igbvf: cleanup flags and allow for rx checksum to be disabled
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
40struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44};
45
030ed68b 46#define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
9d5c8243
AK
47 offsetof(struct igb_adapter, m)
48static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
dda0e083 91 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96};
97
98#define IGB_QUEUE_STATS_LEN \
4cf1653a
WC
99 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
100 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
9d5c8243
AK
101 (sizeof(struct igb_queue_stats) / sizeof(u64)))
102#define IGB_GLOBAL_STATS_LEN \
103 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106 "Register test (offline)", "Eeprom test (offline)",
107 "Interrupt test (offline)", "Loopback test (offline)",
108 "Link test (on/offline)"
109};
110#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
111
112static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113{
114 struct igb_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118
119 ecmd->supported = (SUPPORTED_10baseT_Half |
120 SUPPORTED_10baseT_Full |
121 SUPPORTED_100baseT_Half |
122 SUPPORTED_100baseT_Full |
123 SUPPORTED_1000baseT_Full|
124 SUPPORTED_Autoneg |
125 SUPPORTED_TP);
126 ecmd->advertising = ADVERTISED_TP;
127
128 if (hw->mac.autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd->advertising |= hw->phy.autoneg_advertised;
132 }
133
134 ecmd->port = PORT_TP;
135 ecmd->phy_address = hw->phy.addr;
136 } else {
137 ecmd->supported = (SUPPORTED_1000baseT_Full |
138 SUPPORTED_FIBRE |
139 SUPPORTED_Autoneg);
140
141 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142 ADVERTISED_FIBRE |
143 ADVERTISED_Autoneg);
144
145 ecmd->port = PORT_FIBRE;
146 }
147
148 ecmd->transceiver = XCVR_INTERNAL;
149
150 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
151
152 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153 &adapter->link_speed,
154 &adapter->link_duplex);
155 ecmd->speed = adapter->link_speed;
156
157 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158 * and HALF_DUPLEX != DUPLEX_HALF */
159
160 if (adapter->link_duplex == FULL_DUPLEX)
161 ecmd->duplex = DUPLEX_FULL;
162 else
163 ecmd->duplex = DUPLEX_HALF;
164 } else {
165 ecmd->speed = -1;
166 ecmd->duplex = -1;
167 }
168
169 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 return 0;
172}
173
174static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175{
176 struct igb_adapter *adapter = netdev_priv(netdev);
177 struct e1000_hw *hw = &adapter->hw;
178
179 /* When SoL/IDER sessions are active, autoneg/speed/duplex
180 * cannot be changed */
181 if (igb_check_reset_block(hw)) {
182 dev_err(&adapter->pdev->dev, "Cannot change link "
183 "characteristics when SoL/IDER is active.\n");
184 return -EINVAL;
185 }
186
187 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
188 msleep(1);
189
190 if (ecmd->autoneg == AUTONEG_ENABLE) {
191 hw->mac.autoneg = 1;
192 if (hw->phy.media_type == e1000_media_type_fiber)
193 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
194 ADVERTISED_FIBRE |
195 ADVERTISED_Autoneg;
196 else
197 hw->phy.autoneg_advertised = ecmd->advertising |
198 ADVERTISED_TP |
199 ADVERTISED_Autoneg;
200 ecmd->advertising = hw->phy.autoneg_advertised;
201 } else
202 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203 clear_bit(__IGB_RESETTING, &adapter->state);
204 return -EINVAL;
205 }
206
207 /* reset the link */
208
209 if (netif_running(adapter->netdev)) {
210 igb_down(adapter);
211 igb_up(adapter);
212 } else
213 igb_reset(adapter);
214
215 clear_bit(__IGB_RESETTING, &adapter->state);
216 return 0;
217}
218
219static void igb_get_pauseparam(struct net_device *netdev,
220 struct ethtool_pauseparam *pause)
221{
222 struct igb_adapter *adapter = netdev_priv(netdev);
223 struct e1000_hw *hw = &adapter->hw;
224
225 pause->autoneg =
226 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
227
228 if (hw->fc.type == e1000_fc_rx_pause)
229 pause->rx_pause = 1;
230 else if (hw->fc.type == e1000_fc_tx_pause)
231 pause->tx_pause = 1;
232 else if (hw->fc.type == e1000_fc_full) {
233 pause->rx_pause = 1;
234 pause->tx_pause = 1;
235 }
236}
237
238static int igb_set_pauseparam(struct net_device *netdev,
239 struct ethtool_pauseparam *pause)
240{
241 struct igb_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw;
243 int retval = 0;
244
245 adapter->fc_autoneg = pause->autoneg;
246
247 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
248 msleep(1);
249
250 if (pause->rx_pause && pause->tx_pause)
251 hw->fc.type = e1000_fc_full;
252 else if (pause->rx_pause && !pause->tx_pause)
253 hw->fc.type = e1000_fc_rx_pause;
254 else if (!pause->rx_pause && pause->tx_pause)
255 hw->fc.type = e1000_fc_tx_pause;
256 else if (!pause->rx_pause && !pause->tx_pause)
257 hw->fc.type = e1000_fc_none;
258
259 hw->fc.original_type = hw->fc.type;
260
261 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262 if (netif_running(adapter->netdev)) {
263 igb_down(adapter);
264 igb_up(adapter);
265 } else
266 igb_reset(adapter);
267 } else
268 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269 igb_setup_link(hw) : igb_force_mac_fc(hw));
270
271 clear_bit(__IGB_RESETTING, &adapter->state);
272 return retval;
273}
274
275static u32 igb_get_rx_csum(struct net_device *netdev)
276{
277 struct igb_adapter *adapter = netdev_priv(netdev);
278 return adapter->rx_csum;
279}
280
281static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282{
283 struct igb_adapter *adapter = netdev_priv(netdev);
284 adapter->rx_csum = data;
285
286 return 0;
287}
288
289static u32 igb_get_tx_csum(struct net_device *netdev)
290{
7d8eb29e 291 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
292}
293
294static int igb_set_tx_csum(struct net_device *netdev, u32 data)
295{
b9473560
JB
296 struct igb_adapter *adapter = netdev_priv(netdev);
297
298 if (data) {
7d8eb29e 299 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
b9473560
JB
300 if (adapter->hw.mac.type == e1000_82576)
301 netdev->features |= NETIF_F_SCTP_CSUM;
302 } else {
303 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
304 NETIF_F_SCTP_CSUM);
305 }
9d5c8243
AK
306
307 return 0;
308}
309
310static int igb_set_tso(struct net_device *netdev, u32 data)
311{
312 struct igb_adapter *adapter = netdev_priv(netdev);
313
7d8eb29e 314 if (data) {
9d5c8243 315 netdev->features |= NETIF_F_TSO;
9d5c8243 316 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
317 } else {
318 netdev->features &= ~NETIF_F_TSO;
9d5c8243 319 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 320 }
9d5c8243
AK
321
322 dev_info(&adapter->pdev->dev, "TSO is %s\n",
323 data ? "Enabled" : "Disabled");
324 return 0;
325}
326
327static u32 igb_get_msglevel(struct net_device *netdev)
328{
329 struct igb_adapter *adapter = netdev_priv(netdev);
330 return adapter->msg_enable;
331}
332
333static void igb_set_msglevel(struct net_device *netdev, u32 data)
334{
335 struct igb_adapter *adapter = netdev_priv(netdev);
336 adapter->msg_enable = data;
337}
338
