[NET] drivers/net: statistics cleanup #1 -- save memory and shrink code
[deliverable/linux.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
7dd6a2aa 11 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
562d2f8c
GU
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
23 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 25 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
26 */
27
1da177e4
LT
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/ptrace.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/pci.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/spinlock.h>
43#include <linux/workqueue.h>
44#include <linux/bitops.h>
45
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48#include <asm/io.h>
49#include <asm/pgtable.h>
080853af 50#include <asm/cacheflush.h>
1da177e4 51
7dd6a2aa 52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
562d2f8c 53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
6b265293 54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
55#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
57#include "fec.h"
58#else
59#include <asm/8xx_immap.h>
60#include <asm/mpc8xx.h>
61#include "commproc.h"
62#endif
63
64#if defined(CONFIG_FEC2)
65#define FEC_MAX_PORTS 2
66#else
67#define FEC_MAX_PORTS 1
68#endif
69
70/*
71 * Define the fixed address of the FEC hardware.
72 */
73static unsigned int fec_hw[] = {
74#if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76#elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
7dd6a2aa 79#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
1da177e4 80 (MCF_MBAR + 0x1000),
562d2f8c
GU
81#elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
6b265293
MW
83#elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
1da177e4
LT
85#else
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87#endif
88};
89
90static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
92};
93
94/*
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
97 */
98#if defined(CONFIG_NETtel)
99#define FEC_FLASHMAC 0xf0006006
100#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
102#elif defined(CONFIG_CANCam)
103#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
104#elif defined (CONFIG_M5272C3)
105#define FEC_FLASHMAC (0xffe04000 + 4)
106#elif defined(CONFIG_MOD5272)
107#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
108#else
109#define FEC_FLASHMAC 0
110#endif
111
1da177e4
LT
112/* Forward declarations of some structures to support different PHYs
113*/
114
115typedef struct {
116 uint mii_data;
117 void (*funct)(uint mii_reg, struct net_device *dev);
118} phy_cmd_t;
119
120typedef struct {
121 uint id;
122 char *name;
123
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
128} phy_info_t;
129
130/* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
135 */
136#define FEC_ENET_RX_PAGES 8
137#define FEC_ENET_RX_FRSIZE 2048
138#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140#define FEC_ENET_TX_FRSIZE 2048
141#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142#define TX_RING_SIZE 16 /* Must be power of two */
143#define TX_RING_MOD_MASK 15 /* for this to work */
144
562d2f8c 145#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 146#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
147#endif
148
1da177e4
LT
149/* Interrupt events/masks.
150*/
151#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
161
162/* The FEC stores dest/src/type, data, and checksum for receive packets.
163 */
164#define PKT_MAXBUF_SIZE 1518
165#define PKT_MINBUF_SIZE 64
166#define PKT_MAXBLR_SIZE 1520
167
168
169/*
6b265293 170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
173 */
562d2f8c 174#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
6b265293 175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
176#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
177#else
178#define OPT_FRAME_SIZE 0
179#endif
180
181/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
188 */
189struct fec_enet_private {
190 /* Hardware registers of the FEC device */
191 volatile fec_t *hwp;
192
cb84d6e7
GU
193 struct net_device *netdev;
194
1da177e4
LT
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce[TX_RING_SIZE];
197 struct sk_buff* tx_skbuff[TX_RING_SIZE];
198 ushort skb_cur;
199 ushort skb_dirty;
200
201 /* CPM dual port RAM relative addresses.
202 */
203 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
204 cbd_t *tx_bd_base;
205 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
206 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
1da177e4
LT
207 uint tx_full;
208 spinlock_t lock;
209
210 uint phy_id;
211 uint phy_id_done;
212 uint phy_status;
213 uint phy_speed;
7dd6a2aa 214 phy_info_t const *phy;
1da177e4
LT
215 struct work_struct phy_task;
216
217 uint sequence_done;
218 uint mii_phy_task_queued;
219
220 uint phy_addr;
221
222 int index;
223 int opened;
224 int link;
225 int old_link;
226 int full_duplex;
1da177e4
LT
227};
228
229static int fec_enet_open(struct net_device *dev);
230static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
231static void fec_enet_mii(struct net_device *dev);
7d12e780 232static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
233static void fec_enet_tx(struct net_device *dev);
234static void fec_enet_rx(struct net_device *dev);
235static int fec_enet_close(struct net_device *dev);
1da177e4
LT
236static void set_multicast_list(struct net_device *dev);
237static void fec_restart(struct net_device *dev, int duplex);
238static void fec_stop(struct net_device *dev);
239static void fec_set_mac_address(struct net_device *dev);
240
241
242/* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
245 */
246typedef struct mii_list {
247 uint mii_regval;
248 void (*mii_func)(uint val, struct net_device *dev);
249 struct mii_list *mii_next;
250} mii_list_t;
251
252#define NMII 20
7dd6a2aa
GU
253static mii_list_t mii_cmds[NMII];
254static mii_list_t *mii_free;
255static mii_list_t *mii_head;
256static mii_list_t *mii_tail;
1da177e4 257
6aa20a22 258static int mii_queue(struct net_device *dev, int request,
1da177e4
LT
259 void (*func)(uint, struct net_device *));
260
261/* Make MII read/write commands for the FEC.
262*/
263#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
265 (VAL & 0xffff))
266#define mk_mii_end 0
267
268/* Transmitter timeout.
269*/
270#define TX_TIMEOUT (2*HZ)
271
272/* Register definitions for the PHY.
273*/
274
275#define MII_REG_CR 0 /* Control Register */
276#define MII_REG_SR 1 /* Status Register */
277#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
6aa20a22 279#define MII_REG_ANAR 4 /* A-N Advertisement Register */
1da177e4
LT
280#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281#define MII_REG_ANER 6 /* A-N Expansion Register */
282#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
284
285/* values for phy_status */
286
287#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
6aa20a22 291#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
1da177e4 292#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
6aa20a22 293#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
1da177e4
LT
294
295#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
6aa20a22 300#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
1da177e4 301#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
6aa20a22 302#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
1da177e4
LT
303
304
305static int
306fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
307{
308 struct fec_enet_private *fep;
309 volatile fec_t *fecp;
310 volatile cbd_t *bdp;
0e702ab3 311 unsigned short status;
1da177e4
LT
312
313 fep = netdev_priv(dev);
314 fecp = (volatile fec_t*)dev->base_addr;
315
316 if (!fep->link) {
317 /* Link is down or autonegotiation is in progress. */
318 return 1;
319 }
320
321 /* Fill in a Tx ring entry */
322 bdp = fep->cur_tx;
323
0e702ab3 324 status = bdp->cbd_sc;
1da177e4 325#ifndef final_version
0e702ab3 326 if (status & BD_ENET_TX_READY) {
1da177e4
LT
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
329 */
330 printk("%s: tx queue full!.\n", dev->name);
331 return 1;
332 }
333#endif
334
335 /* Clear all of the status flags.
336 */
0e702ab3 337 status &= ~BD_ENET_TX_STATS;
1da177e4
LT
338
339 /* Set buffer length and buffer pointer.
340 */
341 bdp->cbd_bufaddr = __pa(skb->data);
342 bdp->cbd_datlen = skb->len;
343
344 /*
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
348 */
349 if (bdp->cbd_bufaddr & 0x3) {
350 unsigned int index;
351 index = bdp - fep->tx_bd_base;
352 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
354 }
355
356 /* Save skb pointer.
357 */
358 fep->tx_skbuff[fep->skb_cur] = skb;
359
09f75cd7 360 dev->stats.tx_bytes += skb->len;
1da177e4 361 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 362
1da177e4
LT
363 /* Push the data cache so the CPM does not get stale memory
364 * data.
365 */
366 flush_dcache_range((unsigned long)skb->data,
367 (unsigned long)skb->data + skb->len);
368
369 spin_lock_irq(&fep->lock);
370
0e702ab3
GU
371 /* Send it on its way. Tell FEC it's ready, interrupt when done,
372 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4
LT
373 */
374
0e702ab3 375 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 376 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 377 bdp->cbd_sc = status;
1da177e4
LT
378
379 dev->trans_start = jiffies;
380
381 /* Trigger transmission start */
0e702ab3 382 fecp->fec_x_des_active = 0;
1da177e4
LT
383
384 /* If this was the last BD in the ring, start at the beginning again.
385 */
0e702ab3 386 if (status & BD_ENET_TX_WRAP) {
1da177e4
LT
387 bdp = fep->tx_bd_base;
388 } else {
389 bdp++;
390 }
391
392 if (bdp == fep->dirty_tx) {
393 fep->tx_full = 1;
394 netif_stop_queue(dev);
395 }
396
397 fep->cur_tx = (cbd_t *)bdp;
398
399 spin_unlock_irq(&fep->lock);
400
401 return 0;
402}
403
404static void
405fec_timeout(struct net_device *dev)
406{
407 struct fec_enet_private *fep = netdev_priv(dev);
408
409 printk("%s: transmit timed out.\n", dev->name);
09f75cd7 410 dev->stats.tx_errors++;
1da177e4
LT
411#ifndef final_version
412 {
413 int i;
414 cbd_t *bdp;
415
416 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
418 (unsigned long)fep->dirty_tx,
419 (unsigned long)fep->cur_rx);
420
421 bdp = fep->tx_bd_base;
422 printk(" tx: %u buffers\n", TX_RING_SIZE);
423 for (i = 0 ; i < TX_RING_SIZE; i++) {
6aa20a22 424 printk(" %08x: %04x %04x %08x\n",
1da177e4
LT
425 (uint) bdp,
426 bdp->cbd_sc,
427 bdp->cbd_datlen,
428 (int) bdp->cbd_bufaddr);
429 bdp++;
430 }
431
432 bdp = fep->rx_bd_base;
433 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
434 for (i = 0 ; i < RX_RING_SIZE; i++) {
435 printk(" %08x: %04x %04x %08x\n",
436 (uint) bdp,
437 bdp->cbd_sc,
438 bdp->cbd_datlen,
439 (int) bdp->cbd_bufaddr);
440 bdp++;
441 }
442 }
443#endif
7dd6a2aa 444 fec_restart(dev, fep->full_duplex);
1da177e4
LT
445 netif_wake_queue(dev);
446}
447
448/* The interrupt handler.
