_buff *skb;
576 ushort pkt_len;
577 __u8 *data;
6aa20a22 578
0e702ab3
GU
579#ifdef CONFIG_M532x
580 flush_cache_all();
6aa20a22 581#endif
1da177e4 582
81538e74 583 spin_lock(&fep->hw_lock);
3b2b74ca 584
1da177e4
LT
585 /* First, grab all of the stats for the incoming packet.
586 * These get messed up if we get called due to a busy condition.
587 */
588 bdp = fep->cur_rx;
589
22f6b860 590 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 591
22f6b860
SH
592 /* Since we have allocated space to hold a complete frame,
593 * the last indicator should be set.
594 */
595 if ((status & BD_ENET_RX_LAST) == 0)
596 printk("FEC ENET: rcv is not +last\n");
1da177e4 597
22f6b860
SH
598 if (!fep->opened)
599 goto rx_processing_done;
1da177e4 600
22f6b860
SH
601 /* Check for errors. */
602 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 603 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
c556167f 604 ndev->stats.rx_errors++;
22f6b860
SH
605 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
606 /* Frame too long or too short. */
c556167f 607 ndev->stats.rx_length_errors++;
22f6b860
SH
608 }
609 if (status & BD_ENET_RX_NO) /* Frame alignment */
c556167f 610 ndev->stats.rx_frame_errors++;
22f6b860 611 if (status & BD_ENET_RX_CR) /* CRC Error */
c556167f 612 ndev->stats.rx_crc_errors++;
22f6b860 613 if (status & BD_ENET_RX_OV) /* FIFO overrun */
c556167f 614 ndev->stats.rx_fifo_errors++;
1da177e4 615 }
1da177e4 616
22f6b860
SH
617 /* Report late collisions as a frame error.
618 * On this error, the BD is closed, but we don't know what we
619 * have in the buffer. So, just drop this frame on the floor.
620 */
621 if (status & BD_ENET_RX_CL) {
c556167f
UKK
622 ndev->stats.rx_errors++;
623 ndev->stats.rx_frame_errors++;
22f6b860
SH
624 goto rx_processing_done;
625 }
1da177e4 626
22f6b860 627 /* Process the incoming frame. */
c556167f 628 ndev->stats.rx_packets++;
22f6b860 629 pkt_len = bdp->cbd_datlen;
c556167f 630 ndev->stats.rx_bytes += pkt_len;
22f6b860 631 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 632
d1ab1f54
UKK
633 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
634 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
ccdc4f19 635
b5680e0b
SG
636 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
637 swap_buffer(data, pkt_len);
638
22f6b860
SH
639 /* This does 16 byte alignment, exactly what we need.
640 * The packet length includes FCS, but we don't want to
641 * include that when passing upstream as it messes up
642 * bridging applications.
643 */
8549889c 644 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 645
8549889c 646 if (unlikely(!skb)) {
22f6b860 647 printk("%s: Memory squeeze, dropping packet.\n",
c556167f
UKK
648 ndev->name);
649 ndev->stats.rx_dropped++;
22f6b860 650 } else {
8549889c 651 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
652 skb_put(skb, pkt_len - 4); /* Make room */
653 skb_copy_to_linear_data(skb, data, pkt_len - 4);
c556167f 654 skb->protocol = eth_type_trans(skb, ndev);
18a03b97
RC
655 if (!skb_defer_rx_timestamp(skb))
656 netif_rx(skb);
22f6b860 657 }
f0b3fbea 658
d1ab1f54
UKK
659 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
660 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
22f6b860
SH
661rx_processing_done:
662 /* Clear the status flags for this buffer */
663 status &= ~BD_ENET_RX_STATS;
1da177e4 664
22f6b860
SH
665 /* Mark the buffer empty */
666 status |= BD_ENET_RX_EMPTY;
667 bdp->cbd_sc = status;
6aa20a22 668
22f6b860
SH
669 /* Update BD pointer to next entry */
670 if (status & BD_ENET_RX_WRAP)
671 bdp = fep->rx_bd_base;
672 else
673 bdp++;
674 /* Doing this here will keep the FEC running while we process
675 * incoming frames. On a heavily loaded network, we should be
676 * able to keep up at the expense of system resources.
