igb: add 82576 MAC support
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
652fff32 4 Copyright(c) 2007 - 2008 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
33#include <linux/slab.h>
2d064c06 34#include <linux/if_ether.h>
9d5c8243
AK
35
36#include "e1000_mac.h"
37#include "e1000_82575.h"
38
39static s32 igb_get_invariants_82575(struct e1000_hw *);
40static s32 igb_acquire_phy_82575(struct e1000_hw *);
41static void igb_release_phy_82575(struct e1000_hw *);
42static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43static void igb_release_nvm_82575(struct e1000_hw *);
44static s32 igb_check_for_link_82575(struct e1000_hw *);
45static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46static s32 igb_init_hw_82575(struct e1000_hw *);
47static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
9d5c8243
AK
49static s32 igb_reset_hw_82575(struct e1000_hw *);
50static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59static s32 igb_get_phy_id_82575(struct e1000_hw *);
60static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61static bool igb_sgmii_active_82575(struct e1000_hw *);
62static s32 igb_reset_init_script_82575(struct e1000_hw *);
63static s32 igb_read_mac_addr_82575(struct e1000_hw *);
64
65
66struct e1000_dev_spec_82575 {
67 bool sgmii_active;
68};
69
70static s32 igb_get_invariants_82575(struct e1000_hw *hw)
71{
72 struct e1000_phy_info *phy = &hw->phy;
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 struct e1000_mac_info *mac = &hw->mac;
75 struct e1000_dev_spec_82575 *dev_spec;
76 u32 eecd;
77 s32 ret_val;
78 u16 size;
79 u32 ctrl_ext = 0;
80
81 switch (hw->device_id) {
82 case E1000_DEV_ID_82575EB_COPPER:
83 case E1000_DEV_ID_82575EB_FIBER_SERDES:
84 case E1000_DEV_ID_82575GB_QUAD_COPPER:
85 mac->type = e1000_82575;
86 break;
2d064c06
AD
87 case E1000_DEV_ID_82576:
88 case E1000_DEV_ID_82576_FIBER:
89 case E1000_DEV_ID_82576_SERDES:
90 case E1000_DEV_ID_82576_QUAD_COPPER:
91 mac->type = e1000_82576;
92 break;
9d5c8243
AK
93 default:
94 return -E1000_ERR_MAC_INIT;
95 break;
96 }
97
98 /* MAC initialization */
99 hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
100
101 /* Device-specific structure allocation */
102 hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
103
104 if (!hw->dev_spec)
105 return -ENOMEM;
106
107 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
108
109 /* Set media type */
110 /*
111 * The 82575 uses bits 22:23 for link mode. The mode can be changed
112 * based on the EEPROM. We cannot rely upon device ID. There
113 * is no distinguishable difference between fiber and internal
114 * SerDes mode on the 82575. There can be an external PHY attached
115 * on the SGMII interface. For this, we'll set sgmii_active to true.
116 */
117 phy->media_type = e1000_media_type_copper;
118 dev_spec->sgmii_active = false;
119
120 ctrl_ext = rd32(E1000_CTRL_EXT);
121 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
122 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
123 hw->phy.media_type = e1000_media_type_internal_serdes;
124 ctrl_ext |= E1000_CTRL_I2C_ENA;
125 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
126 dev_spec->sgmii_active = true;
127 ctrl_ext |= E1000_CTRL_I2C_ENA;
128 } else {
129 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
130 }
131 wr32(E1000_CTRL_EXT, ctrl_ext);
132
133 /* Set mta register count */
134 mac->mta_reg_count = 128;
135 /* Set rar entry count */
136 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
2d064c06
AD
137 if (mac->type == e1000_82576)
138 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
9d5c8243
AK
139 /* Set if part includes ASF firmware */
140 mac->asf_firmware_present = true;
141 /* Set if manageability features are enabled. */
142 mac->arc_subsystem_valid =
143 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
144 ? true : false;
145
146 /* physical interface link setup */
147 mac->ops.setup_physical_interface =
148 (hw->phy.media_type == e1000_media_type_copper)
149 ? igb_setup_copper_link_82575
150 : igb_setup_fiber_serdes_link_82575;
151
152 /* NVM initialization */
153 eecd = rd32(E1000_EECD);
154
155 nvm->opcode_bits = 8;
156 nvm->delay_usec = 1;
157 switch (nvm->override) {
158 case e1000_nvm_override_spi_large:
159 nvm->page_size = 32;
160 nvm->address_bits = 16;
161 break;
162 case e1000_nvm_override_spi_small:
163 nvm->page_size = 8;
164 nvm->address_bits = 8;
165 break;
166 default:
167 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
168 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
169 break;
170 }
171
172 nvm->type = e1000_nvm_eeprom_spi;
173
174 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
175 E1000_EECD_SIZE_EX_SHIFT);
176
177 /*
178 * Added to a constant, "size" becomes the left-shift value
179 * for setting word_size.
180 */
181 size += NVM_WORD_SIZE_BASE_SHIFT;
5c3cad75
JK
182
183 /* EEPROM access above 16k is unsupported */
184 if (size > 14)
185 size = 14;
9d5c8243
AK
186 nvm->word_size = 1 << size;
187
188 /* setup PHY parameters */
189 if (phy->media_type != e1000_media_type_copper) {
190 phy->type = e1000_phy_none;
191 return 0;
192 }
193
194 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
195 phy->reset_delay_us = 100;
196
197 /* PHY function pointers */
198 if (igb_sgmii_active_82575(hw)) {
199 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
200 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
201 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
202 } else {
203 phy->ops.reset_phy = igb_phy_hw_reset;
204 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
205 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
206 }
207
208 /* Set phy->phy_addr and phy->id. */
209 ret_val = igb_get_phy_id_82575(hw);
210 if (ret_val)
211 return ret_val;
212
213 /* Verify phy id and set remaining function pointers */
214 switch (phy->id) {
215 case M88E1111_I_PHY_ID:
216 phy->type = e1000_phy_m88;
217 phy->ops.get_phy_info = igb_get_phy_info_m88;
218 phy->ops.get_cable_length = igb_get_cable_length_m88;
219 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
220 break;
221 case IGP03E1000_E_PHY_ID:
222 phy->type = e1000_phy_igp_3;
223 phy->ops.get_phy_info = igb_get_phy_info_igp;
224 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
225 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
226 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
227 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
228 break;
229 default:
230 return -E1000_ERR_PHY;
231 }
232
233 return 0;
234}
235
236/**
733596be 237 * igb_acquire_phy_82575 - Acquire rights to access PHY
9d5c8243
AK
238 * @hw: pointer to the HW structure
239 *
240 * Acquire access rights to the correct PHY. This is a
241 * function pointer entry point called by the api module.
