powerpc: Shield code specific to 64-bit server processors
[deliverable/linux.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/string.h>
25#include <linux/ptrace.h>
26#include <linux/errno.h>
27#include <linux/ioport.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/workqueue.h>
38#include <linux/bitops.h>
6f501b17
SH
39#include <linux/io.h>
40#include <linux/irq.h>
196719ec 41#include <linux/clk.h>
ead73183 42#include <linux/platform_device.h>
1da177e4 43
080853af 44#include <asm/cacheflush.h>
196719ec
SH
45
46#ifndef CONFIG_ARCH_MXC
1da177e4
LT
47#include <asm/coldfire.h>
48#include <asm/mcfsim.h>
196719ec 49#endif
6f501b17 50
1da177e4 51#include "fec.h"
1da177e4 52
196719ec
SH
53#ifdef CONFIG_ARCH_MXC
54#include <mach/hardware.h>
55#define FEC_ALIGNMENT 0xf
56#else
57#define FEC_ALIGNMENT 0x3
58#endif
59
ead73183
SH
60/*
61 * Define the fixed address of the FEC hardware.
62 */
87f4abb4 63#if defined(CONFIG_M5272)
c1d96156 64#define HAVE_mii_link_interrupt
1da177e4
LT
65
66static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
68};
69
70/*
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
73 */
74#if defined(CONFIG_NETtel)
75#define FEC_FLASHMAC 0xf0006006
76#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
78#elif defined(CONFIG_CANCam)
79#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
80#elif defined (CONFIG_M5272C3)
81#define FEC_FLASHMAC (0xffe04000 + 4)
82#elif defined(CONFIG_MOD5272)
83#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
84#else
85#define FEC_FLASHMAC 0
86#endif
43be6366 87#endif /* CONFIG_M5272 */
ead73183 88
1da177e4
LT
89/* Forward declarations of some structures to support different PHYs
90*/
91
92typedef struct {
93 uint mii_data;
94 void (*funct)(uint mii_reg, struct net_device *dev);
95} phy_cmd_t;
96
97typedef struct {
98 uint id;
99 char *name;
100
101 const phy_cmd_t *config;
102 const phy_cmd_t *startup;
103 const phy_cmd_t *ack_int;
104 const phy_cmd_t *shutdown;
105} phy_info_t;
106
107/* The number of Tx and Rx buffers. These are allocated from the page
108 * pool. The code may assume these are power of two, so it it best
109 * to keep them that size.
110 * We don't need to allocate pages for the transmitter. We just use
111 * the skbuffer directly.
112 */
113#define FEC_ENET_RX_PAGES 8
114#define FEC_ENET_RX_FRSIZE 2048
115#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
116#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
117#define FEC_ENET_TX_FRSIZE 2048
118#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
119#define TX_RING_SIZE 16 /* Must be power of two */
120#define TX_RING_MOD_MASK 15 /* for this to work */
121
562d2f8c 122#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 123#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
124#endif
125
1da177e4
LT
126/* Interrupt events/masks.
127*/
128#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
129#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
130#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
131#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
132#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
133#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
134#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
135#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
136#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
137#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
138
139/* The FEC stores dest/src/type, data, and checksum for receive packets.
140 */
141#define PKT_MAXBUF_SIZE 1518
142#define PKT_MINBUF_SIZE 64
143#define PKT_MAXBLR_SIZE 1520
144
145
146/*
6b265293 147 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
148 * size bits. Other FEC hardware does not, so we need to take that into
149 * account when setting it.
150 */
562d2f8c 151#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
196719ec 152 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
1da177e4
LT
153#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154#else
155#define OPT_FRAME_SIZE 0
156#endif
157
158/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
159 * tx_bd_base always point to the base of the buffer descriptors. The
160 * cur_rx and cur_tx point to the currently available buffer.
161 * The dirty_tx tracks the current buffer that is being sent by the
162 * controller. The cur_tx and dirty_tx are equal under both completely
163 * empty and completely full conditions. The empty/ready indicator in
164 * the buffer descriptor determines the actual condition.
165 */
166struct fec_enet_private {
167 /* Hardware registers of the FEC device */
168 volatile fec_t *hwp;
169
cb84d6e7
GU
170 struct net_device *netdev;
171
ead73183
SH
172 struct clk *clk;
173
1da177e4
LT
174 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
175 unsigned char *tx_bounce[TX_RING_SIZE];
176 struct sk_buff* tx_skbuff[TX_RING_SIZE];
177 ushort skb_cur;
178 ushort skb_dirty;
179
180 /* CPM dual port RAM relative addresses.
181 */
4661e75b 182 dma_addr_t bd_dma;
1da177e4
LT
183 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
184 cbd_t *tx_bd_base;
185 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
186 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
1da177e4 187 uint tx_full;
3b2b74ca
SS
188 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
189 spinlock_t hw_lock;
190 /* hold while accessing the mii_list_t() elements */
191 spinlock_t mii_lock;
1da177e4
LT
192
193 uint phy_id;
194 uint phy_id_done;
195 uint phy_status;
196 uint phy_speed;
7dd6a2aa 197 phy_info_t const *phy;
1da177e4
LT
198 struct work_struct phy_task;
199
200 uint sequence_done;
201 uint mii_phy_task_queued;
202
203 uint phy_addr;
204
205 int index;
206 int opened;
207 int link;
208 int old_link;
209 int full_duplex;
1da177e4
LT
210};
211
212static int fec_enet_open(struct net_device *dev);
213static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
214static void fec_enet_mii(struct net_device *dev);
7d12e780 215static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
216static void fec_enet_tx(struct net_device *dev);
217static void fec_enet_rx(struct net_device *dev);
218static int fec_enet_close(struct net_device *dev);
1da177e4
LT
219static void set_multicast_list(struct net_device *dev);
220static void fec_restart(struct net_device *dev, int duplex);
221static void fec_stop(struct net_device *dev);
222static void fec_set_mac_address(struct net_device *dev);
223
224
225/* MII processing. We keep this as simple as possible. Requests are
226 * placed on the list (if there is room). When the request is finished
227 * by the MII, an optional function may be called.
228 */
229typedef struct mii_list {
230 uint mii_regval;
231 void (*mii_func)(uint val, struct net_device *dev);
232 struct mii_list *mii_next;
233} mii_list_t;
234
235#define NMII 20
7dd6a2aa
GU
236static mii_list_t mii_cmds[NMII];
237static mii_list_t *mii_free;
238static mii_list_t *mii_head;
239static mii_list_t *mii_tail;
1da177e4 240
6aa20a22 241static int mii_queue(struct net_device *dev, int request,
1da177e4
LT
242 void (*func)(uint, struct net_device *));
243
244/* Make MII read/write commands for the FEC.
245*/
246#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
247#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
248 (VAL & 0xffff))
249#define mk_mii_end 0
250
251/* Transmitter timeout.
252*/
253#define TX_TIMEOUT (2*HZ)
254
255/* Register definitions for the PHY.
256*/
257
258#define MII_REG_CR 0 /* Control Register */
259#define MII_REG_SR 1 /* Status Register */
260#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
261#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
6aa20a22 262#define MII_REG_ANAR 4 /* A-N Advertisement Register */
1da177e4
LT
263#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
264#define MII_REG_ANER 6 /* A-N Expansion Register */
265#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
266#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
267
268/* values for phy_status */
269
270#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
271#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
272#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
273#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
6aa20a22 274#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
1da177e4 275#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
6aa20a22 276#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
1da177e4
LT
277
278#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
279#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
280#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
281#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
282#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
6aa20a22 283#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
1da177e4 284#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
6aa20a22 285#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
1da177e4
LT
286
287
288static int
289fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
290{
291 struct fec_enet_private *fep;
292 volatile fec_t *fecp;
293 volatile cbd_t *bdp;
0e702ab3 294 unsigned short status;
3b2b74ca 295 unsigned long flags;
1da177e4
LT
296
297 fep = netdev_priv(dev);
298 fecp = (volatile fec_t*)dev->base_addr;
299
300 if (!fep->link) {
301 /* Link is down or autonegotiation is in progress. */
302 return 1;
303 }
304
3b2b74ca 305 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
306 /* Fill in a Tx ring entry */
307 bdp = fep->cur_tx;
308
0e702ab3 309 status = bdp->cbd_sc;
1da177e4 310#ifndef final_version
0e702ab3 311 if (status & BD_ENET_TX_READY) {
1da177e4
LT
312 /* Ooops. All transmit buffers are full. Bail out.
313 * This should not happen, since dev->tbusy should be set.
314 */
315 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 316 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4
LT
317 return 1;
318 }
319#endif
320
321 /* Clear all of the status flags.
322 */
0e702ab3 323 status &= ~BD_ENET_TX_STATS;
1da177e4
LT
324
325 /* Set buffer length and buffer pointer.
