Merge branch 'master' of git://gitorious.org/linux-can/linux-can-next
[deliverable/linux.git] / drivers / net / hippi / rrunner.c
CommitLineData
1da177e4
LT
1/*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27#define DEBUG 1
28#define RX_DMA_SKBUFF 1
29#define PKT_COPY_THRESHOLD 512
30
1da177e4
LT
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/pci.h>
36#include <linux/kernel.h>
37#include <linux/netdevice.h>
38#include <linux/hippidevice.h>
39#include <linux/skbuff.h>
40#include <linux/init.h>
41#include <linux/delay.h>
42#include <linux/mm.h>
5a0e3ad6 43#include <linux/slab.h>
1da177e4
LT
44#include <net/sock.h>
45
1da177e4
LT
46#include <asm/cache.h>
47#include <asm/byteorder.h>
48#include <asm/io.h>
49#include <asm/irq.h>
50#include <asm/uaccess.h>
51
52#define rr_if_busy(dev) netif_queue_stopped(dev)
53#define rr_if_running(dev) netif_running(dev)
54
55#include "rrunner.h"
56
57#define RUN_AT(x) (jiffies + (x))
58
59
60MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62MODULE_LICENSE("GPL");
63
64static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
65
748ff68f
SH
66
67static const struct net_device_ops rr_netdev_ops = {
68 .ndo_open = rr_open,
69 .ndo_stop = rr_close,
70 .ndo_do_ioctl = rr_ioctl,
71 .ndo_start_xmit = rr_start_xmit,
72 .ndo_change_mtu = hippi_change_mtu,
73 .ndo_set_mac_address = hippi_mac_addr,
74};
75
1da177e4
LT
76/*
77 * Implementation notes:
78 *
79 * The DMA engine only allows for DMA within physical 64KB chunks of
80 * memory. The current approach of the driver (and stack) is to use
81 * linear blocks of memory for the skbuffs. However, as the data block
82 * is always the first part of the skb and skbs are 2^n aligned so we
83 * are guarantted to get the whole block within one 64KB align 64KB
84 * chunk.
85 *
86 * On the long term, relying on being able to allocate 64KB linear
87 * chunks of memory is not feasible and the skb handling code and the
88 * stack will need to know about I/O vectors or something similar.
89 */
90
1da177e4
LT
91static int __devinit rr_init_one(struct pci_dev *pdev,
92 const struct pci_device_id *ent)
93{
94 struct net_device *dev;
95 static int version_disp;
96 u8 pci_latency;
97 struct rr_private *rrpriv;
98 void *tmpptr;
99 dma_addr_t ring_dma;
100 int ret = -ENOMEM;
101
102 dev = alloc_hippi_dev(sizeof(struct rr_private));
103 if (!dev)
104 goto out3;
105
106 ret = pci_enable_device(pdev);
107 if (ret) {
108 ret = -ENODEV;
109 goto out2;
110 }
111
112 rrpriv = netdev_priv(dev);
113
1da177e4
LT
114 SET_NETDEV_DEV(dev, &pdev->dev);
115
0193fc5e
FR
116 ret = pci_request_regions(pdev, "rrunner");
117 if (ret < 0)
1da177e4 118 goto out;
1da177e4
LT
119
120 pci_set_drvdata(pdev, dev);
121
122 rrpriv->pci_dev = pdev;
123
124 spin_lock_init(&rrpriv->lock);
125
748ff68f 126 dev->netdev_ops = &rr_netdev_ops;
1da177e4 127
1da177e4
LT
128 /* display version info if adapter is found */
129 if (!version_disp) {
130 /* set display flag to TRUE so that */
131 /* we only display this string ONCE */
132 version_disp = 1;
133 printk(version);
134 }
135
136 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
137 if (pci_latency <= 0x58){
138 pci_latency = 0x58;
139 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
140 }
141
142 pci_set_master(pdev);
143
144 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
0193fc5e
FR
145 "at 0x%08llx, irq %i, PCI latency %i\n", dev->name,
146 pci_resource_start(pdev, 0), pdev->irq, pci_latency);
1da177e4
LT
147
148 /*
0193fc5e 149 * Remap the MMIO regs into kernel space.
1da177e4 150 */
0193fc5e
FR
151 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
152 if (!rrpriv->regs) {
1da177e4
LT
153 printk(KERN_ERR "%s: Unable to map I/O register, "
154 "RoadRunner will be disabled.\n", dev->name);
155 ret = -EIO;
156 goto out;
157 }
158
159 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
160 rrpriv->tx_ring = tmpptr;
161 rrpriv->tx_ring_dma = ring_dma;
162
163 if (!tmpptr) {
164 ret = -ENOMEM;
165 goto out;
166 }
167
168 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
169 rrpriv->rx_ring = tmpptr;
170 rrpriv->rx_ring_dma = ring_dma;
171
172 if (!tmpptr) {
173 ret = -ENOMEM;
174 goto out;
175 }
176
177 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
178 rrpriv->evt_ring = tmpptr;
179 rrpriv->evt_ring_dma = ring_dma;
180
181 if (!tmpptr) {
182 ret = -ENOMEM;
183 goto out;
184 }
185
186 /*
187 * Don't access any register before this point!
188 */
189#ifdef __BIG_ENDIAN
190 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
191 &rrpriv->regs->HostCtrl);
192#endif
193 /*
194 * Need to add a case for little-endian 64-bit hosts here.
195 */
196
197 rr_init(dev);
198
1da177e4
LT
199 ret = register_netdev(dev);
200 if (ret)
201 goto out;
202 return 0;
203
204 out:
205 if (rrpriv->rx_ring)
6aa20a22 206 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
1da177e4
LT
207 rrpriv->rx_ring_dma);
208 if (rrpriv->tx_ring)
209 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
210 rrpriv->tx_ring_dma);
211 if (rrpriv->regs)
0193fc5e 212 pci_iounmap(pdev, rrpriv->regs);
1da177e4
LT
213 if (pdev) {
214 pci_release_regions(pdev);
215 pci_set_drvdata(pdev, NULL);
216 }
217 out2:
218 free_netdev(dev);
219 out3:
220 return ret;
221}
222
223static void __devexit rr_remove_one (struct pci_dev *pdev)
224{
225 struct net_device *dev = pci_get_drvdata(pdev);
0193fc5e 226 struct rr_private *rr = netdev_priv(dev);
1da177e4 227
0193fc5e
FR
228 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 printk(KERN_ERR "%s: trying to unload running NIC\n",
230 dev->name);
231 writel(HALT_NIC, &rr->regs->HostCtrl);
1da177e4 232 }
0193fc5e
FR
233
234 unregister_netdev(dev);
235 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
236 rr->evt_ring_dma);
237 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
238 rr->rx_ring_dma);
239 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
240 rr->tx_ring_dma);
241 pci_iounmap(pdev, rr->regs);
242 pci_release_regions(pdev);
243 pci_disable_device(pdev);
244 pci_set_drvdata(pdev, NULL);
245 free_netdev(dev);
1da177e4
LT
246}
247
248
249/*
250 * Commands are considered to be slow, thus there is no reason to
251 * inline this.
