igb: fix two minor items found during code review
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
c54106bb 41#include <linux/pci-aspm.h>
9d5c8243
AK
42#include <linux/delay.h>
43#include <linux/interrupt.h>
44#include <linux/if_ether.h>
40a914fa 45#include <linux/aer.h>
421e02f0 46#ifdef CONFIG_IGB_DCA
fe4506b6
JC
47#include <linux/dca.h>
48#endif
9d5c8243
AK
49#include "igb.h"
50
0024fd00 51#define DRV_VERSION "1.2.45-k2"
9d5c8243
AK
52char igb_driver_name[] = "igb";
53char igb_driver_version[] = DRV_VERSION;
54static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
2d064c06 56static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
9d5c8243 57
9d5c8243
AK
58static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60};
61
62static struct pci_device_id igb_pci_tbl[] = {
2d064c06
AD
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
9d5c8243
AK
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
71};
72
73MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75void igb_reset(struct igb_adapter *);
76static int igb_setup_all_tx_resources(struct igb_adapter *);
77static int igb_setup_all_rx_resources(struct igb_adapter *);
78static void igb_free_all_tx_resources(struct igb_adapter *);
79static void igb_free_all_rx_resources(struct igb_adapter *);
9d5c8243
AK
80void igb_update_stats(struct igb_adapter *);
81static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82static void __devexit igb_remove(struct pci_dev *pdev);
83static int igb_sw_init(struct igb_adapter *);
84static int igb_open(struct net_device *);
85static int igb_close(struct net_device *);
86static void igb_configure_tx(struct igb_adapter *);
87static void igb_configure_rx(struct igb_adapter *);
88static void igb_setup_rctl(struct igb_adapter *);
89static void igb_clean_all_tx_rings(struct igb_adapter *);
90static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
91static void igb_clean_tx_ring(struct igb_ring *);
92static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
93static void igb_set_multi(struct net_device *);
94static void igb_update_phy_info(unsigned long);
95static void igb_watchdog(unsigned long);
96static void igb_watchdog_task(struct work_struct *);
97static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100static struct net_device_stats *igb_get_stats(struct net_device *);
101static int igb_change_mtu(struct net_device *, int);
102static int igb_set_mac(struct net_device *, void *);
103static irqreturn_t igb_intr(int irq, void *);
104static irqreturn_t igb_intr_msi(int irq, void *);
105static irqreturn_t igb_msix_other(int irq, void *);
106static irqreturn_t igb_msix_rx(int irq, void *);
107static irqreturn_t igb_msix_tx(int irq, void *);
108static int igb_clean_rx_ring_msix(struct napi_struct *, int);
421e02f0 109#ifdef CONFIG_IGB_DCA
fe4506b6
JC
110static void igb_update_rx_dca(struct igb_ring *);
111static void igb_update_tx_dca(struct igb_ring *);
112static void igb_setup_dca(struct igb_adapter *);
421e02f0 113#endif /* CONFIG_IGB_DCA */
3b644cf6 114static bool igb_clean_tx_irq(struct igb_ring *);
661086df 115static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
116static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
118static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119static void igb_tx_timeout(struct net_device *);
120static void igb_reset_task(struct work_struct *);
121static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122static void igb_vlan_rx_add_vid(struct net_device *, u16);
123static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124static void igb_restore_vlan(struct igb_adapter *);
125
126static int igb_suspend(struct pci_dev *, pm_message_t);
127#ifdef CONFIG_PM
128static int igb_resume(struct pci_dev *);
129#endif
130static void igb_shutdown(struct pci_dev *);
421e02f0 131#ifdef CONFIG_IGB_DCA
fe4506b6
JC
132static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
137};
138#endif
9d5c8243
AK
139
140#ifdef CONFIG_NET_POLL_CONTROLLER
141/* for netdump / net console */
142static void igb_netpoll(struct net_device *);
143#endif
144
145static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148static void igb_io_resume(struct pci_dev *);
149
150static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
154};
155
156
157static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162#ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166#endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
169};
170
7dfc16fa
AD
171static int global_quad_port_a; /* global quad port a indication */
172
9d5c8243
AK
173MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177
178#ifdef DEBUG
179/**
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
182 **/
183char *igb_get_hw_dev_name(struct e1000_hw *hw)
184{
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
187}
188#endif
189
190/**
191 * igb_init_module - Driver Registration Routine
192 *
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
195 **/
196static int __init igb_init_module(void)
197{
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
201
202 printk(KERN_INFO "%s\n", igb_copyright);
203
7dfc16fa
AD
204 global_quad_port_a = 0;
205
421e02f0 206#ifdef CONFIG_IGB_DCA
fe4506b6
JC
207 dca_register_notify(&dca_notifier);
208#endif
bbd98fe4
AD
209
210 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
211 return ret;
212}
213
214module_init(igb_init_module);
215
216/**
217 * igb_exit_module - Driver Exit Cleanup Routine
218 *
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
221 **/
222static void __exit igb_exit_module(void)
223{
421e02f0 224#ifdef CONFIG_IGB_DCA
fe4506b6
JC
225 dca_unregister_notify(&dca_notifier);
226#endif
9d5c8243
AK
227 pci_unregister_driver(&igb_driver);
228}
229
230module_exit(igb_exit_module);
231
26bc19ec
AD
232#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233/**
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
236 *
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
239 **/
240static void igb_cache_ring_register(struct igb_adapter *adapter)
241{
242 int i;
243
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
250 */
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
263 }
264}
265
9d5c8243
AK
266/**
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
269 *
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
272 **/
273static int igb_alloc_queues(struct igb_adapter *adapter)
274{
275 int i;
276
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
281
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
287 }
288
6eb5a7f1
AD
289 adapter->rx_ring->buddy = adapter->tx_ring;
290
661086df
PWJ
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 293 ring->count = adapter->tx_ring_count;
661086df
PWJ
294 ring->adapter = adapter;
295 ring->queue_index = i;
296 }
9d5c8243
AK
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 299 ring->count = adapter->rx_ring_count;
9d5c8243 300 ring->adapter = adapter;
844290e5 301 ring->queue_index = i;
9d5c8243
AK
302 ring->itr_register = E1000_ITR;
303
844290e5 304 /* set a default napi handler for each rx_ring */
661086df 305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243 306 }
26bc19ec
AD
307
308 igb_cache_ring_register(adapter);
9d5c8243
AK
309 return 0;
310}
311
a88f10ec
AD
312static void igb_free_queues(struct igb_adapter *adapter)
313{
314 int i;
315
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
318
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
321}
322
9d5c8243
AK
323#define IGB_N0_QUEUE -1
324static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
326{
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
329 u32 ivar, index;
330
331 switch (hw->mac.type) {
332 case e1000_82575:
9d5c8243
AK
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
340 }
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
345 }
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
347 break;
348 case e1000_82576:
26bc19ec 349 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
26bc19ec 354 index = (rx_queue >> 1);
2d064c06 355 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 356 if (rx_queue & 0x1) {
2d064c06
AD
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
26bc19ec
AD
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
2d064c06
AD
364 }
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
367 }
368 if (tx_queue > IGB_N0_QUEUE) {
26bc19ec 369 index = (tx_queue >> 1);
2d064c06 370 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 371 if (tx_queue & 0x1) {
2d064c06
AD
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
26bc19ec
AD
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
2d064c06
AD
379 }
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
382 }
383 break;
384 default:
385 BUG();
386 break;
387 }
9d5c8243
AK
388}
389
390/**
391 * igb_configure_msix - Configure MSI-X hardware
392 *
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
395 **/
396static void igb_configure_msix(struct igb_adapter *adapter)
397{
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
401
402 adapter->eims_enable_mask = 0;
2d064c06
AD
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
eebbbdba 407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
2d064c06 408 E1000_GPIE_NSICR);
9d5c8243
AK
409
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
6eb5a7f1 415 writel(tx_ring->itr_val,
9d5c8243
AK
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
419 }
420
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
25ac3c24 423 rx_ring->buddy = NULL;
9d5c8243
AK
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
6eb5a7f1 427 writel(rx_ring->itr_val,
9d5c8243
AK
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
431 }
432
433
434 /* set vector for other causes, i.e. link changes */
2d064c06
AD
435 switch (hw->mac.type) {
436 case e1000_82575:
9d5c8243
AK
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
439
9d5c8243
AK
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
447
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 450 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 451
2d064c06
AD
452 break;
453
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
457
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
9d5c8243
AK
465 wrfl();
466}
467
468/**
469 * igb_request_msix - Initialize MSI-X interrupts
470 *
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
473 **/
474static int igb_request_msix(struct igb_adapter *adapter)
475{
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
478
479 vector = 0;
480
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
cb7b48f6 483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
9d5c8243
AK
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 490 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
491 vector++;
492 }
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
9d5c8243
AK
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
844290e5
PW
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
9d5c8243
AK
509 vector++;
510 }
511
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
516
9d5c8243
AK
517 igb_configure_msix(adapter);
518 return 0;
519out:
520 return err;
521}
522
523static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524{
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
7dfc16fa 529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
530 pci_disable_msi(adapter->pdev);
531 return;
532}
533
534
535/**
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
537 *
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
540 **/
541static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542{
543 int err;
544 int numvecs, i;
545
83b7180d
AD
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
9d5c8243
AK
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553 GFP_KERNEL);
554 if (!adapter->msix_entries)
555 goto msi_only;
556
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
559
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
562 numvecs);
563 if (err == 0)
34a20e89 564 goto out;
9d5c8243
AK
565
566 igb_reset_interrupt_capability(adapter);
567
568 /* If we can't do MSI-X, try MSI */
569msi_only:
570 adapter->num_rx_queues = 1;
661086df 571 adapter->num_tx_queues = 1;
9d5c8243 572 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 573 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 574out:
661086df 575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
577 return;
578}
579
580/**
581 * igb_request_irq - initialize interrupts
582 *
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
585 **/
586static int igb_request_irq(struct igb_adapter *adapter)
587{
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
590 int err = 0;
591
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
844290e5 594 if (!err)
9d5c8243 595 goto request_done;
9d5c8243
AK
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 599 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
844290e5 604 } else {
2d064c06
AD
605 switch (hw->mac.type) {
606 case e1000_82575:
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609 break;
610 case e1000_82576:
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
612 break;
613 default:
614 break;
615 }
9d5c8243 616 }
844290e5 617
7dfc16fa 618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
621 if (!err)
622 goto request_done;
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
7dfc16fa 625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
626 }
627
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
630
6cb5e577 631 if (err)
9d5c8243
AK
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633 err);
9d5c8243
AK
634
635request_done:
636 return err;
637}
638
639static void igb_free_irq(struct igb_adapter *adapter)
640{
641 struct net_device *netdev = adapter->netdev;
642
643 if (adapter->msix_entries) {
644 int vector = 0, i;
645
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
652
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
654 return;
655 }
656
657 free_irq(adapter->pdev->irq, netdev);
658}
659
660/**
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
663 **/
664static void igb_irq_disable(struct igb_adapter *adapter)
665{
666 struct e1000_hw *hw = &adapter->hw;
667
668 if (adapter->msix_entries) {
844290e5 669 wr32(E1000_EIAM, 0);
9d5c8243
AK
670 wr32(E1000_EIMC, ~0);
671 wr32(E1000_EIAC, 0);
672 }
844290e5
PW
673
674 wr32(E1000_IAM, 0);
9d5c8243
AK
675 wr32(E1000_IMC, ~0);
676 wrfl();
677 synchronize_irq(adapter->pdev->irq);
678}
679
680/**
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
683 **/
684static void igb_irq_enable(struct igb_adapter *adapter)
685{
686 struct e1000_hw *hw = &adapter->hw;
687
688 if (adapter->msix_entries) {
844290e5
PW
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
dda0e083 692 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5
PW
693 } else {
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
696 }
9d5c8243
AK
697}
698
699static void igb_update_mng_vlan(struct igb_adapter *adapter)
700{
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
710 } else
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714 (vid != old_vid) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
717 } else
718 adapter->mng_vlan_id = vid;
719 }
720}
721
722/**
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
725 *
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
729 *
730 **/
731static void igb_release_hw_control(struct igb_adapter *adapter)
732{
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ctrl_ext;
735
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
738 wr32(E1000_CTRL_EXT,
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740}
741
742
743/**
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
746 *
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
750 *
751 **/
752static void igb_get_hw_control(struct igb_adapter *adapter)
753{
754 struct e1000_hw *hw = &adapter->hw;
755 u32 ctrl_ext;
756
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
759 wr32(E1000_CTRL_EXT,
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761}
762
9d5c8243
AK
763/**
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
766 **/
767static void igb_configure(struct igb_adapter *adapter)
768{
769 struct net_device *netdev = adapter->netdev;
770 int i;
771
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
774
775 igb_restore_vlan(adapter);
9d5c8243
AK
776
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
662d7205
AD
780
781 igb_rx_fifo_flush_82575(&adapter->hw);
782
9d5c8243
AK
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
789 }
790
791
792 adapter->tx_queue_len = netdev->tx_queue_len;
793}
794
795
796/**
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
799 **/
800
801int igb_up(struct igb_adapter *adapter)
802{
803 struct e1000_hw *hw = &adapter->hw;
804 int i;
805
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
808
809 clear_bit(__IGB_DOWN, &adapter->state);
810
844290e5
PW
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
9d5c8243 814 igb_configure_msix(adapter);
9d5c8243
AK
815
816 /* Clear any pending interrupts. */
817 rd32(E1000_ICR);
818 igb_irq_enable(adapter);
819
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
822 return 0;
823}
824
825void igb_down(struct igb_adapter *adapter)
826{
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
829 u32 tctl, rctl;
830 int i;
831
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
835
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
840
fd2ea0a7 841 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
842
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
848 wrfl();
849 msleep(10);
850
844290e5
PW
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 853
9d5c8243
AK
854 igb_irq_disable(adapter);
855
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
858
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
04fe6358
AD
861
862 /* record the stats before reset*/
863 igb_update_stats(adapter);
864
9d5c8243
AK
865 adapter->link_speed = 0;
866 adapter->link_duplex = 0;
867
3023682e
JK
868 if (!pci_channel_offline(adapter->pdev))
869 igb_reset(adapter);
9d5c8243
AK
870 igb_clean_all_tx_rings(adapter);
871 igb_clean_all_rx_rings(adapter);
872}
873
874void igb_reinit_locked(struct igb_adapter *adapter)
875{
876 WARN_ON(in_interrupt());
877 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
878 msleep(1);
879 igb_down(adapter);
880 igb_up(adapter);
881 clear_bit(__IGB_RESETTING, &adapter->state);
882}
883
884void igb_reset(struct igb_adapter *adapter)
885{
886 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
887 struct e1000_mac_info *mac = &hw->mac;
888 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
889 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
890 u16 hwm;
891
892 /* Repartition Pba for greater than 9k mtu
893 * To take effect CTRL.RST is required.
894 */
fa4dfae0
AD
895 switch (mac->type) {
896 case e1000_82576:
2d064c06 897 pba = E1000_PBA_64K;
fa4dfae0
AD
898 break;
899 case e1000_82575:
900 default:
901 pba = E1000_PBA_34K;
902 break;
2d064c06 903 }
9d5c8243 904
2d064c06
AD
905 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
906 (mac->type < e1000_82576)) {
9d5c8243
AK
907 /* adjust PBA for jumbo frames */
908 wr32(E1000_PBA, pba);
909
910 /* To maintain wire speed transmits, the Tx FIFO should be
911 * large enough to accommodate two full transmit packets,
912 * rounded up to the next 1KB and expressed in KB. Likewise,
913 * the Rx FIFO should be large enough to accommodate at least
914 * one full receive packet and is similarly rounded up and
915 * expressed in KB. */
916 pba = rd32(E1000_PBA);
917 /* upper 16 bits has Tx packet buffer allocation size in KB */
918 tx_space = pba >> 16;
919 /* lower 16 bits has Rx packet buffer allocation size in KB */
920 pba &= 0xffff;
921 /* the tx fifo also stores 16 bytes of information about the tx
922 * but don't include ethernet FCS because hardware appends it */
923 min_tx_space = (adapter->max_frame_size +
924 sizeof(struct e1000_tx_desc) -
925 ETH_FCS_LEN) * 2;
926 min_tx_space = ALIGN(min_tx_space, 1024);
927 min_tx_space >>= 10;
928 /* software strips receive CRC, so leave room for it */
929 min_rx_space = adapter->max_frame_size;
930 min_rx_space = ALIGN(min_rx_space, 1024);
931 min_rx_space >>= 10;
932
933 /* If current Tx allocation is less than the min Tx FIFO size,
934 * and the min Tx FIFO size is less than the current Rx FIFO
935 * allocation, take space away from current Rx allocation */
936 if (tx_space < min_tx_space &&
937 ((min_tx_space - tx_space) < pba)) {
938 pba = pba - (min_tx_space - tx_space);
939
940 /* if short on rx space, rx wins and must trump tx
941 * adjustment */
942 if (pba < min_rx_space)
943 pba = min_rx_space;
944 }
2d064c06 945 wr32(E1000_PBA, pba);
9d5c8243 946 }
9d5c8243
AK
947
948 /* flow control settings */
949 /* The high water mark must be low enough to fit one full frame
950 * (or the size used for early receive) above it in the Rx FIFO.
