e1000e: return appropriate errors for 'ethtool -r'
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
90 /* required last entry */
91 {0, }
92};
93
94MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
95
96void igb_reset(struct igb_adapter *);
97static int igb_setup_all_tx_resources(struct igb_adapter *);
98static int igb_setup_all_rx_resources(struct igb_adapter *);
99static void igb_free_all_tx_resources(struct igb_adapter *);
100static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 101static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
102static int igb_probe(struct pci_dev *, const struct pci_device_id *);
103static void __devexit igb_remove(struct pci_dev *pdev);
104static int igb_sw_init(struct igb_adapter *);
105static int igb_open(struct net_device *);
106static int igb_close(struct net_device *);
107static void igb_configure_tx(struct igb_adapter *);
108static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
109static void igb_clean_all_tx_rings(struct igb_adapter *);
110static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
111static void igb_clean_tx_ring(struct igb_ring *);
112static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 113static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
114static void igb_update_phy_info(unsigned long);
115static void igb_watchdog(unsigned long);
116static void igb_watchdog_task(struct work_struct *);
b1a436c3 117static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
118static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
119 struct rtnl_link_stats64 *stats);
9d5c8243
AK
120static int igb_change_mtu(struct net_device *, int);
121static int igb_set_mac(struct net_device *, void *);
68d480c4 122static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
123static irqreturn_t igb_intr(int irq, void *);
124static irqreturn_t igb_intr_msi(int irq, void *);
125static irqreturn_t igb_msix_other(int irq, void *);
047e0030 126static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 127#ifdef CONFIG_IGB_DCA
047e0030 128static void igb_update_dca(struct igb_q_vector *);
fe4506b6 129static void igb_setup_dca(struct igb_adapter *);
421e02f0 130#endif /* CONFIG_IGB_DCA */
047e0030 131static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 132static int igb_poll(struct napi_struct *, int);
047e0030 133static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
134static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
135static void igb_tx_timeout(struct net_device *);
136static void igb_reset_task(struct work_struct *);
137static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
138static void igb_vlan_rx_add_vid(struct net_device *, u16);
139static void igb_vlan_rx_kill_vid(struct net_device *, u16);
140static void igb_restore_vlan(struct igb_adapter *);
26ad9178 141static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
142static void igb_ping_all_vfs(struct igb_adapter *);
143static void igb_msg_task(struct igb_adapter *);
4ae196df 144static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 145static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 146static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
147static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
148static int igb_ndo_set_vf_vlan(struct net_device *netdev,
149 int vf, u16 vlan, u8 qos);
150static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
151static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
152 struct ifla_vf_info *ivi);
9d5c8243 153
9d5c8243 154#ifdef CONFIG_PM
3fe7c4c9 155static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
156static int igb_resume(struct pci_dev *);
157#endif
158static void igb_shutdown(struct pci_dev *);
421e02f0 159#ifdef CONFIG_IGB_DCA
fe4506b6
JC
160static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
161static struct notifier_block dca_notifier = {
162 .notifier_call = igb_notify_dca,
163 .next = NULL,
164 .priority = 0
165};
166#endif
9d5c8243
AK
167#ifdef CONFIG_NET_POLL_CONTROLLER
168/* for netdump / net console */
169static void igb_netpoll(struct net_device *);
170#endif
37680117 171#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
172static unsigned int max_vfs = 0;
173module_param(max_vfs, uint, 0);
174MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
175 "per physical function");
176#endif /* CONFIG_PCI_IOV */
177
9d5c8243
AK
178static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
179 pci_channel_state_t);
180static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
181static void igb_io_resume(struct pci_dev *);
182
183static struct pci_error_handlers igb_err_handler = {
184 .error_detected = igb_io_error_detected,
185 .slot_reset = igb_io_slot_reset,
186 .resume = igb_io_resume,
187};
188
189
190static struct pci_driver igb_driver = {
191 .name = igb_driver_name,
192 .id_table = igb_pci_tbl,
193 .probe = igb_probe,
194 .remove = __devexit_p(igb_remove),
195#ifdef CONFIG_PM
196 /* Power Managment Hooks */
197 .suspend = igb_suspend,
198 .resume = igb_resume,
199#endif
200 .shutdown = igb_shutdown,
201 .err_handler = &igb_err_handler
202};
203
204MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
205MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
206MODULE_LICENSE("GPL");
207MODULE_VERSION(DRV_VERSION);
208
c97ec42a
TI
209struct igb_reg_info {
210 u32 ofs;
211 char *name;
212};
213
214static const struct igb_reg_info igb_reg_info_tbl[] = {
215
216 /* General Registers */
217 {E1000_CTRL, "CTRL"},
218 {E1000_STATUS, "STATUS"},
219 {E1000_CTRL_EXT, "CTRL_EXT"},
220
221 /* Interrupt Registers */
222 {E1000_ICR, "ICR"},
223
224 /* RX Registers */
225 {E1000_RCTL, "RCTL"},
226 {E1000_RDLEN(0), "RDLEN"},
227 {E1000_RDH(0), "RDH"},
228 {E1000_RDT(0), "RDT"},
229 {E1000_RXDCTL(0), "RXDCTL"},
230 {E1000_RDBAL(0), "RDBAL"},
231 {E1000_RDBAH(0), "RDBAH"},
232
233 /* TX Registers */
234 {E1000_TCTL, "TCTL"},
235 {E1000_TDBAL(0), "TDBAL"},
236 {E1000_TDBAH(0), "TDBAH"},
237 {E1000_TDLEN(0), "TDLEN"},
238 {E1000_TDH(0), "TDH"},
239 {E1000_TDT(0), "TDT"},
240 {E1000_TXDCTL(0), "TXDCTL"},
241 {E1000_TDFH, "TDFH"},
242 {E1000_TDFT, "TDFT"},
243 {E1000_TDFHS, "TDFHS"},
244 {E1000_TDFPC, "TDFPC"},
245
246 /* List Terminator */
247 {}
248};
249
250/*
251 * igb_regdump - register printout routine
252 */
253static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
254{
255 int n = 0;
256 char rname[16];
257 u32 regs[8];
258
259 switch (reginfo->ofs) {
260 case E1000_RDLEN(0):
261 for (n = 0; n < 4; n++)
262 regs[n] = rd32(E1000_RDLEN(n));
263 break;
264 case E1000_RDH(0):
265 for (n = 0; n < 4; n++)
266 regs[n] = rd32(E1000_RDH(n));
267 break;
268 case E1000_RDT(0):
269 for (n = 0; n < 4; n++)
270 regs[n] = rd32(E1000_RDT(n));
271 break;
272 case E1000_RXDCTL(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RXDCTL(n));
275 break;
276 case E1000_RDBAL(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDBAL(n));
279 break;
280 case E1000_RDBAH(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDBAH(n));
283 break;
284 case E1000_TDBAL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RDBAL(n));
287 break;
288 case E1000_TDBAH(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_TDBAH(n));
291 break;
292 case E1000_TDLEN(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_TDLEN(n));
295 break;
296 case E1000_TDH(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_TDH(n));
299 break;
300 case E1000_TDT(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDT(n));
303 break;
304 case E1000_TXDCTL(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TXDCTL(n));
307 break;
308 default:
309 printk(KERN_INFO "%-15s %08x\n",
310 reginfo->name, rd32(reginfo->ofs));
311 return;
312 }
313
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 printk(KERN_INFO "%-15s ", rname);
316 for (n = 0; n < 4; n++)
317 printk(KERN_CONT "%08x ", regs[n]);
318 printk(KERN_CONT "\n");
319}
320
321/*
322 * igb_dump - Print registers, tx-rings and rx-rings
323 */
324static void igb_dump(struct igb_adapter *adapter)
325{
326 struct net_device *netdev = adapter->netdev;
327 struct e1000_hw *hw = &adapter->hw;
328 struct igb_reg_info *reginfo;
329 int n = 0;
330 struct igb_ring *tx_ring;
331 union e1000_adv_tx_desc *tx_desc;
332 struct my_u0 { u64 a; u64 b; } *u0;
333 struct igb_buffer *buffer_info;
334 struct igb_ring *rx_ring;
335 union e1000_adv_rx_desc *rx_desc;
336 u32 staterr;
337 int i = 0;
338
339 if (!netif_msg_hw(adapter))
340 return;
341
342 /* Print netdevice Info */
343 if (netdev) {
344 dev_info(&adapter->pdev->dev, "Net device Info\n");
345 printk(KERN_INFO "Device Name state "
346 "trans_start last_rx\n");
347 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
348 netdev->name,
349 netdev->state,
350 netdev->trans_start,
351 netdev->last_rx);
352 }
353
354 /* Print Registers */
355 dev_info(&adapter->pdev->dev, "Register Dump\n");
356 printk(KERN_INFO " Register Name Value\n");
357 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
358 reginfo->name; reginfo++) {
359 igb_regdump(hw, reginfo);
360 }
361
362 /* Print TX Ring Summary */
363 if (!netdev || !netif_running(netdev))
364 goto exit;
365
366 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
367 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
368 " leng ntw timestamp\n");
369 for (n = 0; n < adapter->num_tx_queues; n++) {
370 tx_ring = adapter->tx_ring[n];
371 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
372 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
373 n, tx_ring->next_to_use, tx_ring->next_to_clean,
374 (u64)buffer_info->dma,
375 buffer_info->length,
376 buffer_info->next_to_watch,
377 (u64)buffer_info->time_stamp);
378 }
379
380 /* Print TX Rings */
381 if (!netif_msg_tx_done(adapter))
382 goto rx_ring_summary;
383
384 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
385
386 /* Transmit Descriptor Formats
387 *
388 * Advanced Transmit Descriptor
389 * +--------------------------------------------------------------+
390 * 0 | Buffer Address [63:0] |
391 * +--------------------------------------------------------------+
392 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
393 * +--------------------------------------------------------------+
394 * 63 46 45 40 39 38 36 35 32 31 24 15 0
395 */
396
397 for (n = 0; n < adapter->num_tx_queues; n++) {
398 tx_ring = adapter->tx_ring[n];
399 printk(KERN_INFO "------------------------------------\n");
400 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
401 printk(KERN_INFO "------------------------------------\n");
402 printk(KERN_INFO "T [desc] [address 63:0 ] "
403 "[PlPOCIStDDM Ln] [bi->dma ] "
404 "leng ntw timestamp bi->skb\n");
405
406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
407 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
408 buffer_info = &tx_ring->buffer_info[i];
409 u0 = (struct my_u0 *)tx_desc;
410 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
411 " %04X %3X %016llX %p", i,
412 le64_to_cpu(u0->a),
413 le64_to_cpu(u0->b),
414 (u64)buffer_info->dma,
415 buffer_info->length,
416 buffer_info->next_to_watch,
417 (u64)buffer_info->time_stamp,
418 buffer_info->skb);
419 if (i == tx_ring->next_to_use &&
420 i == tx_ring->next_to_clean)
421 printk(KERN_CONT " NTC/U\n");
422 else if (i == tx_ring->next_to_use)
423 printk(KERN_CONT " NTU\n");
424 else if (i == tx_ring->next_to_clean)
425 printk(KERN_CONT " NTC\n");
426 else
427 printk(KERN_CONT "\n");
428
429 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
430 print_hex_dump(KERN_INFO, "",
431 DUMP_PREFIX_ADDRESS,
432 16, 1, phys_to_virt(buffer_info->dma),
433 buffer_info->length, true);
434 }
435 }
436
437 /* Print RX Rings Summary */
438rx_ring_summary:
439 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
440 printk(KERN_INFO "Queue [NTU] [NTC]\n");
441 for (n = 0; n < adapter->num_rx_queues; n++) {
442 rx_ring = adapter->rx_ring[n];
443 printk(KERN_INFO " %5d %5X %5X\n", n,
444 rx_ring->next_to_use, rx_ring->next_to_clean);
445 }
446
447 /* Print RX Rings */
448 if (!netif_msg_rx_status(adapter))
449 goto exit;
450
451 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
452
453 /* Advanced Receive Descriptor (Read) Format
454 * 63 1 0
455 * +-----------------------------------------------------+
456 * 0 | Packet Buffer Address [63:1] |A0/NSE|
457 * +----------------------------------------------+------+
458 * 8 | Header Buffer Address [63:1] | DD |
459 * +-----------------------------------------------------+
460 *
461 *
462 * Advanced Receive Descriptor (Write-Back) Format
463 *
464 * 63 48 47 32 31 30 21 20 17 16 4 3 0
465 * +------------------------------------------------------+
466 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
467 * | Checksum Ident | | | | Type | Type |
468 * +------------------------------------------------------+
469 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
470 * +------------------------------------------------------+
471 * 63 48 47 32 31 20 19 0
472 */
473
474 for (n = 0; n < adapter->num_rx_queues; n++) {
475 rx_ring = adapter->rx_ring[n];
476 printk(KERN_INFO "------------------------------------\n");
477 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
478 printk(KERN_INFO "------------------------------------\n");
479 printk(KERN_INFO "R [desc] [ PktBuf A0] "
480 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
481 "<-- Adv Rx Read format\n");
482 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
483 "[vl er S cks ln] ---------------- [bi->skb] "
484 "<-- Adv Rx Write-Back format\n");
485
486 for (i = 0; i < rx_ring->count; i++) {
487 buffer_info = &rx_ring->buffer_info[i];
488 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
489 u0 = (struct my_u0 *)rx_desc;
490 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
491 if (staterr & E1000_RXD_STAT_DD) {
492 /* Descriptor Done */
493 printk(KERN_INFO "RWB[0x%03X] %016llX "
494 "%016llX ---------------- %p", i,
495 le64_to_cpu(u0->a),
496 le64_to_cpu(u0->b),
497 buffer_info->skb);
498 } else {
499 printk(KERN_INFO "R [0x%03X] %016llX "
500 "%016llX %016llX %p", i,
501 le64_to_cpu(u0->a),
502 le64_to_cpu(u0->b),
503 (u64)buffer_info->dma,
504 buffer_info->skb);
505
506 if (netif_msg_pktdata(adapter)) {
507 print_hex_dump(KERN_INFO, "",
508 DUMP_PREFIX_ADDRESS,
509 16, 1,
510 phys_to_virt(buffer_info->dma),
511 rx_ring->rx_buffer_len, true);
512 if (rx_ring->rx_buffer_len
513 < IGB_RXBUFFER_1024)
514 print_hex_dump(KERN_INFO, "",
515 DUMP_PREFIX_ADDRESS,
516 16, 1,
517 phys_to_virt(
518 buffer_info->page_dma +
519 buffer_info->page_offset),
520 PAGE_SIZE/2, true);
521 }
522 }
523
524 if (i == rx_ring->next_to_use)
525 printk(KERN_CONT " NTU\n");
526 else if (i == rx_ring->next_to_clean)
527 printk(KERN_CONT " NTC\n");
528 else
529 printk(KERN_CONT "\n");
530
531 }
532 }
533
534exit:
535 return;
536}
537
538
38c845c7
PO
539/**
540 * igb_read_clock - read raw cycle counter (to be used by time counter)
541 */
542static cycle_t igb_read_clock(const struct cyclecounter *tc)
543{
544 struct igb_adapter *adapter =
545 container_of(tc, struct igb_adapter, cycles);
546 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
547 u64 stamp = 0;
548 int shift = 0;
38c845c7 549
55cac248
AD
550 /*
551 * The timestamp latches on lowest register read. For the 82580
552 * the lowest register is SYSTIMR instead of SYSTIML. However we never
553 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
554 */
555 if (hw->mac.type == e1000_82580) {
556 stamp = rd32(E1000_SYSTIMR) >> 8;
557 shift = IGB_82580_TSYNC_SHIFT;
558 }
559
c5b9bd5e
AD
560 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
561 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
562 return stamp;
563}
564
9d5c8243 565/**
c041076a 566 * igb_get_hw_dev - return device
9d5c8243
AK
567 * used by hardware layer to print debugging information
568 **/
c041076a 569struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
570{
571 struct igb_adapter *adapter = hw->back;
c041076a 572 return adapter->netdev;
9d5c8243 573}
38c845c7 574
9d5c8243
AK
575/**
576 * igb_init_module - Driver Registration Routine
577 *
578 * igb_init_module is the first routine called when the driver is
579 * loaded. All it does is register with the PCI subsystem.
580 **/
581static int __init igb_init_module(void)
582{
583 int ret;
584 printk(KERN_INFO "%s - version %s\n",
585 igb_driver_string, igb_driver_version);
586
587 printk(KERN_INFO "%s\n", igb_copyright);
588
421e02f0 589#ifdef CONFIG_IGB_DCA
fe4506b6
JC
590 dca_register_notify(&dca_notifier);
591#endif
bbd98fe4 592 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
593 return ret;
594}
595
596module_init(igb_init_module);
597
598/**
599 * igb_exit_module - Driver Exit Cleanup Routine
600 *
601 * igb_exit_module is called just before the driver is removed
602 * from memory.
603 **/
604static void __exit igb_exit_module(void)
605{
421e02f0 606#ifdef CONFIG_IGB_DCA
fe4506b6
JC
607 dca_unregister_notify(&dca_notifier);
608#endif
9d5c8243
AK
609 pci_unregister_driver(&igb_driver);
610}
611
612module_exit(igb_exit_module);
613
26bc19ec
AD
614#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
615/**
616 * igb_cache_ring_register - Descriptor ring to register mapping
617 * @adapter: board private structure to initialize
618 *
619 * Once we know the feature-set enabled for the device, we'll cache
620 * the register offset the descriptor ring is assigned to.
621 **/
622static void igb_cache_ring_register(struct igb_adapter *adapter)
623{
ee1b9f06 624 int i = 0, j = 0;
047e0030 625 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
626
627 switch (adapter->hw.mac.type) {
628 case e1000_82576:
629 /* The queues are allocated for virtualization such that VF 0
630 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
631 * In order to avoid collision we start at the first free queue
632 * and continue consuming queues in the same sequence
633 */
ee1b9f06 634 if (adapter->vfs_allocated_count) {
a99955fc 635 for (; i < adapter->rss_queues; i++)
3025a446
AD
636 adapter->rx_ring[i]->reg_idx = rbase_offset +
637 Q_IDX_82576(i);
ee1b9f06 638 }
26bc19ec 639 case e1000_82575:
55cac248 640 case e1000_82580:
d2ba2ed8 641 case e1000_i350:
26bc19ec 642 default:
ee1b9f06 643 for (; i < adapter->num_rx_queues; i++)
3025a446 644 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 645 for (; j < adapter->num_tx_queues; j++)
3025a446 646 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
647 break;
648 }
649}
650
047e0030
AD
651static void igb_free_queues(struct igb_adapter *adapter)
652{
3025a446 653 int i;
047e0030 654
3025a446
AD
655 for (i = 0; i < adapter->num_tx_queues; i++) {
656 kfree(adapter->tx_ring[i]);
657 adapter->tx_ring[i] = NULL;
658 }
659 for (i = 0; i < adapter->num_rx_queues; i++) {
660 kfree(adapter->rx_ring[i]);
661 adapter->rx_ring[i] = NULL;
662 }
047e0030
AD
663 adapter->num_rx_queues = 0;
664 adapter->num_tx_queues = 0;
665}
666
9d5c8243
AK
667/**
668 * igb_alloc_queues - Allocate memory for all rings
669 * @adapter: board private structure to initialize
670 *
671 * We allocate one ring per queue at run-time since we don't know the
672 * number of queues at compile-time.
673 **/
674static int igb_alloc_queues(struct igb_adapter *adapter)
675{
3025a446 676 struct igb_ring *ring;
9d5c8243
AK
677 int i;
678
661086df 679 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
680 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
681 if (!ring)
682 goto err;
68fd9910 683 ring->count = adapter->tx_ring_count;
661086df 684 ring->queue_index = i;
59d71989 685 ring->dev = &adapter->pdev->dev;
e694e964 686 ring->netdev = adapter->netdev;
85ad76b2
AD
687 /* For 82575, context index must be unique per ring. */
688 if (adapter->hw.mac.type == e1000_82575)
689 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 690 adapter->tx_ring[i] = ring;
661086df 691 }
85ad76b2 692
9d5c8243 693 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
694 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
695 if (!ring)
696 goto err;
68fd9910 697 ring->count = adapter->rx_ring_count;
844290e5 698 ring->queue_index = i;
59d71989 699 ring->dev = &adapter->pdev->dev;
e694e964 700 ring->netdev = adapter->netdev;
4c844851 701 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
702 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
703 /* set flag indicating ring supports SCTP checksum offload */
704 if (adapter->hw.mac.type >= e1000_82576)
705 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 706 adapter->rx_ring[i] = ring;
9d5c8243 707 }
26bc19ec
AD
708
709 igb_cache_ring_register(adapter);
9d5c8243 710
047e0030 711 return 0;
a88f10ec 712
047e0030
AD
713err:
714 igb_free_queues(adapter);
d1a8c9e1 715
047e0030 716 return -ENOMEM;
a88f10ec
AD
717}
718
9d5c8243 719#define IGB_N0_QUEUE -1
047e0030 720static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
721{
722 u32 msixbm = 0;
047e0030 723 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 724 struct e1000_hw *hw = &adapter->hw;
2d064c06 725 u32 ivar, index;
047e0030
AD
726 int rx_queue = IGB_N0_QUEUE;
727 int tx_queue = IGB_N0_QUEUE;
728
729 if (q_vector->rx_ring)
730 rx_queue = q_vector->rx_ring->reg_idx;
731 if (q_vector->tx_ring)
732 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
733
734 switch (hw->mac.type) {
735 case e1000_82575:
9d5c8243
AK
736 /* The 82575 assigns vectors using a bitmask, which matches the
737 bitmask for the EICR/EIMS/EIMC registers. To assign one
738 or more queues to a vector, we write the appropriate bits
739 into the MSIXBM register for that vector. */
047e0030 740 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 741 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 742 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 743 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
744 if (!adapter->msix_entries && msix_vector == 0)
745 msixbm |= E1000_EIMS_OTHER;
9d5c8243 746 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 747 q_vector->eims_value = msixbm;
2d064c06
AD
748 break;
749 case e1000_82576:
26bc19ec 750 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
751 Each queue has a single entry in the table to which we write
752 a vector number along with a "valid" bit. Sadly, the layout
753 of the table is somewhat counterintuitive. */
754 if (rx_queue > IGB_N0_QUEUE) {
047e0030 755 index = (rx_queue & 0x7);
2d064c06 756 ivar = array_rd32(E1000_IVAR0, index);
047e0030 757 if (rx_queue < 8) {
26bc19ec
AD
758 /* vector goes into low byte of register */
759 ivar = ivar & 0xFFFFFF00;
760 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
761 } else {
762 /* vector goes into third byte of register */
763 ivar = ivar & 0xFF00FFFF;
764 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 765 }
2d064c06
AD
766 array_wr32(E1000_IVAR0, index, ivar);
767 }
768 if (tx_queue > IGB_N0_QUEUE) {
047e0030 769 index = (tx_queue & 0x7);
2d064c06 770 ivar = array_rd32(E1000_IVAR0, index);
047e0030 771 if (tx_queue < 8) {
26bc19ec
AD
772 /* vector goes into second byte of register */
773 ivar = ivar & 0xFFFF00FF;
774 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
775 } else {
776 /* vector goes into high byte of register */
777 ivar = ivar & 0x00FFFFFF;
778 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 779 }
2d064c06
AD
780 array_wr32(E1000_IVAR0, index, ivar);
781 }
047e0030 782 q_vector->eims_value = 1 << msix_vector;
2d064c06 783 break;
55cac248 784 case e1000_82580:
d2ba2ed8 785 case e1000_i350:
55cac248
AD
786 /* 82580 uses the same table-based approach as 82576 but has fewer
787 entries as a result we carry over for queues greater than 4. */
788 if (rx_queue > IGB_N0_QUEUE) {
789 index = (rx_queue >> 1);
790 ivar = array_rd32(E1000_IVAR0, index);
791 if (rx_queue & 0x1) {
792 /* vector goes into third byte of register */
793 ivar = ivar & 0xFF00FFFF;
794 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
795 } else {
796 /* vector goes into low byte of register */
797 ivar = ivar & 0xFFFFFF00;
798 ivar |= msix_vector | E1000_IVAR_VALID;
799 }
800 array_wr32(E1000_IVAR0, index, ivar);
801 }
802 if (tx_queue > IGB_N0_QUEUE) {
803 index = (tx_queue >> 1);
804 ivar = array_rd32(E1000_IVAR0, index);
805 if (tx_queue & 0x1) {
806 /* vector goes into high byte of register */
807 ivar = ivar & 0x00FFFFFF;
808 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
809 } else {
810 /* vector goes into second byte of register */
811 ivar = ivar & 0xFFFF00FF;
812 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
813 }
814 array_wr32(E1000_IVAR0, index, ivar);
815 }
816 q_vector->eims_value = 1 << msix_vector;
817 break;
2d064c06
AD
818 default:
819 BUG();
820 break;
821 }
26b39276
AD
822
823 /* add q_vector eims value to global eims_enable_mask */
824 adapter->eims_enable_mask |= q_vector->eims_value;
825
826 /* configure q_vector to set itr on first interrupt */
827 q_vector->set_itr = 1;
9d5c8243
AK
828}
829
830/**
831 * igb_configure_msix - Configure MSI-X hardware
832 *
833 * igb_configure_msix sets up the hardware to properly
834 * generate MSI-X interrupts.
835 **/
836static void igb_configure_msix(struct igb_adapter *adapter)
837{
838 u32 tmp;
839 int i, vector = 0;
840 struct e1000_hw *hw = &adapter->hw;
841
842 adapter->eims_enable_mask = 0;
9d5c8243
AK
843
844 /* set vector for other causes, i.e. link changes */
2d064c06
AD
845 switch (hw->mac.type) {
846 case e1000_82575:
9d5c8243
AK
847 tmp = rd32(E1000_CTRL_EXT);
848 /* enable MSI-X PBA support*/
849 tmp |= E1000_CTRL_EXT_PBA_CLR;
850
851 /* Auto-Mask interrupts upon ICR read. */
852 tmp |= E1000_CTRL_EXT_EIAME;
853 tmp |= E1000_CTRL_EXT_IRCA;
854
855 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
856
857 /* enable msix_other interrupt */
858 array_wr32(E1000_MSIXBM(0), vector++,
859 E1000_EIMS_OTHER);
844290e5 860 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 861
2d064c06
AD
862 break;
863
864 case e1000_82576:
55cac248 865 case e1000_82580:
d2ba2ed8 866 case e1000_i350:
047e0030
AD
867 /* Turn on MSI-X capability first, or our settings
868 * won't stick. And it will take days to debug. */
869 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
870 E1000_GPIE_PBA | E1000_GPIE_EIAME |
871 E1000_GPIE_NSICR);
872
873 /* enable msix_other interrupt */
874 adapter->eims_other = 1 << vector;
2d064c06 875 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 876
047e0030 877 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
878 break;
879 default:
880 /* do nothing, since nothing else supports MSI-X */
881 break;
882 } /* switch (hw->mac.type) */
047e0030
AD
883
884 adapter->eims_enable_mask |= adapter->eims_other;
885
26b39276
AD
886 for (i = 0; i < adapter->num_q_vectors; i++)
887 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 888
9d5c8243
AK
889 wrfl();
890}
891
892/**
893 * igb_request_msix - Initialize MSI-X interrupts
894 *
895 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
896 * kernel.