252 */
253static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
254{
255 struct rr_regs __iomem *regs;
256 u32 idx;
257
258 regs = rrpriv->regs;
259 /*
260 * This is temporary - it will go away in the final version.
261 * We probably also want to make this function inline.
262 */
263 if (readl(&regs->HostCtrl) & NIC_HALTED){
264 printk("issuing command for halted NIC, code 0x%x, "
265 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
266 if (readl(&regs->Mode) & FATAL_ERR)
267 printk("error codes Fail1 %02x, Fail2 %02x\n",
268 readl(&regs->Fail1), readl(&regs->Fail2));
269 }
270
271 idx = rrpriv->info->cmd_ctrl.pi;
272
273 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
274 wmb();
275
276 idx = (idx - 1) % CMD_RING_ENTRIES;
277 rrpriv->info->cmd_ctrl.pi = idx;
278 wmb();
279
280 if (readl(&regs->Mode) & FATAL_ERR)
281 printk("error code %02x\n", readl(&regs->Fail1));
282}
283
284
285/*
286 * Reset the board in a sensible manner. The NIC is already halted
287 * when we get here and a spin-lock is held.
288 */
289static int rr_reset(struct net_device *dev)
290{
291 struct rr_private *rrpriv;
292 struct rr_regs __iomem *regs;
1da177e4
LT
293 u32 start_pc;
294 int i;
295
296 rrpriv = netdev_priv(dev);
297 regs = rrpriv->regs;
298
299 rr_load_firmware(dev);
300
301 writel(0x01000000, &regs->TX_state);
302 writel(0xff800000, &regs->RX_state);
303 writel(0, &regs->AssistState);
304 writel(CLEAR_INTA, &regs->LocalCtrl);
305 writel(0x01, &regs->BrkPt);
306 writel(0, &regs->Timer);
307 writel(0, &regs->TimerRef);
308 writel(RESET_DMA, &regs->DmaReadState);
309 writel(RESET_DMA, &regs->DmaWriteState);
310 writel(0, &regs->DmaWriteHostHi);
311 writel(0, &regs->DmaWriteHostLo);
312 writel(0, &regs->DmaReadHostHi);
313 writel(0, &regs->DmaReadHostLo);
314 writel(0, &regs->DmaReadLen);
315 writel(0, &regs->DmaWriteLen);
316 writel(0, &regs->DmaWriteLcl);
317 writel(0, &regs->DmaWriteIPchecksum);
318 writel(0, &regs->DmaReadLcl);
319 writel(0, &regs->DmaReadIPchecksum);
320 writel(0, &regs->PciState);
321#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
322 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
323#elif (BITS_PER_LONG == 64)
324 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
325#else
326 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
327#endif
328
329#if 0
330 /*
331 * Don't worry, this is just black magic.
332 */
333 writel(0xdf000, &regs->RxBase);
334 writel(0xdf000, &regs->RxPrd);
335 writel(0xdf000, &regs->RxCon);
336 writel(0xce000, &regs->TxBase);
337 writel(0xce000, &regs->TxPrd);
338 writel(0xce000, &regs->TxCon);
339 writel(0, &regs->RxIndPro);
340 writel(0, &regs->RxIndCon);
341 writel(0, &regs->RxIndRef);
342 writel(0, &regs->TxIndPro);
343 writel(0, &regs->TxIndCon);
344 writel(0, &regs->TxIndRef);
345 writel(0xcc000, &regs->pad10[0]);
346 writel(0, &regs->DrCmndPro);
347 writel(0, &regs->DrCmndCon);
348 writel(0, &regs->DwCmndPro);
349 writel(0, &regs->DwCmndCon);
350 writel(0, &regs->DwCmndRef);
351 writel(0, &regs->DrDataPro);
352 writel(0, &regs->DrDataCon);
353 writel(0, &regs->DrDataRef);
354 writel(0, &regs->DwDataPro);
355 writel(0, &regs->DwDataCon);
356 writel(0, &regs->DwDataRef);
357#endif
358
359 writel(0xffffffff, &regs->MbEvent);
360 writel(0, &regs->Event);
361
362 writel(0, &regs->TxPi);
363 writel(0, &regs->IpRxPi);
364
365 writel(0, &regs->EvtCon);
366 writel(0, &regs->EvtPrd);
367
368 rrpriv->info->evt_ctrl.pi = 0;
369
370 for (i = 0; i < CMD_RING_ENTRIES; i++)
371 writel(0, &regs->CmdRing[i]);
372
373/*
374 * Why 32 ? is this not cache line size dependent?
375 */
376 writel(RBURST_64|WBURST_64, &regs->PciState);
377 wmb();
378
cf962378
AV
379 start_pc = rr_read_eeprom_word(rrpriv,
380 offsetof(struct eeprom, rncd_info.FwStart));
1da177e4
LT
381
382#if (DEBUG > 1)
383 printk("%s: Executing firmware at address 0x%06x\n",
384 dev->name, start_pc);
385#endif
386
387 writel(start_pc + 0x800, &regs->Pc);
388 wmb();
389 udelay(5);
390
391 writel(start_pc, &regs->Pc);
392 wmb();
393
394 return 0;
395}
396
397
398/*
399 * Read a string from the EEPROM.
400 */
401static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
402 unsigned long offset,
403 unsigned char *buf,
404 unsigned long length)
405{
406 struct rr_regs __iomem *regs = rrpriv->regs;
407 u32 misc, io, host, i;
408
409 io = readl(&regs->ExtIo);
410 writel(0, &regs->ExtIo);
411 misc = readl(&regs->LocalCtrl);
412 writel(0, &regs->LocalCtrl);
413 host = readl(&regs->HostCtrl);
414 writel(host | HALT_NIC, &regs->HostCtrl);
415 mb();
416
417 for (i = 0; i < length; i++){
418 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
419 mb();
420 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
421 mb();
422 }
423
424 writel(host, &regs->HostCtrl);
425 writel(misc, &regs->LocalCtrl);
426 writel(io, &regs->ExtIo);
427 mb();
428 return i;
429}
430
431
432/*
433 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
434 * it to our CPU byte-order.
435 */
436static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
cf962378 437 size_t offset)
1da177e4 438{
cf962378 439 __be32 word;
1da177e4 440
cf962378
AV
441 if ((rr_read_eeprom(rrpriv, offset,
442 (unsigned char *)&word, 4) == 4))
1da177e4
LT
443 return be32_to_cpu(word);
444 return 0;
445}
446
447
448/*
449 * Write a string to the EEPROM.