339static int igb_get_regs_len(struct net_device *netdev)
340{
341#define IGB_REGS_LEN 551
342 return IGB_REGS_LEN * sizeof(u32);
343}
344
345static void igb_get_regs(struct net_device *netdev,
346 struct ethtool_regs *regs, void *p)
347{
348 struct igb_adapter *adapter = netdev_priv(netdev);
349 struct e1000_hw *hw = &adapter->hw;
350 u32 *regs_buff = p;
351 u8 i;
352
353 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
354
355 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357 /* General Registers */
358 regs_buff[0] = rd32(E1000_CTRL);
359 regs_buff[1] = rd32(E1000_STATUS);
360 regs_buff[2] = rd32(E1000_CTRL_EXT);
361 regs_buff[3] = rd32(E1000_MDIC);
362 regs_buff[4] = rd32(E1000_SCTL);
363 regs_buff[5] = rd32(E1000_CONNSW);
364 regs_buff[6] = rd32(E1000_VET);
365 regs_buff[7] = rd32(E1000_LEDCTL);
366 regs_buff[8] = rd32(E1000_PBA);
367 regs_buff[9] = rd32(E1000_PBS);
368 regs_buff[10] = rd32(E1000_FRTIMER);
369 regs_buff[11] = rd32(E1000_TCPTIMER);
370
371 /* NVM Register */
372 regs_buff[12] = rd32(E1000_EECD);
373
374 /* Interrupt */
fe59de38
AD
375 /* Reading EICS for EICR because they read the
376 * same but EICS does not clear on read */
377 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
378 regs_buff[14] = rd32(E1000_EICS);
379 regs_buff[15] = rd32(E1000_EIMS);
380 regs_buff[16] = rd32(E1000_EIMC);
381 regs_buff[17] = rd32(E1000_EIAC);
382 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
383 /* Reading ICS for ICR because they read the
384 * same but ICS does not clear on read */
385 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
386 regs_buff[20] = rd32(E1000_ICS);
387 regs_buff[21] = rd32(E1000_IMS);
388 regs_buff[22] = rd32(E1000_IMC);
389 regs_buff[23] = rd32(E1000_IAC);
390 regs_buff[24] = rd32(E1000_IAM);
391 regs_buff[25] = rd32(E1000_IMIRVP);
392
393 /* Flow Control */
394 regs_buff[26] = rd32(E1000_FCAL);
395 regs_buff[27] = rd32(E1000_FCAH);
396 regs_buff[28] = rd32(E1000_FCTTV);
397 regs_buff[29] = rd32(E1000_FCRTL);
398 regs_buff[30] = rd32(E1000_FCRTH);
399 regs_buff[31] = rd32(E1000_FCRTV);
400
401 /* Receive */
402 regs_buff[32] = rd32(E1000_RCTL);
403 regs_buff[33] = rd32(E1000_RXCSUM);
404 regs_buff[34] = rd32(E1000_RLPML);
405 regs_buff[35] = rd32(E1000_RFCTL);
406 regs_buff[36] = rd32(E1000_MRQC);
e1739522 407 regs_buff[37] = rd32(E1000_VT_CTL);
9d5c8243
AK
408
409 /* Transmit */
410 regs_buff[38] = rd32(E1000_TCTL);
411 regs_buff[39] = rd32(E1000_TCTL_EXT);
412 regs_buff[40] = rd32(E1000_TIPG);
413 regs_buff[41] = rd32(E1000_DTXCTL);
414
415 /* Wake Up */
416 regs_buff[42] = rd32(E1000_WUC);
417 regs_buff[43] = rd32(E1000_WUFC);
418 regs_buff[44] = rd32(E1000_WUS);
419 regs_buff[45] = rd32(E1000_IPAV);
420 regs_buff[46] = rd32(E1000_WUPL);
421
422 /* MAC */
423 regs_buff[47] = rd32(E1000_PCS_CFG0);
424 regs_buff[48] = rd32(E1000_PCS_LCTL);
425 regs_buff[49] = rd32(E1000_PCS_LSTAT);
426 regs_buff[50] = rd32(E1000_PCS_ANADV);
427 regs_buff[51] = rd32(E1000_PCS_LPAB);
428 regs_buff[52] = rd32(E1000_PCS_NPTX);
429 regs_buff[53] = rd32(E1000_PCS_LPABNP);
430
431 /* Statistics */
432 regs_buff[54] = adapter->stats.crcerrs;
433 regs_buff[55] = adapter->stats.algnerrc;
434 regs_buff[56] = adapter->stats.symerrs;
435 regs_buff[57] = adapter->stats.rxerrc;
436 regs_buff[58] = adapter->stats.mpc;
437 regs_buff[59] = adapter->stats.scc;
438 regs_buff[60] = adapter->stats.ecol;
439 regs_buff[61] = adapter->stats.mcc;
440 regs_buff[62] = adapter->stats.latecol;
441 regs_buff[63] = adapter->stats.colc;
442 regs_buff[64] = adapter->stats.dc;
443 regs_buff[65] = adapter->stats.tncrs;
444 regs_buff[66] = adapter->stats.sec;
445 regs_buff[67] = adapter->stats.htdpmc;
446 regs_buff[68] = adapter->stats.rlec;
447 regs_buff[69] = adapter->stats.xonrxc;
448 regs_buff[70] = adapter->stats.xontxc;
449 regs_buff[71] = adapter->stats.xoffrxc;
450 regs_buff[72] = adapter->stats.xofftxc;
451 regs_buff[73] = adapter->stats.fcruc;
452 regs_buff[74] = adapter->stats.prc64;
453 regs_buff[75] = adapter->stats.prc127;
454 regs_buff[76] = adapter->stats.prc255;
455 regs_buff[77] = adapter->stats.prc511;
456 regs_buff[78] = adapter->stats.prc1023;
457 regs_buff[79] = adapter->stats.prc1522;
458 regs_buff[80] = adapter->stats.gprc;
459 regs_buff[81] = adapter->stats.bprc;
460 regs_buff[82] = adapter->stats.mprc;
461 regs_buff[83] = adapter->stats.gptc;
462 regs_buff[84] = adapter->stats.gorc;
463 regs_buff[86] = adapter->stats.gotc;
464 regs_buff[88] = adapter->stats.rnbc;
465 regs_buff[89] = adapter->stats.ruc;
466 regs_buff[90] = adapter->stats.rfc;
467 regs_buff[91] = adapter->stats.roc;
468 regs_buff[92] = adapter->stats.rjc;
469 regs_buff[93] = adapter->stats.mgprc;
470 regs_buff[94] = adapter->stats.mgpdc;
471 regs_buff[95] = adapter->stats.mgptc;
472 regs_buff[96] = adapter->stats.tor;
473 regs_buff[98] = adapter->stats.tot;
474 regs_buff[100] = adapter->stats.tpr;
475 regs_buff[101] = adapter->stats.tpt;
476 regs_buff[102] = adapter->stats.ptc64;
477 regs_buff[103] = adapter->stats.ptc127;
478 regs_buff[104] = adapter->stats.ptc255;
479 regs_buff[105] = adapter->stats.ptc511;
480 regs_buff[106] = adapter->stats.ptc1023;
481 regs_buff[107] = adapter->stats.ptc1522;
482 regs_buff[108] = adapter->stats.mptc;
483 regs_buff[109] = adapter->stats.bptc;
484 regs_buff[110] = adapter->stats.tsctc;
485 regs_buff[111] = adapter->stats.iac;
486 regs_buff[112] = adapter->stats.rpthc;
487 regs_buff[113] = adapter->stats.hgptc;
488 regs_buff[114] = adapter->stats.hgorc;
489 regs_buff[116] = adapter->stats.hgotc;
490 regs_buff[118] = adapter->stats.lenerrs;
491 regs_buff[119] = adapter->stats.scvpc;
492 regs_buff[120] = adapter->stats.hrmpc;
493
494 /* These should probably be added to e1000_regs.h instead */
495 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
9d5c8243
AK
496 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
497 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
498 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
499 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
500 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
501 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
502
503 for (i = 0; i < 4; i++)
504 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[141 + i] = rd32(E1000_RDH(i));
515 for (i = 0; i < 4; i++)
516 regs_buff[145 + i] = rd32(E1000_RDT(i));
517 for (i = 0; i < 4; i++)
518 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
519
520 for (i = 0; i < 10; i++)
521 regs_buff[153 + i] = rd32(E1000_EITR(i));
522 for (i = 0; i < 8; i++)
523 regs_buff[163 + i] = rd32(E1000_IMIR(i));
524 for (i = 0; i < 8; i++)
525 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
526 for (i = 0; i < 16; i++)
527 regs_buff[179 + i] = rd32(E1000_RAL(i));
528 for (i = 0; i < 16; i++)
529 regs_buff[195 + i] = rd32(E1000_RAH(i));
530
531 for (i = 0; i < 4; i++)
532 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[223 + i] = rd32(E1000_TDH(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[227 + i] = rd32(E1000_TDT(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
547 for (i = 0; i < 4; i++)