677 */
678 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
679 }
2e28532f 680 fep->cur_rx = bdp;
1da177e4 681
81538e74 682 spin_unlock(&fep->hw_lock);
1da177e4
LT
683}
684
45993653
UKK
685static irqreturn_t
686fec_enet_interrupt(int irq, void *dev_id)
687{
688 struct net_device *ndev = dev_id;
689 struct fec_enet_private *fep = netdev_priv(ndev);
690 uint int_events;
691 irqreturn_t ret = IRQ_NONE;
692
693 do {
694 int_events = readl(fep->hwp + FEC_IEVENT);
695 writel(int_events, fep->hwp + FEC_IEVENT);
696
697 if (int_events & FEC_ENET_RXF) {
698 ret = IRQ_HANDLED;
699 fec_enet_rx(ndev);
700 }
701
702 /* Transmit OK, or non-fatal error. Update the buffer
703 * descriptors. FEC handles all errors, we just discover
704 * them as part of the transmit process.
705 */
706 if (int_events & FEC_ENET_TXF) {
707 ret = IRQ_HANDLED;
708 fec_enet_tx(ndev);
709 }
710
711 if (int_events & FEC_ENET_MII) {
712 ret = IRQ_HANDLED;
713 complete(&fep->mdio_done);
714 }
715 } while (int_events);
716
717 return ret;
718}
719
720
721
e6b043d5 722/* ------------------------------------------------------------------------- */
c556167f 723static void __inline__ fec_get_mac(struct net_device *ndev)
1da177e4 724{
c556167f 725 struct fec_enet_private *fep = netdev_priv(ndev);
49da97dc 726 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 727 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 728
49da97dc
SG
729 /*
730 * try to get mac address in following order:
731 *
732 * 1) module parameter via kernel command line in form
733 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
734 */
735 iap = macaddr;
736
737 /*
738 * 2) from flash or fuse (via platform data)
739 */
740 if (!is_valid_ether_addr(iap)) {
741#ifdef CONFIG_M5272
742 if (FEC_FLASHMAC)
743 iap = (unsigned char *)FEC_FLASHMAC;
744#else
745 if (pdata)
746 memcpy(iap, pdata->mac, ETH_ALEN);
747#endif
748 }
749
750 /*
751 * 3) FEC mac registers set by bootloader
752 */
753 if (!is_valid_ether_addr(iap)) {
754 *((unsigned long *) &tmpaddr[0]) =
755 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
756 *((unsigned short *) &tmpaddr[4]) =
757 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 758 iap = &tmpaddr[0];
1da177e4
LT
759 }
760
c556167f 761 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1da177e4 762
49da97dc
SG
763 /* Adjust MAC if using macaddr */
764 if (iap == macaddr)
c556167f 765 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
766}
767
e6b043d5 768/* ------------------------------------------------------------------------- */
1da177e4 769
e6b043d5
BW
770/*
771 * Phy section
772 */
c556167f 773static void fec_enet_adjust_link(struct net_device *ndev)
1da177e4 774{
c556167f 775 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5
BW
776 struct phy_device *phy_dev = fep->phy_dev;
777 unsigned long flags;
1da177e4 778
e6b043d5 779 int status_change = 0;
1da177e4 780
e6b043d5 781 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 782
e6b043d5
BW
783 /* Prevent a state halted on mii error */
784 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
785 phy_dev->state = PHY_RESUMING;
786 goto spin_unlock;
787 }
1da177e4 788
e6b043d5
BW
789 /* Duplex link change */
790 if (phy_dev->link) {
791 if (fep->full_duplex != phy_dev->duplex) {
c556167f 792 fec_restart(ndev, phy_dev->duplex);
e6b043d5
BW
793 status_change = 1;
794 }
795 }
1da177e4 796
e6b043d5
BW
797 /* Link on or off change */
798 if (phy_dev->link != fep->link) {
799 fep->link = phy_dev->link;
800 if (phy_dev->link)
c556167f 801 fec_restart(ndev, phy_dev->duplex);
1da177e4 802 else
c556167f 803 fec_stop(ndev);
e6b043d5 804 status_change = 1;
1da177e4 805 }
6aa20a22 806
e6b043d5
BW
807spin_unlock:
808 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 809
e6b043d5
BW
810 if (status_change)
811 phy_print_status(phy_dev);
812}
1da177e4 813
e6b043d5 814static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 815{
e6b043d5 816 struct fec_enet_private *fep = bus->priv;
97b72e43 817 unsigned long time_left;
1da177e4 818
e6b043d5 819 fep->mii_timeout = 0;