897 **/
898static int igb_request_msix(struct igb_adapter *adapter)
899{
900 struct net_device *netdev = adapter->netdev;
047e0030 901 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
902 int i, err = 0, vector = 0;
903
047e0030 904 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 905 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
906 if (err)
907 goto out;
908 vector++;
909
910 for (i = 0; i < adapter->num_q_vectors; i++) {
911 struct igb_q_vector *q_vector = adapter->q_vector[i];
912
913 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
914
915 if (q_vector->rx_ring && q_vector->tx_ring)
916 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
917 q_vector->rx_ring->queue_index);
918 else if (q_vector->tx_ring)
919 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
920 q_vector->tx_ring->queue_index);
921 else if (q_vector->rx_ring)
922 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
923 q_vector->rx_ring->queue_index);
9d5c8243 924 else
047e0030
AD
925 sprintf(q_vector->name, "%s-unused", netdev->name);
926
9d5c8243 927 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 928 igb_msix_ring, 0, q_vector->name,
047e0030 929 q_vector);
9d5c8243
AK
930 if (err)
931 goto out;
9d5c8243
AK
932 vector++;
933 }
934
9d5c8243
AK
935 igb_configure_msix(adapter);
936 return 0;
937out:
938 return err;
939}
940
941static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
942{
943 if (adapter->msix_entries) {
944 pci_disable_msix(adapter->pdev);
945 kfree(adapter->msix_entries);
946 adapter->msix_entries = NULL;
047e0030 947 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 948 pci_disable_msi(adapter->pdev);
047e0030 949 }
9d5c8243
AK
950}
951
047e0030
AD
952/**
953 * igb_free_q_vectors - Free memory allocated for interrupt vectors
954 * @adapter: board private structure to initialize
955 *
956 * This function frees the memory allocated to the q_vectors. In addition if
957 * NAPI is enabled it will delete any references to the NAPI struct prior
958 * to freeing the q_vector.
959 **/
960static void igb_free_q_vectors(struct igb_adapter *adapter)
961{
962 int v_idx;
963
964 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
965 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
966 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
967 if (!q_vector)
968 continue;
047e0030
AD
969 netif_napi_del(&q_vector->napi);
970 kfree(q_vector);
971 }
972 adapter->num_q_vectors = 0;
973}
974
975/**
976 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
977 *
978 * This function resets the device so that it has 0 rx queues, tx queues, and
979 * MSI-X interrupts allocated.
980 */
981static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
982{
983 igb_free_queues(adapter);
984 igb_free_q_vectors(adapter);
985 igb_reset_interrupt_capability(adapter);
986}
9d5c8243
AK
987
988/**
989 * igb_set_interrupt_capability - set MSI or MSI-X if supported
990 *
991 * Attempt to configure interrupts using the best available
992 * capabilities of the hardware and kernel.
993 **/
21adef3e 994static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
995{
996 int err;
997 int numvecs, i;
998
83b7180d 999 /* Number of supported queues. */
a99955fc 1000 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1001 if (adapter->vfs_allocated_count)
1002 adapter->num_tx_queues = 1;
1003 else
1004 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1005
047e0030
AD
1006 /* start with one vector for every rx queue */
1007 numvecs = adapter->num_rx_queues;
1008
3ad2f3fb 1009 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1010 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1011 numvecs += adapter->num_tx_queues;
047e0030
AD
1012
1013 /* store the number of vectors reserved for queues */
1014 adapter->num_q_vectors = numvecs;
1015
1016 /* add 1 vector for link status interrupts */
1017 numvecs++;
9d5c8243
AK
1018 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1019 GFP_KERNEL);
1020 if (!adapter->msix_entries)
1021 goto msi_only;
1022
1023 for (i = 0; i < numvecs; i++)
1024 adapter->msix_entries[i].entry = i;
1025
1026 err = pci_enable_msix(adapter->pdev,
1027 adapter->msix_entries,
1028 numvecs);
1029 if (err == 0)
34a20e89 1030 goto out;
9d5c8243
AK
1031
1032 igb_reset_interrupt_capability(adapter);
1033
1034 /* If we can't do MSI-X, try MSI */
1035msi_only:
2a3abf6d
AD
1036#ifdef CONFIG_PCI_IOV
1037 /* disable SR-IOV for non MSI-X configurations */
1038 if (adapter->vf_data) {
1039 struct e1000_hw *hw = &adapter->hw;
1040 /* disable iov and allow time for transactions to clear */
1041 pci_disable_sriov(adapter->pdev);
1042 msleep(500);
1043
1044 kfree(adapter->vf_data);
1045 adapter->vf_data = NULL;
1046 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1047 msleep(100);
1048 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1049 }
1050#endif
4fc82adf 1051 adapter->vfs_allocated_count = 0;
a99955fc 1052 adapter->rss_queues = 1;
4fc82adf 1053 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1054 adapter->num_rx_queues = 1;
661086df 1055 adapter->num_tx_queues = 1;
047e0030 1056 adapter->num_q_vectors = 1;
9d5c8243 1057 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1058 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1059out:
21adef3e
BH
1060 /* Notify the stack of the (possibly) reduced queue counts. */
1061 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1062 return netif_set_real_num_rx_queues(adapter->netdev,
1063 adapter->num_rx_queues);
9d5c8243
AK
1064}
1065
047e0030
AD
1066/**
1067 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1068 * @adapter: board private structure to initialize
1069 *
1070 * We allocate one q_vector per queue interrupt. If allocation fails we
1071 * return -ENOMEM.
1072 **/
1073static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1074{
1075 struct igb_q_vector *q_vector;
1076 struct e1000_hw *hw = &adapter->hw;
1077 int v_idx;
1078
1079 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1080 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1081 if (!q_vector)
1082 goto err_out;
1083 q_vector->adapter = adapter;
047e0030
AD
1084 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1085 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1086 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1087 adapter->q_vector[v_idx] = q_vector;
1088 }
1089 return 0;
1090
1091err_out:
fe0592b4 1092 igb_free_q_vectors(adapter);
047e0030
AD
1093 return -ENOMEM;
1094}
1095
1096static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1097 int ring_idx, int v_idx)
1098{
3025a446 1099 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1100
3025a446 1101 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1102 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1103 q_vector->itr_val = adapter->rx_itr_setting;
1104 if (q_vector->itr_val && q_vector->itr_val <= 3)
1105 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1106}
1107
1108static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1109 int ring_idx, int v_idx)
1110{
3025a446 1111 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1112
3025a446 1113 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1114 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1115 q_vector->itr_val = adapter->tx_itr_setting;
1116 if (q_vector->itr_val && q_vector->itr_val <= 3)
1117 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1118}
1119
1120/**
1121 * igb_map_ring_to_vector - maps allocated queues to vectors
1122 *
1123 * This function maps the recently allocated queues to vectors.
1124 **/
1125static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1126{
1127 int i;
1128 int v_idx = 0;
1129
1130 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1131 (adapter->num_q_vectors < adapter->num_tx_queues))
1132 return -ENOMEM;
1133
1134 if (adapter->num_q_vectors >=
1135 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1136 for (i = 0; i < adapter->num_rx_queues; i++)
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1138 for (i = 0; i < adapter->num_tx_queues; i++)
1139 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1140 } else {
1141 for (i = 0; i < adapter->num_rx_queues; i++) {
1142 if (i < adapter->num_tx_queues)
1143 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1144 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1145 }
1146 for (; i < adapter->num_tx_queues; i++)
1147 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1148 }
1149 return 0;
1150}
1151
1152/**
1153 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1154 *
1155 * This function initializes the interrupts and allocates all of the queues.
1156 **/
1157static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1158{
1159 struct pci_dev *pdev = adapter->pdev;
1160 int err;
1161
21adef3e
BH
1162 err = igb_set_interrupt_capability(adapter);
1163 if (err)
1164 return err;
047e0030
AD
1165
1166 err = igb_alloc_q_vectors(adapter);
1167 if (err) {
1168 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1169 goto err_alloc_q_vectors;
1170 }
1171
1172 err = igb_alloc_queues(adapter);
1173 if (err) {
1174 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1175 goto err_alloc_queues;
1176 }
1177
1178 err = igb_map_ring_to_vector(adapter);
1179 if (err) {
1180 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1181 goto err_map_queues;
1182 }
1183
1184
1185 return 0;
1186err_map_queues:
1187 igb_free_queues(adapter);
1188err_alloc_queues:
1189 igb_free_q_vectors(adapter);
1190err_alloc_q_vectors:
1191 igb_reset_interrupt_capability(adapter);
1192 return err;
1193}
1194
9d5c8243
AK
1195/**
1196 * igb_request_irq - initialize interrupts
1197 *
1198 * Attempts to configure interrupts using the best available
1199 * capabilities of the hardware and kernel.
1200 **/
1201static int igb_request_irq(struct igb_adapter *adapter)
1202{
1203 struct net_device *netdev = adapter->netdev;
047e0030 1204 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1205 int err = 0;
1206
1207 if (adapter->msix_entries) {
1208 err = igb_request_msix(adapter);
844290e5 1209 if (!err)
9d5c8243 1210 goto request_done;
9d5c8243 1211 /* fall back to MSI */
047e0030 1212 igb_clear_interrupt_scheme(adapter);
9d5c8243 1213 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1214 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1215 igb_free_all_tx_resources(adapter);
1216 igb_free_all_rx_resources(adapter);
047e0030 1217 adapter->num_tx_queues = 1;
9d5c8243 1218 adapter->num_rx_queues = 1;
047e0030
AD
1219 adapter->num_q_vectors = 1;
1220 err = igb_alloc_q_vectors(adapter);
1221 if (err) {
1222 dev_err(&pdev->dev,
1223 "Unable to allocate memory for vectors\n");
1224 goto request_done;
1225 }
1226 err = igb_alloc_queues(adapter);
1227 if (err) {
1228 dev_err(&pdev->dev,
1229 "Unable to allocate memory for queues\n");
1230 igb_free_q_vectors(adapter);
1231 goto request_done;
1232 }
1233 igb_setup_all_tx_resources(adapter);
1234 igb_setup_all_rx_resources(adapter);
844290e5 1235 } else {
feeb2721 1236 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1237 }
844290e5 1238
7dfc16fa 1239 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1240 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1241 netdev->name, adapter);
9d5c8243
AK
1242 if (!err)
1243 goto request_done;
047e0030 1244
9d5c8243
AK
1245 /* fall back to legacy interrupts */
1246 igb_reset_interrupt_capability(adapter);
7dfc16fa 1247 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1248 }
1249
a0607fd3 1250 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1251 netdev->name, adapter);
9d5c8243 1252
6cb5e577 1253 if (err)
9d5c8243
AK
1254 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1255 err);
9d5c8243
AK
1256
1257request_done:
1258 return err;
1259}
1260
1261static void igb_free_irq(struct igb_adapter *adapter)
1262{
9d5c8243
AK
1263 if (adapter->msix_entries) {
1264 int vector = 0, i;
1265
047e0030 1266 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1267
047e0030
AD
1268 for (i = 0; i < adapter->num_q_vectors; i++) {
1269 struct igb_q_vector *q_vector = adapter->q_vector[i];
1270 free_irq(adapter->msix_entries[vector++].vector,
1271 q_vector);
1272 }
1273 } else {
1274 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1275 }
9d5c8243
AK
1276}
1277
1278/**
1279 * igb_irq_disable - Mask off interrupt generation on the NIC
1280 * @adapter: board private structure
1281 **/
1282static void igb_irq_disable(struct igb_adapter *adapter)
1283{
1284 struct e1000_hw *hw = &adapter->hw;
1285
25568a53
AD
1286 /*
1287 * we need to be careful when disabling interrupts. The VFs are also
1288 * mapped into these registers and so clearing the bits can cause
1289 * issues on the VF drivers so we only need to clear what we set
1290 */
9d5c8243 1291 if (adapter->msix_entries) {
2dfd1212
AD
1292 u32 regval = rd32(E1000_EIAM);
1293 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1294 wr32(E1000_EIMC, adapter->eims_enable_mask);
1295 regval = rd32(E1000_EIAC);
1296 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1297 }
844290e5
PW
1298
1299 wr32(E1000_IAM, 0);
9d5c8243
AK
1300 wr32(E1000_IMC, ~0);
1301 wrfl();
81a61859
ET
1302 if (adapter->msix_entries) {
1303 int i;
1304 for (i = 0; i < adapter->num_q_vectors; i++)
1305 synchronize_irq(adapter->msix_entries[i].vector);
1306 } else {
1307 synchronize_irq(adapter->pdev->irq);
1308 }
9d5c8243
AK
1309}
1310
1311/**
1312 * igb_irq_enable - Enable default interrupt generation settings
1313 * @adapter: board private structure
1314 **/
1315static void igb_irq_enable(struct igb_adapter *adapter)
1316{
1317 struct e1000_hw *hw = &adapter->hw;
1318
1319 if (adapter->msix_entries) {
25568a53 1320 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1321 u32 regval = rd32(E1000_EIAC);
1322 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1323 regval = rd32(E1000_EIAM);
1324 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1325 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1326 if (adapter->vfs_allocated_count) {
4ae196df 1327 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1328 ims |= E1000_IMS_VMMB;
1329 }
55cac248
AD
1330 if (adapter->hw.mac.type == e1000_82580)
1331 ims |= E1000_IMS_DRSTA;
1332
25568a53 1333 wr32(E1000_IMS, ims);
844290e5 1334 } else {
55cac248
AD
1335 wr32(E1000_IMS, IMS_ENABLE_MASK |
1336 E1000_IMS_DRSTA);
1337 wr32(E1000_IAM, IMS_ENABLE_MASK |
1338 E1000_IMS_DRSTA);
844290e5 1339 }
9d5c8243
AK
1340}
1341
1342static void igb_update_mng_vlan(struct igb_adapter *adapter)
1343{
51466239 1344 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1345 u16 vid = adapter->hw.mng_cookie.vlan_id;
1346 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1347
1348 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1349 /* add VID to filter table */
1350 igb_vfta_set(hw, vid, true);
1351 adapter->mng_vlan_id = vid;
1352 } else {
1353 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1354 }
1355
1356 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1357 (vid != old_vid) &&
1358 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1359 /* remove VID from filter table */
1360 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1361 }
1362}
1363
1364/**
1365 * igb_release_hw_control - release control of the h/w to f/w
1366 * @adapter: address of board private structure
1367 *
1368 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1369 * For ASF and Pass Through versions of f/w this means that the
1370 * driver is no longer loaded.
1371 *
1372 **/
1373static void igb_release_hw_control(struct igb_adapter *adapter)
1374{
1375 struct e1000_hw *hw = &adapter->hw;
1376 u32 ctrl_ext;
1377
1378 /* Let firmware take over control of h/w */
1379 ctrl_ext = rd32(E1000_CTRL_EXT);
1380 wr32(E1000_CTRL_EXT,
1381 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1382}
1383
9d5c8243
AK
1384/**
1385 * igb_get_hw_control - get control of the h/w from f/w
1386 * @adapter: address of board private structure
1387 *
1388 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1389 * For ASF and Pass Through versions of f/w this means that
1390 * the driver is loaded.
1391 *
1392 **/
1393static void igb_get_hw_control(struct igb_adapter *adapter)
1394{
1395 struct e1000_hw *hw = &adapter->hw;
1396 u32 ctrl_ext;
1397
1398 /* Let firmware know the driver has taken over */
1399 ctrl_ext = rd32(E1000_CTRL_EXT);
1400 wr32(E1000_CTRL_EXT,
1401 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1402}
1403
9d5c8243
AK
1404/**
1405 * igb_configure - configure the hardware for RX and TX
1406 * @adapter: private board structure
1407 **/
1408static void igb_configure(struct igb_adapter *adapter)
1409{
1410 struct net_device *netdev = adapter->netdev;
1411 int i;
1412
1413 igb_get_hw_control(adapter);
ff41f8dc 1414 igb_set_rx_mode(netdev);
9d5c8243
AK
1415
1416 igb_restore_vlan(adapter);
9d5c8243 1417
85b430b4 1418 igb_setup_tctl(adapter);
06cf2666 1419 igb_setup_mrqc(adapter);
9d5c8243 1420 igb_setup_rctl(adapter);
85b430b4
AD
1421
1422 igb_configure_tx(adapter);
9d5c8243 1423 igb_configure_rx(adapter);
662d7205
AD
1424
1425 igb_rx_fifo_flush_82575(&adapter->hw);
1426
c493ea45 1427 /* call igb_desc_unused which always leaves
9d5c8243
AK
1428 * at least 1 descriptor unused to make sure
1429 * next_to_use != next_to_clean */
1430 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1431 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1432 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1433 }
9d5c8243
AK
1434}
1435
88a268c1
NN
1436/**
1437 * igb_power_up_link - Power up the phy/serdes link
1438 * @adapter: address of board private structure
1439 **/
1440void igb_power_up_link(struct igb_adapter *adapter)
1441{
1442 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1443 igb_power_up_phy_copper(&adapter->hw);
1444 else
1445 igb_power_up_serdes_link_82575(&adapter->hw);
1446}
1447
1448/**
1449 * igb_power_down_link - Power down the phy/serdes link
1450 * @adapter: address of board private structure
1451 */
1452static void igb_power_down_link(struct igb_adapter *adapter)
1453{
1454 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1455 igb_power_down_phy_copper_82575(&adapter->hw);
1456 else
1457 igb_shutdown_serdes_link_82575(&adapter->hw);
1458}
9d5c8243
AK
1459
1460/**
1461 * igb_up - Open the interface and prepare it to handle traffic
1462 * @adapter: board private structure
1463 **/
9d5c8243
AK
1464int igb_up(struct igb_adapter *adapter)
1465{
1466 struct e1000_hw *hw = &adapter->hw;
1467 int i;
1468
1469 /* hardware has been reset, we need to reload some things */
1470 igb_configure(adapter);
1471
1472 clear_bit(__IGB_DOWN, &adapter->state);
1473
047e0030
AD
1474 for (i = 0; i < adapter->num_q_vectors; i++) {
1475 struct igb_q_vector *q_vector = adapter->q_vector[i];
1476 napi_enable(&q_vector->napi);
1477 }
844290e5 1478 if (adapter->msix_entries)
9d5c8243 1479 igb_configure_msix(adapter);
feeb2721
AD
1480 else
1481 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1482
1483 /* Clear any pending interrupts. */
1484 rd32(E1000_ICR);
1485 igb_irq_enable(adapter);
1486
d4960307
AD
1487 /* notify VFs that reset has been completed */
1488 if (adapter->vfs_allocated_count) {
1489 u32 reg_data = rd32(E1000_CTRL_EXT);
1490 reg_data |= E1000_CTRL_EXT_PFRSTD;
1491 wr32(E1000_CTRL_EXT, reg_data);
1492 }
1493
4cb9be7a
JB
1494 netif_tx_start_all_queues(adapter->netdev);
1495
25568a53
AD
1496 /* start the watchdog. */
1497 hw->mac.get_link_status = 1;
1498 schedule_work(&adapter->watchdog_task);
1499
9d5c8243
AK
1500 return 0;
1501}
1502
1503void igb_down(struct igb_adapter *adapter)
1504{
9d5c8243 1505 struct net_device *netdev = adapter->netdev;
330a6d6a 1506 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1507 u32 tctl, rctl;
1508 int i;
1509
1510 /* signal that we're down so the interrupt handler does not
1511 * reschedule our watchdog timer */
1512 set_bit(__IGB_DOWN, &adapter->state);
1513
1514 /* disable receives in the hardware */
1515 rctl = rd32(E1000_RCTL);
1516 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1517 /* flush and sleep below */
1518
fd2ea0a7 1519 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1520
1521 /* disable transmits in the hardware */
1522 tctl = rd32(E1000_TCTL);
1523 tctl &= ~E1000_TCTL_EN;
1524 wr32(E1000_TCTL, tctl);
1525 /* flush both disables and wait for them to finish */
1526 wrfl();
1527 msleep(10);
1528
047e0030
AD
1529 for (i = 0; i < adapter->num_q_vectors; i++) {
1530 struct igb_q_vector *q_vector = adapter->q_vector[i];
1531 napi_disable(&q_vector->napi);
1532 }
9d5c8243 1533
9d5c8243
AK
1534 igb_irq_disable(adapter);
1535
1536 del_timer_sync(&adapter->watchdog_timer);
1537 del_timer_sync(&adapter->phy_info_timer);
1538
9d5c8243 1539 netif_carrier_off(netdev);
04fe6358
AD
1540
1541 /* record the stats before reset*/
12dcd86b
ED
1542 spin_lock(&adapter->stats64_lock);
1543 igb_update_stats(adapter, &adapter->stats64);
1544 spin_unlock(&adapter->stats64_lock);
04fe6358 1545
9d5c8243
AK
1546 adapter->link_speed = 0;
1547 adapter->link_duplex = 0;
1548
3023682e
JK
1549 if (!pci_channel_offline(adapter->pdev))
1550 igb_reset(adapter);
9d5c8243
AK
1551 igb_clean_all_tx_rings(adapter);
1552 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1553#ifdef CONFIG_IGB_DCA
1554
1555 /* since we reset the hardware DCA settings were cleared */
1556 igb_setup_dca(adapter);
1557#endif
9d5c8243
AK
1558}
1559
1560void igb_reinit_locked(struct igb_adapter *adapter)
1561{
1562 WARN_ON(in_interrupt());
1563 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1564 msleep(1);
1565 igb_down(adapter);
1566 igb_up(adapter);
1567 clear_bit(__IGB_RESETTING, &adapter->state);
1568}
1569
1570void igb_reset(struct igb_adapter *adapter)
1571{
090b1795 1572 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1573 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1574 struct e1000_mac_info *mac = &hw->mac;
1575 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1576 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1577 u16 hwm;
1578
1579 /* Repartition Pba for greater than 9k mtu
1580 * To take effect CTRL.RST is required.
1581 */
fa4dfae0 1582 switch (mac->type) {
d2ba2ed8 1583 case e1000_i350:
55cac248
AD
1584 case e1000_82580:
1585 pba = rd32(E1000_RXPBS);
1586 pba = igb_rxpbs_adjust_82580(pba);
1587 break;
fa4dfae0 1588 case e1000_82576:
d249be54
AD
1589 pba = rd32(E1000_RXPBS);
1590 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1591 break;
1592 case e1000_82575:
1593 default:
1594 pba = E1000_PBA_34K;
1595 break;
2d064c06 1596 }
9d5c8243 1597
2d064c06
AD
1598 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1599 (mac->type < e1000_82576)) {
9d5c8243
AK
1600 /* adjust PBA for jumbo frames */
1601 wr32(E1000_PBA, pba);
1602
1603 /* To maintain wire speed transmits, the Tx FIFO should be
1604 * large enough to accommodate two full transmit packets,
1605 * rounded up to the next 1KB and expressed in KB. Likewise,
1606 * the Rx FIFO should be large enough to accommodate at least
1607 * one full receive packet and is similarly rounded up and
1608 * expressed in KB. */
1609 pba = rd32(E1000_PBA);
1610 /* upper 16 bits has Tx packet buffer allocation size in KB */
1611 tx_space = pba >> 16;
1612 /* lower 16 bits has Rx packet buffer allocation size in KB */
1613 pba &= 0xffff;
1614 /* the tx fifo also stores 16 bytes of information about the tx
1615 * but don't include ethernet FCS because hardware appends it */
1616 min_tx_space = (adapter->max_frame_size +
85e8d004 1617 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1618 ETH_FCS_LEN) * 2;
1619 min_tx_space = ALIGN(min_tx_space, 1024);
1620 min_tx_space >>= 10;
1621 /* software strips receive CRC, so leave room for it */
1622 min_rx_space = adapter->max_frame_size;
1623 min_rx_space = ALIGN(min_rx_space, 1024);
1624 min_rx_space >>= 10;
1625
1626 /* If current Tx allocation is less than the min Tx FIFO size,
1627 * and the min Tx FIFO size is less than the current Rx FIFO
1628 * allocation, take space away from current Rx allocation */
1629 if (tx_space < min_tx_space &&
1630 ((min_tx_space - tx_space) < pba)) {
1631 pba = pba - (min_tx_space - tx_space);
1632
1633 /* if short on rx space, rx wins and must trump tx
1634 * adjustment */
1635 if (pba < min_rx_space)
1636 pba = min_rx_space;
1637 }
2d064c06 1638 wr32(E1000_PBA, pba);
9d5c8243 1639 }
9d5c8243
AK
1640
1641 /* flow control settings */
1642 /* The high water mark must be low enough to fit one full frame
1643 * (or the size used for early receive) above it in the Rx FIFO.