548 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
549
550 for (i = 0; i < 4; i++)
551 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
552 for (i = 0; i < 4; i++)
553 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
554 for (i = 0; i < 32; i++)
555 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
556 for (i = 0; i < 128; i++)
557 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
558 for (i = 0; i < 128; i++)
559 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
560 for (i = 0; i < 4; i++)
561 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
562
563 regs_buff[547] = rd32(E1000_TDFH);
564 regs_buff[548] = rd32(E1000_TDFT);
565 regs_buff[549] = rd32(E1000_TDFHS);
566 regs_buff[550] = rd32(E1000_TDFPC);
567
568}
569
570static int igb_get_eeprom_len(struct net_device *netdev)
571{
572 struct igb_adapter *adapter = netdev_priv(netdev);
573 return adapter->hw.nvm.word_size * 2;
574}
575
576static int igb_get_eeprom(struct net_device *netdev,
577 struct ethtool_eeprom *eeprom, u8 *bytes)
578{
579 struct igb_adapter *adapter = netdev_priv(netdev);
580 struct e1000_hw *hw = &adapter->hw;
581 u16 *eeprom_buff;
582 int first_word, last_word;
583 int ret_val = 0;
584 u16 i;
585
586 if (eeprom->len == 0)
587 return -EINVAL;
588
589 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
590
591 first_word = eeprom->offset >> 1;
592 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
593
594 eeprom_buff = kmalloc(sizeof(u16) *
595 (last_word - first_word + 1), GFP_KERNEL);
596 if (!eeprom_buff)
597 return -ENOMEM;
598
599 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 600 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
601 last_word - first_word + 1,
602 eeprom_buff);
603 else {
604 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 605 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
606 &eeprom_buff[i]);
607 if (ret_val)
608 break;
609 }
610 }
611
612 /* Device's eeprom is always little-endian, word addressable */
613 for (i = 0; i < last_word - first_word + 1; i++)
614 le16_to_cpus(&eeprom_buff[i]);
615
616 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
617 eeprom->len);
618 kfree(eeprom_buff);
619
620 return ret_val;
621}
622
623static int igb_set_eeprom(struct net_device *netdev,
624 struct ethtool_eeprom *eeprom, u8 *bytes)
625{
626 struct igb_adapter *adapter = netdev_priv(netdev);
627 struct e1000_hw *hw = &adapter->hw;
628 u16 *eeprom_buff;
629 void *ptr;
630 int max_len, first_word, last_word, ret_val = 0;
631 u16 i;
632
633 if (eeprom->len == 0)
634 return -EOPNOTSUPP;
635
636 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
637 return -EFAULT;
638
639 max_len = hw->nvm.word_size * 2;
640
641 first_word = eeprom->offset >> 1;
642 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
643 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
644 if (!eeprom_buff)
645 return -ENOMEM;
646
647 ptr = (void *)eeprom_buff;
648
649 if (eeprom->offset & 1) {
650 /* need read/modify/write of first changed EEPROM word */
651 /* only the second byte of the word is being modified */
312c75ae 652 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
653 &eeprom_buff[0]);
654 ptr++;
655 }
656 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
657 /* need read/modify/write of last changed EEPROM word */
658 /* only the first byte of the word is being modified */
312c75ae 659 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
660 &eeprom_buff[last_word - first_word]);
661 }
662
663 /* Device's eeprom is always little-endian, word addressable */
664 for (i = 0; i < last_word - first_word + 1; i++)
665 le16_to_cpus(&eeprom_buff[i]);
666
667 memcpy(ptr, bytes, eeprom->len);
668
669 for (i = 0; i < last_word - first_word + 1; i++)
670 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
671
312c75ae 672 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
673 last_word - first_word + 1, eeprom_buff);
674
675 /* Update the checksum over the first part of the EEPROM if needed
676 * and flush shadow RAM for 82573 controllers */
677 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
678 igb_update_nvm_checksum(hw);
679
680 kfree(eeprom_buff);
681 return ret_val;
682}
683
684static void igb_get_drvinfo(struct net_device *netdev,
685 struct ethtool_drvinfo *drvinfo)
686{
687 struct igb_adapter *adapter = netdev_priv(netdev);
688 char firmware_version[32];
689 u16 eeprom_data;
690
691 strncpy(drvinfo->driver, igb_driver_name, 32);
692 strncpy(drvinfo->version, igb_driver_version, 32);
693
694 /* EEPROM image version # is reported as firmware version # for
695 * 82575 controllers */
312c75ae 696 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
697 sprintf(firmware_version, "%d.%d-%d",
698 (eeprom_data & 0xF000) >> 12,
699 (eeprom_data & 0x0FF0) >> 4,
700 eeprom_data & 0x000F);
701
702 strncpy(drvinfo->fw_version, firmware_version, 32);
703 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
704 drvinfo->n_stats = IGB_STATS_LEN;
705 drvinfo->testinfo_len = IGB_TEST_LEN;
706 drvinfo->regdump_len = igb_get_regs_len(netdev);
707 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
708}
709
710static void igb_get_ringparam(struct net_device *netdev,
711 struct ethtool_ringparam *ring)
712{
713 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
714
715 ring->rx_max_pending = IGB_MAX_RXD;
716 ring->tx_max_pending = IGB_MAX_TXD;
717 ring->rx_mini_max_pending = 0;
718 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
719 ring->rx_pending = adapter->rx_ring_count;
720 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
721 ring->rx_mini_pending = 0;
722 ring->rx_jumbo_pending = 0;
723}
724
725static int igb_set_ringparam(struct net_device *netdev,
726 struct ethtool_ringparam *ring)
727{
728 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 729 struct igb_ring *temp_ring;
9d5c8243 730 int i, err;
68fd9910 731 u32 new_rx_count, new_tx_count;
9d5c8243
AK
732
733 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
734 return -EINVAL;
735
736 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
737 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
738 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
739
740 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
741 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
742 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
743
68fd9910
AD
744 if ((new_tx_count == adapter->tx_ring_count) &&
745 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
746 /* nothing to do */
747 return 0;
748 }
749
68fd9910
AD
750 if (adapter->num_tx_queues > adapter->num_rx_queues)
751 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
752 else
753 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
754 if (!temp_ring)
755 return -ENOMEM;
756
9d5c8243
AK
757 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
758 msleep(1);
759
760 if (netif_running(adapter->netdev))
761 igb_down(adapter);
762
763 /*
764 * We can't just free everything and then setup again,
765 * because the ISRs in MSI-X mode get passed pointers
766 * to the tx and rx ring structs.
