spider_net: Convert to net_device_ops.
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
2d064c06
AD
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
c8ea5ea9 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74};
75
76MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78void igb_reset(struct igb_adapter *);
79static int igb_setup_all_tx_resources(struct igb_adapter *);
80static int igb_setup_all_rx_resources(struct igb_adapter *);
81static void igb_free_all_tx_resources(struct igb_adapter *);
82static void igb_free_all_rx_resources(struct igb_adapter *);
9d5c8243
AK
83void igb_update_stats(struct igb_adapter *);
84static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85static void __devexit igb_remove(struct pci_dev *pdev);
86static int igb_sw_init(struct igb_adapter *);
87static int igb_open(struct net_device *);
88static int igb_close(struct net_device *);
89static void igb_configure_tx(struct igb_adapter *);
90static void igb_configure_rx(struct igb_adapter *);
91static void igb_setup_rctl(struct igb_adapter *);
92static void igb_clean_all_tx_rings(struct igb_adapter *);
93static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
94static void igb_clean_tx_ring(struct igb_ring *);
95static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
96static void igb_set_multi(struct net_device *);
97static void igb_update_phy_info(unsigned long);
98static void igb_watchdog(unsigned long);
99static void igb_watchdog_task(struct work_struct *);
100static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103static struct net_device_stats *igb_get_stats(struct net_device *);
104static int igb_change_mtu(struct net_device *, int);
105static int igb_set_mac(struct net_device *, void *);
106static irqreturn_t igb_intr(int irq, void *);
107static irqreturn_t igb_intr_msi(int irq, void *);
108static irqreturn_t igb_msix_other(int irq, void *);
109static irqreturn_t igb_msix_rx(int irq, void *);
110static irqreturn_t igb_msix_tx(int irq, void *);
421e02f0 111#ifdef CONFIG_IGB_DCA
fe4506b6
JC
112static void igb_update_rx_dca(struct igb_ring *);
113static void igb_update_tx_dca(struct igb_ring *);
114static void igb_setup_dca(struct igb_adapter *);
421e02f0 115#endif /* CONFIG_IGB_DCA */
3b644cf6 116static bool igb_clean_tx_irq(struct igb_ring *);
661086df 117static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
118static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
120static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121static void igb_tx_timeout(struct net_device *);
122static void igb_reset_task(struct work_struct *);
123static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124static void igb_vlan_rx_add_vid(struct net_device *, u16);
125static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126static void igb_restore_vlan(struct igb_adapter *);
4ae196df
AD
127static void igb_ping_all_vfs(struct igb_adapter *);
128static void igb_msg_task(struct igb_adapter *);
129static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
e1739522
AD
130static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
4ae196df 132static void igb_vmm_control(struct igb_adapter *);
e1739522 133static inline void igb_set_vmolr(struct e1000_hw *, int);
4ae196df
AD
134static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243
AK
137
138static int igb_suspend(struct pci_dev *, pm_message_t);
139#ifdef CONFIG_PM
140static int igb_resume(struct pci_dev *);
141#endif
142static void igb_shutdown(struct pci_dev *);
421e02f0 143#ifdef CONFIG_IGB_DCA
fe4506b6
JC
144static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
149};
150#endif
9d5c8243
AK
151#ifdef CONFIG_NET_POLL_CONTROLLER
152/* for netdump / net console */
153static void igb_netpoll(struct net_device *);
154#endif
155
37680117
AD
156#ifdef CONFIG_PCI_IOV
157static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
158 const char *, size_t);
159static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
160 char *);
161DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
162#endif
9d5c8243
AK
163static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
164 pci_channel_state_t);
165static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
166static void igb_io_resume(struct pci_dev *);
167
168static struct pci_error_handlers igb_err_handler = {
169 .error_detected = igb_io_error_detected,
170 .slot_reset = igb_io_slot_reset,
171 .resume = igb_io_resume,
172};
173
174
175static struct pci_driver igb_driver = {
176 .name = igb_driver_name,
177 .id_table = igb_pci_tbl,
178 .probe = igb_probe,
179 .remove = __devexit_p(igb_remove),
180#ifdef CONFIG_PM
181 /* Power Managment Hooks */
182 .suspend = igb_suspend,
183 .resume = igb_resume,
184#endif
185 .shutdown = igb_shutdown,
186 .err_handler = &igb_err_handler
187};
188
7dfc16fa
AD
189static int global_quad_port_a; /* global quad port a indication */
190
9d5c8243
AK
191MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
192MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
193MODULE_LICENSE("GPL");
194MODULE_VERSION(DRV_VERSION);
195
38c845c7
PO
196/**
197 * Scale the NIC clock cycle by a large factor so that
198 * relatively small clock corrections can be added or
199 * substracted at each clock tick. The drawbacks of a
200 * large factor are a) that the clock register overflows
201 * more quickly (not such a big deal) and b) that the
202 * increment per tick has to fit into 24 bits.
203 *
204 * Note that
205 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
206 * IGB_TSYNC_SCALE
207 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
208 *
209 * The base scale factor is intentionally a power of two
210 * so that the division in %struct timecounter can be done with
211 * a shift.
212 */
213#define IGB_TSYNC_SHIFT (19)
214#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
215
216/**
217 * The duration of one clock cycle of the NIC.
218 *
219 * @todo This hard-coded value is part of the specification and might change
220 * in future hardware revisions. Add revision check.
221 */
222#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
223
224#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
225# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
226#endif
227
228/**
229 * igb_read_clock - read raw cycle counter (to be used by time counter)
230 */
231static cycle_t igb_read_clock(const struct cyclecounter *tc)
232{
233 struct igb_adapter *adapter =
234 container_of(tc, struct igb_adapter, cycles);
235 struct e1000_hw *hw = &adapter->hw;
236 u64 stamp;
237
238 stamp = rd32(E1000_SYSTIML);
239 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
240
241 return stamp;
242}
243
9d5c8243
AK
244#ifdef DEBUG
245/**
246 * igb_get_hw_dev_name - return device name string
247 * used by hardware layer to print debugging information
248 **/
249char *igb_get_hw_dev_name(struct e1000_hw *hw)
250{
251 struct igb_adapter *adapter = hw->back;
252 return adapter->netdev->name;
253}
38c845c7
PO
254
255/**
256 * igb_get_time_str - format current NIC and system time as string
257 */
258static char *igb_get_time_str(struct igb_adapter *adapter,
259 char buffer[160])
260{
261 cycle_t hw = adapter->cycles.read(&adapter->cycles);
262 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
263 struct timespec sys;
264 struct timespec delta;
265 getnstimeofday(&sys);
266
267 delta = timespec_sub(nic, sys);
268
269 sprintf(buffer,
33af6bcc
PO
270 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
271 hw,
38c845c7
PO
272 (long)nic.tv_sec, nic.tv_nsec,
273 (long)sys.tv_sec, sys.tv_nsec,
274 (long)delta.tv_sec, delta.tv_nsec);
275
276 return buffer;
277}
9d5c8243
AK
278#endif
279
280/**
281 * igb_init_module - Driver Registration Routine
282 *
283 * igb_init_module is the first routine called when the driver is
284 * loaded. All it does is register with the PCI subsystem.
285 **/
286static int __init igb_init_module(void)
287{
288 int ret;
289 printk(KERN_INFO "%s - version %s\n",
290 igb_driver_string, igb_driver_version);
291
292 printk(KERN_INFO "%s\n", igb_copyright);
293
7dfc16fa
AD
294 global_quad_port_a = 0;
295
421e02f0 296#ifdef CONFIG_IGB_DCA
fe4506b6
JC
297 dca_register_notify(&dca_notifier);
298#endif
bbd98fe4
AD
299
300 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
301 return ret;
302}
303
304module_init(igb_init_module);
305
306/**
307 * igb_exit_module - Driver Exit Cleanup Routine
308 *
309 * igb_exit_module is called just before the driver is removed
310 * from memory.
311 **/
312static void __exit igb_exit_module(void)
313{
421e02f0 314#ifdef CONFIG_IGB_DCA
fe4506b6
JC
315 dca_unregister_notify(&dca_notifier);
316#endif
9d5c8243
AK
317 pci_unregister_driver(&igb_driver);
318}
319
320module_exit(igb_exit_module);
321
26bc19ec
AD
322#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
323/**
324 * igb_cache_ring_register - Descriptor ring to register mapping
325 * @adapter: board private structure to initialize
326 *
327 * Once we know the feature-set enabled for the device, we'll cache
328 * the register offset the descriptor ring is assigned to.
329 **/
330static void igb_cache_ring_register(struct igb_adapter *adapter)
331{
332 int i;
1bfaf07b 333 unsigned int rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
334
335 switch (adapter->hw.mac.type) {
336 case e1000_82576:
337 /* The queues are allocated for virtualization such that VF 0
338 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
339 * In order to avoid collision we start at the first free queue
340 * and continue consuming queues in the same sequence
341 */
342 for (i = 0; i < adapter->num_rx_queues; i++)
1bfaf07b
AD
343 adapter->rx_ring[i].reg_idx = rbase_offset +
344 Q_IDX_82576(i);
26bc19ec 345 for (i = 0; i < adapter->num_tx_queues; i++)
1bfaf07b
AD
346 adapter->tx_ring[i].reg_idx = rbase_offset +
347 Q_IDX_82576(i);
26bc19ec
AD
348 break;
349 case e1000_82575:
350 default:
351 for (i = 0; i < adapter->num_rx_queues; i++)
352 adapter->rx_ring[i].reg_idx = i;
353 for (i = 0; i < adapter->num_tx_queues; i++)
354 adapter->tx_ring[i].reg_idx = i;
355 break;
356 }
357}
358
9d5c8243
AK
359/**
360 * igb_alloc_queues - Allocate memory for all rings
361 * @adapter: board private structure to initialize
362 *
363 * We allocate one ring per queue at run-time since we don't know the
364 * number of queues at compile-time.