1644 * Set it to the lower of:
1645 * - 90% of the Rx FIFO size, or
1646 * - the full Rx FIFO size minus one full frame */
1647 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1648 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1649
d405ea3e
AD
1650 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1651 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1652 fc->pause_time = 0xFFFF;
1653 fc->send_xon = 1;
0cce119a 1654 fc->current_mode = fc->requested_mode;
9d5c8243 1655
4ae196df
AD
1656 /* disable receive for all VFs and wait one second */
1657 if (adapter->vfs_allocated_count) {
1658 int i;
1659 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1660 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1661
1662 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1663 igb_ping_all_vfs(adapter);
4ae196df
AD
1664
1665 /* disable transmits and receives */
1666 wr32(E1000_VFRE, 0);
1667 wr32(E1000_VFTE, 0);
1668 }
1669
9d5c8243 1670 /* Allow time for pending master requests to run */
330a6d6a 1671 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1672 wr32(E1000_WUC, 0);
1673
330a6d6a 1674 if (hw->mac.ops.init_hw(hw))
090b1795 1675 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1676
55cac248
AD
1677 if (hw->mac.type == e1000_82580) {
1678 u32 reg = rd32(E1000_PCIEMISC);
1679 wr32(E1000_PCIEMISC,
1680 reg & ~E1000_PCIEMISC_LX_DECISION);
1681 }
88a268c1
NN
1682 if (!netif_running(adapter->netdev))
1683 igb_power_down_link(adapter);
1684
9d5c8243
AK
1685 igb_update_mng_vlan(adapter);
1686
1687 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1688 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1689
330a6d6a 1690 igb_get_phy_info(hw);
9d5c8243
AK
1691}
1692
2e5c6922 1693static const struct net_device_ops igb_netdev_ops = {
559e9c49 1694 .ndo_open = igb_open,
2e5c6922 1695 .ndo_stop = igb_close,
00829823 1696 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1697 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1698 .ndo_set_rx_mode = igb_set_rx_mode,
1699 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1700 .ndo_set_mac_address = igb_set_mac,
1701 .ndo_change_mtu = igb_change_mtu,
1702 .ndo_do_ioctl = igb_ioctl,
1703 .ndo_tx_timeout = igb_tx_timeout,
1704 .ndo_validate_addr = eth_validate_addr,
1705 .ndo_vlan_rx_register = igb_vlan_rx_register,
1706 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1707 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1708 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1709 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1710 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1711 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1712#ifdef CONFIG_NET_POLL_CONTROLLER
1713 .ndo_poll_controller = igb_netpoll,
1714#endif
1715};
1716
9d5c8243
AK
1717/**
1718 * igb_probe - Device Initialization Routine
1719 * @pdev: PCI device information struct
1720 * @ent: entry in igb_pci_tbl
1721 *
1722 * Returns 0 on success, negative on failure
1723 *
1724 * igb_probe initializes an adapter identified by a pci_dev structure.
1725 * The OS initialization, configuring of the adapter private structure,
1726 * and a hardware reset occur.
1727 **/
1728static int __devinit igb_probe(struct pci_dev *pdev,
1729 const struct pci_device_id *ent)
1730{
1731 struct net_device *netdev;
1732 struct igb_adapter *adapter;
1733 struct e1000_hw *hw;
4337e993 1734 u16 eeprom_data = 0;
9835fd73 1735 s32 ret_val;
4337e993 1736 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1737 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1738 unsigned long mmio_start, mmio_len;
2d6a5e95 1739 int err, pci_using_dac;
9d5c8243 1740 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1741 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1742
bded64a7
AG
1743 /* Catch broken hardware that put the wrong VF device ID in
1744 * the PCIe SR-IOV capability.
1745 */
1746 if (pdev->is_virtfn) {
1747 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1748 pci_name(pdev), pdev->vendor, pdev->device);
1749 return -EINVAL;
1750 }
1751
aed5dec3 1752 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1753 if (err)
1754 return err;
1755
1756 pci_using_dac = 0;
59d71989 1757 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1758 if (!err) {
59d71989 1759 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1760 if (!err)
1761 pci_using_dac = 1;
1762 } else {
59d71989 1763 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1764 if (err) {
59d71989 1765 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1766 if (err) {
1767 dev_err(&pdev->dev, "No usable DMA "
1768 "configuration, aborting\n");
1769 goto err_dma;
1770 }
1771 }
1772 }
1773
aed5dec3
AD
1774 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1775 IORESOURCE_MEM),
1776 igb_driver_name);
9d5c8243
AK
1777 if (err)
1778 goto err_pci_reg;
1779
19d5afd4 1780 pci_enable_pcie_error_reporting(pdev);
40a914fa 1781
9d5c8243 1782 pci_set_master(pdev);
c682fc23 1783 pci_save_state(pdev);
9d5c8243
AK
1784
1785 err = -ENOMEM;
1bfaf07b
AD
1786 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1787 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1788 if (!netdev)
1789 goto err_alloc_etherdev;
1790
1791 SET_NETDEV_DEV(netdev, &pdev->dev);
1792
1793 pci_set_drvdata(pdev, netdev);
1794 adapter = netdev_priv(netdev);
1795 adapter->netdev = netdev;
1796 adapter->pdev = pdev;
1797 hw = &adapter->hw;
1798 hw->back = adapter;
1799 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1800
1801 mmio_start = pci_resource_start(pdev, 0);
1802 mmio_len = pci_resource_len(pdev, 0);
1803
1804 err = -EIO;
28b0759c
AD
1805 hw->hw_addr = ioremap(mmio_start, mmio_len);
1806 if (!hw->hw_addr)
9d5c8243
AK
1807 goto err_ioremap;
1808
2e5c6922 1809 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1810 igb_set_ethtool_ops(netdev);
9d5c8243 1811 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1812
1813 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1814
1815 netdev->mem_start = mmio_start;
1816 netdev->mem_end = mmio_start + mmio_len;
1817
9d5c8243
AK
1818 /* PCI config space info */
1819 hw->vendor_id = pdev->vendor;
1820 hw->device_id = pdev->device;
1821 hw->revision_id = pdev->revision;
1822 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1823 hw->subsystem_device_id = pdev->subsystem_device;
1824
9d5c8243
AK
1825 /* Copy the default MAC, PHY and NVM function pointers */
1826 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1827 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1828 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1829 /* Initialize skew-specific constants */
1830 err = ei->get_invariants(hw);
1831 if (err)
450c87c8 1832 goto err_sw_init;
9d5c8243 1833
450c87c8 1834 /* setup the private structure */
9d5c8243
AK
1835 err = igb_sw_init(adapter);
1836 if (err)
1837 goto err_sw_init;
1838
1839 igb_get_bus_info_pcie(hw);
1840
1841 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1842
1843 /* Copper options */
1844 if (hw->phy.media_type == e1000_media_type_copper) {
1845 hw->phy.mdix = AUTO_ALL_MODES;
1846 hw->phy.disable_polarity_correction = false;
1847 hw->phy.ms_type = e1000_ms_hw_default;
1848 }
1849
1850 if (igb_check_reset_block(hw))
1851 dev_info(&pdev->dev,
1852 "PHY reset is blocked due to SOL/IDER session.\n");
1853
1854 netdev->features = NETIF_F_SG |
7d8eb29e 1855 NETIF_F_IP_CSUM |
9d5c8243
AK
1856 NETIF_F_HW_VLAN_TX |
1857 NETIF_F_HW_VLAN_RX |
1858 NETIF_F_HW_VLAN_FILTER;
1859
7d8eb29e 1860 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1861 netdev->features |= NETIF_F_TSO;
9d5c8243 1862 netdev->features |= NETIF_F_TSO6;
5c0999b7 1863 netdev->features |= NETIF_F_GRO;
d3352520 1864
48f29ffc
JK
1865 netdev->vlan_features |= NETIF_F_TSO;
1866 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1867 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1868 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1869 netdev->vlan_features |= NETIF_F_SG;
1870
7b872a55 1871 if (pci_using_dac) {
9d5c8243 1872 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1873 netdev->vlan_features |= NETIF_F_HIGHDMA;
1874 }
9d5c8243 1875
5b043fb0 1876 if (hw->mac.type >= e1000_82576)
b9473560
JB
1877 netdev->features |= NETIF_F_SCTP_CSUM;
1878
330a6d6a 1879 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1880
1881 /* before reading the NVM, reset the controller to put the device in a
1882 * known good starting state */
1883 hw->mac.ops.reset_hw(hw);
1884
1885 /* make sure the NVM is good */
1886 if (igb_validate_nvm_checksum(hw) < 0) {
1887 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1888 err = -EIO;
1889 goto err_eeprom;
1890 }
1891
1892 /* copy the MAC address out of the NVM */
1893 if (hw->mac.ops.read_mac_addr(hw))
1894 dev_err(&pdev->dev, "NVM Read Error\n");
1895
1896 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1897 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1898
1899 if (!is_valid_ether_addr(netdev->perm_addr)) {
1900 dev_err(&pdev->dev, "Invalid MAC Address\n");
1901 err = -EIO;
1902 goto err_eeprom;
1903 }
1904
c061b18d 1905 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1906 (unsigned long) adapter);
c061b18d 1907 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1908 (unsigned long) adapter);
9d5c8243
AK
1909
1910 INIT_WORK(&adapter->reset_task, igb_reset_task);
1911 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1912
450c87c8 1913 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1914 adapter->fc_autoneg = true;
1915 hw->mac.autoneg = true;
1916 hw->phy.autoneg_advertised = 0x2f;
1917
0cce119a
AD
1918 hw->fc.requested_mode = e1000_fc_default;
1919 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1920
9d5c8243
AK
1921 igb_validate_mdi_setting(hw);
1922
9d5c8243
AK
1923 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1924 * enable the ACPI Magic Packet filter
1925 */
1926
a2cf8b6c 1927 if (hw->bus.func == 0)
312c75ae 1928 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1929 else if (hw->mac.type == e1000_82580)
1930 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1931 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1932 &eeprom_data);
a2cf8b6c
AD
1933 else if (hw->bus.func == 1)
1934 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1935
1936 if (eeprom_data & eeprom_apme_mask)
1937 adapter->eeprom_wol |= E1000_WUFC_MAG;
1938
1939 /* now that we have the eeprom settings, apply the special cases where
1940 * the eeprom may be wrong or the board simply won't support wake on
1941 * lan on a particular port */
1942 switch (pdev->device) {
1943 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1944 adapter->eeprom_wol = 0;
1945 break;
1946 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1947 case E1000_DEV_ID_82576_FIBER:
1948 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1949 /* Wake events only supported on port A for dual fiber
1950 * regardless of eeprom setting */
1951 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1952 adapter->eeprom_wol = 0;
1953 break;
c8ea5ea9 1954 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1955 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1956 /* if quad port adapter, disable WoL on all but port A */
1957 if (global_quad_port_a != 0)
1958 adapter->eeprom_wol = 0;
1959 else
1960 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1961 /* Reset for multiple quad port adapters */
1962 if (++global_quad_port_a == 4)
1963 global_quad_port_a = 0;
1964 break;
9d5c8243
AK
1965 }
1966
1967 /* initialize the wol settings based on the eeprom settings */
1968 adapter->wol = adapter->eeprom_wol;
e1b86d84 1969 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1970
1971 /* reset the hardware with the new settings */
1972 igb_reset(adapter);
1973
1974 /* let the f/w know that the h/w is now under the control of the
1975 * driver. */
1976 igb_get_hw_control(adapter);
1977
9d5c8243
AK
1978 strcpy(netdev->name, "eth%d");
1979 err = register_netdev(netdev);
1980 if (err)
1981 goto err_register;
1982
b168dfc5
JB
1983 /* carrier off reporting is important to ethtool even BEFORE open */
1984 netif_carrier_off(netdev);
1985
421e02f0 1986#ifdef CONFIG_IGB_DCA
bbd98fe4 1987 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1988 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1989 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1990 igb_setup_dca(adapter);
1991 }
fe4506b6 1992
38c845c7 1993#endif
9d5c8243
AK
1994 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1995 /* print bus type/speed/width info */
7c510e4b 1996 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1997 netdev->name,
559e9c49 1998 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1999 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2000 "unknown"),
59c3de89
AD
2001 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2002 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2003 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2004 "unknown"),
7c510e4b 2005 netdev->dev_addr);
9d5c8243 2006
9835fd73
CW
2007 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2008 if (ret_val)
2009 strcpy(part_str, "Unknown");
2010 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2011 dev_info(&pdev->dev,
2012 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2013 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2014 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
2015 adapter->num_rx_queues, adapter->num_tx_queues);
2016
9d5c8243
AK
2017 return 0;
2018
2019err_register:
2020 igb_release_hw_control(adapter);
2021err_eeprom:
2022 if (!igb_check_reset_block(hw))
f5f4cf08 2023 igb_reset_phy(hw);
9d5c8243
AK
2024
2025 if (hw->flash_address)
2026 iounmap(hw->flash_address);
9d5c8243 2027err_sw_init:
047e0030 2028 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2029 iounmap(hw->hw_addr);
2030err_ioremap:
2031 free_netdev(netdev);
2032err_alloc_etherdev:
559e9c49
AD
2033 pci_release_selected_regions(pdev,
2034 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2035err_pci_reg:
2036err_dma:
2037 pci_disable_device(pdev);
2038 return err;
2039}
2040
2041/**
2042 * igb_remove - Device Removal Routine
2043 * @pdev: PCI device information struct
2044 *
2045 * igb_remove is called by the PCI subsystem to alert the driver
2046 * that it should release a PCI device. The could be caused by a
2047 * Hot-Plug event, or because the driver is going to be removed from
2048 * memory.
2049 **/
2050static void __devexit igb_remove(struct pci_dev *pdev)
2051{
2052 struct net_device *netdev = pci_get_drvdata(pdev);
2053 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2054 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2055
760141a5
TH
2056 /*
2057 * The watchdog timer may be rescheduled, so explicitly
2058 * disable watchdog from being rescheduled.
2059 */
9d5c8243
AK
2060 set_bit(__IGB_DOWN, &adapter->state);
2061 del_timer_sync(&adapter->watchdog_timer);
2062 del_timer_sync(&adapter->phy_info_timer);
2063
760141a5
TH
2064 cancel_work_sync(&adapter->reset_task);
2065 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2066
421e02f0 2067#ifdef CONFIG_IGB_DCA
7dfc16fa 2068 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2069 dev_info(&pdev->dev, "DCA disabled\n");
2070 dca_remove_requester(&pdev->dev);
7dfc16fa 2071 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2072 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2073 }
2074#endif
2075
9d5c8243
AK
2076 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2077 * would have already happened in close and is redundant. */
2078 igb_release_hw_control(adapter);
2079
2080 unregister_netdev(netdev);
2081
047e0030 2082 igb_clear_interrupt_scheme(adapter);
9d5c8243 2083
37680117
AD
2084#ifdef CONFIG_PCI_IOV
2085 /* reclaim resources allocated to VFs */
2086 if (adapter->vf_data) {
2087 /* disable iov and allow time for transactions to clear */
2088 pci_disable_sriov(pdev);
2089 msleep(500);
2090
2091 kfree(adapter->vf_data);
2092 adapter->vf_data = NULL;
2093 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2094 msleep(100);
2095 dev_info(&pdev->dev, "IOV Disabled\n");
2096 }
2097#endif
559e9c49 2098
28b0759c
AD
2099 iounmap(hw->hw_addr);
2100 if (hw->flash_address)
2101 iounmap(hw->flash_address);
559e9c49
AD
2102 pci_release_selected_regions(pdev,
2103 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2104
2105 free_netdev(netdev);
2106
19d5afd4 2107 pci_disable_pcie_error_reporting(pdev);
40a914fa 2108
9d5c8243
AK
2109 pci_disable_device(pdev);
2110}
2111
a6b623e0
AD
2112/**
2113 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2114 * @adapter: board private structure to initialize
2115 *
2116 * This function initializes the vf specific data storage and then attempts to
2117 * allocate the VFs. The reason for ordering it this way is because it is much
2118 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2119 * the memory for the VFs.
2120 **/
2121static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2122{
2123#ifdef CONFIG_PCI_IOV
2124 struct pci_dev *pdev = adapter->pdev;
2125
a6b623e0
AD
2126 if (adapter->vfs_allocated_count) {
2127 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2128 sizeof(struct vf_data_storage),
2129 GFP_KERNEL);
2130 /* if allocation failed then we do not support SR-IOV */
2131 if (!adapter->vf_data) {
2132 adapter->vfs_allocated_count = 0;
2133 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2134 "Data Storage\n");
2135 }
2136 }
2137
2138 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2139 kfree(adapter->vf_data);
2140 adapter->vf_data = NULL;
2141#endif /* CONFIG_PCI_IOV */
2142 adapter->vfs_allocated_count = 0;
2143#ifdef CONFIG_PCI_IOV
2144 } else {
2145 unsigned char mac_addr[ETH_ALEN];
2146 int i;
2147 dev_info(&pdev->dev, "%d vfs allocated\n",
2148 adapter->vfs_allocated_count);
2149 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2150 random_ether_addr(mac_addr);
2151 igb_set_vf_mac(adapter, i, mac_addr);
2152 }
2153 }
2154#endif /* CONFIG_PCI_IOV */
2155}
2156
115f459a
AD
2157
2158/**
2159 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2160 * @adapter: board private structure to initialize
2161 *
2162 * igb_init_hw_timer initializes the function pointer and values for the hw
2163 * timer found in hardware.
2164 **/
2165static void igb_init_hw_timer(struct igb_adapter *adapter)
2166{
2167 struct e1000_hw *hw = &adapter->hw;
2168
2169 switch (hw->mac.type) {
d2ba2ed8 2170 case e1000_i350:
55cac248
AD
2171 case e1000_82580:
2172 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2173 adapter->cycles.read = igb_read_clock;
2174 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2175 adapter->cycles.mult = 1;
2176 /*
2177 * The 82580 timesync updates the system timer every 8ns by 8ns
2178 * and the value cannot be shifted. Instead we need to shift
2179 * the registers to generate a 64bit timer value. As a result
2180 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2181 * 24 in order to generate a larger value for synchronization.
2182 */
2183 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2184 /* disable system timer temporarily by setting bit 31 */
2185 wr32(E1000_TSAUXC, 0x80000000);
2186 wrfl();
2187
2188 /* Set registers so that rollover occurs soon to test this. */
2189 wr32(E1000_SYSTIMR, 0x00000000);
2190 wr32(E1000_SYSTIML, 0x80000000);
2191 wr32(E1000_SYSTIMH, 0x000000FF);
2192 wrfl();
2193
2194 /* enable system timer by clearing bit 31 */
2195 wr32(E1000_TSAUXC, 0x0);
2196 wrfl();
2197
2198 timecounter_init(&adapter->clock,
2199 &adapter->cycles,
2200 ktime_to_ns(ktime_get_real()));
2201 /*
2202 * Synchronize our NIC clock against system wall clock. NIC
2203 * time stamp reading requires ~3us per sample, each sample
2204 * was pretty stable even under load => only require 10
2205 * samples for each offset comparison.
2206 */
2207 memset(&adapter->compare, 0, sizeof(adapter->compare));
2208 adapter->compare.source = &adapter->clock;
2209 adapter->compare.target = ktime_get_real;
2210 adapter->compare.num_samples = 10;
2211 timecompare_update(&adapter->compare, 0);
2212 break;
115f459a
AD
2213 case e1000_82576:
2214 /*
2215 * Initialize hardware timer: we keep it running just in case
2216 * that some program needs it later on.
2217 */
2218 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2219 adapter->cycles.read = igb_read_clock;
2220 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2221 adapter->cycles.mult = 1;
2222 /**
2223 * Scale the NIC clock cycle by a large factor so that
2224 * relatively small clock corrections can be added or
2225 * substracted at each clock tick. The drawbacks of a large
2226 * factor are a) that the clock register overflows more quickly
2227 * (not such a big deal) and b) that the increment per tick has
2228 * to fit into 24 bits. As a result we need to use a shift of
2229 * 19 so we can fit a value of 16 into the TIMINCA register.
2230 */
2231 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2232 wr32(E1000_TIMINCA,
2233 (1 << E1000_TIMINCA_16NS_SHIFT) |
2234 (16 << IGB_82576_TSYNC_SHIFT));
2235
2236 /* Set registers so that rollover occurs soon to test this. */
2237 wr32(E1000_SYSTIML, 0x00000000);
2238 wr32(E1000_SYSTIMH, 0xFF800000);
2239 wrfl();
2240
2241 timecounter_init(&adapter->clock,
2242 &adapter->cycles,
2243 ktime_to_ns(ktime_get_real()));
2244 /*
2245 * Synchronize our NIC clock against system wall clock. NIC
2246 * time stamp reading requires ~3us per sample, each sample
2247 * was pretty stable even under load => only require 10
2248 * samples for each offset comparison.
2249 */
2250 memset(&adapter->compare, 0, sizeof(adapter->compare));
2251 adapter->compare.source = &adapter->clock;
2252 adapter->compare.target = ktime_get_real;
2253 adapter->compare.num_samples = 10;
2254 timecompare_update(&adapter->compare, 0);
2255 break;
2256 case e1000_82575:
2257 /* 82575 does not support timesync */
2258 default:
2259 break;
2260 }
2261
2262}
2263
9d5c8243
AK
2264/**
2265 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2266 * @adapter: board private structure to initialize
2267 *
2268 * igb_sw_init initializes the Adapter private data structure.
2269 * Fields are initialized based on PCI device information and
2270 * OS network device settings (MTU size).
2271 **/
2272static int __devinit igb_sw_init(struct igb_adapter *adapter)
2273{
2274 struct e1000_hw *hw = &adapter->hw;
2275 struct net_device *netdev = adapter->netdev;
2276 struct pci_dev *pdev = adapter->pdev;
2277
2278 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2279
68fd9910
AD
2280 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2281 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2282 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2283 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2284
9d5c8243
AK
2285 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2286 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2287
12dcd86b 2288 spin_lock_init(&adapter->stats64_lock);
a6b623e0
AD
2289#ifdef CONFIG_PCI_IOV
2290 if (hw->mac.type == e1000_82576)
c0f2276f 2291 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
a6b623e0
AD
2292
2293#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2294 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2295
2296 /*
2297 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2298 * then we should combine the queues into a queue pair in order to
2299 * conserve interrupts due to limited supply
2300 */
2301 if ((adapter->rss_queues > 4) ||
2302 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2303 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2304
a6b623e0 2305 /* This call may decrease the number of queues */
047e0030 2306 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2307 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2308 return -ENOMEM;
2309 }
2310
115f459a 2311 igb_init_hw_timer(adapter);
a6b623e0
AD
2312 igb_probe_vfs(adapter);
2313
9d5c8243
AK
2314 /* Explicitly disable IRQ since the NIC can be in any state. */
2315 igb_irq_disable(adapter);
2316
2317 set_bit(__IGB_DOWN, &adapter->state);
2318 return 0;
2319}
2320
2321/**
2322 * igb_open - Called when a network interface is made active
2323 * @netdev: network interface device structure
2324 *
2325 * Returns 0 on success, negative value on failure
2326 *
2327 * The open entry point is called when a network interface is made
2328 * active by the system (IFF_UP). At this point all resources needed
2329 * for transmit and receive operations are allocated, the interrupt
2330 * handler is registered with the OS, the watchdog timer is started,
2331 * and the stack is notified that the interface is ready.
2332 **/
2333static int igb_open(struct net_device *netdev)
2334{
2335 struct igb_adapter *adapter = netdev_priv(netdev);
2336 struct e1000_hw *hw = &adapter->hw;
2337 int err;
2338 int i;
2339
2340 /* disallow open during test */
2341 if (test_bit(__IGB_TESTING, &adapter->state))
2342 return -EBUSY;
2343
b168dfc5
JB
2344 netif_carrier_off(netdev);
2345
9d5c8243
AK
2346 /* allocate transmit descriptors */
2347 err = igb_setup_all_tx_resources(adapter);
2348 if (err)
2349 goto err_setup_tx;
2350
2351 /* allocate receive descriptors */
2352 err = igb_setup_all_rx_resources(adapter);
2353 if (err)
2354 goto err_setup_rx;
2355
88a268c1 2356 igb_power_up_link(adapter);
9d5c8243 2357
9d5c8243
AK
2358 /* before we allocate an interrupt, we must be ready to handle it.
2359 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2360 * as soon as we call pci_request_irq, so we have to setup our
2361 * clean_rx handler before we do so. */
2362 igb_configure(adapter);
2363
2364 err = igb_request_irq(adapter);
2365 if (err)
2366 goto err_req_irq;
2367
2368 /* From here on the code is the same as igb_up() */
2369 clear_bit(__IGB_DOWN, &adapter->state);
2370
047e0030
AD
2371 for (i = 0; i < adapter->num_q_vectors; i++) {
2372 struct igb_q_vector *q_vector = adapter->q_vector[i];
2373 napi_enable(&q_vector->napi);
2374 }
9d5c8243
AK
2375
2376 /* Clear any pending interrupts. */
2377 rd32(E1000_ICR);
844290e5
PW
2378
2379 igb_irq_enable(adapter);
2380
d4960307
AD
2381 /* notify VFs that reset has been completed */
2382 if (adapter->vfs_allocated_count) {
2383 u32 reg_data = rd32(E1000_CTRL_EXT);
2384 reg_data |= E1000_CTRL_EXT_PFRSTD;
2385 wr32(E1000_CTRL_EXT, reg_data);
2386 }
2387
d55b53ff
JK
2388 netif_tx_start_all_queues(netdev);
2389
25568a53
AD
2390 /* start the watchdog. */
2391 hw->mac.get_link_status = 1;
2392 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2393
2394 return 0;
2395
2396err_req_irq:
2397 igb_release_hw_control(adapter);
88a268c1 2398 igb_power_down_link(adapter);
9d5c8243
AK
2399 igb_free_all_rx_resources(adapter);
2400err_setup_rx:
2401 igb_free_all_tx_resources(adapter);
2402err_setup_tx:
2403 igb_reset(adapter);
2404
2405 return err;
2406}
2407
2408/**
2409 * igb_close - Disables a network interface
2410 * @netdev: network interface device structure
2411 *
2412 * Returns 0, this is not allowed to fail
2413 *
2414 * The close entry point is called when an interface is de-activated
2415 * by the OS. The hardware is still under the driver's control, but
2416 * needs to be disabled. A global MAC reset is issued to stop the
2417 * hardware, and all transmit and receive resources are freed.