326 */
327 bdp->cbd_bufaddr = __pa(skb->data);
328 bdp->cbd_datlen = skb->len;
329
330 /*
331 * On some FEC implementations data must be aligned on
332 * 4-byte boundaries. Use bounce buffers to copy data
333 * and get it aligned. Ugh.
334 */
196719ec 335 if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
1da177e4
LT
336 unsigned int index;
337 index = bdp - fep->tx_bd_base;
6989f512 338 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
1da177e4
LT
339 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
340 }
341
342 /* Save skb pointer.
343 */
344 fep->tx_skbuff[fep->skb_cur] = skb;
345
09f75cd7 346 dev->stats.tx_bytes += skb->len;
1da177e4 347 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 348
1da177e4
LT
349 /* Push the data cache so the CPM does not get stale memory
350 * data.
351 */
ccdc4f19
SH
352 dma_sync_single(NULL, bdp->cbd_bufaddr,
353 bdp->cbd_datlen, DMA_TO_DEVICE);
1da177e4 354
0e702ab3
GU
355 /* Send it on its way. Tell FEC it's ready, interrupt when done,
356 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4
LT
357 */
358
0e702ab3 359 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 360 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 361 bdp->cbd_sc = status;
1da177e4
LT
362
363 dev->trans_start = jiffies;
364
365 /* Trigger transmission start */
0e702ab3 366 fecp->fec_x_des_active = 0;
1da177e4
LT
367
368 /* If this was the last BD in the ring, start at the beginning again.
369 */
0e702ab3 370 if (status & BD_ENET_TX_WRAP) {
1da177e4
LT
371 bdp = fep->tx_bd_base;
372 } else {
373 bdp++;
374 }
375
376 if (bdp == fep->dirty_tx) {
377 fep->tx_full = 1;
378 netif_stop_queue(dev);
379 }
380
381 fep->cur_tx = (cbd_t *)bdp;
382
3b2b74ca 383 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4
LT
384
385 return 0;
386}
387
388static void
389fec_timeout(struct net_device *dev)
390{
391 struct fec_enet_private *fep = netdev_priv(dev);
392
393 printk("%s: transmit timed out.\n", dev->name);
09f75cd7 394 dev->stats.tx_errors++;
1da177e4
LT
395#ifndef final_version
396 {
397 int i;
398 cbd_t *bdp;
399
400 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
401 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
402 (unsigned long)fep->dirty_tx,
403 (unsigned long)fep->cur_rx);
404
405 bdp = fep->tx_bd_base;
406 printk(" tx: %u buffers\n", TX_RING_SIZE);
407 for (i = 0 ; i < TX_RING_SIZE; i++) {
6aa20a22 408 printk(" %08x: %04x %04x %08x\n",
1da177e4
LT
409 (uint) bdp,
410 bdp->cbd_sc,
411 bdp->cbd_datlen,
412 (int) bdp->cbd_bufaddr);
413 bdp++;
414 }
415
416 bdp = fep->rx_bd_base;
417 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
418 for (i = 0 ; i < RX_RING_SIZE; i++) {
419 printk(" %08x: %04x %04x %08x\n",
420 (uint) bdp,
421 bdp->cbd_sc,
422 bdp->cbd_datlen,
423 (int) bdp->cbd_bufaddr);
424 bdp++;
425 }
426 }
427#endif
7dd6a2aa 428 fec_restart(dev, fep->full_duplex);
1da177e4
LT
429 netif_wake_queue(dev);
430}
431
432/* The interrupt handler.
433 * This is called from the MPC core interrupt.
434 */
435static irqreturn_t
7d12e780 436fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
437{
438 struct net_device *dev = dev_id;
439 volatile fec_t *fecp;
440 uint int_events;
3b2b74ca 441 irqreturn_t ret = IRQ_NONE;
1da177e4
LT
442
443 fecp = (volatile fec_t*)dev->base_addr;
444
445 /* Get the interrupt events that caused us to be here.
446 */
3b2b74ca
SS
447 do {
448 int_events = fecp->fec_ievent;
1da177e4
LT
449 fecp->fec_ievent = int_events;
450
451 /* Handle receive event in its own function.
452 */
453 if (int_events & FEC_ENET_RXF) {
3b2b74ca 454 ret = IRQ_HANDLED;
1da177e4
LT
455 fec_enet_rx(dev);
456 }
457
458 /* Transmit OK, or non-fatal error. Update the buffer
459 descriptors. FEC handles all errors, we just discover
460 them as part of the transmit process.
461 */
462 if (int_events & FEC_ENET_TXF) {
3b2b74ca 463 ret = IRQ_HANDLED;
1da177e4
LT
464 fec_enet_tx(dev);
465 }
466
467 if (int_events & FEC_ENET_MII) {
3b2b74ca 468 ret = IRQ_HANDLED;
1da177e4
LT
469 fec_enet_mii(dev);
470 }
6aa20a22 471
3b2b74ca
SS
472 } while (int_events);
473
474 return ret;
1da177e4
LT
475}
476
477
478static void
479fec_enet_tx(struct net_device *dev)
480{
481 struct fec_enet_private *fep;
482 volatile cbd_t *bdp;
0e702ab3 483 unsigned short status;
1da177e4
LT
484 struct sk_buff *skb;
485
486 fep = netdev_priv(dev);
3b2b74ca 487 spin_lock_irq(&fep->hw_lock);
1da177e4
LT
488 bdp = fep->dirty_tx;
489
0e702ab3 490 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1da177e4
LT
491 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
492
493 skb = fep->tx_skbuff[fep->skb_dirty];
494 /* Check for errors. */
0e702ab3 495 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
496 BD_ENET_TX_RL | BD_ENET_TX_UN |
497 BD_ENET_TX_CSL)) {
09f75cd7 498 dev->stats.tx_errors++;
0e702ab3 499 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 500 dev->stats.tx_heartbeat_errors++;
0e702ab3 501 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 502 dev->stats.tx_window_errors++;
0e702ab3 503 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 504 dev->stats.tx_aborted_errors++;
0e702ab3 505 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 506 dev->stats.tx_fifo_errors++;
0e702ab3 507 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 508 dev->stats.tx_carrier_errors++;
1da177e4 509 } else {
09f75cd7 510 dev->stats.tx_packets++;
1da177e4
LT
511 }
512
513#ifndef final_version
0e702ab3 514 if (status & BD_ENET_TX_READY)
1da177e4
LT
515 printk("HEY! Enet xmit interrupt and TX_READY.\n");
516#endif
517 /* Deferred means some collisions occurred during transmit,
518 * but we eventually sent the packet OK.
519 */
0e702ab3 520 if (status & BD_ENET_TX_DEF)
09f75cd7 521 dev->stats.collisions++;
6aa20a22 522
1da177e4
LT
523 /* Free the sk buffer associated with this last transmit.
524 */
525 dev_kfree_skb_any(skb);
526 fep->tx_skbuff[fep->skb_dirty] = NULL;
527 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 528
1da177e4
LT
529 /* Update pointer to next buffer descriptor to be transmitted.
530 */
0e702ab3 531 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
532 bdp = fep->tx_bd_base;
533 else
534 bdp++;
6aa20a22 535
1da177e4
LT
536 /* Since we have freed up a buffer, the ring is no longer
537 * full.
538 */
539 if (fep->tx_full) {
540 fep->tx_full = 0;
541 if (netif_queue_stopped(dev))
542 netif_wake_queue(dev);
543 }
544 }
545 fep->dirty_tx = (cbd_t *)bdp;
3b2b74ca 546 spin_unlock_irq(&fep->hw_lock);
1da177e4
LT
547}
548
549
550/* During a receive, the cur_rx points to the current incoming buffer.
551 * When we update through the ring, if the next incoming buffer has
552 * not been given to the system, we just set the empty indicator,
553 * effectively tossing the packet.
554 */
555static void
556fec_enet_rx(struct net_device *dev)
557{
558 struct fec_enet_private *fep;
559 volatile fec_t *fecp;
560 volatile cbd_t *bdp;
0e702ab3 561 unsigned short status;
1da177e4
LT
562 struct sk_buff *skb;
563 ushort pkt_len;
564 __u8 *data;
6aa20a22 565
0e702ab3
GU
566#ifdef CONFIG_M532x
567 flush_cache_all();
6aa20a22 568#endif
1da177e4
LT
569
570 fep = netdev_priv(dev);
571 fecp = (volatile fec_t*)dev->base_addr;
572
3b2b74ca
SS
573 spin_lock_irq(&fep->hw_lock);
574
1da177e4
LT
575 /* First, grab all of the stats for the incoming packet.
576 * These get messed up if we get called due to a busy condition.
577 */
578 bdp = fep->cur_rx;
579
0e702ab3 580while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4
LT
581
582#ifndef final_version
583 /* Since we have allocated space to hold a complete frame,
584 * the last indicator should be set.
