forcedeth: do vlan cleanup
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
70c71606 48#include <linux/prefetch.h>
421e02f0 49#ifdef CONFIG_IGB_DCA
fe4506b6
JC
50#include <linux/dca.h>
51#endif
9d5c8243
AK
52#include "igb.h"
53
0d1fe82d
CW
54#define MAJ 3
55#define MIN 0
56#define BUILD 6
0d1fe82d 57#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 58__stringify(BUILD) "-k"
9d5c8243
AK
59char igb_driver_name[] = "igb";
60char igb_driver_version[] = DRV_VERSION;
61static const char igb_driver_string[] =
62 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 63static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 64
9d5c8243
AK
65static const struct e1000_info *igb_info_tbl[] = {
66 [board_82575] = &e1000_82575_info,
67};
68
a3aa1884 69static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
95 /* required last entry */
96 {0, }
97};
98
99MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
100
101void igb_reset(struct igb_adapter *);
102static int igb_setup_all_tx_resources(struct igb_adapter *);
103static int igb_setup_all_rx_resources(struct igb_adapter *);
104static void igb_free_all_tx_resources(struct igb_adapter *);
105static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 106static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
107static int igb_probe(struct pci_dev *, const struct pci_device_id *);
108static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 109static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
110static int igb_sw_init(struct igb_adapter *);
111static int igb_open(struct net_device *);
112static int igb_close(struct net_device *);
113static void igb_configure_tx(struct igb_adapter *);
114static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
115static void igb_clean_all_tx_rings(struct igb_adapter *);
116static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
117static void igb_clean_tx_ring(struct igb_ring *);
118static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 119static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
120static void igb_update_phy_info(unsigned long);
121static void igb_watchdog(unsigned long);
122static void igb_watchdog_task(struct work_struct *);
b1a436c3 123static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
124static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
125 struct rtnl_link_stats64 *stats);
9d5c8243
AK
126static int igb_change_mtu(struct net_device *, int);
127static int igb_set_mac(struct net_device *, void *);
68d480c4 128static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
129static irqreturn_t igb_intr(int irq, void *);
130static irqreturn_t igb_intr_msi(int irq, void *);
131static irqreturn_t igb_msix_other(int irq, void *);
047e0030 132static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 133#ifdef CONFIG_IGB_DCA
047e0030 134static void igb_update_dca(struct igb_q_vector *);
fe4506b6 135static void igb_setup_dca(struct igb_adapter *);
421e02f0 136#endif /* CONFIG_IGB_DCA */
047e0030 137static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 138static int igb_poll(struct napi_struct *, int);
047e0030 139static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
140static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
141static void igb_tx_timeout(struct net_device *);
142static void igb_reset_task(struct work_struct *);
143static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
144static void igb_vlan_rx_add_vid(struct net_device *, u16);
145static void igb_vlan_rx_kill_vid(struct net_device *, u16);
146static void igb_restore_vlan(struct igb_adapter *);
26ad9178 147static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
148static void igb_ping_all_vfs(struct igb_adapter *);
149static void igb_msg_task(struct igb_adapter *);
4ae196df 150static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 151static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 152static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
153static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
154static int igb_ndo_set_vf_vlan(struct net_device *netdev,
155 int vf, u16 vlan, u8 qos);
156static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
157static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
158 struct ifla_vf_info *ivi);
17dc566c 159static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 160
9d5c8243 161#ifdef CONFIG_PM
3fe7c4c9 162static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
163static int igb_resume(struct pci_dev *);
164#endif
165static void igb_shutdown(struct pci_dev *);
421e02f0 166#ifdef CONFIG_IGB_DCA
fe4506b6
JC
167static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
168static struct notifier_block dca_notifier = {
169 .notifier_call = igb_notify_dca,
170 .next = NULL,
171 .priority = 0
172};
173#endif
9d5c8243
AK
174#ifdef CONFIG_NET_POLL_CONTROLLER
175/* for netdump / net console */
176static void igb_netpoll(struct net_device *);
177#endif
37680117 178#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
179static unsigned int max_vfs = 0;
180module_param(max_vfs, uint, 0);
181MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
182 "per physical function");
183#endif /* CONFIG_PCI_IOV */
184
9d5c8243
AK
185static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
186 pci_channel_state_t);
187static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
188static void igb_io_resume(struct pci_dev *);
189
190static struct pci_error_handlers igb_err_handler = {
191 .error_detected = igb_io_error_detected,
192 .slot_reset = igb_io_slot_reset,
193 .resume = igb_io_resume,
194};
195
196
197static struct pci_driver igb_driver = {
198 .name = igb_driver_name,
199 .id_table = igb_pci_tbl,
200 .probe = igb_probe,
201 .remove = __devexit_p(igb_remove),
202#ifdef CONFIG_PM
25985edc 203 /* Power Management Hooks */
9d5c8243
AK
204 .suspend = igb_suspend,
205 .resume = igb_resume,
206#endif
207 .shutdown = igb_shutdown,
208 .err_handler = &igb_err_handler
209};
210
211MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
212MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
213MODULE_LICENSE("GPL");
214MODULE_VERSION(DRV_VERSION);
215
c97ec42a
TI
216struct igb_reg_info {
217 u32 ofs;
218 char *name;
219};
220
221static const struct igb_reg_info igb_reg_info_tbl[] = {
222
223 /* General Registers */
224 {E1000_CTRL, "CTRL"},
225 {E1000_STATUS, "STATUS"},
226 {E1000_CTRL_EXT, "CTRL_EXT"},
227
228 /* Interrupt Registers */
229 {E1000_ICR, "ICR"},
230
231 /* RX Registers */
232 {E1000_RCTL, "RCTL"},
233 {E1000_RDLEN(0), "RDLEN"},
234 {E1000_RDH(0), "RDH"},
235 {E1000_RDT(0), "RDT"},
236 {E1000_RXDCTL(0), "RXDCTL"},
237 {E1000_RDBAL(0), "RDBAL"},
238 {E1000_RDBAH(0), "RDBAH"},
239
240 /* TX Registers */
241 {E1000_TCTL, "TCTL"},
242 {E1000_TDBAL(0), "TDBAL"},
243 {E1000_TDBAH(0), "TDBAH"},
244 {E1000_TDLEN(0), "TDLEN"},
245 {E1000_TDH(0), "TDH"},
246 {E1000_TDT(0), "TDT"},
247 {E1000_TXDCTL(0), "TXDCTL"},
248 {E1000_TDFH, "TDFH"},
249 {E1000_TDFT, "TDFT"},
250 {E1000_TDFHS, "TDFHS"},
251 {E1000_TDFPC, "TDFPC"},
252
253 /* List Terminator */
254 {}
255};
256
257/*
258 * igb_regdump - register printout routine
259 */
260static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
261{
262 int n = 0;
263 char rname[16];
264 u32 regs[8];
265
266 switch (reginfo->ofs) {
267 case E1000_RDLEN(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RDLEN(n));
270 break;
271 case E1000_RDH(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDH(n));
274 break;
275 case E1000_RDT(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDT(n));
278 break;
279 case E1000_RXDCTL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RXDCTL(n));
282 break;
283 case E1000_RDBAL(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_RDBAL(n));
286 break;
287 case E1000_RDBAH(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_RDBAH(n));
290 break;
291 case E1000_TDBAL(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_RDBAL(n));
294 break;
295 case E1000_TDBAH(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDBAH(n));
298 break;
299 case E1000_TDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TDLEN(n));
302 break;
303 case E1000_TDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_TDH(n));
306 break;
307 case E1000_TDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_TDT(n));
310 break;
311 case E1000_TXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_TXDCTL(n));
314 break;
315 default:
316 printk(KERN_INFO "%-15s %08x\n",
317 reginfo->name, rd32(reginfo->ofs));
318 return;
319 }
320
321 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
322 printk(KERN_INFO "%-15s ", rname);
323 for (n = 0; n < 4; n++)
324 printk(KERN_CONT "%08x ", regs[n]);
325 printk(KERN_CONT "\n");
326}
327
328/*
329 * igb_dump - Print registers, tx-rings and rx-rings
330 */
331static void igb_dump(struct igb_adapter *adapter)
332{
333 struct net_device *netdev = adapter->netdev;
334 struct e1000_hw *hw = &adapter->hw;
335 struct igb_reg_info *reginfo;
336 int n = 0;
337 struct igb_ring *tx_ring;
338 union e1000_adv_tx_desc *tx_desc;
339 struct my_u0 { u64 a; u64 b; } *u0;
340 struct igb_buffer *buffer_info;
341 struct igb_ring *rx_ring;
342 union e1000_adv_rx_desc *rx_desc;
343 u32 staterr;
344 int i = 0;
345
346 if (!netif_msg_hw(adapter))
347 return;
348
349 /* Print netdevice Info */
350 if (netdev) {
351 dev_info(&adapter->pdev->dev, "Net device Info\n");
352 printk(KERN_INFO "Device Name state "
353 "trans_start last_rx\n");
354 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
355 netdev->name,
356 netdev->state,
357 netdev->trans_start,
358 netdev->last_rx);
359 }
360
361 /* Print Registers */
362 dev_info(&adapter->pdev->dev, "Register Dump\n");
363 printk(KERN_INFO " Register Name Value\n");
364 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
365 reginfo->name; reginfo++) {
366 igb_regdump(hw, reginfo);
367 }
368
369 /* Print TX Ring Summary */
370 if (!netdev || !netif_running(netdev))
371 goto exit;
372
373 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
374 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
375 " leng ntw timestamp\n");
376 for (n = 0; n < adapter->num_tx_queues; n++) {
377 tx_ring = adapter->tx_ring[n];
378 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
379 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
380 n, tx_ring->next_to_use, tx_ring->next_to_clean,
381 (u64)buffer_info->dma,
382 buffer_info->length,
383 buffer_info->next_to_watch,
384 (u64)buffer_info->time_stamp);
385 }
386
387 /* Print TX Rings */
388 if (!netif_msg_tx_done(adapter))
389 goto rx_ring_summary;
390
391 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
392
393 /* Transmit Descriptor Formats
394 *
395 * Advanced Transmit Descriptor
396 * +--------------------------------------------------------------+
397 * 0 | Buffer Address [63:0] |
398 * +--------------------------------------------------------------+
399 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
400 * +--------------------------------------------------------------+
401 * 63 46 45 40 39 38 36 35 32 31 24 15 0
402 */
403
404 for (n = 0; n < adapter->num_tx_queues; n++) {
405 tx_ring = adapter->tx_ring[n];
406 printk(KERN_INFO "------------------------------------\n");
407 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "T [desc] [address 63:0 ] "
410 "[PlPOCIStDDM Ln] [bi->dma ] "
411 "leng ntw timestamp bi->skb\n");
412
413 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
414 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
415 buffer_info = &tx_ring->buffer_info[i];
416 u0 = (struct my_u0 *)tx_desc;
417 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
418 " %04X %3X %016llX %p", i,
419 le64_to_cpu(u0->a),
420 le64_to_cpu(u0->b),
421 (u64)buffer_info->dma,
422 buffer_info->length,
423 buffer_info->next_to_watch,
424 (u64)buffer_info->time_stamp,
425 buffer_info->skb);
426 if (i == tx_ring->next_to_use &&
427 i == tx_ring->next_to_clean)
428 printk(KERN_CONT " NTC/U\n");
429 else if (i == tx_ring->next_to_use)
430 printk(KERN_CONT " NTU\n");
431 else if (i == tx_ring->next_to_clean)
432 printk(KERN_CONT " NTC\n");
433 else
434 printk(KERN_CONT "\n");
435
436 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
437 print_hex_dump(KERN_INFO, "",
438 DUMP_PREFIX_ADDRESS,
439 16, 1, phys_to_virt(buffer_info->dma),
440 buffer_info->length, true);
441 }
442 }
443
444 /* Print RX Rings Summary */
445rx_ring_summary:
446 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
447 printk(KERN_INFO "Queue [NTU] [NTC]\n");
448 for (n = 0; n < adapter->num_rx_queues; n++) {
449 rx_ring = adapter->rx_ring[n];
450 printk(KERN_INFO " %5d %5X %5X\n", n,
451 rx_ring->next_to_use, rx_ring->next_to_clean);
452 }
453
454 /* Print RX Rings */
455 if (!netif_msg_rx_status(adapter))
456 goto exit;
457
458 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
459
460 /* Advanced Receive Descriptor (Read) Format
461 * 63 1 0
462 * +-----------------------------------------------------+
463 * 0 | Packet Buffer Address [63:1] |A0/NSE|
464 * +----------------------------------------------+------+
465 * 8 | Header Buffer Address [63:1] | DD |
466 * +-----------------------------------------------------+
467 *
468 *
469 * Advanced Receive Descriptor (Write-Back) Format
470 *
471 * 63 48 47 32 31 30 21 20 17 16 4 3 0
472 * +------------------------------------------------------+
473 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
474 * | Checksum Ident | | | | Type | Type |
475 * +------------------------------------------------------+
476 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
477 * +------------------------------------------------------+
478 * 63 48 47 32 31 20 19 0
479 */
480
481 for (n = 0; n < adapter->num_rx_queues; n++) {
482 rx_ring = adapter->rx_ring[n];
483 printk(KERN_INFO "------------------------------------\n");
484 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "R [desc] [ PktBuf A0] "
487 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
488 "<-- Adv Rx Read format\n");
489 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
490 "[vl er S cks ln] ---------------- [bi->skb] "
491 "<-- Adv Rx Write-Back format\n");
492
493 for (i = 0; i < rx_ring->count; i++) {
494 buffer_info = &rx_ring->buffer_info[i];
495 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
496 u0 = (struct my_u0 *)rx_desc;
497 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
498 if (staterr & E1000_RXD_STAT_DD) {
499 /* Descriptor Done */
500 printk(KERN_INFO "RWB[0x%03X] %016llX "
501 "%016llX ---------------- %p", i,
502 le64_to_cpu(u0->a),
503 le64_to_cpu(u0->b),
504 buffer_info->skb);
505 } else {
506 printk(KERN_INFO "R [0x%03X] %016llX "
507 "%016llX %016llX %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 (u64)buffer_info->dma,
511 buffer_info->skb);
512
513 if (netif_msg_pktdata(adapter)) {
514 print_hex_dump(KERN_INFO, "",
515 DUMP_PREFIX_ADDRESS,
516 16, 1,
517 phys_to_virt(buffer_info->dma),
518 rx_ring->rx_buffer_len, true);
519 if (rx_ring->rx_buffer_len
520 < IGB_RXBUFFER_1024)
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(
525 buffer_info->page_dma +
526 buffer_info->page_offset),
527 PAGE_SIZE/2, true);
528 }
529 }
530
531 if (i == rx_ring->next_to_use)
532 printk(KERN_CONT " NTU\n");
533 else if (i == rx_ring->next_to_clean)
534 printk(KERN_CONT " NTC\n");
535 else
536 printk(KERN_CONT "\n");
537
538 }
539 }
540
541exit:
542 return;
543}
544
545
38c845c7
PO
546/**
547 * igb_read_clock - read raw cycle counter (to be used by time counter)
548 */
549static cycle_t igb_read_clock(const struct cyclecounter *tc)
550{
551 struct igb_adapter *adapter =
552 container_of(tc, struct igb_adapter, cycles);
553 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
554 u64 stamp = 0;
555 int shift = 0;
38c845c7 556
55cac248
AD
557 /*
558 * The timestamp latches on lowest register read. For the 82580
559 * the lowest register is SYSTIMR instead of SYSTIML. However we never
560 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
561 */
562 if (hw->mac.type == e1000_82580) {
563 stamp = rd32(E1000_SYSTIMR) >> 8;
564 shift = IGB_82580_TSYNC_SHIFT;
565 }
566
c5b9bd5e
AD
567 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
568 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
569 return stamp;
570}
571
9d5c8243 572/**
c041076a 573 * igb_get_hw_dev - return device
9d5c8243
AK
574 * used by hardware layer to print debugging information
575 **/
c041076a 576struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
577{
578 struct igb_adapter *adapter = hw->back;
c041076a 579 return adapter->netdev;
9d5c8243 580}
38c845c7 581
9d5c8243
AK
582/**
583 * igb_init_module - Driver Registration Routine
584 *
585 * igb_init_module is the first routine called when the driver is
586 * loaded. All it does is register with the PCI subsystem.
587 **/
588static int __init igb_init_module(void)
589{
590 int ret;
591 printk(KERN_INFO "%s - version %s\n",
592 igb_driver_string, igb_driver_version);
593
594 printk(KERN_INFO "%s\n", igb_copyright);
595
421e02f0 596#ifdef CONFIG_IGB_DCA
fe4506b6
JC
597 dca_register_notify(&dca_notifier);
598#endif
bbd98fe4 599 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
600 return ret;
601}
602
603module_init(igb_init_module);
604
605/**
606 * igb_exit_module - Driver Exit Cleanup Routine
607 *
608 * igb_exit_module is called just before the driver is removed
609 * from memory.
610 **/
611static void __exit igb_exit_module(void)
612{
421e02f0 613#ifdef CONFIG_IGB_DCA
fe4506b6
JC
614 dca_unregister_notify(&dca_notifier);
615#endif
9d5c8243
AK
616 pci_unregister_driver(&igb_driver);
617}
618
619module_exit(igb_exit_module);
620
26bc19ec
AD
621#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
622/**
623 * igb_cache_ring_register - Descriptor ring to register mapping
624 * @adapter: board private structure to initialize
625 *
626 * Once we know the feature-set enabled for the device, we'll cache
627 * the register offset the descriptor ring is assigned to.
628 **/
629static void igb_cache_ring_register(struct igb_adapter *adapter)
630{
ee1b9f06 631 int i = 0, j = 0;
047e0030 632 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
633
634 switch (adapter->hw.mac.type) {
635 case e1000_82576:
636 /* The queues are allocated for virtualization such that VF 0
637 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
638 * In order to avoid collision we start at the first free queue
639 * and continue consuming queues in the same sequence
640 */
ee1b9f06 641 if (adapter->vfs_allocated_count) {
a99955fc 642 for (; i < adapter->rss_queues; i++)
3025a446
AD
643 adapter->rx_ring[i]->reg_idx = rbase_offset +
644 Q_IDX_82576(i);
ee1b9f06 645 }
26bc19ec 646 case e1000_82575:
55cac248 647 case e1000_82580:
d2ba2ed8 648 case e1000_i350:
26bc19ec 649 default:
ee1b9f06 650 for (; i < adapter->num_rx_queues; i++)
3025a446 651 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 652 for (; j < adapter->num_tx_queues; j++)
3025a446 653 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
654 break;
655 }
656}
657
047e0030
AD
658static void igb_free_queues(struct igb_adapter *adapter)
659{
3025a446 660 int i;
047e0030 661
3025a446
AD
662 for (i = 0; i < adapter->num_tx_queues; i++) {
663 kfree(adapter->tx_ring[i]);
664 adapter->tx_ring[i] = NULL;
665 }
666 for (i = 0; i < adapter->num_rx_queues; i++) {
667 kfree(adapter->rx_ring[i]);
668 adapter->rx_ring[i] = NULL;
669 }
047e0030
AD
670 adapter->num_rx_queues = 0;
671 adapter->num_tx_queues = 0;
672}
673
9d5c8243
AK
674/**
675 * igb_alloc_queues - Allocate memory for all rings
676 * @adapter: board private structure to initialize
677 *
678 * We allocate one ring per queue at run-time since we don't know the
679 * number of queues at compile-time.
680 **/
681static int igb_alloc_queues(struct igb_adapter *adapter)
682{
3025a446 683 struct igb_ring *ring;
9d5c8243
AK
684 int i;
685
661086df 686 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
687 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
688 if (!ring)
689 goto err;
68fd9910 690 ring->count = adapter->tx_ring_count;
661086df 691 ring->queue_index = i;
59d71989 692 ring->dev = &adapter->pdev->dev;
e694e964 693 ring->netdev = adapter->netdev;
85ad76b2
AD
694 /* For 82575, context index must be unique per ring. */
695 if (adapter->hw.mac.type == e1000_82575)
696 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 697 adapter->tx_ring[i] = ring;
661086df 698 }
85ad76b2 699
9d5c8243 700 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->rx_ring_count;
844290e5 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
4c844851 708 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
709 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
710 /* set flag indicating ring supports SCTP checksum offload */
711 if (adapter->hw.mac.type >= e1000_82576)
712 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 713 adapter->rx_ring[i] = ring;
9d5c8243 714 }
26bc19ec
AD
715
716 igb_cache_ring_register(adapter);
9d5c8243 717
047e0030 718 return 0;
a88f10ec 719
047e0030
AD
720err:
721 igb_free_queues(adapter);
d1a8c9e1 722
047e0030 723 return -ENOMEM;
a88f10ec
AD
724}
725
9d5c8243 726#define IGB_N0_QUEUE -1
047e0030 727static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
728{
729 u32 msixbm = 0;
047e0030 730 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 731 struct e1000_hw *hw = &adapter->hw;
2d064c06 732 u32 ivar, index;
047e0030
AD
733 int rx_queue = IGB_N0_QUEUE;
734 int tx_queue = IGB_N0_QUEUE;
735
736 if (q_vector->rx_ring)
737 rx_queue = q_vector->rx_ring->reg_idx;
738 if (q_vector->tx_ring)
739 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
740
741 switch (hw->mac.type) {
742 case e1000_82575:
9d5c8243
AK
743 /* The 82575 assigns vectors using a bitmask, which matches the
744 bitmask for the EICR/EIMS/EIMC registers. To assign one
745 or more queues to a vector, we write the appropriate bits
746 into the MSIXBM register for that vector. */
047e0030 747 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 748 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 749 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 750 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
751 if (!adapter->msix_entries && msix_vector == 0)
752 msixbm |= E1000_EIMS_OTHER;
9d5c8243 753 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 754 q_vector->eims_value = msixbm;
2d064c06
AD
755 break;
756 case e1000_82576:
26bc19ec 757 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
758 Each queue has a single entry in the table to which we write
759 a vector number along with a "valid" bit. Sadly, the layout
760 of the table is somewhat counterintuitive. */
761 if (rx_queue > IGB_N0_QUEUE) {
047e0030 762 index = (rx_queue & 0x7);
2d064c06 763 ivar = array_rd32(E1000_IVAR0, index);
047e0030 764 if (rx_queue < 8) {
26bc19ec
AD
765 /* vector goes into low byte of register */
766 ivar = ivar & 0xFFFFFF00;
767 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
768 } else {
769 /* vector goes into third byte of register */
770 ivar = ivar & 0xFF00FFFF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 772 }
2d064c06
AD
773 array_wr32(E1000_IVAR0, index, ivar);
774 }
775 if (tx_queue > IGB_N0_QUEUE) {
047e0030 776 index = (tx_queue & 0x7);
2d064c06 777 ivar = array_rd32(E1000_IVAR0, index);
047e0030 778 if (tx_queue < 8) {
26bc19ec
AD
779 /* vector goes into second byte of register */
780 ivar = ivar & 0xFFFF00FF;
781 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
782 } else {
783 /* vector goes into high byte of register */
784 ivar = ivar & 0x00FFFFFF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 786 }
2d064c06
AD
787 array_wr32(E1000_IVAR0, index, ivar);
788 }
047e0030 789 q_vector->eims_value = 1 << msix_vector;
2d064c06 790 break;
55cac248 791 case e1000_82580:
d2ba2ed8 792 case e1000_i350:
55cac248
AD
793 /* 82580 uses the same table-based approach as 82576 but has fewer
794 entries as a result we carry over for queues greater than 4. */
795 if (rx_queue > IGB_N0_QUEUE) {
796 index = (rx_queue >> 1);
797 ivar = array_rd32(E1000_IVAR0, index);
798 if (rx_queue & 0x1) {
799 /* vector goes into third byte of register */
800 ivar = ivar & 0xFF00FFFF;
801 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
802 } else {
803 /* vector goes into low byte of register */
804 ivar = ivar & 0xFFFFFF00;
805 ivar |= msix_vector | E1000_IVAR_VALID;
806 }
807 array_wr32(E1000_IVAR0, index, ivar);
808 }
809 if (tx_queue > IGB_N0_QUEUE) {
810 index = (tx_queue >> 1);
811 ivar = array_rd32(E1000_IVAR0, index);
812 if (tx_queue & 0x1) {
813 /* vector goes into high byte of register */
814 ivar = ivar & 0x00FFFFFF;
815 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
816 } else {
817 /* vector goes into second byte of register */
818 ivar = ivar & 0xFFFF00FF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
820 }
821 array_wr32(E1000_IVAR0, index, ivar);
822 }
823 q_vector->eims_value = 1 << msix_vector;
824 break;
2d064c06
AD
825 default:
826 BUG();
827 break;
828 }
26b39276
AD
829
830 /* add q_vector eims value to global eims_enable_mask */
831 adapter->eims_enable_mask |= q_vector->eims_value;
832
833 /* configure q_vector to set itr on first interrupt */
834 q_vector->set_itr = 1;
9d5c8243
AK
835}
836
837/**
838 * igb_configure_msix - Configure MSI-X hardware
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
843static void igb_configure_msix(struct igb_adapter *adapter)
844{
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
9d5c8243
AK
850
851 /* set vector for other causes, i.e. link changes */
2d064c06
AD
852 switch (hw->mac.type) {
853 case e1000_82575:
9d5c8243
AK
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++,
866 E1000_EIMS_OTHER);
844290e5 867 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 868
2d064c06
AD
869 break;
870
871 case e1000_82576:
55cac248 872 case e1000_82580:
d2ba2ed8 873 case e1000_i350:
047e0030
AD
874 /* Turn on MSI-X capability first, or our settings
875 * won't stick. And it will take days to debug. */
876 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
877 E1000_GPIE_PBA | E1000_GPIE_EIAME |
878 E1000_GPIE_NSICR);
879
880 /* enable msix_other interrupt */
881 adapter->eims_other = 1 << vector;
2d064c06 882 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 883
047e0030 884 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
885 break;
886 default:
887 /* do nothing, since nothing else supports MSI-X */
888 break;
889 } /* switch (hw->mac.type) */
047e0030
AD
890
891 adapter->eims_enable_mask |= adapter->eims_other;
892
26b39276
AD
893 for (i = 0; i < adapter->num_q_vectors; i++)
894 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 895
9d5c8243
AK
896 wrfl();
897}
898
899/**
900 * igb_request_msix - Initialize MSI-X interrupts
901 *
902 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
903 * kernel.