2418 **/
2419static int igb_close(struct net_device *netdev)
2420{
2421 struct igb_adapter *adapter = netdev_priv(netdev);
2422
2423 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2424 igb_down(adapter);
2425
2426 igb_free_irq(adapter);
2427
2428 igb_free_all_tx_resources(adapter);
2429 igb_free_all_rx_resources(adapter);
2430
9d5c8243
AK
2431 return 0;
2432}
2433
2434/**
2435 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2436 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2437 *
2438 * Return 0 on success, negative on failure
2439 **/
80785298 2440int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2441{
59d71989 2442 struct device *dev = tx_ring->dev;
9d5c8243
AK
2443 int size;
2444
2445 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2446 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2447 if (!tx_ring->buffer_info)
2448 goto err;
9d5c8243
AK
2449
2450 /* round up to nearest 4K */
85e8d004 2451 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2452 tx_ring->size = ALIGN(tx_ring->size, 4096);
2453
59d71989
AD
2454 tx_ring->desc = dma_alloc_coherent(dev,
2455 tx_ring->size,
2456 &tx_ring->dma,
2457 GFP_KERNEL);
9d5c8243
AK
2458
2459 if (!tx_ring->desc)
2460 goto err;
2461
9d5c8243
AK
2462 tx_ring->next_to_use = 0;
2463 tx_ring->next_to_clean = 0;
9d5c8243
AK
2464 return 0;
2465
2466err:
2467 vfree(tx_ring->buffer_info);
59d71989 2468 dev_err(dev,
9d5c8243
AK
2469 "Unable to allocate memory for the transmit descriptor ring\n");
2470 return -ENOMEM;
2471}
2472
2473/**
2474 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2475 * (Descriptors) for all queues
2476 * @adapter: board private structure
2477 *
2478 * Return 0 on success, negative on failure
2479 **/
2480static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2481{
439705e1 2482 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2483 int i, err = 0;
2484
2485 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2486 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2487 if (err) {
439705e1 2488 dev_err(&pdev->dev,
9d5c8243
AK
2489 "Allocation for Tx Queue %u failed\n", i);
2490 for (i--; i >= 0; i--)
3025a446 2491 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2492 break;
2493 }
2494 }
2495
a99955fc 2496 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2497 int r_idx = i % adapter->num_tx_queues;
3025a446 2498 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2499 }
9d5c8243
AK
2500 return err;
2501}
2502
2503/**
85b430b4
AD
2504 * igb_setup_tctl - configure the transmit control registers
2505 * @adapter: Board private structure
9d5c8243 2506 **/
d7ee5b3a 2507void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2508{
9d5c8243
AK
2509 struct e1000_hw *hw = &adapter->hw;
2510 u32 tctl;
9d5c8243 2511
85b430b4
AD
2512 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2513 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2514
2515 /* Program the Transmit Control Register */
9d5c8243
AK
2516 tctl = rd32(E1000_TCTL);
2517 tctl &= ~E1000_TCTL_CT;
2518 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2519 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2520
2521 igb_config_collision_dist(hw);
2522
9d5c8243
AK
2523 /* Enable transmits */
2524 tctl |= E1000_TCTL_EN;
2525
2526 wr32(E1000_TCTL, tctl);
2527}
2528
85b430b4
AD
2529/**
2530 * igb_configure_tx_ring - Configure transmit ring after Reset
2531 * @adapter: board private structure
2532 * @ring: tx ring to configure
2533 *
2534 * Configure a transmit ring after a reset.
2535 **/
d7ee5b3a
AD
2536void igb_configure_tx_ring(struct igb_adapter *adapter,
2537 struct igb_ring *ring)
85b430b4
AD
2538{
2539 struct e1000_hw *hw = &adapter->hw;
2540 u32 txdctl;
2541 u64 tdba = ring->dma;
2542 int reg_idx = ring->reg_idx;
2543
2544 /* disable the queue */
2545 txdctl = rd32(E1000_TXDCTL(reg_idx));
2546 wr32(E1000_TXDCTL(reg_idx),
2547 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2548 wrfl();
2549 mdelay(10);
2550
2551 wr32(E1000_TDLEN(reg_idx),
2552 ring->count * sizeof(union e1000_adv_tx_desc));
2553 wr32(E1000_TDBAL(reg_idx),
2554 tdba & 0x00000000ffffffffULL);
2555 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2556
fce99e34
AD
2557 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2558 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2559 writel(0, ring->head);
2560 writel(0, ring->tail);
85b430b4
AD
2561
2562 txdctl |= IGB_TX_PTHRESH;
2563 txdctl |= IGB_TX_HTHRESH << 8;
2564 txdctl |= IGB_TX_WTHRESH << 16;
2565
2566 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2567 wr32(E1000_TXDCTL(reg_idx), txdctl);
2568}
2569
2570/**
2571 * igb_configure_tx - Configure transmit Unit after Reset
2572 * @adapter: board private structure
2573 *
2574 * Configure the Tx unit of the MAC after a reset.
2575 **/
2576static void igb_configure_tx(struct igb_adapter *adapter)
2577{
2578 int i;
2579
2580 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2581 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2582}
2583
9d5c8243
AK
2584/**
2585 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2586 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2587 *
2588 * Returns 0 on success, negative on failure
2589 **/
80785298 2590int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2591{
59d71989 2592 struct device *dev = rx_ring->dev;
9d5c8243
AK
2593 int size, desc_len;
2594
2595 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2596 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2597 if (!rx_ring->buffer_info)
2598 goto err;
9d5c8243
AK
2599
2600 desc_len = sizeof(union e1000_adv_rx_desc);
2601
2602 /* Round up to nearest 4K */
2603 rx_ring->size = rx_ring->count * desc_len;
2604 rx_ring->size = ALIGN(rx_ring->size, 4096);
2605
59d71989
AD
2606 rx_ring->desc = dma_alloc_coherent(dev,
2607 rx_ring->size,
2608 &rx_ring->dma,
2609 GFP_KERNEL);
9d5c8243
AK
2610
2611 if (!rx_ring->desc)
2612 goto err;
2613
2614 rx_ring->next_to_clean = 0;
2615 rx_ring->next_to_use = 0;
9d5c8243 2616
9d5c8243
AK
2617 return 0;
2618
2619err:
2620 vfree(rx_ring->buffer_info);
439705e1 2621 rx_ring->buffer_info = NULL;
59d71989
AD
2622 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2623 " ring\n");
9d5c8243
AK
2624 return -ENOMEM;
2625}
2626
2627/**
2628 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2629 * (Descriptors) for all queues
2630 * @adapter: board private structure
2631 *
2632 * Return 0 on success, negative on failure
2633 **/
2634static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2635{
439705e1 2636 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2637 int i, err = 0;
2638
2639 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2640 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2641 if (err) {
439705e1 2642 dev_err(&pdev->dev,
9d5c8243
AK
2643 "Allocation for Rx Queue %u failed\n", i);
2644 for (i--; i >= 0; i--)
3025a446 2645 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2646 break;
2647 }
2648 }
2649
2650 return err;
2651}
2652
06cf2666
AD
2653/**
2654 * igb_setup_mrqc - configure the multiple receive queue control registers
2655 * @adapter: Board private structure
2656 **/
2657static void igb_setup_mrqc(struct igb_adapter *adapter)
2658{
2659 struct e1000_hw *hw = &adapter->hw;
2660 u32 mrqc, rxcsum;
2661 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2662 union e1000_reta {
2663 u32 dword;
2664 u8 bytes[4];
2665 } reta;
2666 static const u8 rsshash[40] = {
2667 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2668 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2669 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2670 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2671
2672 /* Fill out hash function seeds */
2673 for (j = 0; j < 10; j++) {
2674 u32 rsskey = rsshash[(j * 4)];
2675 rsskey |= rsshash[(j * 4) + 1] << 8;
2676 rsskey |= rsshash[(j * 4) + 2] << 16;
2677 rsskey |= rsshash[(j * 4) + 3] << 24;
2678 array_wr32(E1000_RSSRK(0), j, rsskey);
2679 }
2680
a99955fc 2681 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2682
2683 if (adapter->vfs_allocated_count) {
2684 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2685 switch (hw->mac.type) {
d2ba2ed8 2686 case e1000_i350:
55cac248
AD
2687 case e1000_82580:
2688 num_rx_queues = 1;
2689 shift = 0;
2690 break;
06cf2666
AD
2691 case e1000_82576:
2692 shift = 3;
2693 num_rx_queues = 2;
2694 break;
2695 case e1000_82575:
2696 shift = 2;
2697 shift2 = 6;
2698 default:
2699 break;
2700 }
2701 } else {
2702 if (hw->mac.type == e1000_82575)
2703 shift = 6;
2704 }
2705
2706 for (j = 0; j < (32 * 4); j++) {
2707 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2708 if (shift2)
2709 reta.bytes[j & 3] |= num_rx_queues << shift2;
2710 if ((j & 3) == 3)
2711 wr32(E1000_RETA(j >> 2), reta.dword);
2712 }
2713
2714 /*
2715 * Disable raw packet checksumming so that RSS hash is placed in
2716 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2717 * offloads as they are enabled by default
2718 */
2719 rxcsum = rd32(E1000_RXCSUM);
2720 rxcsum |= E1000_RXCSUM_PCSD;
2721
2722 if (adapter->hw.mac.type >= e1000_82576)
2723 /* Enable Receive Checksum Offload for SCTP */
2724 rxcsum |= E1000_RXCSUM_CRCOFL;
2725
2726 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2727 wr32(E1000_RXCSUM, rxcsum);
2728
2729 /* If VMDq is enabled then we set the appropriate mode for that, else
2730 * we default to RSS so that an RSS hash is calculated per packet even
2731 * if we are only using one queue */
2732 if (adapter->vfs_allocated_count) {
2733 if (hw->mac.type > e1000_82575) {
2734 /* Set the default pool for the PF's first queue */
2735 u32 vtctl = rd32(E1000_VT_CTL);
2736 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2737 E1000_VT_CTL_DISABLE_DEF_POOL);
2738 vtctl |= adapter->vfs_allocated_count <<
2739 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2740 wr32(E1000_VT_CTL, vtctl);
2741 }
a99955fc 2742 if (adapter->rss_queues > 1)
06cf2666
AD
2743 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2744 else
2745 mrqc = E1000_MRQC_ENABLE_VMDQ;
2746 } else {
2747 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2748 }
2749 igb_vmm_control(adapter);
2750
4478a9cd
AD
2751 /*
2752 * Generate RSS hash based on TCP port numbers and/or
2753 * IPv4/v6 src and dst addresses since UDP cannot be
2754 * hashed reliably due to IP fragmentation
2755 */
2756 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2757 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2758 E1000_MRQC_RSS_FIELD_IPV6 |
2759 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2760 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2761
2762 wr32(E1000_MRQC, mrqc);
2763}
2764
9d5c8243
AK
2765/**
2766 * igb_setup_rctl - configure the receive control registers
2767 * @adapter: Board private structure
2768 **/
d7ee5b3a 2769void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2770{
2771 struct e1000_hw *hw = &adapter->hw;
2772 u32 rctl;
9d5c8243
AK
2773
2774 rctl = rd32(E1000_RCTL);
2775
2776 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2777 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2778
69d728ba 2779 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2780 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2781
87cb7e8c
AK
2782 /*
2783 * enable stripping of CRC. It's unlikely this will break BMC
2784 * redirection as it did with e1000. Newer features require
2785 * that the HW strips the CRC.
73cd78f1 2786 */
87cb7e8c 2787 rctl |= E1000_RCTL_SECRC;
9d5c8243 2788
559e9c49 2789 /* disable store bad packets and clear size bits. */
ec54d7d6 2790 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2791
6ec43fe6
AD
2792 /* enable LPE to prevent packets larger than max_frame_size */
2793 rctl |= E1000_RCTL_LPE;
9d5c8243 2794
952f72a8
AD
2795 /* disable queue 0 to prevent tail write w/o re-config */
2796 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2797
e1739522
AD
2798 /* Attention!!! For SR-IOV PF driver operations you must enable
2799 * queue drop for all VF and PF queues to prevent head of line blocking
2800 * if an un-trusted VF does not provide descriptors to hardware.
2801 */
2802 if (adapter->vfs_allocated_count) {
e1739522
AD
2803 /* set all queue drop enable bits */
2804 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2805 }
2806
9d5c8243
AK
2807 wr32(E1000_RCTL, rctl);
2808}
2809
7d5753f0
AD
2810static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2811 int vfn)
2812{
2813 struct e1000_hw *hw = &adapter->hw;
2814 u32 vmolr;
2815
2816 /* if it isn't the PF check to see if VFs are enabled and
2817 * increase the size to support vlan tags */
2818 if (vfn < adapter->vfs_allocated_count &&
2819 adapter->vf_data[vfn].vlans_enabled)
2820 size += VLAN_TAG_SIZE;
2821
2822 vmolr = rd32(E1000_VMOLR(vfn));
2823 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2824 vmolr |= size | E1000_VMOLR_LPE;
2825 wr32(E1000_VMOLR(vfn), vmolr);
2826
2827 return 0;
2828}
2829
e1739522
AD
2830/**
2831 * igb_rlpml_set - set maximum receive packet size
2832 * @adapter: board private structure
2833 *
2834 * Configure maximum receivable packet size.
2835 **/
2836static void igb_rlpml_set(struct igb_adapter *adapter)
2837{
2838 u32 max_frame_size = adapter->max_frame_size;
2839 struct e1000_hw *hw = &adapter->hw;
2840 u16 pf_id = adapter->vfs_allocated_count;
2841
2842 if (adapter->vlgrp)
2843 max_frame_size += VLAN_TAG_SIZE;
2844
2845 /* if vfs are enabled we set RLPML to the largest possible request
2846 * size and set the VMOLR RLPML to the size we need */
2847 if (pf_id) {
2848 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2849 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2850 }
2851
2852 wr32(E1000_RLPML, max_frame_size);
2853}
2854
8151d294
WM
2855static inline void igb_set_vmolr(struct igb_adapter *adapter,
2856 int vfn, bool aupe)
7d5753f0
AD
2857{
2858 struct e1000_hw *hw = &adapter->hw;
2859 u32 vmolr;
2860
2861 /*
2862 * This register exists only on 82576 and newer so if we are older then
2863 * we should exit and do nothing
2864 */
2865 if (hw->mac.type < e1000_82576)
2866 return;
2867
2868 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2869 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2870 if (aupe)
2871 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2872 else
2873 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2874
2875 /* clear all bits that might not be set */
2876 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2877
a99955fc 2878 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2879 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2880 /*
2881 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2882 * multicast packets
2883 */
2884 if (vfn <= adapter->vfs_allocated_count)
2885 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2886
2887 wr32(E1000_VMOLR(vfn), vmolr);
2888}
2889
85b430b4
AD
2890/**
2891 * igb_configure_rx_ring - Configure a receive ring after Reset
2892 * @adapter: board private structure
2893 * @ring: receive ring to be configured
2894 *
2895 * Configure the Rx unit of the MAC after a reset.
2896 **/
d7ee5b3a
AD
2897void igb_configure_rx_ring(struct igb_adapter *adapter,
2898 struct igb_ring *ring)
85b430b4
AD
2899{
2900 struct e1000_hw *hw = &adapter->hw;
2901 u64 rdba = ring->dma;
2902 int reg_idx = ring->reg_idx;
952f72a8 2903 u32 srrctl, rxdctl;
85b430b4
AD
2904
2905 /* disable the queue */
2906 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2907 wr32(E1000_RXDCTL(reg_idx),
2908 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2909
2910 /* Set DMA base address registers */
2911 wr32(E1000_RDBAL(reg_idx),
2912 rdba & 0x00000000ffffffffULL);
2913 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2914 wr32(E1000_RDLEN(reg_idx),
2915 ring->count * sizeof(union e1000_adv_rx_desc));
2916
2917 /* initialize head and tail */
fce99e34
AD
2918 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2919 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2920 writel(0, ring->head);
2921 writel(0, ring->tail);
85b430b4 2922
952f72a8 2923 /* set descriptor configuration */
4c844851
AD
2924 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2925 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2926 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2927#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2928 srrctl |= IGB_RXBUFFER_16384 >>
2929 E1000_SRRCTL_BSIZEPKT_SHIFT;
2930#else
2931 srrctl |= (PAGE_SIZE / 2) >>
2932 E1000_SRRCTL_BSIZEPKT_SHIFT;
2933#endif
2934 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2935 } else {
4c844851 2936 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2937 E1000_SRRCTL_BSIZEPKT_SHIFT;
2938 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2939 }
757b77e2
NN
2940 if (hw->mac.type == e1000_82580)
2941 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2942 /* Only set Drop Enable if we are supporting multiple queues */
2943 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2944 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2945
2946 wr32(E1000_SRRCTL(reg_idx), srrctl);
2947
7d5753f0 2948 /* set filtering for VMDQ pools */
8151d294 2949 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2950
85b430b4
AD
2951 /* enable receive descriptor fetching */
2952 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2953 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2954 rxdctl &= 0xFFF00000;
2955 rxdctl |= IGB_RX_PTHRESH;
2956 rxdctl |= IGB_RX_HTHRESH << 8;
2957 rxdctl |= IGB_RX_WTHRESH << 16;
2958 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2959}
2960
9d5c8243
AK
2961/**
2962 * igb_configure_rx - Configure receive Unit after Reset
2963 * @adapter: board private structure
2964 *
2965 * Configure the Rx unit of the MAC after a reset.
2966 **/
2967static void igb_configure_rx(struct igb_adapter *adapter)
2968{
9107584e 2969 int i;
9d5c8243 2970
68d480c4
AD
2971 /* set UTA to appropriate mode */
2972 igb_set_uta(adapter);
2973
26ad9178
AD
2974 /* set the correct pool for the PF default MAC address in entry 0 */
2975 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2976 adapter->vfs_allocated_count);
2977
06cf2666
AD
2978 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2979 * the Base and Length of the Rx Descriptor Ring */
2980 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2981 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2982}
2983
2984/**
2985 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2986 * @tx_ring: Tx descriptor ring for a specific queue
2987 *
2988 * Free all transmit software resources
2989 **/
68fd9910 2990void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2991{
3b644cf6 2992 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2993
2994 vfree(tx_ring->buffer_info);
2995 tx_ring->buffer_info = NULL;
2996
439705e1
AD
2997 /* if not set, then don't free */
2998 if (!tx_ring->desc)
2999 return;
3000
59d71989
AD
3001 dma_free_coherent(tx_ring->dev, tx_ring->size,
3002 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3003
3004 tx_ring->desc = NULL;
3005}
3006
3007/**
3008 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3009 * @adapter: board private structure
3010 *
3011 * Free all transmit software resources
3012 **/
3013static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3014{
3015 int i;
3016
3017 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3018 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3019}
3020
b1a436c3
AD
3021void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3022 struct igb_buffer *buffer_info)
9d5c8243 3023{
6366ad33
AD
3024 if (buffer_info->dma) {
3025 if (buffer_info->mapped_as_page)
59d71989 3026 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3027 buffer_info->dma,
3028 buffer_info->length,
59d71989 3029 DMA_TO_DEVICE);
6366ad33 3030 else
59d71989 3031 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3032 buffer_info->dma,
3033 buffer_info->length,
59d71989 3034 DMA_TO_DEVICE);
6366ad33
AD
3035 buffer_info->dma = 0;
3036 }
9d5c8243
AK
3037 if (buffer_info->skb) {
3038 dev_kfree_skb_any(buffer_info->skb);
3039 buffer_info->skb = NULL;
3040 }
3041 buffer_info->time_stamp = 0;
6366ad33
AD
3042 buffer_info->length = 0;
3043 buffer_info->next_to_watch = 0;
3044 buffer_info->mapped_as_page = false;
9d5c8243
AK
3045}
3046
3047/**
3048 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3049 * @tx_ring: ring to be cleaned
3050 **/
3b644cf6 3051static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3052{
3053 struct igb_buffer *buffer_info;
3054 unsigned long size;
3055 unsigned int i;
3056
3057 if (!tx_ring->buffer_info)
3058 return;
3059 /* Free all the Tx ring sk_buffs */
3060
3061 for (i = 0; i < tx_ring->count; i++) {
3062 buffer_info = &tx_ring->buffer_info[i];
80785298 3063 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3064 }
3065
3066 size = sizeof(struct igb_buffer) * tx_ring->count;
3067 memset(tx_ring->buffer_info, 0, size);
3068
3069 /* Zero out the descriptor ring */
9d5c8243
AK
3070 memset(tx_ring->desc, 0, tx_ring->size);
3071
3072 tx_ring->next_to_use = 0;
3073 tx_ring->next_to_clean = 0;
9d5c8243
AK
3074}
3075
3076/**
3077 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3078 * @adapter: board private structure
3079 **/
3080static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3081{
3082 int i;
3083
3084 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3085 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3086}
3087
3088/**
3089 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3090 * @rx_ring: ring to clean the resources from
3091 *
3092 * Free all receive software resources
3093 **/
68fd9910 3094void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3095{
3b644cf6 3096 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3097
3098 vfree(rx_ring->buffer_info);
3099 rx_ring->buffer_info = NULL;
3100
439705e1
AD
3101 /* if not set, then don't free */
3102 if (!rx_ring->desc)
3103 return;
3104
59d71989
AD
3105 dma_free_coherent(rx_ring->dev, rx_ring->size,
3106 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3107
3108 rx_ring->desc = NULL;
3109}
3110
3111/**
3112 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3113 * @adapter: board private structure
3114 *
3115 * Free all receive software resources
3116 **/
3117static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3118{
3119 int i;
3120
3121 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3122 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3123}
3124
3125/**
3126 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3127 * @rx_ring: ring to free buffers from
3128 **/
3b644cf6 3129static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3130{
3131 struct igb_buffer *buffer_info;
9d5c8243
AK
3132 unsigned long size;
3133 unsigned int i;
3134
3135 if (!rx_ring->buffer_info)
3136 return;
439705e1 3137
9d5c8243
AK
3138 /* Free all the Rx ring sk_buffs */
3139 for (i = 0; i < rx_ring->count; i++) {
3140 buffer_info = &rx_ring->buffer_info[i];
3141 if (buffer_info->dma) {
59d71989 3142 dma_unmap_single(rx_ring->dev,
80785298 3143 buffer_info->dma,
4c844851 3144 rx_ring->rx_buffer_len,
59d71989 3145 DMA_FROM_DEVICE);
9d5c8243
AK
3146 buffer_info->dma = 0;
3147 }
3148
3149 if (buffer_info->skb) {
3150 dev_kfree_skb(buffer_info->skb);
3151 buffer_info->skb = NULL;
3152 }
6ec43fe6 3153 if (buffer_info->page_dma) {
59d71989 3154 dma_unmap_page(rx_ring->dev,
80785298 3155 buffer_info->page_dma,
6ec43fe6 3156 PAGE_SIZE / 2,
59d71989 3157 DMA_FROM_DEVICE);
6ec43fe6
AD
3158 buffer_info->page_dma = 0;
3159 }
9d5c8243 3160 if (buffer_info->page) {
9d5c8243
AK
3161 put_page(buffer_info->page);
3162 buffer_info->page = NULL;
bf36c1a0 3163 buffer_info->page_offset = 0;
9d5c8243
AK
3164 }
3165 }
3166
9d5c8243
AK
3167 size = sizeof(struct igb_buffer) * rx_ring->count;
3168 memset(rx_ring->buffer_info, 0, size);
3169
3170 /* Zero out the descriptor ring */
3171 memset(rx_ring->desc, 0, rx_ring->size);
3172
3173 rx_ring->next_to_clean = 0;
3174 rx_ring->next_to_use = 0;
9d5c8243
AK
3175}
3176
3177/**
3178 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3179 * @adapter: board private structure
3180 **/
3181static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3182{
3183 int i;
3184
3185 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3186 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3187}
3188
3189/**
3190 * igb_set_mac - Change the Ethernet Address of the NIC
3191 * @netdev: network interface device structure
3192 * @p: pointer to an address structure
3193 *
3194 * Returns 0 on success, negative on failure
3195 **/
3196static int igb_set_mac(struct net_device *netdev, void *p)
3197{
3198 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3199 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3200 struct sockaddr *addr = p;
3201
3202 if (!is_valid_ether_addr(addr->sa_data))
3203 return -EADDRNOTAVAIL;
3204
3205 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3206 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3207
26ad9178
AD
3208 /* set the correct pool for the new PF MAC address in entry 0 */
3209 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3210 adapter->vfs_allocated_count);
e1739522 3211
9d5c8243
AK
3212 return 0;
3213}
3214
3215/**
68d480c4 3216 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3217 * @netdev: network interface device structure
3218 *
68d480c4
AD
3219 * Writes multicast address list to the MTA hash table.
3220 * Returns: -ENOMEM on failure
3221 * 0 on no addresses written
3222 * X on writing X addresses to MTA
9d5c8243 3223 **/
68d480c4 3224static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3225{
3226 struct igb_adapter *adapter = netdev_priv(netdev);
3227 struct e1000_hw *hw = &adapter->hw;
22bedad3 3228 struct netdev_hw_addr *ha;
68d480c4 3229 u8 *mta_list;
9d5c8243
AK
3230 int i;
3231
4cd24eaf 3232 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3233 /* nothing to program, so clear mc list */
3234 igb_update_mc_addr_list(hw, NULL, 0);
3235 igb_restore_vf_multicasts(adapter);
3236 return 0;
3237 }
9d5c8243 3238
4cd24eaf 3239 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3240 if (!mta_list)
3241 return -ENOMEM;
ff41f8dc 3242
68d480c4 3243 /* The shared function expects a packed array of only addresses. */
48e2f183 3244 i = 0;
22bedad3
JP
3245 netdev_for_each_mc_addr(ha, netdev)
3246 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3247
68d480c4
AD
3248 igb_update_mc_addr_list(hw, mta_list, i);
3249 kfree(mta_list);
3250
4cd24eaf 3251 return netdev_mc_count(netdev);
68d480c4
AD
3252}
3253
3254/**
3255 * igb_write_uc_addr_list - write unicast addresses to RAR table
3256 * @netdev: network interface device structure
3257 *
3258 * Writes unicast address list to the RAR table.
3259 * Returns: -ENOMEM on failure/insufficient address space
3260 * 0 on no addresses written
3261 * X on writing X addresses to the RAR table
3262 **/
3263static int igb_write_uc_addr_list(struct net_device *netdev)
3264{
3265 struct igb_adapter *adapter = netdev_priv(netdev);
3266 struct e1000_hw *hw = &adapter->hw;
3267 unsigned int vfn = adapter->vfs_allocated_count;
3268 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3269 int count = 0;
3270
3271 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3272 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3273 return -ENOMEM;
9d5c8243 3274
32e7bfc4 3275 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3276 struct netdev_hw_addr *ha;
32e7bfc4
JP
3277
3278 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3279 if (!rar_entries)
3280 break;
26ad9178
AD
3281 igb_rar_set_qsel(adapter, ha->addr,
3282 rar_entries--,
68d480c4
AD
3283 vfn);
3284 count++;
ff41f8dc
AD
3285 }
3286 }
3287 /* write the addresses in reverse order to avoid write combining */
3288 for (; rar_entries > 0 ; rar_entries--) {
3289 wr32(E1000_RAH(rar_entries), 0);
3290 wr32(E1000_RAL(rar_entries), 0);
3291 }
3292 wrfl();
3293
68d480c4
AD
3294 return count;
3295}
3296
3297/**
3298 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3299 * @netdev: network interface device structure
3300 *
3301 * The set_rx_mode entry point is called whenever the unicast or multicast
3302 * address lists or the network interface flags are updated. This routine is
3303 * responsible for configuring the hardware for proper unicast, multicast,
3304 * promiscuous mode, and all-multi behavior.