449 * This is called from the MPC core interrupt.
450 */
451static irqreturn_t
7d12e780 452fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
453{
454 struct net_device *dev = dev_id;
455 volatile fec_t *fecp;
456 uint int_events;
457 int handled = 0;
458
459 fecp = (volatile fec_t*)dev->base_addr;
460
461 /* Get the interrupt events that caused us to be here.
462 */
463 while ((int_events = fecp->fec_ievent) != 0) {
464 fecp->fec_ievent = int_events;
465
466 /* Handle receive event in its own function.
467 */
468 if (int_events & FEC_ENET_RXF) {
469 handled = 1;
470 fec_enet_rx(dev);
471 }
472
473 /* Transmit OK, or non-fatal error. Update the buffer
474 descriptors. FEC handles all errors, we just discover
475 them as part of the transmit process.
476 */
477 if (int_events & FEC_ENET_TXF) {
478 handled = 1;
479 fec_enet_tx(dev);
480 }
481
482 if (int_events & FEC_ENET_MII) {
483 handled = 1;
484 fec_enet_mii(dev);
485 }
6aa20a22 486
1da177e4
LT
487 }
488 return IRQ_RETVAL(handled);
489}
490
491
492static void
493fec_enet_tx(struct net_device *dev)
494{
495 struct fec_enet_private *fep;
496 volatile cbd_t *bdp;
0e702ab3 497 unsigned short status;
1da177e4
LT
498 struct sk_buff *skb;
499
500 fep = netdev_priv(dev);
501 spin_lock(&fep->lock);
502 bdp = fep->dirty_tx;
503
0e702ab3 504 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1da177e4
LT
505 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
506
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
0e702ab3 509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
511 BD_ENET_TX_CSL)) {
09f75cd7 512 dev->stats.tx_errors++;
0e702ab3 513 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 514 dev->stats.tx_heartbeat_errors++;
0e702ab3 515 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 516 dev->stats.tx_window_errors++;
0e702ab3 517 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 518 dev->stats.tx_aborted_errors++;
0e702ab3 519 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 520 dev->stats.tx_fifo_errors++;
0e702ab3 521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 522 dev->stats.tx_carrier_errors++;
1da177e4 523 } else {
09f75cd7 524 dev->stats.tx_packets++;
1da177e4
LT
525 }
526
527#ifndef final_version
0e702ab3 528 if (status & BD_ENET_TX_READY)
1da177e4
LT
529 printk("HEY! Enet xmit interrupt and TX_READY.\n");
530#endif
531 /* Deferred means some collisions occurred during transmit,
532 * but we eventually sent the packet OK.
533 */
0e702ab3 534 if (status & BD_ENET_TX_DEF)
09f75cd7 535 dev->stats.collisions++;
6aa20a22 536
1da177e4
LT
537 /* Free the sk buffer associated with this last transmit.
538 */
539 dev_kfree_skb_any(skb);
540 fep->tx_skbuff[fep->skb_dirty] = NULL;
541 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 542
1da177e4
LT
543 /* Update pointer to next buffer descriptor to be transmitted.
544 */
0e702ab3 545 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
546 bdp = fep->tx_bd_base;
547 else
548 bdp++;
6aa20a22 549
1da177e4
LT
550 /* Since we have freed up a buffer, the ring is no longer
551 * full.
552 */
553 if (fep->tx_full) {
554 fep->tx_full = 0;
555 if (netif_queue_stopped(dev))
556 netif_wake_queue(dev);
557 }
558 }
559 fep->dirty_tx = (cbd_t *)bdp;
560 spin_unlock(&fep->lock);
561}
562
563
564/* During a receive, the cur_rx points to the current incoming buffer.
565 * When we update through the ring, if the next incoming buffer has
566 * not been given to the system, we just set the empty indicator,
567 * effectively tossing the packet.
568 */
569static void
570fec_enet_rx(struct net_device *dev)
571{
572 struct fec_enet_private *fep;
573 volatile fec_t *fecp;
574 volatile cbd_t *bdp;
0e702ab3 575 unsigned short status;
1da177e4
LT
576 struct sk_buff *skb;
577 ushort pkt_len;
578 __u8 *data;
6aa20a22 579
0e702ab3
GU
580#ifdef CONFIG_M532x
581 flush_cache_all();
6aa20a22 582#endif
1da177e4
LT
583
584 fep = netdev_priv(dev);
585 fecp = (volatile fec_t*)dev->base_addr;
586
587 /* First, grab all of the stats for the incoming packet.
588 * These get messed up if we get called due to a busy condition.
589 */
590 bdp = fep->cur_rx;
591
0e702ab3 592while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4
LT
593
594#ifndef final_version
595 /* Since we have allocated space to hold a complete frame,
596 * the last indicator should be set.
597 */
0e702ab3 598 if ((status & BD_ENET_RX_LAST) == 0)
1da177e4
LT
599 printk("FEC ENET: rcv is not +last\n");
600#endif
601
602 if (!fep->opened)
603 goto rx_processing_done;
604
605 /* Check for errors. */
0e702ab3 606 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 607 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
09f75cd7 608 dev->stats.rx_errors++;
0e702ab3 609 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1da177e4 610 /* Frame too long or too short. */
09f75cd7 611 dev->stats.rx_length_errors++;
1da177e4 612 }
0e702ab3 613 if (status & BD_ENET_RX_NO) /* Frame alignment */
09f75cd7 614 dev->stats.rx_frame_errors++;
0e702ab3 615 if (status & BD_ENET_RX_CR) /* CRC Error */
09f75cd7 616 dev->stats.rx_crc_errors++;
0e702ab3 617 if (status & BD_ENET_RX_OV) /* FIFO overrun */
09f75cd7 618 dev->stats.rx_fifo_errors++;
1da177e4
LT
619 }
620
621 /* Report late collisions as a frame error.
622 * On this error, the BD is closed, but we don't know what we
623 * have in the buffer. So, just drop this frame on the floor.
624 */
0e702ab3 625 if (status & BD_ENET_RX_CL) {
09f75cd7
JG
626 dev->stats.rx_errors++;
627 dev->stats.rx_frame_errors++;
1da177e4
LT
628 goto rx_processing_done;
629 }
630
631 /* Process the incoming frame.
632 */
09f75cd7 633 dev->stats.rx_packets++;
1da177e4 634 pkt_len = bdp->cbd_datlen;
09f75cd7 635 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
636 data = (__u8*)__va(bdp->cbd_bufaddr);
637
638 /* This does 16 byte alignment, exactly what we need.
639 * The packet length includes FCS, but we don't want to
640 * include that when passing upstream as it messes up
641 * bridging applications.
642 */
643 skb = dev_alloc_skb(pkt_len-4);
644
645 if (skb == NULL) {
646 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
09f75cd7 647 dev->stats.rx_dropped++;
1da177e4 648 } else {
1da177e4 649 skb_put(skb,pkt_len-4); /* Make room */
8c7b7faa 650 skb_copy_to_linear_data(skb, data, pkt_len-4);
1da177e4
LT
651 skb->protocol=eth_type_trans(skb,dev);
652 netif_rx(skb);
653 }
654 rx_processing_done:
655
656 /* Clear the status flags for this buffer.
657 */
0e702ab3 658 status &= ~BD_ENET_RX_STATS;
1da177e4
LT
659
660 /* Mark the buffer empty.
661 */
0e702ab3
GU
662 status |= BD_ENET_RX_EMPTY;
663 bdp->cbd_sc = status;
1da177e4
LT
664
665 /* Update BD pointer to next entry.
666 */
0e702ab3 667 if (status & BD_ENET_RX_WRAP)
1da177e4
LT
668 bdp = fep->rx_bd_base;
669 else
670 bdp++;
6aa20a22 671
1da177e4
LT
672#if 1
673 /* Doing this here will keep the FEC running while we process
674 * incoming frames. On a heavily loaded network, we should be
675 * able to keep up at the expense of system resources.
676 */
0e702ab3 677 fecp->fec_r_des_active = 0;
1da177e4 678#endif
0e702ab3 679 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
1da177e4
LT
680 fep->cur_rx = (cbd_t *)bdp;
681
682#if 0
683 /* Doing this here will allow us to process all frames in the
684 * ring before the FEC is allowed to put more there. On a heavily
685 * loaded network, some frames may be lost. Unfortunately, this
686 * increases the interrupt overhead since we can potentially work
687 * our way back to the interrupt return only to come right back
688 * here.
689 */
0e702ab3 690 fecp->fec_r_des_active = 0;
1da177e4
LT
691#endif
692}
693
694
0e702ab3 695/* called from interrupt context */
1da177e4
LT
696static void
697fec_enet_mii(struct net_device *dev)
698{
699 struct fec_enet_private *fep;
700 volatile fec_t *ep;
701 mii_list_t *mip;
702 uint mii_reg;
703
704 fep = netdev_priv(dev);
705 ep = fep->hwp;
706 mii_reg = ep->fec_mii_data;
0e702ab3
GU
707
708 spin_lock(&fep->lock);
6aa20a22 709
1da177e4
LT
710 if ((mip = mii_head) == NULL) {
711 printk("MII and no head!\n");
0e702ab3 712 goto unlock;
1da177e4
LT
713 }
714
715 if (mip->mii_func != NULL)
716 (*(mip->mii_func))(mii_reg, dev);
717
718 mii_head = mip->mii_next;
719 mip->mii_next = mii_free;
720 mii_free = mip;
721
722 if ((mip = mii_head) != NULL)
723 ep->fec_mii_data = mip->mii_regval;
0e702ab3
GU
724
725unlock:
726 spin_unlock(&fep->lock);
1da177e4
LT
727}
728
729static int
730mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
731{
732 struct fec_enet_private *fep;
733 unsigned long flags;
734 mii_list_t *mip;
735 int retval;
736
737 /* Add PHY address to register command.