767 */
68fd9910
AD
768 if (new_tx_count != adapter->tx_ring_count) {
769 memcpy(temp_ring, adapter->tx_ring,
770 adapter->num_tx_queues * sizeof(struct igb_ring));
771
9d5c8243 772 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910
AD
773 temp_ring[i].count = new_tx_count;
774 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
9d5c8243 775 if (err) {
68fd9910
AD
776 while (i) {
777 i--;
778 igb_free_tx_resources(&temp_ring[i]);
779 }
9d5c8243
AK
780 goto err_setup;
781 }
9d5c8243 782 }
68fd9910
AD
783
784 for (i = 0; i < adapter->num_tx_queues; i++)
785 igb_free_tx_resources(&adapter->tx_ring[i]);
786
787 memcpy(adapter->tx_ring, temp_ring,
788 adapter->num_tx_queues * sizeof(struct igb_ring));
789
790 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
791 }
792
793 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
794 memcpy(temp_ring, adapter->rx_ring,
795 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 796
68fd9910
AD
797 for (i = 0; i < adapter->num_rx_queues; i++) {
798 temp_ring[i].count = new_rx_count;
799 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
9d5c8243 800 if (err) {
68fd9910
AD
801 while (i) {
802 i--;
803 igb_free_rx_resources(&temp_ring[i]);
804 }
9d5c8243
AK
805 goto err_setup;
806 }
807
9d5c8243 808 }
68fd9910
AD
809
810 for (i = 0; i < adapter->num_rx_queues; i++)
811 igb_free_rx_resources(&adapter->rx_ring[i]);
812
813 memcpy(adapter->rx_ring, temp_ring,
814 adapter->num_rx_queues * sizeof(struct igb_ring));
815
816 adapter->rx_ring_count = new_rx_count;
9d5c8243
AK
817 }
818
819 err = 0;
820err_setup:
821 if (netif_running(adapter->netdev))
822 igb_up(adapter);
823
824 clear_bit(__IGB_RESETTING, &adapter->state);
68fd9910 825 vfree(temp_ring);
9d5c8243
AK
826 return err;
827}
828
829/* ethtool register test data */
830struct igb_reg_test {
831 u16 reg;
2d064c06
AD
832 u16 reg_offset;
833 u16 array_len;
834 u16 test_type;
9d5c8243
AK
835 u32 mask;
836 u32 write;
837};
838
839/* In the hardware, registers are laid out either singly, in arrays
840 * spaced 0x100 bytes apart, or in contiguous tables. We assume
841 * most tests take place on arrays or single registers (handled
842 * as a single-element array) and special-case the tables.
843 * Table tests are always pattern tests.
844 *
845 * We also make provision for some required setup steps by specifying
846 * registers to be written without any read-back testing.
847 */
848
849#define PATTERN_TEST 1
850#define SET_READ_TEST 2
851#define WRITE_NO_TEST 3
852#define TABLE32_TEST 4
853#define TABLE64_TEST_LO 5
854#define TABLE64_TEST_HI 6
855
2d064c06
AD
856/* 82576 reg test */
857static struct igb_reg_test reg_test_82576[] = {
858 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
859 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
860 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
861 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
862 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
863 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
864 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
865 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
866 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
867 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
868 /* Enable all RX queues before testing. */
869 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
870 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
871 /* RDH is read-only for 82576, only test RDT. */
872 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 873 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 874 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 875 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
876 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
877 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
878 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
879 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
882 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
883 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
885 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
886 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
887 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
888 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
889 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
891 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
892 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
893 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
894 { 0, 0, 0, 0 }
895};
896
897/* 82575 register test */
9d5c8243 898static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
899 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
902 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 906 /* Enable all four RX queues before testing. */
2d064c06 907 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 908 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
909 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
911 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
912 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
913 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
914 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
915 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
916 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
917 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
918 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
919 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
920 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
921 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
922 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
923 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
924 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
925 { 0, 0, 0, 0 }
926};
927
928static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
929 int reg, u32 mask, u32 write)
930{
2753f4ce 931 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
932 u32 pat, val;
933 u32 _test[] =
934 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
935 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
936 wr32(reg, (_test[pat] & write));
937 val = rd32(reg);
9d5c8243
AK
938 if (val != (_test[pat] & write & mask)) {
939 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
940 "failed: got 0x%08X expected 0x%08X\n",
941 reg, val, (_test[pat] & write & mask));
942 *data = reg;
943 return 1;
944 }
945 }
946 return 0;
947}
948
949static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
950 int reg, u32 mask, u32 write)
951{
2753f4ce 952 struct e1000_hw *hw = &adapter->hw;
9d5c8243 953 u32 val;
2753f4ce
AD
954 wr32(reg, write & mask);
955 val = rd32(reg);
9d5c8243
AK
956 if ((write & mask) != (val & mask)) {
957 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
958 " got 0x%08X expected 0x%08X\n", reg,
959 (val & mask), (write & mask));
960 *data = reg;
961 return 1;
962 }
963 return 0;
964}
965
966#define REG_PATTERN_TEST(reg, mask, write) \
967 do { \
968 if (reg_pattern_test(adapter, data, reg, mask, write)) \
969 return 1; \
970 } while (0)
971
972#define REG_SET_AND_CHECK(reg, mask, write) \
973 do { \
974 if (reg_set_and_check(adapter, data, reg, mask, write)) \
975 return 1; \
976 } while (0)
977
978static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
979{
980 struct e1000_hw *hw = &adapter->hw;
981 struct igb_reg_test *test;
982 u32 value, before, after;
983 u32 i, toggle;
984
985 toggle = 0x7FFFF3FF;
2d064c06
AD
986
987 switch (adapter->hw.mac.type) {
988 case e1000_82576:
989 test = reg_test_82576;
990 break;
991 default:
992 test = reg_test_82575;
993 break;
994 }
9d5c8243
AK
995
996 /* Because the status register is such a special case,
997 * we handle it separately from the rest of the register
998 * tests. Some bits are read-only, some toggle, and some
999 * are writable on newer MACs.
1000 */
1001 before = rd32(E1000_STATUS);
1002 value = (rd32(E1000_STATUS) & toggle);
1003 wr32(E1000_STATUS, toggle);
1004 after = rd32(E1000_STATUS) & toggle;
1005 if (value != after) {
1006 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1007 "got: 0x%08X expected: 0x%08X\n", after, value);
1008 *data = 1;
1009 return 1;
1010 }
1011 /* restore previous status */
1012 wr32(E1000_STATUS, before);
1013
1014 /* Perform the remainder of the register test, looping through
1015 * the test table until we either fail or reach the null entry.
1016 */
1017 while (test->reg) {
1018 for (i = 0; i < test->array_len; i++) {
1019 switch (test->test_type) {
1020 case PATTERN_TEST:
2753f4ce
AD
1021 REG_PATTERN_TEST(test->reg +
1022 (i * test->reg_offset),
9d5c8243
AK
1023 test->mask,
1024 test->write);
1025 break;
1026 case SET_READ_TEST:
2753f4ce
AD
1027 REG_SET_AND_CHECK(test->reg +
1028 (i * test->reg_offset),
9d5c8243
AK
1029 test->mask,
1030 test->write);
1031 break;
1032 case WRITE_NO_TEST:
1033 writel(test->write,
1034 (adapter->hw.hw_addr + test->reg)
2d064c06 1035 + (i * test->reg_offset));
9d5c8243
AK
1036 break;
1037 case TABLE32_TEST:
1038 REG_PATTERN_TEST(test->reg + (i * 4),
1039 test->mask,
1040 test->write);
1041 break;
1042 case TABLE64_TEST_LO:
1043 REG_PATTERN_TEST(test->reg + (i * 8),
1044 test->mask,
1045 test->write);
1046 break;
1047 case TABLE64_TEST_HI:
1048 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1049 test->mask,
1050 test->write);
1051 break;
1052 }
1053 }
1054 test++;
1055 }
1056
1057 *data = 0;
1058 return 0;
1059}
1060
1061static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1062{
1063 u16 temp;
1064 u16 checksum = 0;
1065 u16 i;
1066
1067 *data = 0;
1068 /* Read and add up the contents of the EEPROM */
1069 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
312c75ae 1070 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
9d5c8243
AK
1071 < 0) {
1072 *data = 1;
1073 break;
1074 }
1075 checksum += temp;
1076 }
1077
1078 /* If Checksum is not Correct return error else test passed */
1079 if ((checksum != (u16) NVM_SUM) && !(*data))
1080 *data = 2;
1081
1082 return *data;
1083}
1084
1085static irqreturn_t igb_test_intr(int irq, void *data)
1086{
1087 struct net_device *netdev = (struct net_device *) data;
1088 struct igb_adapter *adapter = netdev_priv(netdev);
1089 struct e1000_hw *hw = &adapter->hw;
1090
1091 adapter->test_icr |= rd32(E1000_ICR);
1092
1093 return IRQ_HANDLED;
1094}
1095
1096static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1097{
1098 struct e1000_hw *hw = &adapter->hw;
1099 struct net_device *netdev = adapter->netdev;
2753f4ce 1100 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1101 u32 irq = adapter->pdev->irq;
1102
1103 *data = 0;
1104
1105 /* Hook up test interrupt handler just for this test */
2753f4ce 1106 if (adapter->msix_entries)
9d5c8243
AK
1107 /* NOTE: we don't test MSI-X interrupts here, yet */
1108 return 0;
2753f4ce
AD
1109
1110 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
1111 shared_int = false;
1112 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1113 *data = 1;
1114 return -1;
1115 }
1116 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1117 netdev->name, netdev)) {
1118 shared_int = false;
1119 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1120 netdev->name, netdev)) {
1121 *data = 1;
1122 return -1;
1123 }
1124 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1125 (shared_int ? "shared" : "unshared"));
9d5c8243
AK
1126 /* Disable all the interrupts */
1127 wr32(E1000_IMC, 0xFFFFFFFF);
1128 msleep(10);
1129
2753f4ce
AD
1130 /* Define all writable bits for ICS */
1131 switch(hw->mac.type) {
1132 case e1000_82575:
1133 ics_mask = 0x37F47EDD;
1134 break;
1135 case e1000_82576:
1136 ics_mask = 0x77D4FBFD;
1137 break;
1138 default:
1139 ics_mask = 0x7FFFFFFF;
1140 break;
1141 }
1142
9d5c8243 1143 /* Test each interrupt */
2753f4ce 1144 for (; i < 31; i++) {
9d5c8243
AK
1145 /* Interrupt to test */
1146 mask = 1 << i;
1147
2753f4ce
AD
1148 if (!(mask & ics_mask))
1149 continue;
1150
9d5c8243
AK
1151 if (!shared_int) {
1152 /* Disable the interrupt to be reported in
1153 * the cause register and then force the same
1154 * interrupt and see if one gets posted. If
1155 * an interrupt was posted to the bus, the
1156 * test failed.
