Merge branch 'master'
[deliverable/linux.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
7dd6a2aa 11 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
21 * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
7dd6a2aa
GU
22 * Copyright (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
23 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2005 Macq Electronique SA.
1da177e4
LT
26 */
27
28#include <linux/config.h>
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/string.h>
32#include <linux/ptrace.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/delay.h>
40#include <linux/netdevice.h>
41#include <linux/etherdevice.h>
42#include <linux/skbuff.h>
43#include <linux/spinlock.h>
44#include <linux/workqueue.h>
45#include <linux/bitops.h>
46
47#include <asm/irq.h>
48#include <asm/uaccess.h>
49#include <asm/io.h>
50#include <asm/pgtable.h>
51
7dd6a2aa
GU
52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x)
1da177e4
LT
54#include <asm/coldfire.h>
55#include <asm/mcfsim.h>
56#include "fec.h"
57#else
58#include <asm/8xx_immap.h>
59#include <asm/mpc8xx.h>
60#include "commproc.h"
61#endif
62
63#if defined(CONFIG_FEC2)
64#define FEC_MAX_PORTS 2
65#else
66#define FEC_MAX_PORTS 1
67#endif
68
69/*
70 * Define the fixed address of the FEC hardware.
71 */
72static unsigned int fec_hw[] = {
73#if defined(CONFIG_M5272)
74 (MCF_MBAR + 0x840),
75#elif defined(CONFIG_M527x)
76 (MCF_MBAR + 0x1000),
77 (MCF_MBAR + 0x1800),
7dd6a2aa 78#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
1da177e4
LT
79 (MCF_MBAR + 0x1000),
80#else
81 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
82#endif
83};
84
85static unsigned char fec_mac_default[] = {
86 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
87};
88
89/*
90 * Some hardware gets it MAC address out of local flash memory.
91 * if this is non-zero then assume it is the address to get MAC from.
92 */
93#if defined(CONFIG_NETtel)
94#define FEC_FLASHMAC 0xf0006006
95#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
96#define FEC_FLASHMAC 0xf0006000
97#elif defined (CONFIG_MTD_KeyTechnology)
98#define FEC_FLASHMAC 0xffe04000
99#elif defined(CONFIG_CANCam)
100#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
101#elif defined (CONFIG_M5272C3)
102#define FEC_FLASHMAC (0xffe04000 + 4)
103#elif defined(CONFIG_MOD5272)
104#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
105#else
106#define FEC_FLASHMAC 0
107#endif
108
1da177e4
LT
109/* Forward declarations of some structures to support different PHYs
110*/
111
112typedef struct {
113 uint mii_data;
114 void (*funct)(uint mii_reg, struct net_device *dev);
115} phy_cmd_t;
116
117typedef struct {
118 uint id;
119 char *name;
120
121 const phy_cmd_t *config;
122 const phy_cmd_t *startup;
123 const phy_cmd_t *ack_int;
124 const phy_cmd_t *shutdown;
125} phy_info_t;
126
127/* The number of Tx and Rx buffers. These are allocated from the page
128 * pool. The code may assume these are power of two, so it it best
129 * to keep them that size.
130 * We don't need to allocate pages for the transmitter. We just use
131 * the skbuffer directly.
132 */
133#define FEC_ENET_RX_PAGES 8
134#define FEC_ENET_RX_FRSIZE 2048
135#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
136#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
137#define FEC_ENET_TX_FRSIZE 2048
138#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
139#define TX_RING_SIZE 16 /* Must be power of two */
140#define TX_RING_MOD_MASK 15 /* for this to work */
141
142/* Interrupt events/masks.
143*/
144#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
145#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
146#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
147#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
148#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
149#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
150#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
151#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
152#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
153#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
154
155/* The FEC stores dest/src/type, data, and checksum for receive packets.
156 */
157#define PKT_MAXBUF_SIZE 1518
158#define PKT_MINBUF_SIZE 64
159#define PKT_MAXBLR_SIZE 1520
160
161
162/*
163 * The 5270/5271/5280/5282 RX control register also contains maximum frame
164 * size bits. Other FEC hardware does not, so we need to take that into
165 * account when setting it.
166 */
7dd6a2aa 167#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
168#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
169#else
170#define OPT_FRAME_SIZE 0
171#endif
172
173/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
174 * tx_bd_base always point to the base of the buffer descriptors. The
175 * cur_rx and cur_tx point to the currently available buffer.
176 * The dirty_tx tracks the current buffer that is being sent by the
177 * controller. The cur_tx and dirty_tx are equal under both completely
178 * empty and completely full conditions. The empty/ready indicator in
179 * the buffer descriptor determines the actual condition.
180 */
181struct fec_enet_private {
182 /* Hardware registers of the FEC device */
183 volatile fec_t *hwp;
184
185 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 unsigned char *tx_bounce[TX_RING_SIZE];
187 struct sk_buff* tx_skbuff[TX_RING_SIZE];
188 ushort skb_cur;
189 ushort skb_dirty;
190
191 /* CPM dual port RAM relative addresses.
192 */
193 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
194 cbd_t *tx_bd_base;
195 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
196 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
197 struct net_device_stats stats;
198 uint tx_full;
199 spinlock_t lock;
200
201 uint phy_id;
202 uint phy_id_done;
203 uint phy_status;
204 uint phy_speed;
7dd6a2aa 205 phy_info_t const *phy;
1da177e4
LT
206 struct work_struct phy_task;
207
208 uint sequence_done;
209 uint mii_phy_task_queued;
210
211 uint phy_addr;
212
213 int index;
214 int opened;
215 int link;
216 int old_link;
217 int full_duplex;
1da177e4
LT
218};
219
220static int fec_enet_open(struct net_device *dev);
221static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
222static void fec_enet_mii(struct net_device *dev);
223static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
224static void fec_enet_tx(struct net_device *dev);
225static void fec_enet_rx(struct net_device *dev);
226static int fec_enet_close(struct net_device *dev);
227static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
228static void set_multicast_list(struct net_device *dev);
229static void fec_restart(struct net_device *dev, int duplex);
230static void fec_stop(struct net_device *dev);
231static void fec_set_mac_address(struct net_device *dev);
232
233
234/* MII processing. We keep this as simple as possible. Requests are
235 * placed on the list (if there is room). When the request is finished
236 * by the MII, an optional function may be called.
237 */
238typedef struct mii_list {
239 uint mii_regval;
240 void (*mii_func)(uint val, struct net_device *dev);
241 struct mii_list *mii_next;
242} mii_list_t;
243
244#define NMII 20
7dd6a2aa
GU
245static mii_list_t mii_cmds[NMII];
246static mii_list_t *mii_free;
247static mii_list_t *mii_head;
248static mii_list_t *mii_tail;
1da177e4
LT
249
250static int mii_queue(struct net_device *dev, int request,
251 void (*func)(uint, struct net_device *));
252
253/* Make MII read/write commands for the FEC.
254*/
255#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
256#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
257 (VAL & 0xffff))
258#define mk_mii_end 0
259
260/* Transmitter timeout.
261*/
262#define TX_TIMEOUT (2*HZ)
263
264/* Register definitions for the PHY.
265*/
266
267#define MII_REG_CR 0 /* Control Register */
268#define MII_REG_SR 1 /* Status Register */
269#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
270#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
271#define MII_REG_ANAR 4 /* A-N Advertisement Register */
272#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
273#define MII_REG_ANER 6 /* A-N Expansion Register */
274#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
275#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
276
277/* values for phy_status */
278
279#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
280#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
281#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
282#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
283#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
284#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
285#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
286
287#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
288#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
289#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
290#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
291#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
292#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
293#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
294#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
295
296
297static int
298fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
299{
300 struct fec_enet_private *fep;
301 volatile fec_t *fecp;
302 volatile cbd_t *bdp;
303
304 fep = netdev_priv(dev);
305 fecp = (volatile fec_t*)dev->base_addr;
306
307 if (!fep->link) {
308 /* Link is down or autonegotiation is in progress. */
309 return 1;
310 }
311
312 /* Fill in a Tx ring entry */
313 bdp = fep->cur_tx;
314
315#ifndef final_version
316 if (bdp->cbd_sc & BD_ENET_TX_READY) {
317 /* Ooops. All transmit buffers are full. Bail out.
318 * This should not happen, since dev->tbusy should be set.
319 */
320 printk("%s: tx queue full!.\n", dev->name);
321 return 1;
322 }
323#endif
324
325 /* Clear all of the status flags.