450 *
451 * This is only called when the firmware is not running.
452 */
453static unsigned int write_eeprom(struct rr_private *rrpriv,
454 unsigned long offset,
455 unsigned char *buf,
456 unsigned long length)
457{
458 struct rr_regs __iomem *regs = rrpriv->regs;
459 u32 misc, io, data, i, j, ready, error = 0;
460
461 io = readl(&regs->ExtIo);
462 writel(0, &regs->ExtIo);
463 misc = readl(&regs->LocalCtrl);
464 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
465 mb();
466
467 for (i = 0; i < length; i++){
468 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
469 mb();
470 data = buf[i] << 24;
471 /*
472 * Only try to write the data if it is not the same
473 * value already.
474 */
475 if ((readl(&regs->WinData) & 0xff000000) != data){
476 writel(data, &regs->WinData);
477 ready = 0;
478 j = 0;
479 mb();
480 while(!ready){
481 udelay(20);
482 if ((readl(&regs->WinData) & 0xff000000) ==
483 data)
484 ready = 1;
485 mb();
486 if (j++ > 5000){
487 printk("data mismatch: %08x, "
488 "WinData %08x\n", data,
489 readl(&regs->WinData));
490 ready = 1;
491 error = 1;
492 }
493 }
494 }
495 }
496
497 writel(misc, &regs->LocalCtrl);
498 writel(io, &regs->ExtIo);
499 mb();
500
501 return error;
502}
503
504
4f092432 505static int __devinit rr_init(struct net_device *dev)
1da177e4
LT
506{
507 struct rr_private *rrpriv;
508 struct rr_regs __iomem *regs;
1da177e4 509 u32 sram_size, rev;
1da177e4
LT
510
511 rrpriv = netdev_priv(dev);
512 regs = rrpriv->regs;
513
514 rev = readl(&regs->FwRev);
515 rrpriv->fw_rev = rev;
516 if (rev > 0x00020024)
517 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
518 ((rev >> 8) & 0xff), (rev & 0xff));
519 else if (rev >= 0x00020000) {
520 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
521 "later is recommended)\n", (rev >> 16),
522 ((rev >> 8) & 0xff), (rev & 0xff));
523 }else{
524 printk(" Firmware revision too old: %i.%i.%i, please "
525 "upgrade to 2.0.37 or later.\n",
526 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527 }
528
529#if (DEBUG > 2)
530 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
531#endif
532
533 /*
534 * Read the hardware address from the eeprom. The HW address
535 * is not really necessary for HIPPI but awfully convenient.
536 * The pointer arithmetic to put it in dev_addr is ugly, but
537 * Donald Becker does it this way for the GigE version of this
538 * card and it's shorter and more portable than any
539 * other method I've seen. -VAL
540 */
541
cf962378
AV
542 *(__be16 *)(dev->dev_addr) =
543 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544 *(__be32 *)(dev->dev_addr+2) =
545 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
6aa20a22 546
e174961c 547 printk(" MAC: %pM\n", dev->dev_addr);
1da177e4 548
cf962378 549 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
550 printk(" SRAM size 0x%06x\n", sram_size);
551
1da177e4
LT
552 return 0;
553}
554
555
556static int rr_init1(struct net_device *dev)
557{
558 struct rr_private *rrpriv;
559 struct rr_regs __iomem *regs;
560 unsigned long myjif, flags;
561 struct cmd cmd;
562 u32 hostctrl;
563 int ecode = 0;
564 short i;
565
566 rrpriv = netdev_priv(dev);
567 regs = rrpriv->regs;
568
569 spin_lock_irqsave(&rrpriv->lock, flags);
570
571 hostctrl = readl(&regs->HostCtrl);
572 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
573 wmb();
574
575 if (hostctrl & PARITY_ERR){
576 printk("%s: Parity error halting NIC - this is serious!\n",
577 dev->name);
578 spin_unlock_irqrestore(&rrpriv->lock, flags);
579 ecode = -EFAULT;
580 goto error;
581 }
582
583 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
584 set_infoaddr(regs, rrpriv->info_dma);
585
586 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
587 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
588 rrpriv->info->evt_ctrl.mode = 0;
589 rrpriv->info->evt_ctrl.pi = 0;
590 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
591
592 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
593 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
594 rrpriv->info->cmd_ctrl.mode = 0;
595 rrpriv->info->cmd_ctrl.pi = 15;
596
597 for (i = 0; i < CMD_RING_ENTRIES; i++) {
598 writel(0, &regs->CmdRing[i]);
599 }
600
601 for (i = 0; i < TX_RING_ENTRIES; i++) {
602 rrpriv->tx_ring[i].size = 0;
603 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
604 rrpriv->tx_skbuff[i] = NULL;
605 }
606 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
607 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
608 rrpriv->info->tx_ctrl.mode = 0;
609 rrpriv->info->tx_ctrl.pi = 0;
610 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
611
612 /*
613 * Set dirty_tx before we start receiving interrupts, otherwise
614 * the interrupt handler might think it is supposed to process
615 * tx ints before we are up and running, which may cause a null
616 * pointer access in the int handler.
617 */
618 rrpriv->tx_full = 0;
619 rrpriv->cur_rx = 0;
620 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
621
622 rr_reset(dev);
623
624 /* Tuning values */
625 writel(0x5000, &regs->ConRetry);
626 writel(0x100, &regs->ConRetryTmr);
627 writel(0x500000, &regs->ConTmout);
628 writel(0x60, &regs->IntrTmr);
629 writel(0x500000, &regs->TxDataMvTimeout);
630 writel(0x200000, &regs->RxDataMvTimeout);
631 writel(0x80, &regs->WriteDmaThresh);
632 writel(0x80, &regs->ReadDmaThresh);
633
634 rrpriv->fw_running = 0;
635 wmb();
636
637 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
638 writel(hostctrl, &regs->HostCtrl);
639 wmb();
640
641 spin_unlock_irqrestore(&rrpriv->lock, flags);
642
643 for (i = 0; i < RX_RING_ENTRIES; i++) {
644 struct sk_buff *skb;
645 dma_addr_t addr;
646
647 rrpriv->rx_ring[i].mode = 0;
648 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
649 if (!skb) {
650 printk(KERN_WARNING "%s: Unable to allocate memory "
651 "for receive ring - halting NIC\n", dev->name);
652 ecode = -ENOMEM;
653 goto error;
654 }
655 rrpriv->rx_skbuff[i] = skb;
656 addr = pci_map_single(rrpriv->pci_dev, skb->data,
657 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
658 /*
659 * Sanity test to see if we conflict with the DMA
660 * limitations of the Roadrunner.
