igb: move alloc_failed and csum_err stats into per rx-ring stat
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
231835e4
AK
40enum {NETDEV_STATS, IGB_STATS};
41
9d5c8243
AK
42struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
231835e4 44 int type;
9d5c8243
AK
45 int sizeof_stat;
46 int stat_offset;
47};
48
231835e4
AK
49#define IGB_STAT(m) IGB_STATS, \
50 FIELD_SIZEOF(struct igb_adapter, m), \
51 offsetof(struct igb_adapter, m)
52#define IGB_NETDEV_STAT(m) NETDEV_STATS, \
53 FIELD_SIZEOF(struct net_device, m), \
54 offsetof(struct net_device, m)
55
9d5c8243
AK
56static const struct igb_stats igb_gstrings_stats[] = {
57 { "rx_packets", IGB_STAT(stats.gprc) },
58 { "tx_packets", IGB_STAT(stats.gptc) },
59 { "rx_bytes", IGB_STAT(stats.gorc) },
60 { "tx_bytes", IGB_STAT(stats.gotc) },
61 { "rx_broadcast", IGB_STAT(stats.bprc) },
62 { "tx_broadcast", IGB_STAT(stats.bptc) },
63 { "rx_multicast", IGB_STAT(stats.mprc) },
64 { "tx_multicast", IGB_STAT(stats.mptc) },
8d24e933
AK
65 { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66 { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67 { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
9d5c8243
AK
68 { "multicast", IGB_STAT(stats.mprc) },
69 { "collisions", IGB_STAT(stats.colc) },
8d24e933
AK
70 { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71 { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
9d5c8243 72 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
8d24e933 73 { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
9d5c8243 74 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
8d24e933 75 { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
9d5c8243
AK
76 { "rx_missed_errors", IGB_STAT(stats.mpc) },
77 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
8d24e933
AK
79 { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80 { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
9d5c8243
AK
81 { "tx_window_errors", IGB_STAT(stats.latecol) },
82 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83 { "tx_deferred_ok", IGB_STAT(stats.dc) },
84 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
9d5c8243
AK
87 { "rx_long_length_errors", IGB_STAT(stats.roc) },
88 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
89 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
90 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
91 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
92 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
93 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
94 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
95 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
96 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
dda0e083 97 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
98 { "tx_smbus", IGB_STAT(stats.mgptc) },
99 { "rx_smbus", IGB_STAT(stats.mgprc) },
100 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
101};
102
103#define IGB_QUEUE_STATS_LEN \
8c0ab70a
JDB
104 (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
105 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
106 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
107 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
9d5c8243
AK
108#define IGB_GLOBAL_STATS_LEN \
109 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
110#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
111static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
112 "Register test (offline)", "Eeprom test (offline)",
113 "Interrupt test (offline)", "Loopback test (offline)",
114 "Link test (on/offline)"
115};
116#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
117
118static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
119{
120 struct igb_adapter *adapter = netdev_priv(netdev);
121 struct e1000_hw *hw = &adapter->hw;
122
123 if (hw->phy.media_type == e1000_media_type_copper) {
124
125 ecmd->supported = (SUPPORTED_10baseT_Half |
126 SUPPORTED_10baseT_Full |
127 SUPPORTED_100baseT_Half |
128 SUPPORTED_100baseT_Full |
129 SUPPORTED_1000baseT_Full|
130 SUPPORTED_Autoneg |
131 SUPPORTED_TP);
132 ecmd->advertising = ADVERTISED_TP;
133
134 if (hw->mac.autoneg == 1) {
135 ecmd->advertising |= ADVERTISED_Autoneg;
136 /* the e1000 autoneg seems to match ethtool nicely */
137 ecmd->advertising |= hw->phy.autoneg_advertised;
138 }
139
140 ecmd->port = PORT_TP;
141 ecmd->phy_address = hw->phy.addr;
142 } else {
143 ecmd->supported = (SUPPORTED_1000baseT_Full |
144 SUPPORTED_FIBRE |
145 SUPPORTED_Autoneg);
146
147 ecmd->advertising = (ADVERTISED_1000baseT_Full |
148 ADVERTISED_FIBRE |
149 ADVERTISED_Autoneg);
150
151 ecmd->port = PORT_FIBRE;
152 }
153
154 ecmd->transceiver = XCVR_INTERNAL;
155
156 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
157
158 adapter->hw.mac.ops.get_speed_and_duplex(hw,
159 &adapter->link_speed,
160 &adapter->link_duplex);
161 ecmd->speed = adapter->link_speed;
162
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
165
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ecmd->speed = -1;
172 ecmd->duplex = -1;
173 }
174
dcc3ae9a 175 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
9d5c8243
AK
176 return 0;
177}
178
179static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180{
181 struct igb_adapter *adapter = netdev_priv(netdev);
182 struct e1000_hw *hw = &adapter->hw;
183
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw)) {
187 dev_err(&adapter->pdev->dev, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
189 return -EINVAL;
190 }
191
192 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193 msleep(1);
194
195 if (ecmd->autoneg == AUTONEG_ENABLE) {
196 hw->mac.autoneg = 1;
dcc3ae9a
AD
197 hw->phy.autoneg_advertised = ecmd->advertising |
198 ADVERTISED_TP |
199 ADVERTISED_Autoneg;
9d5c8243 200 ecmd->advertising = hw->phy.autoneg_advertised;
0cce119a
AD
201 if (adapter->fc_autoneg)
202 hw->fc.requested_mode = e1000_fc_default;
dcc3ae9a 203 } else {
9d5c8243
AK
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
206 return -EINVAL;
207 }
dcc3ae9a 208 }
9d5c8243
AK
209
210 /* reset the link */
9d5c8243
AK
211 if (netif_running(adapter->netdev)) {
212 igb_down(adapter);
213 igb_up(adapter);
214 } else
215 igb_reset(adapter);
216
217 clear_bit(__IGB_RESETTING, &adapter->state);
218 return 0;
219}
220
221static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
223{
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
226
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
0cce119a 230 if (hw->fc.current_mode == e1000_fc_rx_pause)
9d5c8243 231 pause->rx_pause = 1;
0cce119a 232 else if (hw->fc.current_mode == e1000_fc_tx_pause)
9d5c8243 233 pause->tx_pause = 1;
0cce119a 234 else if (hw->fc.current_mode == e1000_fc_full) {
9d5c8243
AK
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
237 }
238}
239
240static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
242{
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
246
247 adapter->fc_autoneg = pause->autoneg;
248
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 msleep(1);
251
9d5c8243 252 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
0cce119a 253 hw->fc.requested_mode = e1000_fc_default;
9d5c8243
AK
254 if (netif_running(adapter->netdev)) {
255 igb_down(adapter);
256 igb_up(adapter);
257 } else
258 igb_reset(adapter);
0cce119a
AD
259 } else {
260 if (pause->rx_pause && pause->tx_pause)
261 hw->fc.requested_mode = e1000_fc_full;
262 else if (pause->rx_pause && !pause->tx_pause)
263 hw->fc.requested_mode = e1000_fc_rx_pause;
264 else if (!pause->rx_pause && pause->tx_pause)
265 hw->fc.requested_mode = e1000_fc_tx_pause;
266 else if (!pause->rx_pause && !pause->tx_pause)
267 hw->fc.requested_mode = e1000_fc_none;
268
269 hw->fc.current_mode = hw->fc.requested_mode;
270
dcc3ae9a
AD
271 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
272 igb_force_mac_fc(hw) : igb_setup_link(hw));
0cce119a 273 }
9d5c8243
AK
274
275 clear_bit(__IGB_RESETTING, &adapter->state);
276 return retval;
277}
278
279static u32 igb_get_rx_csum(struct net_device *netdev)
280{
281 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146 282 return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
9d5c8243
AK
283}
284
285static int igb_set_rx_csum(struct net_device *netdev, u32 data)