326 */
327 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
328
329 /* Set buffer length and buffer pointer.
330 */
331 bdp->cbd_bufaddr = __pa(skb->data);
332 bdp->cbd_datlen = skb->len;
333
334 /*
335 * On some FEC implementations data must be aligned on
336 * 4-byte boundaries. Use bounce buffers to copy data
337 * and get it aligned. Ugh.
338 */
339 if (bdp->cbd_bufaddr & 0x3) {
340 unsigned int index;
341 index = bdp - fep->tx_bd_base;
342 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
343 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
344 }
345
346 /* Save skb pointer.
347 */
348 fep->tx_skbuff[fep->skb_cur] = skb;
349
350 fep->stats.tx_bytes += skb->len;
351 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
352
353 /* Push the data cache so the CPM does not get stale memory
354 * data.
355 */
356 flush_dcache_range((unsigned long)skb->data,
357 (unsigned long)skb->data + skb->len);
358
359 spin_lock_irq(&fep->lock);
360
361 /* Send it on its way. Tell FEC its ready, interrupt when done,
362 * its the last BD of the frame, and to put the CRC on the end.
363 */
364
365 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
366 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
367
368 dev->trans_start = jiffies;
369
370 /* Trigger transmission start */
371 fecp->fec_x_des_active = 0x01000000;
372
373 /* If this was the last BD in the ring, start at the beginning again.
374 */
375 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
376 bdp = fep->tx_bd_base;
377 } else {
378 bdp++;
379 }
380
381 if (bdp == fep->dirty_tx) {
382 fep->tx_full = 1;
383 netif_stop_queue(dev);
384 }
385
386 fep->cur_tx = (cbd_t *)bdp;
387
388 spin_unlock_irq(&fep->lock);
389
390 return 0;
391}
392
393static void
394fec_timeout(struct net_device *dev)
395{
396 struct fec_enet_private *fep = netdev_priv(dev);
397
398 printk("%s: transmit timed out.\n", dev->name);
399 fep->stats.tx_errors++;
400#ifndef final_version
401 {
402 int i;
403 cbd_t *bdp;
404
405 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
406 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
407 (unsigned long)fep->dirty_tx,
408 (unsigned long)fep->cur_rx);
409
410 bdp = fep->tx_bd_base;
411 printk(" tx: %u buffers\n", TX_RING_SIZE);
412 for (i = 0 ; i < TX_RING_SIZE; i++) {
413 printk(" %08x: %04x %04x %08x\n",
414 (uint) bdp,
415 bdp->cbd_sc,
416 bdp->cbd_datlen,
417 (int) bdp->cbd_bufaddr);
418 bdp++;
419 }
420
421 bdp = fep->rx_bd_base;
422 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
423 for (i = 0 ; i < RX_RING_SIZE; i++) {
424 printk(" %08x: %04x %04x %08x\n",
425 (uint) bdp,
426 bdp->cbd_sc,
427 bdp->cbd_datlen,
428 (int) bdp->cbd_bufaddr);
429 bdp++;
430 }
431 }
432#endif
7dd6a2aa 433 fec_restart(dev, fep->full_duplex);
1da177e4
LT
434 netif_wake_queue(dev);
435}
436
437/* The interrupt handler.
438 * This is called from the MPC core interrupt.
439 */
440static irqreturn_t
441fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
442{
443 struct net_device *dev = dev_id;
444 volatile fec_t *fecp;
445 uint int_events;
446 int handled = 0;
447
448 fecp = (volatile fec_t*)dev->base_addr;
449
450 /* Get the interrupt events that caused us to be here.
451 */
452 while ((int_events = fecp->fec_ievent) != 0) {
453 fecp->fec_ievent = int_events;
454
455 /* Handle receive event in its own function.
456 */
457 if (int_events & FEC_ENET_RXF) {
458 handled = 1;
459 fec_enet_rx(dev);
460 }
461
462 /* Transmit OK, or non-fatal error. Update the buffer
463 descriptors. FEC handles all errors, we just discover
464 them as part of the transmit process.
465 */
466 if (int_events & FEC_ENET_TXF) {
467 handled = 1;
468 fec_enet_tx(dev);
469 }
470
471 if (int_events & FEC_ENET_MII) {
472 handled = 1;
473 fec_enet_mii(dev);
474 }
475
476 }
477 return IRQ_RETVAL(handled);
478}
479
480
481static void
482fec_enet_tx(struct net_device *dev)
483{
484 struct fec_enet_private *fep;
485 volatile cbd_t *bdp;
486 struct sk_buff *skb;
487
488 fep = netdev_priv(dev);
489 spin_lock(&fep->lock);
490 bdp = fep->dirty_tx;
491
492 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
493 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
494
495 skb = fep->tx_skbuff[fep->skb_dirty];
496 /* Check for errors. */
497 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
498 BD_ENET_TX_RL | BD_ENET_TX_UN |
499 BD_ENET_TX_CSL)) {
500 fep->stats.tx_errors++;
501 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
502 fep->stats.tx_heartbeat_errors++;
503 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
504 fep->stats.tx_window_errors++;
505 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
506 fep->stats.tx_aborted_errors++;
507 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
508 fep->stats.tx_fifo_errors++;
509 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
510 fep->stats.tx_carrier_errors++;
511 } else {
512 fep->stats.tx_packets++;
513 }
514
515#ifndef final_version
516 if (bdp->cbd_sc & BD_ENET_TX_READY)
517 printk("HEY! Enet xmit interrupt and TX_READY.\n");
518#endif
519 /* Deferred means some collisions occurred during transmit,
520 * but we eventually sent the packet OK.
521 */
522 if (bdp->cbd_sc & BD_ENET_TX_DEF)
523 fep->stats.collisions++;
524
525 /* Free the sk buffer associated with this last transmit.
526 */
527 dev_kfree_skb_any(skb);
528 fep->tx_skbuff[fep->skb_dirty] = NULL;
529 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
530
531 /* Update pointer to next buffer descriptor to be transmitted.
532 */
533 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
534 bdp = fep->tx_bd_base;
535 else
536 bdp++;
537
538 /* Since we have freed up a buffer, the ring is no longer
539 * full.
540 */
541 if (fep->tx_full) {
542 fep->tx_full = 0;
543 if (netif_queue_stopped(dev))
544 netif_wake_queue(dev);
545 }
546 }
547 fep->dirty_tx = (cbd_t *)bdp;
548 spin_unlock(&fep->lock);
549}
550
551
552/* During a receive, the cur_rx points to the current incoming buffer.
553 * When we update through the ring, if the next incoming buffer has
554 * not been given to the system, we just set the empty indicator,
555 * effectively tossing the packet.
556 */
557static void
558fec_enet_rx(struct net_device *dev)
559{
560 struct fec_enet_private *fep;
561 volatile fec_t *fecp;
562 volatile cbd_t *bdp;
563 struct sk_buff *skb;
564 ushort pkt_len;
565 __u8 *data;
566
567 fep = netdev_priv(dev);
568 fecp = (volatile fec_t*)dev->base_addr;
569
570 /* First, grab all of the stats for the incoming packet.
571 * These get messed up if we get called due to a busy condition.
572 */
573 bdp = fep->cur_rx;
574
575while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
576
577#ifndef final_version
578 /* Since we have allocated space to hold a complete frame,
579 * the last indicator should be set.
580 */
581 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
582 printk("FEC ENET: rcv is not +last\n");
583#endif
584
585 if (!fep->opened)
586 goto rx_processing_done;
587
588 /* Check for errors. */
589 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
590 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
591 fep->stats.rx_errors++;
592 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
593 /* Frame too long or too short. */
594 fep->stats.rx_length_errors++;
595 }
596 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
597 fep->stats.rx_frame_errors++;
598 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
599 fep->stats.rx_crc_errors++;
600 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
601 fep->stats.rx_crc_errors++;
602 }
603
604 /* Report late collisions as a frame error.
605 * On this error, the BD is closed, but we don't know what we
606 * have in the buffer. So, just drop this frame on the floor.
607 */
608 if (bdp->cbd_sc & BD_ENET_RX_CL) {
609 fep->stats.rx_errors++;
610 fep->stats.rx_frame_errors++;
611 goto rx_processing_done;
612 }
613
614 /* Process the incoming frame.
615 */
616 fep->stats.rx_packets++;
617 pkt_len = bdp->cbd_datlen;
618 fep->stats.rx_bytes += pkt_len;
619 data = (__u8*)__va(bdp->cbd_bufaddr);
620
621 /* This does 16 byte alignment, exactly what we need.