904 **/
905static int igb_request_msix(struct igb_adapter *adapter)
906{
907 struct net_device *netdev = adapter->netdev;
047e0030 908 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
909 int i, err = 0, vector = 0;
910
047e0030 911 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 912 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
913 if (err)
914 goto out;
915 vector++;
916
917 for (i = 0; i < adapter->num_q_vectors; i++) {
918 struct igb_q_vector *q_vector = adapter->q_vector[i];
919
920 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
921
922 if (q_vector->rx_ring && q_vector->tx_ring)
923 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
924 q_vector->rx_ring->queue_index);
925 else if (q_vector->tx_ring)
926 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
927 q_vector->tx_ring->queue_index);
928 else if (q_vector->rx_ring)
929 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
930 q_vector->rx_ring->queue_index);
9d5c8243 931 else
047e0030
AD
932 sprintf(q_vector->name, "%s-unused", netdev->name);
933
9d5c8243 934 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 935 igb_msix_ring, 0, q_vector->name,
047e0030 936 q_vector);
9d5c8243
AK
937 if (err)
938 goto out;
9d5c8243
AK
939 vector++;
940 }
941
9d5c8243
AK
942 igb_configure_msix(adapter);
943 return 0;
944out:
945 return err;
946}
947
948static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
949{
950 if (adapter->msix_entries) {
951 pci_disable_msix(adapter->pdev);
952 kfree(adapter->msix_entries);
953 adapter->msix_entries = NULL;
047e0030 954 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 955 pci_disable_msi(adapter->pdev);
047e0030 956 }
9d5c8243
AK
957}
958
047e0030
AD
959/**
960 * igb_free_q_vectors - Free memory allocated for interrupt vectors
961 * @adapter: board private structure to initialize
962 *
963 * This function frees the memory allocated to the q_vectors. In addition if
964 * NAPI is enabled it will delete any references to the NAPI struct prior
965 * to freeing the q_vector.
966 **/
967static void igb_free_q_vectors(struct igb_adapter *adapter)
968{
969 int v_idx;
970
971 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
972 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
973 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
974 if (!q_vector)
975 continue;
047e0030
AD
976 netif_napi_del(&q_vector->napi);
977 kfree(q_vector);
978 }
979 adapter->num_q_vectors = 0;
980}
981
982/**
983 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
984 *
985 * This function resets the device so that it has 0 rx queues, tx queues, and
986 * MSI-X interrupts allocated.
987 */
988static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
989{
990 igb_free_queues(adapter);
991 igb_free_q_vectors(adapter);
992 igb_reset_interrupt_capability(adapter);
993}
9d5c8243
AK
994
995/**
996 * igb_set_interrupt_capability - set MSI or MSI-X if supported
997 *
998 * Attempt to configure interrupts using the best available
999 * capabilities of the hardware and kernel.
1000 **/
21adef3e 1001static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1002{
1003 int err;
1004 int numvecs, i;
1005
83b7180d 1006 /* Number of supported queues. */
a99955fc 1007 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1008 if (adapter->vfs_allocated_count)
1009 adapter->num_tx_queues = 1;
1010 else
1011 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1012
047e0030
AD
1013 /* start with one vector for every rx queue */
1014 numvecs = adapter->num_rx_queues;
1015
3ad2f3fb 1016 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1017 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1018 numvecs += adapter->num_tx_queues;
047e0030
AD
1019
1020 /* store the number of vectors reserved for queues */
1021 adapter->num_q_vectors = numvecs;
1022
1023 /* add 1 vector for link status interrupts */
1024 numvecs++;
9d5c8243
AK
1025 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (!adapter->msix_entries)
1028 goto msi_only;
1029
1030 for (i = 0; i < numvecs; i++)
1031 adapter->msix_entries[i].entry = i;
1032
1033 err = pci_enable_msix(adapter->pdev,
1034 adapter->msix_entries,
1035 numvecs);
1036 if (err == 0)
34a20e89 1037 goto out;
9d5c8243
AK
1038
1039 igb_reset_interrupt_capability(adapter);
1040
1041 /* If we can't do MSI-X, try MSI */
1042msi_only:
2a3abf6d
AD
1043#ifdef CONFIG_PCI_IOV
1044 /* disable SR-IOV for non MSI-X configurations */
1045 if (adapter->vf_data) {
1046 struct e1000_hw *hw = &adapter->hw;
1047 /* disable iov and allow time for transactions to clear */
1048 pci_disable_sriov(adapter->pdev);
1049 msleep(500);
1050
1051 kfree(adapter->vf_data);
1052 adapter->vf_data = NULL;
1053 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1054 msleep(100);
1055 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1056 }
1057#endif
4fc82adf 1058 adapter->vfs_allocated_count = 0;
a99955fc 1059 adapter->rss_queues = 1;
4fc82adf 1060 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1061 adapter->num_rx_queues = 1;
661086df 1062 adapter->num_tx_queues = 1;
047e0030 1063 adapter->num_q_vectors = 1;
9d5c8243 1064 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1065 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1066out:
21adef3e
BH
1067 /* Notify the stack of the (possibly) reduced queue counts. */
1068 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1069 return netif_set_real_num_rx_queues(adapter->netdev,
1070 adapter->num_rx_queues);
9d5c8243
AK
1071}
1072
047e0030
AD
1073/**
1074 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1075 * @adapter: board private structure to initialize
1076 *
1077 * We allocate one q_vector per queue interrupt. If allocation fails we
1078 * return -ENOMEM.
1079 **/
1080static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1081{
1082 struct igb_q_vector *q_vector;
1083 struct e1000_hw *hw = &adapter->hw;
1084 int v_idx;
1085
1086 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1087 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1088 if (!q_vector)
1089 goto err_out;
1090 q_vector->adapter = adapter;
047e0030
AD
1091 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1092 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1093 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1094 adapter->q_vector[v_idx] = q_vector;
1095 }
1096 return 0;
1097
1098err_out:
fe0592b4 1099 igb_free_q_vectors(adapter);
047e0030
AD
1100 return -ENOMEM;
1101}
1102
1103static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105{
3025a446 1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1107
3025a446 1108 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1109 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1110 q_vector->itr_val = adapter->rx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1113}
1114
1115static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1116 int ring_idx, int v_idx)
1117{
3025a446 1118 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1119
3025a446 1120 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1121 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1122 q_vector->itr_val = adapter->tx_itr_setting;
1123 if (q_vector->itr_val && q_vector->itr_val <= 3)
1124 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1125}
1126
1127/**
1128 * igb_map_ring_to_vector - maps allocated queues to vectors
1129 *
1130 * This function maps the recently allocated queues to vectors.
1131 **/
1132static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1133{
1134 int i;
1135 int v_idx = 0;
1136
1137 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1138 (adapter->num_q_vectors < adapter->num_tx_queues))
1139 return -ENOMEM;
1140
1141 if (adapter->num_q_vectors >=
1142 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1143 for (i = 0; i < adapter->num_rx_queues; i++)
1144 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1145 for (i = 0; i < adapter->num_tx_queues; i++)
1146 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1147 } else {
1148 for (i = 0; i < adapter->num_rx_queues; i++) {
1149 if (i < adapter->num_tx_queues)
1150 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1151 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1152 }
1153 for (; i < adapter->num_tx_queues; i++)
1154 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1161 *
1162 * This function initializes the interrupts and allocates all of the queues.
1163 **/
1164static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1165{
1166 struct pci_dev *pdev = adapter->pdev;
1167 int err;
1168
21adef3e
BH
1169 err = igb_set_interrupt_capability(adapter);
1170 if (err)
1171 return err;
047e0030
AD
1172
1173 err = igb_alloc_q_vectors(adapter);
1174 if (err) {
1175 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1176 goto err_alloc_q_vectors;
1177 }
1178
1179 err = igb_alloc_queues(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1182 goto err_alloc_queues;
1183 }
1184
1185 err = igb_map_ring_to_vector(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1188 goto err_map_queues;
1189 }
1190
1191
1192 return 0;
1193err_map_queues:
1194 igb_free_queues(adapter);
1195err_alloc_queues:
1196 igb_free_q_vectors(adapter);
1197err_alloc_q_vectors:
1198 igb_reset_interrupt_capability(adapter);
1199 return err;
1200}
1201
9d5c8243
AK
1202/**
1203 * igb_request_irq - initialize interrupts
1204 *
1205 * Attempts to configure interrupts using the best available
1206 * capabilities of the hardware and kernel.
1207 **/
1208static int igb_request_irq(struct igb_adapter *adapter)
1209{
1210 struct net_device *netdev = adapter->netdev;
047e0030 1211 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1212 int err = 0;
1213
1214 if (adapter->msix_entries) {
1215 err = igb_request_msix(adapter);
844290e5 1216 if (!err)
9d5c8243 1217 goto request_done;
9d5c8243 1218 /* fall back to MSI */
047e0030 1219 igb_clear_interrupt_scheme(adapter);
9d5c8243 1220 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1221 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1222 igb_free_all_tx_resources(adapter);
1223 igb_free_all_rx_resources(adapter);
047e0030 1224 adapter->num_tx_queues = 1;
9d5c8243 1225 adapter->num_rx_queues = 1;
047e0030
AD
1226 adapter->num_q_vectors = 1;
1227 err = igb_alloc_q_vectors(adapter);
1228 if (err) {
1229 dev_err(&pdev->dev,
1230 "Unable to allocate memory for vectors\n");
1231 goto request_done;
1232 }
1233 err = igb_alloc_queues(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for queues\n");
1237 igb_free_q_vectors(adapter);
1238 goto request_done;
1239 }
1240 igb_setup_all_tx_resources(adapter);
1241 igb_setup_all_rx_resources(adapter);
844290e5 1242 } else {
feeb2721 1243 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1244 }
844290e5 1245
7dfc16fa 1246 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1247 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1248 netdev->name, adapter);
9d5c8243
AK
1249 if (!err)
1250 goto request_done;
047e0030 1251
9d5c8243
AK
1252 /* fall back to legacy interrupts */
1253 igb_reset_interrupt_capability(adapter);
7dfc16fa 1254 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1255 }
1256
a0607fd3 1257 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1258 netdev->name, adapter);
9d5c8243 1259
6cb5e577 1260 if (err)
9d5c8243
AK
1261 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1262 err);
9d5c8243
AK
1263
1264request_done:
1265 return err;
1266}
1267
1268static void igb_free_irq(struct igb_adapter *adapter)
1269{
9d5c8243
AK
1270 if (adapter->msix_entries) {
1271 int vector = 0, i;
1272
047e0030 1273 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1274
047e0030
AD
1275 for (i = 0; i < adapter->num_q_vectors; i++) {
1276 struct igb_q_vector *q_vector = adapter->q_vector[i];
1277 free_irq(adapter->msix_entries[vector++].vector,
1278 q_vector);
1279 }
1280 } else {
1281 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1282 }
9d5c8243
AK
1283}
1284
1285/**
1286 * igb_irq_disable - Mask off interrupt generation on the NIC
1287 * @adapter: board private structure
1288 **/
1289static void igb_irq_disable(struct igb_adapter *adapter)
1290{
1291 struct e1000_hw *hw = &adapter->hw;
1292
25568a53
AD
1293 /*
1294 * we need to be careful when disabling interrupts. The VFs are also
1295 * mapped into these registers and so clearing the bits can cause
1296 * issues on the VF drivers so we only need to clear what we set
1297 */
9d5c8243 1298 if (adapter->msix_entries) {
2dfd1212
AD
1299 u32 regval = rd32(E1000_EIAM);
1300 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1301 wr32(E1000_EIMC, adapter->eims_enable_mask);
1302 regval = rd32(E1000_EIAC);
1303 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1304 }
844290e5
PW
1305
1306 wr32(E1000_IAM, 0);
9d5c8243
AK
1307 wr32(E1000_IMC, ~0);
1308 wrfl();
81a61859
ET
1309 if (adapter->msix_entries) {
1310 int i;
1311 for (i = 0; i < adapter->num_q_vectors; i++)
1312 synchronize_irq(adapter->msix_entries[i].vector);
1313 } else {
1314 synchronize_irq(adapter->pdev->irq);
1315 }
9d5c8243
AK
1316}
1317
1318/**
1319 * igb_irq_enable - Enable default interrupt generation settings
1320 * @adapter: board private structure
1321 **/
1322static void igb_irq_enable(struct igb_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325
1326 if (adapter->msix_entries) {
25568a53 1327 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1328 u32 regval = rd32(E1000_EIAC);
1329 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1330 regval = rd32(E1000_EIAM);
1331 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1332 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1333 if (adapter->vfs_allocated_count) {
4ae196df 1334 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1335 ims |= E1000_IMS_VMMB;
1336 }
55cac248
AD
1337 if (adapter->hw.mac.type == e1000_82580)
1338 ims |= E1000_IMS_DRSTA;
1339
25568a53 1340 wr32(E1000_IMS, ims);
844290e5 1341 } else {
55cac248
AD
1342 wr32(E1000_IMS, IMS_ENABLE_MASK |
1343 E1000_IMS_DRSTA);
1344 wr32(E1000_IAM, IMS_ENABLE_MASK |
1345 E1000_IMS_DRSTA);
844290e5 1346 }
9d5c8243
AK
1347}
1348
1349static void igb_update_mng_vlan(struct igb_adapter *adapter)
1350{
51466239 1351 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1352 u16 vid = adapter->hw.mng_cookie.vlan_id;
1353 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1354
1355 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1356 /* add VID to filter table */
1357 igb_vfta_set(hw, vid, true);
1358 adapter->mng_vlan_id = vid;
1359 } else {
1360 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1361 }
1362
1363 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1364 (vid != old_vid) &&
1365 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1366 /* remove VID from filter table */
1367 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1368 }
1369}
1370
1371/**
1372 * igb_release_hw_control - release control of the h/w to f/w
1373 * @adapter: address of board private structure
1374 *
1375 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1376 * For ASF and Pass Through versions of f/w this means that the
1377 * driver is no longer loaded.
1378 *
1379 **/
1380static void igb_release_hw_control(struct igb_adapter *adapter)
1381{
1382 struct e1000_hw *hw = &adapter->hw;
1383 u32 ctrl_ext;
1384
1385 /* Let firmware take over control of h/w */
1386 ctrl_ext = rd32(E1000_CTRL_EXT);
1387 wr32(E1000_CTRL_EXT,
1388 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1389}
1390
9d5c8243
AK
1391/**
1392 * igb_get_hw_control - get control of the h/w from f/w
1393 * @adapter: address of board private structure
1394 *
1395 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1396 * For ASF and Pass Through versions of f/w this means that
1397 * the driver is loaded.
1398 *
1399 **/
1400static void igb_get_hw_control(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403 u32 ctrl_ext;
1404
1405 /* Let firmware know the driver has taken over */
1406 ctrl_ext = rd32(E1000_CTRL_EXT);
1407 wr32(E1000_CTRL_EXT,
1408 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1409}
1410
9d5c8243
AK
1411/**
1412 * igb_configure - configure the hardware for RX and TX
1413 * @adapter: private board structure
1414 **/
1415static void igb_configure(struct igb_adapter *adapter)
1416{
1417 struct net_device *netdev = adapter->netdev;
1418 int i;
1419
1420 igb_get_hw_control(adapter);
ff41f8dc 1421 igb_set_rx_mode(netdev);
9d5c8243
AK
1422
1423 igb_restore_vlan(adapter);
9d5c8243 1424
85b430b4 1425 igb_setup_tctl(adapter);
06cf2666 1426 igb_setup_mrqc(adapter);
9d5c8243 1427 igb_setup_rctl(adapter);
85b430b4
AD
1428
1429 igb_configure_tx(adapter);
9d5c8243 1430 igb_configure_rx(adapter);
662d7205
AD
1431
1432 igb_rx_fifo_flush_82575(&adapter->hw);
1433
c493ea45 1434 /* call igb_desc_unused which always leaves
9d5c8243
AK
1435 * at least 1 descriptor unused to make sure
1436 * next_to_use != next_to_clean */
1437 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1438 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1439 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1440 }
9d5c8243
AK
1441}
1442
88a268c1
NN
1443/**
1444 * igb_power_up_link - Power up the phy/serdes link
1445 * @adapter: address of board private structure
1446 **/
1447void igb_power_up_link(struct igb_adapter *adapter)
1448{
1449 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1450 igb_power_up_phy_copper(&adapter->hw);
1451 else
1452 igb_power_up_serdes_link_82575(&adapter->hw);
1453}
1454
1455/**
1456 * igb_power_down_link - Power down the phy/serdes link
1457 * @adapter: address of board private structure
1458 */
1459static void igb_power_down_link(struct igb_adapter *adapter)
1460{
1461 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462 igb_power_down_phy_copper_82575(&adapter->hw);
1463 else
1464 igb_shutdown_serdes_link_82575(&adapter->hw);
1465}
9d5c8243
AK
1466
1467/**
1468 * igb_up - Open the interface and prepare it to handle traffic
1469 * @adapter: board private structure
1470 **/
9d5c8243
AK
1471int igb_up(struct igb_adapter *adapter)
1472{
1473 struct e1000_hw *hw = &adapter->hw;
1474 int i;
1475
1476 /* hardware has been reset, we need to reload some things */
1477 igb_configure(adapter);
1478
1479 clear_bit(__IGB_DOWN, &adapter->state);
1480
047e0030
AD
1481 for (i = 0; i < adapter->num_q_vectors; i++) {
1482 struct igb_q_vector *q_vector = adapter->q_vector[i];
1483 napi_enable(&q_vector->napi);
1484 }
844290e5 1485 if (adapter->msix_entries)
9d5c8243 1486 igb_configure_msix(adapter);
feeb2721
AD
1487 else
1488 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1489
1490 /* Clear any pending interrupts. */
1491 rd32(E1000_ICR);
1492 igb_irq_enable(adapter);
1493
d4960307
AD
1494 /* notify VFs that reset has been completed */
1495 if (adapter->vfs_allocated_count) {
1496 u32 reg_data = rd32(E1000_CTRL_EXT);
1497 reg_data |= E1000_CTRL_EXT_PFRSTD;
1498 wr32(E1000_CTRL_EXT, reg_data);
1499 }
1500
4cb9be7a
JB
1501 netif_tx_start_all_queues(adapter->netdev);
1502
25568a53
AD
1503 /* start the watchdog. */
1504 hw->mac.get_link_status = 1;
1505 schedule_work(&adapter->watchdog_task);
1506
9d5c8243
AK
1507 return 0;
1508}
1509
1510void igb_down(struct igb_adapter *adapter)
1511{
9d5c8243 1512 struct net_device *netdev = adapter->netdev;
330a6d6a 1513 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1514 u32 tctl, rctl;
1515 int i;
1516
1517 /* signal that we're down so the interrupt handler does not
1518 * reschedule our watchdog timer */
1519 set_bit(__IGB_DOWN, &adapter->state);
1520
1521 /* disable receives in the hardware */
1522 rctl = rd32(E1000_RCTL);
1523 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1524 /* flush and sleep below */
1525
fd2ea0a7 1526 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1527
1528 /* disable transmits in the hardware */
1529 tctl = rd32(E1000_TCTL);
1530 tctl &= ~E1000_TCTL_EN;
1531 wr32(E1000_TCTL, tctl);
1532 /* flush both disables and wait for them to finish */
1533 wrfl();
1534 msleep(10);
1535
047e0030
AD
1536 for (i = 0; i < adapter->num_q_vectors; i++) {
1537 struct igb_q_vector *q_vector = adapter->q_vector[i];
1538 napi_disable(&q_vector->napi);
1539 }
9d5c8243 1540
9d5c8243
AK
1541 igb_irq_disable(adapter);
1542
1543 del_timer_sync(&adapter->watchdog_timer);
1544 del_timer_sync(&adapter->phy_info_timer);
1545
9d5c8243 1546 netif_carrier_off(netdev);
04fe6358
AD
1547
1548 /* record the stats before reset*/
12dcd86b
ED
1549 spin_lock(&adapter->stats64_lock);
1550 igb_update_stats(adapter, &adapter->stats64);
1551 spin_unlock(&adapter->stats64_lock);
04fe6358 1552
9d5c8243
AK
1553 adapter->link_speed = 0;
1554 adapter->link_duplex = 0;
1555
3023682e
JK
1556 if (!pci_channel_offline(adapter->pdev))
1557 igb_reset(adapter);
9d5c8243
AK
1558 igb_clean_all_tx_rings(adapter);
1559 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1560#ifdef CONFIG_IGB_DCA
1561
1562 /* since we reset the hardware DCA settings were cleared */
1563 igb_setup_dca(adapter);
1564#endif
9d5c8243
AK
1565}
1566
1567void igb_reinit_locked(struct igb_adapter *adapter)
1568{
1569 WARN_ON(in_interrupt());
1570 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1571 msleep(1);
1572 igb_down(adapter);
1573 igb_up(adapter);
1574 clear_bit(__IGB_RESETTING, &adapter->state);
1575}
1576
1577void igb_reset(struct igb_adapter *adapter)
1578{
090b1795 1579 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1580 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1581 struct e1000_mac_info *mac = &hw->mac;
1582 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1583 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1584 u16 hwm;
1585
1586 /* Repartition Pba for greater than 9k mtu
1587 * To take effect CTRL.RST is required.
1588 */
fa4dfae0 1589 switch (mac->type) {
d2ba2ed8 1590 case e1000_i350:
55cac248
AD
1591 case e1000_82580:
1592 pba = rd32(E1000_RXPBS);
1593 pba = igb_rxpbs_adjust_82580(pba);
1594 break;
fa4dfae0 1595 case e1000_82576:
d249be54
AD
1596 pba = rd32(E1000_RXPBS);
1597 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1598 break;
1599 case e1000_82575:
1600 default:
1601 pba = E1000_PBA_34K;
1602 break;
2d064c06 1603 }
9d5c8243 1604
2d064c06
AD
1605 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1606 (mac->type < e1000_82576)) {
9d5c8243
AK
1607 /* adjust PBA for jumbo frames */
1608 wr32(E1000_PBA, pba);
1609
1610 /* To maintain wire speed transmits, the Tx FIFO should be
1611 * large enough to accommodate two full transmit packets,
1612 * rounded up to the next 1KB and expressed in KB. Likewise,
1613 * the Rx FIFO should be large enough to accommodate at least
1614 * one full receive packet and is similarly rounded up and
1615 * expressed in KB. */
1616 pba = rd32(E1000_PBA);
1617 /* upper 16 bits has Tx packet buffer allocation size in KB */
1618 tx_space = pba >> 16;
1619 /* lower 16 bits has Rx packet buffer allocation size in KB */
1620 pba &= 0xffff;
1621 /* the tx fifo also stores 16 bytes of information about the tx
1622 * but don't include ethernet FCS because hardware appends it */
1623 min_tx_space = (adapter->max_frame_size +
85e8d004 1624 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1625 ETH_FCS_LEN) * 2;
1626 min_tx_space = ALIGN(min_tx_space, 1024);
1627 min_tx_space >>= 10;
1628 /* software strips receive CRC, so leave room for it */
1629 min_rx_space = adapter->max_frame_size;
1630 min_rx_space = ALIGN(min_rx_space, 1024);
1631 min_rx_space >>= 10;
1632
1633 /* If current Tx allocation is less than the min Tx FIFO size,
1634 * and the min Tx FIFO size is less than the current Rx FIFO
1635 * allocation, take space away from current Rx allocation */
1636 if (tx_space < min_tx_space &&
1637 ((min_tx_space - tx_space) < pba)) {
1638 pba = pba - (min_tx_space - tx_space);
1639
1640 /* if short on rx space, rx wins and must trump tx
1641 * adjustment */
1642 if (pba < min_rx_space)
1643 pba = min_rx_space;
1644 }
2d064c06 1645 wr32(E1000_PBA, pba);
9d5c8243 1646 }
9d5c8243
AK
1647
1648 /* flow control settings */
1649 /* The high water mark must be low enough to fit one full frame
1650 * (or the size used for early receive) above it in the Rx FIFO.
1651 * Set it to the lower of:
1652 * - 90% of the Rx FIFO size, or
1653 * - the full Rx FIFO size minus one full frame */
1654 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1655 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1656
d405ea3e
AD
1657 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1658 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1659 fc->pause_time = 0xFFFF;
1660 fc->send_xon = 1;
0cce119a 1661 fc->current_mode = fc->requested_mode;
9d5c8243 1662
4ae196df
AD
1663 /* disable receive for all VFs and wait one second */
1664 if (adapter->vfs_allocated_count) {
1665 int i;
1666 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1667 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1668
1669 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1670 igb_ping_all_vfs(adapter);
4ae196df
AD
1671
1672 /* disable transmits and receives */
1673 wr32(E1000_VFRE, 0);
1674 wr32(E1000_VFTE, 0);
1675 }
1676
9d5c8243 1677 /* Allow time for pending master requests to run */
330a6d6a 1678 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1679 wr32(E1000_WUC, 0);
1680
330a6d6a 1681 if (hw->mac.ops.init_hw(hw))
090b1795 1682 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1683 if (hw->mac.type > e1000_82580) {
1684 if (adapter->flags & IGB_FLAG_DMAC) {
1685 u32 reg;
1686
1687 /*
1688 * DMA Coalescing high water mark needs to be higher
1689 * than * the * Rx threshold. The Rx threshold is
1690 * currently * pba - 6, so we * should use a high water
1691 * mark of pba * - 4. */
1692 hwm = (pba - 4) << 10;
1693
1694 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1695 & E1000_DMACR_DMACTHR_MASK);
1696
1697 /* transition to L0x or L1 if available..*/
1698 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1699
1700 /* watchdog timer= +-1000 usec in 32usec intervals */
1701 reg |= (1000 >> 5);
1702 wr32(E1000_DMACR, reg);
1703
1704 /* no lower threshold to disable coalescing(smart fifb)
1705 * -UTRESH=0*/
1706 wr32(E1000_DMCRTRH, 0);
1707
1708 /* set hwm to PBA - 2 * max frame size */
1709 wr32(E1000_FCRTC, hwm);
1710
1711 /*
1712 * This sets the time to wait before requesting tran-
1713 * sition to * low power state to number of usecs needed
1714 * to receive 1 512 * byte frame at gigabit line rate
1715 */
1716 reg = rd32(E1000_DMCTLX);
1717 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1718
1719 /* Delay 255 usec before entering Lx state. */
1720 reg |= 0xFF;
1721 wr32(E1000_DMCTLX, reg);
1722
1723 /* free space in Tx packet buffer to wake from DMAC */
1724 wr32(E1000_DMCTXTH,
1725 (IGB_MIN_TXPBSIZE -
1726 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1727 >> 6);
1728
1729 /* make low power state decision controlled by DMAC */
1730 reg = rd32(E1000_PCIEMISC);
1731 reg |= E1000_PCIEMISC_LX_DECISION;
1732 wr32(E1000_PCIEMISC, reg);
1733 } /* end if IGB_FLAG_DMAC set */
1734 }
55cac248
AD
1735 if (hw->mac.type == e1000_82580) {
1736 u32 reg = rd32(E1000_PCIEMISC);
1737 wr32(E1000_PCIEMISC,
1738 reg & ~E1000_PCIEMISC_LX_DECISION);
1739 }
88a268c1
NN
1740 if (!netif_running(adapter->netdev))
1741 igb_power_down_link(adapter);
1742
9d5c8243
AK
1743 igb_update_mng_vlan(adapter);
1744
1745 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1747
330a6d6a 1748 igb_get_phy_info(hw);
9d5c8243
AK
1749}
1750
ac52caa3
MM
1751static int igb_set_features(struct net_device *netdev, u32 features)
1752{
1753 struct igb_adapter *adapter = netdev_priv(netdev);
1754 int i;
1755
1756 for (i = 0; i < adapter->num_rx_queues; i++) {
1757 if (features & NETIF_F_RXCSUM)
1758 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1759 else
1760 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1761 }
1762
1763 return 0;
1764}
1765
2e5c6922 1766static const struct net_device_ops igb_netdev_ops = {
559e9c49 1767 .ndo_open = igb_open,
2e5c6922 1768 .ndo_stop = igb_close,
00829823 1769 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1770 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1771 .ndo_set_rx_mode = igb_set_rx_mode,
1772 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1773 .ndo_set_mac_address = igb_set_mac,
1774 .ndo_change_mtu = igb_change_mtu,
1775 .ndo_do_ioctl = igb_ioctl,
1776 .ndo_tx_timeout = igb_tx_timeout,
1777 .ndo_validate_addr = eth_validate_addr,
1778 .ndo_vlan_rx_register = igb_vlan_rx_register,
1779 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1780 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1781 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1782 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1783 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1784 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1785#ifdef CONFIG_NET_POLL_CONTROLLER
1786 .ndo_poll_controller = igb_netpoll,
1787#endif
ac52caa3 1788 .ndo_set_features = igb_set_features,
2e5c6922
SH
1789};
1790
9d5c8243
AK
1791/**
1792 * igb_probe - Device Initialization Routine
1793 * @pdev: PCI device information struct
1794 * @ent: entry in igb_pci_tbl
1795 *
1796 * Returns 0 on success, negative on failure
1797 *
1798 * igb_probe initializes an adapter identified by a pci_dev structure.