738 */
739 fep = netdev_priv(dev);
740 regval |= fep->phy_addr << 23;
741
742 retval = 0;
743
0e702ab3 744 spin_lock_irqsave(&fep->lock,flags);
1da177e4
LT
745
746 if ((mip = mii_free) != NULL) {
747 mii_free = mip->mii_next;
748 mip->mii_regval = regval;
749 mip->mii_func = func;
750 mip->mii_next = NULL;
751 if (mii_head) {
752 mii_tail->mii_next = mip;
753 mii_tail = mip;
754 }
755 else {
756 mii_head = mii_tail = mip;
757 fep->hwp->fec_mii_data = regval;
758 }
759 }
760 else {
761 retval = 1;
762 }
763
0e702ab3 764 spin_unlock_irqrestore(&fep->lock,flags);
1da177e4
LT
765
766 return(retval);
767}
768
769static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
770{
771 int k;
772
773 if(!c)
774 return;
775
776 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
777 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
778 }
779}
780
781static void mii_parse_sr(uint mii_reg, struct net_device *dev)
782{
783 struct fec_enet_private *fep = netdev_priv(dev);
784 volatile uint *s = &(fep->phy_status);
7dd6a2aa 785 uint status;
1da177e4 786
7dd6a2aa 787 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
788
789 if (mii_reg & 0x0004)
7dd6a2aa 790 status |= PHY_STAT_LINK;
1da177e4 791 if (mii_reg & 0x0010)
7dd6a2aa 792 status |= PHY_STAT_FAULT;
1da177e4 793 if (mii_reg & 0x0020)
7dd6a2aa
GU
794 status |= PHY_STAT_ANC;
795
796 *s = status;
1da177e4
LT
797}
798
799static void mii_parse_cr(uint mii_reg, struct net_device *dev)
800{
801 struct fec_enet_private *fep = netdev_priv(dev);
802 volatile uint *s = &(fep->phy_status);
7dd6a2aa 803 uint status;
1da177e4 804
7dd6a2aa 805 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
806
807 if (mii_reg & 0x1000)
7dd6a2aa 808 status |= PHY_CONF_ANE;
1da177e4 809 if (mii_reg & 0x4000)
7dd6a2aa
GU
810 status |= PHY_CONF_LOOP;
811 *s = status;
1da177e4
LT
812}
813
814static void mii_parse_anar(uint mii_reg, struct net_device *dev)
815{
816 struct fec_enet_private *fep = netdev_priv(dev);
817 volatile uint *s = &(fep->phy_status);
7dd6a2aa 818 uint status;
1da177e4 819
7dd6a2aa 820 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
821
822 if (mii_reg & 0x0020)
7dd6a2aa 823 status |= PHY_CONF_10HDX;
1da177e4 824 if (mii_reg & 0x0040)
7dd6a2aa 825 status |= PHY_CONF_10FDX;
1da177e4 826 if (mii_reg & 0x0080)
7dd6a2aa 827 status |= PHY_CONF_100HDX;
1da177e4 828 if (mii_reg & 0x00100)
7dd6a2aa
GU
829 status |= PHY_CONF_100FDX;
830 *s = status;
1da177e4
LT
831}
832
833/* ------------------------------------------------------------------------- */
834/* The Level one LXT970 is used by many boards */
835
836#define MII_LXT970_MIRROR 16 /* Mirror register */
837#define MII_LXT970_IER 17 /* Interrupt Enable Register */
838#define MII_LXT970_ISR 18 /* Interrupt Status Register */
839#define MII_LXT970_CONFIG 19 /* Configuration Register */
840#define MII_LXT970_CSR 20 /* Chip Status Register */
841
842static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
843{
844 struct fec_enet_private *fep = netdev_priv(dev);
845 volatile uint *s = &(fep->phy_status);
7dd6a2aa 846 uint status;
1da177e4 847
7dd6a2aa 848 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
849 if (mii_reg & 0x0800) {
850 if (mii_reg & 0x1000)
7dd6a2aa 851 status |= PHY_STAT_100FDX;
1da177e4 852 else
7dd6a2aa 853 status |= PHY_STAT_100HDX;
1da177e4
LT
854 } else {
855 if (mii_reg & 0x1000)
7dd6a2aa 856 status |= PHY_STAT_10FDX;
1da177e4 857 else
7dd6a2aa 858 status |= PHY_STAT_10HDX;
1da177e4 859 }
7dd6a2aa 860 *s = status;
1da177e4
LT
861}
862
7dd6a2aa 863static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
864 { mk_mii_read(MII_REG_CR), mii_parse_cr },
865 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
866 { mk_mii_end, }
7dd6a2aa
GU
867 };
868static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
869 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
870 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
871 { mk_mii_end, }
7dd6a2aa
GU
872 };
873static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
874 /* read SR and ISR to acknowledge */
875 { mk_mii_read(MII_REG_SR), mii_parse_sr },
876 { mk_mii_read(MII_LXT970_ISR), NULL },
877
878 /* find out the current status */
879 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
880 { mk_mii_end, }
7dd6a2aa
GU
881 };
882static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
883 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
884 { mk_mii_end, }
7dd6a2aa
GU
885 };
886static phy_info_t const phy_info_lxt970 = {
6aa20a22 887 .id = 0x07810000,
7dd6a2aa
GU
888 .name = "LXT970",
889 .config = phy_cmd_lxt970_config,
890 .startup = phy_cmd_lxt970_startup,
891 .ack_int = phy_cmd_lxt970_ack_int,
892 .shutdown = phy_cmd_lxt970_shutdown
1da177e4 893};
6aa20a22 894
1da177e4
LT
895/* ------------------------------------------------------------------------- */
896/* The Level one LXT971 is used on some of my custom boards */
897
898/* register definitions for the 971 */
899
900#define MII_LXT971_PCR 16 /* Port Control Register */
901#define MII_LXT971_SR2 17 /* Status Register 2 */
902#define MII_LXT971_IER 18 /* Interrupt Enable Register */
903#define MII_LXT971_ISR 19 /* Interrupt Status Register */
904#define MII_LXT971_LCR 20 /* LED Control Register */
905#define MII_LXT971_TCR 30 /* Transmit Control Register */
906
6aa20a22 907/*
1da177e4
LT
908 * I had some nice ideas of running the MDIO faster...
909 * The 971 should support 8MHz and I tried it, but things acted really
910 * weird, so 2.5 MHz ought to be enough for anyone...
911 */
912
913static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
914{
915 struct fec_enet_private *fep = netdev_priv(dev);
916 volatile uint *s = &(fep->phy_status);
7dd6a2aa 917 uint status;
1da177e4 918
7dd6a2aa 919 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
920
921 if (mii_reg & 0x0400) {
922 fep->link = 1;
7dd6a2aa 923 status |= PHY_STAT_LINK;
1da177e4
LT
924 } else {
925 fep->link = 0;
926 }
927 if (mii_reg & 0x0080)
7dd6a2aa 928 status |= PHY_STAT_ANC;
1da177e4
LT
929 if (mii_reg & 0x4000) {
930 if (mii_reg & 0x0200)
7dd6a2aa 931 status |= PHY_STAT_100FDX;
1da177e4 932 else
7dd6a2aa 933 status |= PHY_STAT_100HDX;
1da177e4
LT
934 } else {
935 if (mii_reg & 0x0200)
7dd6a2aa 936 status |= PHY_STAT_10FDX;
1da177e4 937 else
7dd6a2aa 938 status |= PHY_STAT_10HDX;
1da177e4
LT
939 }
940 if (mii_reg & 0x0008)
7dd6a2aa 941 status |= PHY_STAT_FAULT;
1da177e4 942
7dd6a2aa
GU
943 *s = status;
944}
6aa20a22 945
7dd6a2aa 946static phy_cmd_t const phy_cmd_lxt971_config[] = {
6aa20a22 947 /* limit to 10MBit because my prototype board
1da177e4
LT
948 * doesn't work with 100. */
949 { mk_mii_read(MII_REG_CR), mii_parse_cr },
950 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
951 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
952 { mk_mii_end, }
7dd6a2aa
GU
953 };
954static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
955 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
956 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
957 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
958 /* Somehow does the 971 tell me that the link is down
959 * the first read after power-up.
960 * read here to get a valid value in ack_int */
6aa20a22 961 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 962 { mk_mii_end, }
7dd6a2aa
GU
963 };
964static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
965 /* acknowledge the int before reading status ! */
966 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
967 /* find out the current status */
968 { mk_mii_read(MII_REG_SR), mii_parse_sr },
969 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 970 { mk_mii_end, }
7dd6a2aa
GU
971 };
972static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
973 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
974 { mk_mii_end, }
7dd6a2aa
GU
975 };
976static phy_info_t const phy_info_lxt971 = {
6aa20a22 977 .id = 0x0001378e,
7dd6a2aa
GU
978 .name = "LXT971",
979 .config = phy_cmd_lxt971_config,
980 .startup = phy_cmd_lxt971_startup,
981 .ack_int = phy_cmd_lxt971_ack_int,
982 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
983};
984
985/* ------------------------------------------------------------------------- */
986/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
987
988/* register definitions */
989
990#define MII_QS6612_MCR 17 /* Mode Control Register */
991#define MII_QS6612_FTR 27 /* Factory Test Register */
992#define MII_QS6612_MCO 28 /* Misc. Control Register */
993#define MII_QS6612_ISR 29 /* Interrupt Source Register */
994#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
995#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
996
997static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
998{
999 struct fec_enet_private *fep = netdev_priv(dev);
1000 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1001 uint status;
1da177e4 1002
7dd6a2aa 1003 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
1004
1005 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
1006 case 1: status |= PHY_STAT_10HDX; break;
1007 case 2: status |= PHY_STAT_100HDX; break;
1008 case 5: status |= PHY_STAT_10FDX; break;
1009 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
1010}
1011
7dd6a2aa
GU
1012 *s = status;
1013}
1014
1015static phy_cmd_t const phy_cmd_qs6612_config[] = {
6aa20a22 1016 /* The PHY powers up isolated on the RPX,
1da177e4
LT
1017 * so send a command to allow operation.
