atl1c: duplicate atl1c_get_tpd
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
231835e4
AK
40enum {NETDEV_STATS, IGB_STATS};
41
9d5c8243
AK
42struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
231835e4 44 int type;
9d5c8243
AK
45 int sizeof_stat;
46 int stat_offset;
47};
48
231835e4
AK
49#define IGB_STAT(m) IGB_STATS, \
50 FIELD_SIZEOF(struct igb_adapter, m), \
51 offsetof(struct igb_adapter, m)
52#define IGB_NETDEV_STAT(m) NETDEV_STATS, \
53 FIELD_SIZEOF(struct net_device, m), \
54 offsetof(struct net_device, m)
55
9d5c8243
AK
56static const struct igb_stats igb_gstrings_stats[] = {
57 { "rx_packets", IGB_STAT(stats.gprc) },
58 { "tx_packets", IGB_STAT(stats.gptc) },
59 { "rx_bytes", IGB_STAT(stats.gorc) },
60 { "tx_bytes", IGB_STAT(stats.gotc) },
61 { "rx_broadcast", IGB_STAT(stats.bprc) },
62 { "tx_broadcast", IGB_STAT(stats.bptc) },
63 { "rx_multicast", IGB_STAT(stats.mprc) },
64 { "tx_multicast", IGB_STAT(stats.mptc) },
8d24e933
AK
65 { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66 { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67 { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
9d5c8243
AK
68 { "multicast", IGB_STAT(stats.mprc) },
69 { "collisions", IGB_STAT(stats.colc) },
8d24e933
AK
70 { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71 { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
9d5c8243 72 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
8d24e933 73 { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
9d5c8243 74 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
8d24e933 75 { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
9d5c8243
AK
76 { "rx_missed_errors", IGB_STAT(stats.mpc) },
77 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
8d24e933
AK
79 { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80 { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
9d5c8243
AK
81 { "tx_window_errors", IGB_STAT(stats.latecol) },
82 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83 { "tx_deferred_ok", IGB_STAT(stats.dc) },
84 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
87 { "tx_restart_queue", IGB_STAT(restart_queue) },
88 { "rx_long_length_errors", IGB_STAT(stats.roc) },
89 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
90 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
91 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
92 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
93 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
94 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
95 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
96 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
97 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
98 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
99 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
dda0e083 100 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
101 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
102 { "tx_smbus", IGB_STAT(stats.mgptc) },
103 { "rx_smbus", IGB_STAT(stats.mgprc) },
104 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
105};
106
107#define IGB_QUEUE_STATS_LEN \
8c0ab70a
JDB
108 (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
109 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
110 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
111 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
9d5c8243
AK
112#define IGB_GLOBAL_STATS_LEN \
113 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
114#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
115static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
116 "Register test (offline)", "Eeprom test (offline)",
117 "Interrupt test (offline)", "Loopback test (offline)",
118 "Link test (on/offline)"
119};
120#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
121
122static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
123{
124 struct igb_adapter *adapter = netdev_priv(netdev);
125 struct e1000_hw *hw = &adapter->hw;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128
129 ecmd->supported = (SUPPORTED_10baseT_Half |
130 SUPPORTED_10baseT_Full |
131 SUPPORTED_100baseT_Half |
132 SUPPORTED_100baseT_Full |
133 SUPPORTED_1000baseT_Full|
134 SUPPORTED_Autoneg |
135 SUPPORTED_TP);
136 ecmd->advertising = ADVERTISED_TP;
137
138 if (hw->mac.autoneg == 1) {
139 ecmd->advertising |= ADVERTISED_Autoneg;
140 /* the e1000 autoneg seems to match ethtool nicely */
141 ecmd->advertising |= hw->phy.autoneg_advertised;
142 }
143
144 ecmd->port = PORT_TP;
145 ecmd->phy_address = hw->phy.addr;
146 } else {
147 ecmd->supported = (SUPPORTED_1000baseT_Full |
148 SUPPORTED_FIBRE |
149 SUPPORTED_Autoneg);
150
151 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152 ADVERTISED_FIBRE |
153 ADVERTISED_Autoneg);
154
155 ecmd->port = PORT_FIBRE;
156 }
157
158 ecmd->transceiver = XCVR_INTERNAL;
159
160 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
161
162 adapter->hw.mac.ops.get_speed_and_duplex(hw,
163 &adapter->link_speed,
164 &adapter->link_duplex);
165 ecmd->speed = adapter->link_speed;
166
167 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
168 * and HALF_DUPLEX != DUPLEX_HALF */
169
170 if (adapter->link_duplex == FULL_DUPLEX)
171 ecmd->duplex = DUPLEX_FULL;
172 else
173 ecmd->duplex = DUPLEX_HALF;
174 } else {
175 ecmd->speed = -1;
176 ecmd->duplex = -1;
177 }
178
dcc3ae9a 179 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
9d5c8243
AK
180 return 0;
181}
182
183static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
184{
185 struct igb_adapter *adapter = netdev_priv(netdev);
186 struct e1000_hw *hw = &adapter->hw;
187
188 /* When SoL/IDER sessions are active, autoneg/speed/duplex
189 * cannot be changed */
190 if (igb_check_reset_block(hw)) {
191 dev_err(&adapter->pdev->dev, "Cannot change link "
192 "characteristics when SoL/IDER is active.\n");
193 return -EINVAL;
194 }
195
196 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
197 msleep(1);
198
199 if (ecmd->autoneg == AUTONEG_ENABLE) {
200 hw->mac.autoneg = 1;
dcc3ae9a
AD
201 hw->phy.autoneg_advertised = ecmd->advertising |
202 ADVERTISED_TP |
203 ADVERTISED_Autoneg;
9d5c8243 204 ecmd->advertising = hw->phy.autoneg_advertised;
0cce119a
AD
205 if (adapter->fc_autoneg)
206 hw->fc.requested_mode = e1000_fc_default;
dcc3ae9a 207 } else {
9d5c8243
AK
208 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
209 clear_bit(__IGB_RESETTING, &adapter->state);
210 return -EINVAL;
211 }
dcc3ae9a 212 }
9d5c8243
AK
213
214 /* reset the link */
9d5c8243
AK
215 if (netif_running(adapter->netdev)) {
216 igb_down(adapter);
217 igb_up(adapter);
218 } else
219 igb_reset(adapter);
220
221 clear_bit(__IGB_RESETTING, &adapter->state);
222 return 0;
223}
224
225static void igb_get_pauseparam(struct net_device *netdev,
226 struct ethtool_pauseparam *pause)
227{
228 struct igb_adapter *adapter = netdev_priv(netdev);
229 struct e1000_hw *hw = &adapter->hw;
230
231 pause->autoneg =
232 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
233
0cce119a 234 if (hw->fc.current_mode == e1000_fc_rx_pause)
9d5c8243 235 pause->rx_pause = 1;
0cce119a 236 else if (hw->fc.current_mode == e1000_fc_tx_pause)
9d5c8243 237 pause->tx_pause = 1;
0cce119a 238 else if (hw->fc.current_mode == e1000_fc_full) {
9d5c8243
AK
239 pause->rx_pause = 1;
240 pause->tx_pause = 1;
241 }
242}
243
244static int igb_set_pauseparam(struct net_device *netdev,
245 struct ethtool_pauseparam *pause)
246{
247 struct igb_adapter *adapter = netdev_priv(netdev);
248 struct e1000_hw *hw = &adapter->hw;
249 int retval = 0;
250
251 adapter->fc_autoneg = pause->autoneg;
252
253 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
254 msleep(1);
255
9d5c8243 256 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
0cce119a 257 hw->fc.requested_mode = e1000_fc_default;
9d5c8243
AK
258 if (netif_running(adapter->netdev)) {
259 igb_down(adapter);
260 igb_up(adapter);
261 } else
262 igb_reset(adapter);
0cce119a
AD
263 } else {
264 if (pause->rx_pause && pause->tx_pause)
265 hw->fc.requested_mode = e1000_fc_full;
266 else if (pause->rx_pause && !pause->tx_pause)
267 hw->fc.requested_mode = e1000_fc_rx_pause;
268 else if (!pause->rx_pause && pause->tx_pause)
269 hw->fc.requested_mode = e1000_fc_tx_pause;
270 else if (!pause->rx_pause && !pause->tx_pause)
271 hw->fc.requested_mode = e1000_fc_none;
272
273 hw->fc.current_mode = hw->fc.requested_mode;
274
dcc3ae9a
AD
275 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
276 igb_force_mac_fc(hw) : igb_setup_link(hw));
0cce119a 277 }