1799 * The OS initialization, configuring of the adapter private structure,
1800 * and a hardware reset occur.
1801 **/
1802static int __devinit igb_probe(struct pci_dev *pdev,
1803 const struct pci_device_id *ent)
1804{
1805 struct net_device *netdev;
1806 struct igb_adapter *adapter;
1807 struct e1000_hw *hw;
4337e993 1808 u16 eeprom_data = 0;
9835fd73 1809 s32 ret_val;
4337e993 1810 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1811 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1812 unsigned long mmio_start, mmio_len;
2d6a5e95 1813 int err, pci_using_dac;
9d5c8243 1814 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1815 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1816
bded64a7
AG
1817 /* Catch broken hardware that put the wrong VF device ID in
1818 * the PCIe SR-IOV capability.
1819 */
1820 if (pdev->is_virtfn) {
1821 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1822 pci_name(pdev), pdev->vendor, pdev->device);
1823 return -EINVAL;
1824 }
1825
aed5dec3 1826 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1827 if (err)
1828 return err;
1829
1830 pci_using_dac = 0;
59d71989 1831 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1832 if (!err) {
59d71989 1833 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1834 if (!err)
1835 pci_using_dac = 1;
1836 } else {
59d71989 1837 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1838 if (err) {
59d71989 1839 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1840 if (err) {
1841 dev_err(&pdev->dev, "No usable DMA "
1842 "configuration, aborting\n");
1843 goto err_dma;
1844 }
1845 }
1846 }
1847
aed5dec3
AD
1848 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1849 IORESOURCE_MEM),
1850 igb_driver_name);
9d5c8243
AK
1851 if (err)
1852 goto err_pci_reg;
1853
19d5afd4 1854 pci_enable_pcie_error_reporting(pdev);
40a914fa 1855
9d5c8243 1856 pci_set_master(pdev);
c682fc23 1857 pci_save_state(pdev);
9d5c8243
AK
1858
1859 err = -ENOMEM;
1bfaf07b
AD
1860 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1861 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1862 if (!netdev)
1863 goto err_alloc_etherdev;
1864
1865 SET_NETDEV_DEV(netdev, &pdev->dev);
1866
1867 pci_set_drvdata(pdev, netdev);
1868 adapter = netdev_priv(netdev);
1869 adapter->netdev = netdev;
1870 adapter->pdev = pdev;
1871 hw = &adapter->hw;
1872 hw->back = adapter;
1873 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1874
1875 mmio_start = pci_resource_start(pdev, 0);
1876 mmio_len = pci_resource_len(pdev, 0);
1877
1878 err = -EIO;
28b0759c
AD
1879 hw->hw_addr = ioremap(mmio_start, mmio_len);
1880 if (!hw->hw_addr)
9d5c8243
AK
1881 goto err_ioremap;
1882
2e5c6922 1883 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1884 igb_set_ethtool_ops(netdev);
9d5c8243 1885 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1886
1887 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1888
1889 netdev->mem_start = mmio_start;
1890 netdev->mem_end = mmio_start + mmio_len;
1891
9d5c8243
AK
1892 /* PCI config space info */
1893 hw->vendor_id = pdev->vendor;
1894 hw->device_id = pdev->device;
1895 hw->revision_id = pdev->revision;
1896 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1897 hw->subsystem_device_id = pdev->subsystem_device;
1898
9d5c8243
AK
1899 /* Copy the default MAC, PHY and NVM function pointers */
1900 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1901 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1902 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1903 /* Initialize skew-specific constants */
1904 err = ei->get_invariants(hw);
1905 if (err)
450c87c8 1906 goto err_sw_init;
9d5c8243 1907
450c87c8 1908 /* setup the private structure */
9d5c8243
AK
1909 err = igb_sw_init(adapter);
1910 if (err)
1911 goto err_sw_init;
1912
1913 igb_get_bus_info_pcie(hw);
1914
1915 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1916
1917 /* Copper options */
1918 if (hw->phy.media_type == e1000_media_type_copper) {
1919 hw->phy.mdix = AUTO_ALL_MODES;
1920 hw->phy.disable_polarity_correction = false;
1921 hw->phy.ms_type = e1000_ms_hw_default;
1922 }
1923
1924 if (igb_check_reset_block(hw))
1925 dev_info(&pdev->dev,
1926 "PHY reset is blocked due to SOL/IDER session.\n");
1927
ac52caa3 1928 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1929 NETIF_F_IP_CSUM |
ac52caa3
MM
1930 NETIF_F_IPV6_CSUM |
1931 NETIF_F_TSO |
1932 NETIF_F_TSO6 |
1933 NETIF_F_RXCSUM;
1934
1935 netdev->features = netdev->hw_features |
9d5c8243
AK
1936 NETIF_F_HW_VLAN_TX |
1937 NETIF_F_HW_VLAN_RX |
1938 NETIF_F_HW_VLAN_FILTER;
1939
48f29ffc
JK
1940 netdev->vlan_features |= NETIF_F_TSO;
1941 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1942 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1943 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1944 netdev->vlan_features |= NETIF_F_SG;
1945
7b872a55 1946 if (pci_using_dac) {
9d5c8243 1947 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1948 netdev->vlan_features |= NETIF_F_HIGHDMA;
1949 }
9d5c8243 1950
ac52caa3
MM
1951 if (hw->mac.type >= e1000_82576) {
1952 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1953 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1954 }
b9473560 1955
330a6d6a 1956 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1957
1958 /* before reading the NVM, reset the controller to put the device in a
1959 * known good starting state */
1960 hw->mac.ops.reset_hw(hw);
1961
1962 /* make sure the NVM is good */
4322e561 1963 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1964 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1965 err = -EIO;
1966 goto err_eeprom;
1967 }
1968
1969 /* copy the MAC address out of the NVM */
1970 if (hw->mac.ops.read_mac_addr(hw))
1971 dev_err(&pdev->dev, "NVM Read Error\n");
1972
1973 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1974 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1975
1976 if (!is_valid_ether_addr(netdev->perm_addr)) {
1977 dev_err(&pdev->dev, "Invalid MAC Address\n");
1978 err = -EIO;
1979 goto err_eeprom;
1980 }
1981
c061b18d 1982 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1983 (unsigned long) adapter);
c061b18d 1984 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1985 (unsigned long) adapter);
9d5c8243
AK
1986
1987 INIT_WORK(&adapter->reset_task, igb_reset_task);
1988 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1989
450c87c8 1990 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1991 adapter->fc_autoneg = true;
1992 hw->mac.autoneg = true;
1993 hw->phy.autoneg_advertised = 0x2f;
1994
0cce119a
AD
1995 hw->fc.requested_mode = e1000_fc_default;
1996 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1997
9d5c8243
AK
1998 igb_validate_mdi_setting(hw);
1999
9d5c8243
AK
2000 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2001 * enable the ACPI Magic Packet filter
2002 */
2003
a2cf8b6c 2004 if (hw->bus.func == 0)
312c75ae 2005 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
2006 else if (hw->mac.type == e1000_82580)
2007 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2008 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2009 &eeprom_data);
a2cf8b6c
AD
2010 else if (hw->bus.func == 1)
2011 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2012
2013 if (eeprom_data & eeprom_apme_mask)
2014 adapter->eeprom_wol |= E1000_WUFC_MAG;
2015
2016 /* now that we have the eeprom settings, apply the special cases where
2017 * the eeprom may be wrong or the board simply won't support wake on
2018 * lan on a particular port */
2019 switch (pdev->device) {
2020 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2021 adapter->eeprom_wol = 0;
2022 break;
2023 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2024 case E1000_DEV_ID_82576_FIBER:
2025 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2026 /* Wake events only supported on port A for dual fiber
2027 * regardless of eeprom setting */
2028 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2029 adapter->eeprom_wol = 0;
2030 break;
c8ea5ea9 2031 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2032 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2033 /* if quad port adapter, disable WoL on all but port A */
2034 if (global_quad_port_a != 0)
2035 adapter->eeprom_wol = 0;
2036 else
2037 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2038 /* Reset for multiple quad port adapters */
2039 if (++global_quad_port_a == 4)
2040 global_quad_port_a = 0;
2041 break;
9d5c8243
AK
2042 }
2043
2044 /* initialize the wol settings based on the eeprom settings */
2045 adapter->wol = adapter->eeprom_wol;
e1b86d84 2046 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2047
2048 /* reset the hardware with the new settings */
2049 igb_reset(adapter);
2050
2051 /* let the f/w know that the h/w is now under the control of the
2052 * driver. */
2053 igb_get_hw_control(adapter);
2054
9d5c8243
AK
2055 strcpy(netdev->name, "eth%d");
2056 err = register_netdev(netdev);
2057 if (err)
2058 goto err_register;
2059
b168dfc5
JB
2060 /* carrier off reporting is important to ethtool even BEFORE open */
2061 netif_carrier_off(netdev);
2062
421e02f0 2063#ifdef CONFIG_IGB_DCA
bbd98fe4 2064 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2065 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2066 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2067 igb_setup_dca(adapter);
2068 }
fe4506b6 2069
38c845c7 2070#endif
673b8b70
AB
2071 /* do hw tstamp init after resetting */
2072 igb_init_hw_timer(adapter);
2073
9d5c8243
AK
2074 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2075 /* print bus type/speed/width info */
7c510e4b 2076 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2077 netdev->name,
559e9c49 2078 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2079 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2080 "unknown"),
59c3de89
AD
2081 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2082 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2083 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2084 "unknown"),
7c510e4b 2085 netdev->dev_addr);
9d5c8243 2086
9835fd73
CW
2087 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2088 if (ret_val)
2089 strcpy(part_str, "Unknown");
2090 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2091 dev_info(&pdev->dev,
2092 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2093 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2094 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2095 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2096 switch (hw->mac.type) {
2097 case e1000_i350:
2098 igb_set_eee_i350(hw);
2099 break;
2100 default:
2101 break;
2102 }
9d5c8243
AK
2103 return 0;
2104
2105err_register:
2106 igb_release_hw_control(adapter);
2107err_eeprom:
2108 if (!igb_check_reset_block(hw))
f5f4cf08 2109 igb_reset_phy(hw);
9d5c8243
AK
2110
2111 if (hw->flash_address)
2112 iounmap(hw->flash_address);
9d5c8243 2113err_sw_init:
047e0030 2114 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2115 iounmap(hw->hw_addr);
2116err_ioremap:
2117 free_netdev(netdev);
2118err_alloc_etherdev:
559e9c49
AD
2119 pci_release_selected_regions(pdev,
2120 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2121err_pci_reg:
2122err_dma:
2123 pci_disable_device(pdev);
2124 return err;
2125}
2126
2127/**
2128 * igb_remove - Device Removal Routine
2129 * @pdev: PCI device information struct
2130 *
2131 * igb_remove is called by the PCI subsystem to alert the driver
2132 * that it should release a PCI device. The could be caused by a
2133 * Hot-Plug event, or because the driver is going to be removed from
2134 * memory.
2135 **/
2136static void __devexit igb_remove(struct pci_dev *pdev)
2137{
2138 struct net_device *netdev = pci_get_drvdata(pdev);
2139 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2140 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2141
760141a5
TH
2142 /*
2143 * The watchdog timer may be rescheduled, so explicitly
2144 * disable watchdog from being rescheduled.
2145 */
9d5c8243
AK
2146 set_bit(__IGB_DOWN, &adapter->state);
2147 del_timer_sync(&adapter->watchdog_timer);
2148 del_timer_sync(&adapter->phy_info_timer);
2149
760141a5
TH
2150 cancel_work_sync(&adapter->reset_task);
2151 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2152
421e02f0 2153#ifdef CONFIG_IGB_DCA
7dfc16fa 2154 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2155 dev_info(&pdev->dev, "DCA disabled\n");
2156 dca_remove_requester(&pdev->dev);
7dfc16fa 2157 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2158 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2159 }
2160#endif
2161
9d5c8243
AK
2162 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2163 * would have already happened in close and is redundant. */
2164 igb_release_hw_control(adapter);
2165
2166 unregister_netdev(netdev);
2167
047e0030 2168 igb_clear_interrupt_scheme(adapter);
9d5c8243 2169
37680117
AD
2170#ifdef CONFIG_PCI_IOV
2171 /* reclaim resources allocated to VFs */
2172 if (adapter->vf_data) {
2173 /* disable iov and allow time for transactions to clear */
2174 pci_disable_sriov(pdev);
2175 msleep(500);
2176
2177 kfree(adapter->vf_data);
2178 adapter->vf_data = NULL;
2179 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2180 msleep(100);
2181 dev_info(&pdev->dev, "IOV Disabled\n");
2182 }
2183#endif
559e9c49 2184
28b0759c
AD
2185 iounmap(hw->hw_addr);
2186 if (hw->flash_address)
2187 iounmap(hw->flash_address);
559e9c49
AD
2188 pci_release_selected_regions(pdev,
2189 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2190
2191 free_netdev(netdev);
2192
19d5afd4 2193 pci_disable_pcie_error_reporting(pdev);
40a914fa 2194
9d5c8243
AK
2195 pci_disable_device(pdev);
2196}
2197
a6b623e0
AD
2198/**
2199 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2200 * @adapter: board private structure to initialize
2201 *
2202 * This function initializes the vf specific data storage and then attempts to
2203 * allocate the VFs. The reason for ordering it this way is because it is much
2204 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2205 * the memory for the VFs.
2206 **/
2207static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2208{
2209#ifdef CONFIG_PCI_IOV
2210 struct pci_dev *pdev = adapter->pdev;
2211
a6b623e0
AD
2212 if (adapter->vfs_allocated_count) {
2213 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2214 sizeof(struct vf_data_storage),
2215 GFP_KERNEL);
2216 /* if allocation failed then we do not support SR-IOV */
2217 if (!adapter->vf_data) {
2218 adapter->vfs_allocated_count = 0;
2219 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2220 "Data Storage\n");
2221 }
2222 }
2223
2224 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2225 kfree(adapter->vf_data);
2226 adapter->vf_data = NULL;
2227#endif /* CONFIG_PCI_IOV */
2228 adapter->vfs_allocated_count = 0;
2229#ifdef CONFIG_PCI_IOV
2230 } else {
2231 unsigned char mac_addr[ETH_ALEN];
2232 int i;
2233 dev_info(&pdev->dev, "%d vfs allocated\n",
2234 adapter->vfs_allocated_count);
2235 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2236 random_ether_addr(mac_addr);
2237 igb_set_vf_mac(adapter, i, mac_addr);
2238 }
831ec0b4
CW
2239 /* DMA Coalescing is not supported in IOV mode. */
2240 if (adapter->flags & IGB_FLAG_DMAC)
2241 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2242 }
2243#endif /* CONFIG_PCI_IOV */
2244}
2245
115f459a
AD
2246
2247/**
2248 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2249 * @adapter: board private structure to initialize
2250 *
2251 * igb_init_hw_timer initializes the function pointer and values for the hw
2252 * timer found in hardware.
2253 **/
2254static void igb_init_hw_timer(struct igb_adapter *adapter)
2255{
2256 struct e1000_hw *hw = &adapter->hw;
2257
2258 switch (hw->mac.type) {
d2ba2ed8 2259 case e1000_i350:
55cac248
AD
2260 case e1000_82580:
2261 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2262 adapter->cycles.read = igb_read_clock;
2263 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2264 adapter->cycles.mult = 1;
2265 /*
2266 * The 82580 timesync updates the system timer every 8ns by 8ns
2267 * and the value cannot be shifted. Instead we need to shift
2268 * the registers to generate a 64bit timer value. As a result
2269 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2270 * 24 in order to generate a larger value for synchronization.
2271 */
2272 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2273 /* disable system timer temporarily by setting bit 31 */
2274 wr32(E1000_TSAUXC, 0x80000000);
2275 wrfl();
2276
2277 /* Set registers so that rollover occurs soon to test this. */
2278 wr32(E1000_SYSTIMR, 0x00000000);
2279 wr32(E1000_SYSTIML, 0x80000000);
2280 wr32(E1000_SYSTIMH, 0x000000FF);
2281 wrfl();
2282
2283 /* enable system timer by clearing bit 31 */
2284 wr32(E1000_TSAUXC, 0x0);
2285 wrfl();
2286
2287 timecounter_init(&adapter->clock,
2288 &adapter->cycles,
2289 ktime_to_ns(ktime_get_real()));
2290 /*
2291 * Synchronize our NIC clock against system wall clock. NIC
2292 * time stamp reading requires ~3us per sample, each sample
2293 * was pretty stable even under load => only require 10
2294 * samples for each offset comparison.
2295 */
2296 memset(&adapter->compare, 0, sizeof(adapter->compare));
2297 adapter->compare.source = &adapter->clock;
2298 adapter->compare.target = ktime_get_real;
2299 adapter->compare.num_samples = 10;
2300 timecompare_update(&adapter->compare, 0);
2301 break;
115f459a
AD
2302 case e1000_82576:
2303 /*
2304 * Initialize hardware timer: we keep it running just in case
2305 * that some program needs it later on.
2306 */
2307 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2308 adapter->cycles.read = igb_read_clock;
2309 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2310 adapter->cycles.mult = 1;
2311 /**
2312 * Scale the NIC clock cycle by a large factor so that
2313 * relatively small clock corrections can be added or
25985edc 2314 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2315 * factor are a) that the clock register overflows more quickly
2316 * (not such a big deal) and b) that the increment per tick has
2317 * to fit into 24 bits. As a result we need to use a shift of
2318 * 19 so we can fit a value of 16 into the TIMINCA register.
2319 */
2320 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2321 wr32(E1000_TIMINCA,
2322 (1 << E1000_TIMINCA_16NS_SHIFT) |
2323 (16 << IGB_82576_TSYNC_SHIFT));
2324
2325 /* Set registers so that rollover occurs soon to test this. */
2326 wr32(E1000_SYSTIML, 0x00000000);
2327 wr32(E1000_SYSTIMH, 0xFF800000);
2328 wrfl();
2329
2330 timecounter_init(&adapter->clock,
2331 &adapter->cycles,
2332 ktime_to_ns(ktime_get_real()));
2333 /*
2334 * Synchronize our NIC clock against system wall clock. NIC
2335 * time stamp reading requires ~3us per sample, each sample
2336 * was pretty stable even under load => only require 10
2337 * samples for each offset comparison.
2338 */
2339 memset(&adapter->compare, 0, sizeof(adapter->compare));
2340 adapter->compare.source = &adapter->clock;
2341 adapter->compare.target = ktime_get_real;
2342 adapter->compare.num_samples = 10;
2343 timecompare_update(&adapter->compare, 0);
2344 break;
2345 case e1000_82575:
2346 /* 82575 does not support timesync */
2347 default:
2348 break;
2349 }
2350
2351}
2352
9d5c8243
AK
2353/**
2354 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2355 * @adapter: board private structure to initialize
2356 *
2357 * igb_sw_init initializes the Adapter private data structure.
2358 * Fields are initialized based on PCI device information and
2359 * OS network device settings (MTU size).
2360 **/
2361static int __devinit igb_sw_init(struct igb_adapter *adapter)
2362{
2363 struct e1000_hw *hw = &adapter->hw;
2364 struct net_device *netdev = adapter->netdev;
2365 struct pci_dev *pdev = adapter->pdev;
2366
2367 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2368
68fd9910
AD
2369 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2370 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2371 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2372 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2373
9d5c8243
AK
2374 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2375 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2376
12dcd86b 2377 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2378#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2379 switch (hw->mac.type) {
2380 case e1000_82576:
2381 case e1000_i350:
9b082d73
SA
2382 if (max_vfs > 7) {
2383 dev_warn(&pdev->dev,
2384 "Maximum of 7 VFs per PF, using max\n");
2385 adapter->vfs_allocated_count = 7;
2386 } else
2387 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2388 break;
2389 default:
2390 break;
2391 }
a6b623e0 2392#endif /* CONFIG_PCI_IOV */
a99955fc 2393 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2394 /* i350 cannot do RSS and SR-IOV at the same time */
2395 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2396 adapter->rss_queues = 1;
a99955fc
AD
2397
2398 /*
2399 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2400 * then we should combine the queues into a queue pair in order to
2401 * conserve interrupts due to limited supply
2402 */
2403 if ((adapter->rss_queues > 4) ||
2404 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2405 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2406
a6b623e0 2407 /* This call may decrease the number of queues */
047e0030 2408 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2409 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2410 return -ENOMEM;
2411 }
2412
a6b623e0
AD
2413 igb_probe_vfs(adapter);
2414
9d5c8243
AK
2415 /* Explicitly disable IRQ since the NIC can be in any state. */
2416 igb_irq_disable(adapter);
2417
831ec0b4
CW
2418 if (hw->mac.type == e1000_i350)
2419 adapter->flags &= ~IGB_FLAG_DMAC;
2420
9d5c8243
AK
2421 set_bit(__IGB_DOWN, &adapter->state);
2422 return 0;
2423}
2424
2425/**
2426 * igb_open - Called when a network interface is made active
2427 * @netdev: network interface device structure
2428 *
2429 * Returns 0 on success, negative value on failure
2430 *
2431 * The open entry point is called when a network interface is made
2432 * active by the system (IFF_UP). At this point all resources needed
2433 * for transmit and receive operations are allocated, the interrupt
2434 * handler is registered with the OS, the watchdog timer is started,
2435 * and the stack is notified that the interface is ready.
2436 **/
2437static int igb_open(struct net_device *netdev)
2438{
2439 struct igb_adapter *adapter = netdev_priv(netdev);
2440 struct e1000_hw *hw = &adapter->hw;
2441 int err;
2442 int i;
2443
2444 /* disallow open during test */
2445 if (test_bit(__IGB_TESTING, &adapter->state))
2446 return -EBUSY;
2447
b168dfc5
JB
2448 netif_carrier_off(netdev);
2449
9d5c8243
AK
2450 /* allocate transmit descriptors */
2451 err = igb_setup_all_tx_resources(adapter);
2452 if (err)
2453 goto err_setup_tx;
2454
2455 /* allocate receive descriptors */
2456 err = igb_setup_all_rx_resources(adapter);
2457 if (err)
2458 goto err_setup_rx;
2459
88a268c1 2460 igb_power_up_link(adapter);
9d5c8243 2461
9d5c8243
AK
2462 /* before we allocate an interrupt, we must be ready to handle it.
2463 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2464 * as soon as we call pci_request_irq, so we have to setup our
2465 * clean_rx handler before we do so. */
2466 igb_configure(adapter);
2467
2468 err = igb_request_irq(adapter);
2469 if (err)
2470 goto err_req_irq;
2471
2472 /* From here on the code is the same as igb_up() */
2473 clear_bit(__IGB_DOWN, &adapter->state);
2474
047e0030
AD
2475 for (i = 0; i < adapter->num_q_vectors; i++) {
2476 struct igb_q_vector *q_vector = adapter->q_vector[i];
2477 napi_enable(&q_vector->napi);
2478 }
9d5c8243
AK
2479
2480 /* Clear any pending interrupts. */
2481 rd32(E1000_ICR);
844290e5
PW
2482
2483 igb_irq_enable(adapter);
2484
d4960307
AD
2485 /* notify VFs that reset has been completed */
2486 if (adapter->vfs_allocated_count) {
2487 u32 reg_data = rd32(E1000_CTRL_EXT);
2488 reg_data |= E1000_CTRL_EXT_PFRSTD;
2489 wr32(E1000_CTRL_EXT, reg_data);
2490 }
2491
d55b53ff
JK
2492 netif_tx_start_all_queues(netdev);
2493
25568a53
AD
2494 /* start the watchdog. */
2495 hw->mac.get_link_status = 1;
2496 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2497
2498 return 0;
2499
2500err_req_irq:
2501 igb_release_hw_control(adapter);
88a268c1 2502 igb_power_down_link(adapter);
9d5c8243
AK
2503 igb_free_all_rx_resources(adapter);
2504err_setup_rx:
2505 igb_free_all_tx_resources(adapter);
2506err_setup_tx:
2507 igb_reset(adapter);
2508
2509 return err;
2510}
2511
2512/**
2513 * igb_close - Disables a network interface
2514 * @netdev: network interface device structure
2515 *
2516 * Returns 0, this is not allowed to fail
2517 *
2518 * The close entry point is called when an interface is de-activated
2519 * by the OS. The hardware is still under the driver's control, but
2520 * needs to be disabled. A global MAC reset is issued to stop the
2521 * hardware, and all transmit and receive resources are freed.
2522 **/
2523static int igb_close(struct net_device *netdev)
2524{
2525 struct igb_adapter *adapter = netdev_priv(netdev);
2526
2527 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2528 igb_down(adapter);
2529
2530 igb_free_irq(adapter);
2531
2532 igb_free_all_tx_resources(adapter);
2533 igb_free_all_rx_resources(adapter);
2534
9d5c8243
AK
2535 return 0;
2536}
2537
2538/**
2539 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2540 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2541 *
2542 * Return 0 on success, negative on failure
2543 **/
80785298 2544int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2545{
59d71989 2546 struct device *dev = tx_ring->dev;
9d5c8243
AK
2547 int size;
2548
2549 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2550 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2551 if (!tx_ring->buffer_info)
2552 goto err;
9d5c8243
AK
2553
2554 /* round up to nearest 4K */
85e8d004 2555 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2556 tx_ring->size = ALIGN(tx_ring->size, 4096);
2557
59d71989
AD
2558 tx_ring->desc = dma_alloc_coherent(dev,
2559 tx_ring->size,
2560 &tx_ring->dma,
2561 GFP_KERNEL);
9d5c8243
AK
2562
2563 if (!tx_ring->desc)
2564 goto err;
2565
9d5c8243
AK
2566 tx_ring->next_to_use = 0;
2567 tx_ring->next_to_clean = 0;
9d5c8243
AK
2568 return 0;
2569
2570err:
2571 vfree(tx_ring->buffer_info);
59d71989 2572 dev_err(dev,
9d5c8243
AK
2573 "Unable to allocate memory for the transmit descriptor ring\n");
2574 return -ENOMEM;
2575}
2576
2577/**
2578 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2579 * (Descriptors) for all queues
2580 * @adapter: board private structure
2581 *
2582 * Return 0 on success, negative on failure
2583 **/
2584static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2585{
439705e1 2586 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2587 int i, err = 0;
2588
2589 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2590 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2591 if (err) {
439705e1 2592 dev_err(&pdev->dev,
9d5c8243
AK
2593 "Allocation for Tx Queue %u failed\n", i);
2594 for (i--; i >= 0; i--)
3025a446 2595 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2596 break;
2597 }
2598 }
2599
a99955fc 2600 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2601 int r_idx = i % adapter->num_tx_queues;
3025a446 2602 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2603 }
9d5c8243
AK
2604 return err;
2605}
2606
2607/**
85b430b4
AD
2608 * igb_setup_tctl - configure the transmit control registers
2609 * @adapter: Board private structure
9d5c8243 2610 **/
d7ee5b3a 2611void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2612{
9d5c8243
AK
2613 struct e1000_hw *hw = &adapter->hw;
2614 u32 tctl;
9d5c8243 2615
85b430b4
AD
2616 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2617 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2618
2619 /* Program the Transmit Control Register */
9d5c8243
AK
2620 tctl = rd32(E1000_TCTL);
2621 tctl &= ~E1000_TCTL_CT;
2622 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2623 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2624
2625 igb_config_collision_dist(hw);
2626
9d5c8243
AK
2627 /* Enable transmits */
2628 tctl |= E1000_TCTL_EN;
2629
2630 wr32(E1000_TCTL, tctl);
2631}
2632
85b430b4
AD
2633/**
2634 * igb_configure_tx_ring - Configure transmit ring after Reset
2635 * @adapter: board private structure
2636 * @ring: tx ring to configure
2637 *
2638 * Configure a transmit ring after a reset.