286{
287 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146
AD
288
289 if (data)
290 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
291 else
292 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
9d5c8243
AK
293
294 return 0;
295}
296
297static u32 igb_get_tx_csum(struct net_device *netdev)
298{
7d8eb29e 299 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
300}
301
302static int igb_set_tx_csum(struct net_device *netdev, u32 data)
303{
b9473560
JB
304 struct igb_adapter *adapter = netdev_priv(netdev);
305
306 if (data) {
7d8eb29e 307 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
b9473560
JB
308 if (adapter->hw.mac.type == e1000_82576)
309 netdev->features |= NETIF_F_SCTP_CSUM;
310 } else {
311 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
312 NETIF_F_SCTP_CSUM);
313 }
9d5c8243
AK
314
315 return 0;
316}
317
318static int igb_set_tso(struct net_device *netdev, u32 data)
319{
320 struct igb_adapter *adapter = netdev_priv(netdev);
321
7d8eb29e 322 if (data) {
9d5c8243 323 netdev->features |= NETIF_F_TSO;
9d5c8243 324 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
325 } else {
326 netdev->features &= ~NETIF_F_TSO;
9d5c8243 327 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 328 }
9d5c8243
AK
329
330 dev_info(&adapter->pdev->dev, "TSO is %s\n",
331 data ? "Enabled" : "Disabled");
332 return 0;
333}
334
335static u32 igb_get_msglevel(struct net_device *netdev)
336{
337 struct igb_adapter *adapter = netdev_priv(netdev);
338 return adapter->msg_enable;
339}
340
341static void igb_set_msglevel(struct net_device *netdev, u32 data)
342{
343 struct igb_adapter *adapter = netdev_priv(netdev);
344 adapter->msg_enable = data;
345}
346
347static int igb_get_regs_len(struct net_device *netdev)
348{
349#define IGB_REGS_LEN 551
350 return IGB_REGS_LEN * sizeof(u32);
351}
352
353static void igb_get_regs(struct net_device *netdev,
354 struct ethtool_regs *regs, void *p)
355{
356 struct igb_adapter *adapter = netdev_priv(netdev);
357 struct e1000_hw *hw = &adapter->hw;
358 u32 *regs_buff = p;
359 u8 i;
360
361 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
362
363 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
364
365 /* General Registers */
366 regs_buff[0] = rd32(E1000_CTRL);
367 regs_buff[1] = rd32(E1000_STATUS);
368 regs_buff[2] = rd32(E1000_CTRL_EXT);
369 regs_buff[3] = rd32(E1000_MDIC);
370 regs_buff[4] = rd32(E1000_SCTL);
371 regs_buff[5] = rd32(E1000_CONNSW);
372 regs_buff[6] = rd32(E1000_VET);
373 regs_buff[7] = rd32(E1000_LEDCTL);
374 regs_buff[8] = rd32(E1000_PBA);
375 regs_buff[9] = rd32(E1000_PBS);
376 regs_buff[10] = rd32(E1000_FRTIMER);
377 regs_buff[11] = rd32(E1000_TCPTIMER);
378
379 /* NVM Register */
380 regs_buff[12] = rd32(E1000_EECD);
381
382 /* Interrupt */
fe59de38
AD
383 /* Reading EICS for EICR because they read the
384 * same but EICS does not clear on read */
385 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
386 regs_buff[14] = rd32(E1000_EICS);
387 regs_buff[15] = rd32(E1000_EIMS);
388 regs_buff[16] = rd32(E1000_EIMC);
389 regs_buff[17] = rd32(E1000_EIAC);
390 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
391 /* Reading ICS for ICR because they read the
392 * same but ICS does not clear on read */
393 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
394 regs_buff[20] = rd32(E1000_ICS);
395 regs_buff[21] = rd32(E1000_IMS);
396 regs_buff[22] = rd32(E1000_IMC);
397 regs_buff[23] = rd32(E1000_IAC);
398 regs_buff[24] = rd32(E1000_IAM);
399 regs_buff[25] = rd32(E1000_IMIRVP);
400
401 /* Flow Control */
402 regs_buff[26] = rd32(E1000_FCAL);
403 regs_buff[27] = rd32(E1000_FCAH);
404 regs_buff[28] = rd32(E1000_FCTTV);
405 regs_buff[29] = rd32(E1000_FCRTL);
406 regs_buff[30] = rd32(E1000_FCRTH);
407 regs_buff[31] = rd32(E1000_FCRTV);
408
409 /* Receive */
410 regs_buff[32] = rd32(E1000_RCTL);
411 regs_buff[33] = rd32(E1000_RXCSUM);
412 regs_buff[34] = rd32(E1000_RLPML);
413 regs_buff[35] = rd32(E1000_RFCTL);
414 regs_buff[36] = rd32(E1000_MRQC);
e1739522 415 regs_buff[37] = rd32(E1000_VT_CTL);
9d5c8243
AK
416
417 /* Transmit */
418 regs_buff[38] = rd32(E1000_TCTL);
419 regs_buff[39] = rd32(E1000_TCTL_EXT);
420 regs_buff[40] = rd32(E1000_TIPG);
421 regs_buff[41] = rd32(E1000_DTXCTL);
422
423 /* Wake Up */
424 regs_buff[42] = rd32(E1000_WUC);
425 regs_buff[43] = rd32(E1000_WUFC);
426 regs_buff[44] = rd32(E1000_WUS);
427 regs_buff[45] = rd32(E1000_IPAV);
428 regs_buff[46] = rd32(E1000_WUPL);
429
430 /* MAC */
431 regs_buff[47] = rd32(E1000_PCS_CFG0);
432 regs_buff[48] = rd32(E1000_PCS_LCTL);
433 regs_buff[49] = rd32(E1000_PCS_LSTAT);
434 regs_buff[50] = rd32(E1000_PCS_ANADV);
435 regs_buff[51] = rd32(E1000_PCS_LPAB);
436 regs_buff[52] = rd32(E1000_PCS_NPTX);
437 regs_buff[53] = rd32(E1000_PCS_LPABNP);
438
439 /* Statistics */
440 regs_buff[54] = adapter->stats.crcerrs;
441 regs_buff[55] = adapter->stats.algnerrc;
442 regs_buff[56] = adapter->stats.symerrs;
443 regs_buff[57] = adapter->stats.rxerrc;
444 regs_buff[58] = adapter->stats.mpc;
445 regs_buff[59] = adapter->stats.scc;
446 regs_buff[60] = adapter->stats.ecol;
447 regs_buff[61] = adapter->stats.mcc;
448 regs_buff[62] = adapter->stats.latecol;
449 regs_buff[63] = adapter->stats.colc;
450 regs_buff[64] = adapter->stats.dc;
451 regs_buff[65] = adapter->stats.tncrs;
452 regs_buff[66] = adapter->stats.sec;
453 regs_buff[67] = adapter->stats.htdpmc;
454 regs_buff[68] = adapter->stats.rlec;
455 regs_buff[69] = adapter->stats.xonrxc;
456 regs_buff[70] = adapter->stats.xontxc;
457 regs_buff[71] = adapter->stats.xoffrxc;
458 regs_buff[72] = adapter->stats.xofftxc;
459 regs_buff[73] = adapter->stats.fcruc;
460 regs_buff[74] = adapter->stats.prc64;
461 regs_buff[75] = adapter->stats.prc127;
462 regs_buff[76] = adapter->stats.prc255;
463 regs_buff[77] = adapter->stats.prc511;
464 regs_buff[78] = adapter->stats.prc1023;
465 regs_buff[79] = adapter->stats.prc1522;
466 regs_buff[80] = adapter->stats.gprc;
467 regs_buff[81] = adapter->stats.bprc;
468 regs_buff[82] = adapter->stats.mprc;
469 regs_buff[83] = adapter->stats.gptc;
470 regs_buff[84] = adapter->stats.gorc;
471 regs_buff[86] = adapter->stats.gotc;
472 regs_buff[88] = adapter->stats.rnbc;
473 regs_buff[89] = adapter->stats.ruc;
474 regs_buff[90] = adapter->stats.rfc;
475 regs_buff[91] = adapter->stats.roc;
476 regs_buff[92] = adapter->stats.rjc;
477 regs_buff[93] = adapter->stats.mgprc;
478 regs_buff[94] = adapter->stats.mgpdc;
479 regs_buff[95] = adapter->stats.mgptc;
480 regs_buff[96] = adapter->stats.tor;
481 regs_buff[98] = adapter->stats.tot;
482 regs_buff[100] = adapter->stats.tpr;
483 regs_buff[101] = adapter->stats.tpt;
484 regs_buff[102] = adapter->stats.ptc64;
485 regs_buff[103] = adapter->stats.ptc127;
486 regs_buff[104] = adapter->stats.ptc255;
487 regs_buff[105] = adapter->stats.ptc511;
488 regs_buff[106] = adapter->stats.ptc1023;
489 regs_buff[107] = adapter->stats.ptc1522;
490 regs_buff[108] = adapter->stats.mptc;
491 regs_buff[109] = adapter->stats.bptc;
492 regs_buff[110] = adapter->stats.tsctc;
493 regs_buff[111] = adapter->stats.iac;
494 regs_buff[112] = adapter->stats.rpthc;
495 regs_buff[113] = adapter->stats.hgptc;
496 regs_buff[114] = adapter->stats.hgorc;
497 regs_buff[116] = adapter->stats.hgotc;
498 regs_buff[118] = adapter->stats.lenerrs;
499 regs_buff[119] = adapter->stats.scvpc;
500 regs_buff[120] = adapter->stats.hrmpc;
501
502 /* These should probably be added to e1000_regs.h instead */
503 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
9d5c8243
AK
504 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
505 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
506 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
507 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
508 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
509 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
510
511 for (i = 0; i < 4; i++)
512 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
515 for (i = 0; i < 4; i++)
516 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
517 for (i = 0; i < 4; i++)
518 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
519 for (i = 0; i < 4; i++)
520 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[141 + i] = rd32(E1000_RDH(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[145 + i] = rd32(E1000_RDT(i));