97b72e43 820 init_completion(&fep->mdio_done);
e6b043d5
BW
821
822 /* start a read op */
823 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
824 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
825 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
826
827 /* wait for end of transfer */
97b72e43
BS
828 time_left = wait_for_completion_timeout(&fep->mdio_done,
829 usecs_to_jiffies(FEC_MII_TIMEOUT));
830 if (time_left == 0) {
831 fep->mii_timeout = 1;
832 printk(KERN_ERR "FEC: MDIO read timeout\n");
833 return -ETIMEDOUT;
1da177e4 834 }
1da177e4 835
e6b043d5
BW
836 /* return value */
837 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 838}
6aa20a22 839
e6b043d5
BW
840static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
841 u16 value)
1da177e4 842{
e6b043d5 843 struct fec_enet_private *fep = bus->priv;
97b72e43 844 unsigned long time_left;
1da177e4 845
e6b043d5 846 fep->mii_timeout = 0;
97b72e43 847 init_completion(&fep->mdio_done);
1da177e4 848
862f0982
SG
849 /* start a write op */
850 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
851 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
852 FEC_MMFR_TA | FEC_MMFR_DATA(value),
853 fep->hwp + FEC_MII_DATA);
854
855 /* wait for end of transfer */
97b72e43
BS
856 time_left = wait_for_completion_timeout(&fep->mdio_done,
857 usecs_to_jiffies(FEC_MII_TIMEOUT));
858 if (time_left == 0) {
859 fep->mii_timeout = 1;
860 printk(KERN_ERR "FEC: MDIO write timeout\n");
861 return -ETIMEDOUT;
e6b043d5 862 }
1da177e4 863
e6b043d5
BW
864 return 0;
865}
1da177e4 866
e6b043d5 867static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 868{
e6b043d5 869 return 0;
1da177e4
LT
870}
871
c556167f 872static int fec_enet_mii_probe(struct net_device *ndev)
562d2f8c 873{
c556167f 874 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 875 struct phy_device *phy_dev = NULL;
6fcc040f
GU
876 char mdio_bus_id[MII_BUS_ID_SIZE];
877 char phy_name[MII_BUS_ID_SIZE + 3];
878 int phy_id;
b5680e0b 879 int dev_id = fep->pdev->id;
562d2f8c 880
418bd0d4
BW
881 fep->phy_dev = NULL;
882
6fcc040f
GU
883 /* check for attached phy */
884 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
885 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
886 continue;
887 if (fep->mii_bus->phy_map[phy_id] == NULL)
888 continue;
889 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
890 continue;
b5680e0b
SG
891 if (dev_id--)
892 continue;
6fcc040f
GU
893 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
894 break;
e6b043d5 895 }
1da177e4 896
6fcc040f
GU
897 if (phy_id >= PHY_MAX_ADDR) {
898 printk(KERN_INFO "%s: no PHY, assuming direct connection "
c556167f 899 "to switch\n", ndev->name);
6fcc040f
GU
900 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
901 phy_id = 0;
902 }
903
904 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
c556167f 905 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
6fcc040f
GU
906 PHY_INTERFACE_MODE_MII);
907 if (IS_ERR(phy_dev)) {
c556167f 908 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
6fcc040f 909 return PTR_ERR(phy_dev);
e6b043d5 910 }
1da177e4 911
e6b043d5
BW
912 /* mask with MAC supported features */
913 phy_dev->supported &= PHY_BASIC_FEATURES;
914 phy_dev->advertising = phy_dev->supported;
1da177e4 915
e6b043d5
BW
916 fep->phy_dev = phy_dev;
917 fep->link = 0;
918 fep->full_duplex = 0;
1da177e4 919
418bd0d4 920 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
c556167f 921 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
418bd0d4
BW
922 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
923 fep->phy_dev->irq);
924
e6b043d5 925 return 0;
1da177e4
LT
926}
927
e6b043d5 928static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 929{
b5680e0b 930 static struct mii_bus *fec0_mii_bus;
c556167f
UKK
931 struct net_device *ndev = platform_get_drvdata(pdev);
932 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
933 const struct platform_device_id *id_entry =
934 platform_get_device_id(fep->pdev);
e6b043d5 935 int err = -ENXIO, i;
6b265293 936
b5680e0b
SG
937 /*
938 * The dual fec interfaces are not equivalent with enet-mac.