365 **/
366static int igb_alloc_queues(struct igb_adapter *adapter)
367{
368 int i;
369
370 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
371 sizeof(struct igb_ring), GFP_KERNEL);
372 if (!adapter->tx_ring)
373 return -ENOMEM;
374
375 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
376 sizeof(struct igb_ring), GFP_KERNEL);
377 if (!adapter->rx_ring) {
378 kfree(adapter->tx_ring);
379 return -ENOMEM;
380 }
381
6eb5a7f1
AD
382 adapter->rx_ring->buddy = adapter->tx_ring;
383
661086df
PWJ
384 for (i = 0; i < adapter->num_tx_queues; i++) {
385 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 386 ring->count = adapter->tx_ring_count;
661086df
PWJ
387 ring->adapter = adapter;
388 ring->queue_index = i;
389 }
9d5c8243
AK
390 for (i = 0; i < adapter->num_rx_queues; i++) {
391 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 392 ring->count = adapter->rx_ring_count;
9d5c8243 393 ring->adapter = adapter;
844290e5 394 ring->queue_index = i;
9d5c8243
AK
395 ring->itr_register = E1000_ITR;
396
844290e5 397 /* set a default napi handler for each rx_ring */
661086df 398 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243 399 }
26bc19ec
AD
400
401 igb_cache_ring_register(adapter);
9d5c8243
AK
402 return 0;
403}
404
a88f10ec
AD
405static void igb_free_queues(struct igb_adapter *adapter)
406{
407 int i;
408
409 for (i = 0; i < adapter->num_rx_queues; i++)
410 netif_napi_del(&adapter->rx_ring[i].napi);
411
412 kfree(adapter->tx_ring);
413 kfree(adapter->rx_ring);
414}
415
9d5c8243
AK
416#define IGB_N0_QUEUE -1
417static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
418 int tx_queue, int msix_vector)
419{
420 u32 msixbm = 0;
421 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
422 u32 ivar, index;
423
424 switch (hw->mac.type) {
425 case e1000_82575:
9d5c8243
AK
426 /* The 82575 assigns vectors using a bitmask, which matches the
427 bitmask for the EICR/EIMS/EIMC registers. To assign one
428 or more queues to a vector, we write the appropriate bits
429 into the MSIXBM register for that vector. */
430 if (rx_queue > IGB_N0_QUEUE) {
431 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
432 adapter->rx_ring[rx_queue].eims_value = msixbm;
433 }
434 if (tx_queue > IGB_N0_QUEUE) {
435 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
436 adapter->tx_ring[tx_queue].eims_value =
437 E1000_EICR_TX_QUEUE0 << tx_queue;
438 }
439 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
440 break;
441 case e1000_82576:
26bc19ec 442 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
443 Each queue has a single entry in the table to which we write
444 a vector number along with a "valid" bit. Sadly, the layout
445 of the table is somewhat counterintuitive. */
446 if (rx_queue > IGB_N0_QUEUE) {
1bfaf07b 447 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 448 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 449 if (rx_queue & 0x1) {
2d064c06
AD
450 /* vector goes into third byte of register */
451 ivar = ivar & 0xFF00FFFF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
26bc19ec
AD
453 } else {
454 /* vector goes into low byte of register */
455 ivar = ivar & 0xFFFFFF00;
456 ivar |= msix_vector | E1000_IVAR_VALID;
2d064c06
AD
457 }
458 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
459 array_wr32(E1000_IVAR0, index, ivar);
460 }
461 if (tx_queue > IGB_N0_QUEUE) {
1bfaf07b 462 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 463 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 464 if (tx_queue & 0x1) {
2d064c06
AD
465 /* vector goes into high byte of register */
466 ivar = ivar & 0x00FFFFFF;
467 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
26bc19ec
AD
468 } else {
469 /* vector goes into second byte of register */
470 ivar = ivar & 0xFFFF00FF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
2d064c06
AD
472 }
473 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
474 array_wr32(E1000_IVAR0, index, ivar);
475 }
476 break;
477 default:
478 BUG();
479 break;
480 }
9d5c8243
AK
481}
482
483/**
484 * igb_configure_msix - Configure MSI-X hardware
485 *
486 * igb_configure_msix sets up the hardware to properly
487 * generate MSI-X interrupts.
488 **/
489static void igb_configure_msix(struct igb_adapter *adapter)
490{
491 u32 tmp;
492 int i, vector = 0;
493 struct e1000_hw *hw = &adapter->hw;
494
495 adapter->eims_enable_mask = 0;
2d064c06
AD
496 if (hw->mac.type == e1000_82576)
497 /* Turn on MSI-X capability first, or our settings
498 * won't stick. And it will take days to debug. */
499 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
eebbbdba 500 E1000_GPIE_PBA | E1000_GPIE_EIAME |
2d064c06 501 E1000_GPIE_NSICR);
9d5c8243
AK
502
503 for (i = 0; i < adapter->num_tx_queues; i++) {
504 struct igb_ring *tx_ring = &adapter->tx_ring[i];
505 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
506 adapter->eims_enable_mask |= tx_ring->eims_value;
507 if (tx_ring->itr_val)
6eb5a7f1 508 writel(tx_ring->itr_val,
9d5c8243
AK
509 hw->hw_addr + tx_ring->itr_register);
510 else
511 writel(1, hw->hw_addr + tx_ring->itr_register);
512 }
513
514 for (i = 0; i < adapter->num_rx_queues; i++) {
515 struct igb_ring *rx_ring = &adapter->rx_ring[i];
25ac3c24 516 rx_ring->buddy = NULL;
9d5c8243
AK
517 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
518 adapter->eims_enable_mask |= rx_ring->eims_value;
519 if (rx_ring->itr_val)
6eb5a7f1 520 writel(rx_ring->itr_val,
9d5c8243
AK
521 hw->hw_addr + rx_ring->itr_register);
522 else
523 writel(1, hw->hw_addr + rx_ring->itr_register);
524 }
525
526
527 /* set vector for other causes, i.e. link changes */
2d064c06
AD
528 switch (hw->mac.type) {
529 case e1000_82575:
9d5c8243
AK
530 array_wr32(E1000_MSIXBM(0), vector++,
531 E1000_EIMS_OTHER);
532
9d5c8243
AK
533 tmp = rd32(E1000_CTRL_EXT);
534 /* enable MSI-X PBA support*/
535 tmp |= E1000_CTRL_EXT_PBA_CLR;
536
537 /* Auto-Mask interrupts upon ICR read. */
538 tmp |= E1000_CTRL_EXT_EIAME;
539 tmp |= E1000_CTRL_EXT_IRCA;
540
541 wr32(E1000_CTRL_EXT, tmp);
542 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 543 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 544
2d064c06
AD
545 break;
546
547 case e1000_82576:
548 tmp = (vector++ | E1000_IVAR_VALID) << 8;
549 wr32(E1000_IVAR_MISC, tmp);
550
551 adapter->eims_enable_mask = (1 << (vector)) - 1;
552 adapter->eims_other = 1 << (vector - 1);
553 break;
554 default:
555 /* do nothing, since nothing else supports MSI-X */
556 break;
557 } /* switch (hw->mac.type) */
9d5c8243
AK
558 wrfl();
559}
560
561/**
562 * igb_request_msix - Initialize MSI-X interrupts
563 *
564 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
565 * kernel.
566 **/
567static int igb_request_msix(struct igb_adapter *adapter)
568{
569 struct net_device *netdev = adapter->netdev;
570 int i, err = 0, vector = 0;
571
572 vector = 0;
573
574 for (i = 0; i < adapter->num_tx_queues; i++) {
575 struct igb_ring *ring = &(adapter->tx_ring[i]);
cb7b48f6 576 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
9d5c8243
AK
577 err = request_irq(adapter->msix_entries[vector].vector,
578 &igb_msix_tx, 0, ring->name,
579 &(adapter->tx_ring[i]));
580 if (err)
581 goto out;
582 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 583 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
584 vector++;
585 }
586 for (i = 0; i < adapter->num_rx_queues; i++) {
587 struct igb_ring *ring = &(adapter->rx_ring[i]);
588 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 589 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
9d5c8243
AK
590 else
591 memcpy(ring->name, netdev->name, IFNAMSIZ);
592 err = request_irq(adapter->msix_entries[vector].vector,
593 &igb_msix_rx, 0, ring->name,
594 &(adapter->rx_ring[i]));
595 if (err)
596 goto out;
597 ring->itr_register = E1000_EITR(0) + (vector << 2);
598 ring->itr_val = adapter->itr;
599 vector++;
600 }
601
602 err = request_irq(adapter->msix_entries[vector].vector,
603 &igb_msix_other, 0, netdev->name, netdev);
604 if (err)
605 goto out;
606
9d5c8243
AK
607 igb_configure_msix(adapter);
608 return 0;
609out:
610 return err;
611}
612
613static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
614{
615 if (adapter->msix_entries) {
616 pci_disable_msix(adapter->pdev);
617 kfree(adapter->msix_entries);
618 adapter->msix_entries = NULL;
7dfc16fa 619 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
620 pci_disable_msi(adapter->pdev);
621 return;
622}
623
624
625/**
626 * igb_set_interrupt_capability - set MSI or MSI-X if supported
627 *
628 * Attempt to configure interrupts using the best available
629 * capabilities of the hardware and kernel.
630 **/
631static void igb_set_interrupt_capability(struct igb_adapter *adapter)
632{
633 int err;
634 int numvecs, i;
635
83b7180d
AD
636 /* Number of supported queues. */
637 /* Having more queues than CPUs doesn't make sense. */
638 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
639 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
640
9d5c8243
AK
641 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
642 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
643 GFP_KERNEL);
644 if (!adapter->msix_entries)
645 goto msi_only;
646
647 for (i = 0; i < numvecs; i++)
648 adapter->msix_entries[i].entry = i;
649
650 err = pci_enable_msix(adapter->pdev,
651 adapter->msix_entries,
652 numvecs);
653 if (err == 0)
34a20e89 654 goto out;
9d5c8243
AK
655
656 igb_reset_interrupt_capability(adapter);
657
658 /* If we can't do MSI-X, try MSI */
659msi_only:
660 adapter->num_rx_queues = 1;
661086df 661 adapter->num_tx_queues = 1;
9d5c8243 662 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 663 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 664out:
661086df 665 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 666 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
667 return;
668}
669
670/**
671 * igb_request_irq - initialize interrupts
672 *
673 * Attempts to configure interrupts using the best available
674 * capabilities of the hardware and kernel.