951 * Set it to the lower of:
952 * - 90% of the Rx FIFO size, or
953 * - the full Rx FIFO size minus one full frame */
954 hwm = min(((pba << 10) * 9 / 10),
2d064c06 955 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 956
2d064c06
AD
957 if (mac->type < e1000_82576) {
958 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
959 fc->low_water = fc->high_water - 8;
960 } else {
961 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
962 fc->low_water = fc->high_water - 16;
963 }
9d5c8243
AK
964 fc->pause_time = 0xFFFF;
965 fc->send_xon = 1;
966 fc->type = fc->original_type;
967
968 /* Allow time for pending master requests to run */
969 adapter->hw.mac.ops.reset_hw(&adapter->hw);
970 wr32(E1000_WUC, 0);
971
972 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
973 dev_err(&adapter->pdev->dev, "Hardware Error\n");
974
975 igb_update_mng_vlan(adapter);
976
977 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
978 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
979
980 igb_reset_adaptive(&adapter->hw);
f5f4cf08 981 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
982}
983
2e5c6922
SH
984static const struct net_device_ops igb_netdev_ops = {
985 .ndo_open = igb_open,
986 .ndo_stop = igb_close,
00829823 987 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922
SH
988 .ndo_get_stats = igb_get_stats,
989 .ndo_set_multicast_list = igb_set_multi,
990 .ndo_set_mac_address = igb_set_mac,
991 .ndo_change_mtu = igb_change_mtu,
992 .ndo_do_ioctl = igb_ioctl,
993 .ndo_tx_timeout = igb_tx_timeout,
994 .ndo_validate_addr = eth_validate_addr,
995 .ndo_vlan_rx_register = igb_vlan_rx_register,
996 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
997 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
998#ifdef CONFIG_NET_POLL_CONTROLLER
999 .ndo_poll_controller = igb_netpoll,
1000#endif
1001};
1002
9d5c8243
AK
1003/**
1004 * igb_probe - Device Initialization Routine
1005 * @pdev: PCI device information struct
1006 * @ent: entry in igb_pci_tbl
1007 *
1008 * Returns 0 on success, negative on failure
1009 *
1010 * igb_probe initializes an adapter identified by a pci_dev structure.
1011 * The OS initialization, configuring of the adapter private structure,
1012 * and a hardware reset occur.
1013 **/
1014static int __devinit igb_probe(struct pci_dev *pdev,
1015 const struct pci_device_id *ent)
1016{
1017 struct net_device *netdev;
1018 struct igb_adapter *adapter;
1019 struct e1000_hw *hw;
c54106bb 1020 struct pci_dev *us_dev;
9d5c8243
AK
1021 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1022 unsigned long mmio_start, mmio_len;
450c87c8 1023 int err, pci_using_dac, pos;
c54106bb 1024 u16 eeprom_data = 0, state = 0;
9d5c8243
AK
1025 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1026 u32 part_num;
1027
aed5dec3 1028 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1029 if (err)
1030 return err;
1031
1032 pci_using_dac = 0;
1033 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1034 if (!err) {
1035 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1036 if (!err)
1037 pci_using_dac = 1;
1038 } else {
1039 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1040 if (err) {
1041 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1042 if (err) {
1043 dev_err(&pdev->dev, "No usable DMA "
1044 "configuration, aborting\n");
1045 goto err_dma;
1046 }
1047 }
1048 }
1049
c54106bb
AD
1050 /* 82575 requires that the pci-e link partner disable the L0s state */
1051 switch (pdev->device) {
1052 case E1000_DEV_ID_82575EB_COPPER:
1053 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1054 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1055 us_dev = pdev->bus->self;
1056 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1057 if (pos) {
1058 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1059 &state);
1060 state &= ~PCIE_LINK_STATE_L0S;
1061 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1062 state);
ac450208
BH
1063 dev_info(&pdev->dev,
1064 "Disabling ASPM L0s upstream switch port %s\n",
1065 pci_name(us_dev));
c54106bb
AD
1066 }
1067 default:
1068 break;
1069 }
1070
aed5dec3
AD
1071 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1072 IORESOURCE_MEM),
1073 igb_driver_name);
9d5c8243
AK
1074 if (err)
1075 goto err_pci_reg;
1076
ea943d41
JK
1077 err = pci_enable_pcie_error_reporting(pdev);
1078 if (err) {
1079 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1080 "0x%x\n", err);
1081 /* non-fatal, continue */
1082 }
40a914fa 1083
9d5c8243 1084 pci_set_master(pdev);
c682fc23 1085 pci_save_state(pdev);
9d5c8243
AK
1086
1087 err = -ENOMEM;
661086df 1088 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
9d5c8243
AK
1089 if (!netdev)
1090 goto err_alloc_etherdev;
1091
1092 SET_NETDEV_DEV(netdev, &pdev->dev);
1093
1094 pci_set_drvdata(pdev, netdev);
1095 adapter = netdev_priv(netdev);
1096 adapter->netdev = netdev;
1097 adapter->pdev = pdev;
1098 hw = &adapter->hw;
1099 hw->back = adapter;
1100 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1101
1102 mmio_start = pci_resource_start(pdev, 0);
1103 mmio_len = pci_resource_len(pdev, 0);
1104
1105 err = -EIO;
28b0759c
AD
1106 hw->hw_addr = ioremap(mmio_start, mmio_len);
1107 if (!hw->hw_addr)
9d5c8243
AK
1108 goto err_ioremap;
1109
2e5c6922 1110 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1111 igb_set_ethtool_ops(netdev);
9d5c8243 1112 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1113
1114 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1115
1116 netdev->mem_start = mmio_start;
1117 netdev->mem_end = mmio_start + mmio_len;
1118
9d5c8243
AK
1119 /* PCI config space info */
1120 hw->vendor_id = pdev->vendor;
1121 hw->device_id = pdev->device;
1122 hw->revision_id = pdev->revision;
1123 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1124 hw->subsystem_device_id = pdev->subsystem_device;
1125
1126 /* setup the private structure */
1127 hw->back = adapter;
1128 /* Copy the default MAC, PHY and NVM function pointers */
1129 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1130 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1131 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1132 /* Initialize skew-specific constants */
1133 err = ei->get_invariants(hw);
1134 if (err)
450c87c8 1135 goto err_sw_init;
9d5c8243 1136
450c87c8 1137 /* setup the private structure */
9d5c8243
AK
1138 err = igb_sw_init(adapter);
1139 if (err)
1140 goto err_sw_init;
1141
1142 igb_get_bus_info_pcie(hw);
1143
7dfc16fa
AD
1144 /* set flags */
1145 switch (hw->mac.type) {
7dfc16fa 1146 case e1000_82575:
7dfc16fa
AD
1147 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1148 break;
bbd98fe4 1149 case e1000_82576:
7dfc16fa
AD
1150 default:
1151 break;
1152 }
1153
9d5c8243
AK
1154 hw->phy.autoneg_wait_to_complete = false;
1155 hw->mac.adaptive_ifs = true;
1156
1157 /* Copper options */
1158 if (hw->phy.media_type == e1000_media_type_copper) {
1159 hw->phy.mdix = AUTO_ALL_MODES;
1160 hw->phy.disable_polarity_correction = false;
1161 hw->phy.ms_type = e1000_ms_hw_default;
1162 }
1163
1164 if (igb_check_reset_block(hw))
1165 dev_info(&pdev->dev,
1166 "PHY reset is blocked due to SOL/IDER session.\n");
1167
1168 netdev->features = NETIF_F_SG |
7d8eb29e 1169 NETIF_F_IP_CSUM |
9d5c8243
AK
1170 NETIF_F_HW_VLAN_TX |
1171 NETIF_F_HW_VLAN_RX |
1172 NETIF_F_HW_VLAN_FILTER;
1173
7d8eb29e 1174 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1175 netdev->features |= NETIF_F_TSO;
9d5c8243 1176 netdev->features |= NETIF_F_TSO6;
48f29ffc 1177
d3352520 1178#ifdef CONFIG_IGB_LRO
5c0999b7 1179 netdev->features |= NETIF_F_GRO;
d3352520
AD
1180#endif
1181
48f29ffc
JK
1182 netdev->vlan_features |= NETIF_F_TSO;
1183 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1184 netdev->vlan_features |= NETIF_F_IP_CSUM;
48f29ffc
JK
1185 netdev->vlan_features |= NETIF_F_SG;
1186
9d5c8243
AK
1187 if (pci_using_dac)
1188 netdev->features |= NETIF_F_HIGHDMA;
1189
9d5c8243
AK
1190 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1191
1192 /* before reading the NVM, reset the controller to put the device in a
1193 * known good starting state */
1194 hw->mac.ops.reset_hw(hw);
1195
1196 /* make sure the NVM is good */
1197 if (igb_validate_nvm_checksum(hw) < 0) {
1198 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1199 err = -EIO;
1200 goto err_eeprom;
1201 }
1202
1203 /* copy the MAC address out of the NVM */
1204 if (hw->mac.ops.read_mac_addr(hw))
1205 dev_err(&pdev->dev, "NVM Read Error\n");
1206
1207 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1208 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1209
1210 if (!is_valid_ether_addr(netdev->perm_addr)) {
1211 dev_err(&pdev->dev, "Invalid MAC Address\n");
1212 err = -EIO;
1213 goto err_eeprom;
1214 }
1215
1216 init_timer(&adapter->watchdog_timer);
1217 adapter->watchdog_timer.function = &igb_watchdog;
1218 adapter->watchdog_timer.data = (unsigned long) adapter;
1219
1220 init_timer(&adapter->phy_info_timer);
1221 adapter->phy_info_timer.function = &igb_update_phy_info;
1222 adapter->phy_info_timer.data = (unsigned long) adapter;
1223
1224 INIT_WORK(&adapter->reset_task, igb_reset_task);
1225 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1226
450c87c8 1227 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1228 adapter->fc_autoneg = true;
1229 hw->mac.autoneg = true;
1230 hw->phy.autoneg_advertised = 0x2f;
1231
1232 hw->fc.original_type = e1000_fc_default;
1233 hw->fc.type = e1000_fc_default;
1234
1235 adapter->itr_setting = 3;
1236 adapter->itr = IGB_START_ITR;
1237
1238 igb_validate_mdi_setting(hw);
1239
1240 adapter->rx_csum = 1;
1241
1242 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1243 * enable the ACPI Magic Packet filter
1244 */
1245
1246 if (hw->bus.func == 0 ||
1247 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
312c75ae 1248 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
9d5c8243
AK
1249
1250 if (eeprom_data & eeprom_apme_mask)
1251 adapter->eeprom_wol |= E1000_WUFC_MAG;
1252
1253 /* now that we have the eeprom settings, apply the special cases where
1254 * the eeprom may be wrong or the board simply won't support wake on
1255 * lan on a particular port */
1256 switch (pdev->device) {
1257 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1258 adapter->eeprom_wol = 0;
1259 break;
1260 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1261 case E1000_DEV_ID_82576_FIBER:
1262 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1263 /* Wake events only supported on port A for dual fiber
1264 * regardless of eeprom setting */
1265 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1266 adapter->eeprom_wol = 0;
1267 break;
1268 }
1269
1270 /* initialize the wol settings based on the eeprom settings */
1271 adapter->wol = adapter->eeprom_wol;
e1b86d84 1272 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1273
1274 /* reset the hardware with the new settings */
1275 igb_reset(adapter);
1276
1277 /* let the f/w know that the h/w is now under the control of the
1278 * driver. */
1279 igb_get_hw_control(adapter);
1280
1281 /* tell the stack to leave us alone until igb_open() is called */
1282 netif_carrier_off(netdev);
fd2ea0a7 1283 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1284
1285 strcpy(netdev->name, "eth%d");
1286 err = register_netdev(netdev);
1287 if (err)
1288 goto err_register;
1289
421e02f0 1290#ifdef CONFIG_IGB_DCA
bbd98fe4 1291 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1292 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1293 dev_info(&pdev->dev, "DCA enabled\n");
1294 /* Always use CB2 mode, difference is masked
1295 * in the CB driver. */
1296 wr32(E1000_DCA_CTRL, 2);
1297 igb_setup_dca(adapter);
1298 }
1299#endif
1300
9d5c8243
AK
1301 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1302 /* print bus type/speed/width info */
7c510e4b 1303 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1304 netdev->name,
1305 ((hw->bus.speed == e1000_bus_speed_2500)
1306 ? "2.5Gb/s" : "unknown"),
1307 ((hw->bus.width == e1000_bus_width_pcie_x4)
1308 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1309 ? "Width x1" : "unknown"),
7c510e4b 1310 netdev->dev_addr);
9d5c8243
AK
1311
1312 igb_read_part_num(hw, &part_num);
1313 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1314 (part_num >> 8), (part_num & 0xff));
1315
1316 dev_info(&pdev->dev,
1317 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1318 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1319 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1320 adapter->num_rx_queues, adapter->num_tx_queues);
1321
9d5c8243
AK
1322 return 0;
1323
1324err_register:
1325 igb_release_hw_control(adapter);
1326err_eeprom:
1327 if (!igb_check_reset_block(hw))
f5f4cf08 1328 igb_reset_phy(hw);
9d5c8243
AK
1329
1330 if (hw->flash_address)
1331 iounmap(hw->flash_address);
1332
a88f10ec 1333 igb_free_queues(adapter);
9d5c8243 1334err_sw_init:
9d5c8243
AK
1335 iounmap(hw->hw_addr);
1336err_ioremap:
1337 free_netdev(netdev);
1338err_alloc_etherdev:
aed5dec3
AD
1339 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1340 IORESOURCE_MEM));
9d5c8243
AK
1341err_pci_reg:
1342err_dma:
1343 pci_disable_device(pdev);
1344 return err;
1345}
1346
1347/**
1348 * igb_remove - Device Removal Routine
1349 * @pdev: PCI device information struct
1350 *
1351 * igb_remove is called by the PCI subsystem to alert the driver
1352 * that it should release a PCI device. The could be caused by a
1353 * Hot-Plug event, or because the driver is going to be removed from
1354 * memory.
1355 **/
1356static void __devexit igb_remove(struct pci_dev *pdev)
1357{
1358 struct net_device *netdev = pci_get_drvdata(pdev);
1359 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1360 struct e1000_hw *hw = &adapter->hw;
ea943d41 1361 int err;
9d5c8243
AK
1362
1363 /* flush_scheduled work may reschedule our watchdog task, so
1364 * explicitly disable watchdog tasks from being rescheduled */
1365 set_bit(__IGB_DOWN, &adapter->state);
1366 del_timer_sync(&adapter->watchdog_timer);
1367 del_timer_sync(&adapter->phy_info_timer);
1368
1369 flush_scheduled_work();
1370
421e02f0 1371#ifdef CONFIG_IGB_DCA
7dfc16fa 1372 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1373 dev_info(&pdev->dev, "DCA disabled\n");
1374 dca_remove_requester(&pdev->dev);
7dfc16fa 1375 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1376 wr32(E1000_DCA_CTRL, 1);
1377 }
1378#endif
1379
9d5c8243
AK
1380 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1381 * would have already happened in close and is redundant. */
1382 igb_release_hw_control(adapter);
1383
1384 unregister_netdev(netdev);
1385
f5f4cf08
AD
1386 if (!igb_check_reset_block(&adapter->hw))
1387 igb_reset_phy(&adapter->hw);
9d5c8243 1388
9d5c8243
AK
1389 igb_reset_interrupt_capability(adapter);
1390
a88f10ec 1391 igb_free_queues(adapter);
9d5c8243 1392
28b0759c
AD
1393 iounmap(hw->hw_addr);
1394 if (hw->flash_address)
1395 iounmap(hw->flash_address);
aed5dec3
AD
1396 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1397 IORESOURCE_MEM));
9d5c8243
AK
1398
1399 free_netdev(netdev);
1400
ea943d41
JK
1401 err = pci_disable_pcie_error_reporting(pdev);
1402 if (err)
1403 dev_err(&pdev->dev,
1404 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
40a914fa 1405
9d5c8243
AK
1406 pci_disable_device(pdev);
1407}
1408
1409/**
1410 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1411 * @adapter: board private structure to initialize
1412 *
1413 * igb_sw_init initializes the Adapter private data structure.
1414 * Fields are initialized based on PCI device information and
1415 * OS network device settings (MTU size).