622 * The packet length includes FCS, but we don't want to
623 * include that when passing upstream as it messes up
624 * bridging applications.
625 */
626 skb = dev_alloc_skb(pkt_len-4);
627
628 if (skb == NULL) {
629 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
630 fep->stats.rx_dropped++;
631 } else {
632 skb->dev = dev;
633 skb_put(skb,pkt_len-4); /* Make room */
634 eth_copy_and_sum(skb,
635 (unsigned char *)__va(bdp->cbd_bufaddr),
636 pkt_len-4, 0);
637 skb->protocol=eth_type_trans(skb,dev);
638 netif_rx(skb);
639 }
640 rx_processing_done:
641
642 /* Clear the status flags for this buffer.
643 */
644 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
645
646 /* Mark the buffer empty.
647 */
648 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
649
650 /* Update BD pointer to next entry.
651 */
652 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
653 bdp = fep->rx_bd_base;
654 else
655 bdp++;
656
657#if 1
658 /* Doing this here will keep the FEC running while we process
659 * incoming frames. On a heavily loaded network, we should be
660 * able to keep up at the expense of system resources.
661 */
662 fecp->fec_r_des_active = 0x01000000;
663#endif
664 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
665 fep->cur_rx = (cbd_t *)bdp;
666
667#if 0
668 /* Doing this here will allow us to process all frames in the
669 * ring before the FEC is allowed to put more there. On a heavily
670 * loaded network, some frames may be lost. Unfortunately, this
671 * increases the interrupt overhead since we can potentially work
672 * our way back to the interrupt return only to come right back
673 * here.
674 */
675 fecp->fec_r_des_active = 0x01000000;
676#endif
677}
678
679
680static void
681fec_enet_mii(struct net_device *dev)
682{
683 struct fec_enet_private *fep;
684 volatile fec_t *ep;
685 mii_list_t *mip;
686 uint mii_reg;
687
688 fep = netdev_priv(dev);
689 ep = fep->hwp;
690 mii_reg = ep->fec_mii_data;
691
692 if ((mip = mii_head) == NULL) {
693 printk("MII and no head!\n");
694 return;
695 }
696
697 if (mip->mii_func != NULL)
698 (*(mip->mii_func))(mii_reg, dev);
699
700 mii_head = mip->mii_next;
701 mip->mii_next = mii_free;
702 mii_free = mip;
703
704 if ((mip = mii_head) != NULL)
705 ep->fec_mii_data = mip->mii_regval;
706}
707
708static int
709mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
710{
711 struct fec_enet_private *fep;
712 unsigned long flags;
713 mii_list_t *mip;
714 int retval;
715
716 /* Add PHY address to register command.
717 */
718 fep = netdev_priv(dev);
719 regval |= fep->phy_addr << 23;
720
721 retval = 0;
722
723 save_flags(flags);
724 cli();
725
726 if ((mip = mii_free) != NULL) {
727 mii_free = mip->mii_next;
728 mip->mii_regval = regval;
729 mip->mii_func = func;
730 mip->mii_next = NULL;
731 if (mii_head) {
732 mii_tail->mii_next = mip;
733 mii_tail = mip;
734 }
735 else {
736 mii_head = mii_tail = mip;
737 fep->hwp->fec_mii_data = regval;
738 }
739 }
740 else {
741 retval = 1;
742 }
743
744 restore_flags(flags);
745
746 return(retval);
747}
748
749static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
750{
751 int k;
752
753 if(!c)
754 return;
755
756 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
757 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
758 }
759}
760
761static void mii_parse_sr(uint mii_reg, struct net_device *dev)
762{
763 struct fec_enet_private *fep = netdev_priv(dev);
764 volatile uint *s = &(fep->phy_status);
7dd6a2aa 765 uint status;
1da177e4 766
7dd6a2aa 767 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
768
769 if (mii_reg & 0x0004)
7dd6a2aa 770 status |= PHY_STAT_LINK;
1da177e4 771 if (mii_reg & 0x0010)
7dd6a2aa 772 status |= PHY_STAT_FAULT;
1da177e4 773 if (mii_reg & 0x0020)
7dd6a2aa
GU
774 status |= PHY_STAT_ANC;
775
776 *s = status;
1da177e4
LT
777}
778
779static void mii_parse_cr(uint mii_reg, struct net_device *dev)
780{
781 struct fec_enet_private *fep = netdev_priv(dev);
782 volatile uint *s = &(fep->phy_status);
7dd6a2aa 783 uint status;
1da177e4 784
7dd6a2aa 785 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
786
787 if (mii_reg & 0x1000)
7dd6a2aa 788 status |= PHY_CONF_ANE;
1da177e4 789 if (mii_reg & 0x4000)
7dd6a2aa
GU
790 status |= PHY_CONF_LOOP;
791 *s = status;
1da177e4
LT
792}
793
794static void mii_parse_anar(uint mii_reg, struct net_device *dev)
795{
796 struct fec_enet_private *fep = netdev_priv(dev);
797 volatile uint *s = &(fep->phy_status);
7dd6a2aa 798 uint status;
1da177e4 799
7dd6a2aa 800 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
801
802 if (mii_reg & 0x0020)
7dd6a2aa 803 status |= PHY_CONF_10HDX;
1da177e4 804 if (mii_reg & 0x0040)
7dd6a2aa 805 status |= PHY_CONF_10FDX;
1da177e4 806 if (mii_reg & 0x0080)
7dd6a2aa 807 status |= PHY_CONF_100HDX;
1da177e4 808 if (mii_reg & 0x00100)
7dd6a2aa
GU
809 status |= PHY_CONF_100FDX;
810 *s = status;
1da177e4
LT
811}
812
813/* ------------------------------------------------------------------------- */
814/* The Level one LXT970 is used by many boards */
815
816#define MII_LXT970_MIRROR 16 /* Mirror register */
817#define MII_LXT970_IER 17 /* Interrupt Enable Register */
818#define MII_LXT970_ISR 18 /* Interrupt Status Register */
819#define MII_LXT970_CONFIG 19 /* Configuration Register */
820#define MII_LXT970_CSR 20 /* Chip Status Register */
821
822static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
823{
824 struct fec_enet_private *fep = netdev_priv(dev);
825 volatile uint *s = &(fep->phy_status);
7dd6a2aa 826 uint status;
1da177e4 827
7dd6a2aa 828 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
829 if (mii_reg & 0x0800) {
830 if (mii_reg & 0x1000)
7dd6a2aa 831 status |= PHY_STAT_100FDX;
1da177e4 832 else
7dd6a2aa 833 status |= PHY_STAT_100HDX;
1da177e4
LT
834 } else {
835 if (mii_reg & 0x1000)
7dd6a2aa 836 status |= PHY_STAT_10FDX;
1da177e4 837 else
7dd6a2aa 838 status |= PHY_STAT_10HDX;
1da177e4 839 }
7dd6a2aa 840 *s = status;
1da177e4
LT
841}
842
7dd6a2aa 843static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
844 { mk_mii_read(MII_REG_CR), mii_parse_cr },
845 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
846 { mk_mii_end, }
7dd6a2aa
GU
847 };
848static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
849 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
850 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
851 { mk_mii_end, }
7dd6a2aa
GU
852 };
853static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
854 /* read SR and ISR to acknowledge */
855 { mk_mii_read(MII_REG_SR), mii_parse_sr },
856 { mk_mii_read(MII_LXT970_ISR), NULL },
857
858 /* find out the current status */
859 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
860 { mk_mii_end, }
7dd6a2aa
GU
861 };
862static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
863 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
864 { mk_mii_end, }
7dd6a2aa
GU
865 };
866static phy_info_t const phy_info_lxt970 = {
867 .id = 0x07810000,
868 .name = "LXT970",
869 .config = phy_cmd_lxt970_config,
870 .startup = phy_cmd_lxt970_startup,
871 .ack_int = phy_cmd_lxt970_ack_int,
872 .shutdown = phy_cmd_lxt970_shutdown
1da177e4
LT
873};
874
875/* ------------------------------------------------------------------------- */
876/* The Level one LXT971 is used on some of my custom boards */
877
878/* register definitions for the 971 */
879
880#define MII_LXT971_PCR 16 /* Port Control Register */
881#define MII_LXT971_SR2 17 /* Status Register 2 */
882#define MII_LXT971_IER 18 /* Interrupt Enable Register */
883#define MII_LXT971_ISR 19 /* Interrupt Status Register */
884#define MII_LXT971_LCR 20 /* LED Control Register */
885#define MII_LXT971_TCR 30 /* Transmit Control Register */
886
887/*
888 * I had some nice ideas of running the MDIO faster...