2639 **/
d7ee5b3a
AD
2640void igb_configure_tx_ring(struct igb_adapter *adapter,
2641 struct igb_ring *ring)
85b430b4
AD
2642{
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 txdctl;
2645 u64 tdba = ring->dma;
2646 int reg_idx = ring->reg_idx;
2647
2648 /* disable the queue */
2649 txdctl = rd32(E1000_TXDCTL(reg_idx));
2650 wr32(E1000_TXDCTL(reg_idx),
2651 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2652 wrfl();
2653 mdelay(10);
2654
2655 wr32(E1000_TDLEN(reg_idx),
2656 ring->count * sizeof(union e1000_adv_tx_desc));
2657 wr32(E1000_TDBAL(reg_idx),
2658 tdba & 0x00000000ffffffffULL);
2659 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2660
fce99e34
AD
2661 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2662 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2663 writel(0, ring->head);
2664 writel(0, ring->tail);
85b430b4
AD
2665
2666 txdctl |= IGB_TX_PTHRESH;
2667 txdctl |= IGB_TX_HTHRESH << 8;
2668 txdctl |= IGB_TX_WTHRESH << 16;
2669
2670 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2671 wr32(E1000_TXDCTL(reg_idx), txdctl);
2672}
2673
2674/**
2675 * igb_configure_tx - Configure transmit Unit after Reset
2676 * @adapter: board private structure
2677 *
2678 * Configure the Tx unit of the MAC after a reset.
2679 **/
2680static void igb_configure_tx(struct igb_adapter *adapter)
2681{
2682 int i;
2683
2684 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2685 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2686}
2687
9d5c8243
AK
2688/**
2689 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2690 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2691 *
2692 * Returns 0 on success, negative on failure
2693 **/
80785298 2694int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2695{
59d71989 2696 struct device *dev = rx_ring->dev;
9d5c8243
AK
2697 int size, desc_len;
2698
2699 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2700 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2701 if (!rx_ring->buffer_info)
2702 goto err;
9d5c8243
AK
2703
2704 desc_len = sizeof(union e1000_adv_rx_desc);
2705
2706 /* Round up to nearest 4K */
2707 rx_ring->size = rx_ring->count * desc_len;
2708 rx_ring->size = ALIGN(rx_ring->size, 4096);
2709
59d71989
AD
2710 rx_ring->desc = dma_alloc_coherent(dev,
2711 rx_ring->size,
2712 &rx_ring->dma,
2713 GFP_KERNEL);
9d5c8243
AK
2714
2715 if (!rx_ring->desc)
2716 goto err;
2717
2718 rx_ring->next_to_clean = 0;
2719 rx_ring->next_to_use = 0;
9d5c8243 2720
9d5c8243
AK
2721 return 0;
2722
2723err:
2724 vfree(rx_ring->buffer_info);
439705e1 2725 rx_ring->buffer_info = NULL;
59d71989
AD
2726 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2727 " ring\n");
9d5c8243
AK
2728 return -ENOMEM;
2729}
2730
2731/**
2732 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2733 * (Descriptors) for all queues
2734 * @adapter: board private structure
2735 *
2736 * Return 0 on success, negative on failure
2737 **/
2738static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2739{
439705e1 2740 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2741 int i, err = 0;
2742
2743 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2744 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2745 if (err) {
439705e1 2746 dev_err(&pdev->dev,
9d5c8243
AK
2747 "Allocation for Rx Queue %u failed\n", i);
2748 for (i--; i >= 0; i--)
3025a446 2749 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2750 break;
2751 }
2752 }
2753
2754 return err;
2755}
2756
06cf2666
AD
2757/**
2758 * igb_setup_mrqc - configure the multiple receive queue control registers
2759 * @adapter: Board private structure
2760 **/
2761static void igb_setup_mrqc(struct igb_adapter *adapter)
2762{
2763 struct e1000_hw *hw = &adapter->hw;
2764 u32 mrqc, rxcsum;
2765 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2766 union e1000_reta {
2767 u32 dword;
2768 u8 bytes[4];
2769 } reta;
2770 static const u8 rsshash[40] = {
2771 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2772 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2773 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2774 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2775
2776 /* Fill out hash function seeds */
2777 for (j = 0; j < 10; j++) {
2778 u32 rsskey = rsshash[(j * 4)];
2779 rsskey |= rsshash[(j * 4) + 1] << 8;
2780 rsskey |= rsshash[(j * 4) + 2] << 16;
2781 rsskey |= rsshash[(j * 4) + 3] << 24;
2782 array_wr32(E1000_RSSRK(0), j, rsskey);
2783 }
2784
a99955fc 2785 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2786
2787 if (adapter->vfs_allocated_count) {
2788 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2789 switch (hw->mac.type) {
d2ba2ed8 2790 case e1000_i350:
55cac248
AD
2791 case e1000_82580:
2792 num_rx_queues = 1;
2793 shift = 0;
2794 break;
06cf2666
AD
2795 case e1000_82576:
2796 shift = 3;
2797 num_rx_queues = 2;
2798 break;
2799 case e1000_82575:
2800 shift = 2;
2801 shift2 = 6;
2802 default:
2803 break;
2804 }
2805 } else {
2806 if (hw->mac.type == e1000_82575)
2807 shift = 6;
2808 }
2809
2810 for (j = 0; j < (32 * 4); j++) {
2811 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2812 if (shift2)
2813 reta.bytes[j & 3] |= num_rx_queues << shift2;
2814 if ((j & 3) == 3)
2815 wr32(E1000_RETA(j >> 2), reta.dword);
2816 }
2817
2818 /*
2819 * Disable raw packet checksumming so that RSS hash is placed in
2820 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2821 * offloads as they are enabled by default
2822 */
2823 rxcsum = rd32(E1000_RXCSUM);
2824 rxcsum |= E1000_RXCSUM_PCSD;
2825
2826 if (adapter->hw.mac.type >= e1000_82576)
2827 /* Enable Receive Checksum Offload for SCTP */
2828 rxcsum |= E1000_RXCSUM_CRCOFL;
2829
2830 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2831 wr32(E1000_RXCSUM, rxcsum);
2832
2833 /* If VMDq is enabled then we set the appropriate mode for that, else
2834 * we default to RSS so that an RSS hash is calculated per packet even
2835 * if we are only using one queue */
2836 if (adapter->vfs_allocated_count) {
2837 if (hw->mac.type > e1000_82575) {
2838 /* Set the default pool for the PF's first queue */
2839 u32 vtctl = rd32(E1000_VT_CTL);
2840 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2841 E1000_VT_CTL_DISABLE_DEF_POOL);
2842 vtctl |= adapter->vfs_allocated_count <<
2843 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2844 wr32(E1000_VT_CTL, vtctl);
2845 }
a99955fc 2846 if (adapter->rss_queues > 1)
06cf2666
AD
2847 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2848 else
2849 mrqc = E1000_MRQC_ENABLE_VMDQ;
2850 } else {
2851 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2852 }
2853 igb_vmm_control(adapter);
2854
4478a9cd
AD
2855 /*
2856 * Generate RSS hash based on TCP port numbers and/or
2857 * IPv4/v6 src and dst addresses since UDP cannot be
2858 * hashed reliably due to IP fragmentation
2859 */
2860 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2861 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2862 E1000_MRQC_RSS_FIELD_IPV6 |
2863 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2864 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2865
2866 wr32(E1000_MRQC, mrqc);
2867}
2868
9d5c8243
AK
2869/**
2870 * igb_setup_rctl - configure the receive control registers
2871 * @adapter: Board private structure
2872 **/
d7ee5b3a 2873void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2874{
2875 struct e1000_hw *hw = &adapter->hw;
2876 u32 rctl;
9d5c8243
AK
2877
2878 rctl = rd32(E1000_RCTL);
2879
2880 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2881 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2882
69d728ba 2883 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2884 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2885
87cb7e8c
AK
2886 /*
2887 * enable stripping of CRC. It's unlikely this will break BMC
2888 * redirection as it did with e1000. Newer features require
2889 * that the HW strips the CRC.
73cd78f1 2890 */
87cb7e8c 2891 rctl |= E1000_RCTL_SECRC;
9d5c8243 2892
559e9c49 2893 /* disable store bad packets and clear size bits. */
ec54d7d6 2894 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2895
6ec43fe6
AD
2896 /* enable LPE to prevent packets larger than max_frame_size */
2897 rctl |= E1000_RCTL_LPE;
9d5c8243 2898
952f72a8
AD
2899 /* disable queue 0 to prevent tail write w/o re-config */
2900 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2901
e1739522
AD
2902 /* Attention!!! For SR-IOV PF driver operations you must enable
2903 * queue drop for all VF and PF queues to prevent head of line blocking
2904 * if an un-trusted VF does not provide descriptors to hardware.
2905 */
2906 if (adapter->vfs_allocated_count) {
e1739522
AD
2907 /* set all queue drop enable bits */
2908 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2909 }
2910
9d5c8243
AK
2911 wr32(E1000_RCTL, rctl);
2912}
2913
7d5753f0
AD
2914static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2915 int vfn)
2916{
2917 struct e1000_hw *hw = &adapter->hw;
2918 u32 vmolr;
2919
2920 /* if it isn't the PF check to see if VFs are enabled and
2921 * increase the size to support vlan tags */
2922 if (vfn < adapter->vfs_allocated_count &&
2923 adapter->vf_data[vfn].vlans_enabled)
2924 size += VLAN_TAG_SIZE;
2925
2926 vmolr = rd32(E1000_VMOLR(vfn));
2927 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2928 vmolr |= size | E1000_VMOLR_LPE;
2929 wr32(E1000_VMOLR(vfn), vmolr);
2930
2931 return 0;
2932}
2933
e1739522
AD
2934/**
2935 * igb_rlpml_set - set maximum receive packet size
2936 * @adapter: board private structure
2937 *
2938 * Configure maximum receivable packet size.
2939 **/
2940static void igb_rlpml_set(struct igb_adapter *adapter)
2941{
2942 u32 max_frame_size = adapter->max_frame_size;
2943 struct e1000_hw *hw = &adapter->hw;
2944 u16 pf_id = adapter->vfs_allocated_count;
2945
2946 if (adapter->vlgrp)
2947 max_frame_size += VLAN_TAG_SIZE;
2948
2949 /* if vfs are enabled we set RLPML to the largest possible request
2950 * size and set the VMOLR RLPML to the size we need */
2951 if (pf_id) {
2952 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2953 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2954 }
2955
2956 wr32(E1000_RLPML, max_frame_size);
2957}
2958
8151d294
WM
2959static inline void igb_set_vmolr(struct igb_adapter *adapter,
2960 int vfn, bool aupe)
7d5753f0
AD
2961{
2962 struct e1000_hw *hw = &adapter->hw;
2963 u32 vmolr;
2964
2965 /*
2966 * This register exists only on 82576 and newer so if we are older then
2967 * we should exit and do nothing
2968 */
2969 if (hw->mac.type < e1000_82576)
2970 return;
2971
2972 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2973 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2974 if (aupe)
2975 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2976 else
2977 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2978
2979 /* clear all bits that might not be set */
2980 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2981
a99955fc 2982 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2983 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2984 /*
2985 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2986 * multicast packets
2987 */
2988 if (vfn <= adapter->vfs_allocated_count)
2989 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2990
2991 wr32(E1000_VMOLR(vfn), vmolr);
2992}
2993
85b430b4
AD
2994/**
2995 * igb_configure_rx_ring - Configure a receive ring after Reset
2996 * @adapter: board private structure
2997 * @ring: receive ring to be configured
2998 *
2999 * Configure the Rx unit of the MAC after a reset.
3000 **/
d7ee5b3a
AD
3001void igb_configure_rx_ring(struct igb_adapter *adapter,
3002 struct igb_ring *ring)
85b430b4
AD
3003{
3004 struct e1000_hw *hw = &adapter->hw;
3005 u64 rdba = ring->dma;
3006 int reg_idx = ring->reg_idx;
952f72a8 3007 u32 srrctl, rxdctl;
85b430b4
AD
3008
3009 /* disable the queue */
3010 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3011 wr32(E1000_RXDCTL(reg_idx),
3012 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
3013
3014 /* Set DMA base address registers */
3015 wr32(E1000_RDBAL(reg_idx),
3016 rdba & 0x00000000ffffffffULL);
3017 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3018 wr32(E1000_RDLEN(reg_idx),
3019 ring->count * sizeof(union e1000_adv_rx_desc));
3020
3021 /* initialize head and tail */
fce99e34
AD
3022 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3023 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3024 writel(0, ring->head);
3025 writel(0, ring->tail);
85b430b4 3026
952f72a8 3027 /* set descriptor configuration */
4c844851
AD
3028 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3029 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
3030 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3031#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3032 srrctl |= IGB_RXBUFFER_16384 >>
3033 E1000_SRRCTL_BSIZEPKT_SHIFT;
3034#else
3035 srrctl |= (PAGE_SIZE / 2) >>
3036 E1000_SRRCTL_BSIZEPKT_SHIFT;
3037#endif
3038 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3039 } else {
4c844851 3040 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
3041 E1000_SRRCTL_BSIZEPKT_SHIFT;
3042 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3043 }
757b77e2
NN
3044 if (hw->mac.type == e1000_82580)
3045 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3046 /* Only set Drop Enable if we are supporting multiple queues */
3047 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3048 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3049
3050 wr32(E1000_SRRCTL(reg_idx), srrctl);
3051
7d5753f0 3052 /* set filtering for VMDQ pools */
8151d294 3053 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3054
85b430b4
AD
3055 /* enable receive descriptor fetching */
3056 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3057 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3058 rxdctl &= 0xFFF00000;
3059 rxdctl |= IGB_RX_PTHRESH;
3060 rxdctl |= IGB_RX_HTHRESH << 8;
3061 rxdctl |= IGB_RX_WTHRESH << 16;
3062 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3063}
3064
9d5c8243
AK
3065/**
3066 * igb_configure_rx - Configure receive Unit after Reset
3067 * @adapter: board private structure
3068 *
3069 * Configure the Rx unit of the MAC after a reset.
3070 **/
3071static void igb_configure_rx(struct igb_adapter *adapter)
3072{
9107584e 3073 int i;
9d5c8243 3074
68d480c4
AD
3075 /* set UTA to appropriate mode */
3076 igb_set_uta(adapter);
3077
26ad9178
AD
3078 /* set the correct pool for the PF default MAC address in entry 0 */
3079 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3080 adapter->vfs_allocated_count);
3081
06cf2666
AD
3082 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3083 * the Base and Length of the Rx Descriptor Ring */
3084 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3085 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3086}
3087
3088/**
3089 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3090 * @tx_ring: Tx descriptor ring for a specific queue
3091 *
3092 * Free all transmit software resources
3093 **/
68fd9910 3094void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3095{
3b644cf6 3096 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
3097
3098 vfree(tx_ring->buffer_info);
3099 tx_ring->buffer_info = NULL;
3100
439705e1
AD
3101 /* if not set, then don't free */
3102 if (!tx_ring->desc)
3103 return;
3104
59d71989
AD
3105 dma_free_coherent(tx_ring->dev, tx_ring->size,
3106 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3107
3108 tx_ring->desc = NULL;
3109}
3110
3111/**
3112 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3113 * @adapter: board private structure
3114 *
3115 * Free all transmit software resources
3116 **/
3117static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3118{
3119 int i;
3120
3121 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3122 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3123}
3124
b1a436c3
AD
3125void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3126 struct igb_buffer *buffer_info)
9d5c8243 3127{
6366ad33
AD
3128 if (buffer_info->dma) {
3129 if (buffer_info->mapped_as_page)
59d71989 3130 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3131 buffer_info->dma,
3132 buffer_info->length,
59d71989 3133 DMA_TO_DEVICE);
6366ad33 3134 else
59d71989 3135 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3136 buffer_info->dma,
3137 buffer_info->length,
59d71989 3138 DMA_TO_DEVICE);
6366ad33
AD
3139 buffer_info->dma = 0;
3140 }
9d5c8243
AK
3141 if (buffer_info->skb) {
3142 dev_kfree_skb_any(buffer_info->skb);
3143 buffer_info->skb = NULL;
3144 }
3145 buffer_info->time_stamp = 0;
6366ad33
AD
3146 buffer_info->length = 0;
3147 buffer_info->next_to_watch = 0;
3148 buffer_info->mapped_as_page = false;
9d5c8243
AK
3149}
3150
3151/**
3152 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3153 * @tx_ring: ring to be cleaned
3154 **/
3b644cf6 3155static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3156{
3157 struct igb_buffer *buffer_info;
3158 unsigned long size;
3159 unsigned int i;
3160
3161 if (!tx_ring->buffer_info)
3162 return;
3163 /* Free all the Tx ring sk_buffs */
3164
3165 for (i = 0; i < tx_ring->count; i++) {
3166 buffer_info = &tx_ring->buffer_info[i];
80785298 3167 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3168 }
3169
3170 size = sizeof(struct igb_buffer) * tx_ring->count;
3171 memset(tx_ring->buffer_info, 0, size);
3172
3173 /* Zero out the descriptor ring */
9d5c8243
AK
3174 memset(tx_ring->desc, 0, tx_ring->size);
3175
3176 tx_ring->next_to_use = 0;
3177 tx_ring->next_to_clean = 0;
9d5c8243
AK
3178}
3179
3180/**
3181 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3182 * @adapter: board private structure
3183 **/
3184static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3185{
3186 int i;
3187
3188 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3189 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3190}
3191
3192/**
3193 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3194 * @rx_ring: ring to clean the resources from
3195 *
3196 * Free all receive software resources
3197 **/
68fd9910 3198void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3199{
3b644cf6 3200 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3201
3202 vfree(rx_ring->buffer_info);
3203 rx_ring->buffer_info = NULL;
3204
439705e1
AD
3205 /* if not set, then don't free */
3206 if (!rx_ring->desc)
3207 return;
3208
59d71989
AD
3209 dma_free_coherent(rx_ring->dev, rx_ring->size,
3210 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3211
3212 rx_ring->desc = NULL;
3213}
3214
3215/**
3216 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3217 * @adapter: board private structure
3218 *
3219 * Free all receive software resources
3220 **/
3221static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3222{
3223 int i;
3224
3225 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3226 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3227}
3228
3229/**
3230 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3231 * @rx_ring: ring to free buffers from
3232 **/
3b644cf6 3233static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3234{
3235 struct igb_buffer *buffer_info;
9d5c8243
AK
3236 unsigned long size;
3237 unsigned int i;
3238
3239 if (!rx_ring->buffer_info)
3240 return;
439705e1 3241
9d5c8243
AK
3242 /* Free all the Rx ring sk_buffs */
3243 for (i = 0; i < rx_ring->count; i++) {
3244 buffer_info = &rx_ring->buffer_info[i];
3245 if (buffer_info->dma) {
59d71989 3246 dma_unmap_single(rx_ring->dev,
80785298 3247 buffer_info->dma,
4c844851 3248 rx_ring->rx_buffer_len,
59d71989 3249 DMA_FROM_DEVICE);
9d5c8243
AK
3250 buffer_info->dma = 0;
3251 }
3252
3253 if (buffer_info->skb) {
3254 dev_kfree_skb(buffer_info->skb);
3255 buffer_info->skb = NULL;
3256 }
6ec43fe6 3257 if (buffer_info->page_dma) {
59d71989 3258 dma_unmap_page(rx_ring->dev,
80785298 3259 buffer_info->page_dma,
6ec43fe6 3260 PAGE_SIZE / 2,
59d71989 3261 DMA_FROM_DEVICE);
6ec43fe6
AD
3262 buffer_info->page_dma = 0;
3263 }
9d5c8243 3264 if (buffer_info->page) {
9d5c8243
AK
3265 put_page(buffer_info->page);
3266 buffer_info->page = NULL;
bf36c1a0 3267 buffer_info->page_offset = 0;
9d5c8243
AK
3268 }
3269 }
3270
9d5c8243
AK
3271 size = sizeof(struct igb_buffer) * rx_ring->count;
3272 memset(rx_ring->buffer_info, 0, size);
3273
3274 /* Zero out the descriptor ring */
3275 memset(rx_ring->desc, 0, rx_ring->size);
3276
3277 rx_ring->next_to_clean = 0;
3278 rx_ring->next_to_use = 0;
9d5c8243
AK
3279}
3280
3281/**
3282 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3283 * @adapter: board private structure
3284 **/
3285static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3286{
3287 int i;
3288
3289 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3290 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3291}
3292
3293/**
3294 * igb_set_mac - Change the Ethernet Address of the NIC
3295 * @netdev: network interface device structure
3296 * @p: pointer to an address structure
3297 *
3298 * Returns 0 on success, negative on failure
3299 **/
3300static int igb_set_mac(struct net_device *netdev, void *p)
3301{
3302 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3303 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3304 struct sockaddr *addr = p;
3305
3306 if (!is_valid_ether_addr(addr->sa_data))
3307 return -EADDRNOTAVAIL;
3308
3309 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3310 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3311
26ad9178
AD
3312 /* set the correct pool for the new PF MAC address in entry 0 */
3313 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3314 adapter->vfs_allocated_count);
e1739522 3315
9d5c8243
AK
3316 return 0;
3317}
3318
3319/**
68d480c4 3320 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3321 * @netdev: network interface device structure
3322 *
68d480c4
AD
3323 * Writes multicast address list to the MTA hash table.
3324 * Returns: -ENOMEM on failure
3325 * 0 on no addresses written
3326 * X on writing X addresses to MTA
9d5c8243 3327 **/
68d480c4 3328static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3329{
3330 struct igb_adapter *adapter = netdev_priv(netdev);
3331 struct e1000_hw *hw = &adapter->hw;
22bedad3 3332 struct netdev_hw_addr *ha;
68d480c4 3333 u8 *mta_list;
9d5c8243
AK
3334 int i;
3335
4cd24eaf 3336 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3337 /* nothing to program, so clear mc list */
3338 igb_update_mc_addr_list(hw, NULL, 0);
3339 igb_restore_vf_multicasts(adapter);
3340 return 0;
3341 }
9d5c8243 3342
4cd24eaf 3343 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3344 if (!mta_list)
3345 return -ENOMEM;
ff41f8dc 3346
68d480c4 3347 /* The shared function expects a packed array of only addresses. */
48e2f183 3348 i = 0;
22bedad3
JP
3349 netdev_for_each_mc_addr(ha, netdev)
3350 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3351
68d480c4
AD
3352 igb_update_mc_addr_list(hw, mta_list, i);
3353 kfree(mta_list);
3354
4cd24eaf 3355 return netdev_mc_count(netdev);
68d480c4
AD
3356}
3357
3358/**
3359 * igb_write_uc_addr_list - write unicast addresses to RAR table
3360 * @netdev: network interface device structure
3361 *
3362 * Writes unicast address list to the RAR table.
3363 * Returns: -ENOMEM on failure/insufficient address space
3364 * 0 on no addresses written
3365 * X on writing X addresses to the RAR table
3366 **/
3367static int igb_write_uc_addr_list(struct net_device *netdev)
3368{
3369 struct igb_adapter *adapter = netdev_priv(netdev);
3370 struct e1000_hw *hw = &adapter->hw;
3371 unsigned int vfn = adapter->vfs_allocated_count;
3372 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3373 int count = 0;
3374
3375 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3376 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3377 return -ENOMEM;
9d5c8243 3378
32e7bfc4 3379 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3380 struct netdev_hw_addr *ha;
32e7bfc4
JP
3381
3382 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3383 if (!rar_entries)
3384 break;
26ad9178
AD
3385 igb_rar_set_qsel(adapter, ha->addr,
3386 rar_entries--,
68d480c4
AD
3387 vfn);
3388 count++;
ff41f8dc
AD
3389 }
3390 }
3391 /* write the addresses in reverse order to avoid write combining */
3392 for (; rar_entries > 0 ; rar_entries--) {
3393 wr32(E1000_RAH(rar_entries), 0);
3394 wr32(E1000_RAL(rar_entries), 0);
3395 }
3396 wrfl();
3397
68d480c4
AD
3398 return count;
3399}
3400
3401/**
3402 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3403 * @netdev: network interface device structure
3404 *
3405 * The set_rx_mode entry point is called whenever the unicast or multicast
3406 * address lists or the network interface flags are updated. This routine is
3407 * responsible for configuring the hardware for proper unicast, multicast,
3408 * promiscuous mode, and all-multi behavior.