525 for (i = 0; i < 4; i++)
526 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
527
528 for (i = 0; i < 10; i++)
529 regs_buff[153 + i] = rd32(E1000_EITR(i));
530 for (i = 0; i < 8; i++)
531 regs_buff[163 + i] = rd32(E1000_IMIR(i));
532 for (i = 0; i < 8; i++)
533 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
534 for (i = 0; i < 16; i++)
535 regs_buff[179 + i] = rd32(E1000_RAL(i));
536 for (i = 0; i < 16; i++)
537 regs_buff[195 + i] = rd32(E1000_RAH(i));
538
539 for (i = 0; i < 4; i++)
540 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[223 + i] = rd32(E1000_TDH(i));
547 for (i = 0; i < 4; i++)
548 regs_buff[227 + i] = rd32(E1000_TDT(i));
549 for (i = 0; i < 4; i++)
550 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
557
558 for (i = 0; i < 4; i++)
559 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
560 for (i = 0; i < 4; i++)
561 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
562 for (i = 0; i < 32; i++)
563 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
564 for (i = 0; i < 128; i++)
565 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
566 for (i = 0; i < 128; i++)
567 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
568 for (i = 0; i < 4; i++)
569 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
570
571 regs_buff[547] = rd32(E1000_TDFH);
572 regs_buff[548] = rd32(E1000_TDFT);
573 regs_buff[549] = rd32(E1000_TDFHS);
574 regs_buff[550] = rd32(E1000_TDFPC);
575
576}
577
578static int igb_get_eeprom_len(struct net_device *netdev)
579{
580 struct igb_adapter *adapter = netdev_priv(netdev);
581 return adapter->hw.nvm.word_size * 2;
582}
583
584static int igb_get_eeprom(struct net_device *netdev,
585 struct ethtool_eeprom *eeprom, u8 *bytes)
586{
587 struct igb_adapter *adapter = netdev_priv(netdev);
588 struct e1000_hw *hw = &adapter->hw;
589 u16 *eeprom_buff;
590 int first_word, last_word;
591 int ret_val = 0;
592 u16 i;
593
594 if (eeprom->len == 0)
595 return -EINVAL;
596
597 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
598
599 first_word = eeprom->offset >> 1;
600 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
601
602 eeprom_buff = kmalloc(sizeof(u16) *
603 (last_word - first_word + 1), GFP_KERNEL);
604 if (!eeprom_buff)
605 return -ENOMEM;
606
607 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 608 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
609 last_word - first_word + 1,
610 eeprom_buff);
611 else {
612 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 613 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
614 &eeprom_buff[i]);
615 if (ret_val)
616 break;
617 }
618 }
619
620 /* Device's eeprom is always little-endian, word addressable */
621 for (i = 0; i < last_word - first_word + 1; i++)
622 le16_to_cpus(&eeprom_buff[i]);
623
624 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
625 eeprom->len);
626 kfree(eeprom_buff);
627
628 return ret_val;
629}
630
631static int igb_set_eeprom(struct net_device *netdev,
632 struct ethtool_eeprom *eeprom, u8 *bytes)
633{
634 struct igb_adapter *adapter = netdev_priv(netdev);
635 struct e1000_hw *hw = &adapter->hw;
636 u16 *eeprom_buff;
637 void *ptr;
638 int max_len, first_word, last_word, ret_val = 0;
639 u16 i;
640
641 if (eeprom->len == 0)
642 return -EOPNOTSUPP;
643
644 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
645 return -EFAULT;
646
647 max_len = hw->nvm.word_size * 2;
648
649 first_word = eeprom->offset >> 1;
650 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
651 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
652 if (!eeprom_buff)
653 return -ENOMEM;
654
655 ptr = (void *)eeprom_buff;
656
657 if (eeprom->offset & 1) {
658 /* need read/modify/write of first changed EEPROM word */
659 /* only the second byte of the word is being modified */
312c75ae 660 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
661 &eeprom_buff[0]);
662 ptr++;
663 }
664 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
665 /* need read/modify/write of last changed EEPROM word */
666 /* only the first byte of the word is being modified */
312c75ae 667 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
668 &eeprom_buff[last_word - first_word]);
669 }
670
671 /* Device's eeprom is always little-endian, word addressable */
672 for (i = 0; i < last_word - first_word + 1; i++)
673 le16_to_cpus(&eeprom_buff[i]);
674
675 memcpy(ptr, bytes, eeprom->len);
676
677 for (i = 0; i < last_word - first_word + 1; i++)
678 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
679
312c75ae 680 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
681 last_word - first_word + 1, eeprom_buff);
682
683 /* Update the checksum over the first part of the EEPROM if needed
684 * and flush shadow RAM for 82573 controllers */
685 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
686 igb_update_nvm_checksum(hw);
687
688 kfree(eeprom_buff);
689 return ret_val;
690}
691
692static void igb_get_drvinfo(struct net_device *netdev,
693 struct ethtool_drvinfo *drvinfo)
694{
695 struct igb_adapter *adapter = netdev_priv(netdev);
696 char firmware_version[32];
697 u16 eeprom_data;
698
699 strncpy(drvinfo->driver, igb_driver_name, 32);
700 strncpy(drvinfo->version, igb_driver_version, 32);
701
702 /* EEPROM image version # is reported as firmware version # for
703 * 82575 controllers */
312c75ae 704 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
705 sprintf(firmware_version, "%d.%d-%d",
706 (eeprom_data & 0xF000) >> 12,
707 (eeprom_data & 0x0FF0) >> 4,
708 eeprom_data & 0x000F);
709
710 strncpy(drvinfo->fw_version, firmware_version, 32);
711 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
712 drvinfo->n_stats = IGB_STATS_LEN;
713 drvinfo->testinfo_len = IGB_TEST_LEN;
714 drvinfo->regdump_len = igb_get_regs_len(netdev);
715 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
716}
717
718static void igb_get_ringparam(struct net_device *netdev,
719 struct ethtool_ringparam *ring)
720{
721 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
722
723 ring->rx_max_pending = IGB_MAX_RXD;
724 ring->tx_max_pending = IGB_MAX_TXD;
725 ring->rx_mini_max_pending = 0;
726 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
727 ring->rx_pending = adapter->rx_ring_count;
728 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
729 ring->rx_mini_pending = 0;
730 ring->rx_jumbo_pending = 0;
731}
732
733static int igb_set_ringparam(struct net_device *netdev,
734 struct ethtool_ringparam *ring)
735{
736 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 737 struct igb_ring *temp_ring;
6d9f4fc4 738 int i, err = 0;
68fd9910 739 u32 new_rx_count, new_tx_count;
9d5c8243
AK
740
741 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
742 return -EINVAL;
743
744 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
745 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
746 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
747
748 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
749 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
750 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
751
68fd9910
AD
752 if ((new_tx_count == adapter->tx_ring_count) &&
753 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
754 /* nothing to do */
755 return 0;
756 }
757
6d9f4fc4
AD
758 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759 msleep(1);
760
761 if (!netif_running(adapter->netdev)) {
762 for (i = 0; i < adapter->num_tx_queues; i++)
763 adapter->tx_ring[i].count = new_tx_count;
764 for (i = 0; i < adapter->num_rx_queues; i++)
765 adapter->rx_ring[i].count = new_rx_count;
766 adapter->tx_ring_count = new_tx_count;
767 adapter->rx_ring_count = new_rx_count;
768 goto clear_reset;
769 }
770
68fd9910
AD
771 if (adapter->num_tx_queues > adapter->num_rx_queues)
772 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
773 else
774 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
68fd9910 775
6d9f4fc4
AD
776 if (!temp_ring) {
777 err = -ENOMEM;
778 goto clear_reset;
779 }
9d5c8243 780
6d9f4fc4 781 igb_down(adapter);
9d5c8243
AK
782
783 /*
784 * We can't just free everything and then setup again,
785 * because the ISRs in MSI-X mode get passed pointers
786 * to the tx and rx ring structs.