939 * Here are the differences:
940 *
941 * - fec0 supports MII & RMII modes while fec1 only supports RMII
942 * - fec0 acts as the 1588 time master while fec1 is slave
943 * - external phys can only be configured by fec0
944 *
945 * That is to say fec1 can not work independently. It only works
946 * when fec0 is working. The reason behind this design is that the
947 * second interface is added primarily for Switch mode.
948 *
949 * Because of the last point above, both phys are attached on fec0
950 * mdio interface in board design, and need to be configured by
951 * fec0 mii_bus.
952 */
953 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
954 /* fec1 uses fec0 mii_bus */
955 fep->mii_bus = fec0_mii_bus;
956 return 0;
957 }
958
e6b043d5 959 fep->mii_timeout = 0;
1da177e4 960
e6b043d5
BW
961 /*
962 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
963 */
964 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
965 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 966
e6b043d5
BW
967 fep->mii_bus = mdiobus_alloc();
968 if (fep->mii_bus == NULL) {
969 err = -ENOMEM;
970 goto err_out;
1da177e4
LT
971 }
972
e6b043d5
BW
973 fep->mii_bus->name = "fec_enet_mii_bus";
974 fep->mii_bus->read = fec_enet_mdio_read;
975 fep->mii_bus->write = fec_enet_mdio_write;
976 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 977 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
978 fep->mii_bus->priv = fep;
979 fep->mii_bus->parent = &pdev->dev;
980
981 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
982 if (!fep->mii_bus->irq) {
983 err = -ENOMEM;
984 goto err_out_free_mdiobus;
1da177e4
LT
985 }
986
e6b043d5
BW
987 for (i = 0; i < PHY_MAX_ADDR; i++)
988 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 989
e6b043d5
BW
990 if (mdiobus_register(fep->mii_bus))
991 goto err_out_free_mdio_irq;
1da177e4 992
b5680e0b
SG
993 /* save fec0 mii_bus */
994 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
995 fec0_mii_bus = fep->mii_bus;
996
e6b043d5 997 return 0;
1da177e4 998
e6b043d5
BW
999err_out_free_mdio_irq:
1000 kfree(fep->mii_bus->irq);
1001err_out_free_mdiobus:
1002 mdiobus_free(fep->mii_bus);
1003err_out:
1004 return err;
1da177e4
LT
1005}
1006
e6b043d5 1007static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 1008{
e6b043d5
BW
1009 if (fep->phy_dev)
1010 phy_disconnect(fep->phy_dev);
1011 mdiobus_unregister(fep->mii_bus);
1012 kfree(fep->mii_bus->irq);
1013 mdiobus_free(fep->mii_bus);
1da177e4
LT
1014}
1015
c556167f 1016static int fec_enet_get_settings(struct net_device *ndev,
e6b043d5 1017 struct ethtool_cmd *cmd)
1da177e4 1018{
c556167f 1019 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1020 struct phy_device *phydev = fep->phy_dev;
1da177e4 1021
e6b043d5
BW
1022 if (!phydev)
1023 return -ENODEV;
1da177e4 1024
e6b043d5 1025 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
1026}
1027
c556167f 1028static int fec_enet_set_settings(struct net_device *ndev,
e6b043d5 1029 struct ethtool_cmd *cmd)
1da177e4 1030{
c556167f 1031 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1032 struct phy_device *phydev = fep->phy_dev;
1da177e4 1033
e6b043d5
BW
1034 if (!phydev)
1035 return -ENODEV;
1da177e4 1036
e6b043d5 1037 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
1038}
1039
c556167f 1040static void fec_enet_get_drvinfo(struct net_device *ndev,
e6b043d5 1041 struct ethtool_drvinfo *info)
1da177e4 1042{
c556167f 1043 struct fec_enet_private *fep = netdev_priv(ndev);
6aa20a22 1044
e6b043d5
BW
1045 strcpy(info->driver, fep->pdev->dev.driver->name);
1046 strcpy(info->version, "Revision: 1.0");
c556167f 1047 strcpy(info->bus_info, dev_name(&ndev->dev));
1da177e4
LT
1048}
1049
e6b043d5
BW
1050static struct ethtool_ops fec_enet_ethtool_ops = {
1051 .get_settings = fec_enet_get_settings,