1018 */
1019 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1020
1021 /* parse cr and anar to get some info */
1022 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1023 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1024 { mk_mii_end, }
7dd6a2aa
GU
1025 };
1026static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1027 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1028 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1029 { mk_mii_end, }
7dd6a2aa
GU
1030 };
1031static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1032 /* we need to read ISR, SR and ANER to acknowledge */
1033 { mk_mii_read(MII_QS6612_ISR), NULL },
1034 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1035 { mk_mii_read(MII_REG_ANER), NULL },
1036
1037 /* read pcr to get info */
1038 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1039 { mk_mii_end, }
7dd6a2aa
GU
1040 };
1041static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1042 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1043 { mk_mii_end, }
7dd6a2aa
GU
1044 };
1045static phy_info_t const phy_info_qs6612 = {
6aa20a22 1046 .id = 0x00181440,
7dd6a2aa
GU
1047 .name = "QS6612",
1048 .config = phy_cmd_qs6612_config,
1049 .startup = phy_cmd_qs6612_startup,
1050 .ack_int = phy_cmd_qs6612_ack_int,
1051 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1052};
1053
1054/* ------------------------------------------------------------------------- */
1055/* AMD AM79C874 phy */
1056
1057/* register definitions for the 874 */
1058
1059#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1060#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1061#define MII_AM79C874_DR 18 /* Diagnostic Register */
1062#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1063#define MII_AM79C874_MCR 21 /* ModeControl Register */
1064#define MII_AM79C874_DC 23 /* Disconnect Counter */
1065#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1066
1067static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1068{
1069 struct fec_enet_private *fep = netdev_priv(dev);
1070 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1071 uint status;
1da177e4 1072
7dd6a2aa 1073 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1074
1075 if (mii_reg & 0x0080)
7dd6a2aa 1076 status |= PHY_STAT_ANC;
1da177e4 1077 if (mii_reg & 0x0400)
7dd6a2aa 1078 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1079 else
7dd6a2aa
GU
1080 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1081
1082 *s = status;
1da177e4
LT
1083}
1084
7dd6a2aa 1085static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1086 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1087 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1088 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1089 { mk_mii_end, }
7dd6a2aa
GU
1090 };
1091static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1092 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1093 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1094 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1095 { mk_mii_end, }
7dd6a2aa
GU
1096 };
1097static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1098 /* find out the current status */
1099 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1100 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1101 /* we only need to read ISR to acknowledge */
1102 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1103 { mk_mii_end, }
7dd6a2aa
GU
1104 };
1105static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1106 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1107 { mk_mii_end, }
7dd6a2aa
GU
1108 };
1109static phy_info_t const phy_info_am79c874 = {
1110 .id = 0x00022561,
1111 .name = "AM79C874",
1112 .config = phy_cmd_am79c874_config,
1113 .startup = phy_cmd_am79c874_startup,
1114 .ack_int = phy_cmd_am79c874_ack_int,
1115 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1116};
1117
7dd6a2aa 1118
1da177e4
LT
1119/* ------------------------------------------------------------------------- */
1120/* Kendin KS8721BL phy */
1121
1122/* register definitions for the 8721 */
1123
1124#define MII_KS8721BL_RXERCR 21
1125#define MII_KS8721BL_ICSR 22
1126#define MII_KS8721BL_PHYCR 31
1127
7dd6a2aa 1128static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1129 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1130 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1131 { mk_mii_end, }
7dd6a2aa
GU
1132 };
1133static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1134 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1135 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1136 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1137 { mk_mii_end, }
7dd6a2aa
GU
1138 };
1139static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1140 /* find out the current status */
1141 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1142 /* we only need to read ISR to acknowledge */
1143 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1144 { mk_mii_end, }
7dd6a2aa
GU
1145 };
1146static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1147 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1148 { mk_mii_end, }
7dd6a2aa
GU
1149 };
1150static phy_info_t const phy_info_ks8721bl = {
6aa20a22 1151 .id = 0x00022161,
7dd6a2aa
GU
1152 .name = "KS8721BL",
1153 .config = phy_cmd_ks8721bl_config,
1154 .startup = phy_cmd_ks8721bl_startup,
1155 .ack_int = phy_cmd_ks8721bl_ack_int,
1156 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1157};
1158
562d2f8c
GU
1159/* ------------------------------------------------------------------------- */
1160/* register definitions for the DP83848 */
1161
1162#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1163
1164static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1165{
1166 struct fec_enet_private *fep = dev->priv;
1167 volatile uint *s = &(fep->phy_status);
1168
1169 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1170
1171 /* Link up */
1172 if (mii_reg & 0x0001) {
1173 fep->link = 1;
1174 *s |= PHY_STAT_LINK;
1175 } else
1176 fep->link = 0;
1177 /* Status of link */
1178 if (mii_reg & 0x0010) /* Autonegotioation complete */
1179 *s |= PHY_STAT_ANC;
1180 if (mii_reg & 0x0002) { /* 10MBps? */
1181 if (mii_reg & 0x0004) /* Full Duplex? */
1182 *s |= PHY_STAT_10FDX;
1183 else
1184 *s |= PHY_STAT_10HDX;
1185 } else { /* 100 Mbps? */
1186 if (mii_reg & 0x0004) /* Full Duplex? */
1187 *s |= PHY_STAT_100FDX;
1188 else
1189 *s |= PHY_STAT_100HDX;
1190 }
1191 if (mii_reg & 0x0008)
1192 *s |= PHY_STAT_FAULT;
1193}
1194
1195static phy_info_t phy_info_dp83848= {
1196 0x020005c9,
1197 "DP83848",
1198
1199 (const phy_cmd_t []) { /* config */
1200 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1201 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1202 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1203 { mk_mii_end, }
1204 },
1205 (const phy_cmd_t []) { /* startup - enable interrupts */
1206 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1207 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1208 { mk_mii_end, }
1209 },
1210 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1211 { mk_mii_end, }
1212 },
1213 (const phy_cmd_t []) { /* shutdown */
1214 { mk_mii_end, }
1215 },
1216};
1217
1da177e4
LT
1218/* ------------------------------------------------------------------------- */
1219
7dd6a2aa 1220static phy_info_t const * const phy_info[] = {
1da177e4
LT
1221 &phy_info_lxt970,
1222 &phy_info_lxt971,
1223 &phy_info_qs6612,
1224 &phy_info_am79c874,
1225 &phy_info_ks8721bl,
562d2f8c 1226 &phy_info_dp83848,
1da177e4
LT
1227 NULL
1228};
1229
1230/* ------------------------------------------------------------------------- */
6b265293 1231#if !defined(CONFIG_M532x)
1da177e4
LT
1232#ifdef CONFIG_RPXCLASSIC
1233static void
1234mii_link_interrupt(void *dev_id);
1235#else
1236static irqreturn_t
7d12e780 1237mii_link_interrupt(int irq, void * dev_id);
1da177e4 1238#endif
6b265293 1239#endif
1da177e4
LT
1240
1241#if defined(CONFIG_M5272)
1242
1243/*
1244 * Code specific to Coldfire 5272 setup.
1245 */
1246static void __inline__ fec_request_intrs(struct net_device *dev)
1247{
1248 volatile unsigned long *icrp;
7dd6a2aa
GU
1249 static const struct idesc {
1250 char *name;
1251 unsigned short irq;
7d12e780 1252 irq_handler_t handler;
7dd6a2aa
GU
1253 } *idp, id[] = {
1254 { "fec(RX)", 86, fec_enet_interrupt },
1255 { "fec(TX)", 87, fec_enet_interrupt },
1256 { "fec(OTHER)", 88, fec_enet_interrupt },
1257 { "fec(MII)", 66, mii_link_interrupt },
1258 { NULL },
1259 };
1da177e4
LT
1260
1261 /* Setup interrupt handlers. */
7dd6a2aa
GU
1262 for (idp = id; idp->name; idp++) {
1263 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1264 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1265 }
1da177e4
LT
1266
1267 /* Unmask interrupt at ColdFire 5272 SIM */
1268 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1269 *icrp = 0x00000ddd;
1270 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1271 *icrp = 0x0d000000;
1da177e4
LT
1272}
1273
1274static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1275{
1276 volatile fec_t *fecp;
1277
1278 fecp = fep->hwp;
1279 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1280 fecp->fec_x_cntrl = 0x00;
1281
1282 /*
1283 * Set MII speed to 2.5 MHz
1284 * See 5272 manual section 11.5.8: MSCR
1285 */
1286 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1287 fecp->fec_mii_speed = fep->phy_speed;
1288
1289 fec_restart(dev, 0);
1290}
1291
1292static void __inline__ fec_get_mac(struct net_device *dev)
1293{
1294 struct fec_enet_private *fep = netdev_priv(dev);
1295 volatile fec_t *fecp;
7dd6a2aa 1296 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1297
1298 fecp = fep->hwp;
1299
7dd6a2aa 1300 if (FEC_FLASHMAC) {
1da177e4
LT
1301 /*
1302 * Get MAC address from FLASH.
1303 * If it is all 1's or 0's, use the default.
1304 */
7dd6a2aa 1305 iap = (unsigned char *)FEC_FLASHMAC;
1da177e4
LT
1306 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1307 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1308 iap = fec_mac_default;
1309 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1310 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1311 iap = fec_mac_default;
1312 } else {
1313 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1314 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1315 iap = &tmpaddr[0];
1316 }
1317
7dd6a2aa 1318 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1319
1320 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1321 if (iap == fec_mac_default)
1322 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1323}
1324
1325static void __inline__ fec_enable_phy_intr(void)
1326{
1327}
1328
1329static void __inline__ fec_disable_phy_intr(void)
1330{
1331 volatile unsigned long *icrp;
1332 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1333 *icrp = 0x08000000;
1da177e4
LT
1334}
1335
1336static void __inline__ fec_phy_ack_intr(void)
1337{
1338 volatile unsigned long *icrp;
1339 /* Acknowledge the interrupt */
1340 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1341 *icrp = 0x0d000000;
1da177e4
LT
1342}
1343
1344static void __inline__ fec_localhw_setup(void)
1345{
1346}
1347
1348/*
1349 * Do not need to make region uncached on 5272.
1350 */
1351static void __inline__ fec_uncache(unsigned long addr)
1352{
1353}
1354
1355/* ------------------------------------------------------------------------- */
1356
7dd6a2aa 1357#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
1358
1359/*
7dd6a2aa
GU
1360 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1361 * the 5270/5271/5274/5275 and 5280/5282 setups.