242 **/
243static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
244{
245 u16 mask;
246
247 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
248
249 return igb_acquire_swfw_sync_82575(hw, mask);
250}
251
252/**
733596be 253 * igb_release_phy_82575 - Release rights to access PHY
9d5c8243
AK
254 * @hw: pointer to the HW structure
255 *
256 * A wrapper to release access rights to the correct PHY. This is a
257 * function pointer entry point called by the api module.
258 **/
259static void igb_release_phy_82575(struct e1000_hw *hw)
260{
261 u16 mask;
262
263 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
264 igb_release_swfw_sync_82575(hw, mask);
265}
266
267/**
733596be 268 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
9d5c8243
AK
269 * @hw: pointer to the HW structure
270 * @offset: register offset to be read
271 * @data: pointer to the read data
272 *
273 * Reads the PHY register at offset using the serial gigabit media independent
274 * interface and stores the retrieved information in data.
275 **/
276static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
277 u16 *data)
278{
279 struct e1000_phy_info *phy = &hw->phy;
280 u32 i, i2ccmd = 0;
281
282 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 283 hw_dbg("PHY Address %u is out of range\n", offset);
9d5c8243
AK
284 return -E1000_ERR_PARAM;
285 }
286
287 /*
288 * Set up Op-code, Phy Address, and register address in the I2CCMD
289 * register. The MAC will take care of interfacing with the
290 * PHY to retrieve the desired data.
291 */
292 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
293 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
294 (E1000_I2CCMD_OPCODE_READ));
295
296 wr32(E1000_I2CCMD, i2ccmd);
297
298 /* Poll the ready bit to see if the I2C read completed */
299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 udelay(50);
301 i2ccmd = rd32(E1000_I2CCMD);
302 if (i2ccmd & E1000_I2CCMD_READY)
303 break;
304 }
305 if (!(i2ccmd & E1000_I2CCMD_READY)) {
652fff32 306 hw_dbg("I2CCMD Read did not complete\n");
9d5c8243
AK
307 return -E1000_ERR_PHY;
308 }
309 if (i2ccmd & E1000_I2CCMD_ERROR) {
652fff32 310 hw_dbg("I2CCMD Error bit set\n");
9d5c8243
AK
311 return -E1000_ERR_PHY;
312 }
313
314 /* Need to byte-swap the 16-bit value. */
315 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
316
317 return 0;
318}
319
320/**
733596be 321 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
9d5c8243
AK
322 * @hw: pointer to the HW structure
323 * @offset: register offset to write to
324 * @data: data to write at register offset
325 *
326 * Writes the data to PHY register at the offset using the serial gigabit
327 * media independent interface.
328 **/
329static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
330 u16 data)
331{
332 struct e1000_phy_info *phy = &hw->phy;
333 u32 i, i2ccmd = 0;
334 u16 phy_data_swapped;
335
336 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 337 hw_dbg("PHY Address %d is out of range\n", offset);
9d5c8243
AK
338 return -E1000_ERR_PARAM;
339 }
340
341 /* Swap the data bytes for the I2C interface */
342 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
343
344 /*
345 * Set up Op-code, Phy Address, and register address in the I2CCMD
346 * register. The MAC will take care of interfacing with the
347 * PHY to retrieve the desired data.
348 */
349 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
350 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
351 E1000_I2CCMD_OPCODE_WRITE |
352 phy_data_swapped);
353
354 wr32(E1000_I2CCMD, i2ccmd);
355
356 /* Poll the ready bit to see if the I2C read completed */
357 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
358 udelay(50);
359 i2ccmd = rd32(E1000_I2CCMD);
360 if (i2ccmd & E1000_I2CCMD_READY)
361 break;
362 }
363 if (!(i2ccmd & E1000_I2CCMD_READY)) {
652fff32 364 hw_dbg("I2CCMD Write did not complete\n");
9d5c8243
AK
365 return -E1000_ERR_PHY;
366 }
367 if (i2ccmd & E1000_I2CCMD_ERROR) {
652fff32 368 hw_dbg("I2CCMD Error bit set\n");
9d5c8243
AK
369 return -E1000_ERR_PHY;
370 }
371
372 return 0;
373}
374
375/**
733596be 376 * igb_get_phy_id_82575 - Retrieve PHY addr and id
9d5c8243
AK
377 * @hw: pointer to the HW structure
378 *
652fff32 379 * Retrieves the PHY address and ID for both PHY's which do and do not use
9d5c8243
AK
380 * sgmi interface.
381 **/
382static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
383{
384 struct e1000_phy_info *phy = &hw->phy;
385 s32 ret_val = 0;
386 u16 phy_id;
387
388 /*
389 * For SGMII PHYs, we try the list of possible addresses until
390 * we find one that works. For non-SGMII PHYs
391 * (e.g. integrated copper PHYs), an address of 1 should
392 * work. The result of this function should mean phy->phy_addr
393 * and phy->id are set correctly.
394 */
395 if (!(igb_sgmii_active_82575(hw))) {
396 phy->addr = 1;
397 ret_val = igb_get_phy_id(hw);
398 goto out;
399 }
400
401 /*
402 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
403 * Therefore, we need to test 1-7
404 */
405 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
406 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
407 if (ret_val == 0) {
652fff32
AK
408 hw_dbg("Vendor ID 0x%08X read at address %u\n",
409 phy_id, phy->addr);
9d5c8243
AK
410 /*
411 * At the time of this writing, The M88 part is
412 * the only supported SGMII PHY product.