1052 .set_settings = fec_enet_set_settings,
1053 .get_drvinfo = fec_enet_get_drvinfo,
1054 .get_link = ethtool_op_get_link,
1055};
1da177e4 1056
c556167f 1057static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1da177e4 1058{
c556167f 1059 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1060 struct phy_device *phydev = fep->phy_dev;
1da177e4 1061
c556167f 1062 if (!netif_running(ndev))
e6b043d5 1063 return -EINVAL;
1da177e4 1064
e6b043d5
BW
1065 if (!phydev)
1066 return -ENODEV;
1067
28b04113 1068 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
1069}
1070
c556167f 1071static void fec_enet_free_buffers(struct net_device *ndev)
f0b3fbea 1072{
c556167f 1073 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1074 int i;
1075 struct sk_buff *skb;
1076 struct bufdesc *bdp;
1077
1078 bdp = fep->rx_bd_base;
1079 for (i = 0; i < RX_RING_SIZE; i++) {
1080 skb = fep->rx_skbuff[i];
1081
1082 if (bdp->cbd_bufaddr)
d1ab1f54 1083 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
f0b3fbea
SH
1084 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1085 if (skb)
1086 dev_kfree_skb(skb);
1087 bdp++;
1088 }
1089
1090 bdp = fep->tx_bd_base;
1091 for (i = 0; i < TX_RING_SIZE; i++)
1092 kfree(fep->tx_bounce[i]);
1093}
1094
c556167f 1095static int fec_enet_alloc_buffers(struct net_device *ndev)
f0b3fbea 1096{
c556167f 1097 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1098 int i;
1099 struct sk_buff *skb;
1100 struct bufdesc *bdp;
1101
1102 bdp = fep->rx_bd_base;
1103 for (i = 0; i < RX_RING_SIZE; i++) {
1104 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1105 if (!skb) {
c556167f 1106 fec_enet_free_buffers(ndev);
f0b3fbea
SH
1107 return -ENOMEM;
1108 }
1109 fep->rx_skbuff[i] = skb;
1110
d1ab1f54 1111 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
f0b3fbea
SH
1112 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1113 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1114 bdp++;
1115 }
1116
1117 /* Set the last buffer to wrap. */
1118 bdp--;
1119 bdp->cbd_sc |= BD_SC_WRAP;
1120
1121 bdp = fep->tx_bd_base;
1122 for (i = 0; i < TX_RING_SIZE; i++) {
1123 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1124
1125 bdp->cbd_sc = 0;
1126 bdp->cbd_bufaddr = 0;
1127 bdp++;
1128 }
1129
1130 /* Set the last buffer to wrap. */
1131 bdp--;
1132 bdp->cbd_sc |= BD_SC_WRAP;
1133
1134 return 0;
1135}
1136
1da177e4 1137static int
c556167f 1138fec_enet_open(struct net_device *ndev)
1da177e4 1139{
c556167f 1140 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1141 int ret;
1da177e4
LT
1142
1143 /* I should reset the ring buffers here, but I don't yet know
1144 * a simple way to do that.
1145 */
1da177e4 1146
c556167f 1147 ret = fec_enet_alloc_buffers(ndev);
f0b3fbea
SH
1148 if (ret)
1149 return ret;
1150
418bd0d4 1151 /* Probe and connect to PHY when open the interface */
c556167f 1152 ret = fec_enet_mii_probe(ndev);
418bd0d4 1153 if (ret) {
c556167f 1154 fec_enet_free_buffers(ndev);
418bd0d4
BW
1155 return ret;
1156 }
e6b043d5 1157 phy_start(fep->phy_dev);
c556167f 1158 netif_start_queue(ndev);
1da177e4 1159 fep->opened = 1;
22f6b860 1160 return 0;
1da177e4
LT
1161}
1162
1163static int
c556167f 1164fec_enet_close(struct net_device *ndev)
1da177e4 1165{
c556167f 1166 struct fec_enet_private *fep = netdev_priv(ndev);
1da177e4 1167
22f6b860 1168 /* Don't know what to do yet. */
1da177e4 1169 fep->opened = 0;
c556167f
UKK
1170 netif_stop_queue(ndev);
1171 fec_stop(ndev);
1da177e4 1172
e497ba82
UKK
1173 if (fep->phy_dev) {
1174 phy_stop(fep->phy_dev);
418bd0d4 1175 phy_disconnect(fep->phy_dev);
e497ba82 1176 }
418bd0d4 1177
db8880bc 1178 fec_enet_free_buffers(ndev);
f0b3fbea 1179
1da177e4
LT
1180 return 0;
1181}
1182
1da177e4
LT
1183/* Set or clear the multicast filter for this adaptor.