585 */
0e702ab3 586 if ((status & BD_ENET_RX_LAST) == 0)
1da177e4
LT
587 printk("FEC ENET: rcv is not +last\n");
588#endif
589
590 if (!fep->opened)
591 goto rx_processing_done;
592
593 /* Check for errors. */
0e702ab3 594 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 595 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
09f75cd7 596 dev->stats.rx_errors++;
0e702ab3 597 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1da177e4 598 /* Frame too long or too short. */
09f75cd7 599 dev->stats.rx_length_errors++;
1da177e4 600 }
0e702ab3 601 if (status & BD_ENET_RX_NO) /* Frame alignment */
09f75cd7 602 dev->stats.rx_frame_errors++;
0e702ab3 603 if (status & BD_ENET_RX_CR) /* CRC Error */
09f75cd7 604 dev->stats.rx_crc_errors++;
0e702ab3 605 if (status & BD_ENET_RX_OV) /* FIFO overrun */
09f75cd7 606 dev->stats.rx_fifo_errors++;
1da177e4
LT
607 }
608
609 /* Report late collisions as a frame error.
610 * On this error, the BD is closed, but we don't know what we
611 * have in the buffer. So, just drop this frame on the floor.
612 */
0e702ab3 613 if (status & BD_ENET_RX_CL) {
09f75cd7
JG
614 dev->stats.rx_errors++;
615 dev->stats.rx_frame_errors++;
1da177e4
LT
616 goto rx_processing_done;
617 }
618
619 /* Process the incoming frame.
620 */
09f75cd7 621 dev->stats.rx_packets++;
1da177e4 622 pkt_len = bdp->cbd_datlen;
09f75cd7 623 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
624 data = (__u8*)__va(bdp->cbd_bufaddr);
625
ccdc4f19
SH
626 dma_sync_single(NULL, (unsigned long)__pa(data),
627 pkt_len - 4, DMA_FROM_DEVICE);
628
1da177e4
LT
629 /* This does 16 byte alignment, exactly what we need.
630 * The packet length includes FCS, but we don't want to
631 * include that when passing upstream as it messes up
632 * bridging applications.
633 */
634 skb = dev_alloc_skb(pkt_len-4);
635
636 if (skb == NULL) {
637 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
09f75cd7 638 dev->stats.rx_dropped++;
1da177e4 639 } else {
1da177e4 640 skb_put(skb,pkt_len-4); /* Make room */
8c7b7faa 641 skb_copy_to_linear_data(skb, data, pkt_len-4);
1da177e4
LT
642 skb->protocol=eth_type_trans(skb,dev);
643 netif_rx(skb);
644 }
645 rx_processing_done:
646
647 /* Clear the status flags for this buffer.
648 */
0e702ab3 649 status &= ~BD_ENET_RX_STATS;
1da177e4
LT
650
651 /* Mark the buffer empty.
652 */
0e702ab3
GU
653 status |= BD_ENET_RX_EMPTY;
654 bdp->cbd_sc = status;
1da177e4
LT
655
656 /* Update BD pointer to next entry.
657 */
0e702ab3 658 if (status & BD_ENET_RX_WRAP)
1da177e4
LT
659 bdp = fep->rx_bd_base;
660 else
661 bdp++;
6aa20a22 662
1da177e4
LT
663#if 1
664 /* Doing this here will keep the FEC running while we process
665 * incoming frames. On a heavily loaded network, we should be
666 * able to keep up at the expense of system resources.
667 */
0e702ab3 668 fecp->fec_r_des_active = 0;
1da177e4 669#endif
0e702ab3 670 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
1da177e4
LT
671 fep->cur_rx = (cbd_t *)bdp;
672
673#if 0
674 /* Doing this here will allow us to process all frames in the
675 * ring before the FEC is allowed to put more there. On a heavily
676 * loaded network, some frames may be lost. Unfortunately, this
677 * increases the interrupt overhead since we can potentially work
678 * our way back to the interrupt return only to come right back
679 * here.
680 */
0e702ab3 681 fecp->fec_r_des_active = 0;
1da177e4 682#endif
3b2b74ca
SS
683
684 spin_unlock_irq(&fep->hw_lock);
1da177e4
LT
685}
686
687
0e702ab3 688/* called from interrupt context */
1da177e4
LT
689static void
690fec_enet_mii(struct net_device *dev)
691{
692 struct fec_enet_private *fep;
693 volatile fec_t *ep;
694 mii_list_t *mip;
695 uint mii_reg;
696
697 fep = netdev_priv(dev);
3b2b74ca
SS
698 spin_lock_irq(&fep->mii_lock);
699
1da177e4
LT
700 ep = fep->hwp;
701 mii_reg = ep->fec_mii_data;
0e702ab3 702
1da177e4
LT
703 if ((mip = mii_head) == NULL) {
704 printk("MII and no head!\n");
0e702ab3 705 goto unlock;
1da177e4
LT
706 }
707
708 if (mip->mii_func != NULL)
709 (*(mip->mii_func))(mii_reg, dev);
710
711 mii_head = mip->mii_next;
712 mip->mii_next = mii_free;
713 mii_free = mip;
714
715 if ((mip = mii_head) != NULL)
716 ep->fec_mii_data = mip->mii_regval;
0e702ab3
GU
717
718unlock:
3b2b74ca 719 spin_unlock_irq(&fep->mii_lock);
1da177e4
LT
720}
721
722static int
723mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
724{
725 struct fec_enet_private *fep;
726 unsigned long flags;
727 mii_list_t *mip;
728 int retval;
729
730 /* Add PHY address to register command.
731 */
732 fep = netdev_priv(dev);
3b2b74ca 733 spin_lock_irqsave(&fep->mii_lock, flags);
1da177e4 734
3b2b74ca 735 regval |= fep->phy_addr << 23;
1da177e4
LT
736 retval = 0;
737
1da177e4
LT
738 if ((mip = mii_free) != NULL) {
739 mii_free = mip->mii_next;
740 mip->mii_regval = regval;
741 mip->mii_func = func;
742 mip->mii_next = NULL;
743 if (mii_head) {
744 mii_tail->mii_next = mip;
745 mii_tail = mip;
f909b1ef 746 } else {
1da177e4
LT
747 mii_head = mii_tail = mip;
748 fep->hwp->fec_mii_data = regval;
749 }
f909b1ef 750 } else {
1da177e4
LT
751 retval = 1;
752 }
753
3b2b74ca
SS
754 spin_unlock_irqrestore(&fep->mii_lock, flags);
755 return retval;
1da177e4
LT
756}
757
758static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
759{
1da177e4
LT
760 if(!c)
761 return;
762
be6cb66d
PDM
763 for (; c->mii_data != mk_mii_end; c++)
764 mii_queue(dev, c->mii_data, c->funct);
1da177e4
LT
765}
766
767static void mii_parse_sr(uint mii_reg, struct net_device *dev)
768{
769 struct fec_enet_private *fep = netdev_priv(dev);
770 volatile uint *s = &(fep->phy_status);
7dd6a2aa 771 uint status;
1da177e4 772
7dd6a2aa 773 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
774
775 if (mii_reg & 0x0004)
7dd6a2aa 776 status |= PHY_STAT_LINK;
1da177e4 777 if (mii_reg & 0x0010)
7dd6a2aa 778 status |= PHY_STAT_FAULT;
1da177e4 779 if (mii_reg & 0x0020)
7dd6a2aa 780 status |= PHY_STAT_ANC;
7dd6a2aa 781 *s = status;
1da177e4
LT
782}
783
784static void mii_parse_cr(uint mii_reg, struct net_device *dev)
785{
786 struct fec_enet_private *fep = netdev_priv(dev);
787 volatile uint *s = &(fep->phy_status);
7dd6a2aa 788 uint status;
1da177e4 789
7dd6a2aa 790 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
791
792 if (mii_reg & 0x1000)
7dd6a2aa 793 status |= PHY_CONF_ANE;
1da177e4 794 if (mii_reg & 0x4000)
7dd6a2aa
GU
795 status |= PHY_CONF_LOOP;
796 *s = status;
1da177e4
LT
797}
798
799static void mii_parse_anar(uint mii_reg, struct net_device *dev)
800{
801 struct fec_enet_private *fep = netdev_priv(dev);
802 volatile uint *s = &(fep->phy_status);
7dd6a2aa 803 uint status;
1da177e4 804
7dd6a2aa 805 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
806
807 if (mii_reg & 0x0020)
7dd6a2aa 808 status |= PHY_CONF_10HDX;
1da177e4 809 if (mii_reg & 0x0040)
7dd6a2aa 810 status |= PHY_CONF_10FDX;
1da177e4 811 if (mii_reg & 0x0080)
7dd6a2aa 812 status |= PHY_CONF_100HDX;
1da177e4 813 if (mii_reg & 0x00100)
7dd6a2aa
GU
814 status |= PHY_CONF_100FDX;