9d5c8243
AK
278
279 clear_bit(__IGB_RESETTING, &adapter->state);
280 return retval;
281}
282
283static u32 igb_get_rx_csum(struct net_device *netdev)
284{
285 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146 286 return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
9d5c8243
AK
287}
288
289static int igb_set_rx_csum(struct net_device *netdev, u32 data)
290{
291 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146
AD
292
293 if (data)
294 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
295 else
296 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
9d5c8243
AK
297
298 return 0;
299}
300
301static u32 igb_get_tx_csum(struct net_device *netdev)
302{
7d8eb29e 303 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
304}
305
306static int igb_set_tx_csum(struct net_device *netdev, u32 data)
307{
b9473560
JB
308 struct igb_adapter *adapter = netdev_priv(netdev);
309
310 if (data) {
7d8eb29e 311 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
b9473560
JB
312 if (adapter->hw.mac.type == e1000_82576)
313 netdev->features |= NETIF_F_SCTP_CSUM;
314 } else {
315 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
316 NETIF_F_SCTP_CSUM);
317 }
9d5c8243
AK
318
319 return 0;
320}
321
322static int igb_set_tso(struct net_device *netdev, u32 data)
323{
324 struct igb_adapter *adapter = netdev_priv(netdev);
325
7d8eb29e 326 if (data) {
9d5c8243 327 netdev->features |= NETIF_F_TSO;
9d5c8243 328 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
329 } else {
330 netdev->features &= ~NETIF_F_TSO;
9d5c8243 331 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 332 }
9d5c8243
AK
333
334 dev_info(&adapter->pdev->dev, "TSO is %s\n",
335 data ? "Enabled" : "Disabled");
336 return 0;
337}
338
339static u32 igb_get_msglevel(struct net_device *netdev)
340{
341 struct igb_adapter *adapter = netdev_priv(netdev);
342 return adapter->msg_enable;
343}
344
345static void igb_set_msglevel(struct net_device *netdev, u32 data)
346{
347 struct igb_adapter *adapter = netdev_priv(netdev);
348 adapter->msg_enable = data;
349}
350
351static int igb_get_regs_len(struct net_device *netdev)
352{
353#define IGB_REGS_LEN 551
354 return IGB_REGS_LEN * sizeof(u32);
355}
356
357static void igb_get_regs(struct net_device *netdev,
358 struct ethtool_regs *regs, void *p)
359{
360 struct igb_adapter *adapter = netdev_priv(netdev);
361 struct e1000_hw *hw = &adapter->hw;
362 u32 *regs_buff = p;
363 u8 i;
364
365 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
366
367 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
368
369 /* General Registers */
370 regs_buff[0] = rd32(E1000_CTRL);
371 regs_buff[1] = rd32(E1000_STATUS);
372 regs_buff[2] = rd32(E1000_CTRL_EXT);
373 regs_buff[3] = rd32(E1000_MDIC);
374 regs_buff[4] = rd32(E1000_SCTL);
375 regs_buff[5] = rd32(E1000_CONNSW);
376 regs_buff[6] = rd32(E1000_VET);
377 regs_buff[7] = rd32(E1000_LEDCTL);
378 regs_buff[8] = rd32(E1000_PBA);
379 regs_buff[9] = rd32(E1000_PBS);
380 regs_buff[10] = rd32(E1000_FRTIMER);
381 regs_buff[11] = rd32(E1000_TCPTIMER);
382
383 /* NVM Register */
384 regs_buff[12] = rd32(E1000_EECD);
385
386 /* Interrupt */
fe59de38
AD
387 /* Reading EICS for EICR because they read the
388 * same but EICS does not clear on read */
389 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
390 regs_buff[14] = rd32(E1000_EICS);
391 regs_buff[15] = rd32(E1000_EIMS);
392 regs_buff[16] = rd32(E1000_EIMC);
393 regs_buff[17] = rd32(E1000_EIAC);
394 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
395 /* Reading ICS for ICR because they read the
396 * same but ICS does not clear on read */
397 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
398 regs_buff[20] = rd32(E1000_ICS);
399 regs_buff[21] = rd32(E1000_IMS);
400 regs_buff[22] = rd32(E1000_IMC);
401 regs_buff[23] = rd32(E1000_IAC);
402 regs_buff[24] = rd32(E1000_IAM);
403 regs_buff[25] = rd32(E1000_IMIRVP);
404
405 /* Flow Control */
406 regs_buff[26] = rd32(E1000_FCAL);
407 regs_buff[27] = rd32(E1000_FCAH);
408 regs_buff[28] = rd32(E1000_FCTTV);
409 regs_buff[29] = rd32(E1000_FCRTL);
410 regs_buff[30] = rd32(E1000_FCRTH);
411 regs_buff[31] = rd32(E1000_FCRTV);
412
413 /* Receive */
414 regs_buff[32] = rd32(E1000_RCTL);
415 regs_buff[33] = rd32(E1000_RXCSUM);
416 regs_buff[34] = rd32(E1000_RLPML);
417 regs_buff[35] = rd32(E1000_RFCTL);
418 regs_buff[36] = rd32(E1000_MRQC);
e1739522 419 regs_buff[37] = rd32(E1000_VT_CTL);
9d5c8243
AK
420
421 /* Transmit */
422 regs_buff[38] = rd32(E1000_TCTL);
423 regs_buff[39] = rd32(E1000_TCTL_EXT);
424 regs_buff[40] = rd32(E1000_TIPG);
425 regs_buff[41] = rd32(E1000_DTXCTL);
426
427 /* Wake Up */
428 regs_buff[42] = rd32(E1000_WUC);
429 regs_buff[43] = rd32(E1000_WUFC);
430 regs_buff[44] = rd32(E1000_WUS);
431 regs_buff[45] = rd32(E1000_IPAV);
432 regs_buff[46] = rd32(E1000_WUPL);
433
434 /* MAC */
435 regs_buff[47] = rd32(E1000_PCS_CFG0);
436 regs_buff[48] = rd32(E1000_PCS_LCTL);
437 regs_buff[49] = rd32(E1000_PCS_LSTAT);
438 regs_buff[50] = rd32(E1000_PCS_ANADV);
439 regs_buff[51] = rd32(E1000_PCS_LPAB);
440 regs_buff[52] = rd32(E1000_PCS_NPTX);
441 regs_buff[53] = rd32(E1000_PCS_LPABNP);
442
443 /* Statistics */
444 regs_buff[54] = adapter->stats.crcerrs;
445 regs_buff[55] = adapter->stats.algnerrc;
446 regs_buff[56] = adapter->stats.symerrs;
447 regs_buff[57] = adapter->stats.rxerrc;
448 regs_buff[58] = adapter->stats.mpc;
449 regs_buff[59] = adapter->stats.scc;
450 regs_buff[60] = adapter->stats.ecol;
451 regs_buff[61] = adapter->stats.mcc;
452 regs_buff[62] = adapter->stats.latecol;
453 regs_buff[63] = adapter->stats.colc;
454 regs_buff[64] = adapter->stats.dc;
455 regs_buff[65] = adapter->stats.tncrs;
456 regs_buff[66] = adapter->stats.sec;
457 regs_buff[67] = adapter->stats.htdpmc;
458 regs_buff[68] = adapter->stats.rlec;
459 regs_buff[69] = adapter->stats.xonrxc;
460 regs_buff[70] = adapter->stats.xontxc;
461 regs_buff[71] = adapter->stats.xoffrxc;
462 regs_buff[72] = adapter->stats.xofftxc;
463 regs_buff[73] = adapter->stats.fcruc;
464 regs_buff[74] = adapter->stats.prc64;
465 regs_buff[75] = adapter->stats.prc127;
466 regs_buff[76] = adapter->stats.prc255;
467 regs_buff[77] = adapter->stats.prc511;
468 regs_buff[78] = adapter->stats.prc1023;
469 regs_buff[79] = adapter->stats.prc1522;
470 regs_buff[80] = adapter->stats.gprc;
471 regs_buff[81] = adapter->stats.bprc;
472 regs_buff[82] = adapter->stats.mprc;
473 regs_buff[83] = adapter->stats.gptc;
474 regs_buff[84] = adapter->stats.gorc;
475 regs_buff[86] = adapter->stats.gotc;
476 regs_buff[88] = adapter->stats.rnbc;
477 regs_buff[89] = adapter->stats.ruc;
478 regs_buff[90] = adapter->stats.rfc;
479 regs_buff[91] = adapter->stats.roc;
480 regs_buff[92] = adapter->stats.rjc;
481 regs_buff[93] = adapter->stats.mgprc;
482 regs_buff[94] = adapter->stats.mgpdc;
483 regs_buff[95] = adapter->stats.mgptc;
484 regs_buff[96] = adapter->stats.tor;
485 regs_buff[98] = adapter->stats.tot;
486 regs_buff[100] = adapter->stats.tpr;
487 regs_buff[101] = adapter->stats.tpt;
488 regs_buff[102] = adapter->stats.ptc64;
489 regs_buff[103] = adapter->stats.ptc127;
490 regs_buff[104] = adapter->stats.ptc255;
491 regs_buff[105] = adapter->stats.ptc511;
492 regs_buff[106] = adapter->stats.ptc1023;
493 regs_buff[107] = adapter->stats.ptc1522;
494 regs_buff[108] = adapter->stats.mptc;
495 regs_buff[109] = adapter->stats.bptc;
496 regs_buff[110] = adapter->stats.tsctc;
497 regs_buff[111] = adapter->stats.iac;
498 regs_buff[112] = adapter->stats.rpthc;
499 regs_buff[113] = adapter->stats.hgptc;
500 regs_buff[114] = adapter->stats.hgorc;
501 regs_buff[116] = adapter->stats.hgotc;
502 regs_buff[118] = adapter->stats.lenerrs;
503 regs_buff[119] = adapter->stats.scvpc;
504 regs_buff[120] = adapter->stats.hrmpc;
505
506 /* These should probably be added to e1000_regs.h instead */
507 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
9d5c8243
AK
508 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
509 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
510 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
511 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
512 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
513 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
514
515 for (i = 0; i < 4; i++)
516 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
517 for (i = 0; i < 4; i++)
518 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
519 for (i = 0; i < 4; i++)
520 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
525 for (i = 0; i < 4; i++)