1184 * Skeleton taken from sunlance driver.
1185 * The CPM Ethernet implementation allows Multicast as well as individual
1186 * MAC address filtering. Some of the drivers check to make sure it is
1187 * a group multicast address, and discard those that are not. I guess I
1188 * will do the same for now, but just remove the test if you want
1189 * individual filtering as well (do the upper net layers want or support
1190 * this kind of feature?).
1191 */
1192
1193#define HASH_BITS 6 /* #bits in hash */
1194#define CRC32_POLY 0xEDB88320
1195
c556167f 1196static void set_multicast_list(struct net_device *ndev)
1da177e4 1197{
c556167f 1198 struct fec_enet_private *fep = netdev_priv(ndev);
22bedad3 1199 struct netdev_hw_addr *ha;
48e2f183 1200 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1201 unsigned char hash;
1202
c556167f 1203 if (ndev->flags & IFF_PROMISC) {
f44d6305
SH
1204 tmp = readl(fep->hwp + FEC_R_CNTRL);
1205 tmp |= 0x8;
1206 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1207 return;
1208 }
1da177e4 1209
4e831836
SH
1210 tmp = readl(fep->hwp + FEC_R_CNTRL);
1211 tmp &= ~0x8;
1212 writel(tmp, fep->hwp + FEC_R_CNTRL);
1213
c556167f 1214 if (ndev->flags & IFF_ALLMULTI) {
4e831836
SH
1215 /* Catch all multicast addresses, so set the
1216 * filter to all 1's
1217 */
1218 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1219 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1220
1221 return;
1222 }
1223
1224 /* Clear filter and add the addresses in hash register
1225 */
1226 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1227 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1228
c556167f 1229 netdev_for_each_mc_addr(ha, ndev) {
4e831836
SH
1230 /* calculate crc32 value of mac address */
1231 crc = 0xffffffff;
1232
c556167f 1233 for (i = 0; i < ndev->addr_len; i++) {
22bedad3 1234 data = ha->addr[i];
4e831836
SH
1235 for (bit = 0; bit < 8; bit++, data >>= 1) {
1236 crc = (crc >> 1) ^
1237 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1238 }
1239 }
4e831836
SH
1240
1241 /* only upper 6 bits (HASH_BITS) are used
1242 * which point to specific bit in he hash registers
1243 */
1244 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1245
1246 if (hash > 31) {
1247 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1248 tmp |= 1 << (hash - 32);
1249 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1250 } else {
1251 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1252 tmp |= 1 << hash;
1253 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1254 }
1da177e4
LT
1255 }
1256}
1257
22f6b860 1258/* Set a MAC change in hardware. */
009fda83 1259static int
c556167f 1260fec_set_mac_address(struct net_device *ndev, void *p)
1da177e4 1261{
c556167f 1262 struct fec_enet_private *fep = netdev_priv(ndev);
009fda83
SH
1263 struct sockaddr *addr = p;
1264
1265 if (!is_valid_ether_addr(addr->sa_data))
1266 return -EADDRNOTAVAIL;
1267
c556167f 1268 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1da177e4 1269
c556167f
UKK
1270 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1271 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
f44d6305 1272 fep->hwp + FEC_ADDR_LOW);
c556167f 1273 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
7cff0943 1274 fep->hwp + FEC_ADDR_HIGH);
009fda83 1275 return 0;
1da177e4
LT
1276}
1277
009fda83
SH
1278static const struct net_device_ops fec_netdev_ops = {
1279 .ndo_open = fec_enet_open,
1280 .ndo_stop = fec_enet_close,
1281 .ndo_start_xmit = fec_enet_start_xmit,
1282 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1283 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1284 .ndo_validate_addr = eth_validate_addr,
1285 .ndo_tx_timeout = fec_timeout,
1286 .ndo_set_mac_address = fec_set_mac_address,
db8880bc 1287 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1288};
1289
1da177e4
LT
1290 /*
1291 * XXX: We need to clean up on failure exits here.