413 */
414 if (phy_id == M88_VENDOR)
415 break;
416 } else {
652fff32 417 hw_dbg("PHY address %u was unreadable\n", phy->addr);
9d5c8243
AK
418 }
419 }
420
421 /* A valid PHY type couldn't be found. */
422 if (phy->addr == 8) {
423 phy->addr = 0;
424 ret_val = -E1000_ERR_PHY;
425 goto out;
426 }
427
428 ret_val = igb_get_phy_id(hw);
429
430out:
431 return ret_val;
432}
433
434/**
733596be 435 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
9d5c8243
AK
436 * @hw: pointer to the HW structure
437 *
438 * Resets the PHY using the serial gigabit media independent interface.
439 **/
440static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
441{
442 s32 ret_val;
443
444 /*
445 * This isn't a true "hard" reset, but is the only reset
446 * available to us at this time.
447 */
448
652fff32 449 hw_dbg("Soft resetting SGMII attached PHY...\n");
9d5c8243
AK
450
451 /*
452 * SFP documentation requires the following to configure the SPF module
453 * to work on SGMII. No further documentation is given.
454 */
455 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
456 if (ret_val)
457 goto out;
458
459 ret_val = igb_phy_sw_reset(hw);
460
461out:
462 return ret_val;
463}
464
465/**
733596be 466 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
9d5c8243
AK
467 * @hw: pointer to the HW structure
468 * @active: true to enable LPLU, false to disable
469 *
470 * Sets the LPLU D0 state according to the active flag. When
471 * activating LPLU this function also disables smart speed
472 * and vice versa. LPLU will not be activated unless the
473 * device autonegotiation advertisement meets standards of
474 * either 10 or 10/100 or 10/100/1000 at all duplexes.
475 * This is a function pointer entry point only called by
476 * PHY setup routines.
477 **/
478static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
479{
480 struct e1000_phy_info *phy = &hw->phy;
481 s32 ret_val;
482 u16 data;
483
652fff32 484 ret_val = phy->ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
485 if (ret_val)
486 goto out;
487
488 if (active) {
489 data |= IGP02E1000_PM_D0_LPLU;
652fff32
AK
490 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
491 data);
9d5c8243
AK
492 if (ret_val)
493 goto out;
494
495 /* When LPLU is enabled, we should disable SmartSpeed */
652fff32
AK
496 ret_val = phy->ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
497 &data);
9d5c8243 498 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
652fff32
AK
499 ret_val = phy->ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
500 data);
9d5c8243
AK
501 if (ret_val)
502 goto out;
503 } else {
504 data &= ~IGP02E1000_PM_D0_LPLU;
652fff32
AK
505 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
506 data);
9d5c8243
AK
507 /*
508 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
509 * during Dx states where the power conservation is most
510 * important. During driver activity we should enable
511 * SmartSpeed, so performance is maintained.
512 */
513 if (phy->smart_speed == e1000_smart_speed_on) {
652fff32
AK
514 ret_val = phy->ops.read_phy_reg(hw,
515 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
516 if (ret_val)
517 goto out;
518
519 data |= IGP01E1000_PSCFR_SMART_SPEED;
652fff32
AK
520 ret_val = phy->ops.write_phy_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
522 if (ret_val)
523 goto out;
524 } else if (phy->smart_speed == e1000_smart_speed_off) {
652fff32
AK
525 ret_val = phy->ops.read_phy_reg(hw,
526 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
527 if (ret_val)
528 goto out;
529
530 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
652fff32
AK
531 ret_val = phy->ops.write_phy_reg(hw,
532 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
533 if (ret_val)
534 goto out;
535 }
536 }
537
538out:
539 return ret_val;
540}
541
542/**
733596be 543 * igb_acquire_nvm_82575 - Request for access to EEPROM
9d5c8243
AK
544 * @hw: pointer to the HW structure
545 *
652fff32 546 * Acquire the necessary semaphores for exclusive access to the EEPROM.
9d5c8243
AK
547 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
548 * Return successful if access grant bit set, else clear the request for
549 * EEPROM access and return -E1000_ERR_NVM (-1).
550 **/
551static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
552{
553 s32 ret_val;
554
555 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
556 if (ret_val)
557 goto out;
558
559 ret_val = igb_acquire_nvm(hw);
560
561 if (ret_val)
562 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
563
564out:
565 return ret_val;
566}
567
568/**
733596be 569 * igb_release_nvm_82575 - Release exclusive access to EEPROM
9d5c8243
AK
570 * @hw: pointer to the HW structure
571 *
572 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
573 * then release the semaphores acquired.
574 **/
575static void igb_release_nvm_82575(struct e1000_hw *hw)
576{
577 igb_release_nvm(hw);
578 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
579}
580
581/**
733596be 582 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
9d5c8243
AK
583 * @hw: pointer to the HW structure
584 * @mask: specifies which semaphore to acquire
585 *
586 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
587 * will also specify which port we're acquiring the lock for.
588 **/
589static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
590{
591 u32 swfw_sync;
592 u32 swmask = mask;
593 u32 fwmask = mask << 16;
594 s32 ret_val = 0;
595 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
596
597 while (i < timeout) {
598 if (igb_get_hw_semaphore(hw)) {
599 ret_val = -E1000_ERR_SWFW_SYNC;
600 goto out;
601 }
602
603 swfw_sync = rd32(E1000_SW_FW_SYNC);
604 if (!(swfw_sync & (fwmask | swmask)))
605 break;
606
607 /*
608 * Firmware currently using resource (fwmask)
609 * or other software thread using resource (swmask)
610 */
611 igb_put_hw_semaphore(hw);
612 mdelay(5);
613 i++;
614 }
615
616 if (i == timeout) {
652fff32 617 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
9d5c8243
AK
618 ret_val = -E1000_ERR_SWFW_SYNC;
619 goto out;
620 }
621
622 swfw_sync |= swmask;
623 wr32(E1000_SW_FW_SYNC, swfw_sync);
624
625 igb_put_hw_semaphore(hw);
626
627out:
628 return ret_val;
629}
630
631/**
733596be 632 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
9d5c8243
AK
633 * @hw: pointer to the HW structure
634 * @mask: specifies which semaphore to acquire
635 *
636 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
637 * will also specify which port we're releasing the lock for.