787 */
68fd9910
AD
788 if (new_tx_count != adapter->tx_ring_count) {
789 memcpy(temp_ring, adapter->tx_ring,
790 adapter->num_tx_queues * sizeof(struct igb_ring));
791
9d5c8243 792 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910 793 temp_ring[i].count = new_tx_count;
80785298 794 err = igb_setup_tx_resources(&temp_ring[i]);
9d5c8243 795 if (err) {
68fd9910
AD
796 while (i) {
797 i--;
798 igb_free_tx_resources(&temp_ring[i]);
799 }
9d5c8243
AK
800 goto err_setup;
801 }
9d5c8243 802 }
68fd9910
AD
803
804 for (i = 0; i < adapter->num_tx_queues; i++)
805 igb_free_tx_resources(&adapter->tx_ring[i]);
806
807 memcpy(adapter->tx_ring, temp_ring,
808 adapter->num_tx_queues * sizeof(struct igb_ring));
809
810 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
811 }
812
813 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
814 memcpy(temp_ring, adapter->rx_ring,
815 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 816
68fd9910
AD
817 for (i = 0; i < adapter->num_rx_queues; i++) {
818 temp_ring[i].count = new_rx_count;
80785298 819 err = igb_setup_rx_resources(&temp_ring[i]);
9d5c8243 820 if (err) {
68fd9910
AD
821 while (i) {
822 i--;
823 igb_free_rx_resources(&temp_ring[i]);
824 }
9d5c8243
AK
825 goto err_setup;
826 }
827
9d5c8243 828 }
68fd9910
AD
829
830 for (i = 0; i < adapter->num_rx_queues; i++)
831 igb_free_rx_resources(&adapter->rx_ring[i]);
832
833 memcpy(adapter->rx_ring, temp_ring,
834 adapter->num_rx_queues * sizeof(struct igb_ring));
835
836 adapter->rx_ring_count = new_rx_count;
9d5c8243 837 }
9d5c8243 838err_setup:
6d9f4fc4 839 igb_up(adapter);
68fd9910 840 vfree(temp_ring);
6d9f4fc4
AD
841clear_reset:
842 clear_bit(__IGB_RESETTING, &adapter->state);
9d5c8243
AK
843 return err;
844}
845
846/* ethtool register test data */
847struct igb_reg_test {
848 u16 reg;
2d064c06
AD
849 u16 reg_offset;
850 u16 array_len;
851 u16 test_type;
9d5c8243
AK
852 u32 mask;
853 u32 write;
854};
855
856/* In the hardware, registers are laid out either singly, in arrays
857 * spaced 0x100 bytes apart, or in contiguous tables. We assume
858 * most tests take place on arrays or single registers (handled
859 * as a single-element array) and special-case the tables.
860 * Table tests are always pattern tests.
861 *
862 * We also make provision for some required setup steps by specifying
863 * registers to be written without any read-back testing.
864 */
865
866#define PATTERN_TEST 1
867#define SET_READ_TEST 2
868#define WRITE_NO_TEST 3
869#define TABLE32_TEST 4
870#define TABLE64_TEST_LO 5
871#define TABLE64_TEST_HI 6
872
2d064c06
AD
873/* 82576 reg test */
874static struct igb_reg_test reg_test_82576[] = {
875 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
876 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
877 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
878 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
879 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
882 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
883 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
885 /* Enable all RX queues before testing. */
886 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
887 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
888 /* RDH is read-only for 82576, only test RDT. */
889 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 890 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 891 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 892 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
893 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
894 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
895 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
896 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
897 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
899 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
900 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
901 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
902 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
903 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
904 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
905 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
906 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
907 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
908 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
910 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911 { 0, 0, 0, 0 }
912};
913
914/* 82575 register test */
9d5c8243 915static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
916 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
917 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
918 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
919 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
921 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
922 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 923 /* Enable all four RX queues before testing. */
2d064c06 924 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 925 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
926 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
927 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
928 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
929 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
930 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
931 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
932 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
933 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
934 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
935 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
936 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
937 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
938 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
939 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
940 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
941 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
942 { 0, 0, 0, 0 }
943};
944
945static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
946 int reg, u32 mask, u32 write)
947{
2753f4ce 948 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
949 u32 pat, val;
950 u32 _test[] =
951 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
952 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
953 wr32(reg, (_test[pat] & write));
954 val = rd32(reg);
9d5c8243
AK
955 if (val != (_test[pat] & write & mask)) {
956 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
957 "failed: got 0x%08X expected 0x%08X\n",
958 reg, val, (_test[pat] & write & mask));
959 *data = reg;
960 return 1;
961 }
962 }
963 return 0;
964}
965
966static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
967 int reg, u32 mask, u32 write)
968{
2753f4ce 969 struct e1000_hw *hw = &adapter->hw;
9d5c8243 970 u32 val;
2753f4ce
AD
971 wr32(reg, write & mask);
972 val = rd32(reg);
9d5c8243
AK
973 if ((write & mask) != (val & mask)) {
974 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
975 " got 0x%08X expected 0x%08X\n", reg,
976 (val & mask), (write & mask));
977 *data = reg;
978 return 1;
979 }
980 return 0;
981}
982
983#define REG_PATTERN_TEST(reg, mask, write) \
984 do { \
985 if (reg_pattern_test(adapter, data, reg, mask, write)) \
986 return 1; \
987 } while (0)
988
989#define REG_SET_AND_CHECK(reg, mask, write) \
990 do { \
991 if (reg_set_and_check(adapter, data, reg, mask, write)) \
992 return 1; \
993 } while (0)
994
995static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
996{
997 struct e1000_hw *hw = &adapter->hw;
998 struct igb_reg_test *test;
999 u32 value, before, after;
1000 u32 i, toggle;
1001
1002 toggle = 0x7FFFF3FF;
2d064c06
AD
1003
1004 switch (adapter->hw.mac.type) {
1005 case e1000_82576:
1006 test = reg_test_82576;
1007 break;
1008 default:
1009 test = reg_test_82575;
1010 break;
1011 }
9d5c8243
AK
1012
1013 /* Because the status register is such a special case,
1014 * we handle it separately from the rest of the register
1015 * tests. Some bits are read-only, some toggle, and some
1016 * are writable on newer MACs.
1017 */
1018 before = rd32(E1000_STATUS);
1019 value = (rd32(E1000_STATUS) & toggle);
1020 wr32(E1000_STATUS, toggle);
1021 after = rd32(E1000_STATUS) & toggle;
1022 if (value != after) {
1023 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1024 "got: 0x%08X expected: 0x%08X\n", after, value);
1025 *data = 1;
1026 return 1;
1027 }
1028 /* restore previous status */
1029 wr32(E1000_STATUS, before);
1030
1031 /* Perform the remainder of the register test, looping through
1032 * the test table until we either fail or reach the null entry.