1416 **/
1417static int __devinit igb_sw_init(struct igb_adapter *adapter)
1418{
1419 struct e1000_hw *hw = &adapter->hw;
1420 struct net_device *netdev = adapter->netdev;
1421 struct pci_dev *pdev = adapter->pdev;
1422
1423 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1424
68fd9910
AD
1425 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1426 adapter->rx_ring_count = IGB_DEFAULT_RXD;
9d5c8243
AK
1427 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1428 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1429 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1430 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1431
661086df
PWJ
1432 /* This call may decrease the number of queues depending on
1433 * interrupt mode. */
9d5c8243
AK
1434 igb_set_interrupt_capability(adapter);
1435
1436 if (igb_alloc_queues(adapter)) {
1437 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1438 return -ENOMEM;
1439 }
1440
1441 /* Explicitly disable IRQ since the NIC can be in any state. */
1442 igb_irq_disable(adapter);
1443
1444 set_bit(__IGB_DOWN, &adapter->state);
1445 return 0;
1446}
1447
1448/**
1449 * igb_open - Called when a network interface is made active
1450 * @netdev: network interface device structure
1451 *
1452 * Returns 0 on success, negative value on failure
1453 *
1454 * The open entry point is called when a network interface is made
1455 * active by the system (IFF_UP). At this point all resources needed
1456 * for transmit and receive operations are allocated, the interrupt
1457 * handler is registered with the OS, the watchdog timer is started,
1458 * and the stack is notified that the interface is ready.
1459 **/
1460static int igb_open(struct net_device *netdev)
1461{
1462 struct igb_adapter *adapter = netdev_priv(netdev);
1463 struct e1000_hw *hw = &adapter->hw;
1464 int err;
1465 int i;
1466
1467 /* disallow open during test */
1468 if (test_bit(__IGB_TESTING, &adapter->state))
1469 return -EBUSY;
1470
1471 /* allocate transmit descriptors */
1472 err = igb_setup_all_tx_resources(adapter);
1473 if (err)
1474 goto err_setup_tx;
1475
1476 /* allocate receive descriptors */
1477 err = igb_setup_all_rx_resources(adapter);
1478 if (err)
1479 goto err_setup_rx;
1480
1481 /* e1000_power_up_phy(adapter); */
1482
1483 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1484 if ((adapter->hw.mng_cookie.status &
1485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1486 igb_update_mng_vlan(adapter);
1487
1488 /* before we allocate an interrupt, we must be ready to handle it.
1489 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1490 * as soon as we call pci_request_irq, so we have to setup our
1491 * clean_rx handler before we do so. */
1492 igb_configure(adapter);
1493
1494 err = igb_request_irq(adapter);
1495 if (err)
1496 goto err_req_irq;
1497
1498 /* From here on the code is the same as igb_up() */
1499 clear_bit(__IGB_DOWN, &adapter->state);
1500
844290e5
PW
1501 for (i = 0; i < adapter->num_rx_queues; i++)
1502 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1503
1504 /* Clear any pending interrupts. */
1505 rd32(E1000_ICR);
844290e5
PW
1506
1507 igb_irq_enable(adapter);
1508
d55b53ff
JK
1509 netif_tx_start_all_queues(netdev);
1510
9d5c8243
AK
1511 /* Fire a link status change interrupt to start the watchdog. */
1512 wr32(E1000_ICS, E1000_ICS_LSC);
1513
1514 return 0;
1515
1516err_req_irq:
1517 igb_release_hw_control(adapter);
1518 /* e1000_power_down_phy(adapter); */
1519 igb_free_all_rx_resources(adapter);
1520err_setup_rx:
1521 igb_free_all_tx_resources(adapter);
1522err_setup_tx:
1523 igb_reset(adapter);
1524
1525 return err;
1526}
1527
1528/**
1529 * igb_close - Disables a network interface
1530 * @netdev: network interface device structure
1531 *
1532 * Returns 0, this is not allowed to fail
1533 *
1534 * The close entry point is called when an interface is de-activated
1535 * by the OS. The hardware is still under the driver's control, but
1536 * needs to be disabled. A global MAC reset is issued to stop the
1537 * hardware, and all transmit and receive resources are freed.
1538 **/
1539static int igb_close(struct net_device *netdev)
1540{
1541 struct igb_adapter *adapter = netdev_priv(netdev);
1542
1543 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1544 igb_down(adapter);
1545
1546 igb_free_irq(adapter);
1547
1548 igb_free_all_tx_resources(adapter);
1549 igb_free_all_rx_resources(adapter);
1550
1551 /* kill manageability vlan ID if supported, but not if a vlan with
1552 * the same ID is registered on the host OS (let 8021q kill it) */
1553 if ((adapter->hw.mng_cookie.status &
1554 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1555 !(adapter->vlgrp &&
1556 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1557 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1558
1559 return 0;
1560}
1561
1562/**
1563 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1564 * @adapter: board private structure
1565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569
1570int igb_setup_tx_resources(struct igb_adapter *adapter,
1571 struct igb_ring *tx_ring)
1572{
1573 struct pci_dev *pdev = adapter->pdev;
1574 int size;
1575
1576 size = sizeof(struct igb_buffer) * tx_ring->count;
1577 tx_ring->buffer_info = vmalloc(size);
1578 if (!tx_ring->buffer_info)
1579 goto err;
1580 memset(tx_ring->buffer_info, 0, size);
1581
1582 /* round up to nearest 4K */
0e014cb1 1583 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
9d5c8243
AK
1584 tx_ring->size = ALIGN(tx_ring->size, 4096);
1585
1586 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1587 &tx_ring->dma);
1588
1589 if (!tx_ring->desc)
1590 goto err;
1591
1592 tx_ring->adapter = adapter;
1593 tx_ring->next_to_use = 0;
1594 tx_ring->next_to_clean = 0;
9d5c8243
AK
1595 return 0;
1596
1597err:
1598 vfree(tx_ring->buffer_info);
1599 dev_err(&adapter->pdev->dev,
1600 "Unable to allocate memory for the transmit descriptor ring\n");
1601 return -ENOMEM;
1602}
1603
1604/**
1605 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1606 * (Descriptors) for all queues
1607 * @adapter: board private structure
1608 *
1609 * Return 0 on success, negative on failure
1610 **/
1611static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1612{
1613 int i, err = 0;
661086df 1614 int r_idx;
9d5c8243
AK
1615
1616 for (i = 0; i < adapter->num_tx_queues; i++) {
1617 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1618 if (err) {
1619 dev_err(&adapter->pdev->dev,
1620 "Allocation for Tx Queue %u failed\n", i);
1621 for (i--; i >= 0; i--)
3b644cf6 1622 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1623 break;
1624 }
1625 }
1626
661086df
PWJ
1627 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1628 r_idx = i % adapter->num_tx_queues;
1629 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 1630 }
9d5c8243
AK
1631 return err;
1632}
1633
1634/**
1635 * igb_configure_tx - Configure transmit Unit after Reset
1636 * @adapter: board private structure
1637 *
1638 * Configure the Tx unit of the MAC after a reset.
1639 **/
1640static void igb_configure_tx(struct igb_adapter *adapter)
1641{
0e014cb1 1642 u64 tdba;
9d5c8243
AK
1643 struct e1000_hw *hw = &adapter->hw;
1644 u32 tctl;
1645 u32 txdctl, txctrl;
26bc19ec 1646 int i, j;
9d5c8243
AK
1647
1648 for (i = 0; i < adapter->num_tx_queues; i++) {
1649 struct igb_ring *ring = &(adapter->tx_ring[i]);
26bc19ec
AD
1650 j = ring->reg_idx;
1651 wr32(E1000_TDLEN(j),
9d5c8243
AK
1652 ring->count * sizeof(struct e1000_tx_desc));
1653 tdba = ring->dma;
26bc19ec 1654 wr32(E1000_TDBAL(j),
9d5c8243 1655 tdba & 0x00000000ffffffffULL);
26bc19ec 1656 wr32(E1000_TDBAH(j), tdba >> 32);
9d5c8243 1657
26bc19ec
AD
1658 ring->head = E1000_TDH(j);
1659 ring->tail = E1000_TDT(j);
9d5c8243
AK
1660 writel(0, hw->hw_addr + ring->tail);
1661 writel(0, hw->hw_addr + ring->head);
26bc19ec 1662 txdctl = rd32(E1000_TXDCTL(j));
9d5c8243 1663 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
26bc19ec 1664 wr32(E1000_TXDCTL(j), txdctl);
9d5c8243
AK
1665
1666 /* Turn off Relaxed Ordering on head write-backs. The
1667 * writebacks MUST be delivered in order or it will
1668 * completely screw up our bookeeping.
1669 */
26bc19ec 1670 txctrl = rd32(E1000_DCA_TXCTRL(j));
9d5c8243 1671 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
26bc19ec 1672 wr32(E1000_DCA_TXCTRL(j), txctrl);
9d5c8243
AK
1673 }
1674
1675
1676
1677 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1678
1679 /* Program the Transmit Control Register */
1680
1681 tctl = rd32(E1000_TCTL);
1682 tctl &= ~E1000_TCTL_CT;
1683 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1684 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1685
1686 igb_config_collision_dist(hw);
1687
1688 /* Setup Transmit Descriptor Settings for eop descriptor */
1689 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1690
1691 /* Enable transmits */
1692 tctl |= E1000_TCTL_EN;
1693
1694 wr32(E1000_TCTL, tctl);
1695}
1696
1697/**
1698 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1699 * @adapter: board private structure
1700 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1701 *
1702 * Returns 0 on success, negative on failure
1703 **/
1704
1705int igb_setup_rx_resources(struct igb_adapter *adapter,
1706 struct igb_ring *rx_ring)
1707{
1708 struct pci_dev *pdev = adapter->pdev;
1709 int size, desc_len;
1710
1711 size = sizeof(struct igb_buffer) * rx_ring->count;
1712 rx_ring->buffer_info = vmalloc(size);
1713 if (!rx_ring->buffer_info)
1714 goto err;
1715 memset(rx_ring->buffer_info, 0, size);
1716
1717 desc_len = sizeof(union e1000_adv_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720 rx_ring->size = rx_ring->count * desc_len;
1721 rx_ring->size = ALIGN(rx_ring->size, 4096);
1722
1723 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1724 &rx_ring->dma);
1725
1726 if (!rx_ring->desc)
1727 goto err;
1728
1729 rx_ring->next_to_clean = 0;
1730 rx_ring->next_to_use = 0;
9d5c8243
AK
1731
1732 rx_ring->adapter = adapter;
9d5c8243
AK
1733
1734 return 0;
1735
1736err:
1737 vfree(rx_ring->buffer_info);
1738 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739 "the receive descriptor ring\n");
1740 return -ENOMEM;
1741}
1742
1743/**
1744 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745 * (Descriptors) for all queues
1746 * @adapter: board private structure
1747 *
1748 * Return 0 on success, negative on failure
1749 **/
1750static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1751{
1752 int i, err = 0;
1753
1754 for (i = 0; i < adapter->num_rx_queues; i++) {
1755 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1756 if (err) {
1757 dev_err(&adapter->pdev->dev,
1758 "Allocation for Rx Queue %u failed\n", i);
1759 for (i--; i >= 0; i--)
3b644cf6 1760 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1761 break;
1762 }
1763 }
1764
1765 return err;
1766}
1767
1768/**
1769 * igb_setup_rctl - configure the receive control registers
1770 * @adapter: Board private structure
1771 **/
1772static void igb_setup_rctl(struct igb_adapter *adapter)
1773{
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 rctl;
1776 u32 srrctl = 0;
26bc19ec 1777 int i, j;
9d5c8243
AK
1778
1779 rctl = rd32(E1000_RCTL);
1780
1781 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 1782 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 1783
69d728ba 1784 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 1785 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 1786
87cb7e8c
AK
1787 /*
1788 * enable stripping of CRC. It's unlikely this will break BMC
1789 * redirection as it did with e1000. Newer features require
1790 * that the HW strips the CRC.
9d5c8243 1791 */
87cb7e8c 1792 rctl |= E1000_RCTL_SECRC;
9d5c8243 1793
9b07f3d3 1794 /*
ec54d7d6 1795 * disable store bad packets and clear size bits.
9b07f3d3 1796 */
ec54d7d6 1797 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 1798
ec54d7d6 1799 /* enable LPE when to prevent packets larger than max_frame_size */
9b07f3d3 1800 rctl |= E1000_RCTL_LPE;
b4557be2
AD
1801
1802 /* Setup buffer sizes */
1803 switch (adapter->rx_buffer_len) {
1804 case IGB_RXBUFFER_256:
1805 rctl |= E1000_RCTL_SZ_256;
1806 break;
1807 case IGB_RXBUFFER_512:
1808 rctl |= E1000_RCTL_SZ_512;
1809 break;
1810 default:
1811 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1812 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1813 break;
9d5c8243
AK
1814 }
1815
1816 /* 82575 and greater support packet-split where the protocol
1817 * header is placed in skb->data and the packet data is
1818 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1819 * In the case of a non-split, skb->data is linearly filled,
1820 * followed by the page buffers. Therefore, skb->data is
1821 * sized to hold the largest protocol header.
1822 */
1823 /* allocations using alloc_page take too long for regular MTU
1824 * so only enable packet split for jumbo frames */
ec54d7d6 1825 if (adapter->netdev->mtu > ETH_DATA_LEN) {
9d5c8243 1826 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 1827 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 1828 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
1829 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1830 } else {
1831 adapter->rx_ps_hdr_size = 0;
1832 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1833 }
1834
26bc19ec
AD
1835 for (i = 0; i < adapter->num_rx_queues; i++) {
1836 j = adapter->rx_ring[i].reg_idx;
1837 wr32(E1000_SRRCTL(j), srrctl);
1838 }
9d5c8243
AK
1839
1840 wr32(E1000_RCTL, rctl);
1841}
1842
1843/**
1844 * igb_configure_rx - Configure receive Unit after Reset
1845 * @adapter: board private structure
1846 *
1847 * Configure the Rx unit of the MAC after a reset.