526 regs_buff[141 + i] = rd32(E1000_RDH(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[145 + i] = rd32(E1000_RDT(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
531
532 for (i = 0; i < 10; i++)
533 regs_buff[153 + i] = rd32(E1000_EITR(i));
534 for (i = 0; i < 8; i++)
535 regs_buff[163 + i] = rd32(E1000_IMIR(i));
536 for (i = 0; i < 8; i++)
537 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
538 for (i = 0; i < 16; i++)
539 regs_buff[179 + i] = rd32(E1000_RAL(i));
540 for (i = 0; i < 16; i++)
541 regs_buff[195 + i] = rd32(E1000_RAH(i));
542
543 for (i = 0; i < 4; i++)
544 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
547 for (i = 0; i < 4; i++)
548 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
549 for (i = 0; i < 4; i++)
550 regs_buff[223 + i] = rd32(E1000_TDH(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[227 + i] = rd32(E1000_TDT(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
557 for (i = 0; i < 4; i++)
558 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
559 for (i = 0; i < 4; i++)
560 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
561
562 for (i = 0; i < 4; i++)
563 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
564 for (i = 0; i < 4; i++)
565 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
566 for (i = 0; i < 32; i++)
567 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
568 for (i = 0; i < 128; i++)
569 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
570 for (i = 0; i < 128; i++)
571 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
572 for (i = 0; i < 4; i++)
573 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
574
575 regs_buff[547] = rd32(E1000_TDFH);
576 regs_buff[548] = rd32(E1000_TDFT);
577 regs_buff[549] = rd32(E1000_TDFHS);
578 regs_buff[550] = rd32(E1000_TDFPC);
579
580}
581
582static int igb_get_eeprom_len(struct net_device *netdev)
583{
584 struct igb_adapter *adapter = netdev_priv(netdev);
585 return adapter->hw.nvm.word_size * 2;
586}
587
588static int igb_get_eeprom(struct net_device *netdev,
589 struct ethtool_eeprom *eeprom, u8 *bytes)
590{
591 struct igb_adapter *adapter = netdev_priv(netdev);
592 struct e1000_hw *hw = &adapter->hw;
593 u16 *eeprom_buff;
594 int first_word, last_word;
595 int ret_val = 0;
596 u16 i;
597
598 if (eeprom->len == 0)
599 return -EINVAL;
600
601 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
602
603 first_word = eeprom->offset >> 1;
604 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
605
606 eeprom_buff = kmalloc(sizeof(u16) *
607 (last_word - first_word + 1), GFP_KERNEL);
608 if (!eeprom_buff)
609 return -ENOMEM;
610
611 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 612 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
613 last_word - first_word + 1,
614 eeprom_buff);
615 else {
616 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 617 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
618 &eeprom_buff[i]);
619 if (ret_val)
620 break;
621 }
622 }
623
624 /* Device's eeprom is always little-endian, word addressable */
625 for (i = 0; i < last_word - first_word + 1; i++)
626 le16_to_cpus(&eeprom_buff[i]);
627
628 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
629 eeprom->len);
630 kfree(eeprom_buff);
631
632 return ret_val;
633}
634
635static int igb_set_eeprom(struct net_device *netdev,
636 struct ethtool_eeprom *eeprom, u8 *bytes)
637{
638 struct igb_adapter *adapter = netdev_priv(netdev);
639 struct e1000_hw *hw = &adapter->hw;
640 u16 *eeprom_buff;
641 void *ptr;
642 int max_len, first_word, last_word, ret_val = 0;
643 u16 i;
644
645 if (eeprom->len == 0)
646 return -EOPNOTSUPP;
647
648 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
649 return -EFAULT;
650
651 max_len = hw->nvm.word_size * 2;
652
653 first_word = eeprom->offset >> 1;
654 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
655 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
656 if (!eeprom_buff)
657 return -ENOMEM;
658
659 ptr = (void *)eeprom_buff;
660
661 if (eeprom->offset & 1) {
662 /* need read/modify/write of first changed EEPROM word */
663 /* only the second byte of the word is being modified */
312c75ae 664 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
665 &eeprom_buff[0]);
666 ptr++;
667 }
668 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
669 /* need read/modify/write of last changed EEPROM word */
670 /* only the first byte of the word is being modified */
312c75ae 671 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
672 &eeprom_buff[last_word - first_word]);
673 }
674
675 /* Device's eeprom is always little-endian, word addressable */
676 for (i = 0; i < last_word - first_word + 1; i++)
677 le16_to_cpus(&eeprom_buff[i]);
678
679 memcpy(ptr, bytes, eeprom->len);
680
681 for (i = 0; i < last_word - first_word + 1; i++)
682 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
683
312c75ae 684 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
685 last_word - first_word + 1, eeprom_buff);
686
687 /* Update the checksum over the first part of the EEPROM if needed
688 * and flush shadow RAM for 82573 controllers */
689 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
690 igb_update_nvm_checksum(hw);
691
692 kfree(eeprom_buff);
693 return ret_val;
694}
695
696static void igb_get_drvinfo(struct net_device *netdev,
697 struct ethtool_drvinfo *drvinfo)
698{
699 struct igb_adapter *adapter = netdev_priv(netdev);
700 char firmware_version[32];
701 u16 eeprom_data;
702
703 strncpy(drvinfo->driver, igb_driver_name, 32);
704 strncpy(drvinfo->version, igb_driver_version, 32);
705
706 /* EEPROM image version # is reported as firmware version # for
707 * 82575 controllers */
312c75ae 708 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
709 sprintf(firmware_version, "%d.%d-%d",
710 (eeprom_data & 0xF000) >> 12,
711 (eeprom_data & 0x0FF0) >> 4,
712 eeprom_data & 0x000F);
713
714 strncpy(drvinfo->fw_version, firmware_version, 32);
715 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
716 drvinfo->n_stats = IGB_STATS_LEN;
717 drvinfo->testinfo_len = IGB_TEST_LEN;
718 drvinfo->regdump_len = igb_get_regs_len(netdev);
719 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
720}
721
722static void igb_get_ringparam(struct net_device *netdev,
723 struct ethtool_ringparam *ring)
724{
725 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
726
727 ring->rx_max_pending = IGB_MAX_RXD;
728 ring->tx_max_pending = IGB_MAX_TXD;
729 ring->rx_mini_max_pending = 0;
730 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
731 ring->rx_pending = adapter->rx_ring_count;
732 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
733 ring->rx_mini_pending = 0;
734 ring->rx_jumbo_pending = 0;
735}
736
737static int igb_set_ringparam(struct net_device *netdev,
738 struct ethtool_ringparam *ring)
739{
740 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 741 struct igb_ring *temp_ring;
6d9f4fc4 742 int i, err = 0;
68fd9910 743 u32 new_rx_count, new_tx_count;
9d5c8243
AK
744
745 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
746 return -EINVAL;
747
748 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
749 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
750 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
751
752 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
753 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
754 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
755
68fd9910
AD
756 if ((new_tx_count == adapter->tx_ring_count) &&
757 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
758 /* nothing to do */
759 return 0;
760 }
761
6d9f4fc4
AD
762 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
763 msleep(1);
764
765 if (!netif_running(adapter->netdev)) {
766 for (i = 0; i < adapter->num_tx_queues; i++)
767 adapter->tx_ring[i].count = new_tx_count;
768 for (i = 0; i < adapter->num_rx_queues; i++)
769 adapter->rx_ring[i].count = new_rx_count;
770 adapter->tx_ring_count = new_tx_count;
771 adapter->rx_ring_count = new_rx_count;
772 goto clear_reset;
773 }
774
68fd9910
AD
775 if (adapter->num_tx_queues > adapter->num_rx_queues)
776 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
777 else
778 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
68fd9910 779
6d9f4fc4
AD
780 if (!temp_ring) {
781 err = -ENOMEM;
782 goto clear_reset;
783 }
9d5c8243 784
6d9f4fc4 785 igb_down(adapter);
9d5c8243
AK
786
787 /*
788 * We can't just free everything and then setup again,
789 * because the ISRs in MSI-X mode get passed pointers
790 * to the tx and rx ring structs.