3409 **/
3410static void igb_set_rx_mode(struct net_device *netdev)
3411{
3412 struct igb_adapter *adapter = netdev_priv(netdev);
3413 struct e1000_hw *hw = &adapter->hw;
3414 unsigned int vfn = adapter->vfs_allocated_count;
3415 u32 rctl, vmolr = 0;
3416 int count;
3417
3418 /* Check for Promiscuous and All Multicast modes */
3419 rctl = rd32(E1000_RCTL);
3420
3421 /* clear the effected bits */
3422 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3423
3424 if (netdev->flags & IFF_PROMISC) {
3425 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3426 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3427 } else {
3428 if (netdev->flags & IFF_ALLMULTI) {
3429 rctl |= E1000_RCTL_MPE;
3430 vmolr |= E1000_VMOLR_MPME;
3431 } else {
3432 /*
3433 * Write addresses to the MTA, if the attempt fails
25985edc 3434 * then we should just turn on promiscuous mode so
68d480c4
AD
3435 * that we can at least receive multicast traffic
3436 */
3437 count = igb_write_mc_addr_list(netdev);
3438 if (count < 0) {
3439 rctl |= E1000_RCTL_MPE;
3440 vmolr |= E1000_VMOLR_MPME;
3441 } else if (count) {
3442 vmolr |= E1000_VMOLR_ROMPE;
3443 }
3444 }
3445 /*
3446 * Write addresses to available RAR registers, if there is not
3447 * sufficient space to store all the addresses then enable
25985edc 3448 * unicast promiscuous mode
68d480c4
AD
3449 */
3450 count = igb_write_uc_addr_list(netdev);
3451 if (count < 0) {
3452 rctl |= E1000_RCTL_UPE;
3453 vmolr |= E1000_VMOLR_ROPE;
3454 }
3455 rctl |= E1000_RCTL_VFE;
28fc06f5 3456 }
68d480c4 3457 wr32(E1000_RCTL, rctl);
28fc06f5 3458
68d480c4
AD
3459 /*
3460 * In order to support SR-IOV and eventually VMDq it is necessary to set
3461 * the VMOLR to enable the appropriate modes. Without this workaround
3462 * we will have issues with VLAN tag stripping not being done for frames
3463 * that are only arriving because we are the default pool
3464 */
3465 if (hw->mac.type < e1000_82576)
28fc06f5 3466 return;
9d5c8243 3467
68d480c4
AD
3468 vmolr |= rd32(E1000_VMOLR(vfn)) &
3469 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3470 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3471 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3472}
3473
13800469
GR
3474static void igb_check_wvbr(struct igb_adapter *adapter)
3475{
3476 struct e1000_hw *hw = &adapter->hw;
3477 u32 wvbr = 0;
3478
3479 switch (hw->mac.type) {
3480 case e1000_82576:
3481 case e1000_i350:
3482 if (!(wvbr = rd32(E1000_WVBR)))
3483 return;
3484 break;
3485 default:
3486 break;
3487 }
3488
3489 adapter->wvbr |= wvbr;
3490}
3491
3492#define IGB_STAGGERED_QUEUE_OFFSET 8
3493
3494static void igb_spoof_check(struct igb_adapter *adapter)
3495{
3496 int j;
3497
3498 if (!adapter->wvbr)
3499 return;
3500
3501 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3502 if (adapter->wvbr & (1 << j) ||
3503 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3504 dev_warn(&adapter->pdev->dev,
3505 "Spoof event(s) detected on VF %d\n", j);
3506 adapter->wvbr &=
3507 ~((1 << j) |
3508 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3509 }
3510 }
3511}
3512
9d5c8243
AK
3513/* Need to wait a few seconds after link up to get diagnostic information from
3514 * the phy */
3515static void igb_update_phy_info(unsigned long data)
3516{
3517 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3518 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3519}
3520
4d6b725e
AD
3521/**
3522 * igb_has_link - check shared code for link and determine up/down
3523 * @adapter: pointer to driver private info
3524 **/
3145535a 3525bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3526{
3527 struct e1000_hw *hw = &adapter->hw;
3528 bool link_active = false;
3529 s32 ret_val = 0;
3530
3531 /* get_link_status is set on LSC (link status) interrupt or
3532 * rx sequence error interrupt. get_link_status will stay
3533 * false until the e1000_check_for_link establishes link
3534 * for copper adapters ONLY
3535 */
3536 switch (hw->phy.media_type) {
3537 case e1000_media_type_copper:
3538 if (hw->mac.get_link_status) {
3539 ret_val = hw->mac.ops.check_for_link(hw);
3540 link_active = !hw->mac.get_link_status;
3541 } else {
3542 link_active = true;
3543 }
3544 break;
4d6b725e
AD
3545 case e1000_media_type_internal_serdes:
3546 ret_val = hw->mac.ops.check_for_link(hw);
3547 link_active = hw->mac.serdes_has_link;
3548 break;
3549 default:
3550 case e1000_media_type_unknown:
3551 break;
3552 }
3553
3554 return link_active;
3555}
3556
563988dc
SA
3557static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3558{
3559 bool ret = false;
3560 u32 ctrl_ext, thstat;
3561
3562 /* check for thermal sensor event on i350, copper only */
3563 if (hw->mac.type == e1000_i350) {
3564 thstat = rd32(E1000_THSTAT);
3565 ctrl_ext = rd32(E1000_CTRL_EXT);
3566
3567 if ((hw->phy.media_type == e1000_media_type_copper) &&
3568 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3569 ret = !!(thstat & event);
3570 }
3571 }
3572
3573 return ret;
3574}
3575
9d5c8243
AK
3576/**
3577 * igb_watchdog - Timer Call-back
3578 * @data: pointer to adapter cast into an unsigned long
3579 **/
3580static void igb_watchdog(unsigned long data)
3581{
3582 struct igb_adapter *adapter = (struct igb_adapter *)data;
3583 /* Do the rest outside of interrupt context */
3584 schedule_work(&adapter->watchdog_task);
3585}
3586
3587static void igb_watchdog_task(struct work_struct *work)
3588{
3589 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3590 struct igb_adapter,
3591 watchdog_task);
9d5c8243 3592 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3593 struct net_device *netdev = adapter->netdev;
563988dc 3594 u32 link;
7a6ea550 3595 int i;
9d5c8243 3596
4d6b725e 3597 link = igb_has_link(adapter);
9d5c8243
AK
3598 if (link) {
3599 if (!netif_carrier_ok(netdev)) {
3600 u32 ctrl;
330a6d6a
AD
3601 hw->mac.ops.get_speed_and_duplex(hw,
3602 &adapter->link_speed,
3603 &adapter->link_duplex);
9d5c8243
AK
3604
3605 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3606 /* Links status message must follow this format */
3607 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3608 "Flow Control: %s\n",
559e9c49
AD
3609 netdev->name,
3610 adapter->link_speed,
3611 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3612 "Full Duplex" : "Half Duplex",
559e9c49
AD
3613 ((ctrl & E1000_CTRL_TFCE) &&
3614 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3615 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3616 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3617
563988dc
SA
3618 /* check for thermal sensor event */
3619 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3620 printk(KERN_INFO "igb: %s The network adapter "
3621 "link speed was downshifted "
3622 "because it overheated.\n",
3623 netdev->name);
7ef5ed1c 3624 }
563988dc 3625
d07f3e37 3626 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3627 adapter->tx_timeout_factor = 1;
3628 switch (adapter->link_speed) {
3629 case SPEED_10:
9d5c8243
AK
3630 adapter->tx_timeout_factor = 14;
3631 break;
3632 case SPEED_100:
9d5c8243
AK
3633 /* maybe add some timeout factor ? */
3634 break;
3635 }
3636
3637 netif_carrier_on(netdev);
9d5c8243 3638
4ae196df 3639 igb_ping_all_vfs(adapter);
17dc566c 3640 igb_check_vf_rate_limit(adapter);
4ae196df 3641
4b1a9877 3642 /* link state has changed, schedule phy info update */
9d5c8243
AK
3643 if (!test_bit(__IGB_DOWN, &adapter->state))
3644 mod_timer(&adapter->phy_info_timer,
3645 round_jiffies(jiffies + 2 * HZ));
3646 }
3647 } else {
3648 if (netif_carrier_ok(netdev)) {
3649 adapter->link_speed = 0;
3650 adapter->link_duplex = 0;
563988dc
SA
3651
3652 /* check for thermal sensor event */
3653 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3654 printk(KERN_ERR "igb: %s The network adapter "
3655 "was stopped because it "
3656 "overheated.\n",
7ef5ed1c 3657 netdev->name);
7ef5ed1c 3658 }
563988dc 3659
527d47c1
AD
3660 /* Links status message must follow this format */
3661 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3662 netdev->name);
9d5c8243 3663 netif_carrier_off(netdev);
4b1a9877 3664
4ae196df
AD
3665 igb_ping_all_vfs(adapter);
3666
4b1a9877 3667 /* link state has changed, schedule phy info update */
9d5c8243
AK
3668 if (!test_bit(__IGB_DOWN, &adapter->state))
3669 mod_timer(&adapter->phy_info_timer,
3670 round_jiffies(jiffies + 2 * HZ));
3671 }
3672 }
3673
12dcd86b
ED
3674 spin_lock(&adapter->stats64_lock);
3675 igb_update_stats(adapter, &adapter->stats64);
3676 spin_unlock(&adapter->stats64_lock);
9d5c8243 3677
dbabb065 3678 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3679 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3680 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3681 /* We've lost link, so the controller stops DMA,
3682 * but we've got queued Tx work that's never going
3683 * to get done, so reset controller to flush Tx.
3684 * (Do the reset outside of interrupt context). */
dbabb065
AD
3685 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3686 adapter->tx_timeout_count++;
3687 schedule_work(&adapter->reset_task);
3688 /* return immediately since reset is imminent */
3689 return;
3690 }
9d5c8243 3691 }
9d5c8243 3692
dbabb065
AD
3693 /* Force detection of hung controller every watchdog period */
3694 tx_ring->detect_tx_hung = true;
3695 }
f7ba205e 3696
9d5c8243 3697 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3698 if (adapter->msix_entries) {
047e0030
AD
3699 u32 eics = 0;
3700 for (i = 0; i < adapter->num_q_vectors; i++) {
3701 struct igb_q_vector *q_vector = adapter->q_vector[i];
3702 eics |= q_vector->eims_value;
3703 }
7a6ea550
AD
3704 wr32(E1000_EICS, eics);
3705 } else {
3706 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3707 }
9d5c8243 3708
13800469
GR
3709 igb_spoof_check(adapter);
3710
9d5c8243
AK
3711 /* Reset the timer */
3712 if (!test_bit(__IGB_DOWN, &adapter->state))
3713 mod_timer(&adapter->watchdog_timer,
3714 round_jiffies(jiffies + 2 * HZ));
3715}
3716
3717enum latency_range {
3718 lowest_latency = 0,
3719 low_latency = 1,
3720 bulk_latency = 2,
3721 latency_invalid = 255
3722};
3723
6eb5a7f1
AD
3724/**
3725 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3726 *
3727 * Stores a new ITR value based on strictly on packet size. This
3728 * algorithm is less sophisticated than that used in igb_update_itr,
3729 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3730 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3731 * were determined based on theoretical maximum wire speed and testing
3732 * data, in order to minimize response time while increasing bulk
3733 * throughput.
3734 * This functionality is controlled by the InterruptThrottleRate module
3735 * parameter (see igb_param.c)
3736 * NOTE: This function is called only when operating in a multiqueue
3737 * receive environment.
047e0030 3738 * @q_vector: pointer to q_vector
6eb5a7f1 3739 **/
047e0030 3740static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3741{
047e0030 3742 int new_val = q_vector->itr_val;
6eb5a7f1 3743 int avg_wire_size = 0;
047e0030 3744 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3745 struct igb_ring *ring;
3746 unsigned int packets;
9d5c8243 3747
6eb5a7f1
AD
3748 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3749 * ints/sec - ITR timer value of 120 ticks.
3750 */
3751 if (adapter->link_speed != SPEED_1000) {
047e0030 3752 new_val = 976;
6eb5a7f1 3753 goto set_itr_val;
9d5c8243 3754 }
047e0030 3755
12dcd86b
ED
3756 ring = q_vector->rx_ring;
3757 if (ring) {
3758 packets = ACCESS_ONCE(ring->total_packets);
3759
3760 if (packets)
3761 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3762 }
3763
12dcd86b
ED
3764 ring = q_vector->tx_ring;
3765 if (ring) {
3766 packets = ACCESS_ONCE(ring->total_packets);
3767
3768 if (packets)
3769 avg_wire_size = max_t(u32, avg_wire_size,
3770 ring->total_bytes / packets);
047e0030
AD
3771 }
3772
3773 /* if avg_wire_size isn't set no work was done */
3774 if (!avg_wire_size)
3775 goto clear_counts;
9d5c8243 3776
6eb5a7f1
AD
3777 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3778 avg_wire_size += 24;
3779
3780 /* Don't starve jumbo frames */
3781 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3782
6eb5a7f1
AD
3783 /* Give a little boost to mid-size frames */
3784 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3785 new_val = avg_wire_size / 3;
3786 else
3787 new_val = avg_wire_size / 2;
9d5c8243 3788
abe1c363
NN
3789 /* when in itr mode 3 do not exceed 20K ints/sec */
3790 if (adapter->rx_itr_setting == 3 && new_val < 196)
3791 new_val = 196;
3792
6eb5a7f1 3793set_itr_val:
047e0030
AD
3794 if (new_val != q_vector->itr_val) {
3795 q_vector->itr_val = new_val;
3796 q_vector->set_itr = 1;
9d5c8243 3797 }
6eb5a7f1 3798clear_counts:
047e0030
AD
3799 if (q_vector->rx_ring) {
3800 q_vector->rx_ring->total_bytes = 0;
3801 q_vector->rx_ring->total_packets = 0;
3802 }
3803 if (q_vector->tx_ring) {
3804 q_vector->tx_ring->total_bytes = 0;
3805 q_vector->tx_ring->total_packets = 0;
3806 }
9d5c8243
AK
3807}
3808
3809/**
3810 * igb_update_itr - update the dynamic ITR value based on statistics
3811 * Stores a new ITR value based on packets and byte
3812 * counts during the last interrupt. The advantage of per interrupt
3813 * computation is faster updates and more accurate ITR for the current
3814 * traffic pattern. Constants in this function were computed
3815 * based on theoretical maximum wire speed and thresholds were set based
3816 * on testing data as well as attempting to minimize response time
3817 * while increasing bulk throughput.
3818 * this functionality is controlled by the InterruptThrottleRate module
3819 * parameter (see igb_param.c)
3820 * NOTE: These calculations are only valid when operating in a single-
3821 * queue environment.
3822 * @adapter: pointer to adapter
047e0030 3823 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3824 * @packets: the number of packets during this measurement interval
3825 * @bytes: the number of bytes during this measurement interval
3826 **/
3827static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3828 int packets, int bytes)
3829{
3830 unsigned int retval = itr_setting;
3831
3832 if (packets == 0)
3833 goto update_itr_done;
3834
3835 switch (itr_setting) {
3836 case lowest_latency:
3837 /* handle TSO and jumbo frames */
3838 if (bytes/packets > 8000)
3839 retval = bulk_latency;
3840 else if ((packets < 5) && (bytes > 512))
3841 retval = low_latency;
3842 break;
3843 case low_latency: /* 50 usec aka 20000 ints/s */
3844 if (bytes > 10000) {
3845 /* this if handles the TSO accounting */
3846 if (bytes/packets > 8000) {
3847 retval = bulk_latency;
3848 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3849 retval = bulk_latency;
3850 } else if ((packets > 35)) {
3851 retval = lowest_latency;
3852 }
3853 } else if (bytes/packets > 2000) {
3854 retval = bulk_latency;
3855 } else if (packets <= 2 && bytes < 512) {
3856 retval = lowest_latency;
3857 }
3858 break;
3859 case bulk_latency: /* 250 usec aka 4000 ints/s */
3860 if (bytes > 25000) {
3861 if (packets > 35)
3862 retval = low_latency;
1e5c3d21 3863 } else if (bytes < 1500) {
9d5c8243
AK
3864 retval = low_latency;
3865 }
3866 break;
3867 }
3868
3869update_itr_done:
3870 return retval;
3871}
3872
6eb5a7f1 3873static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3874{
047e0030 3875 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3876 u16 current_itr;
047e0030 3877 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3878
3879 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3880 if (adapter->link_speed != SPEED_1000) {
3881 current_itr = 0;
3882 new_itr = 4000;
3883 goto set_itr_now;
3884 }
3885
3886 adapter->rx_itr = igb_update_itr(adapter,
3887 adapter->rx_itr,
3025a446
AD
3888 q_vector->rx_ring->total_packets,
3889 q_vector->rx_ring->total_bytes);
9d5c8243 3890
047e0030
AD
3891 adapter->tx_itr = igb_update_itr(adapter,
3892 adapter->tx_itr,
3025a446
AD
3893 q_vector->tx_ring->total_packets,
3894 q_vector->tx_ring->total_bytes);
047e0030 3895 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3896
6eb5a7f1 3897 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3898 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3899 current_itr = low_latency;
3900
9d5c8243
AK
3901 switch (current_itr) {
3902 /* counts and packets in update_itr are dependent on these numbers */
3903 case lowest_latency:
78b1f607 3904 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3905 break;
3906 case low_latency:
78b1f607 3907 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3908 break;
3909 case bulk_latency:
78b1f607 3910 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3911 break;
3912 default:
3913 break;
3914 }
3915
3916set_itr_now:
3025a446
AD
3917 q_vector->rx_ring->total_bytes = 0;
3918 q_vector->rx_ring->total_packets = 0;
3919 q_vector->tx_ring->total_bytes = 0;
3920 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3921
047e0030 3922 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3923 /* this attempts to bias the interrupt rate towards Bulk
3924 * by adding intermediate steps when interrupt rate is
3925 * increasing */
047e0030
AD
3926 new_itr = new_itr > q_vector->itr_val ?
3927 max((new_itr * q_vector->itr_val) /
3928 (new_itr + (q_vector->itr_val >> 2)),
3929 new_itr) :
9d5c8243
AK
3930 new_itr;
3931 /* Don't write the value here; it resets the adapter's
3932 * internal timer, and causes us to delay far longer than
3933 * we should between interrupts. Instead, we write the ITR
3934 * value at the beginning of the next interrupt so the timing
3935 * ends up being correct.
3936 */
047e0030
AD
3937 q_vector->itr_val = new_itr;
3938 q_vector->set_itr = 1;
9d5c8243 3939 }
9d5c8243
AK
3940}
3941
9d5c8243
AK
3942#define IGB_TX_FLAGS_CSUM 0x00000001
3943#define IGB_TX_FLAGS_VLAN 0x00000002
3944#define IGB_TX_FLAGS_TSO 0x00000004
3945#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3946#define IGB_TX_FLAGS_TSTAMP 0x00000010
3947#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3948#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3949
85ad76b2 3950static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3951 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3952{
3953 struct e1000_adv_tx_context_desc *context_desc;
3954 unsigned int i;
3955 int err;
3956 struct igb_buffer *buffer_info;
3957 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3958 u32 mss_l4len_idx;
3959 u8 l4len;
9d5c8243
AK
3960
3961 if (skb_header_cloned(skb)) {
3962 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3963 if (err)
3964 return err;
3965 }
3966
3967 l4len = tcp_hdrlen(skb);
3968 *hdr_len += l4len;
3969
3970 if (skb->protocol == htons(ETH_P_IP)) {
3971 struct iphdr *iph = ip_hdr(skb);
3972 iph->tot_len = 0;
3973 iph->check = 0;
3974 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3975 iph->daddr, 0,
3976 IPPROTO_TCP,
3977 0);
8e1e8a47 3978 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3979 ipv6_hdr(skb)->payload_len = 0;
3980 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3981 &ipv6_hdr(skb)->daddr,
3982 0, IPPROTO_TCP, 0);
3983 }
3984
3985 i = tx_ring->next_to_use;
3986
3987 buffer_info = &tx_ring->buffer_info[i];
3988 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3989 /* VLAN MACLEN IPLEN */
3990 if (tx_flags & IGB_TX_FLAGS_VLAN)
3991 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3992 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3993 *hdr_len += skb_network_offset(skb);
3994 info |= skb_network_header_len(skb);
3995 *hdr_len += skb_network_header_len(skb);
3996 context_desc->vlan_macip_lens = cpu_to_le32(info);
3997
3998 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3999 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4000
4001 if (skb->protocol == htons(ETH_P_IP))
4002 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4003 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4004
4005 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4006
4007 /* MSS L4LEN IDX */
4008 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4009 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4010
73cd78f1 4011 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
4012 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4013 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
4014
4015 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4016 context_desc->seqnum_seed = 0;
4017
4018 buffer_info->time_stamp = jiffies;
0e014cb1 4019 buffer_info->next_to_watch = i;
9d5c8243
AK
4020 buffer_info->dma = 0;
4021 i++;
4022 if (i == tx_ring->count)
4023 i = 0;
4024
4025 tx_ring->next_to_use = i;
4026
4027 return true;
4028}
4029
85ad76b2
AD
4030static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4031 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
4032{
4033 struct e1000_adv_tx_context_desc *context_desc;
59d71989 4034 struct device *dev = tx_ring->dev;
9d5c8243
AK
4035 struct igb_buffer *buffer_info;
4036 u32 info = 0, tu_cmd = 0;
80785298 4037 unsigned int i;
9d5c8243
AK
4038
4039 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4040 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4041 i = tx_ring->next_to_use;
4042 buffer_info = &tx_ring->buffer_info[i];
4043 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4044
4045 if (tx_flags & IGB_TX_FLAGS_VLAN)
4046 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 4047
9d5c8243
AK
4048 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4049 if (skb->ip_summed == CHECKSUM_PARTIAL)
4050 info |= skb_network_header_len(skb);
4051
4052 context_desc->vlan_macip_lens = cpu_to_le32(info);
4053
4054 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4055
4056 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
4057 __be16 protocol;
4058
4059 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4060 const struct vlan_ethhdr *vhdr =
4061 (const struct vlan_ethhdr*)skb->data;
4062
4063 protocol = vhdr->h_vlan_encapsulated_proto;
4064 } else {
4065 protocol = skb->protocol;
4066 }
4067
4068 switch (protocol) {
09640e63 4069 case cpu_to_be16(ETH_P_IP):
9d5c8243 4070 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
4071 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4072 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4073 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4074 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 4075 break;
09640e63 4076 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
4077 /* XXX what about other V6 headers?? */
4078 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4079 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4080 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4081 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
4082 break;
4083 default:
4084 if (unlikely(net_ratelimit()))
59d71989 4085 dev_warn(dev,
44b0cda3
MW
4086 "partial checksum but proto=%x!\n",
4087 skb->protocol);
4088 break;
4089 }
9d5c8243
AK
4090 }
4091
4092 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4093 context_desc->seqnum_seed = 0;
85ad76b2 4094 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 4095 context_desc->mss_l4len_idx =
85ad76b2 4096 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
4097
4098 buffer_info->time_stamp = jiffies;
0e014cb1 4099 buffer_info->next_to_watch = i;
9d5c8243
AK
4100 buffer_info->dma = 0;
4101
4102 i++;
4103 if (i == tx_ring->count)
4104 i = 0;
4105 tx_ring->next_to_use = i;
4106
4107 return true;
4108 }
9d5c8243
AK
4109 return false;
4110}
4111
4112#define IGB_MAX_TXD_PWR 16
4113#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4114
80785298 4115static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 4116 unsigned int first)
9d5c8243
AK
4117{
4118 struct igb_buffer *buffer_info;
59d71989 4119 struct device *dev = tx_ring->dev;
2873957d 4120 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4121 unsigned int count = 0, i;
4122 unsigned int f;
2873957d 4123 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4124
4125 i = tx_ring->next_to_use;
4126
4127 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
4128 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4129 buffer_info->length = hlen;
9d5c8243
AK
4130 /* set time_stamp *before* dma to help avoid a possible race */
4131 buffer_info->time_stamp = jiffies;
0e014cb1 4132 buffer_info->next_to_watch = i;
2873957d 4133 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4134 DMA_TO_DEVICE);
4135 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4136 goto dma_error;
9d5c8243
AK
4137
4138 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4139 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4140 unsigned int len = frag->size;
9d5c8243 4141
8581145f 4142 count++;
65689fef
AD
4143 i++;
4144 if (i == tx_ring->count)
4145 i = 0;
4146
9d5c8243
AK
4147 buffer_info = &tx_ring->buffer_info[i];
4148 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4149 buffer_info->length = len;
4150 buffer_info->time_stamp = jiffies;
0e014cb1 4151 buffer_info->next_to_watch = i;
6366ad33 4152 buffer_info->mapped_as_page = true;
59d71989 4153 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
4154 frag->page,
4155 frag->page_offset,
4156 len,
59d71989
AD
4157 DMA_TO_DEVICE);
4158 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4159 goto dma_error;
4160
9d5c8243
AK
4161 }
4162
9d5c8243 4163 tx_ring->buffer_info[i].skb = skb;
2244d07b 4164 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4165 /* multiply data chunks by size of headers */
4166 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4167 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4168 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4169
cdfd01fc 4170 return ++count;
6366ad33
AD
4171
4172dma_error:
59d71989 4173 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4174
4175 /* clear timestamp and dma mappings for failed buffer_info mapping */
4176 buffer_info->dma = 0;
4177 buffer_info->time_stamp = 0;
4178 buffer_info->length = 0;
4179 buffer_info->next_to_watch = 0;
4180 buffer_info->mapped_as_page = false;
6366ad33
AD
4181
4182 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4183 while (count--) {
4184 if (i == 0)
4185 i = tx_ring->count;
6366ad33 4186 i--;
6366ad33
AD
4187 buffer_info = &tx_ring->buffer_info[i];
4188 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4189 }
4190
4191 return 0;
9d5c8243
AK
4192}
4193
85ad76b2 4194static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4195 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4196 u8 hdr_len)
4197{
cdfd01fc 4198 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4199 struct igb_buffer *buffer_info;
4200 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4201 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4202
4203 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4204 E1000_ADVTXD_DCMD_DEXT);
4205
4206 if (tx_flags & IGB_TX_FLAGS_VLAN)
4207 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4208
33af6bcc
PO
4209 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4210 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4211
9d5c8243
AK
4212 if (tx_flags & IGB_TX_FLAGS_TSO) {
4213 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4214
4215 /* insert tcp checksum */
4216 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4217
4218 /* insert ip checksum */
4219 if (tx_flags & IGB_TX_FLAGS_IPV4)
4220 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4221
4222 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4223 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4224 }
4225
85ad76b2
AD
4226 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4227 (tx_flags & (IGB_TX_FLAGS_CSUM |
4228 IGB_TX_FLAGS_TSO |
7dfc16fa 4229 IGB_TX_FLAGS_VLAN)))
85ad76b2 4230 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4231
4232 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4233
cdfd01fc 4234 do {
9d5c8243
AK
4235 buffer_info = &tx_ring->buffer_info[i];
4236 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4237 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4238 tx_desc->read.cmd_type_len =
4239 cpu_to_le32(cmd_type_len | buffer_info->length);
4240 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4241 count--;
9d5c8243
AK
4242 i++;
4243 if (i == tx_ring->count)
4244 i = 0;
cdfd01fc 4245 } while (count > 0);
9d5c8243 4246
85ad76b2 4247 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4248 /* Force memory writes to complete before letting h/w
4249 * know there are new descriptors to fetch. (Only
4250 * applicable for weak-ordered memory model archs,
4251 * such as IA-64). */
4252 wmb();
4253
4254 tx_ring->next_to_use = i;
fce99e34 4255 writel(i, tx_ring->tail);
9d5c8243
AK
4256 /* we need this if more than one processor can write to our tail
4257 * at a time, it syncronizes IO on IA64/Altix systems */
4258 mmiowb();
4259}
4260
e694e964 4261static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4262{
e694e964
AD
4263 struct net_device *netdev = tx_ring->netdev;
4264
661086df 4265 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4266
9d5c8243
AK
4267 /* Herbert's original patch had:
4268 * smp_mb__after_netif_stop_queue();
4269 * but since that doesn't exist yet, just open code it. */
4270 smp_mb();
4271
4272 /* We need to check again in a case another CPU has just
4273 * made room available. */
c493ea45 4274 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4275 return -EBUSY;
4276
4277 /* A reprieve! */
661086df 4278 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4279
4280 u64_stats_update_begin(&tx_ring->tx_syncp2);
4281 tx_ring->tx_stats.restart_queue2++;
4282 u64_stats_update_end(&tx_ring->tx_syncp2);
4283
9d5c8243
AK
4284 return 0;
4285}
4286
717ba089 4287static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4288{
c493ea45 4289 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4290 return 0;
e694e964 4291 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4292}
4293
b1a436c3
AD
4294netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4295 struct igb_ring *tx_ring)
9d5c8243 4296{
cdfd01fc 4297 int tso = 0, count;
91d4ee33
NN
4298 u32 tx_flags = 0;
4299 u16 first;
4300 u8 hdr_len = 0;
9d5c8243 4301
9d5c8243
AK
4302 /* need: 1 descriptor per page,
4303 * + 2 desc gap to keep tail from touching head,
4304 * + 1 desc for skb->data,
4305 * + 1 desc for context descriptor,
4306 * otherwise try next time */
e694e964 4307 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4308 /* this is a hard error */
9d5c8243
AK
4309 return NETDEV_TX_BUSY;
4310 }
33af6bcc 4311
2244d07b
OH
4312 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4313 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4314 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4315 }
9d5c8243 4316
eab6d18d 4317 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4318 tx_flags |= IGB_TX_FLAGS_VLAN;
4319 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4320 }
4321
661086df
PWJ
4322 if (skb->protocol == htons(ETH_P_IP))
4323 tx_flags |= IGB_TX_FLAGS_IPV4;
4324
0e014cb1 4325 first = tx_ring->next_to_use;
85ad76b2
AD
4326 if (skb_is_gso(skb)) {
4327 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4328
85ad76b2
AD
4329 if (tso < 0) {
4330 dev_kfree_skb_any(skb);
4331 return NETDEV_TX_OK;
4332 }
9d5c8243
AK
4333 }
4334
4335 if (tso)
4336 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4337 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4338 (skb->ip_summed == CHECKSUM_PARTIAL))
4339 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4340
65689fef 4341 /*
cdfd01fc 4342 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4343 * has occurred and we need to rewind the descriptor queue
65689fef 4344 */
80785298 4345 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4346 if (!count) {
65689fef
AD
4347 dev_kfree_skb_any(skb);
4348 tx_ring->buffer_info[first].time_stamp = 0;
4349 tx_ring->next_to_use = first;
85ad76b2 4350 return NETDEV_TX_OK;
65689fef 4351 }
9d5c8243 4352
85ad76b2
AD
4353 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4354
4355 /* Make sure there is space in the ring for the next send. */
e694e964 4356 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4357
9d5c8243
AK
4358 return NETDEV_TX_OK;
4359}
4360
3b29a56d
SH
4361static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4362 struct net_device *netdev)
9d5c8243
AK
4363{
4364 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4365 struct igb_ring *tx_ring;
661086df 4366 int r_idx = 0;
b1a436c3
AD
4367
4368 if (test_bit(__IGB_DOWN, &adapter->state)) {
4369 dev_kfree_skb_any(skb);
4370 return NETDEV_TX_OK;
4371 }
4372
4373 if (skb->len <= 0) {
4374 dev_kfree_skb_any(skb);
4375 return NETDEV_TX_OK;
4376 }
4377
1bfaf07b 4378 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4379 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4380
4381 /* This goes back to the question of how to logically map a tx queue
4382 * to a flow. Right now, performance is impacted slightly negatively
4383 * if using multiple tx queues. If the stack breaks away from a
4384 * single qdisc implementation, we can look at this again. */
e694e964 4385 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4386}
4387
4388/**
4389 * igb_tx_timeout - Respond to a Tx Hang
4390 * @netdev: network interface device structure
4391 **/
4392static void igb_tx_timeout(struct net_device *netdev)
4393{
4394 struct igb_adapter *adapter = netdev_priv(netdev);
4395 struct e1000_hw *hw = &adapter->hw;
4396
4397 /* Do the reset outside of interrupt context */
4398 adapter->tx_timeout_count++;
f7ba205e 4399
55cac248
AD
4400 if (hw->mac.type == e1000_82580)
4401 hw->dev_spec._82575.global_device_reset = true;
4402
9d5c8243 4403 schedule_work(&adapter->reset_task);
265de409
AD
4404 wr32(E1000_EICS,
4405 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4406}
4407
4408static void igb_reset_task(struct work_struct *work)
4409{
4410 struct igb_adapter *adapter;
4411 adapter = container_of(work, struct igb_adapter, reset_task);
4412
c97ec42a
TI
4413 igb_dump(adapter);
4414 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4415 igb_reinit_locked(adapter);
4416}
4417
4418/**
12dcd86b 4419 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4420 * @netdev: network interface device structure
12dcd86b 4421 * @stats: rtnl_link_stats64 pointer
9d5c8243 4422 *
9d5c8243 4423 **/
12dcd86b
ED
4424static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4425 struct rtnl_link_stats64 *stats)
9d5c8243 4426{
12dcd86b
ED
4427 struct igb_adapter *adapter = netdev_priv(netdev);
4428
4429 spin_lock(&adapter->stats64_lock);
4430 igb_update_stats(adapter, &adapter->stats64);
4431 memcpy(stats, &adapter->stats64, sizeof(*stats));
4432 spin_unlock(&adapter->stats64_lock);
4433
4434 return stats;
9d5c8243
AK
4435}
4436
4437/**
4438 * igb_change_mtu - Change the Maximum Transfer Unit
4439 * @netdev: network interface device structure
4440 * @new_mtu: new value for maximum frame size
4441 *
4442 * Returns 0 on success, negative on failure
4443 **/
4444static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4445{
4446 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4447 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4448 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4449 u32 rx_buffer_len, i;
9d5c8243 4450
c809d227 4451 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4452 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4453 return -EINVAL;
4454 }
4455
9d5c8243 4456 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4457 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4458 return -EINVAL;
4459 }
4460
4461 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4462 msleep(1);
73cd78f1 4463
9d5c8243
AK
4464 /* igb_down has a dependency on max_frame_size */
4465 adapter->max_frame_size = max_frame;
559e9c49 4466
9d5c8243
AK
4467 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4468 * means we reserve 2 more, this pushes us to allocate from the next
4469 * larger slab size.