675 **/
676static int igb_request_irq(struct igb_adapter *adapter)
677{
678 struct net_device *netdev = adapter->netdev;
679 struct e1000_hw *hw = &adapter->hw;
680 int err = 0;
681
682 if (adapter->msix_entries) {
683 err = igb_request_msix(adapter);
844290e5 684 if (!err)
9d5c8243 685 goto request_done;
9d5c8243
AK
686 /* fall back to MSI */
687 igb_reset_interrupt_capability(adapter);
688 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 689 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
690 igb_free_all_tx_resources(adapter);
691 igb_free_all_rx_resources(adapter);
692 adapter->num_rx_queues = 1;
693 igb_alloc_queues(adapter);
844290e5 694 } else {
2d064c06
AD
695 switch (hw->mac.type) {
696 case e1000_82575:
697 wr32(E1000_MSIXBM(0),
698 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
699 break;
700 case e1000_82576:
701 wr32(E1000_IVAR0, E1000_IVAR_VALID);
702 break;
703 default:
704 break;
705 }
9d5c8243 706 }
844290e5 707
7dfc16fa 708 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
709 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
710 netdev->name, netdev);
711 if (!err)
712 goto request_done;
713 /* fall back to legacy interrupts */
714 igb_reset_interrupt_capability(adapter);
7dfc16fa 715 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
716 }
717
718 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
719 netdev->name, netdev);
720
6cb5e577 721 if (err)
9d5c8243
AK
722 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
723 err);
9d5c8243
AK
724
725request_done:
726 return err;
727}
728
729static void igb_free_irq(struct igb_adapter *adapter)
730{
731 struct net_device *netdev = adapter->netdev;
732
733 if (adapter->msix_entries) {
734 int vector = 0, i;
735
736 for (i = 0; i < adapter->num_tx_queues; i++)
737 free_irq(adapter->msix_entries[vector++].vector,
738 &(adapter->tx_ring[i]));
739 for (i = 0; i < adapter->num_rx_queues; i++)
740 free_irq(adapter->msix_entries[vector++].vector,
741 &(adapter->rx_ring[i]));
742
743 free_irq(adapter->msix_entries[vector++].vector, netdev);
744 return;
745 }
746
747 free_irq(adapter->pdev->irq, netdev);
748}
749
750/**
751 * igb_irq_disable - Mask off interrupt generation on the NIC
752 * @adapter: board private structure
753 **/
754static void igb_irq_disable(struct igb_adapter *adapter)
755{
756 struct e1000_hw *hw = &adapter->hw;
757
758 if (adapter->msix_entries) {
844290e5 759 wr32(E1000_EIAM, 0);
9d5c8243
AK
760 wr32(E1000_EIMC, ~0);
761 wr32(E1000_EIAC, 0);
762 }
844290e5
PW
763
764 wr32(E1000_IAM, 0);
9d5c8243
AK
765 wr32(E1000_IMC, ~0);
766 wrfl();
767 synchronize_irq(adapter->pdev->irq);
768}
769
770/**
771 * igb_irq_enable - Enable default interrupt generation settings
772 * @adapter: board private structure
773 **/
774static void igb_irq_enable(struct igb_adapter *adapter)
775{
776 struct e1000_hw *hw = &adapter->hw;
777
778 if (adapter->msix_entries) {
844290e5
PW
779 wr32(E1000_EIAC, adapter->eims_enable_mask);
780 wr32(E1000_EIAM, adapter->eims_enable_mask);
781 wr32(E1000_EIMS, adapter->eims_enable_mask);
4ae196df
AD
782 if (adapter->vfs_allocated_count)
783 wr32(E1000_MBVFIMR, 0xFF);
784 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
785 E1000_IMS_DOUTSYNC));
844290e5
PW
786 } else {
787 wr32(E1000_IMS, IMS_ENABLE_MASK);
788 wr32(E1000_IAM, IMS_ENABLE_MASK);
789 }
9d5c8243
AK
790}
791
792static void igb_update_mng_vlan(struct igb_adapter *adapter)
793{
794 struct net_device *netdev = adapter->netdev;
795 u16 vid = adapter->hw.mng_cookie.vlan_id;
796 u16 old_vid = adapter->mng_vlan_id;
797 if (adapter->vlgrp) {
798 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
799 if (adapter->hw.mng_cookie.status &
800 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
801 igb_vlan_rx_add_vid(netdev, vid);
802 adapter->mng_vlan_id = vid;
803 } else
804 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
805
806 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
807 (vid != old_vid) &&
808 !vlan_group_get_device(adapter->vlgrp, old_vid))
809 igb_vlan_rx_kill_vid(netdev, old_vid);
810 } else
811 adapter->mng_vlan_id = vid;
812 }
813}
814
815/**
816 * igb_release_hw_control - release control of the h/w to f/w
817 * @adapter: address of board private structure
818 *
819 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
820 * For ASF and Pass Through versions of f/w this means that the
821 * driver is no longer loaded.
822 *
823 **/
824static void igb_release_hw_control(struct igb_adapter *adapter)
825{
826 struct e1000_hw *hw = &adapter->hw;
827 u32 ctrl_ext;
828
829 /* Let firmware take over control of h/w */
830 ctrl_ext = rd32(E1000_CTRL_EXT);
831 wr32(E1000_CTRL_EXT,
832 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
833}
834
835
836/**
837 * igb_get_hw_control - get control of the h/w from f/w
838 * @adapter: address of board private structure
839 *
840 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
841 * For ASF and Pass Through versions of f/w this means that
842 * the driver is loaded.
843 *
844 **/
845static void igb_get_hw_control(struct igb_adapter *adapter)
846{
847 struct e1000_hw *hw = &adapter->hw;
848 u32 ctrl_ext;
849
850 /* Let firmware know the driver has taken over */
851 ctrl_ext = rd32(E1000_CTRL_EXT);
852 wr32(E1000_CTRL_EXT,
853 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
854}
855
9d5c8243
AK
856/**
857 * igb_configure - configure the hardware for RX and TX
858 * @adapter: private board structure
859 **/
860static void igb_configure(struct igb_adapter *adapter)
861{
862 struct net_device *netdev = adapter->netdev;
863 int i;
864
865 igb_get_hw_control(adapter);
866 igb_set_multi(netdev);
867
868 igb_restore_vlan(adapter);
9d5c8243
AK
869
870 igb_configure_tx(adapter);
871 igb_setup_rctl(adapter);
872 igb_configure_rx(adapter);
662d7205
AD
873
874 igb_rx_fifo_flush_82575(&adapter->hw);
875
9d5c8243
AK
876 /* call IGB_DESC_UNUSED which always leaves
877 * at least 1 descriptor unused to make sure
878 * next_to_use != next_to_clean */
879 for (i = 0; i < adapter->num_rx_queues; i++) {
880 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 881 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
882 }
883
884
885 adapter->tx_queue_len = netdev->tx_queue_len;
886}
887
888
889/**
890 * igb_up - Open the interface and prepare it to handle traffic
891 * @adapter: board private structure
892 **/
893
894int igb_up(struct igb_adapter *adapter)
895{
896 struct e1000_hw *hw = &adapter->hw;
897 int i;
898
899 /* hardware has been reset, we need to reload some things */
900 igb_configure(adapter);
901
902 clear_bit(__IGB_DOWN, &adapter->state);
903
844290e5
PW
904 for (i = 0; i < adapter->num_rx_queues; i++)
905 napi_enable(&adapter->rx_ring[i].napi);
906 if (adapter->msix_entries)
9d5c8243 907 igb_configure_msix(adapter);
9d5c8243 908
4ae196df 909 igb_vmm_control(adapter);
e1739522
AD
910 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
911 igb_set_vmolr(hw, adapter->vfs_allocated_count);
912
9d5c8243
AK
913 /* Clear any pending interrupts. */
914 rd32(E1000_ICR);
915 igb_irq_enable(adapter);
916
917 /* Fire a link change interrupt to start the watchdog. */
918 wr32(E1000_ICS, E1000_ICS_LSC);
919 return 0;
920}
921
922void igb_down(struct igb_adapter *adapter)
923{
924 struct e1000_hw *hw = &adapter->hw;
925 struct net_device *netdev = adapter->netdev;
926 u32 tctl, rctl;
927 int i;
928
929 /* signal that we're down so the interrupt handler does not
930 * reschedule our watchdog timer */
931 set_bit(__IGB_DOWN, &adapter->state);
932
933 /* disable receives in the hardware */
934 rctl = rd32(E1000_RCTL);
935 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
936 /* flush and sleep below */
937
fd2ea0a7 938 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
939
940 /* disable transmits in the hardware */
941 tctl = rd32(E1000_TCTL);
942 tctl &= ~E1000_TCTL_EN;
943 wr32(E1000_TCTL, tctl);
944 /* flush both disables and wait for them to finish */
945 wrfl();
946 msleep(10);
947
844290e5
PW
948 for (i = 0; i < adapter->num_rx_queues; i++)
949 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 950
9d5c8243
AK
951 igb_irq_disable(adapter);
952
953 del_timer_sync(&adapter->watchdog_timer);
954 del_timer_sync(&adapter->phy_info_timer);
955
956 netdev->tx_queue_len = adapter->tx_queue_len;
957 netif_carrier_off(netdev);
04fe6358
AD
958
959 /* record the stats before reset*/
960 igb_update_stats(adapter);
961
9d5c8243
AK
962 adapter->link_speed = 0;
963 adapter->link_duplex = 0;
964
3023682e
JK
965 if (!pci_channel_offline(adapter->pdev))
966 igb_reset(adapter);
9d5c8243
AK
967 igb_clean_all_tx_rings(adapter);
968 igb_clean_all_rx_rings(adapter);
969}
970
971void igb_reinit_locked(struct igb_adapter *adapter)
972{
973 WARN_ON(in_interrupt());
974 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
975 msleep(1);
976 igb_down(adapter);
977 igb_up(adapter);
978 clear_bit(__IGB_RESETTING, &adapter->state);
979}
980
981void igb_reset(struct igb_adapter *adapter)
982{
983 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
984 struct e1000_mac_info *mac = &hw->mac;
985 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
986 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
987 u16 hwm;
988
989 /* Repartition Pba for greater than 9k mtu
990 * To take effect CTRL.RST is required.