1033 */
1034 while (test->reg) {
1035 for (i = 0; i < test->array_len; i++) {
1036 switch (test->test_type) {
1037 case PATTERN_TEST:
2753f4ce
AD
1038 REG_PATTERN_TEST(test->reg +
1039 (i * test->reg_offset),
9d5c8243
AK
1040 test->mask,
1041 test->write);
1042 break;
1043 case SET_READ_TEST:
2753f4ce
AD
1044 REG_SET_AND_CHECK(test->reg +
1045 (i * test->reg_offset),
9d5c8243
AK
1046 test->mask,
1047 test->write);
1048 break;
1049 case WRITE_NO_TEST:
1050 writel(test->write,
1051 (adapter->hw.hw_addr + test->reg)
2d064c06 1052 + (i * test->reg_offset));
9d5c8243
AK
1053 break;
1054 case TABLE32_TEST:
1055 REG_PATTERN_TEST(test->reg + (i * 4),
1056 test->mask,
1057 test->write);
1058 break;
1059 case TABLE64_TEST_LO:
1060 REG_PATTERN_TEST(test->reg + (i * 8),
1061 test->mask,
1062 test->write);
1063 break;
1064 case TABLE64_TEST_HI:
1065 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1066 test->mask,
1067 test->write);
1068 break;
1069 }
1070 }
1071 test++;
1072 }
1073
1074 *data = 0;
1075 return 0;
1076}
1077
1078static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1079{
1080 u16 temp;
1081 u16 checksum = 0;
1082 u16 i;
1083
1084 *data = 0;
1085 /* Read and add up the contents of the EEPROM */
1086 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
312c75ae 1087 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
9d5c8243
AK
1088 < 0) {
1089 *data = 1;
1090 break;
1091 }
1092 checksum += temp;
1093 }
1094
1095 /* If Checksum is not Correct return error else test passed */
1096 if ((checksum != (u16) NVM_SUM) && !(*data))
1097 *data = 2;
1098
1099 return *data;
1100}
1101
1102static irqreturn_t igb_test_intr(int irq, void *data)
1103{
1104 struct net_device *netdev = (struct net_device *) data;
1105 struct igb_adapter *adapter = netdev_priv(netdev);
1106 struct e1000_hw *hw = &adapter->hw;
1107
1108 adapter->test_icr |= rd32(E1000_ICR);
1109
1110 return IRQ_HANDLED;
1111}
1112
1113static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1114{
1115 struct e1000_hw *hw = &adapter->hw;
1116 struct net_device *netdev = adapter->netdev;
2753f4ce 1117 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1118 u32 irq = adapter->pdev->irq;
1119
1120 *data = 0;
1121
1122 /* Hook up test interrupt handler just for this test */
2753f4ce 1123 if (adapter->msix_entries)
9d5c8243
AK
1124 /* NOTE: we don't test MSI-X interrupts here, yet */
1125 return 0;
2753f4ce
AD
1126
1127 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
1128 shared_int = false;
1129 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1130 *data = 1;
1131 return -1;
1132 }
1133 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1134 netdev->name, netdev)) {
1135 shared_int = false;
1136 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1137 netdev->name, netdev)) {
1138 *data = 1;
1139 return -1;
1140 }
1141 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1142 (shared_int ? "shared" : "unshared"));
9d5c8243
AK
1143 /* Disable all the interrupts */
1144 wr32(E1000_IMC, 0xFFFFFFFF);
1145 msleep(10);
1146
2753f4ce
AD
1147 /* Define all writable bits for ICS */
1148 switch(hw->mac.type) {
1149 case e1000_82575:
1150 ics_mask = 0x37F47EDD;
1151 break;
1152 case e1000_82576:
1153 ics_mask = 0x77D4FBFD;
1154 break;
1155 default:
1156 ics_mask = 0x7FFFFFFF;
1157 break;
1158 }
1159
9d5c8243 1160 /* Test each interrupt */
2753f4ce 1161 for (; i < 31; i++) {
9d5c8243
AK
1162 /* Interrupt to test */
1163 mask = 1 << i;
1164
2753f4ce
AD
1165 if (!(mask & ics_mask))
1166 continue;
1167
9d5c8243
AK
1168 if (!shared_int) {
1169 /* Disable the interrupt to be reported in
1170 * the cause register and then force the same
1171 * interrupt and see if one gets posted. If
1172 * an interrupt was posted to the bus, the
1173 * test failed.
1174 */
1175 adapter->test_icr = 0;
2753f4ce
AD
1176
1177 /* Flush any pending interrupts */
1178 wr32(E1000_ICR, ~0);
1179
1180 wr32(E1000_IMC, mask);
1181 wr32(E1000_ICS, mask);
9d5c8243
AK
1182 msleep(10);
1183
1184 if (adapter->test_icr & mask) {
1185 *data = 3;
1186 break;
1187 }
1188 }
1189
1190 /* Enable the interrupt to be reported in
1191 * the cause register and then force the same
1192 * interrupt and see if one gets posted. If
1193 * an interrupt was not posted to the bus, the
1194 * test failed.
1195 */
1196 adapter->test_icr = 0;
2753f4ce
AD
1197
1198 /* Flush any pending interrupts */
1199 wr32(E1000_ICR, ~0);
1200
9d5c8243
AK
1201 wr32(E1000_IMS, mask);
1202 wr32(E1000_ICS, mask);
1203 msleep(10);
1204
1205 if (!(adapter->test_icr & mask)) {
1206 *data = 4;
1207 break;
1208 }
1209
1210 if (!shared_int) {
1211 /* Disable the other interrupts to be reported in
1212 * the cause register and then force the other
1213 * interrupts and see if any get posted. If
1214 * an interrupt was posted to the bus, the
1215 * test failed.
1216 */
1217 adapter->test_icr = 0;
2753f4ce
AD
1218
1219 /* Flush any pending interrupts */
1220 wr32(E1000_ICR, ~0);
1221
1222 wr32(E1000_IMC, ~mask);
1223 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1224 msleep(10);
1225
2753f4ce 1226 if (adapter->test_icr & mask) {
9d5c8243
AK
1227 *data = 5;
1228 break;
1229 }
1230 }
1231 }
1232
1233 /* Disable all the interrupts */
2753f4ce 1234 wr32(E1000_IMC, ~0);
9d5c8243
AK
1235 msleep(10);
1236
1237 /* Unhook test interrupt handler */
1238 free_irq(irq, netdev);
1239
1240 return *data;
1241}
1242
1243static void igb_free_desc_rings(struct igb_adapter *adapter)
1244{
1245 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1246 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1247 struct pci_dev *pdev = adapter->pdev;
1248 int i;
1249
1250 if (tx_ring->desc && tx_ring->buffer_info) {
1251 for (i = 0; i < tx_ring->count; i++) {
1252 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1253 if (buf->dma)
1254 pci_unmap_single(pdev, buf->dma, buf->length,
1255 PCI_DMA_TODEVICE);
1256 if (buf->skb)
1257 dev_kfree_skb(buf->skb);
1258 }
1259 }
1260
1261 if (rx_ring->desc && rx_ring->buffer_info) {
1262 for (i = 0; i < rx_ring->count; i++) {
1263 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1264 if (buf->dma)
1265 pci_unmap_single(pdev, buf->dma,
1266 IGB_RXBUFFER_2048,
1267 PCI_DMA_FROMDEVICE);
1268 if (buf->skb)
1269 dev_kfree_skb(buf->skb);
1270 }
1271 }
1272
1273 if (tx_ring->desc) {
1274 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1275 tx_ring->dma);
1276 tx_ring->desc = NULL;
1277 }
1278 if (rx_ring->desc) {
1279 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1280 rx_ring->dma);
1281 rx_ring->desc = NULL;
1282 }
1283
1284 kfree(tx_ring->buffer_info);
1285 tx_ring->buffer_info = NULL;
1286 kfree(rx_ring->buffer_info);
1287 rx_ring->buffer_info = NULL;
1288
1289 return;
1290}
1291
1292static int igb_setup_desc_rings(struct igb_adapter *adapter)
1293{
1294 struct e1000_hw *hw = &adapter->hw;
1295 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1296 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1297 struct pci_dev *pdev = adapter->pdev;
85e8d004 1298 struct igb_buffer *buffer_info;
9d5c8243
AK
1299 u32 rctl;
1300 int i, ret_val;
1301
1302 /* Setup Tx descriptor ring and Tx buffers */
1303
1304 if (!tx_ring->count)
1305 tx_ring->count = IGB_DEFAULT_TXD;
1306
1307 tx_ring->buffer_info = kcalloc(tx_ring->count,
1308 sizeof(struct igb_buffer),
1309 GFP_KERNEL);
1310 if (!tx_ring->buffer_info) {
1311 ret_val = 1;
1312 goto err_nomem;
1313 }
1314
85e8d004 1315 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1316 tx_ring->size = ALIGN(tx_ring->size, 4096);
1317 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1318 &tx_ring->dma);
1319 if (!tx_ring->desc) {
1320 ret_val = 2;
1321 goto err_nomem;
1322 }
1323 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1324
1325 wr32(E1000_TDBAL(0),
1326 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1327 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1328 wr32(E1000_TDLEN(0),