638 **/
639static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
640{
641 u32 swfw_sync;
642
643 while (igb_get_hw_semaphore(hw) != 0);
644 /* Empty */
645
646 swfw_sync = rd32(E1000_SW_FW_SYNC);
647 swfw_sync &= ~mask;
648 wr32(E1000_SW_FW_SYNC, swfw_sync);
649
650 igb_put_hw_semaphore(hw);
651}
652
653/**
733596be 654 * igb_get_cfg_done_82575 - Read config done bit
9d5c8243
AK
655 * @hw: pointer to the HW structure
656 *
657 * Read the management control register for the config done bit for
658 * completion status. NOTE: silicon which is EEPROM-less will fail trying
659 * to read the config done bit, so an error is *ONLY* logged and returns
660 * 0. If we were to return with error, EEPROM-less silicon
661 * would not be able to be reset or change link.
662 **/
663static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
664{
665 s32 timeout = PHY_CFG_TIMEOUT;
666 s32 ret_val = 0;
667 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
668
669 if (hw->bus.func == 1)
670 mask = E1000_NVM_CFG_DONE_PORT_1;
671
672 while (timeout) {
673 if (rd32(E1000_EEMNGCTL) & mask)
674 break;
675 msleep(1);
676 timeout--;
677 }
678 if (!timeout)
652fff32 679 hw_dbg("MNG configuration cycle has not completed.\n");
9d5c8243
AK
680
681 /* If EEPROM is not marked present, init the PHY manually */
682 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
683 (hw->phy.type == e1000_phy_igp_3))
684 igb_phy_init_script_igp3(hw);
685
686 return ret_val;
687}
688
689/**
733596be 690 * igb_check_for_link_82575 - Check for link
9d5c8243
AK
691 * @hw: pointer to the HW structure
692 *
693 * If sgmii is enabled, then use the pcs register to determine link, otherwise
694 * use the generic interface for determining link.
695 **/
696static s32 igb_check_for_link_82575(struct e1000_hw *hw)
697{
698 s32 ret_val;
699 u16 speed, duplex;
700
701 /* SGMII link check is done through the PCS register. */
702 if ((hw->phy.media_type != e1000_media_type_copper) ||
703 (igb_sgmii_active_82575(hw)))
704 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
2d064c06 705 &duplex);
9d5c8243
AK
706 else
707 ret_val = igb_check_for_copper_link(hw);
708
709 return ret_val;
710}
9d5c8243 711/**
733596be 712 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
9d5c8243
AK
713 * @hw: pointer to the HW structure
714 * @speed: stores the current speed
715 * @duplex: stores the current duplex
716 *
652fff32 717 * Using the physical coding sub-layer (PCS), retrieve the current speed and
9d5c8243
AK
718 * duplex, then store the values in the pointers provided.
719 **/
720static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721 u16 *duplex)
722{
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 pcs;
725
726 /* Set up defaults for the return values of this function */
727 mac->serdes_has_link = false;
728 *speed = 0;
729 *duplex = 0;
730
731 /*
732 * Read the PCS Status register for link state. For non-copper mode,
733 * the status register is not accurate. The PCS status register is
734 * used instead.
735 */
736 pcs = rd32(E1000_PCS_LSTAT);
737
738 /*
739 * The link up bit determines when link is up on autoneg. The sync ok
740 * gets set once both sides sync up and agree upon link. Stable link
741 * can be determined by checking for both link up and link sync ok
742 */
743 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744 mac->serdes_has_link = true;
745
746 /* Detect and store PCS speed */
747 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 *speed = SPEED_1000;
749 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 *speed = SPEED_100;
751 } else {
752 *speed = SPEED_10;
753 }
754
755 /* Detect and store PCS duplex */
756 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757 *duplex = FULL_DUPLEX;
758 } else {
759 *duplex = HALF_DUPLEX;
760 }
761 }
762
763 return 0;
764}
765
766/**
2d064c06
AD
767 * igb_init_rx_addrs_82575 - Initialize receive address's
768 * @hw: pointer to the HW structure
769 * @rar_count: receive address registers
770 *
771 * Setups the receive address registers by setting the base receive address
772 * register to the devices MAC address and clearing all the other receive
773 * address registers to 0.
774 **/
775static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
776{
777 u32 i;
778 u8 addr[6] = {0,0,0,0,0,0};
779 /*
780 * This function is essentially the same as that of
781 * e1000_init_rx_addrs_generic. However it also takes care
782 * of the special case where the register offset of the
783 * second set of RARs begins elsewhere. This is implicitly taken care by
784 * function e1000_rar_set_generic.
785 */
786
787 hw_dbg("e1000_init_rx_addrs_82575");
788
789 /* Setup the receive address */
790 hw_dbg("Programming MAC Address into RAR[0]\n");
791 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
792
793 /* Zero out the other (rar_entry_count - 1) receive addresses */
794 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
795 for (i = 1; i < rar_count; i++)
796 hw->mac.ops.rar_set(hw, addr, i);
797}
798
799/**
800 * igb_update_mc_addr_list_82575 - Update Multicast addresses
801 * @hw: pointer to the HW structure
802 * @mc_addr_list: array of multicast addresses to program
803 * @mc_addr_count: number of multicast addresses to program
804 * @rar_used_count: the first RAR register free to program
805 * @rar_count: total number of supported Receive Address Registers
806 *
807 * Updates the Receive Address Registers and Multicast Table Array.
808 * The caller must have a packed mc_addr_list of multicast addresses.
809 * The parameter rar_count will usually be hw->mac.rar_entry_count
810 * unless there are workarounds that change this.