889 * The 971 should support 8MHz and I tried it, but things acted really
890 * weird, so 2.5 MHz ought to be enough for anyone...
891 */
892
893static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
894{
895 struct fec_enet_private *fep = netdev_priv(dev);
896 volatile uint *s = &(fep->phy_status);
7dd6a2aa 897 uint status;
1da177e4 898
7dd6a2aa 899 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
900
901 if (mii_reg & 0x0400) {
902 fep->link = 1;
7dd6a2aa 903 status |= PHY_STAT_LINK;
1da177e4
LT
904 } else {
905 fep->link = 0;
906 }
907 if (mii_reg & 0x0080)
7dd6a2aa 908 status |= PHY_STAT_ANC;
1da177e4
LT
909 if (mii_reg & 0x4000) {
910 if (mii_reg & 0x0200)
7dd6a2aa 911 status |= PHY_STAT_100FDX;
1da177e4 912 else
7dd6a2aa 913 status |= PHY_STAT_100HDX;
1da177e4
LT
914 } else {
915 if (mii_reg & 0x0200)
7dd6a2aa 916 status |= PHY_STAT_10FDX;
1da177e4 917 else
7dd6a2aa 918 status |= PHY_STAT_10HDX;
1da177e4
LT
919 }
920 if (mii_reg & 0x0008)
7dd6a2aa 921 status |= PHY_STAT_FAULT;
1da177e4 922
7dd6a2aa
GU
923 *s = status;
924}
1da177e4 925
7dd6a2aa
GU
926static phy_cmd_t const phy_cmd_lxt971_config[] = {
927 /* limit to 10MBit because my prototype board
1da177e4
LT
928 * doesn't work with 100. */
929 { mk_mii_read(MII_REG_CR), mii_parse_cr },
930 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
931 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
932 { mk_mii_end, }
7dd6a2aa
GU
933 };
934static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
935 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
936 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
937 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
938 /* Somehow does the 971 tell me that the link is down
939 * the first read after power-up.
940 * read here to get a valid value in ack_int */
941 { mk_mii_read(MII_REG_SR), mii_parse_sr },
942 { mk_mii_end, }
7dd6a2aa
GU
943 };
944static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
945 /* acknowledge the int before reading status ! */
946 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
947 /* find out the current status */
948 { mk_mii_read(MII_REG_SR), mii_parse_sr },
949 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 950 { mk_mii_end, }
7dd6a2aa
GU
951 };
952static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
953 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
954 { mk_mii_end, }
7dd6a2aa
GU
955 };
956static phy_info_t const phy_info_lxt971 = {
957 .id = 0x0001378e,
958 .name = "LXT971",
959 .config = phy_cmd_lxt971_config,
960 .startup = phy_cmd_lxt971_startup,
961 .ack_int = phy_cmd_lxt971_ack_int,
962 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
963};
964
965/* ------------------------------------------------------------------------- */
966/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
967
968/* register definitions */
969
970#define MII_QS6612_MCR 17 /* Mode Control Register */
971#define MII_QS6612_FTR 27 /* Factory Test Register */
972#define MII_QS6612_MCO 28 /* Misc. Control Register */
973#define MII_QS6612_ISR 29 /* Interrupt Source Register */
974#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
975#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
976
977static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
978{
979 struct fec_enet_private *fep = netdev_priv(dev);
980 volatile uint *s = &(fep->phy_status);
7dd6a2aa 981 uint status;
1da177e4 982
7dd6a2aa 983 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
984
985 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
986 case 1: status |= PHY_STAT_10HDX; break;
987 case 2: status |= PHY_STAT_100HDX; break;
988 case 5: status |= PHY_STAT_10FDX; break;
989 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
990}
991
7dd6a2aa
GU
992 *s = status;
993}
994
995static phy_cmd_t const phy_cmd_qs6612_config[] = {
1da177e4
LT
996 /* The PHY powers up isolated on the RPX,
997 * so send a command to allow operation.
998 */
999 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1000
1001 /* parse cr and anar to get some info */
1002 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1003 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1004 { mk_mii_end, }
7dd6a2aa
GU
1005 };
1006static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1007 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1008 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1009 { mk_mii_end, }
7dd6a2aa
GU
1010 };
1011static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1012 /* we need to read ISR, SR and ANER to acknowledge */
1013 { mk_mii_read(MII_QS6612_ISR), NULL },
1014 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1015 { mk_mii_read(MII_REG_ANER), NULL },
1016
1017 /* read pcr to get info */
1018 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1019 { mk_mii_end, }
7dd6a2aa
GU
1020 };
1021static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1022 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1023 { mk_mii_end, }
7dd6a2aa
GU
1024 };
1025static phy_info_t const phy_info_qs6612 = {
1026 .id = 0x00181440,
1027 .name = "QS6612",
1028 .config = phy_cmd_qs6612_config,
1029 .startup = phy_cmd_qs6612_startup,
1030 .ack_int = phy_cmd_qs6612_ack_int,
1031 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1032};
1033
1034/* ------------------------------------------------------------------------- */
1035/* AMD AM79C874 phy */
1036
1037/* register definitions for the 874 */
1038
1039#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1040#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1041#define MII_AM79C874_DR 18 /* Diagnostic Register */
1042#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1043#define MII_AM79C874_MCR 21 /* ModeControl Register */
1044#define MII_AM79C874_DC 23 /* Disconnect Counter */
1045#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1046
1047static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1048{
1049 struct fec_enet_private *fep = netdev_priv(dev);
1050 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1051 uint status;
1da177e4 1052
7dd6a2aa 1053 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1054
1055 if (mii_reg & 0x0080)
7dd6a2aa 1056 status |= PHY_STAT_ANC;
1da177e4 1057 if (mii_reg & 0x0400)
7dd6a2aa 1058 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1059 else
7dd6a2aa
GU
1060 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1061
1062 *s = status;
1da177e4
LT
1063}
1064
7dd6a2aa 1065static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1066 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1067 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1068 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1069 { mk_mii_end, }
7dd6a2aa
GU
1070 };
1071static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1072 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1073 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1074 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1075 { mk_mii_end, }
7dd6a2aa
GU
1076 };
1077static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1078 /* find out the current status */
1079 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1080 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1081 /* we only need to read ISR to acknowledge */
1082 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1083 { mk_mii_end, }
7dd6a2aa
GU
1084 };
1085static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1086 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1087 { mk_mii_end, }
7dd6a2aa
GU
1088 };
1089static phy_info_t const phy_info_am79c874 = {
1090 .id = 0x00022561,
1091 .name = "AM79C874",
1092 .config = phy_cmd_am79c874_config,
1093 .startup = phy_cmd_am79c874_startup,
1094 .ack_int = phy_cmd_am79c874_ack_int,
1095 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1096};
1097
7dd6a2aa 1098
1da177e4
LT
1099/* ------------------------------------------------------------------------- */
1100/* Kendin KS8721BL phy */
1101
1102/* register definitions for the 8721 */
1103
1104#define MII_KS8721BL_RXERCR 21
1105#define MII_KS8721BL_ICSR 22
1106#define MII_KS8721BL_PHYCR 31
1107
7dd6a2aa 1108static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1109 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1110 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1111 { mk_mii_end, }
7dd6a2aa
GU
1112 };
1113static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1114 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1115 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1116 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1117 { mk_mii_end, }
7dd6a2aa
GU
1118 };
1119static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1120 /* find out the current status */
1121 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1122 /* we only need to read ISR to acknowledge */
1123 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1124 { mk_mii_end, }
7dd6a2aa
GU
1125 };
1126static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1127 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1128 { mk_mii_end, }
7dd6a2aa
GU
1129 };
1130static phy_info_t const phy_info_ks8721bl = {
1131 .id = 0x00022161,
1132 .name = "KS8721BL",
1133 .config = phy_cmd_ks8721bl_config,
1134 .startup = phy_cmd_ks8721bl_startup,
1135 .ack_int = phy_cmd_ks8721bl_ack_int,
1136 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1137};
1138
1139/* ------------------------------------------------------------------------- */
1140
7dd6a2aa 1141static phy_info_t const * const phy_info[] = {
1da177e4
LT
1142 &phy_info_lxt970,
1143 &phy_info_lxt971,
1144 &phy_info_qs6612,
1145 &phy_info_am79c874,
1146 &phy_info_ks8721bl,
1147 NULL
1148};
1149
1150/* ------------------------------------------------------------------------- */
1151
1152#ifdef CONFIG_RPXCLASSIC
1153static void
1154mii_link_interrupt(void *dev_id);
1155#else
1156static irqreturn_t
1157mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1158#endif
1159
1160#if defined(CONFIG_M5272)
1161
1162/*
1163 * Code specific to Coldfire 5272 setup.