815 *s = status;
1da177e4
LT
816}
817
818/* ------------------------------------------------------------------------- */
819/* The Level one LXT970 is used by many boards */
820
821#define MII_LXT970_MIRROR 16 /* Mirror register */
822#define MII_LXT970_IER 17 /* Interrupt Enable Register */
823#define MII_LXT970_ISR 18 /* Interrupt Status Register */
824#define MII_LXT970_CONFIG 19 /* Configuration Register */
825#define MII_LXT970_CSR 20 /* Chip Status Register */
826
827static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
828{
829 struct fec_enet_private *fep = netdev_priv(dev);
830 volatile uint *s = &(fep->phy_status);
7dd6a2aa 831 uint status;
1da177e4 832
7dd6a2aa 833 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
834 if (mii_reg & 0x0800) {
835 if (mii_reg & 0x1000)
7dd6a2aa 836 status |= PHY_STAT_100FDX;
1da177e4 837 else
7dd6a2aa 838 status |= PHY_STAT_100HDX;
1da177e4
LT
839 } else {
840 if (mii_reg & 0x1000)
7dd6a2aa 841 status |= PHY_STAT_10FDX;
1da177e4 842 else
7dd6a2aa 843 status |= PHY_STAT_10HDX;
1da177e4 844 }
7dd6a2aa 845 *s = status;
1da177e4
LT
846}
847
7dd6a2aa 848static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
849 { mk_mii_read(MII_REG_CR), mii_parse_cr },
850 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
851 { mk_mii_end, }
7dd6a2aa
GU
852 };
853static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
854 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
855 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
856 { mk_mii_end, }
7dd6a2aa
GU
857 };
858static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
859 /* read SR and ISR to acknowledge */
860 { mk_mii_read(MII_REG_SR), mii_parse_sr },
861 { mk_mii_read(MII_LXT970_ISR), NULL },
862
863 /* find out the current status */
864 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
865 { mk_mii_end, }
7dd6a2aa
GU
866 };
867static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
868 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
869 { mk_mii_end, }
7dd6a2aa
GU
870 };
871static phy_info_t const phy_info_lxt970 = {
6aa20a22 872 .id = 0x07810000,
7dd6a2aa
GU
873 .name = "LXT970",
874 .config = phy_cmd_lxt970_config,
875 .startup = phy_cmd_lxt970_startup,
876 .ack_int = phy_cmd_lxt970_ack_int,
877 .shutdown = phy_cmd_lxt970_shutdown
1da177e4 878};
6aa20a22 879
1da177e4
LT
880/* ------------------------------------------------------------------------- */
881/* The Level one LXT971 is used on some of my custom boards */
882
883/* register definitions for the 971 */
884
885#define MII_LXT971_PCR 16 /* Port Control Register */
886#define MII_LXT971_SR2 17 /* Status Register 2 */
887#define MII_LXT971_IER 18 /* Interrupt Enable Register */
888#define MII_LXT971_ISR 19 /* Interrupt Status Register */
889#define MII_LXT971_LCR 20 /* LED Control Register */
890#define MII_LXT971_TCR 30 /* Transmit Control Register */
891
6aa20a22 892/*
1da177e4
LT
893 * I had some nice ideas of running the MDIO faster...
894 * The 971 should support 8MHz and I tried it, but things acted really
895 * weird, so 2.5 MHz ought to be enough for anyone...
896 */
897
898static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
899{
900 struct fec_enet_private *fep = netdev_priv(dev);
901 volatile uint *s = &(fep->phy_status);
7dd6a2aa 902 uint status;
1da177e4 903
7dd6a2aa 904 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
905
906 if (mii_reg & 0x0400) {
907 fep->link = 1;
7dd6a2aa 908 status |= PHY_STAT_LINK;
1da177e4
LT
909 } else {
910 fep->link = 0;
911 }
912 if (mii_reg & 0x0080)
7dd6a2aa 913 status |= PHY_STAT_ANC;
1da177e4
LT
914 if (mii_reg & 0x4000) {
915 if (mii_reg & 0x0200)
7dd6a2aa 916 status |= PHY_STAT_100FDX;
1da177e4 917 else
7dd6a2aa 918 status |= PHY_STAT_100HDX;
1da177e4
LT
919 } else {
920 if (mii_reg & 0x0200)
7dd6a2aa 921 status |= PHY_STAT_10FDX;
1da177e4 922 else
7dd6a2aa 923 status |= PHY_STAT_10HDX;
1da177e4
LT
924 }
925 if (mii_reg & 0x0008)
7dd6a2aa 926 status |= PHY_STAT_FAULT;
1da177e4 927
7dd6a2aa
GU
928 *s = status;
929}
6aa20a22 930
7dd6a2aa 931static phy_cmd_t const phy_cmd_lxt971_config[] = {
6aa20a22 932 /* limit to 10MBit because my prototype board
1da177e4
LT
933 * doesn't work with 100. */
934 { mk_mii_read(MII_REG_CR), mii_parse_cr },
935 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
936 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
937 { mk_mii_end, }
7dd6a2aa
GU
938 };
939static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
940 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
941 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
942 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
943 /* Somehow does the 971 tell me that the link is down
944 * the first read after power-up.
945 * read here to get a valid value in ack_int */
6aa20a22 946 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 947 { mk_mii_end, }
7dd6a2aa
GU
948 };
949static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
950 /* acknowledge the int before reading status ! */
951 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
952 /* find out the current status */
953 { mk_mii_read(MII_REG_SR), mii_parse_sr },
954 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 955 { mk_mii_end, }
7dd6a2aa
GU
956 };
957static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
958 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
959 { mk_mii_end, }
7dd6a2aa
GU
960 };
961static phy_info_t const phy_info_lxt971 = {
6aa20a22 962 .id = 0x0001378e,
7dd6a2aa
GU
963 .name = "LXT971",
964 .config = phy_cmd_lxt971_config,
965 .startup = phy_cmd_lxt971_startup,
966 .ack_int = phy_cmd_lxt971_ack_int,
967 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
968};
969
970/* ------------------------------------------------------------------------- */
971/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
972
973/* register definitions */
974
975#define MII_QS6612_MCR 17 /* Mode Control Register */
976#define MII_QS6612_FTR 27 /* Factory Test Register */
977#define MII_QS6612_MCO 28 /* Misc. Control Register */
978#define MII_QS6612_ISR 29 /* Interrupt Source Register */
979#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
980#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
981
982static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
983{
984 struct fec_enet_private *fep = netdev_priv(dev);
985 volatile uint *s = &(fep->phy_status);
7dd6a2aa 986 uint status;
1da177e4 987
7dd6a2aa 988 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
989
990 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
991 case 1: status |= PHY_STAT_10HDX; break;
992 case 2: status |= PHY_STAT_100HDX; break;
993 case 5: status |= PHY_STAT_10FDX; break;
994 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
995}
996
7dd6a2aa
GU
997 *s = status;
998}
999
1000static phy_cmd_t const phy_cmd_qs6612_config[] = {
6aa20a22 1001 /* The PHY powers up isolated on the RPX,
1da177e4
LT
1002 * so send a command to allow operation.