4470 * i.e. RXBUFFER_2048 --> size-4096 slab
4471 */
4472
757b77e2
NN
4473 if (adapter->hw.mac.type == e1000_82580)
4474 max_frame += IGB_TS_HDR_LEN;
4475
7d95b717 4476 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4477 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4478 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4479 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4480 else
4c844851
AD
4481 rx_buffer_len = IGB_RXBUFFER_128;
4482
757b77e2
NN
4483 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4484 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4485 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4486
4487 if ((adapter->hw.mac.type == e1000_82580) &&
4488 (rx_buffer_len == IGB_RXBUFFER_128))
4489 rx_buffer_len += IGB_RXBUFFER_64;
4490
4c844851
AD
4491 if (netif_running(netdev))
4492 igb_down(adapter);
9d5c8243 4493
090b1795 4494 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4495 netdev->mtu, new_mtu);
4496 netdev->mtu = new_mtu;
4497
4c844851 4498 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4499 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4500
9d5c8243
AK
4501 if (netif_running(netdev))
4502 igb_up(adapter);
4503 else
4504 igb_reset(adapter);
4505
4506 clear_bit(__IGB_RESETTING, &adapter->state);
4507
4508 return 0;
4509}
4510
4511/**
4512 * igb_update_stats - Update the board statistics counters
4513 * @adapter: board private structure
4514 **/
4515
12dcd86b
ED
4516void igb_update_stats(struct igb_adapter *adapter,
4517 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4518{
4519 struct e1000_hw *hw = &adapter->hw;
4520 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4521 u32 reg, mpc;
9d5c8243 4522 u16 phy_tmp;
3f9c0164
AD
4523 int i;
4524 u64 bytes, packets;
12dcd86b
ED
4525 unsigned int start;
4526 u64 _bytes, _packets;
9d5c8243
AK
4527
4528#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4529
4530 /*
4531 * Prevent stats update while adapter is being reset, or if the pci
4532 * connection is down.
4533 */
4534 if (adapter->link_speed == 0)
4535 return;
4536 if (pci_channel_offline(pdev))
4537 return;
4538
3f9c0164
AD
4539 bytes = 0;
4540 packets = 0;
4541 for (i = 0; i < adapter->num_rx_queues; i++) {
4542 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4543 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4544
3025a446 4545 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4546 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4547
4548 do {
4549 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4550 _bytes = ring->rx_stats.bytes;
4551 _packets = ring->rx_stats.packets;
4552 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4553 bytes += _bytes;
4554 packets += _packets;
3f9c0164
AD
4555 }
4556
128e45eb
AD
4557 net_stats->rx_bytes = bytes;
4558 net_stats->rx_packets = packets;
3f9c0164
AD
4559
4560 bytes = 0;
4561 packets = 0;
4562 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4563 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4564 do {
4565 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4566 _bytes = ring->tx_stats.bytes;
4567 _packets = ring->tx_stats.packets;
4568 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4569 bytes += _bytes;
4570 packets += _packets;
3f9c0164 4571 }
128e45eb
AD
4572 net_stats->tx_bytes = bytes;
4573 net_stats->tx_packets = packets;
3f9c0164
AD
4574
4575 /* read stats registers */
9d5c8243
AK
4576 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4577 adapter->stats.gprc += rd32(E1000_GPRC);
4578 adapter->stats.gorc += rd32(E1000_GORCL);
4579 rd32(E1000_GORCH); /* clear GORCL */
4580 adapter->stats.bprc += rd32(E1000_BPRC);
4581 adapter->stats.mprc += rd32(E1000_MPRC);
4582 adapter->stats.roc += rd32(E1000_ROC);
4583
4584 adapter->stats.prc64 += rd32(E1000_PRC64);
4585 adapter->stats.prc127 += rd32(E1000_PRC127);
4586 adapter->stats.prc255 += rd32(E1000_PRC255);
4587 adapter->stats.prc511 += rd32(E1000_PRC511);
4588 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4589 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4590 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4591 adapter->stats.sec += rd32(E1000_SEC);
4592
fa3d9a6d
MW
4593 mpc = rd32(E1000_MPC);
4594 adapter->stats.mpc += mpc;
4595 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4596 adapter->stats.scc += rd32(E1000_SCC);
4597 adapter->stats.ecol += rd32(E1000_ECOL);
4598 adapter->stats.mcc += rd32(E1000_MCC);
4599 adapter->stats.latecol += rd32(E1000_LATECOL);
4600 adapter->stats.dc += rd32(E1000_DC);
4601 adapter->stats.rlec += rd32(E1000_RLEC);
4602 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4603 adapter->stats.xontxc += rd32(E1000_XONTXC);
4604 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4605 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4606 adapter->stats.fcruc += rd32(E1000_FCRUC);
4607 adapter->stats.gptc += rd32(E1000_GPTC);
4608 adapter->stats.gotc += rd32(E1000_GOTCL);
4609 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4610 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4611 adapter->stats.ruc += rd32(E1000_RUC);
4612 adapter->stats.rfc += rd32(E1000_RFC);
4613 adapter->stats.rjc += rd32(E1000_RJC);
4614 adapter->stats.tor += rd32(E1000_TORH);
4615 adapter->stats.tot += rd32(E1000_TOTH);
4616 adapter->stats.tpr += rd32(E1000_TPR);
4617
4618 adapter->stats.ptc64 += rd32(E1000_PTC64);
4619 adapter->stats.ptc127 += rd32(E1000_PTC127);
4620 adapter->stats.ptc255 += rd32(E1000_PTC255);
4621 adapter->stats.ptc511 += rd32(E1000_PTC511);
4622 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4623 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4624
4625 adapter->stats.mptc += rd32(E1000_MPTC);
4626 adapter->stats.bptc += rd32(E1000_BPTC);
4627
2d0b0f69
NN
4628 adapter->stats.tpt += rd32(E1000_TPT);
4629 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4630
4631 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4632 /* read internal phy specific stats */
4633 reg = rd32(E1000_CTRL_EXT);
4634 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4635 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4636 adapter->stats.tncrs += rd32(E1000_TNCRS);
4637 }
4638
9d5c8243
AK
4639 adapter->stats.tsctc += rd32(E1000_TSCTC);
4640 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4641
4642 adapter->stats.iac += rd32(E1000_IAC);
4643 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4644 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4645 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4646 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4647 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4648 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4649 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4650 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4651
4652 /* Fill out the OS statistics structure */
128e45eb
AD
4653 net_stats->multicast = adapter->stats.mprc;
4654 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4655
4656 /* Rx Errors */
4657
4658 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4659 * our own version based on RUC and ROC */
128e45eb 4660 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4661 adapter->stats.crcerrs + adapter->stats.algnerrc +
4662 adapter->stats.ruc + adapter->stats.roc +
4663 adapter->stats.cexterr;
128e45eb
AD
4664 net_stats->rx_length_errors = adapter->stats.ruc +
4665 adapter->stats.roc;
4666 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4667 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4668 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4669
4670 /* Tx Errors */
128e45eb
AD
4671 net_stats->tx_errors = adapter->stats.ecol +
4672 adapter->stats.latecol;
4673 net_stats->tx_aborted_errors = adapter->stats.ecol;
4674 net_stats->tx_window_errors = adapter->stats.latecol;
4675 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4676
4677 /* Tx Dropped needs to be maintained elsewhere */
4678
4679 /* Phy Stats */
4680 if (hw->phy.media_type == e1000_media_type_copper) {
4681 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4682 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4683 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4684 adapter->phy_stats.idle_errors += phy_tmp;
4685 }
4686 }
4687
4688 /* Management Stats */
4689 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4690 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4691 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4692
4693 /* OS2BMC Stats */
4694 reg = rd32(E1000_MANC);
4695 if (reg & E1000_MANC_EN_BMC2OS) {
4696 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4697 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4698 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4699 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4700 }
9d5c8243
AK
4701}
4702
9d5c8243
AK
4703static irqreturn_t igb_msix_other(int irq, void *data)
4704{
047e0030 4705 struct igb_adapter *adapter = data;
9d5c8243 4706 struct e1000_hw *hw = &adapter->hw;
844290e5 4707 u32 icr = rd32(E1000_ICR);
844290e5 4708 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4709
7f081d40
AD
4710 if (icr & E1000_ICR_DRSTA)
4711 schedule_work(&adapter->reset_task);
4712
047e0030 4713 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4714 /* HW is reporting DMA is out of sync */
4715 adapter->stats.doosync++;
13800469
GR
4716 /* The DMA Out of Sync is also indication of a spoof event
4717 * in IOV mode. Check the Wrong VM Behavior register to
4718 * see if it is really a spoof event. */
4719 igb_check_wvbr(adapter);
dda0e083 4720 }
eebbbdba 4721
4ae196df
AD
4722 /* Check for a mailbox event */
4723 if (icr & E1000_ICR_VMMB)
4724 igb_msg_task(adapter);
4725
4726 if (icr & E1000_ICR_LSC) {
4727 hw->mac.get_link_status = 1;
4728 /* guard against interrupt when we're going down */
4729 if (!test_bit(__IGB_DOWN, &adapter->state))
4730 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4731 }
4732
25568a53
AD
4733 if (adapter->vfs_allocated_count)
4734 wr32(E1000_IMS, E1000_IMS_LSC |
4735 E1000_IMS_VMMB |
4736 E1000_IMS_DOUTSYNC);
4737 else
4738 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4739 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4740
4741 return IRQ_HANDLED;
4742}
4743
047e0030 4744static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4745{
26b39276 4746 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4747 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4748
047e0030
AD
4749 if (!q_vector->set_itr)
4750 return;
73cd78f1 4751
047e0030
AD
4752 if (!itr_val)
4753 itr_val = 0x4;
661086df 4754
26b39276
AD
4755 if (adapter->hw.mac.type == e1000_82575)
4756 itr_val |= itr_val << 16;
661086df 4757 else
047e0030 4758 itr_val |= 0x8000000;
661086df 4759
047e0030
AD
4760 writel(itr_val, q_vector->itr_register);
4761 q_vector->set_itr = 0;
6eb5a7f1
AD
4762}
4763
047e0030 4764static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4765{
047e0030 4766 struct igb_q_vector *q_vector = data;
9d5c8243 4767
047e0030
AD
4768 /* Write the ITR value calculated from the previous interrupt. */
4769 igb_write_itr(q_vector);
9d5c8243 4770
047e0030 4771 napi_schedule(&q_vector->napi);
844290e5 4772
047e0030 4773 return IRQ_HANDLED;
fe4506b6
JC
4774}
4775
421e02f0 4776#ifdef CONFIG_IGB_DCA
047e0030 4777static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4778{
047e0030 4779 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4780 struct e1000_hw *hw = &adapter->hw;
4781 int cpu = get_cpu();
fe4506b6 4782
047e0030
AD
4783 if (q_vector->cpu == cpu)
4784 goto out_no_update;
4785
4786 if (q_vector->tx_ring) {
4787 int q = q_vector->tx_ring->reg_idx;
4788 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4789 if (hw->mac.type == e1000_82575) {
4790 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4791 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4792 } else {
047e0030
AD
4793 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4794 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4795 E1000_DCA_TXCTRL_CPUID_SHIFT;
4796 }
4797 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4798 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4799 }
4800 if (q_vector->rx_ring) {
4801 int q = q_vector->rx_ring->reg_idx;
4802 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4803 if (hw->mac.type == e1000_82575) {
2d064c06 4804 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4805 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4806 } else {
4807 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4808 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4809 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4810 }
fe4506b6
JC
4811 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4812 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4813 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4814 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4815 }
047e0030
AD
4816 q_vector->cpu = cpu;
4817out_no_update:
fe4506b6
JC
4818 put_cpu();
4819}
4820
4821static void igb_setup_dca(struct igb_adapter *adapter)
4822{
7e0e99ef 4823 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4824 int i;
4825
7dfc16fa 4826 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4827 return;
4828
7e0e99ef
AD
4829 /* Always use CB2 mode, difference is masked in the CB driver. */
4830 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4831
047e0030 4832 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4833 adapter->q_vector[i]->cpu = -1;
4834 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4835 }
4836}
4837
4838static int __igb_notify_dca(struct device *dev, void *data)
4839{
4840 struct net_device *netdev = dev_get_drvdata(dev);
4841 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4842 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4843 struct e1000_hw *hw = &adapter->hw;
4844 unsigned long event = *(unsigned long *)data;
4845
4846 switch (event) {
4847 case DCA_PROVIDER_ADD:
4848 /* if already enabled, don't do it again */
7dfc16fa 4849 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4850 break;
fe4506b6 4851 if (dca_add_requester(dev) == 0) {
bbd98fe4 4852 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4853 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4854 igb_setup_dca(adapter);
4855 break;
4856 }
4857 /* Fall Through since DCA is disabled. */
4858 case DCA_PROVIDER_REMOVE:
7dfc16fa 4859 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4860 /* without this a class_device is left
047e0030 4861 * hanging around in the sysfs model */
fe4506b6 4862 dca_remove_requester(dev);
090b1795 4863 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4864 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4865 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4866 }
4867 break;
4868 }
bbd98fe4 4869
fe4506b6 4870 return 0;
9d5c8243
AK
4871}
4872
fe4506b6
JC
4873static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4874 void *p)
4875{
4876 int ret_val;
4877
4878 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4879 __igb_notify_dca);
4880
4881 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4882}
421e02f0 4883#endif /* CONFIG_IGB_DCA */
9d5c8243 4884
4ae196df
AD
4885static void igb_ping_all_vfs(struct igb_adapter *adapter)
4886{
4887 struct e1000_hw *hw = &adapter->hw;
4888 u32 ping;
4889 int i;
4890
4891 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4892 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4893 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4894 ping |= E1000_VT_MSGTYPE_CTS;
4895 igb_write_mbx(hw, &ping, 1, i);
4896 }
4897}
4898
7d5753f0
AD
4899static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4900{
4901 struct e1000_hw *hw = &adapter->hw;
4902 u32 vmolr = rd32(E1000_VMOLR(vf));
4903 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4904
d85b9004 4905 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4906 IGB_VF_FLAG_MULTI_PROMISC);
4907 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4908
4909 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4910 vmolr |= E1000_VMOLR_MPME;
d85b9004 4911 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4912 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4913 } else {
4914 /*
4915 * if we have hashes and we are clearing a multicast promisc
4916 * flag we need to write the hashes to the MTA as this step
4917 * was previously skipped
4918 */
4919 if (vf_data->num_vf_mc_hashes > 30) {
4920 vmolr |= E1000_VMOLR_MPME;
4921 } else if (vf_data->num_vf_mc_hashes) {
4922 int j;
4923 vmolr |= E1000_VMOLR_ROMPE;
4924 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4925 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4926 }
4927 }
4928
4929 wr32(E1000_VMOLR(vf), vmolr);
4930
4931 /* there are flags left unprocessed, likely not supported */
4932 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4933 return -EINVAL;
4934
4935 return 0;
4936
4937}
4938
4ae196df
AD
4939static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4940 u32 *msgbuf, u32 vf)
4941{
4942 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4943 u16 *hash_list = (u16 *)&msgbuf[1];
4944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4945 int i;
4946
7d5753f0 4947 /* salt away the number of multicast addresses assigned
4ae196df
AD
4948 * to this VF for later use to restore when the PF multi cast
4949 * list changes
4950 */
4951 vf_data->num_vf_mc_hashes = n;
4952
7d5753f0
AD
4953 /* only up to 30 hash values supported */
4954 if (n > 30)
4955 n = 30;
4956
4957 /* store the hashes for later use */
4ae196df 4958 for (i = 0; i < n; i++)
a419aef8 4959 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4960
4961 /* Flush and reset the mta with the new values */
ff41f8dc 4962 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4963
4964 return 0;
4965}
4966
4967static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4968{
4969 struct e1000_hw *hw = &adapter->hw;
4970 struct vf_data_storage *vf_data;
4971 int i, j;
4972
4973 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4974 u32 vmolr = rd32(E1000_VMOLR(i));
4975 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4976
4ae196df 4977 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4978
4979 if ((vf_data->num_vf_mc_hashes > 30) ||
4980 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4981 vmolr |= E1000_VMOLR_MPME;
4982 } else if (vf_data->num_vf_mc_hashes) {
4983 vmolr |= E1000_VMOLR_ROMPE;
4984 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4985 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4986 }
4987 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4988 }
4989}
4990
4991static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4992{
4993 struct e1000_hw *hw = &adapter->hw;
4994 u32 pool_mask, reg, vid;
4995 int i;
4996
4997 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4998
4999 /* Find the vlan filter for this id */
5000 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5001 reg = rd32(E1000_VLVF(i));
5002
5003 /* remove the vf from the pool */
5004 reg &= ~pool_mask;
5005
5006 /* if pool is empty then remove entry from vfta */
5007 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5008 (reg & E1000_VLVF_VLANID_ENABLE)) {
5009 reg = 0;
5010 vid = reg & E1000_VLVF_VLANID_MASK;
5011 igb_vfta_set(hw, vid, false);
5012 }
5013
5014 wr32(E1000_VLVF(i), reg);
5015 }
ae641bdc
AD
5016
5017 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5018}
5019
5020static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5021{
5022 struct e1000_hw *hw = &adapter->hw;
5023 u32 reg, i;
5024
51466239
AD
5025 /* The vlvf table only exists on 82576 hardware and newer */
5026 if (hw->mac.type < e1000_82576)
5027 return -1;
5028
5029 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5030 if (!adapter->vfs_allocated_count)
5031 return -1;
5032
5033 /* Find the vlan filter for this id */
5034 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5035 reg = rd32(E1000_VLVF(i));
5036 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5037 vid == (reg & E1000_VLVF_VLANID_MASK))
5038 break;
5039 }
5040
5041 if (add) {
5042 if (i == E1000_VLVF_ARRAY_SIZE) {
5043 /* Did not find a matching VLAN ID entry that was
5044 * enabled. Search for a free filter entry, i.e.