3305 **/
3306static void igb_set_rx_mode(struct net_device *netdev)
3307{
3308 struct igb_adapter *adapter = netdev_priv(netdev);
3309 struct e1000_hw *hw = &adapter->hw;
3310 unsigned int vfn = adapter->vfs_allocated_count;
3311 u32 rctl, vmolr = 0;
3312 int count;
3313
3314 /* Check for Promiscuous and All Multicast modes */
3315 rctl = rd32(E1000_RCTL);
3316
3317 /* clear the effected bits */
3318 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3319
3320 if (netdev->flags & IFF_PROMISC) {
3321 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3322 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3323 } else {
3324 if (netdev->flags & IFF_ALLMULTI) {
3325 rctl |= E1000_RCTL_MPE;
3326 vmolr |= E1000_VMOLR_MPME;
3327 } else {
3328 /*
3329 * Write addresses to the MTA, if the attempt fails
3330 * then we should just turn on promiscous mode so
3331 * that we can at least receive multicast traffic
3332 */
3333 count = igb_write_mc_addr_list(netdev);
3334 if (count < 0) {
3335 rctl |= E1000_RCTL_MPE;
3336 vmolr |= E1000_VMOLR_MPME;
3337 } else if (count) {
3338 vmolr |= E1000_VMOLR_ROMPE;
3339 }
3340 }
3341 /*
3342 * Write addresses to available RAR registers, if there is not
3343 * sufficient space to store all the addresses then enable
3344 * unicast promiscous mode
3345 */
3346 count = igb_write_uc_addr_list(netdev);
3347 if (count < 0) {
3348 rctl |= E1000_RCTL_UPE;
3349 vmolr |= E1000_VMOLR_ROPE;
3350 }
3351 rctl |= E1000_RCTL_VFE;
28fc06f5 3352 }
68d480c4 3353 wr32(E1000_RCTL, rctl);
28fc06f5 3354
68d480c4
AD
3355 /*
3356 * In order to support SR-IOV and eventually VMDq it is necessary to set
3357 * the VMOLR to enable the appropriate modes. Without this workaround
3358 * we will have issues with VLAN tag stripping not being done for frames
3359 * that are only arriving because we are the default pool
3360 */
3361 if (hw->mac.type < e1000_82576)
28fc06f5 3362 return;
9d5c8243 3363
68d480c4
AD
3364 vmolr |= rd32(E1000_VMOLR(vfn)) &
3365 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3366 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3367 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3368}
3369
13800469
GR
3370static void igb_check_wvbr(struct igb_adapter *adapter)
3371{
3372 struct e1000_hw *hw = &adapter->hw;
3373 u32 wvbr = 0;
3374
3375 switch (hw->mac.type) {
3376 case e1000_82576:
3377 case e1000_i350:
3378 if (!(wvbr = rd32(E1000_WVBR)))
3379 return;
3380 break;
3381 default:
3382 break;
3383 }
3384
3385 adapter->wvbr |= wvbr;
3386}
3387
3388#define IGB_STAGGERED_QUEUE_OFFSET 8
3389
3390static void igb_spoof_check(struct igb_adapter *adapter)
3391{
3392 int j;
3393
3394 if (!adapter->wvbr)
3395 return;
3396
3397 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3398 if (adapter->wvbr & (1 << j) ||
3399 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3400 dev_warn(&adapter->pdev->dev,
3401 "Spoof event(s) detected on VF %d\n", j);
3402 adapter->wvbr &=
3403 ~((1 << j) |
3404 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3405 }
3406 }
3407}
3408
9d5c8243
AK
3409/* Need to wait a few seconds after link up to get diagnostic information from
3410 * the phy */
3411static void igb_update_phy_info(unsigned long data)
3412{
3413 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3414 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3415}
3416
4d6b725e
AD
3417/**
3418 * igb_has_link - check shared code for link and determine up/down
3419 * @adapter: pointer to driver private info
3420 **/
3145535a 3421bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3422{
3423 struct e1000_hw *hw = &adapter->hw;
3424 bool link_active = false;
3425 s32 ret_val = 0;
3426
3427 /* get_link_status is set on LSC (link status) interrupt or
3428 * rx sequence error interrupt. get_link_status will stay
3429 * false until the e1000_check_for_link establishes link
3430 * for copper adapters ONLY
3431 */
3432 switch (hw->phy.media_type) {
3433 case e1000_media_type_copper:
3434 if (hw->mac.get_link_status) {
3435 ret_val = hw->mac.ops.check_for_link(hw);
3436 link_active = !hw->mac.get_link_status;
3437 } else {
3438 link_active = true;
3439 }
3440 break;
4d6b725e
AD
3441 case e1000_media_type_internal_serdes:
3442 ret_val = hw->mac.ops.check_for_link(hw);
3443 link_active = hw->mac.serdes_has_link;
3444 break;
3445 default:
3446 case e1000_media_type_unknown:
3447 break;
3448 }
3449
3450 return link_active;
3451}
3452
9d5c8243
AK
3453/**
3454 * igb_watchdog - Timer Call-back
3455 * @data: pointer to adapter cast into an unsigned long
3456 **/
3457static void igb_watchdog(unsigned long data)
3458{
3459 struct igb_adapter *adapter = (struct igb_adapter *)data;
3460 /* Do the rest outside of interrupt context */
3461 schedule_work(&adapter->watchdog_task);
3462}
3463
3464static void igb_watchdog_task(struct work_struct *work)
3465{
3466 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3467 struct igb_adapter,
3468 watchdog_task);
9d5c8243 3469 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3470 struct net_device *netdev = adapter->netdev;
9d5c8243 3471 u32 link;
7a6ea550 3472 int i;
9d5c8243 3473
4d6b725e 3474 link = igb_has_link(adapter);
9d5c8243
AK
3475 if (link) {
3476 if (!netif_carrier_ok(netdev)) {
3477 u32 ctrl;
330a6d6a
AD
3478 hw->mac.ops.get_speed_and_duplex(hw,
3479 &adapter->link_speed,
3480 &adapter->link_duplex);
9d5c8243
AK
3481
3482 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3483 /* Links status message must follow this format */
3484 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3485 "Flow Control: %s\n",
559e9c49
AD
3486 netdev->name,
3487 adapter->link_speed,
3488 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3489 "Full Duplex" : "Half Duplex",
559e9c49
AD
3490 ((ctrl & E1000_CTRL_TFCE) &&
3491 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3492 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3493 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3494
d07f3e37 3495 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3496 adapter->tx_timeout_factor = 1;
3497 switch (adapter->link_speed) {
3498 case SPEED_10:
9d5c8243
AK
3499 adapter->tx_timeout_factor = 14;
3500 break;
3501 case SPEED_100:
9d5c8243
AK
3502 /* maybe add some timeout factor ? */
3503 break;
3504 }
3505
3506 netif_carrier_on(netdev);
9d5c8243 3507
4ae196df
AD
3508 igb_ping_all_vfs(adapter);
3509
4b1a9877 3510 /* link state has changed, schedule phy info update */
9d5c8243
AK
3511 if (!test_bit(__IGB_DOWN, &adapter->state))
3512 mod_timer(&adapter->phy_info_timer,
3513 round_jiffies(jiffies + 2 * HZ));
3514 }
3515 } else {
3516 if (netif_carrier_ok(netdev)) {
3517 adapter->link_speed = 0;
3518 adapter->link_duplex = 0;
527d47c1
AD
3519 /* Links status message must follow this format */
3520 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3521 netdev->name);
9d5c8243 3522 netif_carrier_off(netdev);
4b1a9877 3523
4ae196df
AD
3524 igb_ping_all_vfs(adapter);
3525
4b1a9877 3526 /* link state has changed, schedule phy info update */
9d5c8243
AK
3527 if (!test_bit(__IGB_DOWN, &adapter->state))
3528 mod_timer(&adapter->phy_info_timer,
3529 round_jiffies(jiffies + 2 * HZ));
3530 }
3531 }
3532
12dcd86b
ED
3533 spin_lock(&adapter->stats64_lock);
3534 igb_update_stats(adapter, &adapter->stats64);
3535 spin_unlock(&adapter->stats64_lock);
9d5c8243 3536
dbabb065 3537 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3538 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3539 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3540 /* We've lost link, so the controller stops DMA,
3541 * but we've got queued Tx work that's never going
3542 * to get done, so reset controller to flush Tx.
3543 * (Do the reset outside of interrupt context). */
dbabb065
AD
3544 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3545 adapter->tx_timeout_count++;
3546 schedule_work(&adapter->reset_task);
3547 /* return immediately since reset is imminent */
3548 return;
3549 }
9d5c8243 3550 }
9d5c8243 3551
dbabb065
AD
3552 /* Force detection of hung controller every watchdog period */
3553 tx_ring->detect_tx_hung = true;
3554 }
f7ba205e 3555
9d5c8243 3556 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3557 if (adapter->msix_entries) {
047e0030
AD
3558 u32 eics = 0;
3559 for (i = 0; i < adapter->num_q_vectors; i++) {
3560 struct igb_q_vector *q_vector = adapter->q_vector[i];
3561 eics |= q_vector->eims_value;
3562 }
7a6ea550
AD
3563 wr32(E1000_EICS, eics);
3564 } else {
3565 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3566 }
9d5c8243 3567
13800469
GR
3568 igb_spoof_check(adapter);
3569
9d5c8243
AK
3570 /* Reset the timer */
3571 if (!test_bit(__IGB_DOWN, &adapter->state))
3572 mod_timer(&adapter->watchdog_timer,
3573 round_jiffies(jiffies + 2 * HZ));
3574}
3575
3576enum latency_range {
3577 lowest_latency = 0,
3578 low_latency = 1,
3579 bulk_latency = 2,
3580 latency_invalid = 255
3581};
3582
6eb5a7f1
AD
3583/**
3584 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3585 *
3586 * Stores a new ITR value based on strictly on packet size. This
3587 * algorithm is less sophisticated than that used in igb_update_itr,
3588 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3589 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3590 * were determined based on theoretical maximum wire speed and testing
3591 * data, in order to minimize response time while increasing bulk
3592 * throughput.
3593 * This functionality is controlled by the InterruptThrottleRate module
3594 * parameter (see igb_param.c)
3595 * NOTE: This function is called only when operating in a multiqueue
3596 * receive environment.
047e0030 3597 * @q_vector: pointer to q_vector
6eb5a7f1 3598 **/
047e0030 3599static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3600{
047e0030 3601 int new_val = q_vector->itr_val;
6eb5a7f1 3602 int avg_wire_size = 0;
047e0030 3603 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3604 struct igb_ring *ring;
3605 unsigned int packets;
9d5c8243 3606
6eb5a7f1
AD
3607 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3608 * ints/sec - ITR timer value of 120 ticks.
3609 */
3610 if (adapter->link_speed != SPEED_1000) {
047e0030 3611 new_val = 976;
6eb5a7f1 3612 goto set_itr_val;
9d5c8243 3613 }
047e0030 3614
12dcd86b
ED
3615 ring = q_vector->rx_ring;
3616 if (ring) {
3617 packets = ACCESS_ONCE(ring->total_packets);
3618
3619 if (packets)
3620 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3621 }
3622
12dcd86b
ED
3623 ring = q_vector->tx_ring;
3624 if (ring) {
3625 packets = ACCESS_ONCE(ring->total_packets);
3626
3627 if (packets)
3628 avg_wire_size = max_t(u32, avg_wire_size,
3629 ring->total_bytes / packets);
047e0030
AD
3630 }
3631
3632 /* if avg_wire_size isn't set no work was done */
3633 if (!avg_wire_size)
3634 goto clear_counts;
9d5c8243 3635
6eb5a7f1
AD
3636 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3637 avg_wire_size += 24;
3638
3639 /* Don't starve jumbo frames */
3640 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3641
6eb5a7f1
AD
3642 /* Give a little boost to mid-size frames */
3643 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3644 new_val = avg_wire_size / 3;
3645 else
3646 new_val = avg_wire_size / 2;
9d5c8243 3647
abe1c363
NN
3648 /* when in itr mode 3 do not exceed 20K ints/sec */
3649 if (adapter->rx_itr_setting == 3 && new_val < 196)
3650 new_val = 196;
3651
6eb5a7f1 3652set_itr_val:
047e0030
AD
3653 if (new_val != q_vector->itr_val) {
3654 q_vector->itr_val = new_val;
3655 q_vector->set_itr = 1;
9d5c8243 3656 }
6eb5a7f1 3657clear_counts:
047e0030
AD
3658 if (q_vector->rx_ring) {
3659 q_vector->rx_ring->total_bytes = 0;
3660 q_vector->rx_ring->total_packets = 0;
3661 }
3662 if (q_vector->tx_ring) {
3663 q_vector->tx_ring->total_bytes = 0;
3664 q_vector->tx_ring->total_packets = 0;
3665 }
9d5c8243
AK
3666}
3667
3668/**
3669 * igb_update_itr - update the dynamic ITR value based on statistics
3670 * Stores a new ITR value based on packets and byte
3671 * counts during the last interrupt. The advantage of per interrupt
3672 * computation is faster updates and more accurate ITR for the current
3673 * traffic pattern. Constants in this function were computed
3674 * based on theoretical maximum wire speed and thresholds were set based
3675 * on testing data as well as attempting to minimize response time
3676 * while increasing bulk throughput.
3677 * this functionality is controlled by the InterruptThrottleRate module
3678 * parameter (see igb_param.c)
3679 * NOTE: These calculations are only valid when operating in a single-
3680 * queue environment.
3681 * @adapter: pointer to adapter
047e0030 3682 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3683 * @packets: the number of packets during this measurement interval
3684 * @bytes: the number of bytes during this measurement interval
3685 **/
3686static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3687 int packets, int bytes)
3688{
3689 unsigned int retval = itr_setting;
3690
3691 if (packets == 0)
3692 goto update_itr_done;
3693
3694 switch (itr_setting) {
3695 case lowest_latency:
3696 /* handle TSO and jumbo frames */
3697 if (bytes/packets > 8000)
3698 retval = bulk_latency;
3699 else if ((packets < 5) && (bytes > 512))
3700 retval = low_latency;
3701 break;
3702 case low_latency: /* 50 usec aka 20000 ints/s */
3703 if (bytes > 10000) {
3704 /* this if handles the TSO accounting */
3705 if (bytes/packets > 8000) {
3706 retval = bulk_latency;
3707 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3708 retval = bulk_latency;
3709 } else if ((packets > 35)) {
3710 retval = lowest_latency;
3711 }
3712 } else if (bytes/packets > 2000) {
3713 retval = bulk_latency;
3714 } else if (packets <= 2 && bytes < 512) {
3715 retval = lowest_latency;
3716 }
3717 break;
3718 case bulk_latency: /* 250 usec aka 4000 ints/s */
3719 if (bytes > 25000) {
3720 if (packets > 35)
3721 retval = low_latency;
1e5c3d21 3722 } else if (bytes < 1500) {
9d5c8243
AK
3723 retval = low_latency;
3724 }
3725 break;
3726 }
3727
3728update_itr_done:
3729 return retval;
3730}
3731
6eb5a7f1 3732static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3733{
047e0030 3734 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3735 u16 current_itr;
047e0030 3736 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3737
3738 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3739 if (adapter->link_speed != SPEED_1000) {
3740 current_itr = 0;
3741 new_itr = 4000;
3742 goto set_itr_now;
3743 }
3744
3745 adapter->rx_itr = igb_update_itr(adapter,
3746 adapter->rx_itr,
3025a446
AD
3747 q_vector->rx_ring->total_packets,
3748 q_vector->rx_ring->total_bytes);
9d5c8243 3749
047e0030
AD
3750 adapter->tx_itr = igb_update_itr(adapter,
3751 adapter->tx_itr,
3025a446
AD
3752 q_vector->tx_ring->total_packets,
3753 q_vector->tx_ring->total_bytes);
047e0030 3754 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3755
6eb5a7f1 3756 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3757 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3758 current_itr = low_latency;
3759
9d5c8243
AK
3760 switch (current_itr) {
3761 /* counts and packets in update_itr are dependent on these numbers */
3762 case lowest_latency:
78b1f607 3763 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3764 break;
3765 case low_latency:
78b1f607 3766 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3767 break;
3768 case bulk_latency:
78b1f607 3769 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3770 break;
3771 default:
3772 break;
3773 }
3774
3775set_itr_now:
3025a446
AD
3776 q_vector->rx_ring->total_bytes = 0;
3777 q_vector->rx_ring->total_packets = 0;
3778 q_vector->tx_ring->total_bytes = 0;
3779 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3780
047e0030 3781 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3782 /* this attempts to bias the interrupt rate towards Bulk
3783 * by adding intermediate steps when interrupt rate is
3784 * increasing */
047e0030
AD
3785 new_itr = new_itr > q_vector->itr_val ?
3786 max((new_itr * q_vector->itr_val) /
3787 (new_itr + (q_vector->itr_val >> 2)),
3788 new_itr) :
9d5c8243
AK
3789 new_itr;
3790 /* Don't write the value here; it resets the adapter's
3791 * internal timer, and causes us to delay far longer than
3792 * we should between interrupts. Instead, we write the ITR
3793 * value at the beginning of the next interrupt so the timing
3794 * ends up being correct.
3795 */
047e0030
AD
3796 q_vector->itr_val = new_itr;
3797 q_vector->set_itr = 1;
9d5c8243 3798 }
9d5c8243
AK
3799}
3800
9d5c8243
AK
3801#define IGB_TX_FLAGS_CSUM 0x00000001
3802#define IGB_TX_FLAGS_VLAN 0x00000002
3803#define IGB_TX_FLAGS_TSO 0x00000004
3804#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3805#define IGB_TX_FLAGS_TSTAMP 0x00000010
3806#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3807#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3808
85ad76b2 3809static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3810 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3811{
3812 struct e1000_adv_tx_context_desc *context_desc;
3813 unsigned int i;
3814 int err;
3815 struct igb_buffer *buffer_info;
3816 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3817 u32 mss_l4len_idx;
3818 u8 l4len;
9d5c8243
AK
3819
3820 if (skb_header_cloned(skb)) {
3821 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3822 if (err)
3823 return err;
3824 }
3825
3826 l4len = tcp_hdrlen(skb);
3827 *hdr_len += l4len;
3828
3829 if (skb->protocol == htons(ETH_P_IP)) {
3830 struct iphdr *iph = ip_hdr(skb);
3831 iph->tot_len = 0;
3832 iph->check = 0;
3833 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3834 iph->daddr, 0,
3835 IPPROTO_TCP,
3836 0);
8e1e8a47 3837 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3838 ipv6_hdr(skb)->payload_len = 0;
3839 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3840 &ipv6_hdr(skb)->daddr,
3841 0, IPPROTO_TCP, 0);
3842 }
3843
3844 i = tx_ring->next_to_use;
3845
3846 buffer_info = &tx_ring->buffer_info[i];
3847 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3848 /* VLAN MACLEN IPLEN */
3849 if (tx_flags & IGB_TX_FLAGS_VLAN)
3850 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3851 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3852 *hdr_len += skb_network_offset(skb);
3853 info |= skb_network_header_len(skb);
3854 *hdr_len += skb_network_header_len(skb);
3855 context_desc->vlan_macip_lens = cpu_to_le32(info);
3856
3857 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3858 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3859
3860 if (skb->protocol == htons(ETH_P_IP))
3861 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3862 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3863
3864 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3865
3866 /* MSS L4LEN IDX */
3867 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3868 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3869
73cd78f1 3870 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3871 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3872 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3873
3874 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3875 context_desc->seqnum_seed = 0;
3876
3877 buffer_info->time_stamp = jiffies;
0e014cb1 3878 buffer_info->next_to_watch = i;
9d5c8243
AK
3879 buffer_info->dma = 0;
3880 i++;
3881 if (i == tx_ring->count)
3882 i = 0;
3883
3884 tx_ring->next_to_use = i;
3885
3886 return true;
3887}
3888
85ad76b2
AD
3889static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3890 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3891{
3892 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3893 struct device *dev = tx_ring->dev;
9d5c8243
AK
3894 struct igb_buffer *buffer_info;
3895 u32 info = 0, tu_cmd = 0;
80785298 3896 unsigned int i;
9d5c8243
AK
3897
3898 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3899 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3900 i = tx_ring->next_to_use;
3901 buffer_info = &tx_ring->buffer_info[i];
3902 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3903
3904 if (tx_flags & IGB_TX_FLAGS_VLAN)
3905 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3906
9d5c8243
AK
3907 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3908 if (skb->ip_summed == CHECKSUM_PARTIAL)
3909 info |= skb_network_header_len(skb);
3910
3911 context_desc->vlan_macip_lens = cpu_to_le32(info);
3912
3913 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3914
3915 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3916 __be16 protocol;
3917
3918 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3919 const struct vlan_ethhdr *vhdr =
3920 (const struct vlan_ethhdr*)skb->data;
3921
3922 protocol = vhdr->h_vlan_encapsulated_proto;
3923 } else {
3924 protocol = skb->protocol;
3925 }
3926
3927 switch (protocol) {
09640e63 3928 case cpu_to_be16(ETH_P_IP):
9d5c8243 3929 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3930 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3931 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3932 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3933 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3934 break;
09640e63 3935 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3936 /* XXX what about other V6 headers?? */
3937 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3938 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3939 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3940 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3941 break;
3942 default:
3943 if (unlikely(net_ratelimit()))
59d71989 3944 dev_warn(dev,
44b0cda3
MW
3945 "partial checksum but proto=%x!\n",
3946 skb->protocol);
3947 break;
3948 }
9d5c8243
AK
3949 }
3950
3951 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3952 context_desc->seqnum_seed = 0;
85ad76b2 3953 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3954 context_desc->mss_l4len_idx =
85ad76b2 3955 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3956
3957 buffer_info->time_stamp = jiffies;
0e014cb1 3958 buffer_info->next_to_watch = i;
9d5c8243
AK
3959 buffer_info->dma = 0;
3960
3961 i++;
3962 if (i == tx_ring->count)
3963 i = 0;
3964 tx_ring->next_to_use = i;
3965
3966 return true;
3967 }
9d5c8243
AK
3968 return false;
3969}
3970
3971#define IGB_MAX_TXD_PWR 16
3972#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3973
80785298 3974static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3975 unsigned int first)
9d5c8243
AK
3976{
3977 struct igb_buffer *buffer_info;
59d71989 3978 struct device *dev = tx_ring->dev;
2873957d 3979 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3980 unsigned int count = 0, i;
3981 unsigned int f;
2873957d 3982 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3983
3984 i = tx_ring->next_to_use;
3985
3986 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3987 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3988 buffer_info->length = hlen;
9d5c8243
AK
3989 /* set time_stamp *before* dma to help avoid a possible race */
3990 buffer_info->time_stamp = jiffies;
0e014cb1 3991 buffer_info->next_to_watch = i;
2873957d 3992 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
3993 DMA_TO_DEVICE);
3994 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3995 goto dma_error;
9d5c8243
AK
3996
3997 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
3998 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3999 unsigned int len = frag->size;
9d5c8243 4000
8581145f 4001 count++;
65689fef
AD
4002 i++;
4003 if (i == tx_ring->count)
4004 i = 0;
4005
9d5c8243
AK
4006 buffer_info = &tx_ring->buffer_info[i];
4007 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4008 buffer_info->length = len;
4009 buffer_info->time_stamp = jiffies;
0e014cb1 4010 buffer_info->next_to_watch = i;
6366ad33 4011 buffer_info->mapped_as_page = true;
59d71989 4012 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
4013 frag->page,
4014 frag->page_offset,
4015 len,
59d71989
AD
4016 DMA_TO_DEVICE);
4017 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4018 goto dma_error;
4019
9d5c8243
AK
4020 }
4021
9d5c8243 4022 tx_ring->buffer_info[i].skb = skb;
2244d07b 4023 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4024 /* multiply data chunks by size of headers */
4025 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4026 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4027 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4028
cdfd01fc 4029 return ++count;
6366ad33
AD
4030
4031dma_error:
59d71989 4032 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4033
4034 /* clear timestamp and dma mappings for failed buffer_info mapping */
4035 buffer_info->dma = 0;
4036 buffer_info->time_stamp = 0;
4037 buffer_info->length = 0;
4038 buffer_info->next_to_watch = 0;
4039 buffer_info->mapped_as_page = false;
6366ad33
AD
4040
4041 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4042 while (count--) {
4043 if (i == 0)
4044 i = tx_ring->count;
6366ad33 4045 i--;
6366ad33
AD
4046 buffer_info = &tx_ring->buffer_info[i];
4047 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4048 }
4049
4050 return 0;
9d5c8243
AK
4051}
4052
85ad76b2 4053static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4054 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4055 u8 hdr_len)
4056{
cdfd01fc 4057 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4058 struct igb_buffer *buffer_info;
4059 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4060 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4061
4062 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4063 E1000_ADVTXD_DCMD_DEXT);
4064
4065 if (tx_flags & IGB_TX_FLAGS_VLAN)
4066 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4067
33af6bcc
PO
4068 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4069 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4070
9d5c8243
AK
4071 if (tx_flags & IGB_TX_FLAGS_TSO) {
4072 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4073
4074 /* insert tcp checksum */
4075 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4076
4077 /* insert ip checksum */
4078 if (tx_flags & IGB_TX_FLAGS_IPV4)
4079 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4080
4081 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4082 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4083 }
4084
85ad76b2
AD
4085 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4086 (tx_flags & (IGB_TX_FLAGS_CSUM |
4087 IGB_TX_FLAGS_TSO |
7dfc16fa 4088 IGB_TX_FLAGS_VLAN)))
85ad76b2 4089 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4090
4091 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4092
cdfd01fc 4093 do {
9d5c8243
AK
4094 buffer_info = &tx_ring->buffer_info[i];
4095 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4096 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4097 tx_desc->read.cmd_type_len =
4098 cpu_to_le32(cmd_type_len | buffer_info->length);
4099 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4100 count--;
9d5c8243
AK
4101 i++;
4102 if (i == tx_ring->count)
4103 i = 0;
cdfd01fc 4104 } while (count > 0);
9d5c8243 4105
85ad76b2 4106 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4107 /* Force memory writes to complete before letting h/w
4108 * know there are new descriptors to fetch. (Only
4109 * applicable for weak-ordered memory model archs,
4110 * such as IA-64). */
4111 wmb();
4112
4113 tx_ring->next_to_use = i;
fce99e34 4114 writel(i, tx_ring->tail);
9d5c8243
AK
4115 /* we need this if more than one processor can write to our tail
4116 * at a time, it syncronizes IO on IA64/Altix systems */
4117 mmiowb();
4118}
4119
e694e964 4120static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4121{
e694e964
AD
4122 struct net_device *netdev = tx_ring->netdev;
4123
661086df 4124 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4125
9d5c8243
AK
4126 /* Herbert's original patch had:
4127 * smp_mb__after_netif_stop_queue();
4128 * but since that doesn't exist yet, just open code it. */
4129 smp_mb();
4130
4131 /* We need to check again in a case another CPU has just
4132 * made room available. */
c493ea45 4133 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4134 return -EBUSY;
4135
4136 /* A reprieve! */
661086df 4137 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4138
4139 u64_stats_update_begin(&tx_ring->tx_syncp2);
4140 tx_ring->tx_stats.restart_queue2++;
4141 u64_stats_update_end(&tx_ring->tx_syncp2);
4142
9d5c8243
AK
4143 return 0;
4144}
4145
717ba089 4146static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4147{
c493ea45 4148 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4149 return 0;
e694e964 4150 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4151}
4152
b1a436c3
AD
4153netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4154 struct igb_ring *tx_ring)
9d5c8243 4155{
cdfd01fc 4156 int tso = 0, count;
91d4ee33
NN
4157 u32 tx_flags = 0;
4158 u16 first;
4159 u8 hdr_len = 0;
9d5c8243 4160
9d5c8243
AK
4161 /* need: 1 descriptor per page,
4162 * + 2 desc gap to keep tail from touching head,
4163 * + 1 desc for skb->data,
4164 * + 1 desc for context descriptor,
4165 * otherwise try next time */
e694e964 4166 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4167 /* this is a hard error */
9d5c8243
AK
4168 return NETDEV_TX_BUSY;
4169 }
33af6bcc 4170
2244d07b
OH
4171 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4172 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4173 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4174 }
9d5c8243 4175
eab6d18d 4176 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4177 tx_flags |= IGB_TX_FLAGS_VLAN;
4178 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4179 }
4180
661086df
PWJ
4181 if (skb->protocol == htons(ETH_P_IP))
4182 tx_flags |= IGB_TX_FLAGS_IPV4;
4183
0e014cb1 4184 first = tx_ring->next_to_use;
85ad76b2
AD
4185 if (skb_is_gso(skb)) {
4186 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4187
85ad76b2
AD
4188 if (tso < 0) {
4189 dev_kfree_skb_any(skb);
4190 return NETDEV_TX_OK;
4191 }
9d5c8243
AK
4192 }
4193
4194 if (tso)
4195 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4196 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4197 (skb->ip_summed == CHECKSUM_PARTIAL))
4198 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4199
65689fef 4200 /*
cdfd01fc 4201 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4202 * has occured and we need to rewind the descriptor queue
4203 */
80785298 4204 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4205 if (!count) {
65689fef
AD
4206 dev_kfree_skb_any(skb);
4207 tx_ring->buffer_info[first].time_stamp = 0;
4208 tx_ring->next_to_use = first;
85ad76b2 4209 return NETDEV_TX_OK;
65689fef 4210 }
9d5c8243 4211
85ad76b2
AD
4212 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4213
4214 /* Make sure there is space in the ring for the next send. */
e694e964 4215 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4216
9d5c8243
AK
4217 return NETDEV_TX_OK;
4218}
4219
3b29a56d
SH
4220static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4221 struct net_device *netdev)
9d5c8243
AK
4222{
4223 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4224 struct igb_ring *tx_ring;
661086df 4225 int r_idx = 0;
b1a436c3
AD
4226
4227 if (test_bit(__IGB_DOWN, &adapter->state)) {
4228 dev_kfree_skb_any(skb);
4229 return NETDEV_TX_OK;
4230 }
4231
4232 if (skb->len <= 0) {
4233 dev_kfree_skb_any(skb);
4234 return NETDEV_TX_OK;
4235 }
4236
1bfaf07b 4237 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4238 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4239
4240 /* This goes back to the question of how to logically map a tx queue
4241 * to a flow. Right now, performance is impacted slightly negatively
4242 * if using multiple tx queues. If the stack breaks away from a
4243 * single qdisc implementation, we can look at this again. */
e694e964 4244 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4245}
4246
4247/**
4248 * igb_tx_timeout - Respond to a Tx Hang
4249 * @netdev: network interface device structure
4250 **/
4251static void igb_tx_timeout(struct net_device *netdev)
4252{
4253 struct igb_adapter *adapter = netdev_priv(netdev);
4254 struct e1000_hw *hw = &adapter->hw;
4255
4256 /* Do the reset outside of interrupt context */
4257 adapter->tx_timeout_count++;
f7ba205e 4258
55cac248
AD
4259 if (hw->mac.type == e1000_82580)
4260 hw->dev_spec._82575.global_device_reset = true;
4261
9d5c8243 4262 schedule_work(&adapter->reset_task);
265de409
AD
4263 wr32(E1000_EICS,
4264 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4265}
4266
4267static void igb_reset_task(struct work_struct *work)
4268{
4269 struct igb_adapter *adapter;
4270 adapter = container_of(work, struct igb_adapter, reset_task);
4271
c97ec42a
TI
4272 igb_dump(adapter);
4273 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4274 igb_reinit_locked(adapter);
4275}
4276
4277/**
12dcd86b 4278 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4279 * @netdev: network interface device structure
12dcd86b 4280 * @stats: rtnl_link_stats64 pointer
9d5c8243 4281 *
9d5c8243 4282 **/
12dcd86b
ED
4283static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4284 struct rtnl_link_stats64 *stats)
9d5c8243 4285{
12dcd86b
ED
4286 struct igb_adapter *adapter = netdev_priv(netdev);
4287
4288 spin_lock(&adapter->stats64_lock);
4289 igb_update_stats(adapter, &adapter->stats64);
4290 memcpy(stats, &adapter->stats64, sizeof(*stats));
4291 spin_unlock(&adapter->stats64_lock);
4292
4293 return stats;
9d5c8243
AK
4294}
4295
4296/**
4297 * igb_change_mtu - Change the Maximum Transfer Unit
4298 * @netdev: network interface device structure
4299 * @new_mtu: new value for maximum frame size
4300 *
4301 * Returns 0 on success, negative on failure
4302 **/
4303static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4304{
4305 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4306 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4307 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4308 u32 rx_buffer_len, i;
9d5c8243 4309
c809d227 4310 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4311 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4312 return -EINVAL;
4313 }
4314
9d5c8243 4315 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4316 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4317 return -EINVAL;
4318 }
4319
4320 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4321 msleep(1);
73cd78f1 4322
9d5c8243
AK
4323 /* igb_down has a dependency on max_frame_size */
4324 adapter->max_frame_size = max_frame;
559e9c49 4325
9d5c8243
AK
4326 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4327 * means we reserve 2 more, this pushes us to allocate from the next
4328 * larger slab size.