811 **/
812void igb_update_mc_addr_list_82575(struct e1000_hw *hw,
813 u8 *mc_addr_list, u32 mc_addr_count,
814 u32 rar_used_count, u32 rar_count)
815{
816 u32 hash_value;
817 u32 i;
818 u8 addr[6] = {0,0,0,0,0,0};
819 /*
820 * This function is essentially the same as that of
821 * igb_update_mc_addr_list_generic. However it also takes care
822 * of the special case where the register offset of the
823 * second set of RARs begins elsewhere. This is implicitly taken care by
824 * function e1000_rar_set_generic.
825 */
826
827 /*
828 * Load the first set of multicast addresses into the exact
829 * filters (RAR). If there are not enough to fill the RAR
830 * array, clear the filters.
831 */
832 for (i = rar_used_count; i < rar_count; i++) {
833 if (mc_addr_count) {
834 igb_rar_set(hw, mc_addr_list, i);
835 mc_addr_count--;
836 mc_addr_list += ETH_ALEN;
837 } else {
838 igb_rar_set(hw, addr, i);
839 }
840 }
841
842 /* Clear the old settings from the MTA */
843 hw_dbg("Clearing MTA\n");
844 for (i = 0; i < hw->mac.mta_reg_count; i++) {
845 array_wr32(E1000_MTA, i, 0);
846 wrfl();
847 }
848
849 /* Load any remaining multicast addresses into the hash table. */
850 for (; mc_addr_count > 0; mc_addr_count--) {
851 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
852 hw_dbg("Hash value = 0x%03X\n", hash_value);
853 hw->mac.ops.mta_set(hw, hash_value);
854 mc_addr_list += ETH_ALEN;
855 }
856}
857
858/**
859 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
9d5c8243 860 * @hw: pointer to the HW structure
9d5c8243 861 *
2d064c06
AD
862 * In the case of fiber serdes, shut down optics and PCS on driver unload
863 * when management pass thru is not enabled.
9d5c8243 864 **/
2d064c06 865void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 866{
2d064c06
AD
867 u32 reg;
868
869 if (hw->mac.type != e1000_82576 ||
870 (hw->phy.media_type != e1000_media_type_fiber &&
871 hw->phy.media_type != e1000_media_type_internal_serdes))
872 return;
873
874 /* if the management interface is not enabled, then power down */
875 if (!igb_enable_mng_pass_thru(hw)) {
876 /* Disable PCS to turn off link */
877 reg = rd32(E1000_PCS_CFG0);
878 reg &= ~E1000_PCS_CFG_PCS_EN;
879 wr32(E1000_PCS_CFG0, reg);
880
881 /* shutdown the laser */
882 reg = rd32(E1000_CTRL_EXT);
883 reg |= E1000_CTRL_EXT_SDP7_DATA;
884 wr32(E1000_CTRL_EXT, reg);
885
886 /* flush the write to verify completion */
887 wrfl();
888 msleep(1);
889 }
9d5c8243
AK
890
891 return;
892}
893
894/**
733596be 895 * igb_reset_hw_82575 - Reset hardware
9d5c8243
AK
896 * @hw: pointer to the HW structure
897 *
898 * This resets the hardware into a known state. This is a
899 * function pointer entry point called by the api module.
900 **/
901static s32 igb_reset_hw_82575(struct e1000_hw *hw)
902{
903 u32 ctrl, icr;
904 s32 ret_val;
905
906 /*
907 * Prevent the PCI-E bus from sticking if there is no TLP connection
908 * on the last TLP read/write transaction when MAC is reset.
909 */
910 ret_val = igb_disable_pcie_master(hw);
911 if (ret_val)
652fff32 912 hw_dbg("PCI-E Master disable polling has failed.\n");
9d5c8243 913
652fff32 914 hw_dbg("Masking off all interrupts\n");
9d5c8243
AK
915 wr32(E1000_IMC, 0xffffffff);
916
917 wr32(E1000_RCTL, 0);
918 wr32(E1000_TCTL, E1000_TCTL_PSP);
919 wrfl();
920
921 msleep(10);
922
923 ctrl = rd32(E1000_CTRL);
924
652fff32 925 hw_dbg("Issuing a global reset to MAC\n");
9d5c8243
AK
926 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
927
928 ret_val = igb_get_auto_rd_done(hw);
929 if (ret_val) {
930 /*
931 * When auto config read does not complete, do not
932 * return with an error. This can happen in situations
933 * where there is no eeprom and prevents getting link.
934 */
652fff32 935 hw_dbg("Auto Read Done did not complete\n");
9d5c8243
AK
936 }
937
938 /* If EEPROM is not present, run manual init scripts */
939 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
940 igb_reset_init_script_82575(hw);
941
942 /* Clear any pending interrupt events. */
943 wr32(E1000_IMC, 0xffffffff);
944 icr = rd32(E1000_ICR);
945
946 igb_check_alt_mac_addr(hw);
947
948 return ret_val;
949}
950
951/**
733596be 952 * igb_init_hw_82575 - Initialize hardware
9d5c8243
AK
953 * @hw: pointer to the HW structure
954 *
955 * This inits the hardware readying it for operation.
956 **/
957static s32 igb_init_hw_82575(struct e1000_hw *hw)
958{
959 struct e1000_mac_info *mac = &hw->mac;
960 s32 ret_val;
961 u16 i, rar_count = mac->rar_entry_count;
962
963 /* Initialize identification LED */
964 ret_val = igb_id_led_init(hw);
965 if (ret_val) {
652fff32 966 hw_dbg("Error initializing identification LED\n");
9d5c8243
AK
967 /* This is not fatal and we should not stop init due to this */
968 }
969
970 /* Disabling VLAN filtering */
652fff32 971 hw_dbg("Initializing the IEEE VLAN\n");
9d5c8243
AK
972 igb_clear_vfta(hw);
973
974 /* Setup the receive address */
2d064c06 975 igb_init_rx_addrs_82575(hw, rar_count);
9d5c8243 976 /* Zero out the Multicast HASH table */
652fff32 977 hw_dbg("Zeroing the MTA\n");
9d5c8243
AK
978 for (i = 0; i < mac->mta_reg_count; i++)
979 array_wr32(E1000_MTA, i, 0);
980
981 /* Setup link and flow control */
982 ret_val = igb_setup_link(hw);
983
984 /*
985 * Clear all of the statistics registers (clear on read). It is
986 * important that we do this after we have tried to establish link
987 * because the symbol error count will increment wildly if there
988 * is no link.