85e8d004 1329 tx_ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243
AK
1330 wr32(E1000_TDH(0), 0);
1331 wr32(E1000_TDT(0), 0);
1332 wr32(E1000_TCTL,
1333 E1000_TCTL_PSP | E1000_TCTL_EN |
1334 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1335 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1336
1337 for (i = 0; i < tx_ring->count; i++) {
85e8d004 1338 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
1339 struct sk_buff *skb;
1340 unsigned int size = 1024;
1341
85e8d004 1342 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243
AK
1343 skb = alloc_skb(size, GFP_KERNEL);
1344 if (!skb) {
1345 ret_val = 3;
1346 goto err_nomem;
1347 }
1348 skb_put(skb, size);
85e8d004
AD
1349 buffer_info = &tx_ring->buffer_info[i];
1350 buffer_info->skb = skb;
1351 buffer_info->length = skb->len;
1352 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1353 PCI_DMA_TODEVICE);
1354 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1355 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1356 E1000_ADVTXD_PAYLEN_SHIFT;
1357 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1358 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1359 E1000_TXD_CMD_IFCS |
1360 E1000_TXD_CMD_RS |
1361 E1000_ADVTXD_DTYP_DATA |
1362 E1000_ADVTXD_DCMD_DEXT);
9d5c8243
AK
1363 }
1364
1365 /* Setup Rx descriptor ring and Rx buffers */
1366
1367 if (!rx_ring->count)
1368 rx_ring->count = IGB_DEFAULT_RXD;
1369
1370 rx_ring->buffer_info = kcalloc(rx_ring->count,
1371 sizeof(struct igb_buffer),
1372 GFP_KERNEL);
1373 if (!rx_ring->buffer_info) {
1374 ret_val = 4;
1375 goto err_nomem;
1376 }
1377
85e8d004 1378 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
1379 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1380 &rx_ring->dma);
1381 if (!rx_ring->desc) {
1382 ret_val = 5;
1383 goto err_nomem;
1384 }
1385 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1386
1387 rctl = rd32(E1000_RCTL);
1388 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1389 wr32(E1000_RDBAL(0),
1390 ((u64) rx_ring->dma & 0xFFFFFFFF));
1391 wr32(E1000_RDBAH(0),
1392 ((u64) rx_ring->dma >> 32));
1393 wr32(E1000_RDLEN(0), rx_ring->size);
1394 wr32(E1000_RDH(0), 0);
1395 wr32(E1000_RDT(0), 0);
69d728ba 1396 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
cbd347ad 1397 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
9d5c8243
AK
1398 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1399 wr32(E1000_RCTL, rctl);
85e8d004 1400 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
9d5c8243
AK
1401
1402 for (i = 0; i < rx_ring->count; i++) {
85e8d004 1403 union e1000_adv_rx_desc *rx_desc;
9d5c8243
AK
1404 struct sk_buff *skb;
1405
85e8d004
AD
1406 buffer_info = &rx_ring->buffer_info[i];
1407 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
9d5c8243
AK
1408 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1409 GFP_KERNEL);
1410 if (!skb) {
1411 ret_val = 6;
1412 goto err_nomem;
1413 }
1414 skb_reserve(skb, NET_IP_ALIGN);
85e8d004
AD
1415 buffer_info->skb = skb;
1416 buffer_info->dma = pci_map_single(pdev, skb->data,
1417 IGB_RXBUFFER_2048,
1418 PCI_DMA_FROMDEVICE);
1419 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
1420 memset(skb->data, 0x00, skb->len);
1421 }
1422
1423 return 0;
1424
1425err_nomem:
1426 igb_free_desc_rings(adapter);
1427 return ret_val;
1428}
1429
1430static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1431{
1432 struct e1000_hw *hw = &adapter->hw;
1433
1434 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1435 igb_write_phy_reg(hw, 29, 0x001F);
1436 igb_write_phy_reg(hw, 30, 0x8FFC);
1437 igb_write_phy_reg(hw, 29, 0x001A);
1438 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1439}
1440
1441static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1442{
1443 struct e1000_hw *hw = &adapter->hw;
1444 u32 ctrl_reg = 0;
9d5c8243
AK
1445
1446 hw->mac.autoneg = false;
1447
1448 if (hw->phy.type == e1000_phy_m88) {
1449 /* Auto-MDI/MDIX Off */
f5f4cf08 1450 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1451 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1452 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1453 /* autoneg off */
f5f4cf08 1454 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1455 }
1456
1457 ctrl_reg = rd32(E1000_CTRL);
1458
1459 /* force 1000, set loopback */
f5f4cf08 1460 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1461
1462 /* Now set up the MAC to the same speed/duplex as the PHY. */
1463 ctrl_reg = rd32(E1000_CTRL);
1464 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1465 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1466 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1467 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
cdfa9f64
AD
1468 E1000_CTRL_FD | /* Force Duplex to FULL */
1469 E1000_CTRL_SLU); /* Set link up enable bit */
9d5c8243 1470
cdfa9f64 1471 if (hw->phy.type == e1000_phy_m88)
9d5c8243 1472 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
9d5c8243
AK
1473
1474 wr32(E1000_CTRL, ctrl_reg);
1475
1476 /* Disable the receiver on the PHY so when a cable is plugged in, the
1477 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1478 */
1479 if (hw->phy.type == e1000_phy_m88)
1480 igb_phy_disable_receiver(adapter);
1481
1482 udelay(500);
1483
1484 return 0;
1485}
1486
1487static int igb_set_phy_loopback(struct igb_adapter *adapter)
1488{
1489 return igb_integrated_phy_loopback(adapter);
1490}
1491
1492static int igb_setup_loopback_test(struct igb_adapter *adapter)
1493{
1494 struct e1000_hw *hw = &adapter->hw;
2d064c06 1495 u32 reg;
9d5c8243 1496
dcc3ae9a 1497 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
2d064c06
AD
1498 reg = rd32(E1000_RCTL);
1499 reg |= E1000_RCTL_LBM_TCVR;
1500 wr32(E1000_RCTL, reg);
1501
1502 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1503
1504 reg = rd32(E1000_CTRL);
1505 reg &= ~(E1000_CTRL_RFCE |
1506 E1000_CTRL_TFCE |
1507 E1000_CTRL_LRST);
1508 reg |= E1000_CTRL_SLU |
2753f4ce 1509 E1000_CTRL_FD;
2d064c06
AD
1510 wr32(E1000_CTRL, reg);
1511
1512 /* Unset switch control to serdes energy detect */
1513 reg = rd32(E1000_CONNSW);
1514 reg &= ~E1000_CONNSW_ENRGSRC;
1515 wr32(E1000_CONNSW, reg);
1516
1517 /* Set PCS register for forced speed */
1518 reg = rd32(E1000_PCS_LCTL);
1519 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1520 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1521 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1522 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1523 E1000_PCS_LCTL_FSD | /* Force Speed */
1524 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1525 wr32(E1000_PCS_LCTL, reg);
1526
9d5c8243
AK
1527 return 0;
1528 } else if (hw->phy.media_type == e1000_media_type_copper) {
1529 return igb_set_phy_loopback(adapter);
1530 }
1531
1532 return 7;
1533}
1534
1535static void igb_loopback_cleanup(struct igb_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538 u32 rctl;
1539 u16 phy_reg;
1540
1541 rctl = rd32(E1000_RCTL);
1542 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1543 wr32(E1000_RCTL, rctl);
1544
1545 hw->mac.autoneg = true;
f5f4cf08 1546 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1547 if (phy_reg & MII_CR_LOOPBACK) {
1548 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1549 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1550 igb_phy_sw_reset(hw);
1551 }
1552}
1553
1554static void igb_create_lbtest_frame(struct sk_buff *skb,
1555 unsigned int frame_size)
1556{
1557 memset(skb->data, 0xFF, frame_size);
1558 frame_size &= ~1;
1559 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1560 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1561 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1562}
1563
1564static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1565{
1566 frame_size &= ~1;
1567 if (*(skb->data + 3) == 0xFF)
1568 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1569 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1570 return 0;
1571 return 13;