4329 * i.e. RXBUFFER_2048 --> size-4096 slab
4330 */
4331
757b77e2
NN
4332 if (adapter->hw.mac.type == e1000_82580)
4333 max_frame += IGB_TS_HDR_LEN;
4334
7d95b717 4335 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4336 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4337 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4338 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4339 else
4c844851
AD
4340 rx_buffer_len = IGB_RXBUFFER_128;
4341
757b77e2
NN
4342 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4343 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4344 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4345
4346 if ((adapter->hw.mac.type == e1000_82580) &&
4347 (rx_buffer_len == IGB_RXBUFFER_128))
4348 rx_buffer_len += IGB_RXBUFFER_64;
4349
4c844851
AD
4350 if (netif_running(netdev))
4351 igb_down(adapter);
9d5c8243 4352
090b1795 4353 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4354 netdev->mtu, new_mtu);
4355 netdev->mtu = new_mtu;
4356
4c844851 4357 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4358 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4359
9d5c8243
AK
4360 if (netif_running(netdev))
4361 igb_up(adapter);
4362 else
4363 igb_reset(adapter);
4364
4365 clear_bit(__IGB_RESETTING, &adapter->state);
4366
4367 return 0;
4368}
4369
4370/**
4371 * igb_update_stats - Update the board statistics counters
4372 * @adapter: board private structure
4373 **/
4374
12dcd86b
ED
4375void igb_update_stats(struct igb_adapter *adapter,
4376 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4377{
4378 struct e1000_hw *hw = &adapter->hw;
4379 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4380 u32 reg, mpc;
9d5c8243 4381 u16 phy_tmp;
3f9c0164
AD
4382 int i;
4383 u64 bytes, packets;
12dcd86b
ED
4384 unsigned int start;
4385 u64 _bytes, _packets;
9d5c8243
AK
4386
4387#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4388
4389 /*
4390 * Prevent stats update while adapter is being reset, or if the pci
4391 * connection is down.
4392 */
4393 if (adapter->link_speed == 0)
4394 return;
4395 if (pci_channel_offline(pdev))
4396 return;
4397
3f9c0164
AD
4398 bytes = 0;
4399 packets = 0;
4400 for (i = 0; i < adapter->num_rx_queues; i++) {
4401 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4402 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4403
3025a446 4404 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4405 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4406
4407 do {
4408 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4409 _bytes = ring->rx_stats.bytes;
4410 _packets = ring->rx_stats.packets;
4411 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4412 bytes += _bytes;
4413 packets += _packets;
3f9c0164
AD
4414 }
4415
128e45eb
AD
4416 net_stats->rx_bytes = bytes;
4417 net_stats->rx_packets = packets;
3f9c0164
AD
4418
4419 bytes = 0;
4420 packets = 0;
4421 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4422 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4423 do {
4424 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4425 _bytes = ring->tx_stats.bytes;
4426 _packets = ring->tx_stats.packets;
4427 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4428 bytes += _bytes;
4429 packets += _packets;
3f9c0164 4430 }
128e45eb
AD
4431 net_stats->tx_bytes = bytes;
4432 net_stats->tx_packets = packets;
3f9c0164
AD
4433
4434 /* read stats registers */
9d5c8243
AK
4435 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4436 adapter->stats.gprc += rd32(E1000_GPRC);
4437 adapter->stats.gorc += rd32(E1000_GORCL);
4438 rd32(E1000_GORCH); /* clear GORCL */
4439 adapter->stats.bprc += rd32(E1000_BPRC);
4440 adapter->stats.mprc += rd32(E1000_MPRC);
4441 adapter->stats.roc += rd32(E1000_ROC);
4442
4443 adapter->stats.prc64 += rd32(E1000_PRC64);
4444 adapter->stats.prc127 += rd32(E1000_PRC127);
4445 adapter->stats.prc255 += rd32(E1000_PRC255);
4446 adapter->stats.prc511 += rd32(E1000_PRC511);
4447 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4448 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4449 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4450 adapter->stats.sec += rd32(E1000_SEC);
4451
fa3d9a6d
MW
4452 mpc = rd32(E1000_MPC);
4453 adapter->stats.mpc += mpc;
4454 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4455 adapter->stats.scc += rd32(E1000_SCC);
4456 adapter->stats.ecol += rd32(E1000_ECOL);
4457 adapter->stats.mcc += rd32(E1000_MCC);
4458 adapter->stats.latecol += rd32(E1000_LATECOL);
4459 adapter->stats.dc += rd32(E1000_DC);
4460 adapter->stats.rlec += rd32(E1000_RLEC);
4461 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4462 adapter->stats.xontxc += rd32(E1000_XONTXC);
4463 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4464 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4465 adapter->stats.fcruc += rd32(E1000_FCRUC);
4466 adapter->stats.gptc += rd32(E1000_GPTC);
4467 adapter->stats.gotc += rd32(E1000_GOTCL);
4468 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4469 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4470 adapter->stats.ruc += rd32(E1000_RUC);
4471 adapter->stats.rfc += rd32(E1000_RFC);
4472 adapter->stats.rjc += rd32(E1000_RJC);
4473 adapter->stats.tor += rd32(E1000_TORH);
4474 adapter->stats.tot += rd32(E1000_TOTH);
4475 adapter->stats.tpr += rd32(E1000_TPR);
4476
4477 adapter->stats.ptc64 += rd32(E1000_PTC64);
4478 adapter->stats.ptc127 += rd32(E1000_PTC127);
4479 adapter->stats.ptc255 += rd32(E1000_PTC255);
4480 adapter->stats.ptc511 += rd32(E1000_PTC511);
4481 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4482 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4483
4484 adapter->stats.mptc += rd32(E1000_MPTC);
4485 adapter->stats.bptc += rd32(E1000_BPTC);
4486
2d0b0f69
NN
4487 adapter->stats.tpt += rd32(E1000_TPT);
4488 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4489
4490 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4491 /* read internal phy specific stats */
4492 reg = rd32(E1000_CTRL_EXT);
4493 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4494 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4495 adapter->stats.tncrs += rd32(E1000_TNCRS);
4496 }
4497
9d5c8243
AK
4498 adapter->stats.tsctc += rd32(E1000_TSCTC);
4499 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4500
4501 adapter->stats.iac += rd32(E1000_IAC);
4502 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4503 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4504 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4505 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4506 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4507 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4508 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4509 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4510
4511 /* Fill out the OS statistics structure */
128e45eb
AD
4512 net_stats->multicast = adapter->stats.mprc;
4513 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4514
4515 /* Rx Errors */
4516
4517 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4518 * our own version based on RUC and ROC */
128e45eb 4519 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4520 adapter->stats.crcerrs + adapter->stats.algnerrc +
4521 adapter->stats.ruc + adapter->stats.roc +
4522 adapter->stats.cexterr;
128e45eb
AD
4523 net_stats->rx_length_errors = adapter->stats.ruc +
4524 adapter->stats.roc;
4525 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4526 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4527 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4528
4529 /* Tx Errors */
128e45eb
AD
4530 net_stats->tx_errors = adapter->stats.ecol +
4531 adapter->stats.latecol;
4532 net_stats->tx_aborted_errors = adapter->stats.ecol;
4533 net_stats->tx_window_errors = adapter->stats.latecol;
4534 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4535
4536 /* Tx Dropped needs to be maintained elsewhere */
4537
4538 /* Phy Stats */
4539 if (hw->phy.media_type == e1000_media_type_copper) {
4540 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4541 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4542 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4543 adapter->phy_stats.idle_errors += phy_tmp;
4544 }
4545 }
4546
4547 /* Management Stats */
4548 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4549 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4550 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4551}
4552
9d5c8243
AK
4553static irqreturn_t igb_msix_other(int irq, void *data)
4554{
047e0030 4555 struct igb_adapter *adapter = data;
9d5c8243 4556 struct e1000_hw *hw = &adapter->hw;
844290e5 4557 u32 icr = rd32(E1000_ICR);
844290e5 4558 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4559
7f081d40
AD
4560 if (icr & E1000_ICR_DRSTA)
4561 schedule_work(&adapter->reset_task);
4562
047e0030 4563 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4564 /* HW is reporting DMA is out of sync */
4565 adapter->stats.doosync++;
13800469
GR
4566 /* The DMA Out of Sync is also indication of a spoof event
4567 * in IOV mode. Check the Wrong VM Behavior register to
4568 * see if it is really a spoof event. */
4569 igb_check_wvbr(adapter);
dda0e083 4570 }
eebbbdba 4571
4ae196df
AD
4572 /* Check for a mailbox event */
4573 if (icr & E1000_ICR_VMMB)
4574 igb_msg_task(adapter);
4575
4576 if (icr & E1000_ICR_LSC) {
4577 hw->mac.get_link_status = 1;
4578 /* guard against interrupt when we're going down */
4579 if (!test_bit(__IGB_DOWN, &adapter->state))
4580 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4581 }
4582
25568a53
AD
4583 if (adapter->vfs_allocated_count)
4584 wr32(E1000_IMS, E1000_IMS_LSC |
4585 E1000_IMS_VMMB |
4586 E1000_IMS_DOUTSYNC);
4587 else
4588 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4589 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4590
4591 return IRQ_HANDLED;
4592}
4593
047e0030 4594static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4595{
26b39276 4596 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4597 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4598
047e0030
AD
4599 if (!q_vector->set_itr)
4600 return;
73cd78f1 4601
047e0030
AD
4602 if (!itr_val)
4603 itr_val = 0x4;
661086df 4604
26b39276
AD
4605 if (adapter->hw.mac.type == e1000_82575)
4606 itr_val |= itr_val << 16;
661086df 4607 else
047e0030 4608 itr_val |= 0x8000000;
661086df 4609
047e0030
AD
4610 writel(itr_val, q_vector->itr_register);
4611 q_vector->set_itr = 0;
6eb5a7f1
AD
4612}
4613
047e0030 4614static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4615{
047e0030 4616 struct igb_q_vector *q_vector = data;
9d5c8243 4617
047e0030
AD
4618 /* Write the ITR value calculated from the previous interrupt. */
4619 igb_write_itr(q_vector);
9d5c8243 4620
047e0030 4621 napi_schedule(&q_vector->napi);
844290e5 4622
047e0030 4623 return IRQ_HANDLED;
fe4506b6
JC
4624}
4625
421e02f0 4626#ifdef CONFIG_IGB_DCA
047e0030 4627static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4628{
047e0030 4629 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4630 struct e1000_hw *hw = &adapter->hw;
4631 int cpu = get_cpu();
fe4506b6 4632
047e0030
AD
4633 if (q_vector->cpu == cpu)
4634 goto out_no_update;
4635
4636 if (q_vector->tx_ring) {
4637 int q = q_vector->tx_ring->reg_idx;
4638 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4639 if (hw->mac.type == e1000_82575) {
4640 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4641 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4642 } else {
047e0030
AD
4643 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4644 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4645 E1000_DCA_TXCTRL_CPUID_SHIFT;
4646 }
4647 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4648 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4649 }
4650 if (q_vector->rx_ring) {
4651 int q = q_vector->rx_ring->reg_idx;
4652 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4653 if (hw->mac.type == e1000_82575) {
2d064c06 4654 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4655 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4656 } else {
4657 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4658 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4659 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4660 }
fe4506b6
JC
4661 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4662 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4663 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4664 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4665 }
047e0030
AD
4666 q_vector->cpu = cpu;
4667out_no_update:
fe4506b6
JC
4668 put_cpu();
4669}
4670
4671static void igb_setup_dca(struct igb_adapter *adapter)
4672{
7e0e99ef 4673 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4674 int i;
4675
7dfc16fa 4676 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4677 return;
4678
7e0e99ef
AD
4679 /* Always use CB2 mode, difference is masked in the CB driver. */
4680 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4681
047e0030 4682 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4683 adapter->q_vector[i]->cpu = -1;
4684 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4685 }
4686}
4687
4688static int __igb_notify_dca(struct device *dev, void *data)
4689{
4690 struct net_device *netdev = dev_get_drvdata(dev);
4691 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4692 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4693 struct e1000_hw *hw = &adapter->hw;
4694 unsigned long event = *(unsigned long *)data;
4695
4696 switch (event) {
4697 case DCA_PROVIDER_ADD:
4698 /* if already enabled, don't do it again */
7dfc16fa 4699 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4700 break;
fe4506b6 4701 if (dca_add_requester(dev) == 0) {
bbd98fe4 4702 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4703 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4704 igb_setup_dca(adapter);
4705 break;
4706 }
4707 /* Fall Through since DCA is disabled. */
4708 case DCA_PROVIDER_REMOVE:
7dfc16fa 4709 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4710 /* without this a class_device is left
047e0030 4711 * hanging around in the sysfs model */
fe4506b6 4712 dca_remove_requester(dev);
090b1795 4713 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4714 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4715 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4716 }
4717 break;
4718 }
bbd98fe4 4719
fe4506b6 4720 return 0;
9d5c8243
AK
4721}
4722
fe4506b6
JC
4723static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4724 void *p)
4725{
4726 int ret_val;
4727
4728 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4729 __igb_notify_dca);
4730
4731 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4732}
421e02f0 4733#endif /* CONFIG_IGB_DCA */
9d5c8243 4734
4ae196df
AD
4735static void igb_ping_all_vfs(struct igb_adapter *adapter)
4736{
4737 struct e1000_hw *hw = &adapter->hw;
4738 u32 ping;
4739 int i;
4740
4741 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4742 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4743 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4744 ping |= E1000_VT_MSGTYPE_CTS;
4745 igb_write_mbx(hw, &ping, 1, i);
4746 }
4747}
4748
7d5753f0
AD
4749static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4750{
4751 struct e1000_hw *hw = &adapter->hw;
4752 u32 vmolr = rd32(E1000_VMOLR(vf));
4753 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4754
d85b9004 4755 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4756 IGB_VF_FLAG_MULTI_PROMISC);
4757 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4758
4759 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4760 vmolr |= E1000_VMOLR_MPME;
d85b9004 4761 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4762 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4763 } else {
4764 /*
4765 * if we have hashes and we are clearing a multicast promisc
4766 * flag we need to write the hashes to the MTA as this step
4767 * was previously skipped
4768 */
4769 if (vf_data->num_vf_mc_hashes > 30) {
4770 vmolr |= E1000_VMOLR_MPME;
4771 } else if (vf_data->num_vf_mc_hashes) {
4772 int j;
4773 vmolr |= E1000_VMOLR_ROMPE;
4774 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4775 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4776 }
4777 }
4778
4779 wr32(E1000_VMOLR(vf), vmolr);
4780
4781 /* there are flags left unprocessed, likely not supported */
4782 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4783 return -EINVAL;
4784
4785 return 0;
4786
4787}
4788
4ae196df
AD
4789static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4790 u32 *msgbuf, u32 vf)
4791{
4792 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4793 u16 *hash_list = (u16 *)&msgbuf[1];
4794 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4795 int i;
4796
7d5753f0 4797 /* salt away the number of multicast addresses assigned
4ae196df
AD
4798 * to this VF for later use to restore when the PF multi cast
4799 * list changes
4800 */
4801 vf_data->num_vf_mc_hashes = n;
4802
7d5753f0
AD
4803 /* only up to 30 hash values supported */
4804 if (n > 30)
4805 n = 30;
4806
4807 /* store the hashes for later use */
4ae196df 4808 for (i = 0; i < n; i++)
a419aef8 4809 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4810
4811 /* Flush and reset the mta with the new values */
ff41f8dc 4812 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4813
4814 return 0;
4815}
4816
4817static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4818{
4819 struct e1000_hw *hw = &adapter->hw;
4820 struct vf_data_storage *vf_data;
4821 int i, j;
4822
4823 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4824 u32 vmolr = rd32(E1000_VMOLR(i));
4825 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4826
4ae196df 4827 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4828
4829 if ((vf_data->num_vf_mc_hashes > 30) ||
4830 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4831 vmolr |= E1000_VMOLR_MPME;
4832 } else if (vf_data->num_vf_mc_hashes) {
4833 vmolr |= E1000_VMOLR_ROMPE;
4834 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4835 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4836 }
4837 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4838 }
4839}
4840
4841static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4842{
4843 struct e1000_hw *hw = &adapter->hw;
4844 u32 pool_mask, reg, vid;
4845 int i;
4846
4847 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4848
4849 /* Find the vlan filter for this id */
4850 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4851 reg = rd32(E1000_VLVF(i));
4852
4853 /* remove the vf from the pool */
4854 reg &= ~pool_mask;
4855
4856 /* if pool is empty then remove entry from vfta */
4857 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4858 (reg & E1000_VLVF_VLANID_ENABLE)) {
4859 reg = 0;
4860 vid = reg & E1000_VLVF_VLANID_MASK;
4861 igb_vfta_set(hw, vid, false);
4862 }
4863
4864 wr32(E1000_VLVF(i), reg);
4865 }
ae641bdc
AD
4866
4867 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4868}
4869
4870static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4871{
4872 struct e1000_hw *hw = &adapter->hw;
4873 u32 reg, i;
4874
51466239
AD
4875 /* The vlvf table only exists on 82576 hardware and newer */
4876 if (hw->mac.type < e1000_82576)
4877 return -1;
4878
4879 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4880 if (!adapter->vfs_allocated_count)
4881 return -1;
4882
4883 /* Find the vlan filter for this id */
4884 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4885 reg = rd32(E1000_VLVF(i));
4886 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4887 vid == (reg & E1000_VLVF_VLANID_MASK))
4888 break;
4889 }
4890
4891 if (add) {
4892 if (i == E1000_VLVF_ARRAY_SIZE) {
4893 /* Did not find a matching VLAN ID entry that was
4894 * enabled. Search for a free filter entry, i.e.