661 */
662 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
663 printk("skb alloc error\n");
664
665 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
666 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
667 }
668
669 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
670 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
671 rrpriv->rx_ctrl[4].mode = 8;
672 rrpriv->rx_ctrl[4].pi = 0;
673 wmb();
674 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
675
676 udelay(1000);
677
678 /*
679 * Now start the FirmWare.
680 */
681 cmd.code = C_START_FW;
682 cmd.ring = 0;
683 cmd.index = 0;
684
685 rr_issue_cmd(rrpriv, &cmd);
686
687 /*
688 * Give the FirmWare time to chew on the `get running' command.
689 */
690 myjif = jiffies + 5 * HZ;
691 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
692 cpu_relax();
693
694 netif_start_queue(dev);
695
696 return ecode;
697
698 error:
699 /*
700 * We might have gotten here because we are out of memory,
701 * make sure we release everything we allocated before failing
702 */
703 for (i = 0; i < RX_RING_ENTRIES; i++) {
704 struct sk_buff *skb = rrpriv->rx_skbuff[i];
705
706 if (skb) {
6aa20a22
JG
707 pci_unmap_single(rrpriv->pci_dev,
708 rrpriv->rx_ring[i].addr.addrlo,
1da177e4
LT
709 dev->mtu + HIPPI_HLEN,
710 PCI_DMA_FROMDEVICE);
711 rrpriv->rx_ring[i].size = 0;
712 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
713 dev_kfree_skb(skb);
714 rrpriv->rx_skbuff[i] = NULL;
715 }
716 }
717 return ecode;
718}
719
720
721/*
722 * All events are considered to be slow (RX/TX ints do not generate
723 * events) and are handled here, outside the main interrupt handler,
724 * to reduce the size of the handler.
725 */
726static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
727{
728 struct rr_private *rrpriv;
729 struct rr_regs __iomem *regs;
730 u32 tmp;
731
732 rrpriv = netdev_priv(dev);
733 regs = rrpriv->regs;
734
735 while (prodidx != eidx){
736 switch (rrpriv->evt_ring[eidx].code){
737 case E_NIC_UP:
738 tmp = readl(&regs->FwRev);
739 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
740 "up and running\n", dev->name,
741 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
742 rrpriv->fw_running = 1;
743 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
744 wmb();
745 break;
746 case E_LINK_ON:
747 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
748 break;
749 case E_LINK_OFF:
750 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
751 break;
752 case E_RX_IDLE:
753 printk(KERN_WARNING "%s: RX data not moving\n",
754 dev->name);
755 goto drop;
756 case E_WATCHDOG:
757 printk(KERN_INFO "%s: The watchdog is here to see "
758 "us\n", dev->name);
759 break;
760 case E_INTERN_ERR:
761 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
762 dev->name);
6aa20a22 763 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
764 &regs->HostCtrl);
765 wmb();
766 break;
767 case E_HOST_ERR:
768 printk(KERN_ERR "%s: Host software error\n",
769 dev->name);
6aa20a22 770 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
771 &regs->HostCtrl);
772 wmb();
773 break;
774 /*
775 * TX events.
776 */
777 case E_CON_REJ:
778 printk(KERN_WARNING "%s: Connection rejected\n",
779 dev->name);
09f75cd7 780 dev->stats.tx_aborted_errors++;
1da177e4
LT
781 break;
782 case E_CON_TMOUT:
783 printk(KERN_WARNING "%s: Connection timeout\n",
784 dev->name);
785 break;
786 case E_DISC_ERR:
787 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
788 dev->name);
09f75cd7 789 dev->stats.tx_aborted_errors++;
1da177e4
LT
790 break;
791 case E_INT_PRTY:
792 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
793 dev->name);
6aa20a22 794 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
795 &regs->HostCtrl);
796 wmb();
797 break;
798 case E_TX_IDLE:
799 printk(KERN_WARNING "%s: Transmitter idle\n",
800 dev->name);
801 break;
802 case E_TX_LINK_DROP:
803 printk(KERN_WARNING "%s: Link lost during transmit\n",
804 dev->name);
09f75cd7 805 dev->stats.tx_aborted_errors++;
6aa20a22 806 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
807 &regs->HostCtrl);
808 wmb();
809 break;
810 case E_TX_INV_RNG:
811 printk(KERN_ERR "%s: Invalid send ring block\n",
812 dev->name);
6aa20a22 813 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
814 &regs->HostCtrl);
815 wmb();
816 break;
817 case E_TX_INV_BUF:
818 printk(KERN_ERR "%s: Invalid send buffer address\n",
819 dev->name);
6aa20a22 820 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
821 &regs->HostCtrl);
822 wmb();
823 break;
824 case E_TX_INV_DSC:
825 printk(KERN_ERR "%s: Invalid descriptor address\n",
826 dev->name);
6aa20a22 827 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
828 &regs->HostCtrl);
829 wmb();
830 break;
831 /*
832 * RX events.
833 */
834 case E_RX_RNG_OUT:
835 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
836 break;
837
838 case E_RX_PAR_ERR:
839 printk(KERN_WARNING "%s: Receive parity error\n",
840 dev->name);
841 goto drop;
842 case E_RX_LLRC_ERR:
843 printk(KERN_WARNING "%s: Receive LLRC error\n",
844 dev->name);
845 goto drop;
846 case E_PKT_LN_ERR:
847 printk(KERN_WARNING "%s: Receive packet length "
848 "error\n", dev->name);
849 goto drop;
850 case E_DTA_CKSM_ERR:
851 printk(KERN_WARNING "%s: Data checksum error\n",
852 dev->name);
853 goto drop;
854 case E_SHT_BST:
855 printk(KERN_WARNING "%s: Unexpected short burst "
856 "error\n", dev->name);
857 goto drop;
858 case E_STATE_ERR:
859 printk(KERN_WARNING "%s: Recv. state transition"
860 " error\n", dev->name);
861 goto drop;
862 case E_UNEXP_DATA:
863 printk(KERN_WARNING "%s: Unexpected data error\n",
864 dev->name);
865 goto drop;
866 case E_LST_LNK_ERR:
867 printk(KERN_WARNING "%s: Link lost error\n",
868 dev->name);
869 goto drop;
870 case E_FRM_ERR:
871 printk(KERN_WARNING "%s: Framming Error\n",
872 dev->name);
873 goto drop;
874 case E_FLG_SYN_ERR:
2450022a 875 printk(KERN_WARNING "%s: Flag sync. lost during "
1da177e4
LT
876 "packet\n", dev->name);
877 goto drop;
878 case E_RX_INV_BUF:
879 printk(KERN_ERR "%s: Invalid receive buffer "
880 "address\n", dev->name);
6aa20a22 881 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
882 &regs->HostCtrl);
883 wmb();
884 break;
885 case E_RX_INV_DSC:
886 printk(KERN_ERR "%s: Invalid receive descriptor "
887 "address\n", dev->name);
6aa20a22 888 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
889 &regs->HostCtrl);
890 wmb();
891 break;
892 case E_RNG_BLK:
893 printk(KERN_ERR "%s: Invalid ring block\n",
894 dev->name);
6aa20a22 895 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
896 &regs->HostCtrl);
897 wmb();
898 break;
899 drop:
900 /* Label packet to be dropped.