1164 */
1165static void __inline__ fec_request_intrs(struct net_device *dev)
1166{
1167 volatile unsigned long *icrp;
7dd6a2aa
GU
1168 static const struct idesc {
1169 char *name;
1170 unsigned short irq;
1171 irqreturn_t (*handler)(int, void *, struct pt_regs *);
1172 } *idp, id[] = {
1173 { "fec(RX)", 86, fec_enet_interrupt },
1174 { "fec(TX)", 87, fec_enet_interrupt },
1175 { "fec(OTHER)", 88, fec_enet_interrupt },
1176 { "fec(MII)", 66, mii_link_interrupt },
1177 { NULL },
1178 };
1da177e4
LT
1179
1180 /* Setup interrupt handlers. */
7dd6a2aa
GU
1181 for (idp = id; idp->name; idp++) {
1182 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1183 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1184 }
1da177e4
LT
1185
1186 /* Unmask interrupt at ColdFire 5272 SIM */
1187 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1188 *icrp = 0x00000ddd;
1189 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1190 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1191}
1192
1193static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1194{
1195 volatile fec_t *fecp;
1196
1197 fecp = fep->hwp;
1198 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1199 fecp->fec_x_cntrl = 0x00;
1200
1201 /*
1202 * Set MII speed to 2.5 MHz
1203 * See 5272 manual section 11.5.8: MSCR
1204 */
1205 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1206 fecp->fec_mii_speed = fep->phy_speed;
1207
1208 fec_restart(dev, 0);
1209}
1210
1211static void __inline__ fec_get_mac(struct net_device *dev)
1212{
1213 struct fec_enet_private *fep = netdev_priv(dev);
1214 volatile fec_t *fecp;
7dd6a2aa 1215 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1216
1217 fecp = fep->hwp;
1218
7dd6a2aa 1219 if (FEC_FLASHMAC) {
1da177e4
LT
1220 /*
1221 * Get MAC address from FLASH.
1222 * If it is all 1's or 0's, use the default.
1223 */
7dd6a2aa 1224 iap = (unsigned char *)FEC_FLASHMAC;
1da177e4
LT
1225 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1226 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1227 iap = fec_mac_default;
1228 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1229 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1230 iap = fec_mac_default;
1231 } else {
1232 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1233 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1234 iap = &tmpaddr[0];
1235 }
1236
7dd6a2aa 1237 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1238
1239 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1240 if (iap == fec_mac_default)
1241 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1242}
1243
1244static void __inline__ fec_enable_phy_intr(void)
1245{
1246}
1247
1248static void __inline__ fec_disable_phy_intr(void)
1249{
1250 volatile unsigned long *icrp;
1251 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1252 *icrp = (*icrp & 0x70777777) | 0x08000000;
1253}
1254
1255static void __inline__ fec_phy_ack_intr(void)
1256{
1257 volatile unsigned long *icrp;
1258 /* Acknowledge the interrupt */
1259 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1260 *icrp = (*icrp & 0x77777777) | 0x08000000;
1261}
1262
1263static void __inline__ fec_localhw_setup(void)
1264{
1265}
1266
1267/*
1268 * Do not need to make region uncached on 5272.
1269 */
1270static void __inline__ fec_uncache(unsigned long addr)
1271{
1272}
1273
1274/* ------------------------------------------------------------------------- */
1275
7dd6a2aa 1276#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
1277
1278/*
7dd6a2aa
GU
1279 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1280 * the 5270/5271/5274/5275 and 5280/5282 setups.
1da177e4
LT
1281 */
1282static void __inline__ fec_request_intrs(struct net_device *dev)
1283{
1284 struct fec_enet_private *fep;
1285 int b;
7dd6a2aa
GU
1286 static const struct idesc {
1287 char *name;
1288 unsigned short irq;
1289 } *idp, id[] = {
1290 { "fec(TXF)", 23 },
1291 { "fec(TXB)", 24 },
1292 { "fec(TXFIFO)", 25 },
1293 { "fec(TXCR)", 26 },
1294 { "fec(RXF)", 27 },
1295 { "fec(RXB)", 28 },
1296 { "fec(MII)", 29 },
1297 { "fec(LC)", 30 },
1298 { "fec(HBERR)", 31 },
1299 { "fec(GRA)", 32 },
1300 { "fec(EBERR)", 33 },
1301 { "fec(BABT)", 34 },
1302 { "fec(BABR)", 35 },
1303 { NULL },
1304 };
1da177e4
LT
1305
1306 fep = netdev_priv(dev);
1307 b = (fep->index) ? 128 : 64;
1308
1309 /* Setup interrupt handlers. */
7dd6a2aa
GU
1310 for (idp = id; idp->name; idp++) {
1311 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1312 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1313 }
1da177e4
LT
1314
1315 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1316 {
1317 volatile unsigned char *icrp;
1318 volatile unsigned long *imrp;
1319 int i;
1320
1321 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1322 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1323 MCFINTC_ICR0);
1324 for (i = 23; (i < 36); i++)
1325 icrp[i] = 0x23;
1326
1327 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1328 MCFINTC_IMRH);
1329 *imrp &= ~0x0000000f;
1330 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1331 MCFINTC_IMRL);
1332 *imrp &= ~0xff800001;
1333 }
1334
1335#if defined(CONFIG_M528x)
1336 /* Set up gpio outputs for MII lines */
1337 {
7dd6a2aa
GU
1338 volatile u16 *gpio_paspar;
1339 volatile u8 *gpio_pehlpar;
1da177e4 1340
7dd6a2aa
GU
1341 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1342 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1343 *gpio_paspar |= 0x0f00;
1344 *gpio_pehlpar = 0xc0;
1da177e4
LT
1345 }
1346#endif
1347}
1348
1349static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1350{
1351 volatile fec_t *fecp;
1352
1353 fecp = fep->hwp;
1354 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1355 fecp->fec_x_cntrl = 0x00;
1356
1357 /*
1358 * Set MII speed to 2.5 MHz
1359 * See 5282 manual section 17.5.4.7: MSCR
1360 */
1361 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1362 fecp->fec_mii_speed = fep->phy_speed;
1363
1364 fec_restart(dev, 0);
1365}
1366
1367static void __inline__ fec_get_mac(struct net_device *dev)
1368{
1369 struct fec_enet_private *fep = netdev_priv(dev);
1370 volatile fec_t *fecp;
7dd6a2aa 1371 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1372
1373 fecp = fep->hwp;
1374
7dd6a2aa 1375 if (FEC_FLASHMAC) {
1da177e4
LT
1376 /*
1377 * Get MAC address from FLASH.
1378 * If it is all 1's or 0's, use the default.
1379 */
7dd6a2aa 1380 iap = FEC_FLASHMAC;
1da177e4
LT
1381 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1382 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1383 iap = fec_mac_default;
1384 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1385 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1386 iap = fec_mac_default;
1387 } else {
1388 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1389 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1390 iap = &tmpaddr[0];
1391 }
1392
7dd6a2aa 1393 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1394
1395 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1396 if (iap == fec_mac_default)
1397 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1398}
1399
1400static void __inline__ fec_enable_phy_intr(void)
1401{
1402}
1403
1404static void __inline__ fec_disable_phy_intr(void)
1405{
1406}
1407
1408static void __inline__ fec_phy_ack_intr(void)
1409{
1410}
1411
1412static void __inline__ fec_localhw_setup(void)
1413{
1414}
1415
1416/*
1417 * Do not need to make region uncached on 5272.
1418 */
1419static void __inline__ fec_uncache(unsigned long addr)
1420{
1421}
1422
1423/* ------------------------------------------------------------------------- */
1424
1425#else
1426
1427/*
7dd6a2aa 1428 * Code specific to the MPC860T setup.
1da177e4
LT
1429 */
1430static void __inline__ fec_request_intrs(struct net_device *dev)
1431{
1432 volatile immap_t *immap;
1433
1434 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1435
1436 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1437 panic("Could not allocate FEC IRQ!");
1438
1439#ifdef CONFIG_RPXCLASSIC
1440 /* Make Port C, bit 15 an input that causes interrupts.