1848 **/
1849static void igb_configure_rx(struct igb_adapter *adapter)
1850{
1851 u64 rdba;
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 rctl, rxcsum;
1854 u32 rxdctl;
26bc19ec 1855 int i, j;
9d5c8243
AK
1856
1857 /* disable receives while setting up the descriptors */
1858 rctl = rd32(E1000_RCTL);
1859 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1860 wrfl();
1861 mdelay(10);
1862
1863 if (adapter->itr_setting > 3)
6eb5a7f1 1864 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
1865
1866 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1867 * the Base and Length of the Rx Descriptor Ring */
1868 for (i = 0; i < adapter->num_rx_queues; i++) {
1869 struct igb_ring *ring = &(adapter->rx_ring[i]);
26bc19ec 1870 j = ring->reg_idx;
9d5c8243 1871 rdba = ring->dma;
26bc19ec 1872 wr32(E1000_RDBAL(j),
9d5c8243 1873 rdba & 0x00000000ffffffffULL);
26bc19ec
AD
1874 wr32(E1000_RDBAH(j), rdba >> 32);
1875 wr32(E1000_RDLEN(j),
9d5c8243
AK
1876 ring->count * sizeof(union e1000_adv_rx_desc));
1877
26bc19ec
AD
1878 ring->head = E1000_RDH(j);
1879 ring->tail = E1000_RDT(j);
9d5c8243
AK
1880 writel(0, hw->hw_addr + ring->tail);
1881 writel(0, hw->hw_addr + ring->head);
1882
26bc19ec 1883 rxdctl = rd32(E1000_RXDCTL(j));
9d5c8243
AK
1884 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1885 rxdctl &= 0xFFF00000;
1886 rxdctl |= IGB_RX_PTHRESH;
1887 rxdctl |= IGB_RX_HTHRESH << 8;
1888 rxdctl |= IGB_RX_WTHRESH << 16;
26bc19ec 1889 wr32(E1000_RXDCTL(j), rxdctl);
9d5c8243
AK
1890 }
1891
1892 if (adapter->num_rx_queues > 1) {
1893 u32 random[10];
1894 u32 mrqc;
1895 u32 j, shift;
1896 union e1000_reta {
1897 u32 dword;
1898 u8 bytes[4];
1899 } reta;
1900
1901 get_random_bytes(&random[0], 40);
1902
2d064c06
AD
1903 if (hw->mac.type >= e1000_82576)
1904 shift = 0;
1905 else
1906 shift = 6;
9d5c8243
AK
1907 for (j = 0; j < (32 * 4); j++) {
1908 reta.bytes[j & 3] =
26bc19ec 1909 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
9d5c8243
AK
1910 if ((j & 3) == 3)
1911 writel(reta.dword,
1912 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1913 }
1914 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1915
1916 /* Fill out hash function seeds */
1917 for (j = 0; j < 10; j++)
1918 array_wr32(E1000_RSSRK(0), j, random[j]);
1919
1920 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1921 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1922 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1923 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1925 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1927 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1928
1929
1930 wr32(E1000_MRQC, mrqc);
1931
1932 /* Multiqueue and raw packet checksumming are mutually
1933 * exclusive. Note that this not the same as TCP/IP
1934 * checksumming, which works fine. */
1935 rxcsum = rd32(E1000_RXCSUM);
1936 rxcsum |= E1000_RXCSUM_PCSD;
1937 wr32(E1000_RXCSUM, rxcsum);
1938 } else {
1939 /* Enable Receive Checksum Offload for TCP and UDP */
1940 rxcsum = rd32(E1000_RXCSUM);
1941 if (adapter->rx_csum) {
1942 rxcsum |= E1000_RXCSUM_TUOFL;
1943
1944 /* Enable IPv4 payload checksum for UDP fragments
1945 * Must be used in conjunction with packet-split. */
1946 if (adapter->rx_ps_hdr_size)
1947 rxcsum |= E1000_RXCSUM_IPPCSE;
1948 } else {
1949 rxcsum &= ~E1000_RXCSUM_TUOFL;
1950 /* don't need to clear IPPCSE as it defaults to 0 */
1951 }
1952 wr32(E1000_RXCSUM, rxcsum);
1953 }
1954
1955 if (adapter->vlgrp)
1956 wr32(E1000_RLPML,
1957 adapter->max_frame_size + VLAN_TAG_SIZE);
1958 else
1959 wr32(E1000_RLPML, adapter->max_frame_size);
1960
1961 /* Enable Receives */
1962 wr32(E1000_RCTL, rctl);
1963}
1964
1965/**
1966 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
1967 * @tx_ring: Tx descriptor ring for a specific queue
1968 *
1969 * Free all transmit software resources
1970 **/
68fd9910 1971void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 1972{
3b644cf6 1973 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 1974
3b644cf6 1975 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
1976
1977 vfree(tx_ring->buffer_info);
1978 tx_ring->buffer_info = NULL;
1979
1980 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1981
1982 tx_ring->desc = NULL;
1983}
1984
1985/**
1986 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1987 * @adapter: board private structure
1988 *
1989 * Free all transmit software resources
1990 **/
1991static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1992{
1993 int i;
1994
1995 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 1996 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1997}
1998
1999static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2000 struct igb_buffer *buffer_info)
2001{
2002 if (buffer_info->dma) {
2003 pci_unmap_page(adapter->pdev,
2004 buffer_info->dma,
2005 buffer_info->length,
2006 PCI_DMA_TODEVICE);
2007 buffer_info->dma = 0;
2008 }
2009 if (buffer_info->skb) {
2010 dev_kfree_skb_any(buffer_info->skb);
2011 buffer_info->skb = NULL;
2012 }
2013 buffer_info->time_stamp = 0;
2014 /* buffer_info must be completely set up in the transmit path */
2015}
2016
2017/**
2018 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2019 * @tx_ring: ring to be cleaned
2020 **/
3b644cf6 2021static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2022{
3b644cf6 2023 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2024 struct igb_buffer *buffer_info;
2025 unsigned long size;
2026 unsigned int i;
2027
2028 if (!tx_ring->buffer_info)
2029 return;
2030 /* Free all the Tx ring sk_buffs */
2031
2032 for (i = 0; i < tx_ring->count; i++) {
2033 buffer_info = &tx_ring->buffer_info[i];
2034 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2035 }
2036
2037 size = sizeof(struct igb_buffer) * tx_ring->count;
2038 memset(tx_ring->buffer_info, 0, size);
2039
2040 /* Zero out the descriptor ring */
2041
2042 memset(tx_ring->desc, 0, tx_ring->size);
2043
2044 tx_ring->next_to_use = 0;
2045 tx_ring->next_to_clean = 0;
2046
2047 writel(0, adapter->hw.hw_addr + tx_ring->head);
2048 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2049}
2050
2051/**
2052 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2053 * @adapter: board private structure
2054 **/
2055static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2056{
2057 int i;
2058
2059 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2060 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2061}
2062
2063/**
2064 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2065 * @rx_ring: ring to clean the resources from
2066 *
2067 * Free all receive software resources
2068 **/
68fd9910 2069void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2070{
3b644cf6 2071 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2072
3b644cf6 2073 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2074
2075 vfree(rx_ring->buffer_info);
2076 rx_ring->buffer_info = NULL;
2077
2078 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2079
2080 rx_ring->desc = NULL;
2081}
2082
2083/**
2084 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2085 * @adapter: board private structure
2086 *
2087 * Free all receive software resources
2088 **/
2089static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2090{
2091 int i;
2092
2093 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2094 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2095}
2096
2097/**
2098 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2099 * @rx_ring: ring to free buffers from
2100 **/
3b644cf6 2101static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2102{
3b644cf6 2103 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2104 struct igb_buffer *buffer_info;
2105 struct pci_dev *pdev = adapter->pdev;
2106 unsigned long size;
2107 unsigned int i;
2108
2109 if (!rx_ring->buffer_info)
2110 return;
2111 /* Free all the Rx ring sk_buffs */
2112 for (i = 0; i < rx_ring->count; i++) {
2113 buffer_info = &rx_ring->buffer_info[i];
2114 if (buffer_info->dma) {
2115 if (adapter->rx_ps_hdr_size)
2116 pci_unmap_single(pdev, buffer_info->dma,
2117 adapter->rx_ps_hdr_size,
2118 PCI_DMA_FROMDEVICE);
2119 else
2120 pci_unmap_single(pdev, buffer_info->dma,
2121 adapter->rx_buffer_len,
2122 PCI_DMA_FROMDEVICE);
2123 buffer_info->dma = 0;
2124 }
2125
2126 if (buffer_info->skb) {
2127 dev_kfree_skb(buffer_info->skb);
2128 buffer_info->skb = NULL;
2129 }
2130 if (buffer_info->page) {
bf36c1a0
AD
2131 if (buffer_info->page_dma)
2132 pci_unmap_page(pdev, buffer_info->page_dma,
2133 PAGE_SIZE / 2,
2134 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2135 put_page(buffer_info->page);
2136 buffer_info->page = NULL;
2137 buffer_info->page_dma = 0;
bf36c1a0 2138 buffer_info->page_offset = 0;
9d5c8243
AK
2139 }
2140 }
2141
9d5c8243
AK
2142 size = sizeof(struct igb_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2144
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 writel(0, adapter->hw.hw_addr + rx_ring->head);
2152 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2153}
2154
2155/**
2156 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2160{
2161 int i;
2162
2163 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2164 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2165}
2166
2167/**
2168 * igb_set_mac - Change the Ethernet Address of the NIC
2169 * @netdev: network interface device structure
2170 * @p: pointer to an address structure
2171 *
2172 * Returns 0 on success, negative on failure
2173 **/
2174static int igb_set_mac(struct net_device *netdev, void *p)
2175{
2176 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2177 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2178 struct sockaddr *addr = p;
2179
2180 if (!is_valid_ether_addr(addr->sa_data))
2181 return -EADDRNOTAVAIL;
2182
2183 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2184 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2185
28b0759c 2186 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
9d5c8243
AK
2187
2188 return 0;
2189}
2190
2191/**
2192 * igb_set_multi - Multicast and Promiscuous mode set
2193 * @netdev: network interface device structure
2194 *
2195 * The set_multi entry point is called whenever the multicast address
2196 * list or the network interface flags are updated. This routine is
2197 * responsible for configuring the hardware for proper multicast,
2198 * promiscuous mode, and all-multi behavior.
2199 **/
2200static void igb_set_multi(struct net_device *netdev)
2201{
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct e1000_hw *hw = &adapter->hw;
2204 struct e1000_mac_info *mac = &hw->mac;
2205 struct dev_mc_list *mc_ptr;
2206 u8 *mta_list;
2207 u32 rctl;
2208 int i;
2209
2210 /* Check for Promiscuous and All Multicast modes */
2211
2212 rctl = rd32(E1000_RCTL);
2213
746b9f02 2214 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2215 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2216 rctl &= ~E1000_RCTL_VFE;
2217 } else {
2218 if (netdev->flags & IFF_ALLMULTI) {
2219 rctl |= E1000_RCTL_MPE;
2220 rctl &= ~E1000_RCTL_UPE;
2221 } else
2222 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
78ed11a5 2223 rctl |= E1000_RCTL_VFE;
746b9f02 2224 }
9d5c8243
AK
2225 wr32(E1000_RCTL, rctl);
2226
2227 if (!netdev->mc_count) {
2228 /* nothing to program, so clear mc list */
8a900862
AD
2229 igb_update_mc_addr_list(hw, NULL, 0, 1,
2230 mac->rar_entry_count);
9d5c8243
AK
2231 return;
2232 }
2233
2234 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2235 if (!mta_list)
2236 return;
2237
2238 /* The shared function expects a packed array of only addresses. */
2239 mc_ptr = netdev->mc_list;
2240
2241 for (i = 0; i < netdev->mc_count; i++) {
2242 if (!mc_ptr)
2243 break;
2244 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2245 mc_ptr = mc_ptr->next;
2246 }
8a900862 2247 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
9d5c8243
AK
2248 kfree(mta_list);
2249}
2250
2251/* Need to wait a few seconds after link up to get diagnostic information from
2252 * the phy */
2253static void igb_update_phy_info(unsigned long data)
2254{
2255 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2256 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2257}
2258
4d6b725e
AD
2259/**
2260 * igb_has_link - check shared code for link and determine up/down
2261 * @adapter: pointer to driver private info
2262 **/
2263static bool igb_has_link(struct igb_adapter *adapter)
2264{
2265 struct e1000_hw *hw = &adapter->hw;
2266 bool link_active = false;
2267 s32 ret_val = 0;
2268
2269 /* get_link_status is set on LSC (link status) interrupt or
2270 * rx sequence error interrupt. get_link_status will stay
2271 * false until the e1000_check_for_link establishes link
2272 * for copper adapters ONLY
2273 */
2274 switch (hw->phy.media_type) {
2275 case e1000_media_type_copper:
2276 if (hw->mac.get_link_status) {
2277 ret_val = hw->mac.ops.check_for_link(hw);
2278 link_active = !hw->mac.get_link_status;
2279 } else {
2280 link_active = true;
2281 }
2282 break;
2283 case e1000_media_type_fiber:
2284 ret_val = hw->mac.ops.check_for_link(hw);
2285 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2286 break;
2287 case e1000_media_type_internal_serdes:
2288 ret_val = hw->mac.ops.check_for_link(hw);
2289 link_active = hw->mac.serdes_has_link;
2290 break;
2291 default:
2292 case e1000_media_type_unknown:
2293 break;
2294 }
2295
2296 return link_active;
2297}
2298
9d5c8243
AK
2299/**
2300 * igb_watchdog - Timer Call-back
2301 * @data: pointer to adapter cast into an unsigned long
2302 **/
2303static void igb_watchdog(unsigned long data)
2304{
2305 struct igb_adapter *adapter = (struct igb_adapter *)data;
2306 /* Do the rest outside of interrupt context */
2307 schedule_work(&adapter->watchdog_task);
2308}
2309
2310static void igb_watchdog_task(struct work_struct *work)
2311{
2312 struct igb_adapter *adapter = container_of(work,
2313 struct igb_adapter, watchdog_task);
2314 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2315 struct net_device *netdev = adapter->netdev;
2316 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2317 u32 link;
7a6ea550 2318 u32 eics = 0;
7a6ea550 2319 int i;
9d5c8243 2320
4d6b725e
AD
2321 link = igb_has_link(adapter);
2322 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2323 goto link_up;
2324
9d5c8243
AK
2325 if (link) {
2326 if (!netif_carrier_ok(netdev)) {
2327 u32 ctrl;
2328 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2329 &adapter->link_speed,
2330 &adapter->link_duplex);
2331
2332 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2333 /* Links status message must follow this format */
2334 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2335 "Flow Control: %s\n",
527d47c1 2336 netdev->name,
9d5c8243
AK
2337 adapter->link_speed,
2338 adapter->link_duplex == FULL_DUPLEX ?
2339 "Full Duplex" : "Half Duplex",
2340 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2341 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2342 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2343 E1000_CTRL_TFCE) ? "TX" : "None")));
2344
2345 /* tweak tx_queue_len according to speed/duplex and
2346 * adjust the timeout factor */
2347 netdev->tx_queue_len = adapter->tx_queue_len;
2348 adapter->tx_timeout_factor = 1;
2349 switch (adapter->link_speed) {
2350 case SPEED_10:
2351 netdev->tx_queue_len = 10;
2352 adapter->tx_timeout_factor = 14;
2353 break;
2354 case SPEED_100:
2355 netdev->tx_queue_len = 100;
2356 /* maybe add some timeout factor ? */
2357 break;
2358 }
2359
2360 netif_carrier_on(netdev);
fd2ea0a7 2361 netif_tx_wake_all_queues(netdev);
9d5c8243 2362
4b1a9877 2363 /* link state has changed, schedule phy info update */
9d5c8243
AK
2364 if (!test_bit(__IGB_DOWN, &adapter->state))
2365 mod_timer(&adapter->phy_info_timer,
2366 round_jiffies(jiffies + 2 * HZ));
2367 }
2368 } else {
2369 if (netif_carrier_ok(netdev)) {
2370 adapter->link_speed = 0;
2371 adapter->link_duplex = 0;
527d47c1
AD
2372 /* Links status message must follow this format */
2373 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2374 netdev->name);
9d5c8243 2375 netif_carrier_off(netdev);
fd2ea0a7 2376 netif_tx_stop_all_queues(netdev);
4b1a9877
AD
2377
2378 /* link state has changed, schedule phy info update */
9d5c8243
AK
2379 if (!test_bit(__IGB_DOWN, &adapter->state))
2380 mod_timer(&adapter->phy_info_timer,
2381 round_jiffies(jiffies + 2 * HZ));
2382 }
2383 }
2384
2385link_up:
2386 igb_update_stats(adapter);
2387
4b1a9877 2388 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2389 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2390 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2391 adapter->colc_old = adapter->stats.colc;
2392
2393 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2394 adapter->gorc_old = adapter->stats.gorc;
2395 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2396 adapter->gotc_old = adapter->stats.gotc;
2397
2398 igb_update_adaptive(&adapter->hw);
2399
2400 if (!netif_carrier_ok(netdev)) {
2401 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2402 /* We've lost link, so the controller stops DMA,
2403 * but we've got queued Tx work that's never going
2404 * to get done, so reset controller to flush Tx.
2405 * (Do the reset outside of interrupt context). */
2406 adapter->tx_timeout_count++;
2407 schedule_work(&adapter->reset_task);
2408 }
2409 }
2410
2411 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550
AD
2412 if (adapter->msix_entries) {
2413 for (i = 0; i < adapter->num_rx_queues; i++)
2414 eics |= adapter->rx_ring[i].eims_value;
2415 wr32(E1000_EICS, eics);
2416 } else {
2417 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2418 }
9d5c8243
AK
2419
2420 /* Force detection of hung controller every watchdog period */
2421 tx_ring->detect_tx_hung = true;
2422
2423 /* Reset the timer */
2424 if (!test_bit(__IGB_DOWN, &adapter->state))
2425 mod_timer(&adapter->watchdog_timer,
2426 round_jiffies(jiffies + 2 * HZ));
2427}
2428
2429enum latency_range {
2430 lowest_latency = 0,
2431 low_latency = 1,
2432 bulk_latency = 2,
2433 latency_invalid = 255
2434};
2435
2436
6eb5a7f1
AD
2437/**
2438 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2439 *
2440 * Stores a new ITR value based on strictly on packet size. This
2441 * algorithm is less sophisticated than that used in igb_update_itr,
2442 * due to the difficulty of synchronizing statistics across multiple
2443 * receive rings. The divisors and thresholds used by this fuction
2444 * were determined based on theoretical maximum wire speed and testing
2445 * data, in order to minimize response time while increasing bulk
2446 * throughput.
2447 * This functionality is controlled by the InterruptThrottleRate module
2448 * parameter (see igb_param.c)
2449 * NOTE: This function is called only when operating in a multiqueue
2450 * receive environment.
2451 * @rx_ring: pointer to ring
2452 **/
2453static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2454{
6eb5a7f1
AD
2455 int new_val = rx_ring->itr_val;
2456 int avg_wire_size = 0;
2457 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2458
6eb5a7f1
AD
2459 if (!rx_ring->total_packets)
2460 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2461
6eb5a7f1
AD
2462 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2463 * ints/sec - ITR timer value of 120 ticks.