1da177e4
LT
1362 */
1363static void __inline__ fec_request_intrs(struct net_device *dev)
1364{
1365 struct fec_enet_private *fep;
1366 int b;
7dd6a2aa
GU
1367 static const struct idesc {
1368 char *name;
1369 unsigned short irq;
1370 } *idp, id[] = {
1371 { "fec(TXF)", 23 },
1372 { "fec(TXB)", 24 },
1373 { "fec(TXFIFO)", 25 },
1374 { "fec(TXCR)", 26 },
1375 { "fec(RXF)", 27 },
1376 { "fec(RXB)", 28 },
1377 { "fec(MII)", 29 },
1378 { "fec(LC)", 30 },
1379 { "fec(HBERR)", 31 },
1380 { "fec(GRA)", 32 },
1381 { "fec(EBERR)", 33 },
1382 { "fec(BABT)", 34 },
1383 { "fec(BABR)", 35 },
1384 { NULL },
1385 };
1da177e4
LT
1386
1387 fep = netdev_priv(dev);
1388 b = (fep->index) ? 128 : 64;
1389
1390 /* Setup interrupt handlers. */
7dd6a2aa
GU
1391 for (idp = id; idp->name; idp++) {
1392 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1393 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1394 }
1da177e4
LT
1395
1396 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1397 {
1398 volatile unsigned char *icrp;
1399 volatile unsigned long *imrp;
83901fc1 1400 int i, ilip;
1da177e4
LT
1401
1402 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1403 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1404 MCFINTC_ICR0);
83901fc1
WC
1405 for (i = 23, ilip = 0x28; (i < 36); i++)
1406 icrp[i] = ilip--;
1da177e4
LT
1407
1408 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1409 MCFINTC_IMRH);
1410 *imrp &= ~0x0000000f;
1411 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1412 MCFINTC_IMRL);
1413 *imrp &= ~0xff800001;
1414 }
1415
1416#if defined(CONFIG_M528x)
1417 /* Set up gpio outputs for MII lines */
1418 {
7dd6a2aa
GU
1419 volatile u16 *gpio_paspar;
1420 volatile u8 *gpio_pehlpar;
6aa20a22 1421
7dd6a2aa
GU
1422 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1423 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1424 *gpio_paspar |= 0x0f00;
1425 *gpio_pehlpar = 0xc0;
1da177e4
LT
1426 }
1427#endif
b8a94b3d
MC
1428
1429#if defined(CONFIG_M527x)
1430 /* Set up gpio outputs for MII lines */
1431 {
1432 volatile u8 *gpio_par_fec;
1433 volatile u16 *gpio_par_feci2c;
1434
1435 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1436 /* Set up gpio outputs for FEC0 MII lines */
1437 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1438
1439 *gpio_par_feci2c |= 0x0f00;
1440 *gpio_par_fec |= 0xc0;
1441
1442#if defined(CONFIG_FEC2)
1443 /* Set up gpio outputs for FEC1 MII lines */
1444 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1445
1446 *gpio_par_feci2c |= 0x00a0;
1447 *gpio_par_fec |= 0xc0;
1448#endif /* CONFIG_FEC2 */
1449 }
1450#endif /* CONFIG_M527x */
1da177e4
LT
1451}
1452
1453static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1454{
1455 volatile fec_t *fecp;
1456
1457 fecp = fep->hwp;
1458 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1459 fecp->fec_x_cntrl = 0x00;
1460
1461 /*
1462 * Set MII speed to 2.5 MHz
1463 * See 5282 manual section 17.5.4.7: MSCR
1464 */
1465 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1466 fecp->fec_mii_speed = fep->phy_speed;
1467
1468 fec_restart(dev, 0);
1469}
1470
1471static void __inline__ fec_get_mac(struct net_device *dev)
1472{
1473 struct fec_enet_private *fep = netdev_priv(dev);
1474 volatile fec_t *fecp;
7dd6a2aa 1475 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1476
1477 fecp = fep->hwp;
1478
7dd6a2aa 1479 if (FEC_FLASHMAC) {
1da177e4
LT
1480 /*
1481 * Get MAC address from FLASH.
1482 * If it is all 1's or 0's, use the default.
1483 */
7dd6a2aa 1484 iap = FEC_FLASHMAC;
1da177e4
LT
1485 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1486 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1487 iap = fec_mac_default;
1488 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1489 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1490 iap = fec_mac_default;
1491 } else {
1492 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1493 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1494 iap = &tmpaddr[0];
1495 }
1496
7dd6a2aa 1497 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1498
1499 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1500 if (iap == fec_mac_default)
1501 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1502}
1503
1504static void __inline__ fec_enable_phy_intr(void)
1505{
1506}
1507
1508static void __inline__ fec_disable_phy_intr(void)
1509{
1510}
1511
1512static void __inline__ fec_phy_ack_intr(void)
1513{
1514}
1515
1516static void __inline__ fec_localhw_setup(void)
1517{
1518}
1519
1520/*
1521 * Do not need to make region uncached on 5272.
1522 */
1523static void __inline__ fec_uncache(unsigned long addr)
1524{
1525}
1526
1527/* ------------------------------------------------------------------------- */
1528
562d2f8c
GU
1529#elif defined(CONFIG_M520x)
1530
1531/*
1532 * Code specific to Coldfire 520x
1533 */
1534static void __inline__ fec_request_intrs(struct net_device *dev)
1535{
1536 struct fec_enet_private *fep;
1537 int b;
1538 static const struct idesc {
1539 char *name;
1540 unsigned short irq;
1541 } *idp, id[] = {
1542 { "fec(TXF)", 23 },
1543 { "fec(TXB)", 24 },
1544 { "fec(TXFIFO)", 25 },
1545 { "fec(TXCR)", 26 },
1546 { "fec(RXF)", 27 },
1547 { "fec(RXB)", 28 },
1548 { "fec(MII)", 29 },
1549 { "fec(LC)", 30 },
1550 { "fec(HBERR)", 31 },
1551 { "fec(GRA)", 32 },
1552 { "fec(EBERR)", 33 },
1553 { "fec(BABT)", 34 },
1554 { "fec(BABR)", 35 },
1555 { NULL },
1556 };
1557
1558 fep = netdev_priv(dev);
1559 b = 64 + 13;
1560
1561 /* Setup interrupt handlers. */
1562 for (idp = id; idp->name; idp++) {
1563 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1564 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1565 }
1566
1567 /* Unmask interrupts at ColdFire interrupt controller */
1568 {
1569 volatile unsigned char *icrp;
1570 volatile unsigned long *imrp;
1571
1572 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1573 MCFINTC_ICR0);
1574 for (b = 36; (b < 49); b++)
1575 icrp[b] = 0x04;
1576 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1577 MCFINTC_IMRH);
1578 *imrp &= ~0x0001FFF0;
1579 }
1580 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1581 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1582}
1583
1584static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1585{
1586 volatile fec_t *fecp;
1587
1588 fecp = fep->hwp;
1589 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1590 fecp->fec_x_cntrl = 0x00;
1591
1592 /*
1593 * Set MII speed to 2.5 MHz
1594 * See 5282 manual section 17.5.4.7: MSCR
1595 */
1596 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1597 fecp->fec_mii_speed = fep->phy_speed;
1598
1599 fec_restart(dev, 0);
1600}
1601
1602static void __inline__ fec_get_mac(struct net_device *dev)
1603{
1604 struct fec_enet_private *fep = netdev_priv(dev);
1605 volatile fec_t *fecp;
1606 unsigned char *iap, tmpaddr[ETH_ALEN];
1607
1608 fecp = fep->hwp;
1609
1610 if (FEC_FLASHMAC) {
1611 /*
1612 * Get MAC address from FLASH.
1613 * If it is all 1's or 0's, use the default.
1614 */
1615 iap = FEC_FLASHMAC;
1616 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1617 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1618 iap = fec_mac_default;
1619 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1620 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1621 iap = fec_mac_default;
1622 } else {
1623 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1624 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1625 iap = &tmpaddr[0];
1626 }
1627
1628 memcpy(dev->dev_addr, iap, ETH_ALEN);
1629
1630 /* Adjust MAC if using default MAC address */
1631 if (iap == fec_mac_default)
1632 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1633}
1634
1635static void __inline__ fec_enable_phy_intr(void)
1636{
1637}
1638
1639static void __inline__ fec_disable_phy_intr(void)
1640{
1641}
1642
1643static void __inline__ fec_phy_ack_intr(void)
1644{
1645}
1646
1647static void __inline__ fec_localhw_setup(void)
1648{
1649}
1650
1651static void __inline__ fec_uncache(unsigned long addr)
1652{
1653}
1654
1655/* ------------------------------------------------------------------------- */
1656
6b265293
MW
1657#elif defined(CONFIG_M532x)
1658/*
1659 * Code specific for M532x
1660 */
1661static void __inline__ fec_request_intrs(struct net_device *dev)
1662{
1663 struct fec_enet_private *fep;
1664 int b;
1665 static const struct idesc {
1666 char *name;
1667 unsigned short irq;
1668 } *idp, id[] = {
1669 { "fec(TXF)", 36 },
1670 { "fec(TXB)", 37 },
1671 { "fec(TXFIFO)", 38 },
1672 { "fec(TXCR)", 39 },
1673 { "fec(RXF)", 40 },
1674 { "fec(RXB)", 41 },
1675 { "fec(MII)", 42 },
1676 { "fec(LC)", 43 },
1677 { "fec(HBERR)", 44 },
1678 { "fec(GRA)", 45 },
1679 { "fec(EBERR)", 46 },
1680 { "fec(BABT)", 47 },
1681 { "fec(BABR)", 48 },
1682 { NULL },
1683 };
1684
1685 fep = netdev_priv(dev);
1686 b = (fep->index) ? 128 : 64;
1687
1688 /* Setup interrupt handlers. */
1689 for (idp = id; idp->name; idp++) {
1690 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
6aa20a22 1691 printk("FEC: Could not allocate %s IRQ(%d)!\n",
6b265293
MW
1692 idp->name, b+idp->irq);
1693 }
1694
1695 /* Unmask interrupts */
1696 MCF_INTC0_ICR36 = 0x2;
1697 MCF_INTC0_ICR37 = 0x2;
1698 MCF_INTC0_ICR38 = 0x2;
1699 MCF_INTC0_ICR39 = 0x2;
1700 MCF_INTC0_ICR40 = 0x2;
1701 MCF_INTC0_ICR41 = 0x2;
1702 MCF_INTC0_ICR42 = 0x2;
1703 MCF_INTC0_ICR43 = 0x2;
1704 MCF_INTC0_ICR44 = 0x2;
1705 MCF_INTC0_ICR45 = 0x2;
1706 MCF_INTC0_ICR46 = 0x2;
1707 MCF_INTC0_ICR47 = 0x2;
1708 MCF_INTC0_ICR48 = 0x2;
1709
1710 MCF_INTC0_IMRH &= ~(
1711 MCF_INTC_IMRH_INT_MASK36 |
1712 MCF_INTC_IMRH_INT_MASK37 |
1713 MCF_INTC_IMRH_INT_MASK38 |
1714 MCF_INTC_IMRH_INT_MASK39 |
1715 MCF_INTC_IMRH_INT_MASK40 |
1716 MCF_INTC_IMRH_INT_MASK41 |
1717 MCF_INTC_IMRH_INT_MASK42 |
1718 MCF_INTC_IMRH_INT_MASK43 |
1719 MCF_INTC_IMRH_INT_MASK44 |
1720 MCF_INTC_IMRH_INT_MASK45 |
1721 MCF_INTC_IMRH_INT_MASK46 |
1722 MCF_INTC_IMRH_INT_MASK47 |
1723 MCF_INTC_IMRH_INT_MASK48 );
1724
1725 /* Set up gpio outputs for MII lines */
1726 MCF_GPIO_PAR_FECI2C |= (0 |
1727 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1728 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1729 MCF_GPIO_PAR_FEC = (0 |
1730 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1731 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1732}
1733
1734static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1735{
1736 volatile fec_t *fecp;
1737
1738 fecp = fep->hwp;
1739 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1740 fecp->fec_x_cntrl = 0x00;
1741
1742 /*
1743 * Set MII speed to 2.5 MHz
1744 */
1745 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1746 fecp->fec_mii_speed = fep->phy_speed;
1747
1748 fec_restart(dev, 0);
1749}
1750
1751static void __inline__ fec_get_mac(struct net_device *dev)
1752{
1753 struct fec_enet_private *fep = netdev_priv(dev);
1754 volatile fec_t *fecp;
1755 unsigned char *iap, tmpaddr[ETH_ALEN];
1756
1757 fecp = fep->hwp;
1758
1759 if (FEC_FLASHMAC) {
1760 /*
1761 * Get MAC address from FLASH.