1572}
1573
1574static int igb_run_loopback_test(struct igb_adapter *adapter)
1575{
1576 struct e1000_hw *hw = &adapter->hw;
1577 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1578 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1579 struct pci_dev *pdev = adapter->pdev;
1580 int i, j, k, l, lc, good_cnt;
1581 int ret_val = 0;
1582 unsigned long time;
1583
1584 wr32(E1000_RDT(0), rx_ring->count - 1);
1585
1586 /* Calculate the loop count based on the largest descriptor ring
1587 * The idea is to wrap the largest ring a number of times using 64
1588 * send/receive pairs during each loop
1589 */
1590
1591 if (rx_ring->count <= tx_ring->count)
1592 lc = ((tx_ring->count / 64) * 2) + 1;
1593 else
1594 lc = ((rx_ring->count / 64) * 2) + 1;
1595
1596 k = l = 0;
1597 for (j = 0; j <= lc; j++) { /* loop count loop */
1598 for (i = 0; i < 64; i++) { /* send the packets */
1599 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1600 1024);
1601 pci_dma_sync_single_for_device(pdev,
1602 tx_ring->buffer_info[k].dma,
1603 tx_ring->buffer_info[k].length,
1604 PCI_DMA_TODEVICE);
1605 k++;
1606 if (k == tx_ring->count)
1607 k = 0;
1608 }
1609 wr32(E1000_TDT(0), k);
1610 msleep(200);
1611 time = jiffies; /* set the start time for the receive */
1612 good_cnt = 0;
1613 do { /* receive the sent packets */
1614 pci_dma_sync_single_for_cpu(pdev,
1615 rx_ring->buffer_info[l].dma,
1616 IGB_RXBUFFER_2048,
1617 PCI_DMA_FROMDEVICE);
1618
1619 ret_val = igb_check_lbtest_frame(
1620 rx_ring->buffer_info[l].skb, 1024);
1621 if (!ret_val)
1622 good_cnt++;
1623 l++;
1624 if (l == rx_ring->count)
1625 l = 0;
1626 /* time + 20 msecs (200 msecs on 2.4) is more than
1627 * enough time to complete the receives, if it's
1628 * exceeded, break and error off
1629 */
1630 } while (good_cnt < 64 && jiffies < (time + 20));
1631 if (good_cnt != 64) {
1632 ret_val = 13; /* ret_val is the same as mis-compare */
1633 break;
1634 }
1635 if (jiffies >= (time + 20)) {
1636 ret_val = 14; /* error code for time out error */
1637 break;
1638 }
1639 } /* end loop count loop */
1640 return ret_val;
1641}
1642
1643static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1644{
1645 /* PHY loopback cannot be performed if SoL/IDER
1646 * sessions are active */
1647 if (igb_check_reset_block(&adapter->hw)) {
1648 dev_err(&adapter->pdev->dev,
1649 "Cannot do PHY loopback test "
1650 "when SoL/IDER is active.\n");
1651 *data = 0;
1652 goto out;
1653 }
1654 *data = igb_setup_desc_rings(adapter);
1655 if (*data)
1656 goto out;
1657 *data = igb_setup_loopback_test(adapter);
1658 if (*data)
1659 goto err_loopback;
1660 *data = igb_run_loopback_test(adapter);
1661 igb_loopback_cleanup(adapter);
1662
1663err_loopback:
1664 igb_free_desc_rings(adapter);
1665out:
1666 return *data;
1667}
1668
1669static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1670{
1671 struct e1000_hw *hw = &adapter->hw;
1672 *data = 0;
1673 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1674 int i = 0;
1675 hw->mac.serdes_has_link = false;
1676
1677 /* On some blade server designs, link establishment
1678 * could take as long as 2-3 minutes */
1679 do {
1680 hw->mac.ops.check_for_link(&adapter->hw);
1681 if (hw->mac.serdes_has_link)
1682 return *data;
1683 msleep(20);
1684 } while (i++ < 3750);
1685
1686 *data = 1;
1687 } else {
1688 hw->mac.ops.check_for_link(&adapter->hw);
1689 if (hw->mac.autoneg)
1690 msleep(4000);
1691
1692 if (!(rd32(E1000_STATUS) &
1693 E1000_STATUS_LU))
1694 *data = 1;
1695 }
1696 return *data;
1697}
1698
1699static void igb_diag_test(struct net_device *netdev,
1700 struct ethtool_test *eth_test, u64 *data)
1701{
1702 struct igb_adapter *adapter = netdev_priv(netdev);
1703 u16 autoneg_advertised;
1704 u8 forced_speed_duplex, autoneg;
1705 bool if_running = netif_running(netdev);
1706
1707 set_bit(__IGB_TESTING, &adapter->state);
1708 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1709 /* Offline tests */
1710
1711 /* save speed, duplex, autoneg settings */
1712 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1713 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1714 autoneg = adapter->hw.mac.autoneg;
1715
1716 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1717
1718 /* Link test performed before hardware reset so autoneg doesn't
1719 * interfere with test result */
1720 if (igb_link_test(adapter, &data[4]))
1721 eth_test->flags |= ETH_TEST_FL_FAILED;
1722
1723 if (if_running)
1724 /* indicate we're in test mode */
1725 dev_close(netdev);
1726 else
1727 igb_reset(adapter);
1728
1729 if (igb_reg_test(adapter, &data[0]))
1730 eth_test->flags |= ETH_TEST_FL_FAILED;
1731
1732 igb_reset(adapter);
1733 if (igb_eeprom_test(adapter, &data[1]))
1734 eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736 igb_reset(adapter);
1737 if (igb_intr_test(adapter, &data[2]))
1738 eth_test->flags |= ETH_TEST_FL_FAILED;
1739
1740 igb_reset(adapter);
1741 if (igb_loopback_test(adapter, &data[3]))
1742 eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744 /* restore speed, duplex, autoneg settings */
1745 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1746 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1747 adapter->hw.mac.autoneg = autoneg;
1748
1749 /* force this routine to wait until autoneg complete/timeout */
1750 adapter->hw.phy.autoneg_wait_to_complete = true;
1751 igb_reset(adapter);
1752 adapter->hw.phy.autoneg_wait_to_complete = false;
1753
1754 clear_bit(__IGB_TESTING, &adapter->state);
1755 if (if_running)
1756 dev_open(netdev);
1757 } else {
1758 dev_info(&adapter->pdev->dev, "online testing starting\n");
1759 /* Online tests */
1760 if (igb_link_test(adapter, &data[4]))
1761 eth_test->flags |= ETH_TEST_FL_FAILED;
1762
1763 /* Online tests aren't run; pass by default */
1764 data[0] = 0;
1765 data[1] = 0;
1766 data[2] = 0;
1767 data[3] = 0;
1768
1769 clear_bit(__IGB_TESTING, &adapter->state);
1770 }
1771 msleep_interruptible(4 * 1000);
1772}
1773
1774static int igb_wol_exclusion(struct igb_adapter *adapter,
1775 struct ethtool_wolinfo *wol)
1776{
1777 struct e1000_hw *hw = &adapter->hw;
1778 int retval = 1; /* fail by default */
1779
1780 switch (hw->device_id) {
1781 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1782 /* WoL not supported */
1783 wol->supported = 0;
1784 break;
1785 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1786 case E1000_DEV_ID_82576_FIBER:
1787 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1788 /* Wake events not supported on port B */
1789 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1790 wol->supported = 0;
1791 break;
1792 }
7dfc16fa
AD
1793 /* return success for non excluded adapter ports */
1794 retval = 0;
1795 break;
c8ea5ea9
AD
1796 case E1000_DEV_ID_82576_QUAD_COPPER:
1797 /* quad port adapters only support WoL on port A */
1798 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1799 wol->supported = 0;
1800 break;
1801 }
1802 /* return success for non excluded adapter ports */
1803 retval = 0;
1804 break;
9d5c8243
AK
1805 default:
1806 /* dual port cards only support WoL on port A from now on
1807 * unless it was enabled in the eeprom for port B
1808 * so exclude FUNC_1 ports from having WoL enabled */
1809 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1810 !adapter->eeprom_wol) {
1811 wol->supported = 0;
1812 break;
1813 }
1814
1815 retval = 0;
1816 }
1817
1818 return retval;
1819}
1820
1821static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1822{
1823 struct igb_adapter *adapter = netdev_priv(netdev);
1824
1825 wol->supported = WAKE_UCAST | WAKE_MCAST |
1826 WAKE_BCAST | WAKE_MAGIC;
1827 wol->wolopts = 0;
1828
1829 /* this function will set ->supported = 0 and return 1 if wol is not
1830 * supported by this hardware */
e1b86d84
RW
1831 if (igb_wol_exclusion(adapter, wol) ||
1832 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1833 return;
1834
1835 /* apply any specific unsupported masks here */