989 */
990 igb_clear_hw_cntrs_82575(hw);
991
992 return ret_val;
993}
994
995/**
733596be 996 * igb_setup_copper_link_82575 - Configure copper link settings
9d5c8243
AK
997 * @hw: pointer to the HW structure
998 *
999 * Configures the link for auto-neg or forced speed and duplex. Then we check
1000 * for link, once link is established calls to configure collision distance
1001 * and flow control are called.
1002 **/
1003static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1004{
1005 u32 ctrl, led_ctrl;
1006 s32 ret_val;
1007 bool link;
1008
1009 ctrl = rd32(E1000_CTRL);
1010 ctrl |= E1000_CTRL_SLU;
1011 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1012 wr32(E1000_CTRL, ctrl);
1013
1014 switch (hw->phy.type) {
1015 case e1000_phy_m88:
1016 ret_val = igb_copper_link_setup_m88(hw);
1017 break;
1018 case e1000_phy_igp_3:
1019 ret_val = igb_copper_link_setup_igp(hw);
1020 /* Setup activity LED */
1021 led_ctrl = rd32(E1000_LEDCTL);
1022 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1023 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1024 wr32(E1000_LEDCTL, led_ctrl);
1025 break;
1026 default:
1027 ret_val = -E1000_ERR_PHY;
1028 break;
1029 }
1030
1031 if (ret_val)
1032 goto out;
1033
1034 if (hw->mac.autoneg) {
1035 /*
1036 * Setup autoneg and flow control advertisement
1037 * and perform autonegotiation.
1038 */
1039 ret_val = igb_copper_link_autoneg(hw);
1040 if (ret_val)
1041 goto out;
1042 } else {
1043 /*
1044 * PHY will be set to 10H, 10F, 100H or 100F
1045 * depending on user settings.
1046 */
652fff32 1047 hw_dbg("Forcing Speed and Duplex\n");
9d5c8243
AK
1048 ret_val = igb_phy_force_speed_duplex(hw);
1049 if (ret_val) {
652fff32 1050 hw_dbg("Error Forcing Speed and Duplex\n");
9d5c8243
AK
1051 goto out;
1052 }
1053 }
1054
1055 ret_val = igb_configure_pcs_link_82575(hw);
1056 if (ret_val)
1057 goto out;
1058
1059 /*
1060 * Check link status. Wait up to 100 microseconds for link to become
1061 * valid.
1062 */
652fff32 1063 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
9d5c8243
AK
1064 if (ret_val)
1065 goto out;
1066
1067 if (link) {
652fff32 1068 hw_dbg("Valid link established!!!\n");
9d5c8243
AK
1069 /* Config the MAC and PHY after link is up */
1070 igb_config_collision_dist(hw);
1071 ret_val = igb_config_fc_after_link_up(hw);
1072 } else {
652fff32 1073 hw_dbg("Unable to establish link!!!\n");
9d5c8243
AK
1074 }
1075
1076out:
1077 return ret_val;
1078}
1079
1080/**
733596be 1081 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
9d5c8243
AK
1082 * @hw: pointer to the HW structure
1083 *
1084 * Configures speed and duplex for fiber and serdes links.
1085 **/
1086static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1087{
1088 u32 reg;
1089
1090 /*
1091 * On the 82575, SerDes loopback mode persists until it is
1092 * explicitly turned off or a power cycle is performed. A read to
1093 * the register does not indicate its status. Therefore, we ensure
1094 * loopback mode is disabled during initialization.
1095 */
1096 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1097
1098 /* Force link up, set 1gb, set both sw defined pins */
1099 reg = rd32(E1000_CTRL);
1100 reg |= E1000_CTRL_SLU |
1101 E1000_CTRL_SPD_1000 |
1102 E1000_CTRL_FRCSPD |
1103 E1000_CTRL_SWDPIN0 |
1104 E1000_CTRL_SWDPIN1;
1105 wr32(E1000_CTRL, reg);
1106
1107 /* Set switch control to serdes energy detect */
1108 reg = rd32(E1000_CONNSW);
1109 reg |= E1000_CONNSW_ENRGSRC;
1110 wr32(E1000_CONNSW, reg);
1111
1112 /*
1113 * New SerDes mode allows for forcing speed or autonegotiating speed
1114 * at 1gb. Autoneg should be default set by most drivers. This is the
1115 * mode that will be compatible with older link partners and switches.
1116 * However, both are supported by the hardware and some drivers/tools.
1117 */
1118 reg = rd32(E1000_PCS_LCTL);
1119
1120 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1121 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1122
1123 if (hw->mac.autoneg) {
1124 /* Set PCS register for autoneg */
1125 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1126 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1127 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1128 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
652fff32 1129 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
9d5c8243
AK
1130 } else {
1131 /* Set PCS register for forced speed */
1132 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1133 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1134 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1135 E1000_PCS_LCTL_FSD | /* Force Speed */
1136 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
652fff32 1137 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
9d5c8243
AK
1138 }
1139 wr32(E1000_PCS_LCTL, reg);
1140
1141 return 0;
1142}
1143
1144/**
733596be 1145 * igb_configure_pcs_link_82575 - Configure PCS link
9d5c8243
AK
1146 * @hw: pointer to the HW structure
1147 *
1148 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1149 * only used on copper connections where the serialized gigabit media
1150 * independent interface (sgmii) is being used. Configures the link
1151 * for auto-negotiation or forces speed/duplex.