1441 */
1442 immap->im_ioport.iop_pcpar &= ~0x0001;
1443 immap->im_ioport.iop_pcdir &= ~0x0001;
1444 immap->im_ioport.iop_pcso &= ~0x0001;
1445 immap->im_ioport.iop_pcint |= 0x0001;
1446 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1447
1448 /* Make LEDS reflect Link status.
1449 */
1450 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1451#endif
1452#ifdef CONFIG_FADS
1453 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1454 panic("Could not allocate MII IRQ!");
1455#endif
1456}
1457
1458static void __inline__ fec_get_mac(struct net_device *dev)
1459{
1da177e4 1460 bd_t *bd;
1da177e4 1461
1da177e4 1462 bd = (bd_t *)__res;
7dd6a2aa 1463 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1da177e4
LT
1464
1465#ifdef CONFIG_RPXCLASSIC
1466 /* The Embedded Planet boards have only one MAC address in
1467 * the EEPROM, but can have two Ethernet ports. For the
1468 * FEC port, we create another address by setting one of
1469 * the address bits above something that would have (up to
1470 * now) been allocated.
1471 */
7dd6a2aa 1472 dev->dev_adrd[3] |= 0x80;
1da177e4 1473#endif
1da177e4
LT
1474}
1475
1476static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1477{
1478 extern uint _get_IMMR(void);
1479 volatile immap_t *immap;
1480 volatile fec_t *fecp;
1481
1482 fecp = fep->hwp;
1483 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1484
1485 /* Configure all of port D for MII.
1486 */
1487 immap->im_ioport.iop_pdpar = 0x1fff;
1488
1489 /* Bits moved from Rev. D onward.
1490 */
1491 if ((_get_IMMR() & 0xffff) < 0x0501)
1492 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1493 else
1494 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1495
1496 /* Set MII speed to 2.5 MHz
1497 */
1498 fecp->fec_mii_speed = fep->phy_speed =
1499 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1500}
1501
1502static void __inline__ fec_enable_phy_intr(void)
1503{
1504 volatile fec_t *fecp;
1505
1506 fecp = fep->hwp;
1507
1508 /* Enable MII command finished interrupt
1509 */
1510 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1511}
1512
1513static void __inline__ fec_disable_phy_intr(void)
1514{
1515}
1516
1517static void __inline__ fec_phy_ack_intr(void)
1518{
1519}
1520
1521static void __inline__ fec_localhw_setup(void)
1522{
1523 volatile fec_t *fecp;
1524
1525 fecp = fep->hwp;
1526 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1527 /* Enable big endian and don't care about SDMA FC.
1528 */
1529 fecp->fec_fun_code = 0x78000000;
1530}
1531
1532static void __inline__ fec_uncache(unsigned long addr)
1533{
1534 pte_t *pte;
1535 pte = va_to_pte(mem_addr);
1536 pte_val(*pte) |= _PAGE_NO_CACHE;
1537 flush_tlb_page(init_mm.mmap, mem_addr);
1538}
1539
1540#endif
1541
1542/* ------------------------------------------------------------------------- */
1543
1544static void mii_display_status(struct net_device *dev)
1545{
1546 struct fec_enet_private *fep = netdev_priv(dev);
1547 volatile uint *s = &(fep->phy_status);
1548
1549 if (!fep->link && !fep->old_link) {
1550 /* Link is still down - don't print anything */
1551 return;
1552 }
1553
1554 printk("%s: status: ", dev->name);
1555
1556 if (!fep->link) {
1557 printk("link down");
1558 } else {
1559 printk("link up");
1560
1561 switch(*s & PHY_STAT_SPMASK) {
1562 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1563 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1564 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1565 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1566 default:
1567 printk(", Unknown speed/duplex");
1568 }
1569
1570 if (*s & PHY_STAT_ANC)
1571 printk(", auto-negotiation complete");
1572 }
1573
1574 if (*s & PHY_STAT_FAULT)
1575 printk(", remote fault");
1576
1577 printk(".\n");
1578}
1579
1580static void mii_display_config(struct net_device *dev)
1581{
1582 struct fec_enet_private *fep = netdev_priv(dev);
7dd6a2aa 1583 uint status = fep->phy_status;
1da177e4
LT
1584
1585 /*
1586 ** When we get here, phy_task is already removed from
1587 ** the workqueue. It is thus safe to allow to reuse it.
1588 */
1589 fep->mii_phy_task_queued = 0;
1590 printk("%s: config: auto-negotiation ", dev->name);
1591
7dd6a2aa 1592 if (status & PHY_CONF_ANE)
1da177e4
LT
1593 printk("on");
1594 else
1595 printk("off");
1596
7dd6a2aa 1597 if (status & PHY_CONF_100FDX)
1da177e4 1598 printk(", 100FDX");
7dd6a2aa 1599 if (status & PHY_CONF_100HDX)
1da177e4 1600 printk(", 100HDX");
7dd6a2aa 1601 if (status & PHY_CONF_10FDX)
1da177e4 1602 printk(", 10FDX");
7dd6a2aa 1603 if (status & PHY_CONF_10HDX)
1da177e4 1604 printk(", 10HDX");
7dd6a2aa 1605 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1606 printk(", No speed/duplex selected?");
1607
7dd6a2aa 1608 if (status & PHY_CONF_LOOP)
1da177e4
LT
1609 printk(", loopback enabled");
1610
1611 printk(".\n");
1612
1613 fep->sequence_done = 1;
1614}
1615
1616static void mii_relink(struct net_device *dev)
1617{
1618 struct fec_enet_private *fep = netdev_priv(dev);
1619 int duplex;
1620
1621 /*
1622 ** When we get here, phy_task is already removed from
1623 ** the workqueue. It is thus safe to allow to reuse it.
1624 */
1625 fep->mii_phy_task_queued = 0;
1626 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1627 mii_display_status(dev);
1628 fep->old_link = fep->link;
1629
1630 if (fep->link) {
1631 duplex = 0;
1632 if (fep->phy_status
1633 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1634 duplex = 1;
1635 fec_restart(dev, duplex);
1636 }
1637 else
1638 fec_stop(dev);
1639
1640#if 0
1641 enable_irq(fep->mii_irq);
1642#endif
1643
1644}
1645
1646/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1647static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1648{
1649 struct fec_enet_private *fep = netdev_priv(dev);
1650
1651 /*
1652 ** We cannot queue phy_task twice in the workqueue. It
1653 ** would cause an endless loop in the workqueue.
1654 ** Fortunately, if the last mii_relink entry has not yet been
1655 ** executed now, it will do the job for the current interrupt,
1656 ** which is just what we want.
1657 */
1658 if (fep->mii_phy_task_queued)
1659 return;
1660
1661 fep->mii_phy_task_queued = 1;
1662 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
1663 schedule_work(&fep->phy_task);
1664}
1665
7dd6a2aa 1666/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
1667static void mii_queue_config(uint mii_reg, struct net_device *dev)
1668{
1669 struct fec_enet_private *fep = netdev_priv(dev);
1670
1671 if (fep->mii_phy_task_queued)
1672 return;
1673
1674 fep->mii_phy_task_queued = 1;
1675 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
1676 schedule_work(&fep->phy_task);
1677}
1678
7dd6a2aa
GU
1679phy_cmd_t const phy_cmd_relink[] = {
1680 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1681 { mk_mii_end, }
1682 };
1683phy_cmd_t const phy_cmd_config[] = {
1684 { mk_mii_read(MII_REG_CR), mii_queue_config },
1685 { mk_mii_end, }
1686 };
1da177e4
LT
1687
1688/* Read remainder of PHY ID.
1689*/
1690static void
1691mii_discover_phy3(uint mii_reg, struct net_device *dev)
1692{
1693 struct fec_enet_private *fep;
1694 int i;
1695
1696 fep = netdev_priv(dev);
1697 fep->phy_id |= (mii_reg & 0xffff);
1698 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1699
1700 for(i = 0; phy_info[i]; i++) {
1701 if(phy_info[i]->id == (fep->phy_id >> 4))
1702 break;
1703 }
1704
1705 if (phy_info[i])
1706 printk(" -- %s\n", phy_info[i]->name);
1707 else
1708 printk(" -- unknown PHY!\n");
1709
1710 fep->phy = phy_info[i];
1711 fep->phy_id_done = 1;
1712}
1713
1714/* Scan all of the MII PHY addresses looking for someone to respond
1715 * with a valid ID. This usually happens quickly.