1157 */
1158 adapter->test_icr = 0;
2753f4ce
AD
1159
1160 /* Flush any pending interrupts */
1161 wr32(E1000_ICR, ~0);
1162
1163 wr32(E1000_IMC, mask);
1164 wr32(E1000_ICS, mask);
9d5c8243
AK
1165 msleep(10);
1166
1167 if (adapter->test_icr & mask) {
1168 *data = 3;
1169 break;
1170 }
1171 }
1172
1173 /* Enable the interrupt to be reported in
1174 * the cause register and then force the same
1175 * interrupt and see if one gets posted. If
1176 * an interrupt was not posted to the bus, the
1177 * test failed.
1178 */
1179 adapter->test_icr = 0;
2753f4ce
AD
1180
1181 /* Flush any pending interrupts */
1182 wr32(E1000_ICR, ~0);
1183
9d5c8243
AK
1184 wr32(E1000_IMS, mask);
1185 wr32(E1000_ICS, mask);
1186 msleep(10);
1187
1188 if (!(adapter->test_icr & mask)) {
1189 *data = 4;
1190 break;
1191 }
1192
1193 if (!shared_int) {
1194 /* Disable the other interrupts to be reported in
1195 * the cause register and then force the other
1196 * interrupts and see if any get posted. If
1197 * an interrupt was posted to the bus, the
1198 * test failed.
1199 */
1200 adapter->test_icr = 0;
2753f4ce
AD
1201
1202 /* Flush any pending interrupts */
1203 wr32(E1000_ICR, ~0);
1204
1205 wr32(E1000_IMC, ~mask);
1206 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1207 msleep(10);
1208
2753f4ce 1209 if (adapter->test_icr & mask) {
9d5c8243
AK
1210 *data = 5;
1211 break;
1212 }
1213 }
1214 }
1215
1216 /* Disable all the interrupts */
2753f4ce 1217 wr32(E1000_IMC, ~0);
9d5c8243
AK
1218 msleep(10);
1219
1220 /* Unhook test interrupt handler */
1221 free_irq(irq, netdev);
1222
1223 return *data;
1224}
1225
1226static void igb_free_desc_rings(struct igb_adapter *adapter)
1227{
1228 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1229 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1230 struct pci_dev *pdev = adapter->pdev;
1231 int i;
1232
1233 if (tx_ring->desc && tx_ring->buffer_info) {
1234 for (i = 0; i < tx_ring->count; i++) {
1235 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1236 if (buf->dma)
1237 pci_unmap_single(pdev, buf->dma, buf->length,
1238 PCI_DMA_TODEVICE);
1239 if (buf->skb)
1240 dev_kfree_skb(buf->skb);
1241 }
1242 }
1243
1244 if (rx_ring->desc && rx_ring->buffer_info) {
1245 for (i = 0; i < rx_ring->count; i++) {
1246 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1247 if (buf->dma)
1248 pci_unmap_single(pdev, buf->dma,
1249 IGB_RXBUFFER_2048,
1250 PCI_DMA_FROMDEVICE);
1251 if (buf->skb)
1252 dev_kfree_skb(buf->skb);
1253 }
1254 }
1255
1256 if (tx_ring->desc) {
1257 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1258 tx_ring->dma);
1259 tx_ring->desc = NULL;
1260 }
1261 if (rx_ring->desc) {
1262 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1263 rx_ring->dma);
1264 rx_ring->desc = NULL;
1265 }
1266
1267 kfree(tx_ring->buffer_info);
1268 tx_ring->buffer_info = NULL;
1269 kfree(rx_ring->buffer_info);
1270 rx_ring->buffer_info = NULL;
1271
1272 return;
1273}
1274
1275static int igb_setup_desc_rings(struct igb_adapter *adapter)
1276{
1277 struct e1000_hw *hw = &adapter->hw;
1278 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1279 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1280 struct pci_dev *pdev = adapter->pdev;
85e8d004 1281 struct igb_buffer *buffer_info;
9d5c8243
AK
1282 u32 rctl;
1283 int i, ret_val;
1284
1285 /* Setup Tx descriptor ring and Tx buffers */
1286
1287 if (!tx_ring->count)
1288 tx_ring->count = IGB_DEFAULT_TXD;
1289
1290 tx_ring->buffer_info = kcalloc(tx_ring->count,
1291 sizeof(struct igb_buffer),
1292 GFP_KERNEL);
1293 if (!tx_ring->buffer_info) {
1294 ret_val = 1;
1295 goto err_nomem;
1296 }
1297
85e8d004 1298 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1299 tx_ring->size = ALIGN(tx_ring->size, 4096);
1300 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1301 &tx_ring->dma);
1302 if (!tx_ring->desc) {
1303 ret_val = 2;
1304 goto err_nomem;
1305 }
1306 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1307
1308 wr32(E1000_TDBAL(0),
1309 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1310 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1311 wr32(E1000_TDLEN(0),
85e8d004 1312 tx_ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243
AK
1313 wr32(E1000_TDH(0), 0);
1314 wr32(E1000_TDT(0), 0);
1315 wr32(E1000_TCTL,
1316 E1000_TCTL_PSP | E1000_TCTL_EN |
1317 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1318 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1319
1320 for (i = 0; i < tx_ring->count; i++) {
85e8d004 1321 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
1322 struct sk_buff *skb;
1323 unsigned int size = 1024;
1324
85e8d004 1325 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243
AK
1326 skb = alloc_skb(size, GFP_KERNEL);
1327 if (!skb) {
1328 ret_val = 3;
1329 goto err_nomem;
1330 }
1331 skb_put(skb, size);
85e8d004
AD
1332 buffer_info = &tx_ring->buffer_info[i];
1333 buffer_info->skb = skb;
1334 buffer_info->length = skb->len;
1335 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1336 PCI_DMA_TODEVICE);
1337 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1338 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1339 E1000_ADVTXD_PAYLEN_SHIFT;
1340 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1341 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1342 E1000_TXD_CMD_IFCS |
1343 E1000_TXD_CMD_RS |
1344 E1000_ADVTXD_DTYP_DATA |
1345 E1000_ADVTXD_DCMD_DEXT);
9d5c8243
AK
1346 }
1347
1348 /* Setup Rx descriptor ring and Rx buffers */
1349
1350 if (!rx_ring->count)
1351 rx_ring->count = IGB_DEFAULT_RXD;
1352
1353 rx_ring->buffer_info = kcalloc(rx_ring->count,
1354 sizeof(struct igb_buffer),
1355 GFP_KERNEL);
1356 if (!rx_ring->buffer_info) {
1357 ret_val = 4;
1358 goto err_nomem;
1359 }
1360
85e8d004 1361 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
1362 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1363 &rx_ring->dma);
1364 if (!rx_ring->desc) {
1365 ret_val = 5;
1366 goto err_nomem;
1367 }
1368 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1369
1370 rctl = rd32(E1000_RCTL);
1371 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1372 wr32(E1000_RDBAL(0),
1373 ((u64) rx_ring->dma & 0xFFFFFFFF));
1374 wr32(E1000_RDBAH(0),
1375 ((u64) rx_ring->dma >> 32));
1376 wr32(E1000_RDLEN(0), rx_ring->size);
1377 wr32(E1000_RDH(0), 0);
1378 wr32(E1000_RDT(0), 0);
69d728ba 1379 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
cbd347ad 1380 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
9d5c8243
AK
1381 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1382 wr32(E1000_RCTL, rctl);
85e8d004 1383 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
9d5c8243
AK
1384
1385 for (i = 0; i < rx_ring->count; i++) {
85e8d004 1386 union e1000_adv_rx_desc *rx_desc;
9d5c8243
AK
1387 struct sk_buff *skb;
1388
85e8d004
AD
1389 buffer_info = &rx_ring->buffer_info[i];