1152 **/
1153static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1154{
1155 struct e1000_mac_info *mac = &hw->mac;
1156 u32 reg = 0;
1157
1158 if (hw->phy.media_type != e1000_media_type_copper ||
1159 !(igb_sgmii_active_82575(hw)))
1160 goto out;
1161
1162 /* For SGMII, we need to issue a PCS autoneg restart */
1163 reg = rd32(E1000_PCS_LCTL);
1164
1165 /* AN time out should be disabled for SGMII mode */
1166 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1167
1168 if (mac->autoneg) {
1169 /* Make sure forced speed and force link are not set */
1170 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1171
1172 /*
1173 * The PHY should be setup prior to calling this function.
1174 * All we need to do is restart autoneg and enable autoneg.
1175 */
1176 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1177 } else {
652fff32 1178 /* Set PCS register for forced speed */
9d5c8243
AK
1179
1180 /* Turn off bits for full duplex, speed, and autoneg */
1181 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1182 E1000_PCS_LCTL_FSV_100 |
1183 E1000_PCS_LCTL_FDV_FULL |
1184 E1000_PCS_LCTL_AN_ENABLE);
1185
1186 /* Check for duplex first */
1187 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1188 reg |= E1000_PCS_LCTL_FDV_FULL;
1189
1190 /* Now set speed */
1191 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1192 reg |= E1000_PCS_LCTL_FSV_100;
1193
1194 /* Force speed and force link */
1195 reg |= E1000_PCS_LCTL_FSD |
1196 E1000_PCS_LCTL_FORCE_LINK |
1197 E1000_PCS_LCTL_FLV_LINK_UP;
1198
652fff32 1199 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
9d5c8243
AK
1200 reg);
1201 }
1202 wr32(E1000_PCS_LCTL, reg);
1203
1204out:
1205 return 0;
1206}
1207
1208/**
733596be 1209 * igb_sgmii_active_82575 - Return sgmii state
9d5c8243
AK
1210 * @hw: pointer to the HW structure
1211 *
1212 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1213 * which can be enabled for use in the embedded applications. Simply
1214 * return the current state of the sgmii interface.
1215 **/
1216static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1217{
1218 struct e1000_dev_spec_82575 *dev_spec;
1219 bool ret_val;
1220
1221 if (hw->mac.type != e1000_82575) {
1222 ret_val = false;
1223 goto out;
1224 }
1225
1226 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1227
1228 ret_val = dev_spec->sgmii_active;
1229
1230out:
1231 return ret_val;
1232}
1233
2d064c06
AD
1234/**
1235 * igb_translate_register_82576 - Translate the proper register offset
1236 * @reg: e1000 register to be read
1237 *
1238 * Registers in 82576 are located in different offsets than other adapters
1239 * even though they function in the same manner. This function takes in
1240 * the name of the register to read and returns the correct offset for
1241 * 82576 silicon.
1242 **/
1243u32 igb_translate_register_82576(u32 reg)
1244{
1245 /*
1246 * Some of the Kawela registers are located at different
1247 * offsets than they are in older adapters.
1248 * Despite the difference in location, the registers
1249 * function in the same manner.
1250 */
1251 switch (reg) {
1252 case E1000_TDBAL(0):
1253 reg = 0x0E000;
1254 break;
1255 case E1000_TDBAH(0):
1256 reg = 0x0E004;
1257 break;
1258 case E1000_TDLEN(0):
1259 reg = 0x0E008;
1260 break;
1261 case E1000_TDH(0):
1262 reg = 0x0E010;
1263 break;
1264 case E1000_TDT(0):
1265 reg = 0x0E018;
1266 break;
1267 case E1000_TXDCTL(0):
1268 reg = 0x0E028;
1269 break;
1270 case E1000_RDBAL(0):
1271 reg = 0x0C000;
1272 break;
1273 case E1000_RDBAH(0):
1274 reg = 0x0C004;
1275 break;
1276 case E1000_RDLEN(0):
1277 reg = 0x0C008;
1278 break;
1279 case E1000_RDH(0):
1280 reg = 0x0C010;
1281 break;
1282 case E1000_RDT(0):
1283 reg = 0x0C018;
1284 break;
1285 case E1000_RXDCTL(0):
1286 reg = 0x0C028;
1287 break;
1288 case E1000_SRRCTL(0):
1289 reg = 0x0C00C;
1290 break;
1291 default:
1292 break;
1293 }
1294
1295 return reg;
1296}
1297
9d5c8243 1298/**
733596be 1299 * igb_reset_init_script_82575 - Inits HW defaults after reset
9d5c8243
AK
1300 * @hw: pointer to the HW structure
1301 *
1302 * Inits recommended HW defaults after a reset when there is no EEPROM
1303 * detected. This is only for the 82575.
1304 **/
1305static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1306{
1307 if (hw->mac.type == e1000_82575) {
652fff32 1308 hw_dbg("Running reset init script for 82575\n");
9d5c8243
AK
1309 /* SerDes configuration via SERDESCTRL */
1310 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1311 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1312 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1313 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1314
1315 /* CCM configuration via CCMCTL register */
1316 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1317 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1318
1319 /* PCIe lanes configuration */
1320 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1321 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1322 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1323 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1324
1325 /* PCIe PLL Configuration */
1326 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1327 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1328 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1329 }
1330
1331 return 0;
1332}
1333
1334/**
733596be 1335 * igb_read_mac_addr_82575 - Read device MAC address
9d5c8243
AK
1336 * @hw: pointer to the HW structure
1337 **/
1338static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1339{
1340 s32 ret_val = 0;
1341
1342 if (igb_check_alt_mac_addr(hw))
1343 ret_val = igb_read_mac_addr(hw);
1344
1345 return ret_val;
1346}
1347
1348/**
733596be 1349 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
9d5c8243
AK
1350 * @hw: pointer to the HW structure
1351 *
1352 * Clears the hardware counters by reading the counter registers.