991 */
fa4dfae0
AD
992 switch (mac->type) {
993 case e1000_82576:
2d064c06 994 pba = E1000_PBA_64K;
fa4dfae0
AD
995 break;
996 case e1000_82575:
997 default:
998 pba = E1000_PBA_34K;
999 break;
2d064c06 1000 }
9d5c8243 1001
2d064c06
AD
1002 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1003 (mac->type < e1000_82576)) {
9d5c8243
AK
1004 /* adjust PBA for jumbo frames */
1005 wr32(E1000_PBA, pba);
1006
1007 /* To maintain wire speed transmits, the Tx FIFO should be
1008 * large enough to accommodate two full transmit packets,
1009 * rounded up to the next 1KB and expressed in KB. Likewise,
1010 * the Rx FIFO should be large enough to accommodate at least
1011 * one full receive packet and is similarly rounded up and
1012 * expressed in KB. */
1013 pba = rd32(E1000_PBA);
1014 /* upper 16 bits has Tx packet buffer allocation size in KB */
1015 tx_space = pba >> 16;
1016 /* lower 16 bits has Rx packet buffer allocation size in KB */
1017 pba &= 0xffff;
1018 /* the tx fifo also stores 16 bytes of information about the tx
1019 * but don't include ethernet FCS because hardware appends it */
1020 min_tx_space = (adapter->max_frame_size +
85e8d004 1021 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1022 ETH_FCS_LEN) * 2;
1023 min_tx_space = ALIGN(min_tx_space, 1024);
1024 min_tx_space >>= 10;
1025 /* software strips receive CRC, so leave room for it */
1026 min_rx_space = adapter->max_frame_size;
1027 min_rx_space = ALIGN(min_rx_space, 1024);
1028 min_rx_space >>= 10;
1029
1030 /* If current Tx allocation is less than the min Tx FIFO size,
1031 * and the min Tx FIFO size is less than the current Rx FIFO
1032 * allocation, take space away from current Rx allocation */
1033 if (tx_space < min_tx_space &&
1034 ((min_tx_space - tx_space) < pba)) {
1035 pba = pba - (min_tx_space - tx_space);
1036
1037 /* if short on rx space, rx wins and must trump tx
1038 * adjustment */
1039 if (pba < min_rx_space)
1040 pba = min_rx_space;
1041 }
2d064c06 1042 wr32(E1000_PBA, pba);
9d5c8243 1043 }
9d5c8243
AK
1044
1045 /* flow control settings */
1046 /* The high water mark must be low enough to fit one full frame
1047 * (or the size used for early receive) above it in the Rx FIFO.
1048 * Set it to the lower of:
1049 * - 90% of the Rx FIFO size, or
1050 * - the full Rx FIFO size minus one full frame */
1051 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1052 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1053
2d064c06
AD
1054 if (mac->type < e1000_82576) {
1055 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1056 fc->low_water = fc->high_water - 8;
1057 } else {
1058 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1059 fc->low_water = fc->high_water - 16;
1060 }
9d5c8243
AK
1061 fc->pause_time = 0xFFFF;
1062 fc->send_xon = 1;
1063 fc->type = fc->original_type;
1064
4ae196df
AD
1065 /* disable receive for all VFs and wait one second */
1066 if (adapter->vfs_allocated_count) {
1067 int i;
1068 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1069 adapter->vf_data[i].clear_to_send = false;
1070
1071 /* ping all the active vfs to let them know we are going down */
1072 igb_ping_all_vfs(adapter);
1073
1074 /* disable transmits and receives */
1075 wr32(E1000_VFRE, 0);
1076 wr32(E1000_VFTE, 0);
1077 }
1078
9d5c8243
AK
1079 /* Allow time for pending master requests to run */
1080 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1081 wr32(E1000_WUC, 0);
1082
1083 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1084 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1085
1086 igb_update_mng_vlan(adapter);
1087
1088 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1089 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1090
1091 igb_reset_adaptive(&adapter->hw);
f5f4cf08 1092 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
1093}
1094
2e5c6922
SH
1095static const struct net_device_ops igb_netdev_ops = {
1096 .ndo_open = igb_open,
1097 .ndo_stop = igb_close,
00829823 1098 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922
SH
1099 .ndo_get_stats = igb_get_stats,
1100 .ndo_set_multicast_list = igb_set_multi,
1101 .ndo_set_mac_address = igb_set_mac,
1102 .ndo_change_mtu = igb_change_mtu,
1103 .ndo_do_ioctl = igb_ioctl,
1104 .ndo_tx_timeout = igb_tx_timeout,
1105 .ndo_validate_addr = eth_validate_addr,
1106 .ndo_vlan_rx_register = igb_vlan_rx_register,
1107 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1108 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1109#ifdef CONFIG_NET_POLL_CONTROLLER
1110 .ndo_poll_controller = igb_netpoll,
1111#endif
1112};
1113
9d5c8243
AK
1114/**
1115 * igb_probe - Device Initialization Routine
1116 * @pdev: PCI device information struct
1117 * @ent: entry in igb_pci_tbl
1118 *
1119 * Returns 0 on success, negative on failure
1120 *
1121 * igb_probe initializes an adapter identified by a pci_dev structure.
1122 * The OS initialization, configuring of the adapter private structure,
1123 * and a hardware reset occur.
1124 **/
1125static int __devinit igb_probe(struct pci_dev *pdev,
1126 const struct pci_device_id *ent)
1127{
1128 struct net_device *netdev;
1129 struct igb_adapter *adapter;
1130 struct e1000_hw *hw;
1131 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1132 unsigned long mmio_start, mmio_len;
2d6a5e95 1133 int err, pci_using_dac;
682337fe 1134 u16 eeprom_data = 0;
9d5c8243
AK
1135 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1136 u32 part_num;
1137
aed5dec3 1138 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1139 if (err)
1140 return err;
1141
1142 pci_using_dac = 0;
1143 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1144 if (!err) {
1145 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1146 if (!err)
1147 pci_using_dac = 1;
1148 } else {
1149 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1150 if (err) {
1151 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1152 if (err) {
1153 dev_err(&pdev->dev, "No usable DMA "
1154 "configuration, aborting\n");
1155 goto err_dma;
1156 }
1157 }
1158 }
1159
aed5dec3
AD
1160 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1161 IORESOURCE_MEM),
1162 igb_driver_name);
9d5c8243
AK
1163 if (err)
1164 goto err_pci_reg;
1165
ea943d41
JK
1166 err = pci_enable_pcie_error_reporting(pdev);
1167 if (err) {
1168 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1169 "0x%x\n", err);
1170 /* non-fatal, continue */
1171 }
40a914fa 1172
9d5c8243 1173 pci_set_master(pdev);
c682fc23 1174 pci_save_state(pdev);
9d5c8243
AK
1175
1176 err = -ENOMEM;
1bfaf07b
AD
1177 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1178 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1179 if (!netdev)
1180 goto err_alloc_etherdev;
1181
1182 SET_NETDEV_DEV(netdev, &pdev->dev);
1183
1184 pci_set_drvdata(pdev, netdev);
1185 adapter = netdev_priv(netdev);
1186 adapter->netdev = netdev;
1187 adapter->pdev = pdev;
1188 hw = &adapter->hw;
1189 hw->back = adapter;
1190 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1191
1192 mmio_start = pci_resource_start(pdev, 0);
1193 mmio_len = pci_resource_len(pdev, 0);
1194
1195 err = -EIO;
28b0759c
AD
1196 hw->hw_addr = ioremap(mmio_start, mmio_len);
1197 if (!hw->hw_addr)
9d5c8243
AK
1198 goto err_ioremap;
1199
2e5c6922 1200 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1201 igb_set_ethtool_ops(netdev);
9d5c8243 1202 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1203
1204 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1205
1206 netdev->mem_start = mmio_start;
1207 netdev->mem_end = mmio_start + mmio_len;
1208
9d5c8243
AK
1209 /* PCI config space info */
1210 hw->vendor_id = pdev->vendor;
1211 hw->device_id = pdev->device;
1212 hw->revision_id = pdev->revision;
1213 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1214 hw->subsystem_device_id = pdev->subsystem_device;
1215
1216 /* setup the private structure */
1217 hw->back = adapter;
1218 /* Copy the default MAC, PHY and NVM function pointers */
1219 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1220 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1221 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1222 /* Initialize skew-specific constants */
1223 err = ei->get_invariants(hw);
1224 if (err)
450c87c8 1225 goto err_sw_init;
9d5c8243 1226
450c87c8 1227 /* setup the private structure */
9d5c8243
AK
1228 err = igb_sw_init(adapter);
1229 if (err)
1230 goto err_sw_init;
1231
1232 igb_get_bus_info_pcie(hw);
1233
7dfc16fa
AD
1234 /* set flags */
1235 switch (hw->mac.type) {
7dfc16fa 1236 case e1000_82575:
7dfc16fa
AD
1237 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1238 break;
bbd98fe4 1239 case e1000_82576:
7dfc16fa
AD
1240 default:
1241 break;
1242 }
1243
9d5c8243
AK
1244 hw->phy.autoneg_wait_to_complete = false;
1245 hw->mac.adaptive_ifs = true;
1246
1247 /* Copper options */
1248 if (hw->phy.media_type == e1000_media_type_copper) {
1249 hw->phy.mdix = AUTO_ALL_MODES;
1250 hw->phy.disable_polarity_correction = false;
1251 hw->phy.ms_type = e1000_ms_hw_default;
1252 }
1253
1254 if (igb_check_reset_block(hw))
1255 dev_info(&pdev->dev,
1256 "PHY reset is blocked due to SOL/IDER session.\n");
1257
1258 netdev->features = NETIF_F_SG |
7d8eb29e 1259 NETIF_F_IP_CSUM |
9d5c8243
AK
1260 NETIF_F_HW_VLAN_TX |
1261 NETIF_F_HW_VLAN_RX |
1262 NETIF_F_HW_VLAN_FILTER;
1263
7d8eb29e 1264 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1265 netdev->features |= NETIF_F_TSO;
9d5c8243 1266 netdev->features |= NETIF_F_TSO6;
48f29ffc 1267
5c0999b7 1268 netdev->features |= NETIF_F_GRO;
d3352520 1269
48f29ffc
JK
1270 netdev->vlan_features |= NETIF_F_TSO;
1271 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1272 netdev->vlan_features |= NETIF_F_IP_CSUM;
48f29ffc
JK
1273 netdev->vlan_features |= NETIF_F_SG;
1274
9d5c8243
AK
1275 if (pci_using_dac)
1276 netdev->features |= NETIF_F_HIGHDMA;
1277
9d5c8243
AK
1278 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1279
1280 /* before reading the NVM, reset the controller to put the device in a
1281 * known good starting state */
1282 hw->mac.ops.reset_hw(hw);
1283
1284 /* make sure the NVM is good */
1285 if (igb_validate_nvm_checksum(hw) < 0) {
1286 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1287 err = -EIO;
1288 goto err_eeprom;
1289 }