4895 * one without the enable bit set
4896 */
4897 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4898 reg = rd32(E1000_VLVF(i));
4899 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4900 break;
4901 }
4902 }
4903 if (i < E1000_VLVF_ARRAY_SIZE) {
4904 /* Found an enabled/available entry */
4905 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4906
4907 /* if !enabled we need to set this up in vfta */
4908 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4909 /* add VID to filter table */
4910 igb_vfta_set(hw, vid, true);
4ae196df
AD
4911 reg |= E1000_VLVF_VLANID_ENABLE;
4912 }
cad6d05f
AD
4913 reg &= ~E1000_VLVF_VLANID_MASK;
4914 reg |= vid;
4ae196df 4915 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4916
4917 /* do not modify RLPML for PF devices */
4918 if (vf >= adapter->vfs_allocated_count)
4919 return 0;
4920
4921 if (!adapter->vf_data[vf].vlans_enabled) {
4922 u32 size;
4923 reg = rd32(E1000_VMOLR(vf));
4924 size = reg & E1000_VMOLR_RLPML_MASK;
4925 size += 4;
4926 reg &= ~E1000_VMOLR_RLPML_MASK;
4927 reg |= size;
4928 wr32(E1000_VMOLR(vf), reg);
4929 }
ae641bdc 4930
51466239 4931 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4932 return 0;
4933 }
4934 } else {
4935 if (i < E1000_VLVF_ARRAY_SIZE) {
4936 /* remove vf from the pool */
4937 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4938 /* if pool is empty then remove entry from vfta */
4939 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4940 reg = 0;
4941 igb_vfta_set(hw, vid, false);
4942 }
4943 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4944
4945 /* do not modify RLPML for PF devices */
4946 if (vf >= adapter->vfs_allocated_count)
4947 return 0;
4948
4949 adapter->vf_data[vf].vlans_enabled--;
4950 if (!adapter->vf_data[vf].vlans_enabled) {
4951 u32 size;
4952 reg = rd32(E1000_VMOLR(vf));
4953 size = reg & E1000_VMOLR_RLPML_MASK;
4954 size -= 4;
4955 reg &= ~E1000_VMOLR_RLPML_MASK;
4956 reg |= size;
4957 wr32(E1000_VMOLR(vf), reg);
4958 }
4ae196df
AD
4959 }
4960 }
8151d294
WM
4961 return 0;
4962}
4963
4964static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4965{
4966 struct e1000_hw *hw = &adapter->hw;
4967
4968 if (vid)
4969 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4970 else
4971 wr32(E1000_VMVIR(vf), 0);
4972}
4973
4974static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4975 int vf, u16 vlan, u8 qos)
4976{
4977 int err = 0;
4978 struct igb_adapter *adapter = netdev_priv(netdev);
4979
4980 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4981 return -EINVAL;
4982 if (vlan || qos) {
4983 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4984 if (err)
4985 goto out;
4986 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4987 igb_set_vmolr(adapter, vf, !vlan);
4988 adapter->vf_data[vf].pf_vlan = vlan;
4989 adapter->vf_data[vf].pf_qos = qos;
4990 dev_info(&adapter->pdev->dev,
4991 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4992 if (test_bit(__IGB_DOWN, &adapter->state)) {
4993 dev_warn(&adapter->pdev->dev,
4994 "The VF VLAN has been set,"
4995 " but the PF device is not up.\n");
4996 dev_warn(&adapter->pdev->dev,
4997 "Bring the PF device up before"
4998 " attempting to use the VF device.\n");
4999 }
5000 } else {
5001 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5002 false, vf);
5003 igb_set_vmvir(adapter, vlan, vf);
5004 igb_set_vmolr(adapter, vf, true);
5005 adapter->vf_data[vf].pf_vlan = 0;
5006 adapter->vf_data[vf].pf_qos = 0;
5007 }
5008out:
5009 return err;
4ae196df
AD
5010}
5011
5012static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5013{
5014 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5015 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5016
5017 return igb_vlvf_set(adapter, vid, add, vf);
5018}
5019
f2ca0dbe 5020static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5021{
8fa7e0f7
GR
5022 /* clear flags - except flag that indicates PF has set the MAC */
5023 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5024 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5025
5026 /* reset offloads to defaults */
8151d294 5027 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5028
5029 /* reset vlans for device */
5030 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5031 if (adapter->vf_data[vf].pf_vlan)
5032 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5033 adapter->vf_data[vf].pf_vlan,
5034 adapter->vf_data[vf].pf_qos);
5035 else
5036 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5037
5038 /* reset multicast table array for vf */
5039 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5040
5041 /* Flush and reset the mta with the new values */
ff41f8dc 5042 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5043}
5044
f2ca0dbe
AD
5045static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5046{
5047 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5048
5049 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5050 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5051 random_ether_addr(vf_mac);
f2ca0dbe
AD
5052
5053 /* process remaining reset events */
5054 igb_vf_reset(adapter, vf);
5055}
5056
5057static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5058{
5059 struct e1000_hw *hw = &adapter->hw;
5060 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5061 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5062 u32 reg, msgbuf[3];
5063 u8 *addr = (u8 *)(&msgbuf[1]);
5064
5065 /* process all the same items cleared in a function level reset */
f2ca0dbe 5066 igb_vf_reset(adapter, vf);
4ae196df
AD
5067
5068 /* set vf mac address */
26ad9178 5069 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5070
5071 /* enable transmit and receive for vf */
5072 reg = rd32(E1000_VFTE);
5073 wr32(E1000_VFTE, reg | (1 << vf));
5074 reg = rd32(E1000_VFRE);
5075 wr32(E1000_VFRE, reg | (1 << vf));
5076
8fa7e0f7 5077 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5078
5079 /* reply to reset with ack and vf mac address */
5080 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5081 memcpy(addr, vf_mac, 6);
5082 igb_write_mbx(hw, msgbuf, 3, vf);
5083}
5084
5085static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5086{
de42edde
GR
5087 /*
5088 * The VF MAC Address is stored in a packed array of bytes
5089 * starting at the second 32 bit word of the msg array
5090 */
f2ca0dbe
AD
5091 unsigned char *addr = (char *)&msg[1];
5092 int err = -1;
4ae196df 5093
f2ca0dbe
AD
5094 if (is_valid_ether_addr(addr))
5095 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5096
f2ca0dbe 5097 return err;
4ae196df
AD
5098}
5099
5100static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5101{
5102 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5103 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5104 u32 msg = E1000_VT_MSGTYPE_NACK;
5105
5106 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5107 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5108 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5109 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5110 vf_data->last_nack = jiffies;
4ae196df
AD
5111 }
5112}
5113
f2ca0dbe 5114static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5115{
f2ca0dbe
AD
5116 struct pci_dev *pdev = adapter->pdev;
5117 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5118 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5119 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5120 s32 retval;
5121
f2ca0dbe 5122 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5123
fef45f4c
AD
5124 if (retval) {
5125 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5126 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5127 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5128 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5129 return;
5130 goto out;
5131 }
4ae196df
AD
5132
5133 /* this is a message we already processed, do nothing */
5134 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5135 return;
4ae196df
AD
5136
5137 /*
5138 * until the vf completes a reset it should not be
5139 * allowed to start any configuration.
5140 */
5141
5142 if (msgbuf[0] == E1000_VF_RESET) {
5143 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5144 return;
4ae196df
AD
5145 }
5146
f2ca0dbe 5147 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5148 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5149 return;
5150 retval = -1;
5151 goto out;
4ae196df
AD
5152 }
5153
5154 switch ((msgbuf[0] & 0xFFFF)) {
5155 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5156 retval = -EINVAL;
5157 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5158 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5159 else
5160 dev_warn(&pdev->dev,
5161 "VF %d attempted to override administratively "
5162 "set MAC address\nReload the VF driver to "
5163 "resume operations\n", vf);
4ae196df 5164 break;
7d5753f0
AD
5165 case E1000_VF_SET_PROMISC:
5166 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5167 break;
4ae196df
AD
5168 case E1000_VF_SET_MULTICAST:
5169 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5170 break;
5171 case E1000_VF_SET_LPE:
5172 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5173 break;
5174 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5175 retval = -1;
5176 if (vf_data->pf_vlan)
5177 dev_warn(&pdev->dev,
5178 "VF %d attempted to override administratively "
5179 "set VLAN tag\nReload the VF driver to "
5180 "resume operations\n", vf);
8151d294
WM
5181 else
5182 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5183 break;
5184 default:
090b1795 5185 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5186 retval = -1;
5187 break;
5188 }
5189
fef45f4c
AD
5190 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5191out:
4ae196df
AD
5192 /* notify the VF of the results of what it sent us */
5193 if (retval)
5194 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5195 else
5196 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5197
4ae196df 5198 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5199}
4ae196df 5200
f2ca0dbe
AD
5201static void igb_msg_task(struct igb_adapter *adapter)
5202{
5203 struct e1000_hw *hw = &adapter->hw;
5204 u32 vf;
5205
5206 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5207 /* process any reset requests */
5208 if (!igb_check_for_rst(hw, vf))
5209 igb_vf_reset_event(adapter, vf);
5210
5211 /* process any messages pending */
5212 if (!igb_check_for_msg(hw, vf))
5213 igb_rcv_msg_from_vf(adapter, vf);
5214
5215 /* process any acks */
5216 if (!igb_check_for_ack(hw, vf))
5217 igb_rcv_ack_from_vf(adapter, vf);
5218 }
4ae196df
AD
5219}
5220
68d480c4
AD
5221/**
5222 * igb_set_uta - Set unicast filter table address
5223 * @adapter: board private structure
5224 *
5225 * The unicast table address is a register array of 32-bit registers.
5226 * The table is meant to be used in a way similar to how the MTA is used
5227 * however due to certain limitations in the hardware it is necessary to
5228 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5229 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5230 **/
5231static void igb_set_uta(struct igb_adapter *adapter)
5232{
5233 struct e1000_hw *hw = &adapter->hw;
5234 int i;
5235
5236 /* The UTA table only exists on 82576 hardware and newer */
5237 if (hw->mac.type < e1000_82576)
5238 return;
5239
5240 /* we only need to do this if VMDq is enabled */
5241 if (!adapter->vfs_allocated_count)
5242 return;
5243
5244 for (i = 0; i < hw->mac.uta_reg_count; i++)
5245 array_wr32(E1000_UTA, i, ~0);
5246}
5247
9d5c8243
AK
5248/**
5249 * igb_intr_msi - Interrupt Handler
5250 * @irq: interrupt number
5251 * @data: pointer to a network interface device structure
5252 **/
5253static irqreturn_t igb_intr_msi(int irq, void *data)
5254{
047e0030
AD
5255 struct igb_adapter *adapter = data;
5256 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5257 struct e1000_hw *hw = &adapter->hw;
5258 /* read ICR disables interrupts using IAM */
5259 u32 icr = rd32(E1000_ICR);
5260
047e0030 5261 igb_write_itr(q_vector);
9d5c8243 5262
7f081d40
AD
5263 if (icr & E1000_ICR_DRSTA)
5264 schedule_work(&adapter->reset_task);
5265
047e0030 5266 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5267 /* HW is reporting DMA is out of sync */
5268 adapter->stats.doosync++;
5269 }
5270
9d5c8243
AK
5271 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5272 hw->mac.get_link_status = 1;
5273 if (!test_bit(__IGB_DOWN, &adapter->state))
5274 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5275 }
5276
047e0030 5277 napi_schedule(&q_vector->napi);
9d5c8243
AK
5278
5279 return IRQ_HANDLED;
5280}
5281
5282/**
4a3c6433 5283 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5284 * @irq: interrupt number
5285 * @data: pointer to a network interface device structure
5286 **/
5287static irqreturn_t igb_intr(int irq, void *data)
5288{
047e0030
AD
5289 struct igb_adapter *adapter = data;
5290 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5291 struct e1000_hw *hw = &adapter->hw;
5292 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5293 * need for the IMC write */
5294 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5295 if (!icr)
5296 return IRQ_NONE; /* Not our interrupt */
5297
047e0030 5298 igb_write_itr(q_vector);
9d5c8243
AK
5299
5300 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5301 * not set, then the adapter didn't send an interrupt */
5302 if (!(icr & E1000_ICR_INT_ASSERTED))
5303 return IRQ_NONE;
5304
7f081d40
AD
5305 if (icr & E1000_ICR_DRSTA)
5306 schedule_work(&adapter->reset_task);
5307
047e0030 5308 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5309 /* HW is reporting DMA is out of sync */
5310 adapter->stats.doosync++;
5311 }
5312
9d5c8243
AK
5313 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5314 hw->mac.get_link_status = 1;
5315 /* guard against interrupt when we're going down */
5316 if (!test_bit(__IGB_DOWN, &adapter->state))
5317 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5318 }
5319
047e0030 5320 napi_schedule(&q_vector->napi);
9d5c8243
AK
5321
5322 return IRQ_HANDLED;
5323}
5324
047e0030 5325static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5326{
047e0030 5327 struct igb_adapter *adapter = q_vector->adapter;
46544258 5328 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5329
4fc82adf
AD
5330 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5331 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5332 if (!adapter->msix_entries)
6eb5a7f1 5333 igb_set_itr(adapter);
46544258 5334 else
047e0030 5335 igb_update_ring_itr(q_vector);
9d5c8243
AK
5336 }
5337
46544258
AD
5338 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5339 if (adapter->msix_entries)
047e0030 5340 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5341 else
5342 igb_irq_enable(adapter);
5343 }
9d5c8243
AK
5344}
5345
46544258
AD
5346/**
5347 * igb_poll - NAPI Rx polling callback
5348 * @napi: napi polling structure
5349 * @budget: count of how many packets we should handle
5350 **/
5351static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5352{
047e0030
AD
5353 struct igb_q_vector *q_vector = container_of(napi,
5354 struct igb_q_vector,
5355 napi);
5356 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5357
421e02f0 5358#ifdef CONFIG_IGB_DCA
047e0030
AD
5359 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5360 igb_update_dca(q_vector);
fe4506b6 5361#endif
047e0030
AD
5362 if (q_vector->tx_ring)
5363 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5364
047e0030
AD
5365 if (q_vector->rx_ring)
5366 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5367
5368 if (!tx_clean_complete)
5369 work_done = budget;
46544258 5370
9d5c8243 5371 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5372 if (work_done < budget) {
288379f0 5373 napi_complete(napi);
047e0030 5374 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5375 }
5376
46544258 5377 return work_done;
9d5c8243 5378}
6d8126f9 5379
33af6bcc 5380/**
c5b9bd5e 5381 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5382 * @adapter: board private structure
c5b9bd5e
AD
5383 * @shhwtstamps: timestamp structure to update
5384 * @regval: unsigned 64bit system time value.
5385 *
5386 * We need to convert the system time value stored in the RX/TXSTMP registers
5387 * into a hwtstamp which can be used by the upper level timestamping functions
5388 */
5389static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5390 struct skb_shared_hwtstamps *shhwtstamps,
5391 u64 regval)
5392{
5393 u64 ns;
5394
55cac248
AD
5395 /*
5396 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5397 * 24 to match clock shift we setup earlier.
5398 */
5399 if (adapter->hw.mac.type == e1000_82580)
5400 regval <<= IGB_82580_TSYNC_SHIFT;
5401
c5b9bd5e
AD
5402 ns = timecounter_cyc2time(&adapter->clock, regval);
5403 timecompare_update(&adapter->compare, ns);
5404 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5405 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5406 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5407}
5408
5409/**
5410 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5411 * @q_vector: pointer to q_vector containing needed info
2873957d 5412 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5413 *
5414 * If we were asked to do hardware stamping and such a time stamp is
5415 * available, then it must have been for this skb here because we only
5416 * allow only one such packet into the queue.
5417 */
2873957d 5418static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5419{
c5b9bd5e 5420 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5421 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5422 struct skb_shared_hwtstamps shhwtstamps;
5423 u64 regval;
33af6bcc 5424
c5b9bd5e 5425 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5426 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5427 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5428 return;
5429
5430 regval = rd32(E1000_TXSTMPL);
5431 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5432
5433 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5434 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5435}
5436
9d5c8243
AK
5437/**
5438 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5439 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5440 * returns true if ring is completely cleaned
5441 **/
047e0030 5442static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5443{
047e0030
AD
5444 struct igb_adapter *adapter = q_vector->adapter;
5445 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5446 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5447 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5448 struct igb_buffer *buffer_info;
0e014cb1 5449 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5450 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5451 unsigned int i, eop, count = 0;
5452 bool cleaned = false;
9d5c8243 5453
9d5c8243 5454 i = tx_ring->next_to_clean;
0e014cb1
AD
5455 eop = tx_ring->buffer_info[i].next_to_watch;
5456 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5457
5458 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5459 (count < tx_ring->count)) {
2d0bb1c1 5460 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5461 for (cleaned = false; !cleaned; count++) {
5462 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5463 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5464 cleaned = (i == eop);
9d5c8243 5465
2873957d
NN
5466 if (buffer_info->skb) {
5467 total_bytes += buffer_info->bytecount;
9d5c8243 5468 /* gso_segs is currently only valid for tcp */
2873957d
NN
5469 total_packets += buffer_info->gso_segs;
5470 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5471 }
5472
80785298 5473 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5474 tx_desc->wb.status = 0;
9d5c8243
AK
5475
5476 i++;
5477 if (i == tx_ring->count)
5478 i = 0;
9d5c8243 5479 }
0e014cb1
AD
5480 eop = tx_ring->buffer_info[i].next_to_watch;
5481 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5482 }
5483
9d5c8243
AK
5484 tx_ring->next_to_clean = i;
5485
fc7d345d 5486 if (unlikely(count &&
9d5c8243 5487 netif_carrier_ok(netdev) &&
c493ea45 5488 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5489 /* Make sure that anybody stopping the queue after this
5490 * sees the new next_to_clean.
5491 */
5492 smp_mb();
661086df
PWJ
5493 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5494 !(test_bit(__IGB_DOWN, &adapter->state))) {
5495 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5496
5497 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5498 tx_ring->tx_stats.restart_queue++;
12dcd86b 5499 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5500 }
9d5c8243
AK
5501 }
5502
5503 if (tx_ring->detect_tx_hung) {
5504 /* Detect a transmit hang in hardware, this serializes the
5505 * check with the clearing of time_stamp and movement of i */
5506 tx_ring->detect_tx_hung = false;
5507 if (tx_ring->buffer_info[i].time_stamp &&
5508 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5509 (adapter->tx_timeout_factor * HZ)) &&
5510 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5511
9d5c8243 5512 /* detected Tx unit hang */
59d71989 5513 dev_err(tx_ring->dev,
9d5c8243 5514 "Detected Tx Unit Hang\n"
2d064c06 5515 " Tx Queue <%d>\n"
9d5c8243
AK
5516 " TDH <%x>\n"
5517 " TDT <%x>\n"
5518 " next_to_use <%x>\n"
5519 " next_to_clean <%x>\n"
9d5c8243
AK
5520 "buffer_info[next_to_clean]\n"
5521 " time_stamp <%lx>\n"
0e014cb1 5522 " next_to_watch <%x>\n"
9d5c8243
AK
5523 " jiffies <%lx>\n"
5524 " desc.status <%x>\n",
2d064c06 5525 tx_ring->queue_index,
fce99e34
AD
5526 readl(tx_ring->head),
5527 readl(tx_ring->tail),
9d5c8243
AK
5528 tx_ring->next_to_use,
5529 tx_ring->next_to_clean,
f7ba205e 5530 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5531 eop,
9d5c8243 5532 jiffies,
0e014cb1 5533 eop_desc->wb.status);
661086df 5534 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5535 }
5536 }
5537 tx_ring->total_bytes += total_bytes;
5538 tx_ring->total_packets += total_packets;
12dcd86b 5539 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5540 tx_ring->tx_stats.bytes += total_bytes;
5541 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5542 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5543 return count < tx_ring->count;
9d5c8243
AK
5544}
5545
9d5c8243
AK
5546/**
5547 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5548 * @q_vector: structure containing interrupt and ring information
5549 * @skb: packet to send up
5550 * @vlan_tag: vlan tag for packet
9d5c8243 5551 **/
047e0030
AD
5552static void igb_receive_skb(struct igb_q_vector *q_vector,
5553 struct sk_buff *skb,
5554 u16 vlan_tag)
5555{
5556 struct igb_adapter *adapter = q_vector->adapter;
5557
31b24b95 5558 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5559 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5560 vlan_tag, skb);
182ff8df 5561 else
047e0030 5562 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5563}
5564
04a5fcaa 5565static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5566 u32 status_err, struct sk_buff *skb)
5567{
bc8acf2c 5568 skb_checksum_none_assert(skb);
9d5c8243
AK
5569
5570 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5571 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5572 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5573 return;
85ad76b2 5574
9d5c8243
AK
5575 /* TCP/UDP checksum error bit is set */
5576 if (status_err &
5577 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5578 /*
5579 * work around errata with sctp packets where the TCPE aka
5580 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5581 * packets, (aka let the stack check the crc32c)
5582 */
85ad76b2 5583 if ((skb->len == 60) &&
12dcd86b
ED
5584 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5585 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5586 ring->rx_stats.csum_err++;
12dcd86b
ED
5587 u64_stats_update_end(&ring->rx_syncp);
5588 }
9d5c8243 5589 /* let the stack verify checksum errors */
9d5c8243
AK
5590 return;
5591 }
5592 /* It must be a TCP or UDP packet with a valid checksum */
5593 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5594 skb->ip_summed = CHECKSUM_UNNECESSARY;
5595
59d71989 5596 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5597}
5598
757b77e2 5599static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5600 struct sk_buff *skb)
5601{
5602 struct igb_adapter *adapter = q_vector->adapter;
5603 struct e1000_hw *hw = &adapter->hw;
5604 u64 regval;
5605
5606 /*
5607 * If this bit is set, then the RX registers contain the time stamp. No
5608 * other packet will be time stamped until we read these registers, so
5609 * read the registers to make them available again. Because only one
5610 * packet can be time stamped at a time, we know that the register
5611 * values must belong to this one here and therefore we don't need to
5612 * compare any of the additional attributes stored for it.
5613 *
2244d07b 5614 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5615 * can turn into a skb_shared_hwtstamps.
5616 */
757b77e2
NN
5617 if (staterr & E1000_RXDADV_STAT_TSIP) {
5618 u32 *stamp = (u32 *)skb->data;
5619 regval = le32_to_cpu(*(stamp + 2));
5620 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5621 skb_pull(skb, IGB_TS_HDR_LEN);
5622 } else {
5623 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5624 return;
c5b9bd5e 5625
757b77e2
NN
5626 regval = rd32(E1000_RXSTMPL);
5627 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5628 }
c5b9bd5e
AD
5629
5630 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5631}
4c844851 5632static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5633 union e1000_adv_rx_desc *rx_desc)
5634{
5635 /* HW will not DMA in data larger than the given buffer, even if it
5636 * parses the (NFS, of course) header to be larger. In that case, it
5637 * fills the header buffer and spills the rest into the page.
5638 */
5639 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5640 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5641 if (hlen > rx_ring->rx_buffer_len)
5642 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5643 return hlen;
5644}
5645
047e0030
AD
5646static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5647 int *work_done, int budget)
9d5c8243 5648{
047e0030 5649 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5650 struct net_device *netdev = rx_ring->netdev;
59d71989 5651 struct device *dev = rx_ring->dev;
9d5c8243
AK
5652 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5653 struct igb_buffer *buffer_info , *next_buffer;
5654 struct sk_buff *skb;
9d5c8243
AK
5655 bool cleaned = false;
5656 int cleaned_count = 0;
d1eff350 5657 int current_node = numa_node_id();
9d5c8243 5658 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5659 unsigned int i;
2d94d8ab
AD
5660 u32 staterr;
5661 u16 length;
047e0030 5662 u16 vlan_tag;
9d5c8243
AK
5663
5664 i = rx_ring->next_to_clean;
69d3ca53 5665 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5666 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5667 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5668
5669 while (staterr & E1000_RXD_STAT_DD) {
5670 if (*work_done >= budget)
5671 break;
5672 (*work_done)++;
2d0bb1c1 5673 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5674
69d3ca53
AD
5675 skb = buffer_info->skb;
5676 prefetch(skb->data - NET_IP_ALIGN);
5677 buffer_info->skb = NULL;
5678
5679 i++;
5680 if (i == rx_ring->count)
5681 i = 0;
42d0781a 5682
69d3ca53
AD
5683 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5684 prefetch(next_rxd);
5685 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5686
5687 length = le16_to_cpu(rx_desc->wb.upper.length);
5688 cleaned = true;
5689 cleaned_count++;
5690
2d94d8ab 5691 if (buffer_info->dma) {
59d71989 5692 dma_unmap_single(dev, buffer_info->dma,
4c844851 5693 rx_ring->rx_buffer_len,
59d71989 5694 DMA_FROM_DEVICE);
91615f76 5695 buffer_info->dma = 0;
4c844851 5696 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5697 skb_put(skb, length);
5698 goto send_up;
5699 }
4c844851 5700 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5701 }
5702
5703 if (length) {
59d71989
AD
5704 dma_unmap_page(dev, buffer_info->page_dma,
5705 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5706 buffer_info->page_dma = 0;
bf36c1a0 5707
aa913403 5708 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5709 buffer_info->page,
5710 buffer_info->page_offset,
5711 length);
5712
d1eff350
AD
5713 if ((page_count(buffer_info->page) != 1) ||
5714 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5715 buffer_info->page = NULL;
5716 else
5717 get_page(buffer_info->page);
9d5c8243
AK
5718
5719 skb->len += length;
5720 skb->data_len += length;
bf36c1a0 5721 skb->truesize += length;
9d5c8243 5722 }
9d5c8243 5723
bf36c1a0 5724 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5725 buffer_info->skb = next_buffer->skb;
5726 buffer_info->dma = next_buffer->dma;
5727 next_buffer->skb = skb;
5728 next_buffer->dma = 0;
bf36c1a0
AD
5729 goto next_desc;
5730 }
69d3ca53 5731send_up:
9d5c8243
AK
5732 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5733 dev_kfree_skb_irq(skb);
5734 goto next_desc;
5735 }
9d5c8243 5736
757b77e2
NN
5737 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5738 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5739 total_bytes += skb->len;
5740 total_packets++;
5741
85ad76b2 5742 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5743
5744 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5745 skb_record_rx_queue(skb, rx_ring->queue_index);
5746
5747 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5748 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5749
047e0030 5750 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5751
9d5c8243
AK
5752next_desc:
5753 rx_desc->wb.upper.status_error = 0;
5754
5755 /* return some buffers to hardware, one at a time is too slow */
5756 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5757 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5758 cleaned_count = 0;
5759 }
5760
5761 /* use prefetched values */
5762 rx_desc = next_rxd;
5763 buffer_info = next_buffer;
9d5c8243
AK
5764 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5765 }
bf36c1a0 5766
9d5c8243 5767 rx_ring->next_to_clean = i;
c493ea45 5768 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5769
5770 if (cleaned_count)
3b644cf6 5771 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5772
5773 rx_ring->total_packets += total_packets;
5774 rx_ring->total_bytes += total_bytes;
12dcd86b 5775 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5776 rx_ring->rx_stats.packets += total_packets;
5777 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5778 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5779 return cleaned;
5780}
5781
9d5c8243
AK
5782/**
5783 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5784 * @adapter: address of board private structure
5785 **/
d7ee5b3a 5786void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5787{
e694e964 5788 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5789 union e1000_adv_rx_desc *rx_desc;
5790 struct igb_buffer *buffer_info;
5791 struct sk_buff *skb;
5792 unsigned int i;
db761762 5793 int bufsz;
9d5c8243
AK
5794
5795 i = rx_ring->next_to_use;
5796 buffer_info = &rx_ring->buffer_info[i];
5797
4c844851 5798 bufsz = rx_ring->rx_buffer_len;
db761762 5799
9d5c8243
AK
5800 while (cleaned_count--) {
5801 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5802
6ec43fe6 5803 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5804 if (!buffer_info->page) {
42d0781a 5805 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5806 if (unlikely(!buffer_info->page)) {
5807 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5808 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5809 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5810 goto no_buffers;
5811 }
5812 buffer_info->page_offset = 0;
5813 } else {
5814 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5815 }
5816 buffer_info->page_dma =
59d71989 5817 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5818 buffer_info->page_offset,
5819 PAGE_SIZE / 2,
59d71989
AD
5820 DMA_FROM_DEVICE);
5821 if (dma_mapping_error(rx_ring->dev,
5822 buffer_info->page_dma)) {
42d0781a 5823 buffer_info->page_dma = 0;
12dcd86b 5824 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5825 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5826 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5827 goto no_buffers;
5828 }
9d5c8243
AK
5829 }
5830
42d0781a
AD
5831 skb = buffer_info->skb;
5832 if (!skb) {
89d71a66 5833 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5834 if (unlikely(!skb)) {
5835 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5836 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5837 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5838 goto no_buffers;
5839 }
5840
9d5c8243 5841 buffer_info->skb = skb;
42d0781a
AD
5842 }
5843 if (!buffer_info->dma) {
59d71989 5844 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5845 skb->data,
9d5c8243 5846 bufsz,
59d71989
AD
5847 DMA_FROM_DEVICE);
5848 if (dma_mapping_error(rx_ring->dev,
5849 buffer_info->dma)) {
42d0781a 5850 buffer_info->dma = 0;
12dcd86b 5851 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5852 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5853 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5854 goto no_buffers;
5855 }
9d5c8243
AK
5856 }
5857 /* Refresh the desc even if buffer_addrs didn't change because
5858 * each write-back erases this info. */
6ec43fe6 5859 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5860 rx_desc->read.pkt_addr =
5861 cpu_to_le64(buffer_info->page_dma);
5862 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5863 } else {
42d0781a 5864 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5865 rx_desc->read.hdr_addr = 0;
5866 }
5867
5868 i++;
5869 if (i == rx_ring->count)
5870 i = 0;
5871 buffer_info = &rx_ring->buffer_info[i];
5872 }
5873
5874no_buffers:
5875 if (rx_ring->next_to_use != i) {
5876 rx_ring->next_to_use = i;
5877 if (i == 0)
5878 i = (rx_ring->count - 1);
5879 else
5880 i--;
5881
5882 /* Force memory writes to complete before letting h/w
5883 * know there are new descriptors to fetch. (Only
5884 * applicable for weak-ordered memory model archs,
5885 * such as IA-64). */
5886 wmb();
fce99e34 5887 writel(i, rx_ring->tail);
9d5c8243
AK
5888 }
5889}
5890
5891/**
5892 * igb_mii_ioctl -
5893 * @netdev:
5894 * @ifreq:
5895 * @cmd:
5896 **/
5897static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5898{
5899 struct igb_adapter *adapter = netdev_priv(netdev);
5900 struct mii_ioctl_data *data = if_mii(ifr);
5901
5902 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5903 return -EOPNOTSUPP;
5904
5905 switch (cmd) {
5906 case SIOCGMIIPHY:
5907 data->phy_id = adapter->hw.phy.addr;
5908 break;
5909 case SIOCGMIIREG:
f5f4cf08
AD
5910 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5911 &data->val_out))
9d5c8243
AK
5912 return -EIO;
5913 break;
5914 case SIOCSMIIREG:
5915 default:
5916 return -EOPNOTSUPP;
5917 }
5918 return 0;
5919}
5920
c6cb090b
PO
5921/**
5922 * igb_hwtstamp_ioctl - control hardware time stamping
5923 * @netdev:
5924 * @ifreq:
5925 * @cmd:
5926 *
33af6bcc
PO
5927 * Outgoing time stamping can be enabled and disabled. Play nice and
5928 * disable it when requested, although it shouldn't case any overhead
5929 * when no packet needs it. At most one packet in the queue may be
5930 * marked for time stamping, otherwise it would be impossible to tell
5931 * for sure to which packet the hardware time stamp belongs.