1353 **/
1354static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1355{
1356 u32 temp;
1357
1358 igb_clear_hw_cntrs_base(hw);
1359
1360 temp = rd32(E1000_PRC64);
1361 temp = rd32(E1000_PRC127);
1362 temp = rd32(E1000_PRC255);
1363 temp = rd32(E1000_PRC511);
1364 temp = rd32(E1000_PRC1023);
1365 temp = rd32(E1000_PRC1522);
1366 temp = rd32(E1000_PTC64);
1367 temp = rd32(E1000_PTC127);
1368 temp = rd32(E1000_PTC255);
1369 temp = rd32(E1000_PTC511);
1370 temp = rd32(E1000_PTC1023);
1371 temp = rd32(E1000_PTC1522);
1372
1373 temp = rd32(E1000_ALGNERRC);
1374 temp = rd32(E1000_RXERRC);
1375 temp = rd32(E1000_TNCRS);
1376 temp = rd32(E1000_CEXTERR);
1377 temp = rd32(E1000_TSCTC);
1378 temp = rd32(E1000_TSCTFC);
1379
1380 temp = rd32(E1000_MGTPRC);
1381 temp = rd32(E1000_MGTPDC);
1382 temp = rd32(E1000_MGTPTC);
1383
1384 temp = rd32(E1000_IAC);
1385 temp = rd32(E1000_ICRXOC);
1386
1387 temp = rd32(E1000_ICRXPTC);
1388 temp = rd32(E1000_ICRXATC);
1389 temp = rd32(E1000_ICTXPTC);
1390 temp = rd32(E1000_ICTXATC);
1391 temp = rd32(E1000_ICTXQEC);
1392 temp = rd32(E1000_ICTXQMTC);
1393 temp = rd32(E1000_ICRXDMTC);
1394
1395 temp = rd32(E1000_CBTMPC);
1396 temp = rd32(E1000_HTDPMC);
1397 temp = rd32(E1000_CBRMPC);
1398 temp = rd32(E1000_RPTHC);
1399 temp = rd32(E1000_HGPTC);
1400 temp = rd32(E1000_HTCBDPC);
1401 temp = rd32(E1000_HGORCL);
1402 temp = rd32(E1000_HGORCH);
1403 temp = rd32(E1000_HGOTCL);
1404 temp = rd32(E1000_HGOTCH);
1405 temp = rd32(E1000_LENERRS);
1406
1407 /* This register should not be read in copper configurations */
1408 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1409 temp = rd32(E1000_SCVPC);
1410}
1411
662d7205
AD
1412/**
1413 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1414 * @hw: pointer to the HW structure
1415 *
1416 * After rx enable if managability is enabled then there is likely some
1417 * bad data at the start of the fifo and possibly in the DMA fifo. This
1418 * function clears the fifos and flushes any packets that came in as rx was
1419 * being enabled.
1420 **/
1421void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1422{
1423 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1424 int i, ms_wait;
1425
1426 if (hw->mac.type != e1000_82575 ||
1427 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1428 return;
1429
1430 /* Disable all RX queues */
1431 for (i = 0; i < 4; i++) {
1432 rxdctl[i] = rd32(E1000_RXDCTL(i));
1433 wr32(E1000_RXDCTL(i),
1434 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1435 }
1436 /* Poll all queues to verify they have shut down */
1437 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1438 msleep(1);
1439 rx_enabled = 0;
1440 for (i = 0; i < 4; i++)
1441 rx_enabled |= rd32(E1000_RXDCTL(i));
1442 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1443 break;
1444 }
1445
1446 if (ms_wait == 10)
1447 hw_dbg("Queue disable timed out after 10ms\n");
1448
1449 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1450 * incoming packets are rejected. Set enable and wait 2ms so that
1451 * any packet that was coming in as RCTL.EN was set is flushed
1452 */
1453 rfctl = rd32(E1000_RFCTL);
1454 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1455
1456 rlpml = rd32(E1000_RLPML);
1457 wr32(E1000_RLPML, 0);
1458
1459 rctl = rd32(E1000_RCTL);
1460 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1461 temp_rctl |= E1000_RCTL_LPE;
1462
1463 wr32(E1000_RCTL, temp_rctl);
1464 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1465 wrfl();
1466 msleep(2);
1467
1468 /* Enable RX queues that were previously enabled and restore our
1469 * previous state
1470 */
1471 for (i = 0; i < 4; i++)
1472 wr32(E1000_RXDCTL(i), rxdctl[i]);
1473 wr32(E1000_RCTL, rctl);
1474 wrfl();
1475
1476 wr32(E1000_RLPML, rlpml);
1477 wr32(E1000_RFCTL, rfctl);
1478
1479 /* Flush receive errors generated by workaround */
1480 rd32(E1000_ROC);
1481 rd32(E1000_RNBC);
1482 rd32(E1000_MPC);
1483}
1484
9d5c8243
AK
1485static struct e1000_mac_operations e1000_mac_ops_82575 = {
1486 .reset_hw = igb_reset_hw_82575,
1487 .init_hw = igb_init_hw_82575,
1488 .check_for_link = igb_check_for_link_82575,
2d064c06 1489 .rar_set = igb_rar_set,
9d5c8243
AK
1490 .read_mac_addr = igb_read_mac_addr_82575,
1491 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1492};
1493
1494static struct e1000_phy_operations e1000_phy_ops_82575 = {
1495 .acquire_phy = igb_acquire_phy_82575,
1496 .get_cfg_done = igb_get_cfg_done_82575,
1497 .release_phy = igb_release_phy_82575,
1498};
1499
1500static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1501 .acquire_nvm = igb_acquire_nvm_82575,
1502 .read_nvm = igb_read_nvm_eerd,
1503 .release_nvm = igb_release_nvm_82575,
1504 .write_nvm = igb_write_nvm_spi,
1505};
1506
1507const struct e1000_info e1000_82575_info = {
1508 .get_invariants = igb_get_invariants_82575,
1509 .mac_ops = &e1000_mac_ops_82575,
1510 .phy_ops = &e1000_phy_ops_82575,
1511 .nvm_ops = &e1000_nvm_ops_82575,
1512};
1513
This page took 0.149029 seconds and 5 git commands to generate.