1390 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
9d5c8243
AK
1391 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1392 GFP_KERNEL);
1393 if (!skb) {
1394 ret_val = 6;
1395 goto err_nomem;
1396 }
1397 skb_reserve(skb, NET_IP_ALIGN);
85e8d004
AD
1398 buffer_info->skb = skb;
1399 buffer_info->dma = pci_map_single(pdev, skb->data,
1400 IGB_RXBUFFER_2048,
1401 PCI_DMA_FROMDEVICE);
1402 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
1403 memset(skb->data, 0x00, skb->len);
1404 }
1405
1406 return 0;
1407
1408err_nomem:
1409 igb_free_desc_rings(adapter);
1410 return ret_val;
1411}
1412
1413static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1414{
1415 struct e1000_hw *hw = &adapter->hw;
1416
1417 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1418 igb_write_phy_reg(hw, 29, 0x001F);
1419 igb_write_phy_reg(hw, 30, 0x8FFC);
1420 igb_write_phy_reg(hw, 29, 0x001A);
1421 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1422}
1423
1424static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1425{
1426 struct e1000_hw *hw = &adapter->hw;
1427 u32 ctrl_reg = 0;
9d5c8243
AK
1428
1429 hw->mac.autoneg = false;
1430
1431 if (hw->phy.type == e1000_phy_m88) {
1432 /* Auto-MDI/MDIX Off */
f5f4cf08 1433 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1434 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1435 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1436 /* autoneg off */
f5f4cf08 1437 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1438 }
1439
1440 ctrl_reg = rd32(E1000_CTRL);
1441
1442 /* force 1000, set loopback */
f5f4cf08 1443 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1444
1445 /* Now set up the MAC to the same speed/duplex as the PHY. */
1446 ctrl_reg = rd32(E1000_CTRL);
1447 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1448 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1449 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1450 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
cdfa9f64
AD
1451 E1000_CTRL_FD | /* Force Duplex to FULL */
1452 E1000_CTRL_SLU); /* Set link up enable bit */
9d5c8243 1453
cdfa9f64 1454 if (hw->phy.type == e1000_phy_m88)
9d5c8243 1455 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
9d5c8243
AK
1456
1457 wr32(E1000_CTRL, ctrl_reg);
1458
1459 /* Disable the receiver on the PHY so when a cable is plugged in, the
1460 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1461 */
1462 if (hw->phy.type == e1000_phy_m88)
1463 igb_phy_disable_receiver(adapter);
1464
1465 udelay(500);
1466
1467 return 0;
1468}
1469
1470static int igb_set_phy_loopback(struct igb_adapter *adapter)
1471{
1472 return igb_integrated_phy_loopback(adapter);
1473}
1474
1475static int igb_setup_loopback_test(struct igb_adapter *adapter)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
2d064c06 1478 u32 reg;
9d5c8243
AK
1479
1480 if (hw->phy.media_type == e1000_media_type_fiber ||
1481 hw->phy.media_type == e1000_media_type_internal_serdes) {
2d064c06
AD
1482 reg = rd32(E1000_RCTL);
1483 reg |= E1000_RCTL_LBM_TCVR;
1484 wr32(E1000_RCTL, reg);
1485
1486 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1487
1488 reg = rd32(E1000_CTRL);
1489 reg &= ~(E1000_CTRL_RFCE |
1490 E1000_CTRL_TFCE |
1491 E1000_CTRL_LRST);
1492 reg |= E1000_CTRL_SLU |
2753f4ce 1493 E1000_CTRL_FD;
2d064c06
AD
1494 wr32(E1000_CTRL, reg);
1495
1496 /* Unset switch control to serdes energy detect */
1497 reg = rd32(E1000_CONNSW);
1498 reg &= ~E1000_CONNSW_ENRGSRC;
1499 wr32(E1000_CONNSW, reg);
1500
1501 /* Set PCS register for forced speed */
1502 reg = rd32(E1000_PCS_LCTL);
1503 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1504 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1505 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1506 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1507 E1000_PCS_LCTL_FSD | /* Force Speed */
1508 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1509 wr32(E1000_PCS_LCTL, reg);
1510
9d5c8243
AK
1511 return 0;
1512 } else if (hw->phy.media_type == e1000_media_type_copper) {
1513 return igb_set_phy_loopback(adapter);
1514 }
1515
1516 return 7;
1517}
1518
1519static void igb_loopback_cleanup(struct igb_adapter *adapter)
1520{
1521 struct e1000_hw *hw = &adapter->hw;
1522 u32 rctl;
1523 u16 phy_reg;
1524
1525 rctl = rd32(E1000_RCTL);
1526 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1527 wr32(E1000_RCTL, rctl);
1528
1529 hw->mac.autoneg = true;
f5f4cf08 1530 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1531 if (phy_reg & MII_CR_LOOPBACK) {
1532 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1533 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1534 igb_phy_sw_reset(hw);
1535 }
1536}
1537
1538static void igb_create_lbtest_frame(struct sk_buff *skb,
1539 unsigned int frame_size)
1540{
1541 memset(skb->data, 0xFF, frame_size);
1542 frame_size &= ~1;
1543 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1544 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1545 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1546}
1547
1548static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1549{
1550 frame_size &= ~1;
1551 if (*(skb->data + 3) == 0xFF)
1552 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1553 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1554 return 0;
1555 return 13;
1556}
1557
1558static int igb_run_loopback_test(struct igb_adapter *adapter)
1559{
1560 struct e1000_hw *hw = &adapter->hw;
1561 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1562 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1563 struct pci_dev *pdev = adapter->pdev;
1564 int i, j, k, l, lc, good_cnt;
1565 int ret_val = 0;
1566 unsigned long time;
1567
1568 wr32(E1000_RDT(0), rx_ring->count - 1);
1569
1570 /* Calculate the loop count based on the largest descriptor ring
1571 * The idea is to wrap the largest ring a number of times using 64
1572 * send/receive pairs during each loop
1573 */
1574
1575 if (rx_ring->count <= tx_ring->count)
1576 lc = ((tx_ring->count / 64) * 2) + 1;
1577 else
1578 lc = ((rx_ring->count / 64) * 2) + 1;
1579
1580 k = l = 0;
1581 for (j = 0; j <= lc; j++) { /* loop count loop */
1582 for (i = 0; i < 64; i++) { /* send the packets */
1583 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1584 1024);
1585 pci_dma_sync_single_for_device(pdev,
1586 tx_ring->buffer_info[k].dma,
1587 tx_ring->buffer_info[k].length,
1588 PCI_DMA_TODEVICE);
1589 k++;
1590 if (k == tx_ring->count)
1591 k = 0;
1592 }
1593 wr32(E1000_TDT(0), k);
1594 msleep(200);
1595 time = jiffies; /* set the start time for the receive */
1596 good_cnt = 0;
1597 do { /* receive the sent packets */
1598 pci_dma_sync_single_for_cpu(pdev,
1599 rx_ring->buffer_info[l].dma,
1600 IGB_RXBUFFER_2048,
1601 PCI_DMA_FROMDEVICE);
1602
1603 ret_val = igb_check_lbtest_frame(