2464 */
2465 if (adapter->link_speed != SPEED_1000) {
2466 new_val = 120;
2467 goto set_itr_val;
9d5c8243 2468 }
6eb5a7f1 2469 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2470
6eb5a7f1
AD
2471 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2472 avg_wire_size += 24;
2473
2474 /* Don't starve jumbo frames */
2475 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2476
6eb5a7f1
AD
2477 /* Give a little boost to mid-size frames */
2478 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2479 new_val = avg_wire_size / 3;
2480 else
2481 new_val = avg_wire_size / 2;
9d5c8243 2482
6eb5a7f1 2483set_itr_val:
9d5c8243
AK
2484 if (new_val != rx_ring->itr_val) {
2485 rx_ring->itr_val = new_val;
6eb5a7f1 2486 rx_ring->set_itr = 1;
9d5c8243 2487 }
6eb5a7f1
AD
2488clear_counts:
2489 rx_ring->total_bytes = 0;
2490 rx_ring->total_packets = 0;
9d5c8243
AK
2491}
2492
2493/**
2494 * igb_update_itr - update the dynamic ITR value based on statistics
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput.
2502 * this functionality is controlled by the InterruptThrottleRate module
2503 * parameter (see igb_param.c)
2504 * NOTE: These calculations are only valid when operating in a single-
2505 * queue environment.
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2510 **/
2511static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2512 int packets, int bytes)
2513{
2514 unsigned int retval = itr_setting;
2515
2516 if (packets == 0)
2517 goto update_itr_done;
2518
2519 switch (itr_setting) {
2520 case lowest_latency:
2521 /* handle TSO and jumbo frames */
2522 if (bytes/packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 5) && (bytes > 512))
2525 retval = low_latency;
2526 break;
2527 case low_latency: /* 50 usec aka 20000 ints/s */
2528 if (bytes > 10000) {
2529 /* this if handles the TSO accounting */
2530 if (bytes/packets > 8000) {
2531 retval = bulk_latency;
2532 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2533 retval = bulk_latency;
2534 } else if ((packets > 35)) {
2535 retval = lowest_latency;
2536 }
2537 } else if (bytes/packets > 2000) {
2538 retval = bulk_latency;
2539 } else if (packets <= 2 && bytes < 512) {
2540 retval = lowest_latency;
2541 }
2542 break;
2543 case bulk_latency: /* 250 usec aka 4000 ints/s */
2544 if (bytes > 25000) {
2545 if (packets > 35)
2546 retval = low_latency;
2547 } else if (bytes < 6000) {
2548 retval = low_latency;
2549 }
2550 break;
2551 }
2552
2553update_itr_done:
2554 return retval;
2555}
2556
6eb5a7f1 2557static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2558{
2559 u16 current_itr;
2560 u32 new_itr = adapter->itr;
2561
2562 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 if (adapter->link_speed != SPEED_1000) {
2564 current_itr = 0;
2565 new_itr = 4000;
2566 goto set_itr_now;
2567 }
2568
2569 adapter->rx_itr = igb_update_itr(adapter,
2570 adapter->rx_itr,
2571 adapter->rx_ring->total_packets,
2572 adapter->rx_ring->total_bytes);
9d5c8243 2573
6eb5a7f1 2574 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2575 adapter->tx_itr = igb_update_itr(adapter,
2576 adapter->tx_itr,
2577 adapter->tx_ring->total_packets,
2578 adapter->tx_ring->total_bytes);
9d5c8243
AK
2579
2580 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2581 } else {
2582 current_itr = adapter->rx_itr;
2583 }
2584
6eb5a7f1
AD
2585 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586 if (adapter->itr_setting == 3 &&
2587 current_itr == lowest_latency)
2588 current_itr = low_latency;
2589
9d5c8243
AK
2590 switch (current_itr) {
2591 /* counts and packets in update_itr are dependent on these numbers */
2592 case lowest_latency:
2593 new_itr = 70000;
2594 break;
2595 case low_latency:
2596 new_itr = 20000; /* aka hwitr = ~200 */
2597 break;
2598 case bulk_latency:
2599 new_itr = 4000;
2600 break;
2601 default:
2602 break;
2603 }
2604
2605set_itr_now:
6eb5a7f1
AD
2606 adapter->rx_ring->total_bytes = 0;
2607 adapter->rx_ring->total_packets = 0;
2608 if (adapter->rx_ring->buddy) {
2609 adapter->rx_ring->buddy->total_bytes = 0;
2610 adapter->rx_ring->buddy->total_packets = 0;
2611 }
2612
9d5c8243
AK
2613 if (new_itr != adapter->itr) {
2614 /* this attempts to bias the interrupt rate towards Bulk
2615 * by adding intermediate steps when interrupt rate is
2616 * increasing */
2617 new_itr = new_itr > adapter->itr ?
2618 min(adapter->itr + (new_itr >> 2), new_itr) :
2619 new_itr;
2620 /* Don't write the value here; it resets the adapter's
2621 * internal timer, and causes us to delay far longer than
2622 * we should between interrupts. Instead, we write the ITR
2623 * value at the beginning of the next interrupt so the timing
2624 * ends up being correct.
2625 */
2626 adapter->itr = new_itr;
6eb5a7f1
AD
2627 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2628 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2629 }
2630
2631 return;
2632}
2633
2634
2635#define IGB_TX_FLAGS_CSUM 0x00000001
2636#define IGB_TX_FLAGS_VLAN 0x00000002
2637#define IGB_TX_FLAGS_TSO 0x00000004
2638#define IGB_TX_FLAGS_IPV4 0x00000008
2639#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2640#define IGB_TX_FLAGS_VLAN_SHIFT 16
2641
2642static inline int igb_tso_adv(struct igb_adapter *adapter,
2643 struct igb_ring *tx_ring,
2644 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2645{
2646 struct e1000_adv_tx_context_desc *context_desc;
2647 unsigned int i;
2648 int err;
2649 struct igb_buffer *buffer_info;
2650 u32 info = 0, tu_cmd = 0;
2651 u32 mss_l4len_idx, l4len;
2652 *hdr_len = 0;
2653
2654 if (skb_header_cloned(skb)) {
2655 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656 if (err)
2657 return err;
2658 }
2659
2660 l4len = tcp_hdrlen(skb);
2661 *hdr_len += l4len;
2662
2663 if (skb->protocol == htons(ETH_P_IP)) {
2664 struct iphdr *iph = ip_hdr(skb);
2665 iph->tot_len = 0;
2666 iph->check = 0;
2667 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2668 iph->daddr, 0,
2669 IPPROTO_TCP,
2670 0);
2671 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2672 ipv6_hdr(skb)->payload_len = 0;
2673 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2674 &ipv6_hdr(skb)->daddr,
2675 0, IPPROTO_TCP, 0);
2676 }
2677
2678 i = tx_ring->next_to_use;
2679
2680 buffer_info = &tx_ring->buffer_info[i];
2681 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2682 /* VLAN MACLEN IPLEN */
2683 if (tx_flags & IGB_TX_FLAGS_VLAN)
2684 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2685 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2686 *hdr_len += skb_network_offset(skb);
2687 info |= skb_network_header_len(skb);
2688 *hdr_len += skb_network_header_len(skb);
2689 context_desc->vlan_macip_lens = cpu_to_le32(info);
2690
2691 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2692 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2693
2694 if (skb->protocol == htons(ETH_P_IP))
2695 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2696 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2697
2698 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2699
2700 /* MSS L4LEN IDX */
2701 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2702 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2703
7dfc16fa
AD
2704 /* Context index must be unique per ring. */
2705 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2706 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
2707
2708 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2709 context_desc->seqnum_seed = 0;
2710
2711 buffer_info->time_stamp = jiffies;
0e014cb1 2712 buffer_info->next_to_watch = i;
9d5c8243
AK
2713 buffer_info->dma = 0;
2714 i++;
2715 if (i == tx_ring->count)
2716 i = 0;
2717
2718 tx_ring->next_to_use = i;
2719
2720 return true;
2721}
2722
2723static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2724 struct igb_ring *tx_ring,
2725 struct sk_buff *skb, u32 tx_flags)
2726{
2727 struct e1000_adv_tx_context_desc *context_desc;
2728 unsigned int i;
2729 struct igb_buffer *buffer_info;
2730 u32 info = 0, tu_cmd = 0;
2731
2732 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2733 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2734 i = tx_ring->next_to_use;
2735 buffer_info = &tx_ring->buffer_info[i];
2736 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2737
2738 if (tx_flags & IGB_TX_FLAGS_VLAN)
2739 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2740 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2741 if (skb->ip_summed == CHECKSUM_PARTIAL)
2742 info |= skb_network_header_len(skb);
2743
2744 context_desc->vlan_macip_lens = cpu_to_le32(info);
2745
2746 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2747
2748 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3 2749 switch (skb->protocol) {
09640e63 2750 case cpu_to_be16(ETH_P_IP):
9d5c8243 2751 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
2752 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2753 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754 break;
09640e63 2755 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2758 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2759 break;
2760 default:
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter->pdev->dev,
2763 "partial checksum but proto=%x!\n",
2764 skb->protocol);
2765 break;
2766 }
9d5c8243
AK
2767 }
2768
2769 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2770 context_desc->seqnum_seed = 0;
7dfc16fa
AD
2771 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2772 context_desc->mss_l4len_idx =
2773 cpu_to_le32(tx_ring->queue_index << 4);
265de409
AD
2774 else
2775 context_desc->mss_l4len_idx = 0;
9d5c8243
AK
2776
2777 buffer_info->time_stamp = jiffies;
0e014cb1 2778 buffer_info->next_to_watch = i;
9d5c8243
AK
2779 buffer_info->dma = 0;
2780
2781 i++;
2782 if (i == tx_ring->count)
2783 i = 0;
2784 tx_ring->next_to_use = i;
2785
2786 return true;
2787 }
2788
2789
2790 return false;
2791}
2792
2793#define IGB_MAX_TXD_PWR 16
2794#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2795
2796static inline int igb_tx_map_adv(struct igb_adapter *adapter,
0e014cb1
AD
2797 struct igb_ring *tx_ring, struct sk_buff *skb,
2798 unsigned int first)
9d5c8243
AK
2799{
2800 struct igb_buffer *buffer_info;
2801 unsigned int len = skb_headlen(skb);
2802 unsigned int count = 0, i;
2803 unsigned int f;
2804
2805 i = tx_ring->next_to_use;
2806
2807 buffer_info = &tx_ring->buffer_info[i];
2808 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2809 buffer_info->length = len;
2810 /* set time_stamp *before* dma to help avoid a possible race */
2811 buffer_info->time_stamp = jiffies;
0e014cb1 2812 buffer_info->next_to_watch = i;
9d5c8243
AK
2813 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2814 PCI_DMA_TODEVICE);
2815 count++;
2816 i++;
2817 if (i == tx_ring->count)
2818 i = 0;
2819
2820 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2821 struct skb_frag_struct *frag;
2822
2823 frag = &skb_shinfo(skb)->frags[f];
2824 len = frag->size;
2825
2826 buffer_info = &tx_ring->buffer_info[i];
2827 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2828 buffer_info->length = len;
2829 buffer_info->time_stamp = jiffies;
0e014cb1 2830 buffer_info->next_to_watch = i;
9d5c8243
AK
2831 buffer_info->dma = pci_map_page(adapter->pdev,
2832 frag->page,
2833 frag->page_offset,
2834 len,
2835 PCI_DMA_TODEVICE);
2836
2837 count++;
2838 i++;
2839 if (i == tx_ring->count)
2840 i = 0;
2841 }
2842
0e014cb1 2843 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
9d5c8243 2844 tx_ring->buffer_info[i].skb = skb;
0e014cb1 2845 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243
AK
2846
2847 return count;
2848}
2849
2850static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2851 struct igb_ring *tx_ring,
2852 int tx_flags, int count, u32 paylen,
2853 u8 hdr_len)
2854{
2855 union e1000_adv_tx_desc *tx_desc = NULL;
2856 struct igb_buffer *buffer_info;
2857 u32 olinfo_status = 0, cmd_type_len;
2858 unsigned int i;
2859
2860 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2861 E1000_ADVTXD_DCMD_DEXT);
2862
2863 if (tx_flags & IGB_TX_FLAGS_VLAN)
2864 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2865
2866 if (tx_flags & IGB_TX_FLAGS_TSO) {
2867 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2868
2869 /* insert tcp checksum */
2870 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2871
2872 /* insert ip checksum */
2873 if (tx_flags & IGB_TX_FLAGS_IPV4)
2874 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2875
2876 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2877 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2878 }
2879
7dfc16fa
AD
2880 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2881 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2882 IGB_TX_FLAGS_VLAN)))
661086df 2883 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
2884
2885 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2886
2887 i = tx_ring->next_to_use;
2888 while (count--) {
2889 buffer_info = &tx_ring->buffer_info[i];
2890 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2891 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2892 tx_desc->read.cmd_type_len =
2893 cpu_to_le32(cmd_type_len | buffer_info->length);
2894 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2895 i++;
2896 if (i == tx_ring->count)
2897 i = 0;
2898 }
2899
2900 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2901 /* Force memory writes to complete before letting h/w
2902 * know there are new descriptors to fetch. (Only
2903 * applicable for weak-ordered memory model archs,
2904 * such as IA-64). */
2905 wmb();
2906
2907 tx_ring->next_to_use = i;
2908 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2909 /* we need this if more than one processor can write to our tail
2910 * at a time, it syncronizes IO on IA64/Altix systems */
2911 mmiowb();
2912}
2913
2914static int __igb_maybe_stop_tx(struct net_device *netdev,
2915 struct igb_ring *tx_ring, int size)
2916{
2917 struct igb_adapter *adapter = netdev_priv(netdev);
2918
661086df 2919 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 2920
9d5c8243
AK
2921 /* Herbert's original patch had:
2922 * smp_mb__after_netif_stop_queue();
2923 * but since that doesn't exist yet, just open code it. */
2924 smp_mb();
2925
2926 /* We need to check again in a case another CPU has just
2927 * made room available. */
2928 if (IGB_DESC_UNUSED(tx_ring) < size)
2929 return -EBUSY;
2930
2931 /* A reprieve! */
661086df 2932 netif_wake_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
2933 ++adapter->restart_queue;
2934 return 0;
2935}
2936
2937static int igb_maybe_stop_tx(struct net_device *netdev,
2938 struct igb_ring *tx_ring, int size)
2939{
2940 if (IGB_DESC_UNUSED(tx_ring) >= size)
2941 return 0;
2942 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2943}
2944
2945#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2946
2947static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2948 struct net_device *netdev,
2949 struct igb_ring *tx_ring)
2950{
2951 struct igb_adapter *adapter = netdev_priv(netdev);
0e014cb1 2952 unsigned int first;
9d5c8243
AK
2953 unsigned int tx_flags = 0;
2954 unsigned int len;
9d5c8243
AK
2955 u8 hdr_len = 0;
2956 int tso = 0;
2957
2958 len = skb_headlen(skb);
2959
2960 if (test_bit(__IGB_DOWN, &adapter->state)) {
2961 dev_kfree_skb_any(skb);
2962 return NETDEV_TX_OK;
2963 }
2964
2965 if (skb->len <= 0) {
2966 dev_kfree_skb_any(skb);
2967 return NETDEV_TX_OK;
2968 }
2969
9d5c8243
AK
2970 /* need: 1 descriptor per page,
2971 * + 2 desc gap to keep tail from touching head,
2972 * + 1 desc for skb->data,
2973 * + 1 desc for context descriptor,
2974 * otherwise try next time */
2975 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2976 /* this is a hard error */
9d5c8243
AK
2977 return NETDEV_TX_BUSY;
2978 }
6eb5a7f1 2979 skb_orphan(skb);
9d5c8243
AK
2980
2981 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2982 tx_flags |= IGB_TX_FLAGS_VLAN;
2983 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2984 }
2985
661086df
PWJ
2986 if (skb->protocol == htons(ETH_P_IP))
2987 tx_flags |= IGB_TX_FLAGS_IPV4;
2988
0e014cb1
AD
2989 first = tx_ring->next_to_use;
2990
9d5c8243
AK
2991 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2992 &hdr_len) : 0;
2993
2994 if (tso < 0) {
2995 dev_kfree_skb_any(skb);
9d5c8243
AK
2996 return NETDEV_TX_OK;
2997 }
2998
2999 if (tso)
3000 tx_flags |= IGB_TX_FLAGS_TSO;
3001 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3002 if (skb->ip_summed == CHECKSUM_PARTIAL)
3003 tx_flags |= IGB_TX_FLAGS_CSUM;
3004
9d5c8243 3005 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
0e014cb1 3006 igb_tx_map_adv(adapter, tx_ring, skb, first),
9d5c8243
AK
3007 skb->len, hdr_len);
3008
3009 netdev->trans_start = jiffies;
3010
3011 /* Make sure there is space in the ring for the next send. */
3012 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3013
9d5c8243
AK
3014 return NETDEV_TX_OK;
3015}
3016
3017static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3018{
3019 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3020 struct igb_ring *tx_ring;
3021
661086df
PWJ
3022 int r_idx = 0;
3023 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3024 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3025
3026 /* This goes back to the question of how to logically map a tx queue
3027 * to a flow. Right now, performance is impacted slightly negatively
3028 * if using multiple tx queues. If the stack breaks away from a
3029 * single qdisc implementation, we can look at this again. */
3030 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3031}
3032
3033/**
3034 * igb_tx_timeout - Respond to a Tx Hang
3035 * @netdev: network interface device structure
3036 **/
3037static void igb_tx_timeout(struct net_device *netdev)
3038{
3039 struct igb_adapter *adapter = netdev_priv(netdev);
3040 struct e1000_hw *hw = &adapter->hw;
3041
3042 /* Do the reset outside of interrupt context */
3043 adapter->tx_timeout_count++;
3044 schedule_work(&adapter->reset_task);
265de409
AD
3045 wr32(E1000_EICS,
3046 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3047}
3048
3049static void igb_reset_task(struct work_struct *work)
3050{
3051 struct igb_adapter *adapter;
3052 adapter = container_of(work, struct igb_adapter, reset_task);
3053
3054 igb_reinit_locked(adapter);
3055}
3056
3057/**
3058 * igb_get_stats - Get System Network Statistics
3059 * @netdev: network interface device structure
3060 *
3061 * Returns the address of the device statistics structure.