1290
1291 /* copy the MAC address out of the NVM */
1292 if (hw->mac.ops.read_mac_addr(hw))
1293 dev_err(&pdev->dev, "NVM Read Error\n");
1294
1295 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1296 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1297
1298 if (!is_valid_ether_addr(netdev->perm_addr)) {
1299 dev_err(&pdev->dev, "Invalid MAC Address\n");
1300 err = -EIO;
1301 goto err_eeprom;
1302 }
1303
1304 init_timer(&adapter->watchdog_timer);
1305 adapter->watchdog_timer.function = &igb_watchdog;
1306 adapter->watchdog_timer.data = (unsigned long) adapter;
1307
1308 init_timer(&adapter->phy_info_timer);
1309 adapter->phy_info_timer.function = &igb_update_phy_info;
1310 adapter->phy_info_timer.data = (unsigned long) adapter;
1311
1312 INIT_WORK(&adapter->reset_task, igb_reset_task);
1313 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1314
450c87c8 1315 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1316 adapter->fc_autoneg = true;
1317 hw->mac.autoneg = true;
1318 hw->phy.autoneg_advertised = 0x2f;
1319
1320 hw->fc.original_type = e1000_fc_default;
1321 hw->fc.type = e1000_fc_default;
1322
cbd347ad 1323 adapter->itr_setting = IGB_DEFAULT_ITR;
9d5c8243
AK
1324 adapter->itr = IGB_START_ITR;
1325
1326 igb_validate_mdi_setting(hw);
1327
1328 adapter->rx_csum = 1;
1329
1330 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1331 * enable the ACPI Magic Packet filter
1332 */
1333
a2cf8b6c 1334 if (hw->bus.func == 0)
312c75ae 1335 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1336 else if (hw->bus.func == 1)
1337 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1338
1339 if (eeprom_data & eeprom_apme_mask)
1340 adapter->eeprom_wol |= E1000_WUFC_MAG;
1341
1342 /* now that we have the eeprom settings, apply the special cases where
1343 * the eeprom may be wrong or the board simply won't support wake on
1344 * lan on a particular port */
1345 switch (pdev->device) {
1346 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1347 adapter->eeprom_wol = 0;
1348 break;
1349 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1350 case E1000_DEV_ID_82576_FIBER:
1351 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1352 /* Wake events only supported on port A for dual fiber
1353 * regardless of eeprom setting */
1354 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1355 adapter->eeprom_wol = 0;
1356 break;
c8ea5ea9
AD
1357 case E1000_DEV_ID_82576_QUAD_COPPER:
1358 /* if quad port adapter, disable WoL on all but port A */
1359 if (global_quad_port_a != 0)
1360 adapter->eeprom_wol = 0;
1361 else
1362 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1363 /* Reset for multiple quad port adapters */
1364 if (++global_quad_port_a == 4)
1365 global_quad_port_a = 0;
1366 break;
9d5c8243
AK
1367 }
1368
1369 /* initialize the wol settings based on the eeprom settings */
1370 adapter->wol = adapter->eeprom_wol;
e1b86d84 1371 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1372
1373 /* reset the hardware with the new settings */
1374 igb_reset(adapter);
1375
1376 /* let the f/w know that the h/w is now under the control of the
1377 * driver. */
1378 igb_get_hw_control(adapter);
1379
1380 /* tell the stack to leave us alone until igb_open() is called */
1381 netif_carrier_off(netdev);
fd2ea0a7 1382 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1383
1384 strcpy(netdev->name, "eth%d");
1385 err = register_netdev(netdev);
1386 if (err)
1387 goto err_register;
1388
37680117
AD
1389#ifdef CONFIG_PCI_IOV
1390 /* since iov functionality isn't critical to base device function we
1391 * can accept failure. If it fails we don't allow iov to be enabled */
1392 if (hw->mac.type == e1000_82576) {
1393 err = pci_enable_sriov(pdev, 0);
1394 if (!err)
1395 err = device_create_file(&netdev->dev,
1396 &dev_attr_num_vfs);
1397 if (err)
1398 dev_err(&pdev->dev, "Failed to initialize IOV\n");
1399 }
1400
1401#endif
421e02f0 1402#ifdef CONFIG_IGB_DCA
bbd98fe4 1403 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1404 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1405 dev_info(&pdev->dev, "DCA enabled\n");
1406 /* Always use CB2 mode, difference is masked
1407 * in the CB driver. */
cbd347ad 1408 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6
JC
1409 igb_setup_dca(adapter);
1410 }
1411#endif
1412
38c845c7
PO
1413 /*
1414 * Initialize hardware timer: we keep it running just in case
1415 * that some program needs it later on.
1416 */
1417 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1418 adapter->cycles.read = igb_read_clock;
1419 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1420 adapter->cycles.mult = 1;
1421 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1422 wr32(E1000_TIMINCA,
1423 (1<<24) |
1424 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1425#if 0
1426 /*
1427 * Avoid rollover while we initialize by resetting the time counter.
1428 */
1429 wr32(E1000_SYSTIML, 0x00000000);
1430 wr32(E1000_SYSTIMH, 0x00000000);
1431#else
1432 /*
1433 * Set registers so that rollover occurs soon to test this.
1434 */
1435 wr32(E1000_SYSTIML, 0x00000000);
1436 wr32(E1000_SYSTIMH, 0xFF800000);
1437#endif
1438 wrfl();
1439 timecounter_init(&adapter->clock,
1440 &adapter->cycles,
1441 ktime_to_ns(ktime_get_real()));
1442
33af6bcc
PO
1443 /*
1444 * Synchronize our NIC clock against system wall clock. NIC
1445 * time stamp reading requires ~3us per sample, each sample
1446 * was pretty stable even under load => only require 10
1447 * samples for each offset comparison.
1448 */
1449 memset(&adapter->compare, 0, sizeof(adapter->compare));
1450 adapter->compare.source = &adapter->clock;
1451 adapter->compare.target = ktime_get_real;
1452 adapter->compare.num_samples = 10;
1453 timecompare_update(&adapter->compare, 0);
1454
38c845c7
PO
1455#ifdef DEBUG
1456 {
1457 char buffer[160];
1458 printk(KERN_DEBUG
1459 "igb: %s: hw %p initialized timer\n",
1460 igb_get_time_str(adapter, buffer),
1461 &adapter->hw);
1462 }
1463#endif
1464
9d5c8243
AK
1465 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1466 /* print bus type/speed/width info */
7c510e4b 1467 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1468 netdev->name,
1469 ((hw->bus.speed == e1000_bus_speed_2500)
1470 ? "2.5Gb/s" : "unknown"),
1471 ((hw->bus.width == e1000_bus_width_pcie_x4)
1472 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1473 ? "Width x1" : "unknown"),
7c510e4b 1474 netdev->dev_addr);
9d5c8243
AK
1475
1476 igb_read_part_num(hw, &part_num);
1477 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1478 (part_num >> 8), (part_num & 0xff));
1479
1480 dev_info(&pdev->dev,
1481 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1482 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1483 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1484 adapter->num_rx_queues, adapter->num_tx_queues);
1485
9d5c8243
AK
1486 return 0;
1487
1488err_register:
1489 igb_release_hw_control(adapter);
1490err_eeprom:
1491 if (!igb_check_reset_block(hw))
f5f4cf08 1492 igb_reset_phy(hw);
9d5c8243
AK
1493
1494 if (hw->flash_address)
1495 iounmap(hw->flash_address);
1496
a88f10ec 1497 igb_free_queues(adapter);
9d5c8243 1498err_sw_init:
9d5c8243
AK
1499 iounmap(hw->hw_addr);
1500err_ioremap:
1501 free_netdev(netdev);
1502err_alloc_etherdev:
aed5dec3
AD
1503 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1504 IORESOURCE_MEM));
9d5c8243
AK
1505err_pci_reg:
1506err_dma:
1507 pci_disable_device(pdev);
1508 return err;
1509}
1510
1511/**
1512 * igb_remove - Device Removal Routine
1513 * @pdev: PCI device information struct
1514 *
1515 * igb_remove is called by the PCI subsystem to alert the driver
1516 * that it should release a PCI device. The could be caused by a
1517 * Hot-Plug event, or because the driver is going to be removed from
1518 * memory.
1519 **/
1520static void __devexit igb_remove(struct pci_dev *pdev)
1521{
1522 struct net_device *netdev = pci_get_drvdata(pdev);
1523 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1524 struct e1000_hw *hw = &adapter->hw;
ea943d41 1525 int err;
9d5c8243
AK
1526
1527 /* flush_scheduled work may reschedule our watchdog task, so
1528 * explicitly disable watchdog tasks from being rescheduled */
1529 set_bit(__IGB_DOWN, &adapter->state);
1530 del_timer_sync(&adapter->watchdog_timer);
1531 del_timer_sync(&adapter->phy_info_timer);
1532
1533 flush_scheduled_work();
1534
421e02f0 1535#ifdef CONFIG_IGB_DCA
7dfc16fa 1536 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1537 dev_info(&pdev->dev, "DCA disabled\n");
1538 dca_remove_requester(&pdev->dev);
7dfc16fa 1539 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1540 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1541 }
1542#endif
1543
9d5c8243
AK
1544 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1545 * would have already happened in close and is redundant. */
1546 igb_release_hw_control(adapter);
1547
1548 unregister_netdev(netdev);
1549
f5f4cf08
AD
1550 if (!igb_check_reset_block(&adapter->hw))
1551 igb_reset_phy(&adapter->hw);
9d5c8243 1552
9d5c8243
AK
1553 igb_reset_interrupt_capability(adapter);
1554
a88f10ec 1555 igb_free_queues(adapter);
9d5c8243 1556
37680117
AD
1557#ifdef CONFIG_PCI_IOV
1558 /* reclaim resources allocated to VFs */
1559 if (adapter->vf_data) {
1560 /* disable iov and allow time for transactions to clear */
1561 pci_disable_sriov(pdev);
1562 msleep(500);
1563
1564 kfree(adapter->vf_data);
1565 adapter->vf_data = NULL;
1566 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1567 msleep(100);
1568 dev_info(&pdev->dev, "IOV Disabled\n");
1569 }
1570#endif
28b0759c
AD
1571 iounmap(hw->hw_addr);
1572 if (hw->flash_address)
1573 iounmap(hw->flash_address);
aed5dec3
AD
1574 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1575 IORESOURCE_MEM));
9d5c8243
AK
1576
1577 free_netdev(netdev);
1578
ea943d41
JK
1579 err = pci_disable_pcie_error_reporting(pdev);
1580 if (err)
1581 dev_err(&pdev->dev,
1582 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
40a914fa 1583
9d5c8243
AK
1584 pci_disable_device(pdev);
1585}
1586
1587/**
1588 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1589 * @adapter: board private structure to initialize
1590 *
1591 * igb_sw_init initializes the Adapter private data structure.