1604 rx_ring->buffer_info[l].skb, 1024);
1605 if (!ret_val)
1606 good_cnt++;
1607 l++;
1608 if (l == rx_ring->count)
1609 l = 0;
1610 /* time + 20 msecs (200 msecs on 2.4) is more than
1611 * enough time to complete the receives, if it's
1612 * exceeded, break and error off
1613 */
1614 } while (good_cnt < 64 && jiffies < (time + 20));
1615 if (good_cnt != 64) {
1616 ret_val = 13; /* ret_val is the same as mis-compare */
1617 break;
1618 }
1619 if (jiffies >= (time + 20)) {
1620 ret_val = 14; /* error code for time out error */
1621 break;
1622 }
1623 } /* end loop count loop */
1624 return ret_val;
1625}
1626
1627static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1628{
1629 /* PHY loopback cannot be performed if SoL/IDER
1630 * sessions are active */
1631 if (igb_check_reset_block(&adapter->hw)) {
1632 dev_err(&adapter->pdev->dev,
1633 "Cannot do PHY loopback test "
1634 "when SoL/IDER is active.\n");
1635 *data = 0;
1636 goto out;
1637 }
1638 *data = igb_setup_desc_rings(adapter);
1639 if (*data)
1640 goto out;
1641 *data = igb_setup_loopback_test(adapter);
1642 if (*data)
1643 goto err_loopback;
1644 *data = igb_run_loopback_test(adapter);
1645 igb_loopback_cleanup(adapter);
1646
1647err_loopback:
1648 igb_free_desc_rings(adapter);
1649out:
1650 return *data;
1651}
1652
1653static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1654{
1655 struct e1000_hw *hw = &adapter->hw;
1656 *data = 0;
1657 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1658 int i = 0;
1659 hw->mac.serdes_has_link = false;
1660
1661 /* On some blade server designs, link establishment
1662 * could take as long as 2-3 minutes */
1663 do {
1664 hw->mac.ops.check_for_link(&adapter->hw);
1665 if (hw->mac.serdes_has_link)
1666 return *data;
1667 msleep(20);
1668 } while (i++ < 3750);
1669
1670 *data = 1;
1671 } else {
1672 hw->mac.ops.check_for_link(&adapter->hw);
1673 if (hw->mac.autoneg)
1674 msleep(4000);
1675
1676 if (!(rd32(E1000_STATUS) &
1677 E1000_STATUS_LU))
1678 *data = 1;
1679 }
1680 return *data;
1681}
1682
1683static void igb_diag_test(struct net_device *netdev,
1684 struct ethtool_test *eth_test, u64 *data)
1685{
1686 struct igb_adapter *adapter = netdev_priv(netdev);
1687 u16 autoneg_advertised;
1688 u8 forced_speed_duplex, autoneg;
1689 bool if_running = netif_running(netdev);
1690
1691 set_bit(__IGB_TESTING, &adapter->state);
1692 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1693 /* Offline tests */
1694
1695 /* save speed, duplex, autoneg settings */
1696 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1697 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1698 autoneg = adapter->hw.mac.autoneg;
1699
1700 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1701
1702 /* Link test performed before hardware reset so autoneg doesn't
1703 * interfere with test result */
1704 if (igb_link_test(adapter, &data[4]))
1705 eth_test->flags |= ETH_TEST_FL_FAILED;
1706
1707 if (if_running)
1708 /* indicate we're in test mode */
1709 dev_close(netdev);
1710 else
1711 igb_reset(adapter);
1712
1713 if (igb_reg_test(adapter, &data[0]))
1714 eth_test->flags |= ETH_TEST_FL_FAILED;
1715
1716 igb_reset(adapter);
1717 if (igb_eeprom_test(adapter, &data[1]))
1718 eth_test->flags |= ETH_TEST_FL_FAILED;
1719
1720 igb_reset(adapter);
1721 if (igb_intr_test(adapter, &data[2]))
1722 eth_test->flags |= ETH_TEST_FL_FAILED;
1723
1724 igb_reset(adapter);
1725 if (igb_loopback_test(adapter, &data[3]))
1726 eth_test->flags |= ETH_TEST_FL_FAILED;
1727
1728 /* restore speed, duplex, autoneg settings */
1729 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1730 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1731 adapter->hw.mac.autoneg = autoneg;
1732
1733 /* force this routine to wait until autoneg complete/timeout */
1734 adapter->hw.phy.autoneg_wait_to_complete = true;
1735 igb_reset(adapter);
1736 adapter->hw.phy.autoneg_wait_to_complete = false;
1737
1738 clear_bit(__IGB_TESTING, &adapter->state);
1739 if (if_running)
1740 dev_open(netdev);
1741 } else {
1742 dev_info(&adapter->pdev->dev, "online testing starting\n");
1743 /* Online tests */
1744 if (igb_link_test(adapter, &data[4]))
1745 eth_test->flags |= ETH_TEST_FL_FAILED;
1746
1747 /* Online tests aren't run; pass by default */
1748 data[0] = 0;
1749 data[1] = 0;
1750 data[2] = 0;
1751 data[3] = 0;
1752
1753 clear_bit(__IGB_TESTING, &adapter->state);
1754 }
1755 msleep_interruptible(4 * 1000);
1756}
1757
1758static int igb_wol_exclusion(struct igb_adapter *adapter,
1759 struct ethtool_wolinfo *wol)
1760{
1761 struct e1000_hw *hw = &adapter->hw;
1762 int retval = 1; /* fail by default */
1763
1764 switch (hw->device_id) {
1765 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1766 /* WoL not supported */
1767 wol->supported = 0;
1768 break;
1769 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1770 case E1000_DEV_ID_82576_FIBER:
1771 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1772 /* Wake events not supported on port B */
1773 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1774 wol->supported = 0;
1775 break;
1776 }
7dfc16fa
AD
1777 /* return success for non excluded adapter ports */
1778 retval = 0;
1779 break;
c8ea5ea9
AD
1780 case E1000_DEV_ID_82576_QUAD_COPPER:
1781 /* quad port adapters only support WoL on port A */
1782 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1783 wol->supported = 0;
1784 break;
1785 }
1786 /* return success for non excluded adapter ports */
1787 retval = 0;
1788 break;
9d5c8243
AK
1789 default:
1790 /* dual port cards only support WoL on port A from now on
1791 * unless it was enabled in the eeprom for port B
1792 * so exclude FUNC_1 ports from having WoL enabled */
1793 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1794 !adapter->eeprom_wol) {
1795 wol->supported = 0;
1796 break;
1797 }
1798
1799 retval = 0;
1800 }
1801
1802 return retval;
1803}
1804
1805static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1806{
1807 struct igb_adapter *adapter = netdev_priv(netdev);
1808
1809 wol->supported = WAKE_UCAST | WAKE_MCAST |
1810 WAKE_BCAST | WAKE_MAGIC;
1811 wol->wolopts = 0;
1812
1813 /* this function will set ->supported = 0 and return 1 if wol is not
1814 * supported by this hardware */
e1b86d84
RW
1815 if (igb_wol_exclusion(adapter, wol) ||
1816 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1817 return;
1818
1819 /* apply any specific unsupported masks here */
1820 switch (adapter->hw.device_id) {
1821 default:
1822 break;
1823 }
1824
1825 if (adapter->wol & E1000_WUFC_EX)
1826 wol->wolopts |= WAKE_UCAST;
1827 if (adapter->wol & E1000_WUFC_MC)
1828 wol->wolopts |= WAKE_MCAST;
1829 if (adapter->wol & E1000_WUFC_BC)
1830 wol->wolopts |= WAKE_BCAST;
1831 if (adapter->wol & E1000_WUFC_MAG)
1832 wol->wolopts |= WAKE_MAGIC;
1833
1834 return;
1835}
1836