3062 * The statistics are actually updated from the timer callback.
3063 **/
3064static struct net_device_stats *
3065igb_get_stats(struct net_device *netdev)
3066{
3067 struct igb_adapter *adapter = netdev_priv(netdev);
3068
3069 /* only return the current stats */
3070 return &adapter->net_stats;
3071}
3072
3073/**
3074 * igb_change_mtu - Change the Maximum Transfer Unit
3075 * @netdev: network interface device structure
3076 * @new_mtu: new value for maximum frame size
3077 *
3078 * Returns 0 on success, negative on failure
3079 **/
3080static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3081{
3082 struct igb_adapter *adapter = netdev_priv(netdev);
3083 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3084
3085 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3086 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3087 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3088 return -EINVAL;
3089 }
3090
3091#define MAX_STD_JUMBO_FRAME_SIZE 9234
3092 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3093 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3094 return -EINVAL;
3095 }
3096
3097 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3098 msleep(1);
3099 /* igb_down has a dependency on max_frame_size */
3100 adapter->max_frame_size = max_frame;
3101 if (netif_running(netdev))
3102 igb_down(adapter);
3103
3104 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3105 * means we reserve 2 more, this pushes us to allocate from the next
3106 * larger slab size.
3107 * i.e. RXBUFFER_2048 --> size-4096 slab
3108 */
3109
3110 if (max_frame <= IGB_RXBUFFER_256)
3111 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3112 else if (max_frame <= IGB_RXBUFFER_512)
3113 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3114 else if (max_frame <= IGB_RXBUFFER_1024)
3115 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3116 else if (max_frame <= IGB_RXBUFFER_2048)
3117 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3118 else
bf36c1a0
AD
3119#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3120 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3121#else
3122 adapter->rx_buffer_len = PAGE_SIZE / 2;
3123#endif
9d5c8243
AK
3124 /* adjust allocation if LPE protects us, and we aren't using SBP */
3125 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3126 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3127 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3128
3129 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3130 netdev->mtu, new_mtu);
3131 netdev->mtu = new_mtu;
3132
3133 if (netif_running(netdev))
3134 igb_up(adapter);
3135 else
3136 igb_reset(adapter);
3137
3138 clear_bit(__IGB_RESETTING, &adapter->state);
3139
3140 return 0;
3141}
3142
3143/**
3144 * igb_update_stats - Update the board statistics counters
3145 * @adapter: board private structure
3146 **/
3147
3148void igb_update_stats(struct igb_adapter *adapter)
3149{
3150 struct e1000_hw *hw = &adapter->hw;
3151 struct pci_dev *pdev = adapter->pdev;
3152 u16 phy_tmp;
3153
3154#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3155
3156 /*
3157 * Prevent stats update while adapter is being reset, or if the pci
3158 * connection is down.
3159 */
3160 if (adapter->link_speed == 0)
3161 return;
3162 if (pci_channel_offline(pdev))
3163 return;
3164
3165 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3166 adapter->stats.gprc += rd32(E1000_GPRC);
3167 adapter->stats.gorc += rd32(E1000_GORCL);
3168 rd32(E1000_GORCH); /* clear GORCL */
3169 adapter->stats.bprc += rd32(E1000_BPRC);
3170 adapter->stats.mprc += rd32(E1000_MPRC);
3171 adapter->stats.roc += rd32(E1000_ROC);
3172
3173 adapter->stats.prc64 += rd32(E1000_PRC64);
3174 adapter->stats.prc127 += rd32(E1000_PRC127);
3175 adapter->stats.prc255 += rd32(E1000_PRC255);
3176 adapter->stats.prc511 += rd32(E1000_PRC511);
3177 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3178 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3179 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3180 adapter->stats.sec += rd32(E1000_SEC);
3181
3182 adapter->stats.mpc += rd32(E1000_MPC);
3183 adapter->stats.scc += rd32(E1000_SCC);
3184 adapter->stats.ecol += rd32(E1000_ECOL);
3185 adapter->stats.mcc += rd32(E1000_MCC);
3186 adapter->stats.latecol += rd32(E1000_LATECOL);
3187 adapter->stats.dc += rd32(E1000_DC);
3188 adapter->stats.rlec += rd32(E1000_RLEC);
3189 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3190 adapter->stats.xontxc += rd32(E1000_XONTXC);
3191 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3192 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3193 adapter->stats.fcruc += rd32(E1000_FCRUC);
3194 adapter->stats.gptc += rd32(E1000_GPTC);
3195 adapter->stats.gotc += rd32(E1000_GOTCL);
3196 rd32(E1000_GOTCH); /* clear GOTCL */
3197 adapter->stats.rnbc += rd32(E1000_RNBC);
3198 adapter->stats.ruc += rd32(E1000_RUC);
3199 adapter->stats.rfc += rd32(E1000_RFC);
3200 adapter->stats.rjc += rd32(E1000_RJC);
3201 adapter->stats.tor += rd32(E1000_TORH);
3202 adapter->stats.tot += rd32(E1000_TOTH);
3203 adapter->stats.tpr += rd32(E1000_TPR);
3204
3205 adapter->stats.ptc64 += rd32(E1000_PTC64);
3206 adapter->stats.ptc127 += rd32(E1000_PTC127);
3207 adapter->stats.ptc255 += rd32(E1000_PTC255);
3208 adapter->stats.ptc511 += rd32(E1000_PTC511);
3209 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3210 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3211
3212 adapter->stats.mptc += rd32(E1000_MPTC);
3213 adapter->stats.bptc += rd32(E1000_BPTC);
3214
3215 /* used for adaptive IFS */
3216
3217 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3218 adapter->stats.tpt += hw->mac.tx_packet_delta;
3219 hw->mac.collision_delta = rd32(E1000_COLC);
3220 adapter->stats.colc += hw->mac.collision_delta;
3221
3222 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3223 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3224 adapter->stats.tncrs += rd32(E1000_TNCRS);
3225 adapter->stats.tsctc += rd32(E1000_TSCTC);
3226 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3227
3228 adapter->stats.iac += rd32(E1000_IAC);
3229 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3230 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3231 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3232 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3233 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3234 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3235 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3236 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3237
3238 /* Fill out the OS statistics structure */
3239 adapter->net_stats.multicast = adapter->stats.mprc;
3240 adapter->net_stats.collisions = adapter->stats.colc;
3241
3242 /* Rx Errors */
3243
3244 /* RLEC on some newer hardware can be incorrect so build
3245 * our own version based on RUC and ROC */
3246 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3247 adapter->stats.crcerrs + adapter->stats.algnerrc +
3248 adapter->stats.ruc + adapter->stats.roc +
3249 adapter->stats.cexterr;
3250 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3251 adapter->stats.roc;
3252 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3253 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3254 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3255
3256 /* Tx Errors */
3257 adapter->net_stats.tx_errors = adapter->stats.ecol +
3258 adapter->stats.latecol;
3259 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3260 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3261 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3262
3263 /* Tx Dropped needs to be maintained elsewhere */
3264
3265 /* Phy Stats */
3266 if (hw->phy.media_type == e1000_media_type_copper) {
3267 if ((adapter->link_speed == SPEED_1000) &&
f5f4cf08 3268 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
9d5c8243
AK
3269 &phy_tmp))) {
3270 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3271 adapter->phy_stats.idle_errors += phy_tmp;
3272 }
3273 }
3274
3275 /* Management Stats */
3276 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3277 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3278 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3279}
3280
3281
3282static irqreturn_t igb_msix_other(int irq, void *data)
3283{
3284 struct net_device *netdev = data;
3285 struct igb_adapter *adapter = netdev_priv(netdev);
3286 struct e1000_hw *hw = &adapter->hw;
844290e5 3287 u32 icr = rd32(E1000_ICR);
9d5c8243 3288
844290e5 3289 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083
AD
3290
3291 if(icr & E1000_ICR_DOUTSYNC) {
3292 /* HW is reporting DMA is out of sync */
3293 adapter->stats.doosync++;
3294 }
844290e5
PW
3295 if (!(icr & E1000_ICR_LSC))
3296 goto no_link_interrupt;
3297 hw->mac.get_link_status = 1;
3298 /* guard against interrupt when we're going down */
3299 if (!test_bit(__IGB_DOWN, &adapter->state))
3300 mod_timer(&adapter->watchdog_timer, jiffies + 1);
eebbbdba 3301
9d5c8243 3302no_link_interrupt:
dda0e083 3303 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 3304 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3305
3306 return IRQ_HANDLED;
3307}
3308
3309static irqreturn_t igb_msix_tx(int irq, void *data)
3310{
3311 struct igb_ring *tx_ring = data;
3312 struct igb_adapter *adapter = tx_ring->adapter;
3313 struct e1000_hw *hw = &adapter->hw;
3314
421e02f0 3315#ifdef CONFIG_IGB_DCA
7dfc16fa 3316 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3317 igb_update_tx_dca(tx_ring);
3318#endif
9d5c8243
AK
3319 tx_ring->total_bytes = 0;
3320 tx_ring->total_packets = 0;
661086df
PWJ
3321
3322 /* auto mask will automatically reenable the interrupt when we write
3323 * EICS */
3b644cf6 3324 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3325 /* Ring was not completely cleaned, so fire another interrupt */
3326 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3327 else
9d5c8243 3328 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3329
9d5c8243
AK
3330 return IRQ_HANDLED;
3331}
3332
6eb5a7f1
AD
3333static void igb_write_itr(struct igb_ring *ring)
3334{
3335 struct e1000_hw *hw = &ring->adapter->hw;
3336 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3337 switch (hw->mac.type) {
3338 case e1000_82576:
3339 wr32(ring->itr_register,
3340 ring->itr_val |
3341 0x80000000);
3342 break;
3343 default:
3344 wr32(ring->itr_register,
3345 ring->itr_val |
3346 (ring->itr_val << 16));
3347 break;
3348 }
3349 ring->set_itr = 0;
3350 }
3351}
3352
9d5c8243
AK
3353static irqreturn_t igb_msix_rx(int irq, void *data)
3354{
3355 struct igb_ring *rx_ring = data;
9d5c8243 3356
844290e5
PW
3357 /* Write the ITR value calculated at the end of the
3358 * previous interrupt.
3359 */
9d5c8243 3360
6eb5a7f1 3361 igb_write_itr(rx_ring);
9d5c8243 3362
288379f0
BH
3363 if (napi_schedule_prep(&rx_ring->napi))
3364 __napi_schedule(&rx_ring->napi);
844290e5 3365
421e02f0 3366#ifdef CONFIG_IGB_DCA
8d253320 3367 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3368 igb_update_rx_dca(rx_ring);
3369#endif
3370 return IRQ_HANDLED;
3371}
3372
421e02f0 3373#ifdef CONFIG_IGB_DCA
fe4506b6
JC
3374static void igb_update_rx_dca(struct igb_ring *rx_ring)
3375{
3376 u32 dca_rxctrl;
3377 struct igb_adapter *adapter = rx_ring->adapter;
3378 struct e1000_hw *hw = &adapter->hw;
3379 int cpu = get_cpu();
26bc19ec 3380 int q = rx_ring->reg_idx;
fe4506b6
JC
3381
3382 if (rx_ring->cpu != cpu) {
3383 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3384 if (hw->mac.type == e1000_82576) {
3385 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3386 dca_rxctrl |= dca_get_tag(cpu) <<
3387 E1000_DCA_RXCTRL_CPUID_SHIFT;
3388 } else {
3389 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3390 dca_rxctrl |= dca_get_tag(cpu);
3391 }
fe4506b6
JC
3392 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3393 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3394 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3395 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3396 rx_ring->cpu = cpu;
3397 }
3398 put_cpu();
3399}
3400
3401static void igb_update_tx_dca(struct igb_ring *tx_ring)
3402{
3403 u32 dca_txctrl;
3404 struct igb_adapter *adapter = tx_ring->adapter;
3405 struct e1000_hw *hw = &adapter->hw;
3406 int cpu = get_cpu();
26bc19ec 3407 int q = tx_ring->reg_idx;
fe4506b6
JC
3408
3409 if (tx_ring->cpu != cpu) {
3410 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3411 if (hw->mac.type == e1000_82576) {
3412 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3413 dca_txctrl |= dca_get_tag(cpu) <<
3414 E1000_DCA_TXCTRL_CPUID_SHIFT;
3415 } else {
3416 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3417 dca_txctrl |= dca_get_tag(cpu);
3418 }
fe4506b6
JC
3419 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3420 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3421 tx_ring->cpu = cpu;
3422 }
3423 put_cpu();
3424}
3425
3426static void igb_setup_dca(struct igb_adapter *adapter)
3427{
3428 int i;
3429
7dfc16fa 3430 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3431 return;
3432
3433 for (i = 0; i < adapter->num_tx_queues; i++) {
3434 adapter->tx_ring[i].cpu = -1;
3435 igb_update_tx_dca(&adapter->tx_ring[i]);
3436 }
3437 for (i = 0; i < adapter->num_rx_queues; i++) {
3438 adapter->rx_ring[i].cpu = -1;
3439 igb_update_rx_dca(&adapter->rx_ring[i]);
3440 }
3441}
3442
3443static int __igb_notify_dca(struct device *dev, void *data)
3444{
3445 struct net_device *netdev = dev_get_drvdata(dev);
3446 struct igb_adapter *adapter = netdev_priv(netdev);
3447 struct e1000_hw *hw = &adapter->hw;
3448 unsigned long event = *(unsigned long *)data;
3449
3450 switch (event) {
3451 case DCA_PROVIDER_ADD:
3452 /* if already enabled, don't do it again */
7dfc16fa 3453 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3454 break;
fe4506b6
JC