791 */
68fd9910
AD
792 if (new_tx_count != adapter->tx_ring_count) {
793 memcpy(temp_ring, adapter->tx_ring,
794 adapter->num_tx_queues * sizeof(struct igb_ring));
795
9d5c8243 796 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910
AD
797 temp_ring[i].count = new_tx_count;
798 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
9d5c8243 799 if (err) {
68fd9910
AD
800 while (i) {
801 i--;
802 igb_free_tx_resources(&temp_ring[i]);
803 }
9d5c8243
AK
804 goto err_setup;
805 }
9d5c8243 806 }
68fd9910
AD
807
808 for (i = 0; i < adapter->num_tx_queues; i++)
809 igb_free_tx_resources(&adapter->tx_ring[i]);
810
811 memcpy(adapter->tx_ring, temp_ring,
812 adapter->num_tx_queues * sizeof(struct igb_ring));
813
814 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
815 }
816
817 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
818 memcpy(temp_ring, adapter->rx_ring,
819 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 820
68fd9910
AD
821 for (i = 0; i < adapter->num_rx_queues; i++) {
822 temp_ring[i].count = new_rx_count;
823 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
9d5c8243 824 if (err) {
68fd9910
AD
825 while (i) {
826 i--;
827 igb_free_rx_resources(&temp_ring[i]);
828 }
9d5c8243
AK
829 goto err_setup;
830 }
831
9d5c8243 832 }
68fd9910
AD
833
834 for (i = 0; i < adapter->num_rx_queues; i++)
835 igb_free_rx_resources(&adapter->rx_ring[i]);
836
837 memcpy(adapter->rx_ring, temp_ring,
838 adapter->num_rx_queues * sizeof(struct igb_ring));
839
840 adapter->rx_ring_count = new_rx_count;
9d5c8243 841 }
9d5c8243 842err_setup:
6d9f4fc4 843 igb_up(adapter);
68fd9910 844 vfree(temp_ring);
6d9f4fc4
AD
845clear_reset:
846 clear_bit(__IGB_RESETTING, &adapter->state);
9d5c8243
AK
847 return err;
848}
849
850/* ethtool register test data */
851struct igb_reg_test {
852 u16 reg;
2d064c06
AD
853 u16 reg_offset;
854 u16 array_len;
855 u16 test_type;
9d5c8243
AK
856 u32 mask;
857 u32 write;
858};
859
860/* In the hardware, registers are laid out either singly, in arrays
861 * spaced 0x100 bytes apart, or in contiguous tables. We assume
862 * most tests take place on arrays or single registers (handled
863 * as a single-element array) and special-case the tables.
864 * Table tests are always pattern tests.
865 *
866 * We also make provision for some required setup steps by specifying
867 * registers to be written without any read-back testing.
868 */
869
870#define PATTERN_TEST 1
871#define SET_READ_TEST 2
872#define WRITE_NO_TEST 3
873#define TABLE32_TEST 4
874#define TABLE64_TEST_LO 5
875#define TABLE64_TEST_HI 6
876
2d064c06
AD
877/* 82576 reg test */
878static struct igb_reg_test reg_test_82576[] = {
879 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
880 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
881 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
882 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
883 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
884 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
885 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
886 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
887 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
889 /* Enable all RX queues before testing. */
890 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
891 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
892 /* RDH is read-only for 82576, only test RDT. */
893 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 894 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 895 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 896 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
897 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
898 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
899 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
900 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
901 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
902 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
903 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
906 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
907 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
908 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
909 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
910 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
911 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
912 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
913 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
914 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
915 { 0, 0, 0, 0 }
916};
917
918/* 82575 register test */
9d5c8243 919static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
920 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
922 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
923 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
925 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 927 /* Enable all four RX queues before testing. */
2d064c06 928 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 929 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
930 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
932 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
933 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
934 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
935 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
939 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
940 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
941 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
942 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
943 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
944 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
945 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
946 { 0, 0, 0, 0 }
947};
948
949static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
950 int reg, u32 mask, u32 write)
951{
2753f4ce 952 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
953 u32 pat, val;
954 u32 _test[] =
955 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
956 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
957 wr32(reg, (_test[pat] & write));
958 val = rd32(reg);
9d5c8243
AK
959 if (val != (_test[pat] & write & mask)) {
960 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
961 "failed: got 0x%08X expected 0x%08X\n",
962 reg, val, (_test[pat] & write & mask));
963 *data = reg;
964 return 1;
965 }
966 }
967 return 0;
968}
969
970static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
971 int reg, u32 mask, u32 write)
972{
2753f4ce 973 struct e1000_hw *hw = &adapter->hw;
9d5c8243 974 u32 val;
2753f4ce
AD
975 wr32(reg, write & mask);
976 val = rd32(reg);
9d5c8243
AK
977 if ((write & mask) != (val & mask)) {
978 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
979 " got 0x%08X expected 0x%08X\n", reg,
980 (val & mask), (write & mask));
981 *data = reg;
982 return 1;
983 }
984 return 0;
985}
986
987#define REG_PATTERN_TEST(reg, mask, write) \
988 do { \
989 if (reg_pattern_test(adapter, data, reg, mask, write)) \
990 return 1; \
991 } while (0)
992
993#define REG_SET_AND_CHECK(reg, mask, write) \
994 do { \
995 if (reg_set_and_check(adapter, data, reg, mask, write)) \
996 return 1; \
997 } while (0)
998
999static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1000{
1001 struct e1000_hw *hw = &adapter->hw;
1002 struct igb_reg_test *test;
1003 u32 value, before, after;
1004 u32 i, toggle;
1005
1006 toggle = 0x7FFFF3FF;
2d064c06
AD
1007
1008 switch (adapter->hw.mac.type) {
1009 case e1000_82576:
1010 test = reg_test_82576;
1011 break;
1012 default:
1013 test = reg_test_82575;
1014 break;
1015 }
9d5c8243
AK
1016
1017 /* Because the status register is such a special case,
1018 * we handle it separately from the rest of the register
1019 * tests. Some bits are read-only, some toggle, and some
1020 * are writable on newer MACs.
1021 */
1022 before = rd32(E1000_STATUS);
1023 value = (rd32(E1000_STATUS) & toggle);
1024 wr32(E1000_STATUS, toggle);
1025 after = rd32(E1000_STATUS) & toggle;
1026 if (value != after) {
1027 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1028 "got: 0x%08X expected: 0x%08X\n", after, value);
1029 *data = 1;
1030 return 1;
1031 }
1032 /* restore previous status */
1033 wr32(E1000_STATUS, before);
1034
1035 /* Perform the remainder of the register test, looping through
1036 * the test table until we either fail or reach the null entry.