1716 */
1717static void
1718mii_discover_phy(uint mii_reg, struct net_device *dev)
1719{
1720 struct fec_enet_private *fep;
1721 volatile fec_t *fecp;
1722 uint phytype;
1723
1724 fep = netdev_priv(dev);
1725 fecp = fep->hwp;
1726
1727 if (fep->phy_addr < 32) {
1728 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1729
1730 /* Got first part of ID, now get remainder.
1731 */
1732 fep->phy_id = phytype << 16;
1733 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1734 mii_discover_phy3);
1735 }
1736 else {
1737 fep->phy_addr++;
1738 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1739 mii_discover_phy);
1740 }
1741 } else {
1742 printk("FEC: No PHY device found.\n");
1743 /* Disable external MII interface */
1744 fecp->fec_mii_speed = fep->phy_speed = 0;
1745 fec_disable_phy_intr();
1746 }
1747}
1748
1749/* This interrupt occurs when the PHY detects a link change.
1750*/
1751#ifdef CONFIG_RPXCLASSIC
1752static void
1753mii_link_interrupt(void *dev_id)
1754#else
1755static irqreturn_t
1756mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1757#endif
1758{
1759 struct net_device *dev = dev_id;
1760 struct fec_enet_private *fep = netdev_priv(dev);
1761
1762 fec_phy_ack_intr();
1763
1764#if 0
1765 disable_irq(fep->mii_irq); /* disable now, enable later */
1766#endif
1767
1768 mii_do_cmd(dev, fep->phy->ack_int);
1769 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1770
1771 return IRQ_HANDLED;
1772}
1773
1774static int
1775fec_enet_open(struct net_device *dev)
1776{
1777 struct fec_enet_private *fep = netdev_priv(dev);
1778
1779 /* I should reset the ring buffers here, but I don't yet know
1780 * a simple way to do that.
1781 */
1782 fec_set_mac_address(dev);
1783
1784 fep->sequence_done = 0;
1785 fep->link = 0;
1786
1787 if (fep->phy) {
1788 mii_do_cmd(dev, fep->phy->ack_int);
1789 mii_do_cmd(dev, fep->phy->config);
1790 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1791
1792 /* FIXME: use netif_carrier_{on,off} ; this polls
1793 * until link is up which is wrong... could be
1794 * 30 seconds or more we are trapped in here. -jgarzik
1795 */
1796 while(!fep->sequence_done)
1797 schedule();
1798
1799 mii_do_cmd(dev, fep->phy->startup);
1800
1801 /* Set the initial link state to true. A lot of hardware
1802 * based on this device does not implement a PHY interrupt,
1803 * so we are never notified of link change.
1804 */
1805 fep->link = 1;
1806 } else {
1807 fep->link = 1; /* lets just try it and see */
1808 /* no phy, go full duplex, it's most likely a hub chip */
1809 fec_restart(dev, 1);
1810 }
1811
1812 netif_start_queue(dev);
1813 fep->opened = 1;
1814 return 0; /* Success */
1815}
1816
1817static int
1818fec_enet_close(struct net_device *dev)
1819{
1820 struct fec_enet_private *fep = netdev_priv(dev);
1821
1822 /* Don't know what to do yet.
1823 */
1824 fep->opened = 0;
1825 netif_stop_queue(dev);
1826 fec_stop(dev);
1827
1828 return 0;
1829}
1830
1831static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1832{
1833 struct fec_enet_private *fep = netdev_priv(dev);
1834
1835 return &fep->stats;
1836}
1837
1838/* Set or clear the multicast filter for this adaptor.
1839 * Skeleton taken from sunlance driver.
1840 * The CPM Ethernet implementation allows Multicast as well as individual
1841 * MAC address filtering. Some of the drivers check to make sure it is
1842 * a group multicast address, and discard those that are not. I guess I
1843 * will do the same for now, but just remove the test if you want
1844 * individual filtering as well (do the upper net layers want or support
1845 * this kind of feature?).
1846 */
1847
1848#define HASH_BITS 6 /* #bits in hash */
1849#define CRC32_POLY 0xEDB88320
1850
1851static void set_multicast_list(struct net_device *dev)
1852{
1853 struct fec_enet_private *fep;
1854 volatile fec_t *ep;
1855 struct dev_mc_list *dmi;
1856 unsigned int i, j, bit, data, crc;
1857 unsigned char hash;
1858
1859 fep = netdev_priv(dev);
1860 ep = fep->hwp;
1861
1862 if (dev->flags&IFF_PROMISC) {
1863 /* Log any net taps. */
1864 printk("%s: Promiscuous mode enabled.\n", dev->name);
1865 ep->fec_r_cntrl |= 0x0008;
1866 } else {
1867
1868 ep->fec_r_cntrl &= ~0x0008;
1869
1870 if (dev->flags & IFF_ALLMULTI) {
1871 /* Catch all multicast addresses, so set the
1872 * filter to all 1's.
1873 */
1874 ep->fec_hash_table_high = 0xffffffff;
1875 ep->fec_hash_table_low = 0xffffffff;
1876 } else {
1877 /* Clear filter and add the addresses in hash register.
1878 */
1879 ep->fec_hash_table_high = 0;
1880 ep->fec_hash_table_low = 0;
1881
1882 dmi = dev->mc_list;
1883
1884 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1885 {
1886 /* Only support group multicast for now.
1887 */
1888 if (!(dmi->dmi_addr[0] & 1))
1889 continue;
1890
1891 /* calculate crc32 value of mac address
1892 */
1893 crc = 0xffffffff;
1894
1895 for (i = 0; i < dmi->dmi_addrlen; i++)
1896 {
1897 data = dmi->dmi_addr[i];
1898 for (bit = 0; bit < 8; bit++, data >>= 1)
1899 {
1900 crc = (crc >> 1) ^
1901 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1902 }
1903 }
1904
1905 /* only upper 6 bits (HASH_BITS) are used
1906 which point to specific bit in he hash registers
1907 */
1908 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1909
1910 if (hash > 31)
1911 ep->fec_hash_table_high |= 1 << (hash - 32);
1912 else
1913 ep->fec_hash_table_low |= 1 << hash;
1914 }
1915 }
1916 }
1917}
1918
1919/* Set a MAC change in hardware.
1920 */
1921static void
1922fec_set_mac_address(struct net_device *dev)
1923{
1da177e4
LT
1924 volatile fec_t *fecp;
1925
7dd6a2aa 1926 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
1927
1928 /* Set station address. */
7dd6a2aa
GU
1929 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1930 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
1931 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
1932 (dev->dev_addr[4] << 24);
1da177e4
LT
1933
1934}
1935
1936/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1937 */
1938 /*
1939 * XXX: We need to clean up on failure exits here.
1940 */
1941int __init fec_enet_init(struct net_device *dev)
1942{
1943 struct fec_enet_private *fep = netdev_priv(dev);
1944 unsigned long mem_addr;
1945 volatile cbd_t *bdp;
1946 cbd_t *cbd_base;
1947 volatile fec_t *fecp;
1948 int i, j;
1949 static int index = 0;
1950
1951 /* Only allow us to be probed once. */
1952 if (index >= FEC_MAX_PORTS)
1953 return -ENXIO;
1954
1955 /* Create an Ethernet device instance.
1956 */
1957 fecp = (volatile fec_t *) fec_hw[index];
1958
1959 fep->index = index;
1960 fep->hwp = fecp;
1961
1962 /* Whack a reset. We should wait for this.
1963 */
1964 fecp->fec_ecntrl = 1;
1965 udelay(10);
1966
1967 /* Clear and enable interrupts */
7dd6a2aa 1968 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
1969 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
1970 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1971 fecp->fec_hash_table_high = 0;
1972 fecp->fec_hash_table_low = 0;
1973 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1974 fecp->fec_ecntrl = 2;
1975 fecp->fec_r_des_active = 0x01000000;
1976
1977 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1978 * this needs some work to get unique addresses.
1979 *
1980 * This is our default MAC address unless the user changes
1981 * it via eth_mac_addr (our dev->set_mac_addr handler).
1982 */
1983 fec_get_mac(dev);
1984
1985 /* Allocate memory for buffer descriptors.
1986 */
1987 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1988 printk("FEC init error. Need more space.\n");
1989 printk("FEC initialization failed.\n");
1990 return 1;
1991 }
1992 mem_addr = __get_free_page(GFP_KERNEL);
1993 cbd_base = (cbd_t *)mem_addr;
1994 /* XXX: missing check for allocation failure */
1995
1996 fec_uncache(mem_addr);
1997
1998 /* Set receive and transmit descriptor base.