1003 */
1004 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1005
1006 /* parse cr and anar to get some info */
1007 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1008 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1009 { mk_mii_end, }
7dd6a2aa
GU
1010 };
1011static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1012 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1013 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1014 { mk_mii_end, }
7dd6a2aa
GU
1015 };
1016static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1017 /* we need to read ISR, SR and ANER to acknowledge */
1018 { mk_mii_read(MII_QS6612_ISR), NULL },
1019 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1020 { mk_mii_read(MII_REG_ANER), NULL },
1021
1022 /* read pcr to get info */
1023 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1024 { mk_mii_end, }
7dd6a2aa
GU
1025 };
1026static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1027 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1028 { mk_mii_end, }
7dd6a2aa
GU
1029 };
1030static phy_info_t const phy_info_qs6612 = {
6aa20a22 1031 .id = 0x00181440,
7dd6a2aa
GU
1032 .name = "QS6612",
1033 .config = phy_cmd_qs6612_config,
1034 .startup = phy_cmd_qs6612_startup,
1035 .ack_int = phy_cmd_qs6612_ack_int,
1036 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1037};
1038
1039/* ------------------------------------------------------------------------- */
1040/* AMD AM79C874 phy */
1041
1042/* register definitions for the 874 */
1043
1044#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1045#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1046#define MII_AM79C874_DR 18 /* Diagnostic Register */
1047#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1048#define MII_AM79C874_MCR 21 /* ModeControl Register */
1049#define MII_AM79C874_DC 23 /* Disconnect Counter */
1050#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1051
1052static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1053{
1054 struct fec_enet_private *fep = netdev_priv(dev);
1055 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1056 uint status;
1da177e4 1057
7dd6a2aa 1058 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1059
1060 if (mii_reg & 0x0080)
7dd6a2aa 1061 status |= PHY_STAT_ANC;
1da177e4 1062 if (mii_reg & 0x0400)
7dd6a2aa 1063 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1064 else
7dd6a2aa
GU
1065 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1066
1067 *s = status;
1da177e4
LT
1068}
1069
7dd6a2aa 1070static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1071 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1072 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1073 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1074 { mk_mii_end, }
7dd6a2aa
GU
1075 };
1076static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1077 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1078 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1079 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1080 { mk_mii_end, }
7dd6a2aa
GU
1081 };
1082static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1083 /* find out the current status */
1084 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1085 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1086 /* we only need to read ISR to acknowledge */
1087 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1088 { mk_mii_end, }
7dd6a2aa
GU
1089 };
1090static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1091 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1092 { mk_mii_end, }
7dd6a2aa
GU
1093 };
1094static phy_info_t const phy_info_am79c874 = {
1095 .id = 0x00022561,
1096 .name = "AM79C874",
1097 .config = phy_cmd_am79c874_config,
1098 .startup = phy_cmd_am79c874_startup,
1099 .ack_int = phy_cmd_am79c874_ack_int,
1100 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1101};
1102
7dd6a2aa 1103
1da177e4
LT
1104/* ------------------------------------------------------------------------- */
1105/* Kendin KS8721BL phy */
1106
1107/* register definitions for the 8721 */
1108
1109#define MII_KS8721BL_RXERCR 21
43268dce 1110#define MII_KS8721BL_ICSR 27
1da177e4
LT
1111#define MII_KS8721BL_PHYCR 31
1112
7dd6a2aa 1113static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1114 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1115 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1116 { mk_mii_end, }
7dd6a2aa
GU
1117 };
1118static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1119 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1120 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1121 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1122 { mk_mii_end, }
7dd6a2aa
GU
1123 };
1124static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1125 /* find out the current status */
1126 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1127 /* we only need to read ISR to acknowledge */
1128 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1129 { mk_mii_end, }
7dd6a2aa
GU
1130 };
1131static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1132 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1133 { mk_mii_end, }
7dd6a2aa
GU
1134 };
1135static phy_info_t const phy_info_ks8721bl = {
6aa20a22 1136 .id = 0x00022161,
7dd6a2aa
GU
1137 .name = "KS8721BL",
1138 .config = phy_cmd_ks8721bl_config,
1139 .startup = phy_cmd_ks8721bl_startup,
1140 .ack_int = phy_cmd_ks8721bl_ack_int,
1141 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1142};
1143
562d2f8c
GU
1144/* ------------------------------------------------------------------------- */
1145/* register definitions for the DP83848 */
1146
1147#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1148
1149static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1150{
4cf1653a 1151 struct fec_enet_private *fep = netdev_priv(dev);
562d2f8c
GU
1152 volatile uint *s = &(fep->phy_status);
1153
1154 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1155
1156 /* Link up */
1157 if (mii_reg & 0x0001) {
1158 fep->link = 1;
1159 *s |= PHY_STAT_LINK;
1160 } else
1161 fep->link = 0;
1162 /* Status of link */
1163 if (mii_reg & 0x0010) /* Autonegotioation complete */
1164 *s |= PHY_STAT_ANC;
1165 if (mii_reg & 0x0002) { /* 10MBps? */
1166 if (mii_reg & 0x0004) /* Full Duplex? */
1167 *s |= PHY_STAT_10FDX;
1168 else
1169 *s |= PHY_STAT_10HDX;
1170 } else { /* 100 Mbps? */
1171 if (mii_reg & 0x0004) /* Full Duplex? */
1172 *s |= PHY_STAT_100FDX;
1173 else
1174 *s |= PHY_STAT_100HDX;
1175 }
1176 if (mii_reg & 0x0008)
1177 *s |= PHY_STAT_FAULT;
1178}
1179
1180static phy_info_t phy_info_dp83848= {
1181 0x020005c9,
1182 "DP83848",
1183
1184 (const phy_cmd_t []) { /* config */
1185 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1186 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1187 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1188 { mk_mii_end, }
1189 },
1190 (const phy_cmd_t []) { /* startup - enable interrupts */
1191 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1192 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1193 { mk_mii_end, }
1194 },
1195 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1196 { mk_mii_end, }
1197 },
1198 (const phy_cmd_t []) { /* shutdown */
1199 { mk_mii_end, }
1200 },
1201};
1202
1da177e4
LT
1203/* ------------------------------------------------------------------------- */
1204
7dd6a2aa 1205static phy_info_t const * const phy_info[] = {
1da177e4
LT
1206 &phy_info_lxt970,
1207 &phy_info_lxt971,
1208 &phy_info_qs6612,
1209 &phy_info_am79c874,
1210 &phy_info_ks8721bl,
562d2f8c 1211 &phy_info_dp83848,
1da177e4
LT
1212 NULL
1213};
1214
1215/* ------------------------------------------------------------------------- */
c1d96156 1216#ifdef HAVE_mii_link_interrupt
1da177e4 1217static irqreturn_t
7d12e780 1218mii_link_interrupt(int irq, void * dev_id);
1da177e4 1219
1da177e4 1220/*
43be6366 1221 * This is specific to the MII interrupt setup of the M5272EVB.
1da177e4 1222 */
43be6366 1223static void __inline__ fec_request_mii_intr(struct net_device *dev)
1da177e4 1224{
43be6366
GU
1225 if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
1226 printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
1da177e4
LT
1227}
1228
1da177e4
LT
1229static void __inline__ fec_disable_phy_intr(void)
1230{
1231 volatile unsigned long *icrp;
1232 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1233 *icrp = 0x08000000;
1da177e4
LT
1234}
1235
1236static void __inline__ fec_phy_ack_intr(void)
1237{
1238 volatile unsigned long *icrp;
1239 /* Acknowledge the interrupt */
1240 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1241 *icrp = 0x0d000000;
1da177e4 1242}
fb922b0d 1243#endif
1da177e4 1244
43be6366 1245#ifdef CONFIG_M5272
562d2f8c
GU
1246static void __inline__ fec_get_mac(struct net_device *dev)
1247{
1248 struct fec_enet_private *fep = netdev_priv(dev);
1249 volatile fec_t *fecp;
1250 unsigned char *iap, tmpaddr[ETH_ALEN];
1251
1252 fecp = fep->hwp;
1253
1254 if (FEC_FLASHMAC) {
1255 /*
1256 * Get MAC address from FLASH.
1257 * If it is all 1's or 0's, use the default.
1258 */
43be6366 1259 iap = (unsigned char *)FEC_FLASHMAC;
6b265293
MW
1260 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1261 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1262 iap = fec_mac_default;
1263 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1264 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1265 iap = fec_mac_default;
1266 } else {
1267 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1268 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1269 iap = &tmpaddr[0];
1270 }
1271
1272 memcpy(dev->dev_addr, iap, ETH_ALEN);
1273
1274 /* Adjust MAC if using default MAC address */
1275 if (iap == fec_mac_default)
43be6366 1276 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
6b265293 1277}
1da177e4
LT
1278#endif
1279
1280/* ------------------------------------------------------------------------- */
1281
1282static void mii_display_status(struct net_device *dev)
1283{
1284 struct fec_enet_private *fep = netdev_priv(dev);
1285 volatile uint *s = &(fep->phy_status);
1286
1287 if (!fep->link && !fep->old_link) {
1288 /* Link is still down - don't print anything */
1289 return;
1290 }
1291
1292 printk("%s: status: ", dev->name);
1293
1294 if (!fep->link) {
1295 printk("link down");
1296 } else {
1297 printk("link up");
1298
1299 switch(*s & PHY_STAT_SPMASK) {
1300 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1301 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1302 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1303 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1304 default:
1305 printk(", Unknown speed/duplex");
1306 }
1307
1308 if (*s & PHY_STAT_ANC)
1309 printk(", auto-negotiation complete");
1310 }
1311
1312 if (*s & PHY_STAT_FAULT)
1313 printk(", remote fault");
1314
1315 printk(".\n");
1316}
1317
cb84d6e7 1318static void mii_display_config(struct work_struct *work)
1da177e4 1319{
cb84d6e7
GU
1320 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1321 struct net_device *dev = fep->netdev;
7dd6a2aa 1322 uint status = fep->phy_status;
1da177e4
LT
1323
1324 /*
1325 ** When we get here, phy_task is already removed from
1326 ** the workqueue. It is thus safe to allow to reuse it.