1037 */
1038 while (test->reg) {
1039 for (i = 0; i < test->array_len; i++) {
1040 switch (test->test_type) {
1041 case PATTERN_TEST:
2753f4ce
AD
1042 REG_PATTERN_TEST(test->reg +
1043 (i * test->reg_offset),
9d5c8243
AK
1044 test->mask,
1045 test->write);
1046 break;
1047 case SET_READ_TEST:
2753f4ce
AD
1048 REG_SET_AND_CHECK(test->reg +
1049 (i * test->reg_offset),
9d5c8243
AK
1050 test->mask,
1051 test->write);
1052 break;
1053 case WRITE_NO_TEST:
1054 writel(test->write,
1055 (adapter->hw.hw_addr + test->reg)
2d064c06 1056 + (i * test->reg_offset));
9d5c8243
AK
1057 break;
1058 case TABLE32_TEST:
1059 REG_PATTERN_TEST(test->reg + (i * 4),
1060 test->mask,
1061 test->write);
1062 break;
1063 case TABLE64_TEST_LO:
1064 REG_PATTERN_TEST(test->reg + (i * 8),
1065 test->mask,
1066 test->write);
1067 break;
1068 case TABLE64_TEST_HI:
1069 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1070 test->mask,
1071 test->write);
1072 break;
1073 }
1074 }
1075 test++;
1076 }
1077
1078 *data = 0;
1079 return 0;
1080}
1081
1082static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1083{
1084 u16 temp;
1085 u16 checksum = 0;
1086 u16 i;
1087
1088 *data = 0;
1089 /* Read and add up the contents of the EEPROM */
1090 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
312c75ae 1091 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
9d5c8243
AK
1092 < 0) {
1093 *data = 1;
1094 break;
1095 }
1096 checksum += temp;
1097 }
1098
1099 /* If Checksum is not Correct return error else test passed */
1100 if ((checksum != (u16) NVM_SUM) && !(*data))
1101 *data = 2;
1102
1103 return *data;
1104}
1105
1106static irqreturn_t igb_test_intr(int irq, void *data)
1107{
1108 struct net_device *netdev = (struct net_device *) data;
1109 struct igb_adapter *adapter = netdev_priv(netdev);
1110 struct e1000_hw *hw = &adapter->hw;
1111
1112 adapter->test_icr |= rd32(E1000_ICR);
1113
1114 return IRQ_HANDLED;
1115}
1116
1117static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1118{
1119 struct e1000_hw *hw = &adapter->hw;
1120 struct net_device *netdev = adapter->netdev;
2753f4ce 1121 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1122 u32 irq = adapter->pdev->irq;
1123
1124 *data = 0;
1125
1126 /* Hook up test interrupt handler just for this test */
2753f4ce 1127 if (adapter->msix_entries)
9d5c8243
AK
1128 /* NOTE: we don't test MSI-X interrupts here, yet */
1129 return 0;
2753f4ce
AD
1130
1131 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
1132 shared_int = false;
1133 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1134 *data = 1;
1135 return -1;
1136 }
1137 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1138 netdev->name, netdev)) {
1139 shared_int = false;
1140 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1141 netdev->name, netdev)) {
1142 *data = 1;
1143 return -1;
1144 }
1145 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1146 (shared_int ? "shared" : "unshared"));
9d5c8243
AK
1147 /* Disable all the interrupts */
1148 wr32(E1000_IMC, 0xFFFFFFFF);
1149 msleep(10);
1150
2753f4ce
AD
1151 /* Define all writable bits for ICS */
1152 switch(hw->mac.type) {
1153 case e1000_82575:
1154 ics_mask = 0x37F47EDD;
1155 break;
1156 case e1000_82576:
1157 ics_mask = 0x77D4FBFD;
1158 break;
1159 default:
1160 ics_mask = 0x7FFFFFFF;
1161 break;
1162 }
1163
9d5c8243 1164 /* Test each interrupt */
2753f4ce 1165 for (; i < 31; i++) {
9d5c8243
AK
1166 /* Interrupt to test */
1167 mask = 1 << i;
1168
2753f4ce
AD
1169 if (!(mask & ics_mask))
1170 continue;
1171
9d5c8243
AK
1172 if (!shared_int) {
1173 /* Disable the interrupt to be reported in
1174 * the cause register and then force the same
1175 * interrupt and see if one gets posted. If
1176 * an interrupt was posted to the bus, the
1177 * test failed.
1178 */
1179 adapter->test_icr = 0;
2753f4ce
AD
1180
1181 /* Flush any pending interrupts */
1182 wr32(E1000_ICR, ~0);
1183
1184 wr32(E1000_IMC, mask);
1185 wr32(E1000_ICS, mask);
9d5c8243
AK
1186 msleep(10);
1187
1188 if (adapter->test_icr & mask) {
1189 *data = 3;
1190 break;
1191 }
1192 }
1193
1194 /* Enable the interrupt to be reported in
1195 * the cause register and then force the same
1196 * interrupt and see if one gets posted. If
1197 * an interrupt was not posted to the bus, the
1198 * test failed.
1199 */
1200 adapter->test_icr = 0;
2753f4ce
AD
1201
1202 /* Flush any pending interrupts */
1203 wr32(E1000_ICR, ~0);
1204
9d5c8243
AK
1205 wr32(E1000_IMS, mask);
1206 wr32(E1000_ICS, mask);
1207 msleep(10);
1208
1209 if (!(adapter->test_icr & mask)) {
1210 *data = 4;
1211 break;
1212 }
1213
1214 if (!shared_int) {
1215 /* Disable the other interrupts to be reported in
1216 * the cause register and then force the other
1217 * interrupts and see if any get posted. If
1218 * an interrupt was posted to the bus, the
1219 * test failed.
1220 */
1221 adapter->test_icr = 0;
2753f4ce
AD
1222
1223 /* Flush any pending interrupts */
1224 wr32(E1000_ICR, ~0);
1225
1226 wr32(E1000_IMC, ~mask);
1227 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1228 msleep(10);
1229
2753f4ce 1230 if (adapter->test_icr & mask) {
9d5c8243
AK
1231 *data = 5;
1232 break;
1233 }
1234 }
1235 }
1236
1237 /* Disable all the interrupts */
2753f4ce 1238 wr32(E1000_IMC, ~0);
9d5c8243
AK
1239 msleep(10);
1240
1241 /* Unhook test interrupt handler */
1242 free_irq(irq, netdev);
1243
1244 return *data;
1245}
1246
1247static void igb_free_desc_rings(struct igb_adapter *adapter)
1248{
1249 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1250 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1251 struct pci_dev *pdev = adapter->pdev;
1252 int i;
1253
1254 if (tx_ring->desc && tx_ring->buffer_info) {
1255 for (i = 0; i < tx_ring->count; i++) {
1256 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1257 if (buf->dma)
1258 pci_unmap_single(pdev, buf->dma, buf->length,
1259 PCI_DMA_TODEVICE);
1260 if (buf->skb)
1261 dev_kfree_skb(buf->skb);
1262 }
1263 }
1264
1265 if (rx_ring->desc && rx_ring->buffer_info) {
1266 for (i = 0; i < rx_ring->count; i++) {
1267 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1268 if (buf->dma)
1269 pci_unmap_single(pdev, buf->dma,
1270 IGB_RXBUFFER_2048,
1271 PCI_DMA_FROMDEVICE);
1272 if (buf->skb)
1273 dev_kfree_skb(buf->skb);
1274 }
1275 }
1276
1277 if (tx_ring->desc) {
1278 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1279 tx_ring->dma);
1280 tx_ring->desc = NULL;
1281 }
1282 if (rx_ring->desc) {
1283 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1284 rx_ring->dma);
1285 rx_ring->desc = NULL;
1286 }
1287
1288 kfree(tx_ring->buffer_info);
1289 tx_ring->buffer_info = NULL;
1290 kfree(rx_ring->buffer_info);
1291 rx_ring->buffer_info = NULL;
1292
1293 return;
1294}
1295
1296static int igb_setup_desc_rings(struct igb_adapter *adapter)
1297{
1298 struct e1000_hw *hw = &adapter->hw;
1299 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1300 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1301 struct pci_dev *pdev = adapter->pdev;
85e8d004 1302 struct igb_buffer *buffer_info;
9d5c8243
AK
1303 u32 rctl;
1304 int i, ret_val;
1305
1306 /* Setup Tx descriptor ring and Tx buffers */
1307
1308 if (!tx_ring->count)
1309 tx_ring->count = IGB_DEFAULT_TXD;
1310
1311 tx_ring->buffer_info = kcalloc(tx_ring->count,
1312 sizeof(struct igb_buffer),
1313 GFP_KERNEL);
1314 if (!tx_ring->buffer_info) {
1315 ret_val = 1;
1316 goto err_nomem;
1317 }
1318
85e8d004 1319 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1320 tx_ring->size = ALIGN(tx_ring->size, 4096);
1321 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1322 &tx_ring->dma);
1323 if (!tx_ring->desc) {
1324 ret_val = 2;
1325 goto err_nomem;
1326 }
1327 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1328
1329 wr32(E1000_TDBAL(0),
1330 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1331 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1332 wr32(E1000_TDLEN(0),