1762 * If it is all 1's or 0's, use the default.
1763 */
1764 iap = FEC_FLASHMAC;
1765 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1766 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1767 iap = fec_mac_default;
1768 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1769 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1770 iap = fec_mac_default;
1771 } else {
1772 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1773 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1774 iap = &tmpaddr[0];
1775 }
1776
1777 memcpy(dev->dev_addr, iap, ETH_ALEN);
1778
1779 /* Adjust MAC if using default MAC address */
1780 if (iap == fec_mac_default)
1781 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1782}
1783
1784static void __inline__ fec_enable_phy_intr(void)
1785{
1786}
1787
1788static void __inline__ fec_disable_phy_intr(void)
1789{
1790}
1791
1792static void __inline__ fec_phy_ack_intr(void)
1793{
1794}
1795
1796static void __inline__ fec_localhw_setup(void)
1797{
1798}
1799
1800/*
1801 * Do not need to make region uncached on 532x.
1802 */
1803static void __inline__ fec_uncache(unsigned long addr)
1804{
1805}
1806
1807/* ------------------------------------------------------------------------- */
1808
1809
1da177e4
LT
1810#else
1811
1812/*
7dd6a2aa 1813 * Code specific to the MPC860T setup.
1da177e4
LT
1814 */
1815static void __inline__ fec_request_intrs(struct net_device *dev)
1816{
1817 volatile immap_t *immap;
1818
1819 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1820
1821 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1822 panic("Could not allocate FEC IRQ!");
1823
1824#ifdef CONFIG_RPXCLASSIC
1825 /* Make Port C, bit 15 an input that causes interrupts.
1826 */
1827 immap->im_ioport.iop_pcpar &= ~0x0001;
1828 immap->im_ioport.iop_pcdir &= ~0x0001;
1829 immap->im_ioport.iop_pcso &= ~0x0001;
1830 immap->im_ioport.iop_pcint |= 0x0001;
1831 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1832
1833 /* Make LEDS reflect Link status.
1834 */
1835 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1836#endif
1837#ifdef CONFIG_FADS
1838 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1839 panic("Could not allocate MII IRQ!");
1840#endif
1841}
1842
1843static void __inline__ fec_get_mac(struct net_device *dev)
1844{
1da177e4 1845 bd_t *bd;
1da177e4 1846
1da177e4 1847 bd = (bd_t *)__res;
7dd6a2aa 1848 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1da177e4
LT
1849
1850#ifdef CONFIG_RPXCLASSIC
1851 /* The Embedded Planet boards have only one MAC address in
1852 * the EEPROM, but can have two Ethernet ports. For the
1853 * FEC port, we create another address by setting one of
1854 * the address bits above something that would have (up to
1855 * now) been allocated.
1856 */
7dd6a2aa 1857 dev->dev_adrd[3] |= 0x80;
1da177e4 1858#endif
1da177e4
LT
1859}
1860
1861static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1862{
1863 extern uint _get_IMMR(void);
1864 volatile immap_t *immap;
1865 volatile fec_t *fecp;
1866
1867 fecp = fep->hwp;
1868 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1869
1870 /* Configure all of port D for MII.
1871 */
1872 immap->im_ioport.iop_pdpar = 0x1fff;
1873
1874 /* Bits moved from Rev. D onward.
1875 */
1876 if ((_get_IMMR() & 0xffff) < 0x0501)
1877 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1878 else
1879 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
6aa20a22 1880
1da177e4
LT
1881 /* Set MII speed to 2.5 MHz
1882 */
6aa20a22 1883 fecp->fec_mii_speed = fep->phy_speed =
1da177e4
LT
1884 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1885}
1886
1887static void __inline__ fec_enable_phy_intr(void)
1888{
1889 volatile fec_t *fecp;
1890
1891 fecp = fep->hwp;
1892
6aa20a22 1893 /* Enable MII command finished interrupt
1da177e4
LT
1894 */
1895 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1896}
1897
1898static void __inline__ fec_disable_phy_intr(void)
1899{
1900}
1901
1902static void __inline__ fec_phy_ack_intr(void)
1903{
1904}
1905
1906static void __inline__ fec_localhw_setup(void)
1907{
1908 volatile fec_t *fecp;
1909
1910 fecp = fep->hwp;
1911 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1912 /* Enable big endian and don't care about SDMA FC.
1913 */
1914 fecp->fec_fun_code = 0x78000000;
1915}
1916
1917static void __inline__ fec_uncache(unsigned long addr)
1918{
1919 pte_t *pte;
1920 pte = va_to_pte(mem_addr);
1921 pte_val(*pte) |= _PAGE_NO_CACHE;
1922 flush_tlb_page(init_mm.mmap, mem_addr);
1923}
1924
1925#endif
1926
1927/* ------------------------------------------------------------------------- */
1928
1929static void mii_display_status(struct net_device *dev)
1930{
1931 struct fec_enet_private *fep = netdev_priv(dev);
1932 volatile uint *s = &(fep->phy_status);
1933
1934 if (!fep->link && !fep->old_link) {
1935 /* Link is still down - don't print anything */
1936 return;
1937 }
1938
1939 printk("%s: status: ", dev->name);
1940
1941 if (!fep->link) {
1942 printk("link down");
1943 } else {
1944 printk("link up");
1945
1946 switch(*s & PHY_STAT_SPMASK) {
1947 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1948 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1949 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1950 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1951 default:
1952 printk(", Unknown speed/duplex");
1953 }
1954
1955 if (*s & PHY_STAT_ANC)
1956 printk(", auto-negotiation complete");
1957 }
1958
1959 if (*s & PHY_STAT_FAULT)
1960 printk(", remote fault");
1961
1962 printk(".\n");
1963}
1964
cb84d6e7 1965static void mii_display_config(struct work_struct *work)
1da177e4 1966{
cb84d6e7
GU
1967 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1968 struct net_device *dev = fep->netdev;
7dd6a2aa 1969 uint status = fep->phy_status;
1da177e4
LT
1970
1971 /*
1972 ** When we get here, phy_task is already removed from
1973 ** the workqueue. It is thus safe to allow to reuse it.
1974 */
1975 fep->mii_phy_task_queued = 0;
1976 printk("%s: config: auto-negotiation ", dev->name);
1977
7dd6a2aa 1978 if (status & PHY_CONF_ANE)
1da177e4
LT
1979 printk("on");
1980 else
1981 printk("off");
1982
7dd6a2aa 1983 if (status & PHY_CONF_100FDX)
1da177e4 1984 printk(", 100FDX");
7dd6a2aa 1985 if (status & PHY_CONF_100HDX)
1da177e4 1986 printk(", 100HDX");
7dd6a2aa 1987 if (status & PHY_CONF_10FDX)
1da177e4 1988 printk(", 10FDX");
7dd6a2aa 1989 if (status & PHY_CONF_10HDX)
1da177e4 1990 printk(", 10HDX");
7dd6a2aa 1991 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1992 printk(", No speed/duplex selected?");
1993
7dd6a2aa 1994 if (status & PHY_CONF_LOOP)
1da177e4 1995 printk(", loopback enabled");
6aa20a22 1996
1da177e4
LT
1997 printk(".\n");
1998
1999 fep->sequence_done = 1;
2000}
2001
cb84d6e7 2002static void mii_relink(struct work_struct *work)
1da177e4 2003{
cb84d6e7
GU
2004 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
2005 struct net_device *dev = fep->netdev;
1da177e4
LT
2006 int duplex;
2007
2008 /*
2009 ** When we get here, phy_task is already removed from
2010 ** the workqueue. It is thus safe to allow to reuse it.