1327 */
1328 fep->mii_phy_task_queued = 0;
1329 printk("%s: config: auto-negotiation ", dev->name);
1330
7dd6a2aa 1331 if (status & PHY_CONF_ANE)
1da177e4
LT
1332 printk("on");
1333 else
1334 printk("off");
1335
7dd6a2aa 1336 if (status & PHY_CONF_100FDX)
1da177e4 1337 printk(", 100FDX");
7dd6a2aa 1338 if (status & PHY_CONF_100HDX)
1da177e4 1339 printk(", 100HDX");
7dd6a2aa 1340 if (status & PHY_CONF_10FDX)
1da177e4 1341 printk(", 10FDX");
7dd6a2aa 1342 if (status & PHY_CONF_10HDX)
1da177e4 1343 printk(", 10HDX");
7dd6a2aa 1344 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1345 printk(", No speed/duplex selected?");
1346
7dd6a2aa 1347 if (status & PHY_CONF_LOOP)
1da177e4 1348 printk(", loopback enabled");
6aa20a22 1349
1da177e4
LT
1350 printk(".\n");
1351
1352 fep->sequence_done = 1;
1353}
1354
cb84d6e7 1355static void mii_relink(struct work_struct *work)
1da177e4 1356{
cb84d6e7
GU
1357 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1358 struct net_device *dev = fep->netdev;
1da177e4
LT
1359 int duplex;
1360
1361 /*
1362 ** When we get here, phy_task is already removed from
1363 ** the workqueue. It is thus safe to allow to reuse it.
1364 */
1365 fep->mii_phy_task_queued = 0;
1366 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1367 mii_display_status(dev);
1368 fep->old_link = fep->link;
1369
1370 if (fep->link) {
1371 duplex = 0;
6aa20a22 1372 if (fep->phy_status
1da177e4
LT
1373 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1374 duplex = 1;
1375 fec_restart(dev, duplex);
f909b1ef 1376 } else
1da177e4
LT
1377 fec_stop(dev);
1378
1379#if 0
1380 enable_irq(fep->mii_irq);
1381#endif
1382
1383}
1384
1385/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1386static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1387{
1388 struct fec_enet_private *fep = netdev_priv(dev);
1389
1390 /*
1391 ** We cannot queue phy_task twice in the workqueue. It
1392 ** would cause an endless loop in the workqueue.
1393 ** Fortunately, if the last mii_relink entry has not yet been
1394 ** executed now, it will do the job for the current interrupt,
1395 ** which is just what we want.
1396 */
1397 if (fep->mii_phy_task_queued)
1398 return;
1399
1400 fep->mii_phy_task_queued = 1;
cb84d6e7 1401 INIT_WORK(&fep->phy_task, mii_relink);
1da177e4
LT
1402 schedule_work(&fep->phy_task);
1403}
1404
7dd6a2aa 1405/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
1406static void mii_queue_config(uint mii_reg, struct net_device *dev)
1407{
1408 struct fec_enet_private *fep = netdev_priv(dev);
1409
1410 if (fep->mii_phy_task_queued)
1411 return;
1412
1413 fep->mii_phy_task_queued = 1;
cb84d6e7 1414 INIT_WORK(&fep->phy_task, mii_display_config);
1da177e4
LT
1415 schedule_work(&fep->phy_task);
1416}
1417
7dd6a2aa
GU
1418phy_cmd_t const phy_cmd_relink[] = {
1419 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1420 { mk_mii_end, }
1421 };
1422phy_cmd_t const phy_cmd_config[] = {
1423 { mk_mii_read(MII_REG_CR), mii_queue_config },
1424 { mk_mii_end, }
1425 };
1da177e4
LT
1426
1427/* Read remainder of PHY ID.
1428*/
1429static void
1430mii_discover_phy3(uint mii_reg, struct net_device *dev)
1431{
1432 struct fec_enet_private *fep;
1433 int i;
1434
1435 fep = netdev_priv(dev);
1436 fep->phy_id |= (mii_reg & 0xffff);
1437 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1438
1439 for(i = 0; phy_info[i]; i++) {
1440 if(phy_info[i]->id == (fep->phy_id >> 4))
1441 break;
1442 }
1443
1444 if (phy_info[i])
1445 printk(" -- %s\n", phy_info[i]->name);
1446 else
1447 printk(" -- unknown PHY!\n");
6aa20a22 1448
1da177e4
LT
1449 fep->phy = phy_info[i];
1450 fep->phy_id_done = 1;
1451}
1452
1453/* Scan all of the MII PHY addresses looking for someone to respond
1454 * with a valid ID. This usually happens quickly.
1455 */
1456static void
1457mii_discover_phy(uint mii_reg, struct net_device *dev)
1458{
1459 struct fec_enet_private *fep;
1460 volatile fec_t *fecp;
1461 uint phytype;
1462
1463 fep = netdev_priv(dev);
1464 fecp = fep->hwp;
1465
1466 if (fep->phy_addr < 32) {
1467 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
6aa20a22 1468
1da177e4
LT
1469 /* Got first part of ID, now get remainder.
1470 */
1471 fep->phy_id = phytype << 16;
1472 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1473 mii_discover_phy3);
f909b1ef 1474 } else {
1da177e4
LT
1475 fep->phy_addr++;
1476 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1477 mii_discover_phy);
1478 }
1479 } else {
1480 printk("FEC: No PHY device found.\n");
1481 /* Disable external MII interface */
1482 fecp->fec_mii_speed = fep->phy_speed = 0;
43be6366 1483#ifdef HAVE_mii_link_interrupt
1da177e4 1484 fec_disable_phy_intr();
ead73183 1485#endif
1da177e4
LT
1486 }
1487}
1488
1489/* This interrupt occurs when the PHY detects a link change.
1490*/
c1d96156 1491#ifdef HAVE_mii_link_interrupt
1da177e4 1492static irqreturn_t
7d12e780 1493mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
1494{
1495 struct net_device *dev = dev_id;
1496 struct fec_enet_private *fep = netdev_priv(dev);
1497
1498 fec_phy_ack_intr();
1499
1500#if 0
1501 disable_irq(fep->mii_irq); /* disable now, enable later */
1502#endif
1503
1504 mii_do_cmd(dev, fep->phy->ack_int);
1505 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1506
1507 return IRQ_HANDLED;
1508}
c1d96156 1509#endif
1da177e4
LT
1510
1511static int
1512fec_enet_open(struct net_device *dev)
1513{
1514 struct fec_enet_private *fep = netdev_priv(dev);
1515
1516 /* I should reset the ring buffers here, but I don't yet know
1517 * a simple way to do that.
1518 */
1519 fec_set_mac_address(dev);
1520
1521 fep->sequence_done = 0;
1522 fep->link = 0;
1523
1524 if (fep->phy) {
1525 mii_do_cmd(dev, fep->phy->ack_int);
1526 mii_do_cmd(dev, fep->phy->config);
1527 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1528
6b265293
MW
1529 /* Poll until the PHY tells us its configuration
1530 * (not link state).
1531 * Request is initiated by mii_do_cmd above, but answer
1532 * comes by interrupt.
1533 * This should take about 25 usec per register at 2.5 MHz,
1534 * and we read approximately 5 registers.
1da177e4
LT
1535 */
1536 while(!fep->sequence_done)
1537 schedule();
1538
1539 mii_do_cmd(dev, fep->phy->startup);
1540
1541 /* Set the initial link state to true. A lot of hardware
1542 * based on this device does not implement a PHY interrupt,
1543 * so we are never notified of link change.
1544 */
1545 fep->link = 1;
1546 } else {
1547 fep->link = 1; /* lets just try it and see */
1548 /* no phy, go full duplex, it's most likely a hub chip */
1549 fec_restart(dev, 1);
1550 }
1551
1552 netif_start_queue(dev);
1553 fep->opened = 1;
1554 return 0; /* Success */
1555}
1556
1557static int
1558fec_enet_close(struct net_device *dev)
1559{
1560 struct fec_enet_private *fep = netdev_priv(dev);
1561
1562 /* Don't know what to do yet.
1563 */
1564 fep->opened = 0;
1565 netif_stop_queue(dev);
1566 fec_stop(dev);
1567
1568 return 0;
1569}
1570
1da177e4
LT
1571/* Set or clear the multicast filter for this adaptor.
1572 * Skeleton taken from sunlance driver.
1573 * The CPM Ethernet implementation allows Multicast as well as individual
1574 * MAC address filtering. Some of the drivers check to make sure it is
1575 * a group multicast address, and discard those that are not. I guess I
1576 * will do the same for now, but just remove the test if you want
1577 * individual filtering as well (do the upper net layers want or support
1578 * this kind of feature?).
1579 */
1580
1581#define HASH_BITS 6 /* #bits in hash */
1582#define CRC32_POLY 0xEDB88320
1583
1584static void set_multicast_list(struct net_device *dev)
1585{
1586 struct fec_enet_private *fep;
1587 volatile fec_t *ep;
1588 struct dev_mc_list *dmi;
1589 unsigned int i, j, bit, data, crc;
1590 unsigned char hash;
1591
1592 fep = netdev_priv(dev);
1593 ep = fep->hwp;
1594
1595 if (dev->flags&IFF_PROMISC) {
1da177e4
LT
1596 ep->fec_r_cntrl |= 0x0008;
1597 } else {
1598
1599 ep->fec_r_cntrl &= ~0x0008;
1600
1601 if (dev->flags & IFF_ALLMULTI) {
1602 /* Catch all multicast addresses, so set the
1603 * filter to all 1's.