85e8d004 1333 tx_ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243
AK
1334 wr32(E1000_TDH(0), 0);
1335 wr32(E1000_TDT(0), 0);
1336 wr32(E1000_TCTL,
1337 E1000_TCTL_PSP | E1000_TCTL_EN |
1338 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1339 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1340
1341 for (i = 0; i < tx_ring->count; i++) {
85e8d004 1342 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
1343 struct sk_buff *skb;
1344 unsigned int size = 1024;
1345
85e8d004 1346 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243
AK
1347 skb = alloc_skb(size, GFP_KERNEL);
1348 if (!skb) {
1349 ret_val = 3;
1350 goto err_nomem;
1351 }
1352 skb_put(skb, size);
85e8d004
AD
1353 buffer_info = &tx_ring->buffer_info[i];
1354 buffer_info->skb = skb;
1355 buffer_info->length = skb->len;
1356 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1357 PCI_DMA_TODEVICE);
1358 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1359 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1360 E1000_ADVTXD_PAYLEN_SHIFT;
1361 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1362 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1363 E1000_TXD_CMD_IFCS |
1364 E1000_TXD_CMD_RS |
1365 E1000_ADVTXD_DTYP_DATA |
1366 E1000_ADVTXD_DCMD_DEXT);
9d5c8243
AK
1367 }
1368
1369 /* Setup Rx descriptor ring and Rx buffers */
1370
1371 if (!rx_ring->count)
1372 rx_ring->count = IGB_DEFAULT_RXD;
1373
1374 rx_ring->buffer_info = kcalloc(rx_ring->count,
1375 sizeof(struct igb_buffer),
1376 GFP_KERNEL);
1377 if (!rx_ring->buffer_info) {
1378 ret_val = 4;
1379 goto err_nomem;
1380 }
1381
85e8d004 1382 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
1383 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1384 &rx_ring->dma);
1385 if (!rx_ring->desc) {
1386 ret_val = 5;
1387 goto err_nomem;
1388 }
1389 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1390
1391 rctl = rd32(E1000_RCTL);
1392 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1393 wr32(E1000_RDBAL(0),
1394 ((u64) rx_ring->dma & 0xFFFFFFFF));
1395 wr32(E1000_RDBAH(0),
1396 ((u64) rx_ring->dma >> 32));
1397 wr32(E1000_RDLEN(0), rx_ring->size);
1398 wr32(E1000_RDH(0), 0);
1399 wr32(E1000_RDT(0), 0);
69d728ba 1400 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
cbd347ad 1401 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
9d5c8243
AK
1402 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1403 wr32(E1000_RCTL, rctl);
85e8d004 1404 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
9d5c8243
AK
1405
1406 for (i = 0; i < rx_ring->count; i++) {
85e8d004 1407 union e1000_adv_rx_desc *rx_desc;
9d5c8243
AK
1408 struct sk_buff *skb;
1409
85e8d004
AD
1410 buffer_info = &rx_ring->buffer_info[i];
1411 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
9d5c8243
AK
1412 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1413 GFP_KERNEL);
1414 if (!skb) {
1415 ret_val = 6;
1416 goto err_nomem;
1417 }
1418 skb_reserve(skb, NET_IP_ALIGN);
85e8d004
AD
1419 buffer_info->skb = skb;
1420 buffer_info->dma = pci_map_single(pdev, skb->data,
1421 IGB_RXBUFFER_2048,
1422 PCI_DMA_FROMDEVICE);
1423 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
1424 memset(skb->data, 0x00, skb->len);
1425 }
1426
1427 return 0;
1428
1429err_nomem:
1430 igb_free_desc_rings(adapter);
1431 return ret_val;
1432}
1433
1434static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1435{
1436 struct e1000_hw *hw = &adapter->hw;
1437
1438 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1439 igb_write_phy_reg(hw, 29, 0x001F);
1440 igb_write_phy_reg(hw, 30, 0x8FFC);
1441 igb_write_phy_reg(hw, 29, 0x001A);
1442 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1443}
1444
1445static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1446{
1447 struct e1000_hw *hw = &adapter->hw;
1448 u32 ctrl_reg = 0;
9d5c8243
AK
1449
1450 hw->mac.autoneg = false;
1451
1452 if (hw->phy.type == e1000_phy_m88) {
1453 /* Auto-MDI/MDIX Off */
f5f4cf08 1454 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1455 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1456 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1457 /* autoneg off */
f5f4cf08 1458 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1459 }
1460
1461 ctrl_reg = rd32(E1000_CTRL);
1462
1463 /* force 1000, set loopback */
f5f4cf08 1464 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1465
1466 /* Now set up the MAC to the same speed/duplex as the PHY. */
1467 ctrl_reg = rd32(E1000_CTRL);
1468 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1469 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1470 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1471 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
cdfa9f64
AD
1472 E1000_CTRL_FD | /* Force Duplex to FULL */
1473 E1000_CTRL_SLU); /* Set link up enable bit */
9d5c8243 1474
cdfa9f64 1475 if (hw->phy.type == e1000_phy_m88)
9d5c8243 1476 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
9d5c8243
AK
1477
1478 wr32(E1000_CTRL, ctrl_reg);
1479
1480 /* Disable the receiver on the PHY so when a cable is plugged in, the
1481 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1482 */
1483 if (hw->phy.type == e1000_phy_m88)
1484 igb_phy_disable_receiver(adapter);
1485
1486 udelay(500);
1487
1488 return 0;
1489}
1490
1491static int igb_set_phy_loopback(struct igb_adapter *adapter)
1492{
1493 return igb_integrated_phy_loopback(adapter);
1494}
1495
1496static int igb_setup_loopback_test(struct igb_adapter *adapter)
1497{
1498 struct e1000_hw *hw = &adapter->hw;
2d064c06 1499 u32 reg;
9d5c8243 1500
dcc3ae9a 1501 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
2d064c06
AD
1502 reg = rd32(E1000_RCTL);
1503 reg |= E1000_RCTL_LBM_TCVR;
1504 wr32(E1000_RCTL, reg);
1505
1506 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1507
1508 reg = rd32(E1000_CTRL);
1509 reg &= ~(E1000_CTRL_RFCE |
1510 E1000_CTRL_TFCE |
1511 E1000_CTRL_LRST);
1512 reg |= E1000_CTRL_SLU |
2753f4ce 1513 E1000_CTRL_FD;
2d064c06
AD
1514 wr32(E1000_CTRL, reg);
1515
1516 /* Unset switch control to serdes energy detect */
1517 reg = rd32(E1000_CONNSW);
1518 reg &= ~E1000_CONNSW_ENRGSRC;
1519 wr32(E1000_CONNSW, reg);
1520
1521 /* Set PCS register for forced speed */
1522 reg = rd32(E1000_PCS_LCTL);
1523 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1524 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1525 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1526 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1527 E1000_PCS_LCTL_FSD | /* Force Speed */
1528 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1529 wr32(E1000_PCS_LCTL, reg);
1530
9d5c8243
AK
1531 return 0;
1532 } else if (hw->phy.media_type == e1000_media_type_copper) {
1533 return igb_set_phy_loopback(adapter);
1534 }
1535
1536 return 7;
1537}
1538
1539static void igb_loopback_cleanup(struct igb_adapter *adapter)
1540{
1541 struct e1000_hw *hw = &adapter->hw;
1542 u32 rctl;
1543 u16 phy_reg;
1544
1545 rctl = rd32(E1000_RCTL);
1546 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1547 wr32(E1000_RCTL, rctl);
1548
1549 hw->mac.autoneg = true;
f5f4cf08 1550 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1551 if (phy_reg & MII_CR_LOOPBACK) {
1552 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1553 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1554 igb_phy_sw_reset(hw);
1555 }
1556}
1557
1558static void igb_create_lbtest_frame(struct sk_buff *skb,
1559 unsigned int frame_size)
1560{
1561 memset(skb->data, 0xFF, frame_size);
1562 frame_size &= ~1;
1563 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1564 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1565 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1566}
1567
1568static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1569{
1570 frame_size &= ~1;
1571 if (*(skb->data + 3) == 0xFF)