901 * Actual dropping occurs in rx
902 * handling.
903 *
904 * The index of packet we get to drop is
905 * the index of the packet following
906 * the bad packet. -kbf
907 */
908 {
909 u16 index = rrpriv->evt_ring[eidx].index;
910 index = (index + (RX_RING_ENTRIES - 1)) %
911 RX_RING_ENTRIES;
912 rrpriv->rx_ring[index].mode |=
913 (PACKET_BAD | PACKET_END);
914 }
915 break;
916 default:
917 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
918 dev->name, rrpriv->evt_ring[eidx].code);
919 }
920 eidx = (eidx + 1) % EVT_RING_ENTRIES;
921 }
922
923 rrpriv->info->evt_ctrl.pi = eidx;
924 wmb();
925 return eidx;
926}
927
928
929static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
930{
931 struct rr_private *rrpriv = netdev_priv(dev);
932 struct rr_regs __iomem *regs = rrpriv->regs;
933
934 do {
935 struct rx_desc *desc;
936 u32 pkt_len;
937
938 desc = &(rrpriv->rx_ring[index]);
939 pkt_len = desc->size;
940#if (DEBUG > 2)
941 printk("index %i, rxlimit %i\n", index, rxlimit);
942 printk("len %x, mode %x\n", pkt_len, desc->mode);
943#endif
944 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
09f75cd7 945 dev->stats.rx_dropped++;
1da177e4
LT
946 goto defer;
947 }
948
949 if (pkt_len > 0){
950 struct sk_buff *skb, *rx_skb;
951
952 rx_skb = rrpriv->rx_skbuff[index];
953
954 if (pkt_len < PKT_COPY_THRESHOLD) {
955 skb = alloc_skb(pkt_len, GFP_ATOMIC);
956 if (skb == NULL){
957 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
09f75cd7 958 dev->stats.rx_dropped++;
1da177e4
LT
959 goto defer;
960 } else {
961 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
962 desc->addr.addrlo,
963 pkt_len,
964 PCI_DMA_FROMDEVICE);
965
966 memcpy(skb_put(skb, pkt_len),
967 rx_skb->data, pkt_len);
968
969 pci_dma_sync_single_for_device(rrpriv->pci_dev,
970 desc->addr.addrlo,
971 pkt_len,
972 PCI_DMA_FROMDEVICE);
973 }
974 }else{
975 struct sk_buff *newskb;
976
977 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
978 GFP_ATOMIC);
979 if (newskb){
980 dma_addr_t addr;
981
6aa20a22
JG
982 pci_unmap_single(rrpriv->pci_dev,
983 desc->addr.addrlo, dev->mtu +
1da177e4
LT
984 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
985 skb = rx_skb;
986 skb_put(skb, pkt_len);
987 rrpriv->rx_skbuff[index] = newskb;
6aa20a22
JG
988 addr = pci_map_single(rrpriv->pci_dev,
989 newskb->data,
990 dev->mtu + HIPPI_HLEN,
1da177e4
LT
991 PCI_DMA_FROMDEVICE);
992 set_rraddr(&desc->addr, addr);
993 } else {
994 printk("%s: Out of memory, deferring "
995 "packet\n", dev->name);
09f75cd7 996 dev->stats.rx_dropped++;
1da177e4
LT
997 goto defer;
998 }
999 }
1da177e4
LT
1000 skb->protocol = hippi_type_trans(skb, dev);
1001
1002 netif_rx(skb); /* send it up */
1003
09f75cd7
JG
1004 dev->stats.rx_packets++;
1005 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
1006 }
1007 defer:
1008 desc->mode = 0;
1009 desc->size = dev->mtu + HIPPI_HLEN;
1010
1011 if ((index & 7) == 7)
1012 writel(index, &regs->IpRxPi);
1013
1014 index = (index + 1) % RX_RING_ENTRIES;
1015 } while(index != rxlimit);
1016
1017 rrpriv->cur_rx = index;
1018 wmb();
1019}
1020
1021
7d12e780 1022static irqreturn_t rr_interrupt(int irq, void *dev_id)
1da177e4
LT
1023{
1024 struct rr_private *rrpriv;
1025 struct rr_regs __iomem *regs;
1026 struct net_device *dev = (struct net_device *)dev_id;
1027 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1028
1029 rrpriv = netdev_priv(dev);
1030 regs = rrpriv->regs;
1031
1032 if (!(readl(&regs->HostCtrl) & RR_INT))
1033 return IRQ_NONE;
1034
1035 spin_lock(&rrpriv->lock);
1036
1037 prodidx = readl(&regs->EvtPrd);
1038 txcsmr = (prodidx >> 8) & 0xff;
1039 rxlimit = (prodidx >> 16) & 0xff;
1040 prodidx &= 0xff;
1041
1042#if (DEBUG > 2)
1043 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1044 prodidx, rrpriv->info->evt_ctrl.pi);
1045#endif
1046 /*
1047 * Order here is important. We must handle events
1048 * before doing anything else in order to catch
1049 * such things as LLRC errors, etc -kbf
1050 */
1051
1052 eidx = rrpriv->info->evt_ctrl.pi;
1053 if (prodidx != eidx)
1054 eidx = rr_handle_event(dev, prodidx, eidx);
1055
1056 rxindex = rrpriv->cur_rx;
1057 if (rxindex != rxlimit)
1058 rx_int(dev, rxlimit, rxindex);
1059
1060 txcon = rrpriv->dirty_tx;
1061 if (txcsmr != txcon) {
1062 do {
1063 /* Due to occational firmware TX producer/consumer out
1064 * of sync. error need to check entry in ring -kbf
1065 */
1066 if(rrpriv->tx_skbuff[txcon]){
1067 struct tx_desc *desc;
1068 struct sk_buff *skb;
1069
1070 desc = &(rrpriv->tx_ring[txcon]);
1071 skb = rrpriv->tx_skbuff[txcon];
1072
09f75cd7
JG
1073 dev->stats.tx_packets++;
1074 dev->stats.tx_bytes += skb->len;
1da177e4
LT
1075
1076 pci_unmap_single(rrpriv->pci_dev,
1077 desc->addr.addrlo, skb->len,
1078 PCI_DMA_TODEVICE);
1079 dev_kfree_skb_irq(skb);
1080
1081 rrpriv->tx_skbuff[txcon] = NULL;
1082 desc->size = 0;
1083 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1084 desc->mode = 0;
1085 }
1086 txcon = (txcon + 1) % TX_RING_ENTRIES;
1087 } while (txcsmr != txcon);
1088 wmb();
1089
1090 rrpriv->dirty_tx = txcon;
1091 if (rrpriv->tx_full && rr_if_busy(dev) &&
1092 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1093 != rrpriv->dirty_tx)){
1094 rrpriv->tx_full = 0;
1095 netif_wake_queue(dev);
1096 }
1097 }
1098
1099 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1100 writel(eidx, &regs->EvtCon);
1101 wmb();
1102
1103 spin_unlock(&rrpriv->lock);
1104 return IRQ_HANDLED;
1105}
1106
1107static inline void rr_raz_tx(struct rr_private *rrpriv,
1108 struct net_device *dev)
1109{
1110 int i;
1111
1112 for (i = 0; i < TX_RING_ENTRIES; i++) {
1113 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1114
1115 if (skb) {
1116 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1117
1118 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1119 skb->len, PCI_DMA_TODEVICE);
1120 desc->size = 0;
1121 set_rraddr(&desc->addr, 0);
1122 dev_kfree_skb(skb);
1123 rrpriv->tx_skbuff[i] = NULL;
1124 }
1125 }
1126}
1127
1128
1129static inline void rr_raz_rx(struct rr_private *rrpriv,
1130 struct net_device *dev)
1131{
1132 int i;
1133
1134 for (i = 0; i < RX_RING_ENTRIES; i++) {