1592 * Fields are initialized based on PCI device information and
1593 * OS network device settings (MTU size).
1594 **/
1595static int __devinit igb_sw_init(struct igb_adapter *adapter)
1596{
1597 struct e1000_hw *hw = &adapter->hw;
1598 struct net_device *netdev = adapter->netdev;
1599 struct pci_dev *pdev = adapter->pdev;
1600
1601 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1602
68fd9910
AD
1603 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1604 adapter->rx_ring_count = IGB_DEFAULT_RXD;
9d5c8243
AK
1605 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1606 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1607 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1608 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1609
661086df
PWJ
1610 /* This call may decrease the number of queues depending on
1611 * interrupt mode. */
9d5c8243
AK
1612 igb_set_interrupt_capability(adapter);
1613
1614 if (igb_alloc_queues(adapter)) {
1615 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1616 return -ENOMEM;
1617 }
1618
1619 /* Explicitly disable IRQ since the NIC can be in any state. */
1620 igb_irq_disable(adapter);
1621
1622 set_bit(__IGB_DOWN, &adapter->state);
1623 return 0;
1624}
1625
1626/**
1627 * igb_open - Called when a network interface is made active
1628 * @netdev: network interface device structure
1629 *
1630 * Returns 0 on success, negative value on failure
1631 *
1632 * The open entry point is called when a network interface is made
1633 * active by the system (IFF_UP). At this point all resources needed
1634 * for transmit and receive operations are allocated, the interrupt
1635 * handler is registered with the OS, the watchdog timer is started,
1636 * and the stack is notified that the interface is ready.
1637 **/
1638static int igb_open(struct net_device *netdev)
1639{
1640 struct igb_adapter *adapter = netdev_priv(netdev);
1641 struct e1000_hw *hw = &adapter->hw;
1642 int err;
1643 int i;
1644
1645 /* disallow open during test */
1646 if (test_bit(__IGB_TESTING, &adapter->state))
1647 return -EBUSY;
1648
1649 /* allocate transmit descriptors */
1650 err = igb_setup_all_tx_resources(adapter);
1651 if (err)
1652 goto err_setup_tx;
1653
1654 /* allocate receive descriptors */
1655 err = igb_setup_all_rx_resources(adapter);
1656 if (err)
1657 goto err_setup_rx;
1658
1659 /* e1000_power_up_phy(adapter); */
1660
1661 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1662 if ((adapter->hw.mng_cookie.status &
1663 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1664 igb_update_mng_vlan(adapter);
1665
1666 /* before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so. */
1670 igb_configure(adapter);
1671
4ae196df 1672 igb_vmm_control(adapter);
e1739522
AD
1673 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1674 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1675
9d5c8243
AK
1676 err = igb_request_irq(adapter);
1677 if (err)
1678 goto err_req_irq;
1679
1680 /* From here on the code is the same as igb_up() */
1681 clear_bit(__IGB_DOWN, &adapter->state);
1682
844290e5
PW
1683 for (i = 0; i < adapter->num_rx_queues; i++)
1684 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1685
1686 /* Clear any pending interrupts. */
1687 rd32(E1000_ICR);
844290e5
PW
1688
1689 igb_irq_enable(adapter);
1690
d55b53ff
JK
1691 netif_tx_start_all_queues(netdev);
1692
9d5c8243
AK
1693 /* Fire a link status change interrupt to start the watchdog. */
1694 wr32(E1000_ICS, E1000_ICS_LSC);
1695
1696 return 0;
1697
1698err_req_irq:
1699 igb_release_hw_control(adapter);
1700 /* e1000_power_down_phy(adapter); */
1701 igb_free_all_rx_resources(adapter);
1702err_setup_rx:
1703 igb_free_all_tx_resources(adapter);
1704err_setup_tx:
1705 igb_reset(adapter);
1706
1707 return err;
1708}
1709
1710/**
1711 * igb_close - Disables a network interface
1712 * @netdev: network interface device structure
1713 *
1714 * Returns 0, this is not allowed to fail
1715 *
1716 * The close entry point is called when an interface is de-activated
1717 * by the OS. The hardware is still under the driver's control, but
1718 * needs to be disabled. A global MAC reset is issued to stop the
1719 * hardware, and all transmit and receive resources are freed.
1720 **/
1721static int igb_close(struct net_device *netdev)
1722{
1723 struct igb_adapter *adapter = netdev_priv(netdev);
1724
1725 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1726 igb_down(adapter);
1727
1728 igb_free_irq(adapter);
1729
1730 igb_free_all_tx_resources(adapter);
1731 igb_free_all_rx_resources(adapter);
1732
1733 /* kill manageability vlan ID if supported, but not if a vlan with
1734 * the same ID is registered on the host OS (let 8021q kill it) */
1735 if ((adapter->hw.mng_cookie.status &
1736 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1737 !(adapter->vlgrp &&
1738 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1739 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1740
1741 return 0;
1742}
1743
1744/**
1745 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1746 * @adapter: board private structure
1747 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1748 *
1749 * Return 0 on success, negative on failure
1750 **/
9d5c8243
AK
1751int igb_setup_tx_resources(struct igb_adapter *adapter,
1752 struct igb_ring *tx_ring)
1753{
1754 struct pci_dev *pdev = adapter->pdev;
1755 int size;
1756
1757 size = sizeof(struct igb_buffer) * tx_ring->count;
1758 tx_ring->buffer_info = vmalloc(size);
1759 if (!tx_ring->buffer_info)
1760 goto err;
1761 memset(tx_ring->buffer_info, 0, size);
1762
1763 /* round up to nearest 4K */
85e8d004 1764 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1765 tx_ring->size = ALIGN(tx_ring->size, 4096);
1766
1767 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1768 &tx_ring->dma);
1769
1770 if (!tx_ring->desc)
1771 goto err;
1772
1773 tx_ring->adapter = adapter;
1774 tx_ring->next_to_use = 0;
1775 tx_ring->next_to_clean = 0;
9d5c8243
AK
1776 return 0;
1777
1778err:
1779 vfree(tx_ring->buffer_info);
1780 dev_err(&adapter->pdev->dev,
1781 "Unable to allocate memory for the transmit descriptor ring\n");
1782 return -ENOMEM;
1783}
1784
1785/**
1786 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1787 * (Descriptors) for all queues
1788 * @adapter: board private structure
1789 *
1790 * Return 0 on success, negative on failure
1791 **/
1792static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1793{
1794 int i, err = 0;
661086df 1795 int r_idx;
9d5c8243
AK
1796
1797 for (i = 0; i < adapter->num_tx_queues; i++) {
1798 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1799 if (err) {
1800 dev_err(&adapter->pdev->dev,
1801 "Allocation for Tx Queue %u failed\n", i);
1802 for (i--; i >= 0; i--)
3b644cf6 1803 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1804 break;
1805 }
1806 }
1807
661086df
PWJ
1808 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1809 r_idx = i % adapter->num_tx_queues;
1810 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 1811 }
9d5c8243
AK
1812 return err;
1813}
1814
1815/**
1816 * igb_configure_tx - Configure transmit Unit after Reset
1817 * @adapter: board private structure
1818 *
1819 * Configure the Tx unit of the MAC after a reset.
1820 **/
1821static void igb_configure_tx(struct igb_adapter *adapter)
1822{
0e014cb1 1823 u64 tdba;
9d5c8243
AK
1824 struct e1000_hw *hw = &adapter->hw;
1825 u32 tctl;
1826 u32 txdctl, txctrl;
26bc19ec 1827 int i, j;
9d5c8243
AK
1828
1829 for (i = 0; i < adapter->num_tx_queues; i++) {
73cd78f1 1830 struct igb_ring *ring = &adapter->tx_ring[i];
26bc19ec
AD
1831 j = ring->reg_idx;
1832 wr32(E1000_TDLEN(j),
85e8d004 1833 ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243 1834 tdba = ring->dma;
26bc19ec 1835 wr32(E1000_TDBAL(j),
73cd78f1 1836 tdba & 0x00000000ffffffffULL);
26bc19ec 1837 wr32(E1000_TDBAH(j), tdba >> 32);
9d5c8243 1838
26bc19ec
AD
1839 ring->head = E1000_TDH(j);
1840 ring->tail = E1000_TDT(j);
9d5c8243
AK
1841 writel(0, hw->hw_addr + ring->tail);
1842 writel(0, hw->hw_addr + ring->head);
26bc19ec 1843 txdctl = rd32(E1000_TXDCTL(j));
9d5c8243 1844 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
26bc19ec 1845 wr32(E1000_TXDCTL(j), txdctl);
9d5c8243
AK
1846
1847 /* Turn off Relaxed Ordering on head write-backs. The
1848 * writebacks MUST be delivered in order or it will
1849 * completely screw up our bookeeping.