3455 /* Always use CB2 mode, difference is masked
3456 * in the CB driver. */
3457 wr32(E1000_DCA_CTRL, 2);
3458 if (dca_add_requester(dev) == 0) {
bbd98fe4 3459 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3460 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3461 igb_setup_dca(adapter);
3462 break;
3463 }
3464 /* Fall Through since DCA is disabled. */
3465 case DCA_PROVIDER_REMOVE:
7dfc16fa 3466 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3467 /* without this a class_device is left
3468 * hanging around in the sysfs model */
3469 dca_remove_requester(dev);
3470 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3471 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3472 wr32(E1000_DCA_CTRL, 1);
3473 }
3474 break;
3475 }
bbd98fe4 3476
fe4506b6 3477 return 0;
9d5c8243
AK
3478}
3479
fe4506b6
JC
3480static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3481 void *p)
3482{
3483 int ret_val;
3484
3485 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3486 __igb_notify_dca);
3487
3488 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3489}
421e02f0 3490#endif /* CONFIG_IGB_DCA */
9d5c8243
AK
3491
3492/**
3493 * igb_intr_msi - Interrupt Handler
3494 * @irq: interrupt number
3495 * @data: pointer to a network interface device structure
3496 **/
3497static irqreturn_t igb_intr_msi(int irq, void *data)
3498{
3499 struct net_device *netdev = data;
3500 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3501 struct e1000_hw *hw = &adapter->hw;
3502 /* read ICR disables interrupts using IAM */
3503 u32 icr = rd32(E1000_ICR);
3504
6eb5a7f1 3505 igb_write_itr(adapter->rx_ring);
9d5c8243 3506
dda0e083
AD
3507 if(icr & E1000_ICR_DOUTSYNC) {
3508 /* HW is reporting DMA is out of sync */
3509 adapter->stats.doosync++;
3510 }
3511
9d5c8243
AK
3512 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3513 hw->mac.get_link_status = 1;
3514 if (!test_bit(__IGB_DOWN, &adapter->state))
3515 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3516 }
3517
288379f0 3518 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
3519
3520 return IRQ_HANDLED;
3521}
3522
3523/**
4a3c6433 3524 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
3525 * @irq: interrupt number
3526 * @data: pointer to a network interface device structure
3527 **/
3528static irqreturn_t igb_intr(int irq, void *data)
3529{
3530 struct net_device *netdev = data;
3531 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3532 struct e1000_hw *hw = &adapter->hw;
3533 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3534 * need for the IMC write */
3535 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
3536 if (!icr)
3537 return IRQ_NONE; /* Not our interrupt */
3538
6eb5a7f1 3539 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
3540
3541 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3542 * not set, then the adapter didn't send an interrupt */
3543 if (!(icr & E1000_ICR_INT_ASSERTED))
3544 return IRQ_NONE;
3545
dda0e083
AD
3546 if(icr & E1000_ICR_DOUTSYNC) {
3547 /* HW is reporting DMA is out of sync */
3548 adapter->stats.doosync++;
3549 }
3550
9d5c8243
AK
3551 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3552 hw->mac.get_link_status = 1;
3553 /* guard against interrupt when we're going down */
3554 if (!test_bit(__IGB_DOWN, &adapter->state))
3555 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3556 }
3557
288379f0 3558 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
3559
3560 return IRQ_HANDLED;
3561}
3562
3563/**
661086df
PWJ
3564 * igb_poll - NAPI Rx polling callback
3565 * @napi: napi polling structure
3566 * @budget: count of how many packets we should handle
9d5c8243 3567 **/
661086df 3568static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 3569{
661086df
PWJ
3570 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3571 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 3572 struct net_device *netdev = adapter->netdev;
661086df 3573 int tx_clean_complete, work_done = 0;
9d5c8243 3574
661086df 3575 /* this poll routine only supports one tx and one rx queue */
421e02f0 3576#ifdef CONFIG_IGB_DCA
7dfc16fa 3577 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3578 igb_update_tx_dca(&adapter->tx_ring[0]);
3579#endif
661086df 3580 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
fe4506b6 3581
421e02f0 3582#ifdef CONFIG_IGB_DCA
7dfc16fa 3583 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3584 igb_update_rx_dca(&adapter->rx_ring[0]);
3585#endif
661086df 3586 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
9d5c8243
AK
3587
3588 /* If no Tx and not enough Rx work done, exit the polling mode */
3589 if ((tx_clean_complete && (work_done < budget)) ||
3590 !netif_running(netdev)) {
9d5c8243 3591 if (adapter->itr_setting & 3)
6eb5a7f1 3592 igb_set_itr(adapter);
288379f0 3593 napi_complete(napi);
9d5c8243
AK
3594 if (!test_bit(__IGB_DOWN, &adapter->state))
3595 igb_irq_enable(adapter);
3596 return 0;
3597 }
3598
3599 return 1;
3600}
3601
3602static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3603{
3604 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3605 struct igb_adapter *adapter = rx_ring->adapter;
3606 struct e1000_hw *hw = &adapter->hw;
3607 struct net_device *netdev = adapter->netdev;
3608 int work_done = 0;
3609
421e02f0 3610#ifdef CONFIG_IGB_DCA
7dfc16fa 3611 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3612 igb_update_rx_dca(rx_ring);
3613#endif
3b644cf6 3614 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243
AK
3615
3616
3617 /* If not enough Rx work done, exit the polling mode */
3618 if ((work_done == 0) || !netif_running(netdev)) {
288379f0 3619 napi_complete(napi);
9d5c8243 3620
6eb5a7f1
AD
3621 if (adapter->itr_setting & 3) {
3622 if (adapter->num_rx_queues == 1)
3623 igb_set_itr(adapter);
3624 else
3625 igb_update_ring_itr(rx_ring);
9d5c8243 3626 }
844290e5
PW
3627
3628 if (!test_bit(__IGB_DOWN, &adapter->state))
3629 wr32(E1000_EIMS, rx_ring->eims_value);
3630
9d5c8243
AK
3631 return 0;
3632 }
3633
3634 return 1;
3635}
6d8126f9 3636
9d5c8243
AK
3637/**
3638 * igb_clean_tx_irq - Reclaim resources after transmit completes
3639 * @adapter: board private structure
3640 * returns true if ring is completely cleaned
3641 **/
3b644cf6 3642static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 3643{
3b644cf6 3644 struct igb_adapter *adapter = tx_ring->adapter;
3b644cf6 3645 struct net_device *netdev = adapter->netdev;
0e014cb1 3646 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3647 struct igb_buffer *buffer_info;
3648 struct sk_buff *skb;
0e014cb1 3649 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 3650 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
3651 unsigned int i, eop, count = 0;
3652 bool cleaned = false;
9d5c8243 3653
9d5c8243 3654 i = tx_ring->next_to_clean;
0e014cb1
AD
3655 eop = tx_ring->buffer_info[i].next_to_watch;
3656 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3657
3658 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3659 (count < tx_ring->count)) {
3660 for (cleaned = false; !cleaned; count++) {
3661 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 3662 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 3663 cleaned = (i == eop);
9d5c8243
AK
3664 skb = buffer_info->skb;
3665
3666 if (skb) {
3667 unsigned int segs, bytecount;
3668 /* gso_segs is currently only valid for tcp */
3669 segs = skb_shinfo(skb)->gso_segs ?: 1;
3670 /* multiply data chunks by size of headers */
3671 bytecount = ((segs - 1) * skb_headlen(skb)) +
3672 skb->len;
3673 total_packets += segs;
3674 total_bytes += bytecount;
3675 }
3676
3677 igb_unmap_and_free_tx_resource(adapter, buffer_info);
0e014cb1 3678 tx_desc->wb.status = 0;
9d5c8243
AK
3679
3680 i++;
3681 if (i == tx_ring->count)
3682 i = 0;
9d5c8243 3683 }
0e014cb1
AD
3684
3685 eop = tx_ring->buffer_info[i].next_to_watch;
3686 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3687 }
3688
9d5c8243
AK
3689 tx_ring->next_to_clean = i;
3690
fc7d345d 3691 if (unlikely(count &&
9d5c8243
AK
3692 netif_carrier_ok(netdev) &&
3693 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3694 /* Make sure that anybody stopping the queue after this
3695 * sees the new next_to_clean.
3696 */
3697 smp_mb();
661086df
PWJ
3698 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3699 !(test_bit(__IGB_DOWN, &adapter->state))) {
3700 netif_wake_subqueue(netdev, tx_ring->queue_index);
3701 ++adapter->restart_queue;
3702 }
9d5c8243
AK
3703 }
3704
3705 if (tx_ring->detect_tx_hung) {
3706 /* Detect a transmit hang in hardware, this serializes the
3707 * check with the clearing of time_stamp and movement of i */
3708 tx_ring->detect_tx_hung = false;
3709 if (tx_ring->buffer_info[i].time_stamp &&
3710 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3711 (adapter->tx_timeout_factor * HZ))
3712 && !(rd32(E1000_STATUS) &
3713 E1000_STATUS_TXOFF)) {
3714
9d5c8243
AK
3715 /* detected Tx unit hang */
3716 dev_err(&adapter->pdev->dev,
3717 "Detected Tx Unit Hang\n"
2d064c06 3718 " Tx Queue <%d>\n"
9d5c8243
AK
3719 " TDH <%x>\n"
3720 " TDT <%x>\n"
3721 " next_to_use <%x>\n"
3722 " next_to_clean <%x>\n"
9d5c8243
AK
3723 "buffer_info[next_to_clean]\n"
3724 " time_stamp <%lx>\n"
0e014cb1 3725 " next_to_watch <%x>\n"
9d5c8243
AK
3726 " jiffies <%lx>\n"
3727 " desc.status <%x>\n",
2d064c06 3728 tx_ring->queue_index,
9d5c8243
AK
3729 readl(adapter->hw.hw_addr + tx_ring->head),
3730 readl(adapter->hw.hw_addr + tx_ring->tail),
3731 tx_ring->next_to_use,
3732 tx_ring->next_to_clean,
9d5c8243 3733 tx_ring->buffer_info[i].time_stamp,
0e014cb1 3734 eop,
9d5c8243 3735 jiffies,
0e014cb1 3736 eop_desc->wb.status);
661086df 3737 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
3738 }
3739 }
3740 tx_ring->total_bytes += total_bytes;
3741 tx_ring->total_packets += total_packets;
e21ed353
AD
3742 tx_ring->tx_stats.bytes += total_bytes;
3743 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
3744 adapter->net_stats.tx_bytes += total_bytes;
3745 adapter->net_stats.tx_packets += total_packets;
0e014cb1 3746 return (count < tx_ring->count);
9d5c8243
AK
3747}
3748
9d5c8243
AK
3749/**
3750 * igb_receive_skb - helper function to handle rx indications
eebbbdba 3751 * @ring: pointer to receive ring receving this packet
9d5c8243
AK
3752 * @status: descriptor status field as written by hardware
3753 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3754 * @skb: pointer to sk_buff to be indicated to stack
3755 **/
d3352520
AD
3756static void igb_receive_skb(struct igb_ring *ring, u8 status,
3757 union e1000_adv_rx_desc * rx_desc,
3758 struct sk_buff *skb)
3759{
3760 struct igb_adapter * adapter = ring->adapter;
3761 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3762
0c8dfc83 3763 skb_record_rx_queue(skb, ring->queue_index);
5c0999b7 3764 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
d3352520 3765 if (vlan_extracted)
5c0999b7
HX
3766 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3767 le16_to_cpu(rx_desc->wb.upper.vlan),
3768 skb);
d3352520 3769 else
5c0999b7 3770 napi_gro_receive(&ring->napi, skb);
d3352520 3771 } else {
d3352520
AD
3772 if (vlan_extracted)
3773 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3774 le16_to_cpu(rx_desc->wb.upper.vlan));
3775 else
d3352520 3776 netif_receive_skb(skb);
d3352520 3777 }
9d5c8243
AK
3778}
3779
3780
3781static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3782 u32 status_err, struct sk_buff *skb)
3783{
3784 skb->ip_summed = CHECKSUM_NONE;
3785
3786 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3787 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3788 return;
3789 /* TCP/UDP checksum error bit is set */
3790 if (status_err &
3791 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3792 /* let the stack verify checksum errors */
3793 adapter->hw_csum_err++;
3794 return;
3795 }
3796 /* It must be a TCP or UDP packet with a valid checksum */
3797 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3798 skb->ip_summed = CHECKSUM_UNNECESSARY;
3799
3800 adapter->hw_csum_good++;
3801}
3802
3b644cf6
MW
3803static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3804 int *work_done, int budget)
9d5c8243 3805{
3b644cf6 3806 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3807 struct net_device *netdev = adapter->netdev;
3808 struct pci_dev *pdev = adapter->pdev;
3809 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3810 struct igb_buffer *buffer_info , *next_buffer;
3811 struct sk_buff *skb;
bf36c1a0 3812 unsigned int i;
9d5c8243
AK
3813 u32 length, hlen, staterr;
3814 bool cleaned = false;
3815 int cleaned_count = 0;
3816 unsigned int total_bytes = 0, total_packets = 0;
3817
3818 i = rx_ring->next_to_clean;
69d3ca53 3819 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
3820 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3821 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3822
3823 while (staterr & E1000_RXD_STAT_DD) {
3824 if (*work_done >= budget)
3825 break;
3826 (*work_done)++;
9d5c8243 3827
69d3ca53
AD
3828 skb = buffer_info->skb;
3829 prefetch(skb->data - NET_IP_ALIGN);
3830 buffer_info->skb = NULL;
3831
3832 i++;
3833 if (i == rx_ring->count)
3834 i = 0;
3835 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3836 prefetch(next_rxd);
3837 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
3838
3839 length = le16_to_cpu(rx_desc->wb.upper.length);
3840 cleaned = true;
3841 cleaned_count++;
3842
bf36c1a0
AD
3843 if (!adapter->rx_ps_hdr_size) {
3844 pci_unmap_single(pdev, buffer_info->dma,
3845 adapter->rx_buffer_len +
3846 NET_IP_ALIGN,
3847 PCI_DMA_FROMDEVICE);
3848 skb_put(skb, length);
3849 goto send_up;
9d5c8243
AK
3850 }
3851
69d3ca53
AD
3852 /* HW will not DMA in data larger than the given buffer, even
3853 * if it parses the (NFS, of course) header to be larger. In
3854 * that case, it fills the header buffer and spills the rest
3855 * into the page.