1135 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136
1137 if (skb) {
1138 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139
1140 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1141 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1142 desc->size = 0;
1143 set_rraddr(&desc->addr, 0);
1144 dev_kfree_skb(skb);
1145 rrpriv->rx_skbuff[i] = NULL;
1146 }
1147 }
1148}
1149
1150static void rr_timer(unsigned long data)
1151{
1152 struct net_device *dev = (struct net_device *)data;
1153 struct rr_private *rrpriv = netdev_priv(dev);
1154 struct rr_regs __iomem *regs = rrpriv->regs;
1155 unsigned long flags;
1156
1157 if (readl(&regs->HostCtrl) & NIC_HALTED){
1158 printk("%s: Restarting nic\n", dev->name);
1159 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1160 memset(rrpriv->info, 0, sizeof(struct rr_info));
1161 wmb();
1162
1163 rr_raz_tx(rrpriv, dev);
1164 rr_raz_rx(rrpriv, dev);
1165
1166 if (rr_init1(dev)) {
1167 spin_lock_irqsave(&rrpriv->lock, flags);
6aa20a22 1168 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
1169 &regs->HostCtrl);
1170 spin_unlock_irqrestore(&rrpriv->lock, flags);
1171 }
1172 }
1173 rrpriv->timer.expires = RUN_AT(5*HZ);
1174 add_timer(&rrpriv->timer);
1175}
1176
1177
1178static int rr_open(struct net_device *dev)
1179{
1180 struct rr_private *rrpriv = netdev_priv(dev);
1181 struct pci_dev *pdev = rrpriv->pci_dev;
1182 struct rr_regs __iomem *regs;
1183 int ecode = 0;
1184 unsigned long flags;
1185 dma_addr_t dma_addr;
1186
1187 regs = rrpriv->regs;
1188
1189 if (rrpriv->fw_rev < 0x00020000) {
1190 printk(KERN_WARNING "%s: trying to configure device with "
1191 "obsolete firmware\n", dev->name);
1192 ecode = -EBUSY;
1193 goto error;
1194 }
1195
1196 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1197 256 * sizeof(struct ring_ctrl),
1198 &dma_addr);
1199 if (!rrpriv->rx_ctrl) {
1200 ecode = -ENOMEM;
1201 goto error;
1202 }
1203 rrpriv->rx_ctrl_dma = dma_addr;
1204 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1205
1206 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1207 &dma_addr);
1208 if (!rrpriv->info) {
1209 ecode = -ENOMEM;
1210 goto error;
1211 }
1212 rrpriv->info_dma = dma_addr;
1213 memset(rrpriv->info, 0, sizeof(struct rr_info));
1214 wmb();
1215
1216 spin_lock_irqsave(&rrpriv->lock, flags);
1217 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218 readl(&regs->HostCtrl);
1219 spin_unlock_irqrestore(&rrpriv->lock, flags);
1220
0193fc5e 1221 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1da177e4 1222 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
0193fc5e 1223 dev->name, pdev->irq);
1da177e4
LT
1224 ecode = -EAGAIN;
1225 goto error;
1226 }
1227
1228 if ((ecode = rr_init1(dev)))
1229 goto error;
1230
1231 /* Set the timer to switch to check for link beat and perhaps switch
1232 to an alternate media type. */
1233 init_timer(&rrpriv->timer);
1234 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1235 rrpriv->timer.data = (unsigned long)dev;
c061b18d 1236 rrpriv->timer.function = rr_timer; /* timer handler */
1da177e4
LT
1237 add_timer(&rrpriv->timer);
1238
1239 netif_start_queue(dev);
1240
1241 return ecode;
1242
1243 error:
1244 spin_lock_irqsave(&rrpriv->lock, flags);
1245 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1246 spin_unlock_irqrestore(&rrpriv->lock, flags);
1247
1248 if (rrpriv->info) {
1249 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1250 rrpriv->info_dma);
1251 rrpriv->info = NULL;
1252 }
1253 if (rrpriv->rx_ctrl) {
1254 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1255 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1256 rrpriv->rx_ctrl = NULL;
1257 }
1258
1259 netif_stop_queue(dev);
6aa20a22 1260
1da177e4
LT
1261 return ecode;
1262}
1263
1264
1265static void rr_dump(struct net_device *dev)
1266{
1267 struct rr_private *rrpriv;
1268 struct rr_regs __iomem *regs;
1269 u32 index, cons;
1270 short i;
1271 int len;
1272
1273 rrpriv = netdev_priv(dev);
1274 regs = rrpriv->regs;
1275
1276 printk("%s: dumping NIC TX rings\n", dev->name);
1277
1278 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1279 readl(&regs->RxPrd), readl(&regs->TxPrd),
1280 readl(&regs->EvtPrd), readl(&regs->TxPi),
1281 rrpriv->info->tx_ctrl.pi);
1282
1283 printk("Error code 0x%x\n", readl(&regs->Fail1));
1284
2585e7e5 1285 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1da177e4
LT
1286 cons = rrpriv->dirty_tx;
1287 printk("TX ring index %i, TX consumer %i\n",
1288 index, cons);
1289
1290 if (rrpriv->tx_skbuff[index]){
1291 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1292 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1293 for (i = 0; i < len; i++){
1294 if (!(i & 7))
1295 printk("\n");
1296 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1297 }
1298 printk("\n");
1299 }
1300
1301 if (rrpriv->tx_skbuff[cons]){
1302 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1303 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1304 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1305 rrpriv->tx_ring[cons].mode,
1306 rrpriv->tx_ring[cons].size,
1307 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1308 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1309 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1310 for (i = 0; i < len; i++){
1311 if (!(i & 7))
1312 printk("\n");
1313 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1314 }
1315 printk("\n");
1316 }
1317
1318 printk("dumping TX ring info:\n");
1319 for (i = 0; i < TX_RING_ENTRIES; i++)
1320 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1321 rrpriv->tx_ring[i].mode,
1322 rrpriv->tx_ring[i].size,
1323 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1324
1325}
1326
1327
1328static int rr_close(struct net_device *dev)
1329{
0193fc5e
FR
1330 struct rr_private *rrpriv = netdev_priv(dev);
1331 struct rr_regs __iomem *regs = rrpriv->regs;
1332 struct pci_dev *pdev = rrpriv->pci_dev;
1da177e4
LT
1333 unsigned long flags;
1334 u32 tmp;
1335 short i;
1336
1337 netif_stop_queue(dev);
1338
1da177e4
LT
1339
1340 /*
1341 * Lock to make sure we are not cleaning up while another CPU
1342 * is handling interrupts.