1572 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1573 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1574 return 0;
1575 return 13;
1576}
1577
1578static int igb_run_loopback_test(struct igb_adapter *adapter)
1579{
1580 struct e1000_hw *hw = &adapter->hw;
1581 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1582 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1583 struct pci_dev *pdev = adapter->pdev;
1584 int i, j, k, l, lc, good_cnt;
1585 int ret_val = 0;
1586 unsigned long time;
1587
1588 wr32(E1000_RDT(0), rx_ring->count - 1);
1589
1590 /* Calculate the loop count based on the largest descriptor ring
1591 * The idea is to wrap the largest ring a number of times using 64
1592 * send/receive pairs during each loop
1593 */
1594
1595 if (rx_ring->count <= tx_ring->count)
1596 lc = ((tx_ring->count / 64) * 2) + 1;
1597 else
1598 lc = ((rx_ring->count / 64) * 2) + 1;
1599
1600 k = l = 0;
1601 for (j = 0; j <= lc; j++) { /* loop count loop */
1602 for (i = 0; i < 64; i++) { /* send the packets */
1603 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1604 1024);
1605 pci_dma_sync_single_for_device(pdev,
1606 tx_ring->buffer_info[k].dma,
1607 tx_ring->buffer_info[k].length,
1608 PCI_DMA_TODEVICE);
1609 k++;
1610 if (k == tx_ring->count)
1611 k = 0;
1612 }
1613 wr32(E1000_TDT(0), k);
1614 msleep(200);
1615 time = jiffies; /* set the start time for the receive */
1616 good_cnt = 0;
1617 do { /* receive the sent packets */
1618 pci_dma_sync_single_for_cpu(pdev,
1619 rx_ring->buffer_info[l].dma,
1620 IGB_RXBUFFER_2048,
1621 PCI_DMA_FROMDEVICE);
1622
1623 ret_val = igb_check_lbtest_frame(
1624 rx_ring->buffer_info[l].skb, 1024);
1625 if (!ret_val)
1626 good_cnt++;
1627 l++;
1628 if (l == rx_ring->count)
1629 l = 0;
1630 /* time + 20 msecs (200 msecs on 2.4) is more than
1631 * enough time to complete the receives, if it's
1632 * exceeded, break and error off
1633 */
1634 } while (good_cnt < 64 && jiffies < (time + 20));
1635 if (good_cnt != 64) {
1636 ret_val = 13; /* ret_val is the same as mis-compare */
1637 break;
1638 }
1639 if (jiffies >= (time + 20)) {
1640 ret_val = 14; /* error code for time out error */
1641 break;
1642 }
1643 } /* end loop count loop */
1644 return ret_val;
1645}
1646
1647static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1648{
1649 /* PHY loopback cannot be performed if SoL/IDER
1650 * sessions are active */
1651 if (igb_check_reset_block(&adapter->hw)) {
1652 dev_err(&adapter->pdev->dev,
1653 "Cannot do PHY loopback test "
1654 "when SoL/IDER is active.\n");
1655 *data = 0;
1656 goto out;
1657 }
1658 *data = igb_setup_desc_rings(adapter);
1659 if (*data)
1660 goto out;
1661 *data = igb_setup_loopback_test(adapter);
1662 if (*data)
1663 goto err_loopback;
1664 *data = igb_run_loopback_test(adapter);
1665 igb_loopback_cleanup(adapter);
1666
1667err_loopback:
1668 igb_free_desc_rings(adapter);
1669out:
1670 return *data;
1671}
1672
1673static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1674{
1675 struct e1000_hw *hw = &adapter->hw;
1676 *data = 0;
1677 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1678 int i = 0;
1679 hw->mac.serdes_has_link = false;
1680
1681 /* On some blade server designs, link establishment
1682 * could take as long as 2-3 minutes */
1683 do {
1684 hw->mac.ops.check_for_link(&adapter->hw);
1685 if (hw->mac.serdes_has_link)
1686 return *data;
1687 msleep(20);
1688 } while (i++ < 3750);
1689
1690 *data = 1;
1691 } else {
1692 hw->mac.ops.check_for_link(&adapter->hw);
1693 if (hw->mac.autoneg)
1694 msleep(4000);
1695
1696 if (!(rd32(E1000_STATUS) &
1697 E1000_STATUS_LU))
1698 *data = 1;
1699 }
1700 return *data;
1701}
1702
1703static void igb_diag_test(struct net_device *netdev,
1704 struct ethtool_test *eth_test, u64 *data)
1705{
1706 struct igb_adapter *adapter = netdev_priv(netdev);
1707 u16 autoneg_advertised;
1708 u8 forced_speed_duplex, autoneg;
1709 bool if_running = netif_running(netdev);
1710
1711 set_bit(__IGB_TESTING, &adapter->state);
1712 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1713 /* Offline tests */
1714
1715 /* save speed, duplex, autoneg settings */
1716 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1717 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1718 autoneg = adapter->hw.mac.autoneg;
1719
1720 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1721
1722 /* Link test performed before hardware reset so autoneg doesn't
1723 * interfere with test result */
1724 if (igb_link_test(adapter, &data[4]))
1725 eth_test->flags |= ETH_TEST_FL_FAILED;
1726
1727 if (if_running)
1728 /* indicate we're in test mode */
1729 dev_close(netdev);
1730 else
1731 igb_reset(adapter);
1732
1733 if (igb_reg_test(adapter, &data[0]))
1734 eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736 igb_reset(adapter);
1737 if (igb_eeprom_test(adapter, &data[1]))
1738 eth_test->flags |= ETH_TEST_FL_FAILED;
1739
1740 igb_reset(adapter);
1741 if (igb_intr_test(adapter, &data[2]))
1742 eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744 igb_reset(adapter);
1745 if (igb_loopback_test(adapter, &data[3]))
1746 eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748 /* restore speed, duplex, autoneg settings */
1749 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1750 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1751 adapter->hw.mac.autoneg = autoneg;
1752
1753 /* force this routine to wait until autoneg complete/timeout */
1754 adapter->hw.phy.autoneg_wait_to_complete = true;
1755 igb_reset(adapter);
1756 adapter->hw.phy.autoneg_wait_to_complete = false;
1757
1758 clear_bit(__IGB_TESTING, &adapter->state);
1759 if (if_running)
1760 dev_open(netdev);
1761 } else {
1762 dev_info(&adapter->pdev->dev, "online testing starting\n");
1763 /* Online tests */
1764 if (igb_link_test(adapter, &data[4]))
1765 eth_test->flags |= ETH_TEST_FL_FAILED;
1766
1767 /* Online tests aren't run; pass by default */
1768 data[0] = 0;
1769 data[1] = 0;
1770 data[2] = 0;
1771 data[3] = 0;
1772
1773 clear_bit(__IGB_TESTING, &adapter->state);
1774 }
1775 msleep_interruptible(4 * 1000);
1776}
1777
1778static int igb_wol_exclusion(struct igb_adapter *adapter,
1779 struct ethtool_wolinfo *wol)
1780{
1781 struct e1000_hw *hw = &adapter->hw;
1782 int retval = 1; /* fail by default */
1783
1784 switch (hw->device_id) {
1785 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1786 /* WoL not supported */
1787 wol->supported = 0;
1788 break;
1789 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1790 case E1000_DEV_ID_82576_FIBER:
1791 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1792 /* Wake events not supported on port B */
1793 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1794 wol->supported = 0;
1795 break;
1796 }
7dfc16fa
AD
1797 /* return success for non excluded adapter ports */
1798 retval = 0;
1799 break;
c8ea5ea9
AD
1800 case E1000_DEV_ID_82576_QUAD_COPPER:
1801 /* quad port adapters only support WoL on port A */
1802 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1803 wol->supported = 0;
1804 break;
1805 }
1806 /* return success for non excluded adapter ports */
1807 retval = 0;
1808 break;
9d5c8243
AK
1809 default:
1810 /* dual port cards only support WoL on port A from now on
1811 * unless it was enabled in the eeprom for port B
1812 * so exclude FUNC_1 ports from having WoL enabled */
1813 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1814 !adapter->eeprom_wol) {
1815 wol->supported = 0;
1816 break;
1817 }
1818
1819 retval = 0;
1820 }
1821
1822 return retval;
1823}
1824
1825static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1826{
1827 struct igb_adapter *adapter = netdev_priv(netdev);
1828
1829 wol->supported = WAKE_UCAST | WAKE_MCAST |
1830 WAKE_BCAST | WAKE_MAGIC;
1831 wol->wolopts = 0;
1832
1833 /* this function will set ->supported = 0 and return 1 if wol is not