5045 * one without the enable bit set
5046 */
5047 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5048 reg = rd32(E1000_VLVF(i));
5049 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5050 break;
5051 }
5052 }
5053 if (i < E1000_VLVF_ARRAY_SIZE) {
5054 /* Found an enabled/available entry */
5055 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5056
5057 /* if !enabled we need to set this up in vfta */
5058 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5059 /* add VID to filter table */
5060 igb_vfta_set(hw, vid, true);
4ae196df
AD
5061 reg |= E1000_VLVF_VLANID_ENABLE;
5062 }
cad6d05f
AD
5063 reg &= ~E1000_VLVF_VLANID_MASK;
5064 reg |= vid;
4ae196df 5065 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5066
5067 /* do not modify RLPML for PF devices */
5068 if (vf >= adapter->vfs_allocated_count)
5069 return 0;
5070
5071 if (!adapter->vf_data[vf].vlans_enabled) {
5072 u32 size;
5073 reg = rd32(E1000_VMOLR(vf));
5074 size = reg & E1000_VMOLR_RLPML_MASK;
5075 size += 4;
5076 reg &= ~E1000_VMOLR_RLPML_MASK;
5077 reg |= size;
5078 wr32(E1000_VMOLR(vf), reg);
5079 }
ae641bdc 5080
51466239 5081 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5082 return 0;
5083 }
5084 } else {
5085 if (i < E1000_VLVF_ARRAY_SIZE) {
5086 /* remove vf from the pool */
5087 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5088 /* if pool is empty then remove entry from vfta */
5089 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5090 reg = 0;
5091 igb_vfta_set(hw, vid, false);
5092 }
5093 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5094
5095 /* do not modify RLPML for PF devices */
5096 if (vf >= adapter->vfs_allocated_count)
5097 return 0;
5098
5099 adapter->vf_data[vf].vlans_enabled--;
5100 if (!adapter->vf_data[vf].vlans_enabled) {
5101 u32 size;
5102 reg = rd32(E1000_VMOLR(vf));
5103 size = reg & E1000_VMOLR_RLPML_MASK;
5104 size -= 4;
5105 reg &= ~E1000_VMOLR_RLPML_MASK;
5106 reg |= size;
5107 wr32(E1000_VMOLR(vf), reg);
5108 }
4ae196df
AD
5109 }
5110 }
8151d294
WM
5111 return 0;
5112}
5113
5114static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5115{
5116 struct e1000_hw *hw = &adapter->hw;
5117
5118 if (vid)
5119 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5120 else
5121 wr32(E1000_VMVIR(vf), 0);
5122}
5123
5124static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5125 int vf, u16 vlan, u8 qos)
5126{
5127 int err = 0;
5128 struct igb_adapter *adapter = netdev_priv(netdev);
5129
5130 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5131 return -EINVAL;
5132 if (vlan || qos) {
5133 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5134 if (err)
5135 goto out;
5136 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5137 igb_set_vmolr(adapter, vf, !vlan);
5138 adapter->vf_data[vf].pf_vlan = vlan;
5139 adapter->vf_data[vf].pf_qos = qos;
5140 dev_info(&adapter->pdev->dev,
5141 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5142 if (test_bit(__IGB_DOWN, &adapter->state)) {
5143 dev_warn(&adapter->pdev->dev,
5144 "The VF VLAN has been set,"
5145 " but the PF device is not up.\n");
5146 dev_warn(&adapter->pdev->dev,
5147 "Bring the PF device up before"
5148 " attempting to use the VF device.\n");
5149 }
5150 } else {
5151 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5152 false, vf);
5153 igb_set_vmvir(adapter, vlan, vf);
5154 igb_set_vmolr(adapter, vf, true);
5155 adapter->vf_data[vf].pf_vlan = 0;
5156 adapter->vf_data[vf].pf_qos = 0;
5157 }
5158out:
5159 return err;
4ae196df
AD
5160}
5161
5162static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5163{
5164 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5165 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5166
5167 return igb_vlvf_set(adapter, vid, add, vf);
5168}
5169
f2ca0dbe 5170static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5171{
8fa7e0f7
GR
5172 /* clear flags - except flag that indicates PF has set the MAC */
5173 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5174 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5175
5176 /* reset offloads to defaults */
8151d294 5177 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5178
5179 /* reset vlans for device */
5180 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5181 if (adapter->vf_data[vf].pf_vlan)
5182 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5183 adapter->vf_data[vf].pf_vlan,
5184 adapter->vf_data[vf].pf_qos);
5185 else
5186 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5187
5188 /* reset multicast table array for vf */
5189 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5190
5191 /* Flush and reset the mta with the new values */
ff41f8dc 5192 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5193}
5194
f2ca0dbe
AD
5195static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5196{
5197 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5198
5199 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5200 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5201 random_ether_addr(vf_mac);
f2ca0dbe
AD
5202
5203 /* process remaining reset events */
5204 igb_vf_reset(adapter, vf);
5205}
5206
5207static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5208{
5209 struct e1000_hw *hw = &adapter->hw;
5210 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5211 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5212 u32 reg, msgbuf[3];
5213 u8 *addr = (u8 *)(&msgbuf[1]);
5214
5215 /* process all the same items cleared in a function level reset */
f2ca0dbe 5216 igb_vf_reset(adapter, vf);
4ae196df
AD
5217
5218 /* set vf mac address */
26ad9178 5219 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5220
5221 /* enable transmit and receive for vf */
5222 reg = rd32(E1000_VFTE);
5223 wr32(E1000_VFTE, reg | (1 << vf));
5224 reg = rd32(E1000_VFRE);
5225 wr32(E1000_VFRE, reg | (1 << vf));
5226
8fa7e0f7 5227 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5228
5229 /* reply to reset with ack and vf mac address */
5230 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5231 memcpy(addr, vf_mac, 6);
5232 igb_write_mbx(hw, msgbuf, 3, vf);
5233}
5234
5235static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5236{
de42edde
GR
5237 /*
5238 * The VF MAC Address is stored in a packed array of bytes
5239 * starting at the second 32 bit word of the msg array
5240 */
f2ca0dbe
AD
5241 unsigned char *addr = (char *)&msg[1];
5242 int err = -1;
4ae196df 5243
f2ca0dbe
AD
5244 if (is_valid_ether_addr(addr))
5245 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5246
f2ca0dbe 5247 return err;
4ae196df
AD
5248}
5249
5250static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5251{
5252 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5253 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5254 u32 msg = E1000_VT_MSGTYPE_NACK;
5255
5256 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5257 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5258 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5259 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5260 vf_data->last_nack = jiffies;
4ae196df
AD
5261 }
5262}
5263
f2ca0dbe 5264static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5265{
f2ca0dbe
AD
5266 struct pci_dev *pdev = adapter->pdev;
5267 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5268 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5269 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5270 s32 retval;
5271
f2ca0dbe 5272 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5273
fef45f4c
AD
5274 if (retval) {
5275 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5276 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5277 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5278 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5279 return;
5280 goto out;
5281 }
4ae196df
AD
5282
5283 /* this is a message we already processed, do nothing */
5284 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5285 return;
4ae196df
AD
5286
5287 /*
5288 * until the vf completes a reset it should not be
5289 * allowed to start any configuration.
5290 */
5291
5292 if (msgbuf[0] == E1000_VF_RESET) {
5293 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5294 return;
4ae196df
AD
5295 }
5296
f2ca0dbe 5297 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5298 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5299 return;
5300 retval = -1;
5301 goto out;
4ae196df
AD
5302 }
5303
5304 switch ((msgbuf[0] & 0xFFFF)) {
5305 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5306 retval = -EINVAL;
5307 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5308 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5309 else
5310 dev_warn(&pdev->dev,
5311 "VF %d attempted to override administratively "
5312 "set MAC address\nReload the VF driver to "
5313 "resume operations\n", vf);
4ae196df 5314 break;
7d5753f0
AD
5315 case E1000_VF_SET_PROMISC:
5316 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5317 break;
4ae196df
AD
5318 case E1000_VF_SET_MULTICAST:
5319 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5320 break;
5321 case E1000_VF_SET_LPE:
5322 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5323 break;
5324 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5325 retval = -1;
5326 if (vf_data->pf_vlan)
5327 dev_warn(&pdev->dev,
5328 "VF %d attempted to override administratively "
5329 "set VLAN tag\nReload the VF driver to "
5330 "resume operations\n", vf);
8151d294
WM
5331 else
5332 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5333 break;
5334 default:
090b1795 5335 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5336 retval = -1;
5337 break;
5338 }
5339
fef45f4c
AD
5340 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5341out:
4ae196df
AD
5342 /* notify the VF of the results of what it sent us */
5343 if (retval)
5344 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5345 else
5346 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5347
4ae196df 5348 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5349}
4ae196df 5350
f2ca0dbe
AD
5351static void igb_msg_task(struct igb_adapter *adapter)
5352{
5353 struct e1000_hw *hw = &adapter->hw;
5354 u32 vf;
5355
5356 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5357 /* process any reset requests */
5358 if (!igb_check_for_rst(hw, vf))
5359 igb_vf_reset_event(adapter, vf);
5360
5361 /* process any messages pending */
5362 if (!igb_check_for_msg(hw, vf))
5363 igb_rcv_msg_from_vf(adapter, vf);
5364
5365 /* process any acks */
5366 if (!igb_check_for_ack(hw, vf))
5367 igb_rcv_ack_from_vf(adapter, vf);
5368 }
4ae196df
AD
5369}
5370
68d480c4
AD
5371/**
5372 * igb_set_uta - Set unicast filter table address
5373 * @adapter: board private structure
5374 *
5375 * The unicast table address is a register array of 32-bit registers.
5376 * The table is meant to be used in a way similar to how the MTA is used
5377 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5378 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5379 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5380 **/
5381static void igb_set_uta(struct igb_adapter *adapter)
5382{
5383 struct e1000_hw *hw = &adapter->hw;
5384 int i;
5385
5386 /* The UTA table only exists on 82576 hardware and newer */
5387 if (hw->mac.type < e1000_82576)
5388 return;
5389
5390 /* we only need to do this if VMDq is enabled */
5391 if (!adapter->vfs_allocated_count)
5392 return;
5393
5394 for (i = 0; i < hw->mac.uta_reg_count; i++)
5395 array_wr32(E1000_UTA, i, ~0);
5396}
5397
9d5c8243
AK
5398/**
5399 * igb_intr_msi - Interrupt Handler
5400 * @irq: interrupt number
5401 * @data: pointer to a network interface device structure
5402 **/
5403static irqreturn_t igb_intr_msi(int irq, void *data)
5404{
047e0030
AD
5405 struct igb_adapter *adapter = data;
5406 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5407 struct e1000_hw *hw = &adapter->hw;
5408 /* read ICR disables interrupts using IAM */
5409 u32 icr = rd32(E1000_ICR);
5410
047e0030 5411 igb_write_itr(q_vector);
9d5c8243 5412
7f081d40
AD
5413 if (icr & E1000_ICR_DRSTA)
5414 schedule_work(&adapter->reset_task);
5415
047e0030 5416 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5417 /* HW is reporting DMA is out of sync */
5418 adapter->stats.doosync++;
5419 }
5420
9d5c8243
AK
5421 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5422 hw->mac.get_link_status = 1;
5423 if (!test_bit(__IGB_DOWN, &adapter->state))
5424 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5425 }
5426
047e0030 5427 napi_schedule(&q_vector->napi);
9d5c8243
AK
5428
5429 return IRQ_HANDLED;
5430}
5431
5432/**
4a3c6433 5433 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5434 * @irq: interrupt number
5435 * @data: pointer to a network interface device structure
5436 **/
5437static irqreturn_t igb_intr(int irq, void *data)
5438{
047e0030
AD
5439 struct igb_adapter *adapter = data;
5440 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5441 struct e1000_hw *hw = &adapter->hw;
5442 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5443 * need for the IMC write */
5444 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5445 if (!icr)
5446 return IRQ_NONE; /* Not our interrupt */
5447
047e0030 5448 igb_write_itr(q_vector);
9d5c8243
AK
5449
5450 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5451 * not set, then the adapter didn't send an interrupt */
5452 if (!(icr & E1000_ICR_INT_ASSERTED))
5453 return IRQ_NONE;
5454
7f081d40
AD
5455 if (icr & E1000_ICR_DRSTA)
5456 schedule_work(&adapter->reset_task);
5457
047e0030 5458 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5459 /* HW is reporting DMA is out of sync */
5460 adapter->stats.doosync++;
5461 }
5462
9d5c8243
AK
5463 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5464 hw->mac.get_link_status = 1;
5465 /* guard against interrupt when we're going down */
5466 if (!test_bit(__IGB_DOWN, &adapter->state))
5467 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5468 }
5469
047e0030 5470 napi_schedule(&q_vector->napi);
9d5c8243
AK
5471
5472 return IRQ_HANDLED;
5473}
5474
047e0030 5475static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5476{
047e0030 5477 struct igb_adapter *adapter = q_vector->adapter;
46544258 5478 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5479
4fc82adf
AD
5480 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5481 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5482 if (!adapter->msix_entries)
6eb5a7f1 5483 igb_set_itr(adapter);
46544258 5484 else
047e0030 5485 igb_update_ring_itr(q_vector);
9d5c8243
AK
5486 }
5487
46544258
AD
5488 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5489 if (adapter->msix_entries)
047e0030 5490 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5491 else
5492 igb_irq_enable(adapter);
5493 }
9d5c8243
AK
5494}
5495
46544258
AD
5496/**
5497 * igb_poll - NAPI Rx polling callback
5498 * @napi: napi polling structure
5499 * @budget: count of how many packets we should handle
5500 **/
5501static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5502{
047e0030
AD
5503 struct igb_q_vector *q_vector = container_of(napi,
5504 struct igb_q_vector,
5505 napi);
5506 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5507
421e02f0 5508#ifdef CONFIG_IGB_DCA
047e0030
AD
5509 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5510 igb_update_dca(q_vector);
fe4506b6 5511#endif
047e0030
AD
5512 if (q_vector->tx_ring)
5513 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5514
047e0030
AD
5515 if (q_vector->rx_ring)
5516 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5517
5518 if (!tx_clean_complete)
5519 work_done = budget;
46544258 5520
9d5c8243 5521 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5522 if (work_done < budget) {
288379f0 5523 napi_complete(napi);
047e0030 5524 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5525 }
5526
46544258 5527 return work_done;
9d5c8243 5528}
6d8126f9 5529
33af6bcc 5530/**
c5b9bd5e 5531 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5532 * @adapter: board private structure
c5b9bd5e
AD
5533 * @shhwtstamps: timestamp structure to update
5534 * @regval: unsigned 64bit system time value.
5535 *
5536 * We need to convert the system time value stored in the RX/TXSTMP registers
5537 * into a hwtstamp which can be used by the upper level timestamping functions
5538 */
5539static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5540 struct skb_shared_hwtstamps *shhwtstamps,
5541 u64 regval)
5542{
5543 u64 ns;
5544
55cac248
AD
5545 /*
5546 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5547 * 24 to match clock shift we setup earlier.
5548 */
5549 if (adapter->hw.mac.type == e1000_82580)
5550 regval <<= IGB_82580_TSYNC_SHIFT;
5551
c5b9bd5e
AD
5552 ns = timecounter_cyc2time(&adapter->clock, regval);
5553 timecompare_update(&adapter->compare, ns);
5554 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5555 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5556 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5557}
5558
5559/**
5560 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5561 * @q_vector: pointer to q_vector containing needed info
2873957d 5562 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5563 *
5564 * If we were asked to do hardware stamping and such a time stamp is
5565 * available, then it must have been for this skb here because we only
5566 * allow only one such packet into the queue.
5567 */
2873957d 5568static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5569{
c5b9bd5e 5570 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5571 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5572 struct skb_shared_hwtstamps shhwtstamps;
5573 u64 regval;
33af6bcc 5574
c5b9bd5e 5575 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5576 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5577 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5578 return;
5579
5580 regval = rd32(E1000_TXSTMPL);
5581 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5582
5583 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5584 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5585}
5586
9d5c8243
AK
5587/**
5588 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5589 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5590 * returns true if ring is completely cleaned
5591 **/
047e0030 5592static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5593{
047e0030
AD
5594 struct igb_adapter *adapter = q_vector->adapter;
5595 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5596 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5597 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5598 struct igb_buffer *buffer_info;
0e014cb1 5599 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5600 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5601 unsigned int i, eop, count = 0;
5602 bool cleaned = false;
9d5c8243 5603
9d5c8243 5604 i = tx_ring->next_to_clean;
0e014cb1
AD
5605 eop = tx_ring->buffer_info[i].next_to_watch;
5606 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5607
5608 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5609 (count < tx_ring->count)) {
2d0bb1c1 5610 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5611 for (cleaned = false; !cleaned; count++) {
5612 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5613 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5614 cleaned = (i == eop);
9d5c8243 5615
2873957d
NN
5616 if (buffer_info->skb) {
5617 total_bytes += buffer_info->bytecount;
9d5c8243 5618 /* gso_segs is currently only valid for tcp */
2873957d
NN
5619 total_packets += buffer_info->gso_segs;
5620 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5621 }
5622
80785298 5623 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5624 tx_desc->wb.status = 0;
9d5c8243
AK
5625
5626 i++;
5627 if (i == tx_ring->count)
5628 i = 0;
9d5c8243 5629 }
0e014cb1
AD
5630 eop = tx_ring->buffer_info[i].next_to_watch;
5631 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5632 }
5633
9d5c8243
AK
5634 tx_ring->next_to_clean = i;
5635
fc7d345d 5636 if (unlikely(count &&
9d5c8243 5637 netif_carrier_ok(netdev) &&
c493ea45 5638 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5639 /* Make sure that anybody stopping the queue after this
5640 * sees the new next_to_clean.
5641 */
5642 smp_mb();
661086df
PWJ
5643 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5644 !(test_bit(__IGB_DOWN, &adapter->state))) {
5645 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5646
5647 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5648 tx_ring->tx_stats.restart_queue++;
12dcd86b 5649 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5650 }
9d5c8243
AK
5651 }
5652
5653 if (tx_ring->detect_tx_hung) {
5654 /* Detect a transmit hang in hardware, this serializes the
5655 * check with the clearing of time_stamp and movement of i */
5656 tx_ring->detect_tx_hung = false;
5657 if (tx_ring->buffer_info[i].time_stamp &&
5658 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5659 (adapter->tx_timeout_factor * HZ)) &&
5660 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5661
9d5c8243 5662 /* detected Tx unit hang */
59d71989 5663 dev_err(tx_ring->dev,
9d5c8243 5664 "Detected Tx Unit Hang\n"
2d064c06 5665 " Tx Queue <%d>\n"
9d5c8243
AK
5666 " TDH <%x>\n"
5667 " TDT <%x>\n"
5668 " next_to_use <%x>\n"
5669 " next_to_clean <%x>\n"
9d5c8243
AK
5670 "buffer_info[next_to_clean]\n"
5671 " time_stamp <%lx>\n"
0e014cb1 5672 " next_to_watch <%x>\n"
9d5c8243
AK
5673 " jiffies <%lx>\n"
5674 " desc.status <%x>\n",
2d064c06 5675 tx_ring->queue_index,
fce99e34
AD
5676 readl(tx_ring->head),
5677 readl(tx_ring->tail),
9d5c8243
AK
5678 tx_ring->next_to_use,
5679 tx_ring->next_to_clean,
f7ba205e 5680 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5681 eop,
9d5c8243 5682 jiffies,
0e014cb1 5683 eop_desc->wb.status);
661086df 5684 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5685 }
5686 }
5687 tx_ring->total_bytes += total_bytes;
5688 tx_ring->total_packets += total_packets;
12dcd86b 5689 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5690 tx_ring->tx_stats.bytes += total_bytes;
5691 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5692 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5693 return count < tx_ring->count;
9d5c8243
AK
5694}
5695
9d5c8243
AK
5696/**
5697 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5698 * @q_vector: structure containing interrupt and ring information
5699 * @skb: packet to send up
5700 * @vlan_tag: vlan tag for packet
9d5c8243 5701 **/
047e0030
AD
5702static void igb_receive_skb(struct igb_q_vector *q_vector,
5703 struct sk_buff *skb,
5704 u16 vlan_tag)
5705{
5706 struct igb_adapter *adapter = q_vector->adapter;
5707
31b24b95 5708 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5709 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5710 vlan_tag, skb);
182ff8df 5711 else
047e0030 5712 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5713}
5714
04a5fcaa 5715static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5716 u32 status_err, struct sk_buff *skb)
5717{
bc8acf2c 5718 skb_checksum_none_assert(skb);
9d5c8243
AK
5719
5720 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5721 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5722 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5723 return;
85ad76b2 5724
9d5c8243
AK
5725 /* TCP/UDP checksum error bit is set */
5726 if (status_err &
5727 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5728 /*
5729 * work around errata with sctp packets where the TCPE aka
5730 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5731 * packets, (aka let the stack check the crc32c)
5732 */
85ad76b2 5733 if ((skb->len == 60) &&
12dcd86b
ED
5734 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5735 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5736 ring->rx_stats.csum_err++;
12dcd86b
ED
5737 u64_stats_update_end(&ring->rx_syncp);
5738 }
9d5c8243 5739 /* let the stack verify checksum errors */
9d5c8243
AK
5740 return;
5741 }
5742 /* It must be a TCP or UDP packet with a valid checksum */
5743 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5744 skb->ip_summed = CHECKSUM_UNNECESSARY;
5745
59d71989 5746 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5747}
5748
757b77e2 5749static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5750 struct sk_buff *skb)
5751{
5752 struct igb_adapter *adapter = q_vector->adapter;
5753 struct e1000_hw *hw = &adapter->hw;
5754 u64 regval;
5755
5756 /*
5757 * If this bit is set, then the RX registers contain the time stamp. No
5758 * other packet will be time stamped until we read these registers, so
5759 * read the registers to make them available again. Because only one
5760 * packet can be time stamped at a time, we know that the register
5761 * values must belong to this one here and therefore we don't need to
5762 * compare any of the additional attributes stored for it.
5763 *
2244d07b 5764 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5765 * can turn into a skb_shared_hwtstamps.
5766 */
757b77e2
NN
5767 if (staterr & E1000_RXDADV_STAT_TSIP) {
5768 u32 *stamp = (u32 *)skb->data;
5769 regval = le32_to_cpu(*(stamp + 2));
5770 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5771 skb_pull(skb, IGB_TS_HDR_LEN);
5772 } else {
5773 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5774 return;
c5b9bd5e 5775
757b77e2
NN
5776 regval = rd32(E1000_RXSTMPL);
5777 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5778 }
c5b9bd5e
AD
5779
5780 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5781}
4c844851 5782static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5783 union e1000_adv_rx_desc *rx_desc)
5784{
5785 /* HW will not DMA in data larger than the given buffer, even if it
5786 * parses the (NFS, of course) header to be larger. In that case, it
5787 * fills the header buffer and spills the rest into the page.
5788 */
5789 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5790 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5791 if (hlen > rx_ring->rx_buffer_len)
5792 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5793 return hlen;
5794}
5795
047e0030
AD
5796static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5797 int *work_done, int budget)
9d5c8243 5798{
047e0030 5799 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5800 struct net_device *netdev = rx_ring->netdev;
59d71989 5801 struct device *dev = rx_ring->dev;
9d5c8243
AK
5802 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5803 struct igb_buffer *buffer_info , *next_buffer;
5804 struct sk_buff *skb;
9d5c8243
AK
5805 bool cleaned = false;
5806 int cleaned_count = 0;
d1eff350 5807 int current_node = numa_node_id();
9d5c8243 5808 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5809 unsigned int i;
2d94d8ab
AD
5810 u32 staterr;
5811 u16 length;
047e0030 5812 u16 vlan_tag;
9d5c8243
AK
5813
5814 i = rx_ring->next_to_clean;
69d3ca53 5815 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5816 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5817 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5818
5819 while (staterr & E1000_RXD_STAT_DD) {
5820 if (*work_done >= budget)
5821 break;
5822 (*work_done)++;
2d0bb1c1 5823 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5824
69d3ca53
AD
5825 skb = buffer_info->skb;
5826 prefetch(skb->data - NET_IP_ALIGN);
5827 buffer_info->skb = NULL;
5828
5829 i++;
5830 if (i == rx_ring->count)
5831 i = 0;
42d0781a 5832
69d3ca53
AD
5833 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5834 prefetch(next_rxd);
5835 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5836
5837 length = le16_to_cpu(rx_desc->wb.upper.length);
5838 cleaned = true;
5839 cleaned_count++;
5840
2d94d8ab 5841 if (buffer_info->dma) {
59d71989 5842 dma_unmap_single(dev, buffer_info->dma,
4c844851 5843 rx_ring->rx_buffer_len,
59d71989 5844 DMA_FROM_DEVICE);
91615f76 5845 buffer_info->dma = 0;
4c844851 5846 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5847 skb_put(skb, length);
5848 goto send_up;
5849 }
4c844851 5850 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5851 }
5852
5853 if (length) {
59d71989
AD
5854 dma_unmap_page(dev, buffer_info->page_dma,
5855 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5856 buffer_info->page_dma = 0;
bf36c1a0 5857
aa913403 5858 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5859 buffer_info->page,
5860 buffer_info->page_offset,
5861 length);
5862
d1eff350
AD
5863 if ((page_count(buffer_info->page) != 1) ||
5864 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5865 buffer_info->page = NULL;
5866 else
5867 get_page(buffer_info->page);
9d5c8243
AK
5868
5869 skb->len += length;
5870 skb->data_len += length;
bf36c1a0 5871 skb->truesize += length;
9d5c8243 5872 }
9d5c8243 5873
bf36c1a0 5874 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5875 buffer_info->skb = next_buffer->skb;
5876 buffer_info->dma = next_buffer->dma;
5877 next_buffer->skb = skb;
5878 next_buffer->dma = 0;
bf36c1a0
AD
5879 goto next_desc;
5880 }
69d3ca53 5881send_up:
9d5c8243
AK
5882 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5883 dev_kfree_skb_irq(skb);
5884 goto next_desc;
5885 }
9d5c8243 5886
757b77e2
NN
5887 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5888 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5889 total_bytes += skb->len;
5890 total_packets++;
5891
85ad76b2 5892 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5893
5894 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5895 skb_record_rx_queue(skb, rx_ring->queue_index);
5896
5897 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5898 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5899
047e0030 5900 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5901
9d5c8243
AK
5902next_desc:
5903 rx_desc->wb.upper.status_error = 0;
5904
5905 /* return some buffers to hardware, one at a time is too slow */
5906 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5907 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5908 cleaned_count = 0;
5909 }
5910
5911 /* use prefetched values */
5912 rx_desc = next_rxd;
5913 buffer_info = next_buffer;
9d5c8243
AK
5914 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5915 }
bf36c1a0 5916
9d5c8243 5917 rx_ring->next_to_clean = i;
c493ea45 5918 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5919
5920 if (cleaned_count)
3b644cf6 5921 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5922
5923 rx_ring->total_packets += total_packets;
5924 rx_ring->total_bytes += total_bytes;
12dcd86b 5925 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5926 rx_ring->rx_stats.packets += total_packets;
5927 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5928 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5929 return cleaned;
5930}
5931
9d5c8243
AK
5932/**
5933 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5934 * @adapter: address of board private structure
5935 **/
d7ee5b3a 5936void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5937{
e694e964 5938 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5939 union e1000_adv_rx_desc *rx_desc;
5940 struct igb_buffer *buffer_info;
5941 struct sk_buff *skb;
5942 unsigned int i;
db761762 5943 int bufsz;
9d5c8243
AK
5944
5945 i = rx_ring->next_to_use;
5946 buffer_info = &rx_ring->buffer_info[i];
5947
4c844851 5948 bufsz = rx_ring->rx_buffer_len;
db761762 5949
9d5c8243
AK
5950 while (cleaned_count--) {
5951 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5952
6ec43fe6 5953 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5954 if (!buffer_info->page) {
42d0781a 5955 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5956 if (unlikely(!buffer_info->page)) {
5957 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5958 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5959 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5960 goto no_buffers;
5961 }
5962 buffer_info->page_offset = 0;
5963 } else {
5964 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5965 }
5966 buffer_info->page_dma =
59d71989 5967 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5968 buffer_info->page_offset,
5969 PAGE_SIZE / 2,
59d71989
AD
5970 DMA_FROM_DEVICE);
5971 if (dma_mapping_error(rx_ring->dev,
5972 buffer_info->page_dma)) {
42d0781a 5973 buffer_info->page_dma = 0;
12dcd86b 5974 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5975 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5976 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5977 goto no_buffers;
5978 }
9d5c8243
AK
5979 }
5980
42d0781a
AD
5981 skb = buffer_info->skb;
5982 if (!skb) {
89d71a66 5983 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5984 if (unlikely(!skb)) {
5985 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5986 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5987 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5988 goto no_buffers;
5989 }
5990
9d5c8243 5991 buffer_info->skb = skb;
42d0781a
AD
5992 }
5993 if (!buffer_info->dma) {
59d71989 5994 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5995 skb->data,
9d5c8243 5996 bufsz,
59d71989
AD
5997 DMA_FROM_DEVICE);
5998 if (dma_mapping_error(rx_ring->dev,
5999 buffer_info->dma)) {
42d0781a 6000 buffer_info->dma = 0;
12dcd86b 6001 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 6002 rx_ring->rx_stats.alloc_failed++;
12dcd86b 6003 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
6004 goto no_buffers;
6005 }
9d5c8243
AK
6006 }
6007 /* Refresh the desc even if buffer_addrs didn't change because
6008 * each write-back erases this info. */
6ec43fe6 6009 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
6010 rx_desc->read.pkt_addr =
6011 cpu_to_le64(buffer_info->page_dma);
6012 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
6013 } else {
42d0781a 6014 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
6015 rx_desc->read.hdr_addr = 0;
6016 }
6017
6018 i++;
6019 if (i == rx_ring->count)
6020 i = 0;
6021 buffer_info = &rx_ring->buffer_info[i];
6022 }
6023
6024no_buffers:
6025 if (rx_ring->next_to_use != i) {
6026 rx_ring->next_to_use = i;
6027 if (i == 0)
6028 i = (rx_ring->count - 1);
6029 else
6030 i--;
6031
6032 /* Force memory writes to complete before letting h/w
6033 * know there are new descriptors to fetch. (Only
6034 * applicable for weak-ordered memory model archs,
6035 * such as IA-64). */
6036 wmb();
fce99e34 6037 writel(i, rx_ring->tail);
9d5c8243
AK
6038 }
6039}
6040
6041/**
6042 * igb_mii_ioctl -
6043 * @netdev:
6044 * @ifreq:
6045 * @cmd:
6046 **/
6047static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6048{
6049 struct igb_adapter *adapter = netdev_priv(netdev);
6050 struct mii_ioctl_data *data = if_mii(ifr);
6051
6052 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6053 return -EOPNOTSUPP;
6054
6055 switch (cmd) {
6056 case SIOCGMIIPHY:
6057 data->phy_id = adapter->hw.phy.addr;
6058 break;
6059 case SIOCGMIIREG:
f5f4cf08
AD
6060 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6061 &data->val_out))
9d5c8243
AK
6062 return -EIO;
6063 break;
6064 case SIOCSMIIREG:
6065 default:
6066 return -EOPNOTSUPP;
6067 }
6068 return 0;
6069}
6070
c6cb090b
PO
6071/**
6072 * igb_hwtstamp_ioctl - control hardware time stamping
6073 * @netdev:
6074 * @ifreq:
6075 * @cmd:
6076 *
33af6bcc
PO
6077 * Outgoing time stamping can be enabled and disabled. Play nice and
6078 * disable it when requested, although it shouldn't case any overhead
6079 * when no packet needs it. At most one packet in the queue may be
6080 * marked for time stamping, otherwise it would be impossible to tell
6081 * for sure to which packet the hardware time stamp belongs.