1837static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1838{
1839 struct igb_adapter *adapter = netdev_priv(netdev);
1840 struct e1000_hw *hw = &adapter->hw;
1841
1842 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1843 return -EOPNOTSUPP;
1844
e1b86d84
RW
1845 if (igb_wol_exclusion(adapter, wol) ||
1846 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1847 return wol->wolopts ? -EOPNOTSUPP : 0;
1848
1849 switch (hw->device_id) {
1850 default:
1851 break;
1852 }
1853
1854 /* these settings will always override what we currently have */
1855 adapter->wol = 0;
1856
1857 if (wol->wolopts & WAKE_UCAST)
1858 adapter->wol |= E1000_WUFC_EX;
1859 if (wol->wolopts & WAKE_MCAST)
1860 adapter->wol |= E1000_WUFC_MC;
1861 if (wol->wolopts & WAKE_BCAST)
1862 adapter->wol |= E1000_WUFC_BC;
1863 if (wol->wolopts & WAKE_MAGIC)
1864 adapter->wol |= E1000_WUFC_MAG;
1865
e1b86d84
RW
1866 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1867
9d5c8243
AK
1868 return 0;
1869}
1870
9d5c8243
AK
1871/* bit defines for adapter->led_status */
1872#define IGB_LED_ON 0
1873
1874static int igb_phys_id(struct net_device *netdev, u32 data)
1875{
1876 struct igb_adapter *adapter = netdev_priv(netdev);
1877 struct e1000_hw *hw = &adapter->hw;
1878
1879 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1880 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1881
1882 igb_blink_led(hw);
1883 msleep_interruptible(data * 1000);
1884
1885 igb_led_off(hw);
1886 clear_bit(IGB_LED_ON, &adapter->led_status);
1887 igb_cleanup_led(hw);
1888
1889 return 0;
1890}
1891
1892static int igb_set_coalesce(struct net_device *netdev,
1893 struct ethtool_coalesce *ec)
1894{
1895 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1
AD
1896 struct e1000_hw *hw = &adapter->hw;
1897 int i;
9d5c8243
AK
1898
1899 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1900 ((ec->rx_coalesce_usecs > 3) &&
1901 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1902 (ec->rx_coalesce_usecs == 2))
1903 return -EINVAL;
1904
1905 /* convert to rate of irq's per second */
6eb5a7f1 1906 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
9d5c8243 1907 adapter->itr_setting = ec->rx_coalesce_usecs;
6eb5a7f1
AD
1908 adapter->itr = IGB_START_ITR;
1909 } else {
1910 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1911 adapter->itr = adapter->itr_setting;
1912 }
9d5c8243 1913
6eb5a7f1
AD
1914 for (i = 0; i < adapter->num_rx_queues; i++)
1915 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
9d5c8243
AK
1916
1917 return 0;
1918}
1919
1920static int igb_get_coalesce(struct net_device *netdev,
1921 struct ethtool_coalesce *ec)
1922{
1923 struct igb_adapter *adapter = netdev_priv(netdev);
1924
1925 if (adapter->itr_setting <= 3)
1926 ec->rx_coalesce_usecs = adapter->itr_setting;
1927 else
6eb5a7f1 1928 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
9d5c8243
AK
1929
1930 return 0;
1931}
1932
1933
1934static int igb_nway_reset(struct net_device *netdev)
1935{
1936 struct igb_adapter *adapter = netdev_priv(netdev);
1937 if (netif_running(netdev))
1938 igb_reinit_locked(adapter);
1939 return 0;
1940}
1941
1942static int igb_get_sset_count(struct net_device *netdev, int sset)
1943{
1944 switch (sset) {
1945 case ETH_SS_STATS:
1946 return IGB_STATS_LEN;
1947 case ETH_SS_TEST:
1948 return IGB_TEST_LEN;
1949 default:
1950 return -ENOTSUPP;
1951 }
1952}
1953
1954static void igb_get_ethtool_stats(struct net_device *netdev,
1955 struct ethtool_stats *stats, u64 *data)
1956{
1957 struct igb_adapter *adapter = netdev_priv(netdev);
1958 u64 *queue_stat;
1959 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1960 int j;
1961 int i;
1962
1963 igb_update_stats(adapter);
1964 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1965 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1966 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1967 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1968 }
e21ed353
AD
1969 for (j = 0; j < adapter->num_tx_queues; j++) {
1970 int k;
1971 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1972 for (k = 0; k < stat_count; k++)
1973 data[i + k] = queue_stat[k];
1974 i += k;
1975 }
9d5c8243
AK
1976 for (j = 0; j < adapter->num_rx_queues; j++) {
1977 int k;
1978 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1979 for (k = 0; k < stat_count; k++)
1980 data[i + k] = queue_stat[k];
1981 i += k;
1982 }
1983}
1984
1985static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1986{
1987 struct igb_adapter *adapter = netdev_priv(netdev);
1988 u8 *p = data;
1989 int i;
1990
1991 switch (stringset) {
1992 case ETH_SS_TEST:
1993 memcpy(data, *igb_gstrings_test,
1994 IGB_TEST_LEN*ETH_GSTRING_LEN);
1995 break;
1996 case ETH_SS_STATS:
1997 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1998 memcpy(p, igb_gstrings_stats[i].stat_string,
1999 ETH_GSTRING_LEN);
2000 p += ETH_GSTRING_LEN;
2001 }
2002 for (i = 0; i < adapter->num_tx_queues; i++) {
2003 sprintf(p, "tx_queue_%u_packets", i);
2004 p += ETH_GSTRING_LEN;
2005 sprintf(p, "tx_queue_%u_bytes", i);
2006 p += ETH_GSTRING_LEN;
2007 }
2008 for (i = 0; i < adapter->num_rx_queues; i++) {
2009 sprintf(p, "rx_queue_%u_packets", i);
2010 p += ETH_GSTRING_LEN;
2011 sprintf(p, "rx_queue_%u_bytes", i);
2012 p += ETH_GSTRING_LEN;
2013 }
2014/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2015 break;
2016 }
2017}
2018
2019static struct ethtool_ops igb_ethtool_ops = {
2020 .get_settings = igb_get_settings,
2021 .set_settings = igb_set_settings,
2022 .get_drvinfo = igb_get_drvinfo,
2023 .get_regs_len = igb_get_regs_len,
2024 .get_regs = igb_get_regs,
2025 .get_wol = igb_get_wol,
2026 .set_wol = igb_set_wol,
2027 .get_msglevel = igb_get_msglevel,
2028 .set_msglevel = igb_set_msglevel,
2029 .nway_reset = igb_nway_reset,
2030 .get_link = ethtool_op_get_link,
2031 .get_eeprom_len = igb_get_eeprom_len,
2032 .get_eeprom = igb_get_eeprom,
2033 .set_eeprom = igb_set_eeprom,
2034 .get_ringparam = igb_get_ringparam,
2035 .set_ringparam = igb_set_ringparam,
2036 .get_pauseparam = igb_get_pauseparam,
2037 .set_pauseparam = igb_set_pauseparam,
2038 .get_rx_csum = igb_get_rx_csum,
2039 .set_rx_csum = igb_set_rx_csum,
2040 .get_tx_csum = igb_get_tx_csum,
2041 .set_tx_csum = igb_set_tx_csum,
2042 .get_sg = ethtool_op_get_sg,
2043 .set_sg = ethtool_op_set_sg,
2044 .get_tso = ethtool_op_get_tso,
2045 .set_tso = igb_set_tso,
2046 .self_test = igb_diag_test,
2047 .get_strings = igb_get_strings,
2048 .phys_id = igb_phys_id,
2049 .get_sset_count = igb_get_sset_count,
2050 .get_ethtool_stats = igb_get_ethtool_stats,
2051 .get_coalesce = igb_get_coalesce,
2052 .set_coalesce = igb_set_coalesce,
2053};
2054
2055void igb_set_ethtool_ops(struct net_device *netdev)
2056{
2057 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2058}
This page took 0.296023 seconds and 5 git commands to generate.