3856 */
3857 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3858 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3859 if (hlen > adapter->rx_ps_hdr_size)
3860 hlen = adapter->rx_ps_hdr_size;
3861
bf36c1a0
AD
3862 if (!skb_shinfo(skb)->nr_frags) {
3863 pci_unmap_single(pdev, buffer_info->dma,
3864 adapter->rx_ps_hdr_size +
3865 NET_IP_ALIGN,
3866 PCI_DMA_FROMDEVICE);
3867 skb_put(skb, hlen);
3868 }
3869
3870 if (length) {
9d5c8243 3871 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 3872 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 3873 buffer_info->page_dma = 0;
bf36c1a0
AD
3874
3875 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3876 buffer_info->page,
3877 buffer_info->page_offset,
3878 length);
3879
3880 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3881 (page_count(buffer_info->page) != 1))
3882 buffer_info->page = NULL;
3883 else
3884 get_page(buffer_info->page);
9d5c8243
AK
3885
3886 skb->len += length;
3887 skb->data_len += length;
9d5c8243 3888
bf36c1a0 3889 skb->truesize += length;
9d5c8243 3890 }
9d5c8243 3891
bf36c1a0 3892 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
3893 buffer_info->skb = next_buffer->skb;
3894 buffer_info->dma = next_buffer->dma;
3895 next_buffer->skb = skb;
3896 next_buffer->dma = 0;
bf36c1a0
AD
3897 goto next_desc;
3898 }
69d3ca53 3899send_up:
9d5c8243
AK
3900 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3901 dev_kfree_skb_irq(skb);
3902 goto next_desc;
3903 }
9d5c8243
AK
3904
3905 total_bytes += skb->len;
3906 total_packets++;
3907
3908 igb_rx_checksum_adv(adapter, staterr, skb);
3909
3910 skb->protocol = eth_type_trans(skb, netdev);
3911
d3352520 3912 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243 3913
9d5c8243
AK
3914next_desc:
3915 rx_desc->wb.upper.status_error = 0;
3916
3917 /* return some buffers to hardware, one at a time is too slow */
3918 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 3919 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
3920 cleaned_count = 0;
3921 }
3922
3923 /* use prefetched values */
3924 rx_desc = next_rxd;
3925 buffer_info = next_buffer;
9d5c8243
AK
3926 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3927 }
bf36c1a0 3928
9d5c8243
AK
3929 rx_ring->next_to_clean = i;
3930 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3931
3932 if (cleaned_count)
3b644cf6 3933 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
3934
3935 rx_ring->total_packets += total_packets;
3936 rx_ring->total_bytes += total_bytes;
3937 rx_ring->rx_stats.packets += total_packets;
3938 rx_ring->rx_stats.bytes += total_bytes;
3939 adapter->net_stats.rx_bytes += total_bytes;
3940 adapter->net_stats.rx_packets += total_packets;
3941 return cleaned;
3942}
3943
3944
3945/**
3946 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3947 * @adapter: address of board private structure
3948 **/
3b644cf6 3949static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
3950 int cleaned_count)
3951{
3b644cf6 3952 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3953 struct net_device *netdev = adapter->netdev;
3954 struct pci_dev *pdev = adapter->pdev;
3955 union e1000_adv_rx_desc *rx_desc;
3956 struct igb_buffer *buffer_info;
3957 struct sk_buff *skb;
3958 unsigned int i;
db761762 3959 int bufsz;
9d5c8243
AK
3960
3961 i = rx_ring->next_to_use;
3962 buffer_info = &rx_ring->buffer_info[i];
3963
db761762
AD
3964 if (adapter->rx_ps_hdr_size)
3965 bufsz = adapter->rx_ps_hdr_size;
3966 else
3967 bufsz = adapter->rx_buffer_len;
3968 bufsz += NET_IP_ALIGN;
3969
9d5c8243
AK
3970 while (cleaned_count--) {
3971 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3972
bf36c1a0 3973 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 3974 if (!buffer_info->page) {
bf36c1a0
AD
3975 buffer_info->page = alloc_page(GFP_ATOMIC);
3976 if (!buffer_info->page) {
3977 adapter->alloc_rx_buff_failed++;
3978 goto no_buffers;
3979 }
3980 buffer_info->page_offset = 0;
3981 } else {
3982 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
3983 }
3984 buffer_info->page_dma =
db761762 3985 pci_map_page(pdev, buffer_info->page,
bf36c1a0
AD
3986 buffer_info->page_offset,
3987 PAGE_SIZE / 2,
9d5c8243
AK
3988 PCI_DMA_FROMDEVICE);
3989 }
3990
3991 if (!buffer_info->skb) {
9d5c8243 3992 skb = netdev_alloc_skb(netdev, bufsz);
9d5c8243
AK
3993 if (!skb) {
3994 adapter->alloc_rx_buff_failed++;
3995 goto no_buffers;
3996 }
3997
3998 /* Make buffer alignment 2 beyond a 16 byte boundary
3999 * this will result in a 16 byte aligned IP header after
4000 * the 14 byte MAC header is removed
4001 */
4002 skb_reserve(skb, NET_IP_ALIGN);
4003
4004 buffer_info->skb = skb;
4005 buffer_info->dma = pci_map_single(pdev, skb->data,
4006 bufsz,
4007 PCI_DMA_FROMDEVICE);
9d5c8243
AK
4008 }
4009 /* Refresh the desc even if buffer_addrs didn't change because
4010 * each write-back erases this info. */
4011 if (adapter->rx_ps_hdr_size) {
4012 rx_desc->read.pkt_addr =
4013 cpu_to_le64(buffer_info->page_dma);
4014 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4015 } else {
4016 rx_desc->read.pkt_addr =
4017 cpu_to_le64(buffer_info->dma);
4018 rx_desc->read.hdr_addr = 0;
4019 }
4020
4021 i++;
4022 if (i == rx_ring->count)
4023 i = 0;
4024 buffer_info = &rx_ring->buffer_info[i];
4025 }
4026
4027no_buffers:
4028 if (rx_ring->next_to_use != i) {
4029 rx_ring->next_to_use = i;
4030 if (i == 0)
4031 i = (rx_ring->count - 1);
4032 else
4033 i--;
4034
4035 /* Force memory writes to complete before letting h/w
4036 * know there are new descriptors to fetch. (Only
4037 * applicable for weak-ordered memory model archs,
4038 * such as IA-64). */
4039 wmb();
4040 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4041 }
4042}
4043
4044/**
4045 * igb_mii_ioctl -
4046 * @netdev:
4047 * @ifreq:
4048 * @cmd:
4049 **/
4050static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4051{
4052 struct igb_adapter *adapter = netdev_priv(netdev);
4053 struct mii_ioctl_data *data = if_mii(ifr);
4054
4055 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4056 return -EOPNOTSUPP;
4057
4058 switch (cmd) {
4059 case SIOCGMIIPHY:
4060 data->phy_id = adapter->hw.phy.addr;
4061 break;
4062 case SIOCGMIIREG:
4063 if (!capable(CAP_NET_ADMIN))
4064 return -EPERM;
f5f4cf08
AD
4065 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4066 &data->val_out))
9d5c8243
AK
4067 return -EIO;
4068 break;
4069 case SIOCSMIIREG:
4070 default:
4071 return -EOPNOTSUPP;
4072 }
4073 return 0;
4074}
4075
4076/**
4077 * igb_ioctl -
4078 * @netdev:
4079 * @ifreq:
4080 * @cmd:
4081 **/
4082static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4083{
4084 switch (cmd) {
4085 case SIOCGMIIPHY:
4086 case SIOCGMIIREG:
4087 case SIOCSMIIREG:
4088 return igb_mii_ioctl(netdev, ifr, cmd);
4089 default:
4090 return -EOPNOTSUPP;
4091 }
4092}
4093
4094static void igb_vlan_rx_register(struct net_device *netdev,
4095 struct vlan_group *grp)
4096{
4097 struct igb_adapter *adapter = netdev_priv(netdev);
4098 struct e1000_hw *hw = &adapter->hw;
4099 u32 ctrl, rctl;
4100
4101 igb_irq_disable(adapter);
4102 adapter->vlgrp = grp;
4103
4104 if (grp) {
4105 /* enable VLAN tag insert/strip */
4106 ctrl = rd32(E1000_CTRL);
4107 ctrl |= E1000_CTRL_VME;
4108 wr32(E1000_CTRL, ctrl);
4109
4110 /* enable VLAN receive filtering */
4111 rctl = rd32(E1000_RCTL);
9d5c8243
AK
4112 rctl &= ~E1000_RCTL_CFIEN;
4113 wr32(E1000_RCTL, rctl);
4114 igb_update_mng_vlan(adapter);
4115 wr32(E1000_RLPML,
4116 adapter->max_frame_size + VLAN_TAG_SIZE);
4117 } else {
4118 /* disable VLAN tag insert/strip */
4119 ctrl = rd32(E1000_CTRL);
4120 ctrl &= ~E1000_CTRL_VME;
4121 wr32(E1000_CTRL, ctrl);
4122
9d5c8243
AK
4123 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4124 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4125 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4126 }
4127 wr32(E1000_RLPML,
4128 adapter->max_frame_size);
4129 }
4130
4131 if (!test_bit(__IGB_DOWN, &adapter->state))
4132 igb_irq_enable(adapter);
4133}
4134
4135static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4136{
4137 struct igb_adapter *adapter = netdev_priv(netdev);
4138 struct e1000_hw *hw = &adapter->hw;
4139 u32 vfta, index;
4140
28b0759c 4141 if ((hw->mng_cookie.status &
9d5c8243
AK
4142 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4143 (vid == adapter->mng_vlan_id))
4144 return;
4145 /* add VID to filter table */
4146 index = (vid >> 5) & 0x7F;
4147 vfta = array_rd32(E1000_VFTA, index);
4148 vfta |= (1 << (vid & 0x1F));
4149 igb_write_vfta(&adapter->hw, index, vfta);
4150}
4151
4152static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4153{
4154 struct igb_adapter *adapter = netdev_priv(netdev);
4155 struct e1000_hw *hw = &adapter->hw;
4156 u32 vfta, index;
4157
4158 igb_irq_disable(adapter);
4159 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4160
4161 if (!test_bit(__IGB_DOWN, &adapter->state))
4162 igb_irq_enable(adapter);
4163
4164 if ((adapter->hw.mng_cookie.status &
4165 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4166 (vid == adapter->mng_vlan_id)) {
4167 /* release control to f/w */
4168 igb_release_hw_control(adapter);
4169 return;
4170 }
4171
4172 /* remove VID from filter table */
4173 index = (vid >> 5) & 0x7F;
4174 vfta = array_rd32(E1000_VFTA, index);
4175 vfta &= ~(1 << (vid & 0x1F));
4176 igb_write_vfta(&adapter->hw, index, vfta);
4177}
4178
4179static void igb_restore_vlan(struct igb_adapter *adapter)
4180{
4181 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4182
4183 if (adapter->vlgrp) {
4184 u16 vid;
4185 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4186 if (!vlan_group_get_device(adapter->vlgrp, vid))
4187 continue;
4188 igb_vlan_rx_add_vid(adapter->netdev, vid);
4189 }
4190 }
4191}
4192
4193int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4194{
4195 struct e1000_mac_info *mac = &adapter->hw.mac;
4196
4197 mac->autoneg = 0;
4198
4199 /* Fiber NICs only allow 1000 gbps Full duplex */
4200 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4201 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4202 dev_err(&adapter->pdev->dev,
4203 "Unsupported Speed/Duplex configuration\n");
4204 return -EINVAL;
4205 }
4206
4207 switch (spddplx) {
4208 case SPEED_10 + DUPLEX_HALF:
4209 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4210 break;
4211 case SPEED_10 + DUPLEX_FULL:
4212 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4213 break;
4214 case SPEED_100 + DUPLEX_HALF:
4215 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4216 break;
4217 case SPEED_100 + DUPLEX_FULL:
4218 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4219 break;
4220 case SPEED_1000 + DUPLEX_FULL:
4221 mac->autoneg = 1;
4222 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4223 break;
4224 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4225 default:
4226 dev_err(&adapter->pdev->dev,
4227 "Unsupported Speed/Duplex configuration\n");
4228 return -EINVAL;
4229 }
4230 return 0;
4231}
4232
4233
4234static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4235{
4236 struct net_device *netdev = pci_get_drvdata(pdev);
4237 struct igb_adapter *adapter = netdev_priv(netdev);
4238 struct e1000_hw *hw = &adapter->hw;
2d064c06 4239 u32 ctrl, rctl, status;
9d5c8243
AK
4240 u32 wufc = adapter->wol;
4241#ifdef CONFIG_PM
4242 int retval = 0;
4243#endif
4244
4245 netif_device_detach(netdev);
4246
a88f10ec
AD
4247 if (netif_running(netdev))
4248 igb_close(netdev);
4249
4250 igb_reset_interrupt_capability(adapter);
4251
4252 igb_free_queues(adapter);
9d5c8243
AK
4253
4254#ifdef CONFIG_PM
4255 retval = pci_save_state(pdev);
4256 if (retval)
4257 return retval;
4258#endif
4259
4260 status = rd32(E1000_STATUS);
4261 if (status & E1000_STATUS_LU)
4262 wufc &= ~E1000_WUFC_LNKC;
4263
4264 if (wufc) {
4265 igb_setup_rctl(adapter);
4266 igb_set_multi(netdev);
4267
4268 /* turn on all-multi mode if wake on multicast is enabled */
4269 if (wufc & E1000_WUFC_MC) {
4270 rctl = rd32(E1000_RCTL);
4271 rctl |= E1000_RCTL_MPE;
4272 wr32(E1000_RCTL, rctl);
4273 }
4274
4275 ctrl = rd32(E1000_CTRL);
4276 /* advertise wake from D3Cold */
4277 #define E1000_CTRL_ADVD3WUC 0x00100000
4278 /* phy power management enable */
4279 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4280 ctrl |= E1000_CTRL_ADVD3WUC;
4281 wr32(E1000_CTRL, ctrl);
4282
9d5c8243
AK
4283 /* Allow time for pending master requests to run */
4284 igb_disable_pcie_master(&adapter->hw);
4285
4286 wr32(E1000_WUC, E1000_WUC_PME_EN);
4287 wr32(E1000_WUFC, wufc);
9d5c8243
AK
4288 } else {
4289 wr32(E1000_WUC, 0);
4290 wr32(E1000_WUFC, 0);
9d5c8243
AK
4291 }
4292
2d064c06
AD
4293 /* make sure adapter isn't asleep if manageability/wol is enabled */
4294 if (wufc || adapter->en_mng_pt) {
9d5c8243
AK
4295 pci_enable_wake(pdev, PCI_D3hot, 1);
4296 pci_enable_wake(pdev, PCI_D3cold, 1);
2d064c06
AD
4297 } else {
4298 igb_shutdown_fiber_serdes_link_82575(hw);
4299 pci_enable_wake(pdev, PCI_D3hot, 0);
4300 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243
AK
4301 }
4302
4303 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4304 * would have already happened in close and is redundant. */
4305 igb_release_hw_control(adapter);
4306
4307 pci_disable_device(pdev);
4308
4309 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4310
4311 return 0;
4312}
4313
4314#ifdef CONFIG_PM
4315static int igb_resume(struct pci_dev *pdev)
4316{
4317 struct net_device *netdev = pci_get_drvdata(pdev);
4318 struct igb_adapter *adapter = netdev_priv(netdev);
4319 struct e1000_hw *hw = &adapter->hw;
4320 u32 err;
4321
4322 pci_set_power_state(pdev, PCI_D0);
4323 pci_restore_state(pdev);
42bfd33a 4324
aed5dec3 4325 err = pci_enable_device_mem(pdev);
9d5c8243
AK
4326 if (err) {
4327 dev_err(&pdev->dev,
4328 "igb: Cannot enable PCI device from suspend\n");
4329 return err;
4330 }
4331 pci_set_master(pdev);
4332
4333 pci_enable_wake(pdev, PCI_D3hot, 0);
4334 pci_enable_wake(pdev, PCI_D3cold, 0);
4335
a88f10ec
AD
4336 igb_set_interrupt_capability(adapter);
4337
4338 if (igb_alloc_queues(adapter)) {
4339 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4340 return -ENOMEM;
9d5c8243
AK
4341 }
4342
4343 /* e1000_power_up_phy(adapter); */
4344
4345 igb_reset(adapter);
a8564f03
AD
4346
4347 /* let the f/w know that the h/w is now under the control of the
4348 * driver. */
4349 igb_get_hw_control(adapter);
4350
9d5c8243
AK
4351 wr32(E1000_WUS, ~0);
4352
a88f10ec
AD
4353 if (netif_running(netdev)) {
4354 err = igb_open(netdev);
4355 if (err)
4356 return err;
4357 }
9d5c8243
AK
4358
4359 netif_device_attach(netdev);
4360
9d5c8243
AK
4361 return 0;
4362}
4363#endif
4364
4365static void igb_shutdown(struct pci_dev *pdev)
4366{
4367 igb_suspend(pdev, PMSG_SUSPEND);
4368}
4369
4370#ifdef CONFIG_NET_POLL_CONTROLLER
4371/*
4372 * Polling 'interrupt' - used by things like netconsole to send skbs
4373 * without having to re-enable interrupts. It's not called while
4374 * the interrupt routine is executing.
4375 */
4376static void igb_netpoll(struct net_device *netdev)
4377{
4378 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 4379 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4380 int i;
9d5c8243 4381
eebbbdba
AD
4382 if (!adapter->msix_entries) {
4383 igb_irq_disable(adapter);
4384 napi_schedule(&adapter->rx_ring[0].napi);
4385 return;
4386 }
9d5c8243 4387
eebbbdba
AD
4388 for (i = 0; i < adapter->num_tx_queues; i++) {
4389 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4390 wr32(E1000_EIMC, tx_ring->eims_value);
4391 igb_clean_tx_irq(tx_ring);
4392 wr32(E1000_EIMS, tx_ring->eims_value);
4393 }
9d5c8243 4394
eebbbdba
AD
4395 for (i = 0; i < adapter->num_rx_queues; i++) {
4396 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4397 wr32(E1000_EIMC, rx_ring->eims_value);
4398 napi_schedule(&rx_ring->napi);
4399 }
9d5c8243
AK
4400}
4401#endif /* CONFIG_NET_POLL_CONTROLLER */
4402
4403/**
4404 * igb_io_error_detected - called when PCI error is detected
4405 * @pdev: Pointer to PCI device
4406 * @state: The current pci connection state
4407 *
4408 * This function is called after a PCI bus error affecting
4409 * this device has been detected.
4410 */
4411static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4412 pci_channel_state_t state)
4413{
4414 struct net_device *netdev = pci_get_drvdata(pdev);
4415 struct igb_adapter *adapter = netdev_priv(netdev);
4416
4417 netif_device_detach(netdev);
4418
4419 if (netif_running(netdev))
4420 igb_down(adapter);
4421 pci_disable_device(pdev);
4422
4423 /* Request a slot slot reset. */
4424 return PCI_ERS_RESULT_NEED_RESET;
4425}
4426
4427/**
4428 * igb_io_slot_reset - called after the pci bus has been reset.
4429 * @pdev: Pointer to PCI device
4430 *
4431 * Restart the card from scratch, as if from a cold-boot. Implementation
4432 * resembles the first-half of the igb_resume routine.
4433 */
4434static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4435{
4436 struct net_device *netdev = pci_get_drvdata(pdev);
4437 struct igb_adapter *adapter = netdev_priv(netdev);
4438 struct e1000_hw *hw = &adapter->hw;
40a914fa 4439 pci_ers_result_t result;
42bfd33a 4440 int err;
9d5c8243 4441
aed5dec3 4442 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
4443 dev_err(&pdev->dev,
4444 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
4445 result = PCI_ERS_RESULT_DISCONNECT;
4446 } else {
4447 pci_set_master(pdev);
4448 pci_restore_state(pdev);
9d5c8243 4449
40a914fa
AD
4450 pci_enable_wake(pdev, PCI_D3hot, 0);
4451 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 4452
40a914fa
AD
4453 igb_reset(adapter);
4454 wr32(E1000_WUS, ~0);
4455 result = PCI_ERS_RESULT_RECOVERED;
4456 }
9d5c8243 4457
ea943d41
JK
4458 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4459 if (err) {
4460 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4461 "failed 0x%0x\n", err);
4462 /* non-fatal, continue */
4463 }
40a914fa
AD
4464
4465 return result;
9d5c8243
AK
4466}
4467
4468/**
4469 * igb_io_resume - called when traffic can start flowing again.
4470 * @pdev: Pointer to PCI device
4471 *
4472 * This callback is called when the error recovery driver tells us that
4473 * its OK to resume normal operation. Implementation resembles the
4474 * second-half of the igb_resume routine.
4475 */
4476static void igb_io_resume(struct pci_dev *pdev)
4477{
4478 struct net_device *netdev = pci_get_drvdata(pdev);
4479 struct igb_adapter *adapter = netdev_priv(netdev);
4480
9d5c8243
AK
4481 if (netif_running(netdev)) {
4482 if (igb_up(adapter)) {
4483 dev_err(&pdev->dev, "igb_up failed after reset\n");
4484 return;
4485 }
4486 }
4487
4488 netif_device_attach(netdev);
4489
4490 /* let the f/w know that the h/w is now under the control of the
4491 * driver. */
4492 igb_get_hw_control(adapter);
9d5c8243
AK
4493}
4494
4495/* igb_main.c */
This page took 0.43451 seconds and 5 git commands to generate.