6082 *
6083 * Incoming time stamping has to be configured via the hardware
6084 * filters. Not all combinations are supported, in particular event
6085 * type has to be specified. Matching the kind of event packet is
6086 * not supported, with the exception of "all V2 events regardless of
6087 * level 2 or 4".
6088 *
c6cb090b
PO
6089 **/
6090static int igb_hwtstamp_ioctl(struct net_device *netdev,
6091 struct ifreq *ifr, int cmd)
6092{
33af6bcc
PO
6093 struct igb_adapter *adapter = netdev_priv(netdev);
6094 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6095 struct hwtstamp_config config;
c5b9bd5e
AD
6096 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6097 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6098 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6099 bool is_l4 = false;
6100 bool is_l2 = false;
33af6bcc 6101 u32 regval;
c6cb090b
PO
6102
6103 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6104 return -EFAULT;
6105
6106 /* reserved for future extensions */
6107 if (config.flags)
6108 return -EINVAL;
6109
33af6bcc
PO
6110 switch (config.tx_type) {
6111 case HWTSTAMP_TX_OFF:
c5b9bd5e 6112 tsync_tx_ctl = 0;
33af6bcc 6113 case HWTSTAMP_TX_ON:
33af6bcc
PO
6114 break;
6115 default:
6116 return -ERANGE;
6117 }
6118
6119 switch (config.rx_filter) {
6120 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6121 tsync_rx_ctl = 0;
33af6bcc
PO
6122 break;
6123 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6124 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6125 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6126 case HWTSTAMP_FILTER_ALL:
6127 /*
6128 * register TSYNCRXCFG must be set, therefore it is not
6129 * possible to time stamp both Sync and Delay_Req messages
6130 * => fall back to time stamping all packets
6131 */
c5b9bd5e 6132 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6133 config.rx_filter = HWTSTAMP_FILTER_ALL;
6134 break;
6135 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6136 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6137 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6138 is_l4 = true;
33af6bcc
PO
6139 break;
6140 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6141 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6142 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6143 is_l4 = true;
33af6bcc
PO
6144 break;
6145 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6146 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6147 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6148 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6149 is_l2 = true;
6150 is_l4 = true;
33af6bcc
PO
6151 config.rx_filter = HWTSTAMP_FILTER_SOME;
6152 break;
6153 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6154 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6155 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6156 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6157 is_l2 = true;
6158 is_l4 = true;
33af6bcc
PO
6159 config.rx_filter = HWTSTAMP_FILTER_SOME;
6160 break;
6161 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6162 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6163 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6164 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6165 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6166 is_l2 = true;
33af6bcc
PO
6167 break;
6168 default:
6169 return -ERANGE;
6170 }
6171
c5b9bd5e
AD
6172 if (hw->mac.type == e1000_82575) {
6173 if (tsync_rx_ctl | tsync_tx_ctl)
6174 return -EINVAL;
6175 return 0;
6176 }
6177
757b77e2
NN
6178 /*
6179 * Per-packet timestamping only works if all packets are
6180 * timestamped, so enable timestamping in all packets as
6181 * long as one rx filter was configured.
6182 */
6183 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6184 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6185 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6186 }
6187
33af6bcc
PO
6188 /* enable/disable TX */
6189 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6190 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6191 regval |= tsync_tx_ctl;
33af6bcc
PO
6192 wr32(E1000_TSYNCTXCTL, regval);
6193
c5b9bd5e 6194 /* enable/disable RX */
33af6bcc 6195 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6196 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6197 regval |= tsync_rx_ctl;
33af6bcc 6198 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6199
c5b9bd5e
AD
6200 /* define which PTP packets are time stamped */
6201 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6202
c5b9bd5e
AD
6203 /* define ethertype filter for timestamped packets */
6204 if (is_l2)
6205 wr32(E1000_ETQF(3),
6206 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6207 E1000_ETQF_1588 | /* enable timestamping */
6208 ETH_P_1588)); /* 1588 eth protocol type */
6209 else
6210 wr32(E1000_ETQF(3), 0);
6211
6212#define PTP_PORT 319
6213 /* L4 Queue Filter[3]: filter by destination port and protocol */
6214 if (is_l4) {
6215 u32 ftqf = (IPPROTO_UDP /* UDP */
6216 | E1000_FTQF_VF_BP /* VF not compared */
6217 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6218 | E1000_FTQF_MASK); /* mask all inputs */
6219 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6220
6221 wr32(E1000_IMIR(3), htons(PTP_PORT));
6222 wr32(E1000_IMIREXT(3),
6223 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6224 if (hw->mac.type == e1000_82576) {
6225 /* enable source port check */
6226 wr32(E1000_SPQF(3), htons(PTP_PORT));
6227 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6228 }
6229 wr32(E1000_FTQF(3), ftqf);
6230 } else {
6231 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6232 }
33af6bcc
PO
6233 wrfl();
6234
6235 adapter->hwtstamp_config = config;
6236
6237 /* clear TX/RX time stamp registers, just to be sure */
6238 regval = rd32(E1000_TXSTMPH);
6239 regval = rd32(E1000_RXSTMPH);
c6cb090b 6240
33af6bcc
PO
6241 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6242 -EFAULT : 0;
c6cb090b
PO
6243}
6244
9d5c8243
AK
6245/**
6246 * igb_ioctl -
6247 * @netdev:
6248 * @ifreq:
6249 * @cmd:
6250 **/
6251static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6252{
6253 switch (cmd) {
6254 case SIOCGMIIPHY:
6255 case SIOCGMIIREG:
6256 case SIOCSMIIREG:
6257 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6258 case SIOCSHWTSTAMP:
6259 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6260 default:
6261 return -EOPNOTSUPP;
6262 }
6263}
6264
009bc06e
AD
6265s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6266{
6267 struct igb_adapter *adapter = hw->back;
6268 u16 cap_offset;
6269
bdaae04c 6270 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6271 if (!cap_offset)
6272 return -E1000_ERR_CONFIG;
6273
6274 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6275
6276 return 0;
6277}
6278
6279s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6280{
6281 struct igb_adapter *adapter = hw->back;
6282 u16 cap_offset;
6283
bdaae04c 6284 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6285 if (!cap_offset)
6286 return -E1000_ERR_CONFIG;
6287
6288 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6289
6290 return 0;
6291}
6292
9d5c8243
AK
6293static void igb_vlan_rx_register(struct net_device *netdev,
6294 struct vlan_group *grp)
6295{
6296 struct igb_adapter *adapter = netdev_priv(netdev);
6297 struct e1000_hw *hw = &adapter->hw;
6298 u32 ctrl, rctl;
6299
6300 igb_irq_disable(adapter);
6301 adapter->vlgrp = grp;
6302
6303 if (grp) {
6304 /* enable VLAN tag insert/strip */
6305 ctrl = rd32(E1000_CTRL);
6306 ctrl |= E1000_CTRL_VME;
6307 wr32(E1000_CTRL, ctrl);
6308
51466239 6309 /* Disable CFI check */
9d5c8243 6310 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6311 rctl &= ~E1000_RCTL_CFIEN;
6312 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6313 } else {
6314 /* disable VLAN tag insert/strip */
6315 ctrl = rd32(E1000_CTRL);
6316 ctrl &= ~E1000_CTRL_VME;
6317 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6318 }
6319
e1739522
AD
6320 igb_rlpml_set(adapter);
6321
9d5c8243
AK
6322 if (!test_bit(__IGB_DOWN, &adapter->state))
6323 igb_irq_enable(adapter);
6324}
6325
6326static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6327{
6328 struct igb_adapter *adapter = netdev_priv(netdev);
6329 struct e1000_hw *hw = &adapter->hw;
4ae196df 6330 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6331
51466239
AD
6332 /* attempt to add filter to vlvf array */
6333 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6334
51466239
AD
6335 /* add the filter since PF can receive vlans w/o entry in vlvf */
6336 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6337}
6338
6339static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6340{
6341 struct igb_adapter *adapter = netdev_priv(netdev);
6342 struct e1000_hw *hw = &adapter->hw;
4ae196df 6343 int pf_id = adapter->vfs_allocated_count;
51466239 6344 s32 err;
9d5c8243
AK
6345
6346 igb_irq_disable(adapter);
6347 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6348
6349 if (!test_bit(__IGB_DOWN, &adapter->state))
6350 igb_irq_enable(adapter);
6351
51466239
AD
6352 /* remove vlan from VLVF table array */
6353 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6354
51466239
AD
6355 /* if vid was not present in VLVF just remove it from table */
6356 if (err)
4ae196df 6357 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6358}
6359
6360static void igb_restore_vlan(struct igb_adapter *adapter)
6361{
6362 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6363
6364 if (adapter->vlgrp) {
6365 u16 vid;
b738127d 6366 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6367 if (!vlan_group_get_device(adapter->vlgrp, vid))
6368 continue;
6369 igb_vlan_rx_add_vid(adapter->netdev, vid);
6370 }
6371 }
6372}
6373
14ad2513 6374int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6375{
090b1795 6376 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6377 struct e1000_mac_info *mac = &adapter->hw.mac;
6378
6379 mac->autoneg = 0;
6380
14ad2513
DD
6381 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6382 * for the switch() below to work */
6383 if ((spd & 1) || (dplx & ~1))
6384 goto err_inval;
6385
cd2638a8
CW
6386 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6387 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6388 spd != SPEED_1000 &&
6389 dplx != DUPLEX_FULL)
6390 goto err_inval;
cd2638a8 6391
14ad2513 6392 switch (spd + dplx) {
9d5c8243
AK
6393 case SPEED_10 + DUPLEX_HALF:
6394 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6395 break;
6396 case SPEED_10 + DUPLEX_FULL:
6397 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6398 break;
6399 case SPEED_100 + DUPLEX_HALF:
6400 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6401 break;
6402 case SPEED_100 + DUPLEX_FULL:
6403 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6404 break;
6405 case SPEED_1000 + DUPLEX_FULL:
6406 mac->autoneg = 1;
6407 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6408 break;
6409 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6410 default:
14ad2513 6411 goto err_inval;
9d5c8243
AK
6412 }
6413 return 0;
14ad2513
DD
6414
6415err_inval:
6416 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6417 return -EINVAL;
9d5c8243
AK
6418}
6419
3fe7c4c9 6420static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6421{
6422 struct net_device *netdev = pci_get_drvdata(pdev);
6423 struct igb_adapter *adapter = netdev_priv(netdev);
6424 struct e1000_hw *hw = &adapter->hw;
2d064c06 6425 u32 ctrl, rctl, status;
9d5c8243
AK
6426 u32 wufc = adapter->wol;
6427#ifdef CONFIG_PM
6428 int retval = 0;
6429#endif
6430
6431 netif_device_detach(netdev);
6432
a88f10ec
AD
6433 if (netif_running(netdev))
6434 igb_close(netdev);
6435
047e0030 6436 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6437
6438#ifdef CONFIG_PM
6439 retval = pci_save_state(pdev);
6440 if (retval)
6441 return retval;
6442#endif
6443
6444 status = rd32(E1000_STATUS);
6445 if (status & E1000_STATUS_LU)
6446 wufc &= ~E1000_WUFC_LNKC;
6447
6448 if (wufc) {
6449 igb_setup_rctl(adapter);
ff41f8dc 6450 igb_set_rx_mode(netdev);
9d5c8243
AK
6451
6452 /* turn on all-multi mode if wake on multicast is enabled */
6453 if (wufc & E1000_WUFC_MC) {
6454 rctl = rd32(E1000_RCTL);
6455 rctl |= E1000_RCTL_MPE;
6456 wr32(E1000_RCTL, rctl);
6457 }
6458
6459 ctrl = rd32(E1000_CTRL);
6460 /* advertise wake from D3Cold */
6461 #define E1000_CTRL_ADVD3WUC 0x00100000
6462 /* phy power management enable */
6463 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6464 ctrl |= E1000_CTRL_ADVD3WUC;
6465 wr32(E1000_CTRL, ctrl);
6466
9d5c8243 6467 /* Allow time for pending master requests to run */
330a6d6a 6468 igb_disable_pcie_master(hw);
9d5c8243
AK
6469
6470 wr32(E1000_WUC, E1000_WUC_PME_EN);
6471 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6472 } else {
6473 wr32(E1000_WUC, 0);
6474 wr32(E1000_WUFC, 0);
9d5c8243
AK
6475 }
6476
3fe7c4c9
RW
6477 *enable_wake = wufc || adapter->en_mng_pt;
6478 if (!*enable_wake)
88a268c1
NN
6479 igb_power_down_link(adapter);
6480 else
6481 igb_power_up_link(adapter);
9d5c8243
AK
6482
6483 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6484 * would have already happened in close and is redundant. */
6485 igb_release_hw_control(adapter);
6486
6487 pci_disable_device(pdev);
6488
9d5c8243
AK
6489 return 0;
6490}
6491
6492#ifdef CONFIG_PM
3fe7c4c9
RW
6493static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6494{
6495 int retval;
6496 bool wake;
6497
6498 retval = __igb_shutdown(pdev, &wake);
6499 if (retval)
6500 return retval;
6501
6502 if (wake) {
6503 pci_prepare_to_sleep(pdev);
6504 } else {
6505 pci_wake_from_d3(pdev, false);
6506 pci_set_power_state(pdev, PCI_D3hot);
6507 }
6508
6509 return 0;
6510}
6511
9d5c8243
AK
6512static int igb_resume(struct pci_dev *pdev)
6513{
6514 struct net_device *netdev = pci_get_drvdata(pdev);
6515 struct igb_adapter *adapter = netdev_priv(netdev);
6516 struct e1000_hw *hw = &adapter->hw;
6517 u32 err;
6518
6519 pci_set_power_state(pdev, PCI_D0);
6520 pci_restore_state(pdev);
b94f2d77 6521 pci_save_state(pdev);
42bfd33a 6522
aed5dec3 6523 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6524 if (err) {
6525 dev_err(&pdev->dev,
6526 "igb: Cannot enable PCI device from suspend\n");
6527 return err;
6528 }
6529 pci_set_master(pdev);
6530
6531 pci_enable_wake(pdev, PCI_D3hot, 0);
6532 pci_enable_wake(pdev, PCI_D3cold, 0);
6533
047e0030 6534 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6535 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6536 return -ENOMEM;
9d5c8243
AK
6537 }
6538
9d5c8243 6539 igb_reset(adapter);
a8564f03
AD
6540
6541 /* let the f/w know that the h/w is now under the control of the
6542 * driver. */
6543 igb_get_hw_control(adapter);
6544
9d5c8243
AK
6545 wr32(E1000_WUS, ~0);
6546
a88f10ec
AD
6547 if (netif_running(netdev)) {
6548 err = igb_open(netdev);
6549 if (err)
6550 return err;
6551 }
9d5c8243
AK
6552
6553 netif_device_attach(netdev);
6554
9d5c8243
AK
6555 return 0;
6556}
6557#endif
6558
6559static void igb_shutdown(struct pci_dev *pdev)
6560{
3fe7c4c9
RW
6561 bool wake;
6562
6563 __igb_shutdown(pdev, &wake);
6564
6565 if (system_state == SYSTEM_POWER_OFF) {
6566 pci_wake_from_d3(pdev, wake);
6567 pci_set_power_state(pdev, PCI_D3hot);
6568 }
9d5c8243
AK
6569}
6570
6571#ifdef CONFIG_NET_POLL_CONTROLLER
6572/*
6573 * Polling 'interrupt' - used by things like netconsole to send skbs
6574 * without having to re-enable interrupts. It's not called while
6575 * the interrupt routine is executing.
6576 */
6577static void igb_netpoll(struct net_device *netdev)
6578{
6579 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6580 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6581 int i;
9d5c8243 6582
eebbbdba 6583 if (!adapter->msix_entries) {
047e0030 6584 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6585 igb_irq_disable(adapter);
047e0030 6586 napi_schedule(&q_vector->napi);
eebbbdba
AD
6587 return;
6588 }
9d5c8243 6589
047e0030
AD
6590 for (i = 0; i < adapter->num_q_vectors; i++) {
6591 struct igb_q_vector *q_vector = adapter->q_vector[i];
6592 wr32(E1000_EIMC, q_vector->eims_value);
6593 napi_schedule(&q_vector->napi);
eebbbdba 6594 }
9d5c8243
AK
6595}
6596#endif /* CONFIG_NET_POLL_CONTROLLER */
6597
6598/**
6599 * igb_io_error_detected - called when PCI error is detected
6600 * @pdev: Pointer to PCI device
6601 * @state: The current pci connection state
6602 *
6603 * This function is called after a PCI bus error affecting
6604 * this device has been detected.
6605 */
6606static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6607 pci_channel_state_t state)
6608{
6609 struct net_device *netdev = pci_get_drvdata(pdev);
6610 struct igb_adapter *adapter = netdev_priv(netdev);
6611
6612 netif_device_detach(netdev);
6613
59ed6eec
AD
6614 if (state == pci_channel_io_perm_failure)
6615 return PCI_ERS_RESULT_DISCONNECT;
6616
9d5c8243
AK
6617 if (netif_running(netdev))
6618 igb_down(adapter);
6619 pci_disable_device(pdev);
6620
6621 /* Request a slot slot reset. */
6622 return PCI_ERS_RESULT_NEED_RESET;
6623}
6624
6625/**
6626 * igb_io_slot_reset - called after the pci bus has been reset.
6627 * @pdev: Pointer to PCI device
6628 *
6629 * Restart the card from scratch, as if from a cold-boot. Implementation
6630 * resembles the first-half of the igb_resume routine.
6631 */
6632static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6633{
6634 struct net_device *netdev = pci_get_drvdata(pdev);
6635 struct igb_adapter *adapter = netdev_priv(netdev);
6636 struct e1000_hw *hw = &adapter->hw;
40a914fa 6637 pci_ers_result_t result;
42bfd33a 6638 int err;
9d5c8243 6639
aed5dec3 6640 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6641 dev_err(&pdev->dev,
6642 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6643 result = PCI_ERS_RESULT_DISCONNECT;
6644 } else {
6645 pci_set_master(pdev);
6646 pci_restore_state(pdev);
b94f2d77 6647 pci_save_state(pdev);
9d5c8243 6648
40a914fa
AD
6649 pci_enable_wake(pdev, PCI_D3hot, 0);
6650 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6651
40a914fa
AD
6652 igb_reset(adapter);
6653 wr32(E1000_WUS, ~0);
6654 result = PCI_ERS_RESULT_RECOVERED;
6655 }
9d5c8243 6656
ea943d41
JK
6657 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6658 if (err) {
6659 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6660 "failed 0x%0x\n", err);
6661 /* non-fatal, continue */
6662 }
40a914fa
AD
6663
6664 return result;
9d5c8243
AK
6665}
6666
6667/**
6668 * igb_io_resume - called when traffic can start flowing again.
6669 * @pdev: Pointer to PCI device
6670 *
6671 * This callback is called when the error recovery driver tells us that
6672 * its OK to resume normal operation. Implementation resembles the
6673 * second-half of the igb_resume routine.
6674 */
6675static void igb_io_resume(struct pci_dev *pdev)
6676{
6677 struct net_device *netdev = pci_get_drvdata(pdev);
6678 struct igb_adapter *adapter = netdev_priv(netdev);
6679
9d5c8243
AK
6680 if (netif_running(netdev)) {
6681 if (igb_up(adapter)) {
6682 dev_err(&pdev->dev, "igb_up failed after reset\n");
6683 return;
6684 }
6685 }
6686
6687 netif_device_attach(netdev);
6688
6689 /* let the f/w know that the h/w is now under the control of the
6690 * driver. */
6691 igb_get_hw_control(adapter);
9d5c8243
AK
6692}
6693
26ad9178
AD
6694static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6695 u8 qsel)
6696{
6697 u32 rar_low, rar_high;
6698 struct e1000_hw *hw = &adapter->hw;
6699
6700 /* HW expects these in little endian so we reverse the byte order
6701 * from network order (big endian) to little endian
6702 */
6703 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6704 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6705 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6706
6707 /* Indicate to hardware the Address is Valid. */
6708 rar_high |= E1000_RAH_AV;
6709
6710 if (hw->mac.type == e1000_82575)
6711 rar_high |= E1000_RAH_POOL_1 * qsel;
6712 else
6713 rar_high |= E1000_RAH_POOL_1 << qsel;
6714
6715 wr32(E1000_RAL(index), rar_low);
6716 wrfl();
6717 wr32(E1000_RAH(index), rar_high);
6718 wrfl();
6719}
6720
4ae196df
AD
6721static int igb_set_vf_mac(struct igb_adapter *adapter,
6722 int vf, unsigned char *mac_addr)
6723{
6724 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6725 /* VF MAC addresses start at end of receive addresses and moves
6726 * torwards the first, as a result a collision should not be possible */
6727 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6728
37680117 6729 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6730
26ad9178 6731 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6732
6733 return 0;
6734}
6735
8151d294
WM
6736static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6737{
6738 struct igb_adapter *adapter = netdev_priv(netdev);
6739 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6740 return -EINVAL;
6741 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6742 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6743 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6744 " change effective.");
6745 if (test_bit(__IGB_DOWN, &adapter->state)) {
6746 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6747 " but the PF device is not up.\n");
6748 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6749 " attempting to use the VF device.\n");
6750 }
6751 return igb_set_vf_mac(adapter, vf, mac);
6752}
6753
17dc566c
LL
6754static int igb_link_mbps(int internal_link_speed)
6755{
6756 switch (internal_link_speed) {
6757 case SPEED_100:
6758 return 100;
6759 case SPEED_1000:
6760 return 1000;
6761 default:
6762 return 0;
6763 }
6764}
6765
6766static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6767 int link_speed)
6768{
6769 int rf_dec, rf_int;
6770 u32 bcnrc_val;
6771
6772 if (tx_rate != 0) {
6773 /* Calculate the rate factor values to set */
6774 rf_int = link_speed / tx_rate;
6775 rf_dec = (link_speed - (rf_int * tx_rate));
6776 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6777
6778 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6779 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6780 E1000_RTTBCNRC_RF_INT_MASK);
6781 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6782 } else {
6783 bcnrc_val = 0;
6784 }
6785
6786 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6787 wr32(E1000_RTTBCNRC, bcnrc_val);
6788}
6789
6790static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6791{
6792 int actual_link_speed, i;
6793 bool reset_rate = false;
6794
6795 /* VF TX rate limit was not set or not supported */
6796 if ((adapter->vf_rate_link_speed == 0) ||
6797 (adapter->hw.mac.type != e1000_82576))
6798 return;
6799
6800 actual_link_speed = igb_link_mbps(adapter->link_speed);
6801 if (actual_link_speed != adapter->vf_rate_link_speed) {
6802 reset_rate = true;
6803 adapter->vf_rate_link_speed = 0;
6804 dev_info(&adapter->pdev->dev,
6805 "Link speed has been changed. VF Transmit "
6806 "rate is disabled\n");
6807 }
6808
6809 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6810 if (reset_rate)
6811 adapter->vf_data[i].tx_rate = 0;
6812
6813 igb_set_vf_rate_limit(&adapter->hw, i,
6814 adapter->vf_data[i].tx_rate,
6815 actual_link_speed);
6816 }
6817}
6818
8151d294
WM
6819static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6820{
17dc566c
LL
6821 struct igb_adapter *adapter = netdev_priv(netdev);
6822 struct e1000_hw *hw = &adapter->hw;
6823 int actual_link_speed;
6824
6825 if (hw->mac.type != e1000_82576)
6826 return -EOPNOTSUPP;
6827
6828 actual_link_speed = igb_link_mbps(adapter->link_speed);
6829 if ((vf >= adapter->vfs_allocated_count) ||
6830 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6831 (tx_rate < 0) || (tx_rate > actual_link_speed))
6832 return -EINVAL;
6833
6834 adapter->vf_rate_link_speed = actual_link_speed;
6835 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6836 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6837
6838 return 0;
8151d294
WM
6839}
6840
6841static int igb_ndo_get_vf_config(struct net_device *netdev,
6842 int vf, struct ifla_vf_info *ivi)
6843{
6844 struct igb_adapter *adapter = netdev_priv(netdev);
6845 if (vf >= adapter->vfs_allocated_count)
6846 return -EINVAL;
6847 ivi->vf = vf;
6848 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6849 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6850 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6851 ivi->qos = adapter->vf_data[vf].pf_qos;
6852 return 0;
6853}
6854
4ae196df
AD
6855static void igb_vmm_control(struct igb_adapter *adapter)
6856{
6857 struct e1000_hw *hw = &adapter->hw;
10d8e907 6858 u32 reg;
4ae196df 6859
52a1dd4d
AD
6860 switch (hw->mac.type) {
6861 case e1000_82575:
6862 default:
6863 /* replication is not supported for 82575 */
4ae196df 6864 return;
52a1dd4d
AD
6865 case e1000_82576:
6866 /* notify HW that the MAC is adding vlan tags */
6867 reg = rd32(E1000_DTXCTL);
6868 reg |= E1000_DTXCTL_VLAN_ADDED;
6869 wr32(E1000_DTXCTL, reg);
6870 case e1000_82580:
6871 /* enable replication vlan tag stripping */
6872 reg = rd32(E1000_RPLOLR);
6873 reg |= E1000_RPLOLR_STRVLAN;
6874 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6875 case e1000_i350:
6876 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6877 break;
6878 }
10d8e907 6879
d4960307
AD
6880 if (adapter->vfs_allocated_count) {
6881 igb_vmdq_set_loopback_pf(hw, true);
6882 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6883 igb_vmdq_set_anti_spoofing_pf(hw, true,
6884 adapter->vfs_allocated_count);
d4960307
AD
6885 } else {
6886 igb_vmdq_set_loopback_pf(hw, false);
6887 igb_vmdq_set_replication_pf(hw, false);
6888 }
4ae196df
AD
6889}
6890
9d5c8243 6891/* igb_main.c */
This page took 1.118587 seconds and 5 git commands to generate.