2011 */
2012 fep->mii_phy_task_queued = 0;
2013 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
2014 mii_display_status(dev);
2015 fep->old_link = fep->link;
2016
2017 if (fep->link) {
2018 duplex = 0;
6aa20a22 2019 if (fep->phy_status
1da177e4
LT
2020 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
2021 duplex = 1;
2022 fec_restart(dev, duplex);
2023 }
2024 else
2025 fec_stop(dev);
2026
2027#if 0
2028 enable_irq(fep->mii_irq);
2029#endif
2030
2031}
2032
2033/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2034static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2035{
2036 struct fec_enet_private *fep = netdev_priv(dev);
2037
2038 /*
2039 ** We cannot queue phy_task twice in the workqueue. It
2040 ** would cause an endless loop in the workqueue.
2041 ** Fortunately, if the last mii_relink entry has not yet been
2042 ** executed now, it will do the job for the current interrupt,
2043 ** which is just what we want.
2044 */
2045 if (fep->mii_phy_task_queued)
2046 return;
2047
2048 fep->mii_phy_task_queued = 1;
cb84d6e7 2049 INIT_WORK(&fep->phy_task, mii_relink);
1da177e4
LT
2050 schedule_work(&fep->phy_task);
2051}
2052
7dd6a2aa 2053/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
2054static void mii_queue_config(uint mii_reg, struct net_device *dev)
2055{
2056 struct fec_enet_private *fep = netdev_priv(dev);
2057
2058 if (fep->mii_phy_task_queued)
2059 return;
2060
2061 fep->mii_phy_task_queued = 1;
cb84d6e7 2062 INIT_WORK(&fep->phy_task, mii_display_config);
1da177e4
LT
2063 schedule_work(&fep->phy_task);
2064}
2065
7dd6a2aa
GU
2066phy_cmd_t const phy_cmd_relink[] = {
2067 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2068 { mk_mii_end, }
2069 };
2070phy_cmd_t const phy_cmd_config[] = {
2071 { mk_mii_read(MII_REG_CR), mii_queue_config },
2072 { mk_mii_end, }
2073 };
1da177e4
LT
2074
2075/* Read remainder of PHY ID.
2076*/
2077static void
2078mii_discover_phy3(uint mii_reg, struct net_device *dev)
2079{
2080 struct fec_enet_private *fep;
2081 int i;
2082
2083 fep = netdev_priv(dev);
2084 fep->phy_id |= (mii_reg & 0xffff);
2085 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2086
2087 for(i = 0; phy_info[i]; i++) {
2088 if(phy_info[i]->id == (fep->phy_id >> 4))
2089 break;
2090 }
2091
2092 if (phy_info[i])
2093 printk(" -- %s\n", phy_info[i]->name);
2094 else
2095 printk(" -- unknown PHY!\n");
6aa20a22 2096
1da177e4
LT
2097 fep->phy = phy_info[i];
2098 fep->phy_id_done = 1;
2099}
2100
2101/* Scan all of the MII PHY addresses looking for someone to respond
2102 * with a valid ID. This usually happens quickly.
2103 */
2104static void
2105mii_discover_phy(uint mii_reg, struct net_device *dev)
2106{
2107 struct fec_enet_private *fep;
2108 volatile fec_t *fecp;
2109 uint phytype;
2110
2111 fep = netdev_priv(dev);
2112 fecp = fep->hwp;
2113
2114 if (fep->phy_addr < 32) {
2115 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
6aa20a22 2116
1da177e4
LT
2117 /* Got first part of ID, now get remainder.
2118 */
2119 fep->phy_id = phytype << 16;
2120 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2121 mii_discover_phy3);
2122 }
2123 else {
2124 fep->phy_addr++;
2125 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2126 mii_discover_phy);
2127 }
2128 } else {
2129 printk("FEC: No PHY device found.\n");
2130 /* Disable external MII interface */
2131 fecp->fec_mii_speed = fep->phy_speed = 0;
2132 fec_disable_phy_intr();
2133 }
2134}
2135
2136/* This interrupt occurs when the PHY detects a link change.
2137*/
2138#ifdef CONFIG_RPXCLASSIC
2139static void
2140mii_link_interrupt(void *dev_id)
2141#else
2142static irqreturn_t
7d12e780 2143mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
2144#endif
2145{
2146 struct net_device *dev = dev_id;
2147 struct fec_enet_private *fep = netdev_priv(dev);
2148
2149 fec_phy_ack_intr();
2150
2151#if 0
2152 disable_irq(fep->mii_irq); /* disable now, enable later */
2153#endif
2154
2155 mii_do_cmd(dev, fep->phy->ack_int);
2156 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2157
2158 return IRQ_HANDLED;
2159}
2160
2161static int
2162fec_enet_open(struct net_device *dev)
2163{
2164 struct fec_enet_private *fep = netdev_priv(dev);
2165
2166 /* I should reset the ring buffers here, but I don't yet know
2167 * a simple way to do that.
2168 */
2169 fec_set_mac_address(dev);
2170
2171 fep->sequence_done = 0;
2172 fep->link = 0;
2173
2174 if (fep->phy) {
2175 mii_do_cmd(dev, fep->phy->ack_int);
2176 mii_do_cmd(dev, fep->phy->config);
2177 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2178
6b265293
MW
2179 /* Poll until the PHY tells us its configuration
2180 * (not link state).
2181 * Request is initiated by mii_do_cmd above, but answer
2182 * comes by interrupt.
2183 * This should take about 25 usec per register at 2.5 MHz,
2184 * and we read approximately 5 registers.
1da177e4
LT
2185 */
2186 while(!fep->sequence_done)
2187 schedule();
2188
2189 mii_do_cmd(dev, fep->phy->startup);
2190
2191 /* Set the initial link state to true. A lot of hardware
2192 * based on this device does not implement a PHY interrupt,
2193 * so we are never notified of link change.
2194 */
2195 fep->link = 1;
2196 } else {
2197 fep->link = 1; /* lets just try it and see */
2198 /* no phy, go full duplex, it's most likely a hub chip */
2199 fec_restart(dev, 1);
2200 }
2201
2202 netif_start_queue(dev);
2203 fep->opened = 1;
2204 return 0; /* Success */
2205}
2206
2207static int
2208fec_enet_close(struct net_device *dev)
2209{
2210 struct fec_enet_private *fep = netdev_priv(dev);
2211
2212 /* Don't know what to do yet.
2213 */
2214 fep->opened = 0;
2215 netif_stop_queue(dev);
2216 fec_stop(dev);
2217
2218 return 0;
2219}
2220
1da177e4
LT
2221/* Set or clear the multicast filter for this adaptor.
2222 * Skeleton taken from sunlance driver.
2223 * The CPM Ethernet implementation allows Multicast as well as individual
2224 * MAC address filtering. Some of the drivers check to make sure it is
2225 * a group multicast address, and discard those that are not. I guess I
2226 * will do the same for now, but just remove the test if you want
2227 * individual filtering as well (do the upper net layers want or support
2228 * this kind of feature?).
2229 */
2230
2231#define HASH_BITS 6 /* #bits in hash */
2232#define CRC32_POLY 0xEDB88320
2233
2234static void set_multicast_list(struct net_device *dev)
2235{
2236 struct fec_enet_private *fep;
2237 volatile fec_t *ep;
2238 struct dev_mc_list *dmi;
2239 unsigned int i, j, bit, data, crc;
2240 unsigned char hash;
2241
2242 fep = netdev_priv(dev);
2243 ep = fep->hwp;
2244
2245 if (dev->flags&IFF_PROMISC) {
1da177e4
LT
2246 ep->fec_r_cntrl |= 0x0008;
2247 } else {
2248
2249 ep->fec_r_cntrl &= ~0x0008;
2250
2251 if (dev->flags & IFF_ALLMULTI) {
2252 /* Catch all multicast addresses, so set the
2253 * filter to all 1's.
2254 */
2255 ep->fec_hash_table_high = 0xffffffff;
2256 ep->fec_hash_table_low = 0xffffffff;
2257 } else {
2258 /* Clear filter and add the addresses in hash register.
2259 */
2260 ep->fec_hash_table_high = 0;
2261 ep->fec_hash_table_low = 0;
6aa20a22 2262
1da177e4
LT
2263 dmi = dev->mc_list;
2264
2265 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2266 {
2267 /* Only support group multicast for now.
2268 */
2269 if (!(dmi->dmi_addr[0] & 1))
2270 continue;
6aa20a22 2271
1da177e4
LT
2272 /* calculate crc32 value of mac address
2273 */
2274 crc = 0xffffffff;
2275
2276 for (i = 0; i < dmi->dmi_addrlen; i++)
2277 {
2278 data = dmi->dmi_addr[i];
2279 for (bit = 0; bit < 8; bit++, data >>= 1)
2280 {
2281 crc = (crc >> 1) ^
2282 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2283 }
2284 }
2285
2286 /* only upper 6 bits (HASH_BITS) are used
2287 which point to specific bit in he hash registers
2288 */
2289 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
6aa20a22 2290
1da177e4
LT
2291 if (hash > 31)
2292 ep->fec_hash_table_high |= 1 << (hash - 32);
2293 else
2294 ep->fec_hash_table_low |= 1 << hash;
2295 }
2296 }
2297 }
2298}
2299
2300/* Set a MAC change in hardware.
2301 */
2302static void
2303fec_set_mac_address(struct net_device *dev)
2304{
1da177e4
LT
2305 volatile fec_t *fecp;
2306
7dd6a2aa 2307 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
2308
2309 /* Set station address. */
7dd6a2aa
GU
2310 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2311 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2312 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2313 (dev->dev_addr[4] << 24);
1da177e4
LT
2314
2315}
2316
2317/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2318 */
2319 /*
2320 * XXX: We need to clean up on failure exits here.
2321 */
2322int __init fec_enet_init(struct net_device *dev)
2323{
2324 struct fec_enet_private *fep = netdev_priv(dev);
2325 unsigned long mem_addr;
2326 volatile cbd_t *bdp;
2327 cbd_t *cbd_base;
2328 volatile fec_t *fecp;
2329 int i, j;
2330 static int index = 0;
2331
2332 /* Only allow us to be probed once. */
2333 if (index >= FEC_MAX_PORTS)
2334 return -ENXIO;
2335
562d2f8c
GU
2336 /* Allocate memory for buffer descriptors.