1836 switch (adapter->hw.device_id) {
1837 default:
1838 break;
1839 }
1840
1841 if (adapter->wol & E1000_WUFC_EX)
1842 wol->wolopts |= WAKE_UCAST;
1843 if (adapter->wol & E1000_WUFC_MC)
1844 wol->wolopts |= WAKE_MCAST;
1845 if (adapter->wol & E1000_WUFC_BC)
1846 wol->wolopts |= WAKE_BCAST;
1847 if (adapter->wol & E1000_WUFC_MAG)
1848 wol->wolopts |= WAKE_MAGIC;
1849
1850 return;
1851}
1852
1853static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1854{
1855 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
1856
1857 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1858 return -EOPNOTSUPP;
1859
e1b86d84
RW
1860 if (igb_wol_exclusion(adapter, wol) ||
1861 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1862 return wol->wolopts ? -EOPNOTSUPP : 0;
1863
9d5c8243
AK
1864 /* these settings will always override what we currently have */
1865 adapter->wol = 0;
1866
1867 if (wol->wolopts & WAKE_UCAST)
1868 adapter->wol |= E1000_WUFC_EX;
1869 if (wol->wolopts & WAKE_MCAST)
1870 adapter->wol |= E1000_WUFC_MC;
1871 if (wol->wolopts & WAKE_BCAST)
1872 adapter->wol |= E1000_WUFC_BC;
1873 if (wol->wolopts & WAKE_MAGIC)
1874 adapter->wol |= E1000_WUFC_MAG;
1875
e1b86d84
RW
1876 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1877
9d5c8243
AK
1878 return 0;
1879}
1880
9d5c8243
AK
1881/* bit defines for adapter->led_status */
1882#define IGB_LED_ON 0
1883
1884static int igb_phys_id(struct net_device *netdev, u32 data)
1885{
1886 struct igb_adapter *adapter = netdev_priv(netdev);
1887 struct e1000_hw *hw = &adapter->hw;
1888
1889 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1890 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1891
1892 igb_blink_led(hw);
1893 msleep_interruptible(data * 1000);
1894
1895 igb_led_off(hw);
1896 clear_bit(IGB_LED_ON, &adapter->led_status);
1897 igb_cleanup_led(hw);
1898
1899 return 0;
1900}
1901
1902static int igb_set_coalesce(struct net_device *netdev,
1903 struct ethtool_coalesce *ec)
1904{
1905 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1 1906 int i;
9d5c8243
AK
1907
1908 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1909 ((ec->rx_coalesce_usecs > 3) &&
1910 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1911 (ec->rx_coalesce_usecs == 2))
1912 return -EINVAL;
1913
1914 /* convert to rate of irq's per second */
6eb5a7f1 1915 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
9d5c8243 1916 adapter->itr_setting = ec->rx_coalesce_usecs;
6eb5a7f1
AD
1917 adapter->itr = IGB_START_ITR;
1918 } else {
1919 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1920 adapter->itr = adapter->itr_setting;
1921 }
9d5c8243 1922
047e0030
AD
1923 for (i = 0; i < adapter->num_q_vectors; i++) {
1924 struct igb_q_vector *q_vector = adapter->q_vector[i];
1925 q_vector->itr_val = adapter->itr;
1926 q_vector->set_itr = 1;
1927 }
9d5c8243
AK
1928
1929 return 0;
1930}
1931
1932static int igb_get_coalesce(struct net_device *netdev,
1933 struct ethtool_coalesce *ec)
1934{
1935 struct igb_adapter *adapter = netdev_priv(netdev);
1936
1937 if (adapter->itr_setting <= 3)
1938 ec->rx_coalesce_usecs = adapter->itr_setting;
1939 else
6eb5a7f1 1940 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
9d5c8243
AK
1941
1942 return 0;
1943}
1944
1945
1946static int igb_nway_reset(struct net_device *netdev)
1947{
1948 struct igb_adapter *adapter = netdev_priv(netdev);
1949 if (netif_running(netdev))
1950 igb_reinit_locked(adapter);
1951 return 0;
1952}
1953
1954static int igb_get_sset_count(struct net_device *netdev, int sset)
1955{
1956 switch (sset) {
1957 case ETH_SS_STATS:
1958 return IGB_STATS_LEN;
1959 case ETH_SS_TEST:
1960 return IGB_TEST_LEN;
1961 default:
1962 return -ENOTSUPP;
1963 }
1964}
1965
1966static void igb_get_ethtool_stats(struct net_device *netdev,
1967 struct ethtool_stats *stats, u64 *data)
1968{
1969 struct igb_adapter *adapter = netdev_priv(netdev);
1970 u64 *queue_stat;
8c0ab70a
JDB
1971 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1972 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
9d5c8243
AK
1973 int j;
1974 int i;
231835e4 1975 char *p = NULL;
9d5c8243
AK
1976
1977 igb_update_stats(adapter);
1978 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
231835e4
AK
1979 switch (igb_gstrings_stats[i].type) {
1980 case NETDEV_STATS:
1981 p = (char *) netdev +
1982 igb_gstrings_stats[i].stat_offset;
1983 break;
1984 case IGB_STATS:
1985 p = (char *) adapter +
1986 igb_gstrings_stats[i].stat_offset;
1987 break;
1988 }
1989
9d5c8243
AK
1990 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1991 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1992 }
e21ed353
AD
1993 for (j = 0; j < adapter->num_tx_queues; j++) {
1994 int k;
1995 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
8c0ab70a 1996 for (k = 0; k < stat_count_tx; k++)
e21ed353
AD
1997 data[i + k] = queue_stat[k];
1998 i += k;
1999 }
9d5c8243
AK
2000 for (j = 0; j < adapter->num_rx_queues; j++) {
2001 int k;
2002 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
8c0ab70a 2003 for (k = 0; k < stat_count_rx; k++)
9d5c8243
AK
2004 data[i + k] = queue_stat[k];
2005 i += k;
2006 }
2007}
2008
2009static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2010{
2011 struct igb_adapter *adapter = netdev_priv(netdev);
2012 u8 *p = data;
2013 int i;
2014
2015 switch (stringset) {
2016 case ETH_SS_TEST:
2017 memcpy(data, *igb_gstrings_test,
2018 IGB_TEST_LEN*ETH_GSTRING_LEN);
2019 break;
2020 case ETH_SS_STATS:
2021 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2022 memcpy(p, igb_gstrings_stats[i].stat_string,
2023 ETH_GSTRING_LEN);
2024 p += ETH_GSTRING_LEN;
2025 }
2026 for (i = 0; i < adapter->num_tx_queues; i++) {
2027 sprintf(p, "tx_queue_%u_packets", i);
2028 p += ETH_GSTRING_LEN;
2029 sprintf(p, "tx_queue_%u_bytes", i);
2030 p += ETH_GSTRING_LEN;
04a5fcaa
AD
2031 sprintf(p, "tx_queue_%u_restart", i);
2032 p += ETH_GSTRING_LEN;
9d5c8243
AK
2033 }
2034 for (i = 0; i < adapter->num_rx_queues; i++) {
2035 sprintf(p, "rx_queue_%u_packets", i);
2036 p += ETH_GSTRING_LEN;
2037 sprintf(p, "rx_queue_%u_bytes", i);
2038 p += ETH_GSTRING_LEN;
8c0ab70a
JDB
2039 sprintf(p, "rx_queue_%u_drops", i);
2040 p += ETH_GSTRING_LEN;
04a5fcaa
AD
2041 sprintf(p, "rx_queue_%u_csum_err", i);
2042 p += ETH_GSTRING_LEN;
2043 sprintf(p, "rx_queue_%u_alloc_failed", i);
2044 p += ETH_GSTRING_LEN;
9d5c8243
AK
2045 }
2046/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2047 break;
2048 }
2049}
2050
0fc0b732 2051static const struct ethtool_ops igb_ethtool_ops = {
9d5c8243
AK
2052 .get_settings = igb_get_settings,
2053 .set_settings = igb_set_settings,
2054 .get_drvinfo = igb_get_drvinfo,
2055 .get_regs_len = igb_get_regs_len,
2056 .get_regs = igb_get_regs,
2057 .get_wol = igb_get_wol,
2058 .set_wol = igb_set_wol,
2059 .get_msglevel = igb_get_msglevel,
2060 .set_msglevel = igb_set_msglevel,
2061 .nway_reset = igb_nway_reset,
2062 .get_link = ethtool_op_get_link,
2063 .get_eeprom_len = igb_get_eeprom_len,
2064 .get_eeprom = igb_get_eeprom,
2065 .set_eeprom = igb_set_eeprom,
2066 .get_ringparam = igb_get_ringparam,
2067 .set_ringparam = igb_set_ringparam,
2068 .get_pauseparam = igb_get_pauseparam,
2069 .set_pauseparam = igb_set_pauseparam,
2070 .get_rx_csum = igb_get_rx_csum,
2071 .set_rx_csum = igb_set_rx_csum,
2072 .get_tx_csum = igb_get_tx_csum,
2073 .set_tx_csum = igb_set_tx_csum,
2074 .get_sg = ethtool_op_get_sg,
2075 .set_sg = ethtool_op_set_sg,
2076 .get_tso = ethtool_op_get_tso,
2077 .set_tso = igb_set_tso,
2078 .self_test = igb_diag_test,
2079 .get_strings = igb_get_strings,
2080 .phys_id = igb_phys_id,
2081 .get_sset_count = igb_get_sset_count,
2082 .get_ethtool_stats = igb_get_ethtool_stats,
2083 .get_coalesce = igb_get_coalesce,
2084 .set_coalesce = igb_set_coalesce,
2085};
2086
2087void igb_set_ethtool_ops(struct net_device *netdev)
2088{
2089 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2090}
This page took 0.346505 seconds and 5 git commands to generate.