5932 *
5933 * Incoming time stamping has to be configured via the hardware
5934 * filters. Not all combinations are supported, in particular event
5935 * type has to be specified. Matching the kind of event packet is
5936 * not supported, with the exception of "all V2 events regardless of
5937 * level 2 or 4".
5938 *
c6cb090b
PO
5939 **/
5940static int igb_hwtstamp_ioctl(struct net_device *netdev,
5941 struct ifreq *ifr, int cmd)
5942{
33af6bcc
PO
5943 struct igb_adapter *adapter = netdev_priv(netdev);
5944 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5945 struct hwtstamp_config config;
c5b9bd5e
AD
5946 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5947 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5948 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5949 bool is_l4 = false;
5950 bool is_l2 = false;
33af6bcc 5951 u32 regval;
c6cb090b
PO
5952
5953 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5954 return -EFAULT;
5955
5956 /* reserved for future extensions */
5957 if (config.flags)
5958 return -EINVAL;
5959
33af6bcc
PO
5960 switch (config.tx_type) {
5961 case HWTSTAMP_TX_OFF:
c5b9bd5e 5962 tsync_tx_ctl = 0;
33af6bcc 5963 case HWTSTAMP_TX_ON:
33af6bcc
PO
5964 break;
5965 default:
5966 return -ERANGE;
5967 }
5968
5969 switch (config.rx_filter) {
5970 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5971 tsync_rx_ctl = 0;
33af6bcc
PO
5972 break;
5973 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5974 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5975 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5976 case HWTSTAMP_FILTER_ALL:
5977 /*
5978 * register TSYNCRXCFG must be set, therefore it is not
5979 * possible to time stamp both Sync and Delay_Req messages
5980 * => fall back to time stamping all packets
5981 */
c5b9bd5e 5982 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5983 config.rx_filter = HWTSTAMP_FILTER_ALL;
5984 break;
5985 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5986 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5987 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5988 is_l4 = true;
33af6bcc
PO
5989 break;
5990 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5991 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5992 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5993 is_l4 = true;
33af6bcc
PO
5994 break;
5995 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5996 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5997 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5998 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5999 is_l2 = true;
6000 is_l4 = true;
33af6bcc
PO
6001 config.rx_filter = HWTSTAMP_FILTER_SOME;
6002 break;
6003 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6004 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6005 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6006 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6007 is_l2 = true;
6008 is_l4 = true;
33af6bcc
PO
6009 config.rx_filter = HWTSTAMP_FILTER_SOME;
6010 break;
6011 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6012 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6013 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6014 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6015 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6016 is_l2 = true;
33af6bcc
PO
6017 break;
6018 default:
6019 return -ERANGE;
6020 }
6021
c5b9bd5e
AD
6022 if (hw->mac.type == e1000_82575) {
6023 if (tsync_rx_ctl | tsync_tx_ctl)
6024 return -EINVAL;
6025 return 0;
6026 }
6027
757b77e2
NN
6028 /*
6029 * Per-packet timestamping only works if all packets are
6030 * timestamped, so enable timestamping in all packets as
6031 * long as one rx filter was configured.
6032 */
6033 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6034 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6035 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6036 }
6037
33af6bcc
PO
6038 /* enable/disable TX */
6039 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6040 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6041 regval |= tsync_tx_ctl;
33af6bcc
PO
6042 wr32(E1000_TSYNCTXCTL, regval);
6043
c5b9bd5e 6044 /* enable/disable RX */
33af6bcc 6045 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6046 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6047 regval |= tsync_rx_ctl;
33af6bcc 6048 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6049
c5b9bd5e
AD
6050 /* define which PTP packets are time stamped */
6051 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6052
c5b9bd5e
AD
6053 /* define ethertype filter for timestamped packets */
6054 if (is_l2)
6055 wr32(E1000_ETQF(3),
6056 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6057 E1000_ETQF_1588 | /* enable timestamping */
6058 ETH_P_1588)); /* 1588 eth protocol type */
6059 else
6060 wr32(E1000_ETQF(3), 0);
6061
6062#define PTP_PORT 319
6063 /* L4 Queue Filter[3]: filter by destination port and protocol */
6064 if (is_l4) {
6065 u32 ftqf = (IPPROTO_UDP /* UDP */
6066 | E1000_FTQF_VF_BP /* VF not compared */
6067 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6068 | E1000_FTQF_MASK); /* mask all inputs */
6069 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6070
6071 wr32(E1000_IMIR(3), htons(PTP_PORT));
6072 wr32(E1000_IMIREXT(3),
6073 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6074 if (hw->mac.type == e1000_82576) {
6075 /* enable source port check */
6076 wr32(E1000_SPQF(3), htons(PTP_PORT));
6077 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6078 }
6079 wr32(E1000_FTQF(3), ftqf);
6080 } else {
6081 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6082 }
33af6bcc
PO
6083 wrfl();
6084
6085 adapter->hwtstamp_config = config;
6086
6087 /* clear TX/RX time stamp registers, just to be sure */
6088 regval = rd32(E1000_TXSTMPH);
6089 regval = rd32(E1000_RXSTMPH);
c6cb090b 6090
33af6bcc
PO
6091 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6092 -EFAULT : 0;
c6cb090b
PO
6093}
6094
9d5c8243
AK
6095/**
6096 * igb_ioctl -
6097 * @netdev:
6098 * @ifreq:
6099 * @cmd:
6100 **/
6101static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6102{
6103 switch (cmd) {
6104 case SIOCGMIIPHY:
6105 case SIOCGMIIREG:
6106 case SIOCSMIIREG:
6107 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6108 case SIOCSHWTSTAMP:
6109 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6110 default:
6111 return -EOPNOTSUPP;
6112 }
6113}
6114
009bc06e
AD
6115s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6116{
6117 struct igb_adapter *adapter = hw->back;
6118 u16 cap_offset;
6119
6120 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6121 if (!cap_offset)
6122 return -E1000_ERR_CONFIG;
6123
6124 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6125
6126 return 0;
6127}
6128
6129s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6130{
6131 struct igb_adapter *adapter = hw->back;
6132 u16 cap_offset;
6133
6134 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6135 if (!cap_offset)
6136 return -E1000_ERR_CONFIG;
6137
6138 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6139
6140 return 0;
6141}
6142
9d5c8243
AK
6143static void igb_vlan_rx_register(struct net_device *netdev,
6144 struct vlan_group *grp)
6145{
6146 struct igb_adapter *adapter = netdev_priv(netdev);
6147 struct e1000_hw *hw = &adapter->hw;
6148 u32 ctrl, rctl;
6149
6150 igb_irq_disable(adapter);
6151 adapter->vlgrp = grp;
6152
6153 if (grp) {
6154 /* enable VLAN tag insert/strip */
6155 ctrl = rd32(E1000_CTRL);
6156 ctrl |= E1000_CTRL_VME;
6157 wr32(E1000_CTRL, ctrl);
6158
51466239 6159 /* Disable CFI check */
9d5c8243 6160 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6161 rctl &= ~E1000_RCTL_CFIEN;
6162 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6163 } else {
6164 /* disable VLAN tag insert/strip */
6165 ctrl = rd32(E1000_CTRL);
6166 ctrl &= ~E1000_CTRL_VME;
6167 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6168 }
6169
e1739522
AD
6170 igb_rlpml_set(adapter);
6171
9d5c8243
AK
6172 if (!test_bit(__IGB_DOWN, &adapter->state))
6173 igb_irq_enable(adapter);
6174}
6175
6176static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6177{
6178 struct igb_adapter *adapter = netdev_priv(netdev);
6179 struct e1000_hw *hw = &adapter->hw;
4ae196df 6180 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6181
51466239
AD
6182 /* attempt to add filter to vlvf array */
6183 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6184
51466239
AD
6185 /* add the filter since PF can receive vlans w/o entry in vlvf */
6186 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6187}
6188
6189static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6190{
6191 struct igb_adapter *adapter = netdev_priv(netdev);
6192 struct e1000_hw *hw = &adapter->hw;
4ae196df 6193 int pf_id = adapter->vfs_allocated_count;
51466239 6194 s32 err;
9d5c8243
AK
6195
6196 igb_irq_disable(adapter);
6197 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6198
6199 if (!test_bit(__IGB_DOWN, &adapter->state))
6200 igb_irq_enable(adapter);
6201
51466239
AD
6202 /* remove vlan from VLVF table array */
6203 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6204
51466239
AD
6205 /* if vid was not present in VLVF just remove it from table */
6206 if (err)
4ae196df 6207 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6208}
6209
6210static void igb_restore_vlan(struct igb_adapter *adapter)
6211{
6212 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6213
6214 if (adapter->vlgrp) {
6215 u16 vid;
b738127d 6216 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6217 if (!vlan_group_get_device(adapter->vlgrp, vid))
6218 continue;
6219 igb_vlan_rx_add_vid(adapter->netdev, vid);
6220 }
6221 }
6222}
6223
6224int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6225{
090b1795 6226 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6227 struct e1000_mac_info *mac = &adapter->hw.mac;
6228
6229 mac->autoneg = 0;
6230
cd2638a8
CW
6231 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6232 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6233 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
6234 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6235 return -EINVAL;
6236 }
6237
9d5c8243
AK
6238 switch (spddplx) {
6239 case SPEED_10 + DUPLEX_HALF:
6240 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6241 break;
6242 case SPEED_10 + DUPLEX_FULL:
6243 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6244 break;
6245 case SPEED_100 + DUPLEX_HALF:
6246 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6247 break;
6248 case SPEED_100 + DUPLEX_FULL:
6249 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6250 break;
6251 case SPEED_1000 + DUPLEX_FULL:
6252 mac->autoneg = 1;
6253 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6254 break;
6255 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6256 default:
090b1795 6257 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6258 return -EINVAL;
6259 }
6260 return 0;
6261}
6262
3fe7c4c9 6263static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6264{
6265 struct net_device *netdev = pci_get_drvdata(pdev);
6266 struct igb_adapter *adapter = netdev_priv(netdev);
6267 struct e1000_hw *hw = &adapter->hw;
2d064c06 6268 u32 ctrl, rctl, status;
9d5c8243
AK
6269 u32 wufc = adapter->wol;
6270#ifdef CONFIG_PM
6271 int retval = 0;
6272#endif
6273
6274 netif_device_detach(netdev);
6275
a88f10ec
AD
6276 if (netif_running(netdev))
6277 igb_close(netdev);
6278
047e0030 6279 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6280
6281#ifdef CONFIG_PM
6282 retval = pci_save_state(pdev);
6283 if (retval)
6284 return retval;
6285#endif
6286
6287 status = rd32(E1000_STATUS);
6288 if (status & E1000_STATUS_LU)
6289 wufc &= ~E1000_WUFC_LNKC;
6290
6291 if (wufc) {
6292 igb_setup_rctl(adapter);
ff41f8dc 6293 igb_set_rx_mode(netdev);
9d5c8243
AK
6294
6295 /* turn on all-multi mode if wake on multicast is enabled */
6296 if (wufc & E1000_WUFC_MC) {
6297 rctl = rd32(E1000_RCTL);
6298 rctl |= E1000_RCTL_MPE;
6299 wr32(E1000_RCTL, rctl);
6300 }
6301
6302 ctrl = rd32(E1000_CTRL);
6303 /* advertise wake from D3Cold */
6304 #define E1000_CTRL_ADVD3WUC 0x00100000
6305 /* phy power management enable */
6306 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6307 ctrl |= E1000_CTRL_ADVD3WUC;
6308 wr32(E1000_CTRL, ctrl);
6309
9d5c8243 6310 /* Allow time for pending master requests to run */
330a6d6a 6311 igb_disable_pcie_master(hw);
9d5c8243
AK
6312
6313 wr32(E1000_WUC, E1000_WUC_PME_EN);
6314 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6315 } else {
6316 wr32(E1000_WUC, 0);
6317 wr32(E1000_WUFC, 0);
9d5c8243
AK
6318 }
6319
3fe7c4c9
RW
6320 *enable_wake = wufc || adapter->en_mng_pt;
6321 if (!*enable_wake)
88a268c1
NN
6322 igb_power_down_link(adapter);
6323 else
6324 igb_power_up_link(adapter);
9d5c8243
AK
6325
6326 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6327 * would have already happened in close and is redundant. */
6328 igb_release_hw_control(adapter);
6329
6330 pci_disable_device(pdev);
6331
9d5c8243
AK
6332 return 0;
6333}
6334
6335#ifdef CONFIG_PM
3fe7c4c9
RW
6336static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6337{
6338 int retval;
6339 bool wake;
6340
6341 retval = __igb_shutdown(pdev, &wake);
6342 if (retval)
6343 return retval;
6344
6345 if (wake) {
6346 pci_prepare_to_sleep(pdev);
6347 } else {
6348 pci_wake_from_d3(pdev, false);
6349 pci_set_power_state(pdev, PCI_D3hot);
6350 }
6351
6352 return 0;
6353}
6354
9d5c8243
AK
6355static int igb_resume(struct pci_dev *pdev)
6356{
6357 struct net_device *netdev = pci_get_drvdata(pdev);
6358 struct igb_adapter *adapter = netdev_priv(netdev);
6359 struct e1000_hw *hw = &adapter->hw;
6360 u32 err;
6361
6362 pci_set_power_state(pdev, PCI_D0);
6363 pci_restore_state(pdev);
b94f2d77 6364 pci_save_state(pdev);
42bfd33a 6365
aed5dec3 6366 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6367 if (err) {
6368 dev_err(&pdev->dev,
6369 "igb: Cannot enable PCI device from suspend\n");
6370 return err;
6371 }
6372 pci_set_master(pdev);
6373
6374 pci_enable_wake(pdev, PCI_D3hot, 0);
6375 pci_enable_wake(pdev, PCI_D3cold, 0);
6376
047e0030 6377 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6378 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6379 return -ENOMEM;
9d5c8243
AK
6380 }
6381
9d5c8243 6382 igb_reset(adapter);
a8564f03
AD
6383
6384 /* let the f/w know that the h/w is now under the control of the
6385 * driver. */
6386 igb_get_hw_control(adapter);
6387
9d5c8243
AK
6388 wr32(E1000_WUS, ~0);
6389
a88f10ec
AD
6390 if (netif_running(netdev)) {
6391 err = igb_open(netdev);
6392 if (err)
6393 return err;
6394 }
9d5c8243
AK
6395
6396 netif_device_attach(netdev);
6397
9d5c8243
AK
6398 return 0;
6399}
6400#endif
6401
6402static void igb_shutdown(struct pci_dev *pdev)
6403{
3fe7c4c9
RW
6404 bool wake;
6405
6406 __igb_shutdown(pdev, &wake);
6407
6408 if (system_state == SYSTEM_POWER_OFF) {
6409 pci_wake_from_d3(pdev, wake);
6410 pci_set_power_state(pdev, PCI_D3hot);
6411 }
9d5c8243
AK
6412}
6413
6414#ifdef CONFIG_NET_POLL_CONTROLLER
6415/*
6416 * Polling 'interrupt' - used by things like netconsole to send skbs
6417 * without having to re-enable interrupts. It's not called while
6418 * the interrupt routine is executing.
6419 */
6420static void igb_netpoll(struct net_device *netdev)
6421{
6422 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6423 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6424 int i;
9d5c8243 6425
eebbbdba 6426 if (!adapter->msix_entries) {
047e0030 6427 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6428 igb_irq_disable(adapter);
047e0030 6429 napi_schedule(&q_vector->napi);
eebbbdba
AD
6430 return;
6431 }
9d5c8243 6432
047e0030
AD
6433 for (i = 0; i < adapter->num_q_vectors; i++) {
6434 struct igb_q_vector *q_vector = adapter->q_vector[i];
6435 wr32(E1000_EIMC, q_vector->eims_value);
6436 napi_schedule(&q_vector->napi);
eebbbdba 6437 }
9d5c8243
AK
6438}
6439#endif /* CONFIG_NET_POLL_CONTROLLER */
6440
6441/**
6442 * igb_io_error_detected - called when PCI error is detected
6443 * @pdev: Pointer to PCI device
6444 * @state: The current pci connection state
6445 *
6446 * This function is called after a PCI bus error affecting
6447 * this device has been detected.
6448 */
6449static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6450 pci_channel_state_t state)
6451{
6452 struct net_device *netdev = pci_get_drvdata(pdev);
6453 struct igb_adapter *adapter = netdev_priv(netdev);
6454
6455 netif_device_detach(netdev);
6456
59ed6eec
AD
6457 if (state == pci_channel_io_perm_failure)
6458 return PCI_ERS_RESULT_DISCONNECT;
6459
9d5c8243
AK
6460 if (netif_running(netdev))
6461 igb_down(adapter);
6462 pci_disable_device(pdev);
6463
6464 /* Request a slot slot reset. */
6465 return PCI_ERS_RESULT_NEED_RESET;
6466}
6467
6468/**
6469 * igb_io_slot_reset - called after the pci bus has been reset.
6470 * @pdev: Pointer to PCI device
6471 *
6472 * Restart the card from scratch, as if from a cold-boot. Implementation
6473 * resembles the first-half of the igb_resume routine.
6474 */
6475static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6476{
6477 struct net_device *netdev = pci_get_drvdata(pdev);
6478 struct igb_adapter *adapter = netdev_priv(netdev);
6479 struct e1000_hw *hw = &adapter->hw;
40a914fa 6480 pci_ers_result_t result;
42bfd33a 6481 int err;
9d5c8243 6482
aed5dec3 6483 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6484 dev_err(&pdev->dev,
6485 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6486 result = PCI_ERS_RESULT_DISCONNECT;
6487 } else {
6488 pci_set_master(pdev);
6489 pci_restore_state(pdev);
b94f2d77 6490 pci_save_state(pdev);
9d5c8243 6491
40a914fa
AD
6492 pci_enable_wake(pdev, PCI_D3hot, 0);
6493 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6494
40a914fa
AD
6495 igb_reset(adapter);
6496 wr32(E1000_WUS, ~0);
6497 result = PCI_ERS_RESULT_RECOVERED;
6498 }
9d5c8243 6499
ea943d41
JK
6500 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6501 if (err) {
6502 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6503 "failed 0x%0x\n", err);
6504 /* non-fatal, continue */
6505 }
40a914fa
AD
6506
6507 return result;
9d5c8243
AK
6508}
6509
6510/**
6511 * igb_io_resume - called when traffic can start flowing again.
6512 * @pdev: Pointer to PCI device
6513 *
6514 * This callback is called when the error recovery driver tells us that
6515 * its OK to resume normal operation. Implementation resembles the
6516 * second-half of the igb_resume routine.
6517 */
6518static void igb_io_resume(struct pci_dev *pdev)
6519{
6520 struct net_device *netdev = pci_get_drvdata(pdev);
6521 struct igb_adapter *adapter = netdev_priv(netdev);
6522
9d5c8243
AK
6523 if (netif_running(netdev)) {
6524 if (igb_up(adapter)) {
6525 dev_err(&pdev->dev, "igb_up failed after reset\n");
6526 return;
6527 }
6528 }
6529
6530 netif_device_attach(netdev);
6531
6532 /* let the f/w know that the h/w is now under the control of the
6533 * driver. */
6534 igb_get_hw_control(adapter);
9d5c8243
AK
6535}
6536
26ad9178
AD
6537static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6538 u8 qsel)
6539{
6540 u32 rar_low, rar_high;
6541 struct e1000_hw *hw = &adapter->hw;
6542
6543 /* HW expects these in little endian so we reverse the byte order
6544 * from network order (big endian) to little endian
6545 */
6546 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6547 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6548 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6549
6550 /* Indicate to hardware the Address is Valid. */
6551 rar_high |= E1000_RAH_AV;
6552
6553 if (hw->mac.type == e1000_82575)
6554 rar_high |= E1000_RAH_POOL_1 * qsel;
6555 else
6556 rar_high |= E1000_RAH_POOL_1 << qsel;
6557
6558 wr32(E1000_RAL(index), rar_low);
6559 wrfl();
6560 wr32(E1000_RAH(index), rar_high);
6561 wrfl();
6562}
6563
4ae196df
AD
6564static int igb_set_vf_mac(struct igb_adapter *adapter,
6565 int vf, unsigned char *mac_addr)
6566{
6567 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6568 /* VF MAC addresses start at end of receive addresses and moves
6569 * torwards the first, as a result a collision should not be possible */
6570 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6571
37680117 6572 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6573
26ad9178 6574 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6575
6576 return 0;
6577}
6578
8151d294
WM
6579static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6580{
6581 struct igb_adapter *adapter = netdev_priv(netdev);
6582 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6583 return -EINVAL;
6584 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6585 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6586 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6587 " change effective.");
6588 if (test_bit(__IGB_DOWN, &adapter->state)) {
6589 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6590 " but the PF device is not up.\n");
6591 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6592 " attempting to use the VF device.\n");
6593 }
6594 return igb_set_vf_mac(adapter, vf, mac);
6595}
6596
6597static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6598{
6599 return -EOPNOTSUPP;
6600}
6601
6602static int igb_ndo_get_vf_config(struct net_device *netdev,
6603 int vf, struct ifla_vf_info *ivi)
6604{
6605 struct igb_adapter *adapter = netdev_priv(netdev);
6606 if (vf >= adapter->vfs_allocated_count)
6607 return -EINVAL;
6608 ivi->vf = vf;
6609 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6610 ivi->tx_rate = 0;
6611 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6612 ivi->qos = adapter->vf_data[vf].pf_qos;
6613 return 0;
6614}
6615
4ae196df
AD
6616static void igb_vmm_control(struct igb_adapter *adapter)
6617{
6618 struct e1000_hw *hw = &adapter->hw;
10d8e907 6619 u32 reg;
4ae196df 6620
52a1dd4d
AD
6621 switch (hw->mac.type) {
6622 case e1000_82575:
6623 default:
6624 /* replication is not supported for 82575 */
4ae196df 6625 return;
52a1dd4d
AD
6626 case e1000_82576:
6627 /* notify HW that the MAC is adding vlan tags */
6628 reg = rd32(E1000_DTXCTL);
6629 reg |= E1000_DTXCTL_VLAN_ADDED;
6630 wr32(E1000_DTXCTL, reg);
6631 case e1000_82580:
6632 /* enable replication vlan tag stripping */
6633 reg = rd32(E1000_RPLOLR);
6634 reg |= E1000_RPLOLR_STRVLAN;
6635 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6636 case e1000_i350:
6637 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6638 break;
6639 }
10d8e907 6640
d4960307
AD
6641 if (adapter->vfs_allocated_count) {
6642 igb_vmdq_set_loopback_pf(hw, true);
6643 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6644 igb_vmdq_set_anti_spoofing_pf(hw, true,
6645 adapter->vfs_allocated_count);
d4960307
AD
6646 } else {
6647 igb_vmdq_set_loopback_pf(hw, false);
6648 igb_vmdq_set_replication_pf(hw, false);
6649 }
4ae196df
AD
6650}
6651
9d5c8243 6652/* igb_main.c */
This page took 0.898102 seconds and 5 git commands to generate.