2337 */
2338 mem_addr = __get_free_page(GFP_KERNEL);
2339 if (mem_addr == 0) {
2340 printk("FEC: allocate descriptor memory failed?\n");
2341 return -ENOMEM;
2342 }
2343
1da177e4
LT
2344 /* Create an Ethernet device instance.
2345 */
2346 fecp = (volatile fec_t *) fec_hw[index];
2347
2348 fep->index = index;
2349 fep->hwp = fecp;
cb84d6e7 2350 fep->netdev = dev;
1da177e4
LT
2351
2352 /* Whack a reset. We should wait for this.
2353 */
2354 fecp->fec_ecntrl = 1;
2355 udelay(10);
2356
1da177e4
LT
2357 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2358 * this needs some work to get unique addresses.
2359 *
2360 * This is our default MAC address unless the user changes
2361 * it via eth_mac_addr (our dev->set_mac_addr handler).
2362 */
2363 fec_get_mac(dev);
2364
1da177e4
LT
2365 cbd_base = (cbd_t *)mem_addr;
2366 /* XXX: missing check for allocation failure */
2367
2368 fec_uncache(mem_addr);
2369
2370 /* Set receive and transmit descriptor base.
2371 */
2372 fep->rx_bd_base = cbd_base;
2373 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2374
2375 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2376 fep->cur_rx = fep->rx_bd_base;
2377
2378 fep->skb_cur = fep->skb_dirty = 0;
2379
2380 /* Initialize the receive buffer descriptors.
2381 */
2382 bdp = fep->rx_bd_base;
2383 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2384
2385 /* Allocate a page.
2386 */
2387 mem_addr = __get_free_page(GFP_KERNEL);
2388 /* XXX: missing check for allocation failure */
2389
2390 fec_uncache(mem_addr);
2391
2392 /* Initialize the BD for every fragment in the page.
2393 */
2394 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2395 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2396 bdp->cbd_bufaddr = __pa(mem_addr);
2397 mem_addr += FEC_ENET_RX_FRSIZE;
2398 bdp++;
2399 }
2400 }
2401
2402 /* Set the last buffer to wrap.
2403 */
2404 bdp--;
2405 bdp->cbd_sc |= BD_SC_WRAP;
2406
2407 /* ...and the same for transmmit.
2408 */
2409 bdp = fep->tx_bd_base;
2410 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2411 if (j >= FEC_ENET_TX_FRPPG) {
2412 mem_addr = __get_free_page(GFP_KERNEL);
2413 j = 1;
2414 } else {
2415 mem_addr += FEC_ENET_TX_FRSIZE;
2416 j++;
2417 }
2418 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2419
2420 /* Initialize the BD for every fragment in the page.
2421 */
2422 bdp->cbd_sc = 0;
2423 bdp->cbd_bufaddr = 0;
2424 bdp++;
2425 }
2426
2427 /* Set the last buffer to wrap.
2428 */
2429 bdp--;
2430 bdp->cbd_sc |= BD_SC_WRAP;
2431
2432 /* Set receive and transmit descriptor base.
2433 */
2434 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2435 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2436
2437 /* Install our interrupt handlers. This varies depending on
2438 * the architecture.
2439 */
2440 fec_request_intrs(dev);
2441
562d2f8c
GU
2442 fecp->fec_hash_table_high = 0;
2443 fecp->fec_hash_table_low = 0;
2444 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2445 fecp->fec_ecntrl = 2;
6b265293 2446 fecp->fec_r_des_active = 0;
562d2f8c 2447
1da177e4
LT
2448 dev->base_addr = (unsigned long)fecp;
2449
2450 /* The FEC Ethernet specific entries in the device structure. */
2451 dev->open = fec_enet_open;
2452 dev->hard_start_xmit = fec_enet_start_xmit;
2453 dev->tx_timeout = fec_timeout;
2454 dev->watchdog_timeo = TX_TIMEOUT;
2455 dev->stop = fec_enet_close;
1da177e4
LT
2456 dev->set_multicast_list = set_multicast_list;
2457
2458 for (i=0; i<NMII-1; i++)
2459 mii_cmds[i].mii_next = &mii_cmds[i+1];
2460 mii_free = mii_cmds;
2461
2462 /* setup MII interface */
2463 fec_set_mii(dev, fep);
2464
6b265293
MW
2465 /* Clear and enable interrupts */
2466 fecp->fec_ievent = 0xffc00000;
2467 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2468 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2469
1da177e4
LT
2470 /* Queue up command to detect the PHY and initialize the
2471 * remainder of the interface.
2472 */
2473 fep->phy_id_done = 0;
2474 fep->phy_addr = 0;
2475 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2476
2477 index++;
2478 return 0;
2479}
2480
2481/* This function is called to start or restart the FEC during a link
2482 * change. This only happens when switching between half and full
2483 * duplex.
2484 */
2485static void
2486fec_restart(struct net_device *dev, int duplex)
2487{
2488 struct fec_enet_private *fep;
2489 volatile cbd_t *bdp;
2490 volatile fec_t *fecp;
2491 int i;
2492
2493 fep = netdev_priv(dev);
2494 fecp = fep->hwp;
2495
2496 /* Whack a reset. We should wait for this.
2497 */
2498 fecp->fec_ecntrl = 1;
2499 udelay(10);
2500
1da177e4
LT
2501 /* Clear any outstanding interrupt.
2502 */
7dd6a2aa 2503 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
2504 fec_enable_phy_intr();
2505
2506 /* Set station address.
2507 */
7dd6a2aa 2508 fec_set_mac_address(dev);
1da177e4
LT
2509
2510 /* Reset all multicast.
2511 */
2512 fecp->fec_hash_table_high = 0;
2513 fecp->fec_hash_table_low = 0;
2514
2515 /* Set maximum receive buffer size.
2516 */
2517 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2518
2519 fec_localhw_setup();
2520
2521 /* Set receive and transmit descriptor base.
2522 */
2523 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2524 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2525
2526 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2527 fep->cur_rx = fep->rx_bd_base;
2528
2529 /* Reset SKB transmit buffers.
2530 */
2531 fep->skb_cur = fep->skb_dirty = 0;
2532 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2533 if (fep->tx_skbuff[i] != NULL) {
2534 dev_kfree_skb_any(fep->tx_skbuff[i]);
2535 fep->tx_skbuff[i] = NULL;
2536 }
2537 }
2538
2539 /* Initialize the receive buffer descriptors.
2540 */
2541 bdp = fep->rx_bd_base;
2542 for (i=0; i<RX_RING_SIZE; i++) {
2543
2544 /* Initialize the BD for every fragment in the page.
2545 */
2546 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2547 bdp++;
2548 }
2549
2550 /* Set the last buffer to wrap.
2551 */
2552 bdp--;
2553 bdp->cbd_sc |= BD_SC_WRAP;
2554
2555 /* ...and the same for transmmit.
2556 */
2557 bdp = fep->tx_bd_base;
2558 for (i=0; i<TX_RING_SIZE; i++) {
2559
2560 /* Initialize the BD for every fragment in the page.
2561 */
2562 bdp->cbd_sc = 0;
2563 bdp->cbd_bufaddr = 0;
2564 bdp++;
2565 }
2566
2567 /* Set the last buffer to wrap.
2568 */
2569 bdp--;
2570 bdp->cbd_sc |= BD_SC_WRAP;
2571
2572 /* Enable MII mode.
2573 */
2574 if (duplex) {
2575 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2576 fecp->fec_x_cntrl = 0x04; /* FD enable */
2577 }
2578 else {
2579 /* MII enable|No Rcv on Xmit */
2580 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2581 fecp->fec_x_cntrl = 0x00;
2582 }
2583 fep->full_duplex = duplex;
2584
2585 /* Set MII speed.
2586 */
2587 fecp->fec_mii_speed = fep->phy_speed;
2588
2589 /* And last, enable the transmit and receive processing.
2590 */
2591 fecp->fec_ecntrl = 2;
6b265293
MW
2592 fecp->fec_r_des_active = 0;
2593
2594 /* Enable interrupts we wish to service.
2595 */
2596 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2597 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1da177e4
LT
2598}
2599
2600static void
2601fec_stop(struct net_device *dev)
2602{
2603 volatile fec_t *fecp;
2604 struct fec_enet_private *fep;
2605
2606 fep = netdev_priv(dev);
2607 fecp = fep->hwp;
2608
677177c5
PDM
2609 /*
2610 ** We cannot expect a graceful transmit stop without link !!!
2611 */
2612 if (fep->link)
2613 {
2614 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2615 udelay(10);
2616 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2617 printk("fec_stop : Graceful transmit stop did not complete !\n");
2618 }
1da177e4
LT
2619
2620 /* Whack a reset. We should wait for this.
2621 */
2622 fecp->fec_ecntrl = 1;
2623 udelay(10);
2624
2625 /* Clear outstanding MII command interrupts.
2626 */
2627 fecp->fec_ievent = FEC_ENET_MII;
2628 fec_enable_phy_intr();
2629
2630 fecp->fec_imask = FEC_ENET_MII;
2631 fecp->fec_mii_speed = fep->phy_speed;
2632}
2633
2634static int __init fec_enet_module_init(void)
2635{
2636 struct net_device *dev;
7dd6a2aa
GU
2637 int i, j, err;
2638
2639 printk("FEC ENET Version 0.2\n");
1da177e4
LT
2640
2641 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2642 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2643 if (!dev)
2644 return -ENOMEM;
2645 err = fec_enet_init(dev);
2646 if (err) {
2647 free_netdev(dev);
2648 continue;
2649 }
2650 if (register_netdev(dev) != 0) {
2651 /* XXX: missing cleanup here */
2652 free_netdev(dev);
2653 return -EIO;
2654 }
7dd6a2aa
GU
2655
2656 printk("%s: ethernet ", dev->name);
2657 for (j = 0; (j < 5); j++)
2658 printk("%02x:", dev->dev_addr[j]);
2659 printk("%02x\n", dev->dev_addr[5]);
1da177e4
LT
2660 }
2661 return 0;
2662}
2663
2664module_init(fec_enet_module_init);
2665
2666MODULE_LICENSE("GPL");
This page took 0.408192 seconds and 5 git commands to generate.