1850 */
26bc19ec 1851 txctrl = rd32(E1000_DCA_TXCTRL(j));
9d5c8243 1852 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
26bc19ec 1853 wr32(E1000_DCA_TXCTRL(j), txctrl);
9d5c8243
AK
1854 }
1855
e1739522
AD
1856 /* disable queue 0 to prevent tail bump w/o re-configuration */
1857 if (adapter->vfs_allocated_count)
1858 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
1859
1860 /* Program the Transmit Control Register */
9d5c8243
AK
1861 tctl = rd32(E1000_TCTL);
1862 tctl &= ~E1000_TCTL_CT;
1863 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1864 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1865
1866 igb_config_collision_dist(hw);
1867
1868 /* Setup Transmit Descriptor Settings for eop descriptor */
1869 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1870
1871 /* Enable transmits */
1872 tctl |= E1000_TCTL_EN;
1873
1874 wr32(E1000_TCTL, tctl);
1875}
1876
1877/**
1878 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1879 * @adapter: board private structure
1880 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1881 *
1882 * Returns 0 on success, negative on failure
1883 **/
9d5c8243
AK
1884int igb_setup_rx_resources(struct igb_adapter *adapter,
1885 struct igb_ring *rx_ring)
1886{
1887 struct pci_dev *pdev = adapter->pdev;
1888 int size, desc_len;
1889
1890 size = sizeof(struct igb_buffer) * rx_ring->count;
1891 rx_ring->buffer_info = vmalloc(size);
1892 if (!rx_ring->buffer_info)
1893 goto err;
1894 memset(rx_ring->buffer_info, 0, size);
1895
1896 desc_len = sizeof(union e1000_adv_rx_desc);
1897
1898 /* Round up to nearest 4K */
1899 rx_ring->size = rx_ring->count * desc_len;
1900 rx_ring->size = ALIGN(rx_ring->size, 4096);
1901
1902 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1903 &rx_ring->dma);
1904
1905 if (!rx_ring->desc)
1906 goto err;
1907
1908 rx_ring->next_to_clean = 0;
1909 rx_ring->next_to_use = 0;
9d5c8243
AK
1910
1911 rx_ring->adapter = adapter;
9d5c8243
AK
1912
1913 return 0;
1914
1915err:
1916 vfree(rx_ring->buffer_info);
1917 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1918 "the receive descriptor ring\n");
1919 return -ENOMEM;
1920}
1921
1922/**
1923 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1924 * (Descriptors) for all queues
1925 * @adapter: board private structure
1926 *
1927 * Return 0 on success, negative on failure
1928 **/
1929static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1930{
1931 int i, err = 0;
1932
1933 for (i = 0; i < adapter->num_rx_queues; i++) {
1934 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1935 if (err) {
1936 dev_err(&adapter->pdev->dev,
1937 "Allocation for Rx Queue %u failed\n", i);
1938 for (i--; i >= 0; i--)
3b644cf6 1939 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1940 break;
1941 }
1942 }
1943
1944 return err;
1945}
1946
1947/**
1948 * igb_setup_rctl - configure the receive control registers
1949 * @adapter: Board private structure
1950 **/
1951static void igb_setup_rctl(struct igb_adapter *adapter)
1952{
1953 struct e1000_hw *hw = &adapter->hw;
1954 u32 rctl;
1955 u32 srrctl = 0;
26bc19ec 1956 int i, j;
9d5c8243
AK
1957
1958 rctl = rd32(E1000_RCTL);
1959
1960 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 1961 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 1962
69d728ba 1963 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 1964 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 1965
87cb7e8c
AK
1966 /*
1967 * enable stripping of CRC. It's unlikely this will break BMC
1968 * redirection as it did with e1000. Newer features require
1969 * that the HW strips the CRC.
73cd78f1 1970 */
87cb7e8c 1971 rctl |= E1000_RCTL_SECRC;
9d5c8243 1972
9b07f3d3 1973 /*
ec54d7d6 1974 * disable store bad packets and clear size bits.
9b07f3d3 1975 */
ec54d7d6 1976 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 1977
ec54d7d6 1978 /* enable LPE when to prevent packets larger than max_frame_size */
9b07f3d3 1979 rctl |= E1000_RCTL_LPE;
b4557be2
AD
1980
1981 /* Setup buffer sizes */
1982 switch (adapter->rx_buffer_len) {
1983 case IGB_RXBUFFER_256:
1984 rctl |= E1000_RCTL_SZ_256;
1985 break;
1986 case IGB_RXBUFFER_512:
1987 rctl |= E1000_RCTL_SZ_512;
1988 break;
1989 default:
1990 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1991 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1992 break;
9d5c8243
AK
1993 }
1994
1995 /* 82575 and greater support packet-split where the protocol
1996 * header is placed in skb->data and the packet data is
1997 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1998 * In the case of a non-split, skb->data is linearly filled,
1999 * followed by the page buffers. Therefore, skb->data is
2000 * sized to hold the largest protocol header.
2001 */
2002 /* allocations using alloc_page take too long for regular MTU
2003 * so only enable packet split for jumbo frames */
ec54d7d6 2004 if (adapter->netdev->mtu > ETH_DATA_LEN) {
9d5c8243 2005 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 2006 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 2007 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
2008 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2009 } else {
2010 adapter->rx_ps_hdr_size = 0;
2011 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2012 }
2013
e1739522
AD
2014 /* Attention!!! For SR-IOV PF driver operations you must enable
2015 * queue drop for all VF and PF queues to prevent head of line blocking
2016 * if an un-trusted VF does not provide descriptors to hardware.
2017 */
2018 if (adapter->vfs_allocated_count) {
2019 u32 vmolr;
2020
2021 j = adapter->rx_ring[0].reg_idx;
2022
2023 /* set all queue drop enable bits */
2024 wr32(E1000_QDE, ALL_QUEUES);
2025 srrctl |= E1000_SRRCTL_DROP_EN;
2026
2027 /* disable queue 0 to prevent tail write w/o re-config */
2028 wr32(E1000_RXDCTL(0), 0);
2029
2030 vmolr = rd32(E1000_VMOLR(j));
2031 if (rctl & E1000_RCTL_LPE)
2032 vmolr |= E1000_VMOLR_LPE;
2033 if (adapter->num_rx_queues > 0)
2034 vmolr |= E1000_VMOLR_RSSE;
2035 wr32(E1000_VMOLR(j), vmolr);
2036 }
2037
26bc19ec
AD
2038 for (i = 0; i < adapter->num_rx_queues; i++) {
2039 j = adapter->rx_ring[i].reg_idx;
2040 wr32(E1000_SRRCTL(j), srrctl);
2041 }
9d5c8243
AK
2042
2043 wr32(E1000_RCTL, rctl);
2044}
2045
e1739522
AD
2046/**
2047 * igb_rlpml_set - set maximum receive packet size
2048 * @adapter: board private structure
2049 *
2050 * Configure maximum receivable packet size.
2051 **/
2052static void igb_rlpml_set(struct igb_adapter *adapter)
2053{
2054 u32 max_frame_size = adapter->max_frame_size;
2055 struct e1000_hw *hw = &adapter->hw;
2056 u16 pf_id = adapter->vfs_allocated_count;
2057
2058 if (adapter->vlgrp)
2059 max_frame_size += VLAN_TAG_SIZE;
2060
2061 /* if vfs are enabled we set RLPML to the largest possible request
2062 * size and set the VMOLR RLPML to the size we need */
2063 if (pf_id) {
2064 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2065 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2066 }
2067
2068 wr32(E1000_RLPML, max_frame_size);
2069}
2070
2071/**
2072 * igb_configure_vt_default_pool - Configure VT default pool
2073 * @adapter: board private structure
2074 *
2075 * Configure the default pool
2076 **/
2077static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2078{
2079 struct e1000_hw *hw = &adapter->hw;
2080 u16 pf_id = adapter->vfs_allocated_count;
2081 u32 vtctl;
2082
2083 /* not in sr-iov mode - do nothing */
2084 if (!pf_id)
2085 return;
2086
2087 vtctl = rd32(E1000_VT_CTL);
2088 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2089 E1000_VT_CTL_DISABLE_DEF_POOL);
2090 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2091 wr32(E1000_VT_CTL, vtctl);
2092}
2093
9d5c8243
AK
2094/**
2095 * igb_configure_rx - Configure receive Unit after Reset
2096 * @adapter: board private structure
2097 *
2098 * Configure the Rx unit of the MAC after a reset.
2099 **/
2100static void igb_configure_rx(struct igb_adapter *adapter)
2101{
2102 u64 rdba;
2103 struct e1000_hw *hw = &adapter->hw;
2104 u32 rctl, rxcsum;
2105 u32 rxdctl;
9107584e 2106 int i;
9d5c8243
AK
2107
2108 /* disable receives while setting up the descriptors */
2109 rctl = rd32(E1000_RCTL);
2110 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2111 wrfl();
2112 mdelay(10);
2113
2114 if (adapter->itr_setting > 3)
6eb5a7f1 2115 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
2116
2117 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2118 * the Base and Length of the Rx Descriptor Ring */
2119 for (i = 0; i < adapter->num_rx_queues; i++) {
73cd78f1 2120 struct igb_ring *ring = &adapter->rx_ring[i];
9107584e 2121 int j = ring->reg_idx;
9d5c8243 2122 rdba = ring->dma;
26bc19ec 2123 wr32(E1000_RDBAL(j),
73cd78f1 2124 rdba & 0x00000000ffffffffULL);
26bc19ec
AD
2125 wr32(E1000_RDBAH(j), rdba >> 32);
2126 wr32(E1000_RDLEN(j),
73cd78f1 2127 ring->count * sizeof(union e1000_adv_rx_desc));
9d5c8243 2128
26bc19ec
AD
2129 ring->head = E1000_RDH(j);
2130 ring->tail = E1000_RDT(j);
9d5c8243
AK
2131 writel(0, hw->hw_addr + ring->tail);
2132 writel(0, hw->hw_addr + ring->head);
2133
26bc19ec 2134 rxdctl = rd32(E1000_RXDCTL(j));
9d5c8243
AK
2135 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2136 rxdctl &= 0xFFF00000;
2137 rxdctl |= IGB_RX_PTHRESH;
2138 rxdctl |= IGB_RX_HTHRESH << 8;
2139 rxdctl |= IGB_RX_WTHRESH << 16;
26bc19ec 2140 wr32(E1000_RXDCTL(j), rxdctl);
9d5c8243
AK
2141 }
2142
2143 if (adapter->num_rx_queues > 1) {
2144 u32 random[10];
2145 u32 mrqc;
2146 u32 j, shift;
2147 union e1000_reta {
2148 u32 dword;
2149 u8 bytes[4];
2150 } reta;
2151
2152 get_random_bytes(&random[0], 40);
2153
2d064c06
AD
2154 if (hw->mac.type >= e1000_82576)
2155 shift = 0;
2156 else
2157 shift = 6;
9d5c8243
AK
2158 for (j = 0; j < (32 * 4); j++) {
2159 reta.bytes[j & 3] =
26bc19ec 2160 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
9d5c8243
AK
2161 if ((j & 3) == 3)
2162 writel(reta.dword,
2163 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2164 }
e1739522
AD
2165 if (adapter->vfs_allocated_count)
2166 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2167 else
2168 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
9d5c8243
AK
2169
2170 /* Fill out hash function seeds */
2171 for (j = 0; j < 10; j++)
2172 array_wr32(E1000_RSSRK(0), j, random[j]);
2173
2174 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2175 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2176 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2177 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2178 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2179 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2180 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2181 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2182