1343 */
1344 spin_lock_irqsave(&rrpriv->lock, flags);
1345
1346 tmp = readl(&regs->HostCtrl);
1347 if (tmp & NIC_HALTED){
1348 printk("%s: NIC already halted\n", dev->name);
1349 rr_dump(dev);
1350 }else{
1351 tmp |= HALT_NIC | RR_CLEAR_INT;
1352 writel(tmp, &regs->HostCtrl);
1353 readl(&regs->HostCtrl);
1354 }
1355
1356 rrpriv->fw_running = 0;
1357
1358 del_timer_sync(&rrpriv->timer);
1359
1360 writel(0, &regs->TxPi);
1361 writel(0, &regs->IpRxPi);
1362
1363 writel(0, &regs->EvtCon);
1364 writel(0, &regs->EvtPrd);
1365
1366 for (i = 0; i < CMD_RING_ENTRIES; i++)
1367 writel(0, &regs->CmdRing[i]);
1368
1369 rrpriv->info->tx_ctrl.entries = 0;
1370 rrpriv->info->cmd_ctrl.pi = 0;
1371 rrpriv->info->evt_ctrl.pi = 0;
1372 rrpriv->rx_ctrl[4].entries = 0;
1373
1374 rr_raz_tx(rrpriv, dev);
1375 rr_raz_rx(rrpriv, dev);
1376
0193fc5e 1377 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1da177e4
LT
1378 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1379 rrpriv->rx_ctrl = NULL;
1380
0193fc5e
FR
1381 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1382 rrpriv->info_dma);
1da177e4
LT
1383 rrpriv->info = NULL;
1384
0193fc5e 1385 free_irq(pdev->irq, dev);
1da177e4
LT
1386 spin_unlock_irqrestore(&rrpriv->lock, flags);
1387
1388 return 0;
1389}
1390
1391
61357325
SH
1392static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1393 struct net_device *dev)
1da177e4
LT
1394{
1395 struct rr_private *rrpriv = netdev_priv(dev);
1396 struct rr_regs __iomem *regs = rrpriv->regs;
6f1cf165 1397 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1da177e4
LT
1398 struct ring_ctrl *txctrl;
1399 unsigned long flags;
1400 u32 index, len = skb->len;
1401 u32 *ifield;
1402 struct sk_buff *new_skb;
1403
1404 if (readl(&regs->Mode) & FATAL_ERR)
1405 printk("error codes Fail1 %02x, Fail2 %02x\n",
1406 readl(&regs->Fail1), readl(&regs->Fail2));
1407
1408 /*
1409 * We probably need to deal with tbusy here to prevent overruns.
1410 */
1411
1412 if (skb_headroom(skb) < 8){
1413 printk("incoming skb too small - reallocating\n");
1414 if (!(new_skb = dev_alloc_skb(len + 8))) {
1415 dev_kfree_skb(skb);
1416 netif_wake_queue(dev);
3790c8cd 1417 return NETDEV_TX_OK;
1da177e4
LT
1418 }
1419 skb_reserve(new_skb, 8);
1420 skb_put(new_skb, len);
d626f62b 1421 skb_copy_from_linear_data(skb, new_skb->data, len);
1da177e4
LT
1422 dev_kfree_skb(skb);
1423 skb = new_skb;
1424 }
1425
1426 ifield = (u32 *)skb_push(skb, 8);
1427
1428 ifield[0] = 0;
6f1cf165 1429 ifield[1] = hcb->ifield;
1da177e4
LT
1430
1431 /*
1432 * We don't need the lock before we are actually going to start
1433 * fiddling with the control blocks.
1434 */
1435 spin_lock_irqsave(&rrpriv->lock, flags);
1436
1437 txctrl = &rrpriv->info->tx_ctrl;
1438
1439 index = txctrl->pi;
1440
1441 rrpriv->tx_skbuff[index] = skb;
1442 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1443 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1444 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1445 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1446 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1447 wmb();
1448 writel(txctrl->pi, &regs->TxPi);
1449
1450 if (txctrl->pi == rrpriv->dirty_tx){
1451 rrpriv->tx_full = 1;
1452 netif_stop_queue(dev);
1453 }
1454
1455 spin_unlock_irqrestore(&rrpriv->lock, flags);
1456
6ed10654 1457 return NETDEV_TX_OK;
1da177e4
LT
1458}
1459
1460
1da177e4
LT
1461/*
1462 * Read the firmware out of the EEPROM and put it into the SRAM
1463 * (or from user space - later)
1464 *
1465 * This operation requires the NIC to be halted and is performed with
1466 * interrupts disabled and with the spinlock hold.