1604 */
cc462f7d
GU
1605 ep->fec_grp_hash_table_high = 0xffffffff;
1606 ep->fec_grp_hash_table_low = 0xffffffff;
1da177e4
LT
1607 } else {
1608 /* Clear filter and add the addresses in hash register.
1609 */
cc462f7d
GU
1610 ep->fec_grp_hash_table_high = 0;
1611 ep->fec_grp_hash_table_low = 0;
6aa20a22 1612
1da177e4
LT
1613 dmi = dev->mc_list;
1614
1615 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1616 {
1617 /* Only support group multicast for now.
1618 */
1619 if (!(dmi->dmi_addr[0] & 1))
1620 continue;
6aa20a22 1621
1da177e4
LT
1622 /* calculate crc32 value of mac address
1623 */
1624 crc = 0xffffffff;
1625
1626 for (i = 0; i < dmi->dmi_addrlen; i++)
1627 {
1628 data = dmi->dmi_addr[i];
1629 for (bit = 0; bit < 8; bit++, data >>= 1)
1630 {
1631 crc = (crc >> 1) ^
1632 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1633 }
1634 }
1635
1636 /* only upper 6 bits (HASH_BITS) are used
1637 which point to specific bit in he hash registers
1638 */
1639 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
6aa20a22 1640
1da177e4 1641 if (hash > 31)
cc462f7d 1642 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
1da177e4 1643 else
cc462f7d 1644 ep->fec_grp_hash_table_low |= 1 << hash;
1da177e4
LT
1645 }
1646 }
1647 }
1648}
1649
1650/* Set a MAC change in hardware.
1651 */
1652static void
1653fec_set_mac_address(struct net_device *dev)
1654{
1da177e4
LT
1655 volatile fec_t *fecp;
1656
7dd6a2aa 1657 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
1658
1659 /* Set station address. */
7dd6a2aa
GU
1660 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1661 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
1662 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
1663 (dev->dev_addr[4] << 24);
1da177e4
LT
1664
1665}
1666
1da177e4
LT
1667 /*
1668 * XXX: We need to clean up on failure exits here.
ead73183
SH
1669 *
1670 * index is only used in legacy code
1da177e4 1671 */
ead73183 1672int __init fec_enet_init(struct net_device *dev, int index)
1da177e4
LT
1673{
1674 struct fec_enet_private *fep = netdev_priv(dev);
1675 unsigned long mem_addr;
1676 volatile cbd_t *bdp;
1677 cbd_t *cbd_base;
1678 volatile fec_t *fecp;
1679 int i, j;
1da177e4 1680
562d2f8c
GU
1681 /* Allocate memory for buffer descriptors.
1682 */
4661e75b
SH
1683 mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
1684 &fep->bd_dma, GFP_KERNEL);
562d2f8c
GU
1685 if (mem_addr == 0) {
1686 printk("FEC: allocate descriptor memory failed?\n");
1687 return -ENOMEM;
1688 }
1689
3b2b74ca
SS
1690 spin_lock_init(&fep->hw_lock);
1691 spin_lock_init(&fep->mii_lock);
1692
1da177e4
LT
1693 /* Create an Ethernet device instance.
1694 */
ead73183 1695 fecp = (volatile fec_t *)dev->base_addr;
1da177e4
LT
1696
1697 fep->index = index;
1698 fep->hwp = fecp;
cb84d6e7 1699 fep->netdev = dev;
1da177e4
LT
1700
1701 /* Whack a reset. We should wait for this.
1702 */
1703 fecp->fec_ecntrl = 1;
1704 udelay(10);
1705
ead73183 1706 /* Set the Ethernet address */
43be6366 1707#ifdef CONFIG_M5272
1da177e4 1708 fec_get_mac(dev);
ead73183
SH
1709#else
1710 {
1711 unsigned long l;
1712 l = fecp->fec_addr_low;
1713 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1714 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1715 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1716 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1717 l = fecp->fec_addr_high;
1718 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1719 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1720 }
1721#endif
1da177e4 1722
1da177e4 1723 cbd_base = (cbd_t *)mem_addr;
1da177e4 1724
1da177e4
LT
1725 /* Set receive and transmit descriptor base.
1726 */
1727 fep->rx_bd_base = cbd_base;
1728 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1729
1730 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1731 fep->cur_rx = fep->rx_bd_base;
1732
1733 fep->skb_cur = fep->skb_dirty = 0;
1734
1735 /* Initialize the receive buffer descriptors.
1736 */
1737 bdp = fep->rx_bd_base;
1738 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
1739
1740 /* Allocate a page.
1741 */
1742 mem_addr = __get_free_page(GFP_KERNEL);
1743 /* XXX: missing check for allocation failure */
1744
1da177e4
LT
1745 /* Initialize the BD for every fragment in the page.
1746 */
1747 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
1748 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1749 bdp->cbd_bufaddr = __pa(mem_addr);
1750 mem_addr += FEC_ENET_RX_FRSIZE;
1751 bdp++;
1752 }
1753 }
1754
1755 /* Set the last buffer to wrap.
1756 */
1757 bdp--;
1758 bdp->cbd_sc |= BD_SC_WRAP;
1759
1760 /* ...and the same for transmmit.
1761 */
1762 bdp = fep->tx_bd_base;
1763 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
1764 if (j >= FEC_ENET_TX_FRPPG) {
1765 mem_addr = __get_free_page(GFP_KERNEL);
1766 j = 1;
1767 } else {
1768 mem_addr += FEC_ENET_TX_FRSIZE;
1769 j++;
1770 }
1771 fep->tx_bounce[i] = (unsigned char *) mem_addr;
1772
1773 /* Initialize the BD for every fragment in the page.
1774 */
1775 bdp->cbd_sc = 0;
1776 bdp->cbd_bufaddr = 0;
1777 bdp++;
1778 }
1779
1780 /* Set the last buffer to wrap.
1781 */
1782 bdp--;
1783 bdp->cbd_sc |= BD_SC_WRAP;
1784
1785 /* Set receive and transmit descriptor base.
1786 */
4661e75b
SH
1787 fecp->fec_r_des_start = fep->bd_dma;
1788 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
1789 * RX_RING_SIZE;
1da177e4 1790
43be6366
GU
1791#ifdef HAVE_mii_link_interrupt
1792 fec_request_mii_intr(dev);
ead73183 1793#endif
1da177e4 1794
cc462f7d
GU
1795 fecp->fec_grp_hash_table_high = 0;
1796 fecp->fec_grp_hash_table_low = 0;
562d2f8c
GU
1797 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1798 fecp->fec_ecntrl = 2;
6b265293 1799 fecp->fec_r_des_active = 0;
cc462f7d
GU
1800#ifndef CONFIG_M5272
1801 fecp->fec_hash_table_high = 0;
1802 fecp->fec_hash_table_low = 0;
1803#endif
562d2f8c 1804
1da177e4
LT
1805 /* The FEC Ethernet specific entries in the device structure. */
1806 dev->open = fec_enet_open;
1807 dev->hard_start_xmit = fec_enet_start_xmit;
1808 dev->tx_timeout = fec_timeout;
1809 dev->watchdog_timeo = TX_TIMEOUT;
1810 dev->stop = fec_enet_close;
1da177e4
LT
1811 dev->set_multicast_list = set_multicast_list;
1812
1813 for (i=0; i<NMII-1; i++)
1814 mii_cmds[i].mii_next = &mii_cmds[i+1];
1815 mii_free = mii_cmds;
1816
1817 /* setup MII interface */
ead73183
SH
1818 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1819 fecp->fec_x_cntrl = 0x00;
1820
1821 /*
1822 * Set MII speed to 2.5 MHz
1823 */
1824 fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
1825 / 2500000) / 2) & 0x3F) << 1;
1826 fecp->fec_mii_speed = fep->phy_speed;
1827 fec_restart(dev, 0);
1da177e4 1828
6b265293
MW
1829 /* Clear and enable interrupts */
1830 fecp->fec_ievent = 0xffc00000;
398ec922 1831 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
6b265293 1832
1da177e4
LT
1833 /* Queue up command to detect the PHY and initialize the
1834 * remainder of the interface.
1835 */
1836 fep->phy_id_done = 0;
1837 fep->phy_addr = 0;
1838 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1839
1da177e4
LT
1840 return 0;
1841}
1842
1843/* This function is called to start or restart the FEC during a link
1844 * change. This only happens when switching between half and full
1845 * duplex.
1846 */
1847static void
1848fec_restart(struct net_device *dev, int duplex)
1849{
1850 struct fec_enet_private *fep;
1851 volatile cbd_t *bdp;
1852 volatile fec_t *fecp;
1853 int i;
1854
1855 fep = netdev_priv(dev);
1856 fecp = fep->hwp;
1857
1858 /* Whack a reset. We should wait for this.
1859 */
1860 fecp->fec_ecntrl = 1;
1861 udelay(10);
1862
1da177e4
LT
1863 /* Clear any outstanding interrupt.