1999 */
2000 fep->rx_bd_base = cbd_base;
2001 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2002
2003 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2004 fep->cur_rx = fep->rx_bd_base;
2005
2006 fep->skb_cur = fep->skb_dirty = 0;
2007
2008 /* Initialize the receive buffer descriptors.
2009 */
2010 bdp = fep->rx_bd_base;
2011 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2012
2013 /* Allocate a page.
2014 */
2015 mem_addr = __get_free_page(GFP_KERNEL);
2016 /* XXX: missing check for allocation failure */
2017
2018 fec_uncache(mem_addr);
2019
2020 /* Initialize the BD for every fragment in the page.
2021 */
2022 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2023 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2024 bdp->cbd_bufaddr = __pa(mem_addr);
2025 mem_addr += FEC_ENET_RX_FRSIZE;
2026 bdp++;
2027 }
2028 }
2029
2030 /* Set the last buffer to wrap.
2031 */
2032 bdp--;
2033 bdp->cbd_sc |= BD_SC_WRAP;
2034
2035 /* ...and the same for transmmit.
2036 */
2037 bdp = fep->tx_bd_base;
2038 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2039 if (j >= FEC_ENET_TX_FRPPG) {
2040 mem_addr = __get_free_page(GFP_KERNEL);
2041 j = 1;
2042 } else {
2043 mem_addr += FEC_ENET_TX_FRSIZE;
2044 j++;
2045 }
2046 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2047
2048 /* Initialize the BD for every fragment in the page.
2049 */
2050 bdp->cbd_sc = 0;
2051 bdp->cbd_bufaddr = 0;
2052 bdp++;
2053 }
2054
2055 /* Set the last buffer to wrap.
2056 */
2057 bdp--;
2058 bdp->cbd_sc |= BD_SC_WRAP;
2059
2060 /* Set receive and transmit descriptor base.
2061 */
2062 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2063 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2064
2065 /* Install our interrupt handlers. This varies depending on
2066 * the architecture.
2067 */
2068 fec_request_intrs(dev);
2069
2070 dev->base_addr = (unsigned long)fecp;
2071
2072 /* The FEC Ethernet specific entries in the device structure. */
2073 dev->open = fec_enet_open;
2074 dev->hard_start_xmit = fec_enet_start_xmit;
2075 dev->tx_timeout = fec_timeout;
2076 dev->watchdog_timeo = TX_TIMEOUT;
2077 dev->stop = fec_enet_close;
2078 dev->get_stats = fec_enet_get_stats;
2079 dev->set_multicast_list = set_multicast_list;
2080
2081 for (i=0; i<NMII-1; i++)
2082 mii_cmds[i].mii_next = &mii_cmds[i+1];
2083 mii_free = mii_cmds;
2084
2085 /* setup MII interface */
2086 fec_set_mii(dev, fep);
2087
1da177e4
LT
2088 /* Queue up command to detect the PHY and initialize the
2089 * remainder of the interface.
2090 */
2091 fep->phy_id_done = 0;
2092 fep->phy_addr = 0;
2093 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2094
2095 index++;
2096 return 0;
2097}
2098
2099/* This function is called to start or restart the FEC during a link
2100 * change. This only happens when switching between half and full
2101 * duplex.
2102 */
2103static void
2104fec_restart(struct net_device *dev, int duplex)
2105{
2106 struct fec_enet_private *fep;
2107 volatile cbd_t *bdp;
2108 volatile fec_t *fecp;
2109 int i;
2110
2111 fep = netdev_priv(dev);
2112 fecp = fep->hwp;
2113
2114 /* Whack a reset. We should wait for this.
2115 */
2116 fecp->fec_ecntrl = 1;
2117 udelay(10);
2118
2119 /* Enable interrupts we wish to service.
2120 */
2121 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2122 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2123
2124 /* Clear any outstanding interrupt.
2125 */
7dd6a2aa 2126 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
2127 fec_enable_phy_intr();
2128
2129 /* Set station address.
2130 */
7dd6a2aa 2131 fec_set_mac_address(dev);
1da177e4
LT
2132
2133 /* Reset all multicast.
2134 */
2135 fecp->fec_hash_table_high = 0;
2136 fecp->fec_hash_table_low = 0;
2137
2138 /* Set maximum receive buffer size.
2139 */
2140 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2141
2142 fec_localhw_setup();
2143
2144 /* Set receive and transmit descriptor base.
2145 */
2146 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2147 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2148
2149 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2150 fep->cur_rx = fep->rx_bd_base;
2151
2152 /* Reset SKB transmit buffers.
2153 */
2154 fep->skb_cur = fep->skb_dirty = 0;
2155 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2156 if (fep->tx_skbuff[i] != NULL) {
2157 dev_kfree_skb_any(fep->tx_skbuff[i]);
2158 fep->tx_skbuff[i] = NULL;
2159 }
2160 }
2161
2162 /* Initialize the receive buffer descriptors.
2163 */
2164 bdp = fep->rx_bd_base;
2165 for (i=0; i<RX_RING_SIZE; i++) {
2166
2167 /* Initialize the BD for every fragment in the page.
2168 */
2169 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2170 bdp++;
2171 }
2172
2173 /* Set the last buffer to wrap.
2174 */
2175 bdp--;
2176 bdp->cbd_sc |= BD_SC_WRAP;
2177
2178 /* ...and the same for transmmit.
2179 */
2180 bdp = fep->tx_bd_base;
2181 for (i=0; i<TX_RING_SIZE; i++) {
2182
2183 /* Initialize the BD for every fragment in the page.
2184 */
2185 bdp->cbd_sc = 0;
2186 bdp->cbd_bufaddr = 0;
2187 bdp++;
2188 }
2189
2190 /* Set the last buffer to wrap.
2191 */
2192 bdp--;
2193 bdp->cbd_sc |= BD_SC_WRAP;
2194
2195 /* Enable MII mode.
2196 */
2197 if (duplex) {
2198 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2199 fecp->fec_x_cntrl = 0x04; /* FD enable */
2200 }
2201 else {
2202 /* MII enable|No Rcv on Xmit */
2203 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2204 fecp->fec_x_cntrl = 0x00;
2205 }
2206 fep->full_duplex = duplex;
2207
2208 /* Set MII speed.
2209 */
2210 fecp->fec_mii_speed = fep->phy_speed;
2211
2212 /* And last, enable the transmit and receive processing.
2213 */
2214 fecp->fec_ecntrl = 2;
2215 fecp->fec_r_des_active = 0x01000000;
2216}
2217
2218static void
2219fec_stop(struct net_device *dev)
2220{
2221 volatile fec_t *fecp;
2222 struct fec_enet_private *fep;
2223
2224 fep = netdev_priv(dev);
2225 fecp = fep->hwp;
2226
2227 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2228
7dd6a2aa 2229 while(!(fecp->fec_ievent & FEC_ENET_GRA));
1da177e4
LT
2230
2231 /* Whack a reset. We should wait for this.
2232 */
2233 fecp->fec_ecntrl = 1;
2234 udelay(10);
2235
2236 /* Clear outstanding MII command interrupts.
2237 */
2238 fecp->fec_ievent = FEC_ENET_MII;
2239 fec_enable_phy_intr();
2240
2241 fecp->fec_imask = FEC_ENET_MII;
2242 fecp->fec_mii_speed = fep->phy_speed;
2243}
2244
2245static int __init fec_enet_module_init(void)
2246{
2247 struct net_device *dev;
7dd6a2aa
GU
2248 int i, j, err;
2249
2250 printk("FEC ENET Version 0.2\n");
1da177e4
LT
2251
2252 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2253 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2254 if (!dev)
2255 return -ENOMEM;
2256 err = fec_enet_init(dev);
2257 if (err) {
2258 free_netdev(dev);
2259 continue;
2260 }
2261 if (register_netdev(dev) != 0) {
2262 /* XXX: missing cleanup here */
2263 free_netdev(dev);
2264 return -EIO;
2265 }
7dd6a2aa
GU
2266
2267 printk("%s: ethernet ", dev->name);
2268 for (j = 0; (j < 5); j++)
2269 printk("%02x:", dev->dev_addr[j]);
2270 printk("%02x\n", dev->dev_addr[5]);
1da177e4
LT
2271 }
2272 return 0;
2273}
2274
2275module_init(fec_enet_module_init);
2276
2277MODULE_LICENSE("GPL");
This page took 0.161715 seconds and 5 git commands to generate.