1467 */
1468static int rr_load_firmware(struct net_device *dev)
1469{
1470 struct rr_private *rrpriv;
1471 struct rr_regs __iomem *regs;
cf962378 1472 size_t eptr, segptr;
1da177e4
LT
1473 int i, j;
1474 u32 localctrl, sptr, len, tmp;
1475 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1da177e4
LT
1476
1477 rrpriv = netdev_priv(dev);
1478 regs = rrpriv->regs;
1479
1480 if (dev->flags & IFF_UP)
1481 return -EBUSY;
1482
1483 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
6aa20a22 1484 printk("%s: Trying to load firmware to a running NIC.\n",
1da177e4
LT
1485 dev->name);
1486 return -EBUSY;
1487 }
1488
1489 localctrl = readl(&regs->LocalCtrl);
1490 writel(0, &regs->LocalCtrl);
1491
1492 writel(0, &regs->EvtPrd);
1493 writel(0, &regs->RxPrd);
1494 writel(0, &regs->TxPrd);
1495
1496 /*
1497 * First wipe the entire SRAM, otherwise we might run into all
1498 * kinds of trouble ... sigh, this took almost all afternoon
1499 * to track down ;-(
1500 */
1501 io = readl(&regs->ExtIo);
1502 writel(0, &regs->ExtIo);
cf962378 1503 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
1504
1505 for (i = 200; i < sram_size / 4; i++){
1506 writel(i * 4, &regs->WinBase);
1507 mb();
1508 writel(0, &regs->WinData);
1509 mb();
1510 }
1511 writel(io, &regs->ExtIo);
1512 mb();
1513
cf962378
AV
1514 eptr = rr_read_eeprom_word(rrpriv,
1515 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1da177e4
LT
1516 eptr = ((eptr & 0x1fffff) >> 3);
1517
cf962378 1518 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1da177e4 1519 p2len = (p2len << 2);
cf962378 1520 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1da177e4
LT
1521 p2size = ((p2size & 0x1fffff) >> 3);
1522
1523 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1524 printk("%s: eptr is invalid\n", dev->name);
1525 goto out;
1526 }
1527
cf962378
AV
1528 revision = rr_read_eeprom_word(rrpriv,
1529 offsetof(struct eeprom, manf.HeaderFmt));
1da177e4
LT
1530
1531 if (revision != 1){
1532 printk("%s: invalid firmware format (%i)\n",
1533 dev->name, revision);
1534 goto out;
1535 }
1536
cf962378 1537 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1538 eptr +=4;
1539#if (DEBUG > 1)
1540 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1541#endif
1542
1543 for (i = 0; i < nr_seg; i++){
cf962378 1544 sptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1545 eptr += 4;
cf962378 1546 len = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1547 eptr += 4;
cf962378 1548 segptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1549 segptr = ((segptr & 0x1fffff) >> 3);
1550 eptr += 4;
1551#if (DEBUG > 1)
1552 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1553 dev->name, i, sptr, len, segptr);
1554#endif
1555 for (j = 0; j < len; j++){
cf962378 1556 tmp = rr_read_eeprom_word(rrpriv, segptr);
1da177e4
LT
1557 writel(sptr, &regs->WinBase);
1558 mb();
1559 writel(tmp, &regs->WinData);
1560 mb();
1561 segptr += 4;
1562 sptr += 4;
1563 }
1564 }
1565
1566out:
1567 writel(localctrl, &regs->LocalCtrl);
1568 mb();
1569 return 0;
1570}
1571
1572
1573static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574{
1575 struct rr_private *rrpriv;
1576 unsigned char *image, *oldimage;
1577 unsigned long flags;
1578 unsigned int i;
1579 int error = -EOPNOTSUPP;
1580
1581 rrpriv = netdev_priv(dev);
1582
1583 switch(cmd){
1584 case SIOCRRGFW:
1585 if (!capable(CAP_SYS_RAWIO)){
1586 return -EPERM;
1587 }
1588
1589 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
e404decb 1590 if (!image)
1da177e4 1591 return -ENOMEM;
1da177e4
LT
1592
1593 if (rrpriv->fw_running){
1594 printk("%s: Firmware already running\n", dev->name);
1595 error = -EPERM;
1596 goto gf_out;
1597 }
1598
1599 spin_lock_irqsave(&rrpriv->lock, flags);
1600 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1601 spin_unlock_irqrestore(&rrpriv->lock, flags);
1602 if (i != EEPROM_BYTES){
1603 printk(KERN_ERR "%s: Error reading EEPROM\n",
1604 dev->name);
1605 error = -EFAULT;
1606 goto gf_out;
1607 }
1608 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1609 if (error)
1610 error = -EFAULT;
1611 gf_out:
1612 kfree(image);
1613 return error;
6aa20a22 1614
1da177e4
LT
1615 case SIOCRRPFW:
1616 if (!capable(CAP_SYS_RAWIO)){
1617 return -EPERM;
1618 }
1619
1620 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1621 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622 if (!image || !oldimage) {
1da177e4
LT
1623 error = -ENOMEM;
1624 goto wf_out;
1625 }
1626
1627 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1628 if (error) {
1629 error = -EFAULT;
1630 goto wf_out;
1631 }
1632
1633 if (rrpriv->fw_running){
1634 printk("%s: Firmware already running\n", dev->name);
1635 error = -EPERM;
1636 goto wf_out;
1637 }
1638
1639 printk("%s: Updating EEPROM firmware\n", dev->name);
1640
1641 spin_lock_irqsave(&rrpriv->lock, flags);
1642 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1643 if (error)
1644 printk(KERN_ERR "%s: Error writing EEPROM\n",
1645 dev->name);
1646
1647 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1648 spin_unlock_irqrestore(&rrpriv->lock, flags);
1649
1650 if (i != EEPROM_BYTES)
1651 printk(KERN_ERR "%s: Error reading back EEPROM "
1652 "image\n", dev->name);
1653
1654 error = memcmp(image, oldimage, EEPROM_BYTES);
1655 if (error){
1656 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1657 dev->name);
1658 error = -EFAULT;
1659 }
1660 wf_out:
b4558ea9
JJ
1661 kfree(oldimage);
1662 kfree(image);
1da177e4 1663 return error;
6aa20a22 1664
1da177e4
LT
1665 case SIOCRRID:
1666 return put_user(0x52523032, (int __user *)rq->ifr_data);
1667 default:
1668 return error;
1669 }
1670}
1671
a3aa1884 1672static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1da177e4
LT
1673 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1674 PCI_ANY_ID, PCI_ANY_ID, },
1675 { 0,}
1676};
1677MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1678
1679static struct pci_driver rr_driver = {
1680 .name = "rrunner",
1681 .id_table = rr_pci_tbl,
1682 .probe = rr_init_one,
1683 .remove = __devexit_p(rr_remove_one),
1684};
1685
1686static int __init rr_init_module(void)
1687{
29917620 1688 return pci_register_driver(&rr_driver);
1da177e4
LT
1689}
1690
1691static void __exit rr_cleanup_module(void)
1692{
1693 pci_unregister_driver(&rr_driver);
1694}
1695
1696module_init(rr_init_module);
1697module_exit(rr_cleanup_module);
This page took 1.326357 seconds and 5 git commands to generate.