1864 */
7dd6a2aa 1865 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
1866
1867 /* Set station address.
1868 */
7dd6a2aa 1869 fec_set_mac_address(dev);
1da177e4
LT
1870
1871 /* Reset all multicast.
1872 */
cc462f7d
GU
1873 fecp->fec_grp_hash_table_high = 0;
1874 fecp->fec_grp_hash_table_low = 0;
1da177e4
LT
1875
1876 /* Set maximum receive buffer size.
1877 */
1878 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1879
1da177e4
LT
1880 /* Set receive and transmit descriptor base.
1881 */
4661e75b
SH
1882 fecp->fec_r_des_start = fep->bd_dma;
1883 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
1884 * RX_RING_SIZE;
1da177e4
LT
1885
1886 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1887 fep->cur_rx = fep->rx_bd_base;
1888
1889 /* Reset SKB transmit buffers.
1890 */
1891 fep->skb_cur = fep->skb_dirty = 0;
1892 for (i=0; i<=TX_RING_MOD_MASK; i++) {
1893 if (fep->tx_skbuff[i] != NULL) {
1894 dev_kfree_skb_any(fep->tx_skbuff[i]);
1895 fep->tx_skbuff[i] = NULL;
1896 }
1897 }
1898
1899 /* Initialize the receive buffer descriptors.
1900 */
1901 bdp = fep->rx_bd_base;
1902 for (i=0; i<RX_RING_SIZE; i++) {
1903
1904 /* Initialize the BD for every fragment in the page.
1905 */
1906 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1907 bdp++;
1908 }
1909
1910 /* Set the last buffer to wrap.
1911 */
1912 bdp--;
1913 bdp->cbd_sc |= BD_SC_WRAP;
1914
1915 /* ...and the same for transmmit.
1916 */
1917 bdp = fep->tx_bd_base;
1918 for (i=0; i<TX_RING_SIZE; i++) {
1919
1920 /* Initialize the BD for every fragment in the page.
1921 */
1922 bdp->cbd_sc = 0;
1923 bdp->cbd_bufaddr = 0;
1924 bdp++;
1925 }
1926
1927 /* Set the last buffer to wrap.
1928 */
1929 bdp--;
1930 bdp->cbd_sc |= BD_SC_WRAP;
1931
1932 /* Enable MII mode.
1933 */
1934 if (duplex) {
1935 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
1936 fecp->fec_x_cntrl = 0x04; /* FD enable */
f909b1ef 1937 } else {
1da177e4
LT
1938 /* MII enable|No Rcv on Xmit */
1939 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
1940 fecp->fec_x_cntrl = 0x00;
1941 }
1942 fep->full_duplex = duplex;
1943
1944 /* Set MII speed.
1945 */
1946 fecp->fec_mii_speed = fep->phy_speed;
1947
1948 /* And last, enable the transmit and receive processing.
1949 */
1950 fecp->fec_ecntrl = 2;
6b265293
MW
1951 fecp->fec_r_des_active = 0;
1952
1953 /* Enable interrupts we wish to service.
1954 */
398ec922 1955 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
1da177e4
LT
1956}
1957
1958static void
1959fec_stop(struct net_device *dev)
1960{
1961 volatile fec_t *fecp;
1962 struct fec_enet_private *fep;
1963
1964 fep = netdev_priv(dev);
1965 fecp = fep->hwp;
1966
677177c5
PDM
1967 /*
1968 ** We cannot expect a graceful transmit stop without link !!!
1969 */
1970 if (fep->link)
1971 {
1972 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
1973 udelay(10);
1974 if (!(fecp->fec_ievent & FEC_ENET_GRA))
1975 printk("fec_stop : Graceful transmit stop did not complete !\n");
1976 }
1da177e4
LT
1977
1978 /* Whack a reset. We should wait for this.
1979 */
1980 fecp->fec_ecntrl = 1;
1981 udelay(10);
1982
1983 /* Clear outstanding MII command interrupts.
1984 */
1985 fecp->fec_ievent = FEC_ENET_MII;
1da177e4
LT
1986
1987 fecp->fec_imask = FEC_ENET_MII;
1988 fecp->fec_mii_speed = fep->phy_speed;
1989}
1990
ead73183
SH
1991static int __devinit
1992fec_probe(struct platform_device *pdev)
1993{
1994 struct fec_enet_private *fep;
1995 struct net_device *ndev;
1996 int i, irq, ret = 0;
1997 struct resource *r;
1998
1999 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2000 if (!r)
2001 return -ENXIO;
2002
2003 r = request_mem_region(r->start, resource_size(r), pdev->name);
2004 if (!r)
2005 return -EBUSY;
2006
2007 /* Init network device */
2008 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2009 if (!ndev)
2010 return -ENOMEM;
2011
2012 SET_NETDEV_DEV(ndev, &pdev->dev);
2013
2014 /* setup board info structure */
2015 fep = netdev_priv(ndev);
2016 memset(fep, 0, sizeof(*fep));
2017
2018 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
2019
2020 if (!ndev->base_addr) {
2021 ret = -ENOMEM;
2022 goto failed_ioremap;
2023 }
2024
2025 platform_set_drvdata(pdev, ndev);
2026
2027 /* This device has up to three irqs on some platforms */
2028 for (i = 0; i < 3; i++) {
2029 irq = platform_get_irq(pdev, i);
2030 if (i && irq < 0)
2031 break;
2032 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2033 if (ret) {
2034 while (i >= 0) {
2035 irq = platform_get_irq(pdev, i);
2036 free_irq(irq, ndev);
2037 i--;
2038 }
2039 goto failed_irq;
2040 }
2041 }
2042
2043 fep->clk = clk_get(&pdev->dev, "fec_clk");
2044 if (IS_ERR(fep->clk)) {
2045 ret = PTR_ERR(fep->clk);
2046 goto failed_clk;
2047 }
2048 clk_enable(fep->clk);
2049
2050 ret = fec_enet_init(ndev, 0);
2051 if (ret)
2052 goto failed_init;
2053
2054 ret = register_netdev(ndev);
2055 if (ret)
2056 goto failed_register;
2057
2058 return 0;
2059
2060failed_register:
2061failed_init:
2062 clk_disable(fep->clk);
2063 clk_put(fep->clk);
2064failed_clk:
2065 for (i = 0; i < 3; i++) {
2066 irq = platform_get_irq(pdev, i);
2067 if (irq > 0)
2068 free_irq(irq, ndev);
2069 }
2070failed_irq:
2071 iounmap((void __iomem *)ndev->base_addr);
2072failed_ioremap:
2073 free_netdev(ndev);
2074
2075 return ret;
2076}
2077
2078static int __devexit
2079fec_drv_remove(struct platform_device *pdev)
2080{
2081 struct net_device *ndev = platform_get_drvdata(pdev);
2082 struct fec_enet_private *fep = netdev_priv(ndev);
2083
2084 platform_set_drvdata(pdev, NULL);
2085
2086 fec_stop(ndev);
2087 clk_disable(fep->clk);
2088 clk_put(fep->clk);
2089 iounmap((void __iomem *)ndev->base_addr);
2090 unregister_netdev(ndev);
2091 free_netdev(ndev);
2092 return 0;
2093}
2094
2095static int
2096fec_suspend(struct platform_device *dev, pm_message_t state)
2097{
2098 struct net_device *ndev = platform_get_drvdata(dev);
2099 struct fec_enet_private *fep;
2100
2101 if (ndev) {
2102 fep = netdev_priv(ndev);
2103 if (netif_running(ndev)) {
2104 netif_device_detach(ndev);
2105 fec_stop(ndev);
2106 }
2107 }
2108 return 0;
2109}
2110
2111static int
2112fec_resume(struct platform_device *dev)
2113{
2114 struct net_device *ndev = platform_get_drvdata(dev);
2115
2116 if (ndev) {
2117 if (netif_running(ndev)) {
2118 fec_enet_init(ndev, 0);
2119 netif_device_attach(ndev);
2120 }
2121 }
2122 return 0;
2123}
2124
2125static struct platform_driver fec_driver = {
2126 .driver = {
2127 .name = "fec",
2128 .owner = THIS_MODULE,
2129 },
2130 .probe = fec_probe,
2131 .remove = __devexit_p(fec_drv_remove),
2132 .suspend = fec_suspend,
2133 .resume = fec_resume,
2134};
2135
2136static int __init
2137fec_enet_module_init(void)
2138{
2139 printk(KERN_INFO "FEC Ethernet Driver\n");
2140
2141 return platform_driver_register(&fec_driver);
2142}
2143
2144static void __exit
2145fec_enet_cleanup(void)
2146{
2147 platform_driver_unregister(&fec_driver);
2148}
2149
2150module_exit(fec_enet_cleanup);
1da177e4
LT
2151module_init(fec_enet_module_init);
2152
2153MODULE_LICENSE("GPL");
This page took 0.601256 seconds and 5 git commands to generate.