ead73183 1292 *
1da177e4 1293 */
c556167f 1294static int fec_enet_init(struct net_device *ndev)
1da177e4 1295{
c556167f 1296 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1297 struct bufdesc *cbd_base;
633e7533 1298 struct bufdesc *bdp;
f0b3fbea 1299 int i;
1da177e4 1300
8d4dd5cf
SH
1301 /* Allocate memory for buffer descriptors. */
1302 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1303 GFP_KERNEL);
1304 if (!cbd_base) {
562d2f8c
GU
1305 printk("FEC: allocate descriptor memory failed?\n");
1306 return -ENOMEM;
1307 }
1308
3b2b74ca 1309 spin_lock_init(&fep->hw_lock);
3b2b74ca 1310
c556167f 1311 fep->netdev = ndev;
1da177e4 1312
49da97dc 1313 /* Get the Ethernet address */
c556167f 1314 fec_get_mac(ndev);
1da177e4 1315
8d4dd5cf 1316 /* Set receive and transmit descriptor base. */
1da177e4
LT
1317 fep->rx_bd_base = cbd_base;
1318 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1319
22f6b860 1320 /* The FEC Ethernet specific entries in the device structure */
c556167f
UKK
1321 ndev->watchdog_timeo = TX_TIMEOUT;
1322 ndev->netdev_ops = &fec_netdev_ops;
1323 ndev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1324
1325 /* Initialize the receive buffer descriptors. */
1326 bdp = fep->rx_bd_base;
1327 for (i = 0; i < RX_RING_SIZE; i++) {
1328
1329 /* Initialize the BD for every fragment in the page. */
1330 bdp->cbd_sc = 0;
1331 bdp++;
1332 }
1333
1334 /* Set the last buffer to wrap */
1335 bdp--;
1336 bdp->cbd_sc |= BD_SC_WRAP;
1337
1338 /* ...and the same for transmit */
1339 bdp = fep->tx_bd_base;
1340 for (i = 0; i < TX_RING_SIZE; i++) {
1341
1342 /* Initialize the BD for every fragment in the page. */
1343 bdp->cbd_sc = 0;
1344 bdp->cbd_bufaddr = 0;
1345 bdp++;
1346 }
1347
1348 /* Set the last buffer to wrap */
1349 bdp--;
1350 bdp->cbd_sc |= BD_SC_WRAP;
1351
c556167f 1352 fec_restart(ndev, 0);
1da177e4 1353
1da177e4
LT
1354 return 0;
1355}
1356
ead73183
SH
1357static int __devinit
1358fec_probe(struct platform_device *pdev)
1359{
1360 struct fec_enet_private *fep;
5eb32bd0 1361 struct fec_platform_data *pdata;
ead73183
SH
1362 struct net_device *ndev;
1363 int i, irq, ret = 0;
1364 struct resource *r;
1365
1366 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1367 if (!r)
1368 return -ENXIO;
1369
1370 r = request_mem_region(r->start, resource_size(r), pdev->name);
1371 if (!r)
1372 return -EBUSY;
1373
1374 /* Init network device */
1375 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1376 if (!ndev) {
1377 ret = -ENOMEM;
1378 goto failed_alloc_etherdev;
1379 }
ead73183
SH
1380
1381 SET_NETDEV_DEV(ndev, &pdev->dev);
1382
1383 /* setup board info structure */
1384 fep = netdev_priv(ndev);
ead73183 1385
24e531b4 1386 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1387 fep->pdev = pdev;
ead73183 1388
24e531b4 1389 if (!fep->hwp) {
ead73183
SH
1390 ret = -ENOMEM;
1391 goto failed_ioremap;
1392 }
1393
1394 platform_set_drvdata(pdev, ndev);
1395
5eb32bd0
BS
1396 pdata = pdev->dev.platform_data;
1397 if (pdata)
1398 fep->phy_interface = pdata->phy;
1399
ead73183
SH
1400 /* This device has up to three irqs on some platforms */
1401 for (i = 0; i < 3; i++) {
1402 irq = platform_get_irq(pdev, i);
1403 if (i && irq < 0)
1404 break;
1405 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1406 if (ret) {
b2b09ad6 1407 while (--i >= 0) {
ead73183
SH
1408 irq = platform_get_irq(pdev, i);
1409 free_irq(irq, ndev);
ead73183
SH
1410 }
1411 goto failed_irq;
1412 }
1413 }
1414
1415 fep->clk = clk_get(&pdev->dev, "fec_clk");
1416 if (IS_ERR(fep->clk)) {
1417 ret = PTR_ERR(fep->clk);
1418 goto failed_clk;
1419 }
1420 clk_enable(fep->clk);
1421