1834 * supported by this hardware */
e1b86d84
RW
1835 if (igb_wol_exclusion(adapter, wol) ||
1836 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1837 return;
1838
1839 /* apply any specific unsupported masks here */
1840 switch (adapter->hw.device_id) {
1841 default:
1842 break;
1843 }
1844
1845 if (adapter->wol & E1000_WUFC_EX)
1846 wol->wolopts |= WAKE_UCAST;
1847 if (adapter->wol & E1000_WUFC_MC)
1848 wol->wolopts |= WAKE_MCAST;
1849 if (adapter->wol & E1000_WUFC_BC)
1850 wol->wolopts |= WAKE_BCAST;
1851 if (adapter->wol & E1000_WUFC_MAG)
1852 wol->wolopts |= WAKE_MAGIC;
1853
1854 return;
1855}
1856
1857static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1858{
1859 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
1860
1861 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1862 return -EOPNOTSUPP;
1863
e1b86d84
RW
1864 if (igb_wol_exclusion(adapter, wol) ||
1865 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1866 return wol->wolopts ? -EOPNOTSUPP : 0;
1867
9d5c8243
AK
1868 /* these settings will always override what we currently have */
1869 adapter->wol = 0;
1870
1871 if (wol->wolopts & WAKE_UCAST)
1872 adapter->wol |= E1000_WUFC_EX;
1873 if (wol->wolopts & WAKE_MCAST)
1874 adapter->wol |= E1000_WUFC_MC;
1875 if (wol->wolopts & WAKE_BCAST)
1876 adapter->wol |= E1000_WUFC_BC;
1877 if (wol->wolopts & WAKE_MAGIC)
1878 adapter->wol |= E1000_WUFC_MAG;
1879
e1b86d84
RW
1880 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1881
9d5c8243
AK
1882 return 0;
1883}
1884
9d5c8243
AK
1885/* bit defines for adapter->led_status */
1886#define IGB_LED_ON 0
1887
1888static int igb_phys_id(struct net_device *netdev, u32 data)
1889{
1890 struct igb_adapter *adapter = netdev_priv(netdev);
1891 struct e1000_hw *hw = &adapter->hw;
1892
1893 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1894 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1895
1896 igb_blink_led(hw);
1897 msleep_interruptible(data * 1000);
1898
1899 igb_led_off(hw);
1900 clear_bit(IGB_LED_ON, &adapter->led_status);
1901 igb_cleanup_led(hw);
1902
1903 return 0;
1904}
1905
1906static int igb_set_coalesce(struct net_device *netdev,
1907 struct ethtool_coalesce *ec)
1908{
1909 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1
AD
1910 struct e1000_hw *hw = &adapter->hw;
1911 int i;
9d5c8243
AK
1912
1913 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1914 ((ec->rx_coalesce_usecs > 3) &&
1915 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1916 (ec->rx_coalesce_usecs == 2))
1917 return -EINVAL;
1918
1919 /* convert to rate of irq's per second */
6eb5a7f1 1920 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
9d5c8243 1921 adapter->itr_setting = ec->rx_coalesce_usecs;
6eb5a7f1
AD
1922 adapter->itr = IGB_START_ITR;
1923 } else {
1924 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1925 adapter->itr = adapter->itr_setting;
1926 }
9d5c8243 1927
6eb5a7f1
AD
1928 for (i = 0; i < adapter->num_rx_queues; i++)
1929 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
9d5c8243
AK
1930
1931 return 0;
1932}
1933
1934static int igb_get_coalesce(struct net_device *netdev,
1935 struct ethtool_coalesce *ec)
1936{
1937 struct igb_adapter *adapter = netdev_priv(netdev);
1938
1939 if (adapter->itr_setting <= 3)
1940 ec->rx_coalesce_usecs = adapter->itr_setting;
1941 else
6eb5a7f1 1942 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
9d5c8243
AK
1943
1944 return 0;
1945}
1946
1947
1948static int igb_nway_reset(struct net_device *netdev)
1949{
1950 struct igb_adapter *adapter = netdev_priv(netdev);
1951 if (netif_running(netdev))
1952 igb_reinit_locked(adapter);
1953 return 0;
1954}
1955
1956static int igb_get_sset_count(struct net_device *netdev, int sset)
1957{
1958 switch (sset) {
1959 case ETH_SS_STATS:
1960 return IGB_STATS_LEN;
1961 case ETH_SS_TEST:
1962 return IGB_TEST_LEN;
1963 default:
1964 return -ENOTSUPP;
1965 }
1966}
1967
1968static void igb_get_ethtool_stats(struct net_device *netdev,
1969 struct ethtool_stats *stats, u64 *data)
1970{
1971 struct igb_adapter *adapter = netdev_priv(netdev);
1972 u64 *queue_stat;
8c0ab70a
JDB
1973 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1974 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
9d5c8243
AK
1975 int j;
1976 int i;
231835e4 1977 char *p = NULL;
9d5c8243
AK
1978
1979 igb_update_stats(adapter);
1980 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
231835e4
AK
1981 switch (igb_gstrings_stats[i].type) {
1982 case NETDEV_STATS:
1983 p = (char *) netdev +
1984 igb_gstrings_stats[i].stat_offset;
1985 break;
1986 case IGB_STATS:
1987 p = (char *) adapter +
1988 igb_gstrings_stats[i].stat_offset;
1989 break;
1990 }
1991
9d5c8243
AK
1992 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1993 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1994 }
e21ed353
AD
1995 for (j = 0; j < adapter->num_tx_queues; j++) {
1996 int k;
1997 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
8c0ab70a 1998 for (k = 0; k < stat_count_tx; k++)
e21ed353
AD
1999 data[i + k] = queue_stat[k];
2000 i += k;
2001 }
9d5c8243
AK
2002 for (j = 0; j < adapter->num_rx_queues; j++) {
2003 int k;
2004 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
8c0ab70a 2005 for (k = 0; k < stat_count_rx; k++)
9d5c8243
AK
2006 data[i + k] = queue_stat[k];
2007 i += k;
2008 }
2009}
2010
2011static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2012{
2013 struct igb_adapter *adapter = netdev_priv(netdev);
2014 u8 *p = data;
2015 int i;
2016
2017 switch (stringset) {
2018 case ETH_SS_TEST:
2019 memcpy(data, *igb_gstrings_test,
2020 IGB_TEST_LEN*ETH_GSTRING_LEN);
2021 break;
2022 case ETH_SS_STATS:
2023 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2024 memcpy(p, igb_gstrings_stats[i].stat_string,
2025 ETH_GSTRING_LEN);
2026 p += ETH_GSTRING_LEN;
2027 }
2028 for (i = 0; i < adapter->num_tx_queues; i++) {
2029 sprintf(p, "tx_queue_%u_packets", i);
2030 p += ETH_GSTRING_LEN;
2031 sprintf(p, "tx_queue_%u_bytes", i);
2032 p += ETH_GSTRING_LEN;
2033 }
2034 for (i = 0; i < adapter->num_rx_queues; i++) {
2035 sprintf(p, "rx_queue_%u_packets", i);
2036 p += ETH_GSTRING_LEN;
2037 sprintf(p, "rx_queue_%u_bytes", i);
2038 p += ETH_GSTRING_LEN;
8c0ab70a
JDB
2039 sprintf(p, "rx_queue_%u_drops", i);
2040 p += ETH_GSTRING_LEN;
9d5c8243
AK
2041 }
2042/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2043 break;
2044 }
2045}
2046
0fc0b732 2047static const struct ethtool_ops igb_ethtool_ops = {
9d5c8243
AK
2048 .get_settings = igb_get_settings,
2049 .set_settings = igb_set_settings,
2050 .get_drvinfo = igb_get_drvinfo,
2051 .get_regs_len = igb_get_regs_len,
2052 .get_regs = igb_get_regs,
2053 .get_wol = igb_get_wol,
2054 .set_wol = igb_set_wol,
2055 .get_msglevel = igb_get_msglevel,
2056 .set_msglevel = igb_set_msglevel,
2057 .nway_reset = igb_nway_reset,
2058 .get_link = ethtool_op_get_link,
2059 .get_eeprom_len = igb_get_eeprom_len,
2060 .get_eeprom = igb_get_eeprom,
2061 .set_eeprom = igb_set_eeprom,
2062 .get_ringparam = igb_get_ringparam,
2063 .set_ringparam = igb_set_ringparam,
2064 .get_pauseparam = igb_get_pauseparam,
2065 .set_pauseparam = igb_set_pauseparam,
2066 .get_rx_csum = igb_get_rx_csum,
2067 .set_rx_csum = igb_set_rx_csum,
2068 .get_tx_csum = igb_get_tx_csum,
2069 .set_tx_csum = igb_set_tx_csum,
2070 .get_sg = ethtool_op_get_sg,
2071 .set_sg = ethtool_op_set_sg,
2072 .get_tso = ethtool_op_get_tso,
2073 .set_tso = igb_set_tso,
2074 .self_test = igb_diag_test,
2075 .get_strings = igb_get_strings,
2076 .phys_id = igb_phys_id,
2077 .get_sset_count = igb_get_sset_count,
2078 .get_ethtool_stats = igb_get_ethtool_stats,
2079 .get_coalesce = igb_get_coalesce,
2080 .set_coalesce = igb_set_coalesce,
2081};
2082
2083void igb_set_ethtool_ops(struct net_device *netdev)
2084{
2085 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2086}
This page took 0.384403 seconds and 5 git commands to generate.