8649a230 1422 ret = fec_enet_init(ndev);
ead73183
SH
1423 if (ret)
1424 goto failed_init;
1425
e6b043d5
BW
1426 ret = fec_enet_mii_init(pdev);
1427 if (ret)
1428 goto failed_mii_init;
1429
03c698c9
OS
1430 /* Carrier starts down, phylib will bring it up */
1431 netif_carrier_off(ndev);
1432
ead73183
SH
1433 ret = register_netdev(ndev);
1434 if (ret)
1435 goto failed_register;
1436
1437 return 0;
1438
1439failed_register:
e6b043d5
BW
1440 fec_enet_mii_remove(fep);
1441failed_mii_init:
ead73183
SH
1442failed_init:
1443 clk_disable(fep->clk);
1444 clk_put(fep->clk);
1445failed_clk:
1446 for (i = 0; i < 3; i++) {
1447 irq = platform_get_irq(pdev, i);
1448 if (irq > 0)
1449 free_irq(irq, ndev);
1450 }
1451failed_irq:
24e531b4 1452 iounmap(fep->hwp);
ead73183
SH
1453failed_ioremap:
1454 free_netdev(ndev);
28e2188e
UKK
1455failed_alloc_etherdev:
1456 release_mem_region(r->start, resource_size(r));
ead73183
SH
1457
1458 return ret;
1459}
1460
1461static int __devexit
1462fec_drv_remove(struct platform_device *pdev)
1463{
1464 struct net_device *ndev = platform_get_drvdata(pdev);
1465 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1466 struct resource *r;
ead73183 1467
ead73183 1468 fec_stop(ndev);
e6b043d5 1469 fec_enet_mii_remove(fep);
ead73183
SH
1470 clk_disable(fep->clk);
1471 clk_put(fep->clk);
24e531b4 1472 iounmap(fep->hwp);
ead73183
SH
1473 unregister_netdev(ndev);
1474 free_netdev(ndev);
28e2188e
UKK
1475
1476 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1477 BUG_ON(!r);
1478 release_mem_region(r->start, resource_size(r));
1479
b3cde36c
UKK
1480 platform_set_drvdata(pdev, NULL);
1481
ead73183
SH
1482 return 0;
1483}
1484
59d4289b 1485#ifdef CONFIG_PM
ead73183 1486static int
87cad5c3 1487fec_suspend(struct device *dev)
ead73183 1488{
87cad5c3 1489 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1490 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1491
04e5216d
UKK
1492 if (netif_running(ndev)) {
1493 fec_stop(ndev);
1494 netif_device_detach(ndev);
ead73183 1495 }
04e5216d
UKK
1496 clk_disable(fep->clk);
1497
ead73183
SH
1498 return 0;
1499}
1500
1501static int
87cad5c3 1502fec_resume(struct device *dev)
ead73183 1503{
87cad5c3 1504 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1505 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1506
04e5216d
UKK
1507 clk_enable(fep->clk);
1508 if (netif_running(ndev)) {
1509 fec_restart(ndev, fep->full_duplex);
1510 netif_device_attach(ndev);
ead73183 1511 }
04e5216d 1512
ead73183
SH
1513 return 0;
1514}
1515
59d4289b
DK
1516static const struct dev_pm_ops fec_pm_ops = {
1517 .suspend = fec_suspend,
1518 .resume = fec_resume,
1519 .freeze = fec_suspend,
1520 .thaw = fec_resume,
1521 .poweroff = fec_suspend,
1522 .restore = fec_resume,
1523};
87cad5c3 1524#endif
59d4289b 1525
ead73183
SH
1526static struct platform_driver fec_driver = {
1527 .driver = {
b5680e0b 1528 .name = DRIVER_NAME,
87cad5c3
EB
1529 .owner = THIS_MODULE,
1530#ifdef CONFIG_PM
1531 .pm = &fec_pm_ops,
1532#endif
ead73183 1533 },
b5680e0b 1534 .id_table = fec_devtype,
87cad5c3
EB
1535 .probe = fec_probe,
1536 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1537};
1538
1539static int __init
1540fec_enet_module_init(void)
1541{
1542 printk(KERN_INFO "FEC Ethernet Driver\n");
1543
1544 return platform_driver_register(&fec_driver);
1545}
1546
1547static void __exit
1548fec_enet_cleanup(void)
1549{
1550 platform_driver_unregister(&fec_driver);
1551}
1552
1553module_exit(fec_enet_cleanup);
1da177e4
LT
1554module_init(fec_enet_module_init);
1555
1556MODULE_LICENSE("GPL");
This page took 0.897802 seconds and 5 git commands to generate.