2183
2184 wr32(E1000_MRQC, mrqc);
2185
2186 /* Multiqueue and raw packet checksumming are mutually
2187 * exclusive. Note that this not the same as TCP/IP
2188 * checksumming, which works fine. */
2189 rxcsum = rd32(E1000_RXCSUM);
2190 rxcsum |= E1000_RXCSUM_PCSD;
2191 wr32(E1000_RXCSUM, rxcsum);
2192 } else {
e1739522
AD
2193 /* Enable multi-queue for sr-iov */
2194 if (adapter->vfs_allocated_count)
2195 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
9d5c8243
AK
2196 /* Enable Receive Checksum Offload for TCP and UDP */
2197 rxcsum = rd32(E1000_RXCSUM);
56fbbb4e
AD
2198 if (adapter->rx_csum)
2199 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2200 else
2201 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2202
9d5c8243
AK
2203 wr32(E1000_RXCSUM, rxcsum);
2204 }
2205
e1739522
AD
2206 /* Set the default pool for the PF's first queue */
2207 igb_configure_vt_default_pool(adapter);
2208
2209 igb_rlpml_set(adapter);
9d5c8243
AK
2210
2211 /* Enable Receives */
2212 wr32(E1000_RCTL, rctl);
2213}
2214
2215/**
2216 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2217 * @tx_ring: Tx descriptor ring for a specific queue
2218 *
2219 * Free all transmit software resources
2220 **/
68fd9910 2221void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2222{
3b644cf6 2223 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2224
3b644cf6 2225 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2226
2227 vfree(tx_ring->buffer_info);
2228 tx_ring->buffer_info = NULL;
2229
2230 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2231
2232 tx_ring->desc = NULL;
2233}
2234
2235/**
2236 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2237 * @adapter: board private structure
2238 *
2239 * Free all transmit software resources
2240 **/
2241static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2242{
2243 int i;
2244
2245 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2246 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2247}
2248
2249static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2250 struct igb_buffer *buffer_info)
2251{
2252 if (buffer_info->dma) {
2253 pci_unmap_page(adapter->pdev,
2254 buffer_info->dma,
2255 buffer_info->length,
2256 PCI_DMA_TODEVICE);
2257 buffer_info->dma = 0;
2258 }
2259 if (buffer_info->skb) {
2260 dev_kfree_skb_any(buffer_info->skb);
2261 buffer_info->skb = NULL;
2262 }
2263 buffer_info->time_stamp = 0;
73cd78f1 2264 buffer_info->next_to_watch = 0;
9d5c8243
AK
2265 /* buffer_info must be completely set up in the transmit path */
2266}
2267
2268/**
2269 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2270 * @tx_ring: ring to be cleaned
2271 **/
3b644cf6 2272static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2273{
3b644cf6 2274 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2275 struct igb_buffer *buffer_info;
2276 unsigned long size;
2277 unsigned int i;
2278
2279 if (!tx_ring->buffer_info)
2280 return;
2281 /* Free all the Tx ring sk_buffs */
2282
2283 for (i = 0; i < tx_ring->count; i++) {
2284 buffer_info = &tx_ring->buffer_info[i];
2285 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2286 }
2287
2288 size = sizeof(struct igb_buffer) * tx_ring->count;
2289 memset(tx_ring->buffer_info, 0, size);
2290
2291 /* Zero out the descriptor ring */
2292
2293 memset(tx_ring->desc, 0, tx_ring->size);
2294
2295 tx_ring->next_to_use = 0;
2296 tx_ring->next_to_clean = 0;
2297
2298 writel(0, adapter->hw.hw_addr + tx_ring->head);
2299 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2300}
2301
2302/**
2303 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2304 * @adapter: board private structure
2305 **/
2306static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2307{
2308 int i;
2309
2310 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2311 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2312}
2313
2314/**
2315 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2316 * @rx_ring: ring to clean the resources from
2317 *
2318 * Free all receive software resources
2319 **/
68fd9910 2320void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2321{
3b644cf6 2322 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2323
3b644cf6 2324 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2325
2326 vfree(rx_ring->buffer_info);
2327 rx_ring->buffer_info = NULL;
2328
2329 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2330
2331 rx_ring->desc = NULL;
2332}
2333
2334/**
2335 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2336 * @adapter: board private structure
2337 *
2338 * Free all receive software resources
2339 **/
2340static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2341{
2342 int i;
2343
2344 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2345 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2346}
2347
2348/**
2349 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2350 * @rx_ring: ring to free buffers from
2351 **/
3b644cf6 2352static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2353{
3b644cf6 2354 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2355 struct igb_buffer *buffer_info;
2356 struct pci_dev *pdev = adapter->pdev;
2357 unsigned long size;
2358 unsigned int i;
2359
2360 if (!rx_ring->buffer_info)
2361 return;
2362 /* Free all the Rx ring sk_buffs */
2363 for (i = 0; i < rx_ring->count; i++) {
2364 buffer_info = &rx_ring->buffer_info[i];
2365 if (buffer_info->dma) {
2366 if (adapter->rx_ps_hdr_size)
2367 pci_unmap_single(pdev, buffer_info->dma,
2368 adapter->rx_ps_hdr_size,
2369 PCI_DMA_FROMDEVICE);
2370 else
2371 pci_unmap_single(pdev, buffer_info->dma,
2372 adapter->rx_buffer_len,
2373 PCI_DMA_FROMDEVICE);
2374 buffer_info->dma = 0;
2375 }
2376
2377 if (buffer_info->skb) {
2378 dev_kfree_skb(buffer_info->skb);
2379 buffer_info->skb = NULL;
2380 }
2381 if (buffer_info->page) {
bf36c1a0
AD
2382 if (buffer_info->page_dma)
2383 pci_unmap_page(pdev, buffer_info->page_dma,
2384 PAGE_SIZE / 2,
2385 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2386 put_page(buffer_info->page);
2387 buffer_info->page = NULL;
2388 buffer_info->page_dma = 0;
bf36c1a0 2389 buffer_info->page_offset = 0;
9d5c8243
AK
2390 }
2391 }
2392
9d5c8243
AK
2393 size = sizeof(struct igb_buffer) * rx_ring->count;
2394 memset(rx_ring->buffer_info, 0, size);
2395
2396 /* Zero out the descriptor ring */
2397 memset(rx_ring->desc, 0, rx_ring->size);
2398
2399 rx_ring->next_to_clean = 0;
2400 rx_ring->next_to_use = 0;
2401
2402 writel(0, adapter->hw.hw_addr + rx_ring->head);
2403 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2404}
2405
2406/**
2407 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2408 * @adapter: board private structure
2409 **/
2410static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2411{
2412 int i;
2413
2414 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2415 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2416}
2417
2418/**
2419 * igb_set_mac - Change the Ethernet Address of the NIC
2420 * @netdev: network interface device structure
2421 * @p: pointer to an address structure
2422 *
2423 * Returns 0 on success, negative on failure
2424 **/
2425static int igb_set_mac(struct net_device *netdev, void *p)
2426{
2427 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2428 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2429 struct sockaddr *addr = p;
2430
2431 if (!is_valid_ether_addr(addr->sa_data))
2432 return -EADDRNOTAVAIL;
2433
2434 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2435 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2436
28b0759c 2437 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
9d5c8243 2438
e1739522
AD
2439 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2440
9d5c8243
AK
2441 return 0;
2442}
2443
2444/**
2445 * igb_set_multi - Multicast and Promiscuous mode set
2446 * @netdev: network interface device structure
2447 *
2448 * The set_multi entry point is called whenever the multicast address
2449 * list or the network interface flags are updated. This routine is
2450 * responsible for configuring the hardware for proper multicast,
2451 * promiscuous mode, and all-multi behavior.
2452 **/
2453static void igb_set_multi(struct net_device *netdev)
2454{
2455 struct igb_adapter *adapter = netdev_priv(netdev);
2456 struct e1000_hw *hw = &adapter->hw;
2457 struct e1000_mac_info *mac = &hw->mac;
2458 struct dev_mc_list *mc_ptr;
2459 u8 *mta_list;
2460 u32 rctl;
2461 int i;
2462
2463 /* Check for Promiscuous and All Multicast modes */
2464
2465 rctl = rd32(E1000_RCTL);
2466
746b9f02 2467 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2468 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2469 rctl &= ~E1000_RCTL_VFE;
2470 } else {
2471 if (netdev->flags & IFF_ALLMULTI) {
2472 rctl |= E1000_RCTL_MPE;
2473 rctl &= ~E1000_RCTL_UPE;
2474 } else
2475 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
78ed11a5 2476 rctl |= E1000_RCTL_VFE;
746b9f02 2477 }
9d5c8243
AK
2478 wr32(E1000_RCTL, rctl);
2479
2480 if (!netdev->mc_count) {
2481 /* nothing to program, so clear mc list */
8a900862
AD
2482 igb_update_mc_addr_list(hw, NULL, 0, 1,
2483 mac->rar_entry_count);
9d5c8243
AK
2484 return;
2485 }
2486
2487 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2488 if (!mta_list)
2489 return;
2490
2491 /* The shared function expects a packed array of only addresses. */
2492 mc_ptr = netdev->mc_list;
2493
2494 for (i = 0; i < netdev->mc_count; i++) {
2495 if (!mc_ptr)
2496 break;
2497 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2498 mc_ptr = mc_ptr->next;
2499 }
e1739522
AD
2500 igb_update_mc_addr_list(hw, mta_list, i,
2501 adapter->vfs_allocated_count + 1,
2502 mac->rar_entry_count);
2503
2504 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
4ae196df
AD
2505 igb_restore_vf_multicasts(adapter);
2506
9d5c8243
AK
2507 kfree(mta_list);
2508}
2509
2510/* Need to wait a few seconds after link up to get diagnostic information from
2511 * the phy */
2512static void igb_update_phy_info(unsigned long data)
2513{
2514 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2515 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2516}
2517
4d6b725e
AD
2518/**
2519 * igb_has_link - check shared code for link and determine up/down
2520 * @adapter: pointer to driver private info
2521 **/
2522static bool igb_has_link(struct igb_adapter *adapter)
2523{
2524 struct e1000_hw *hw = &adapter->hw;
2525 bool link_active = false;
2526 s32 ret_val = 0;
2527
2528 /* get_link_status is set on LSC (link status) interrupt or
2529 * rx sequence error interrupt. get_link_status will stay
2530 * false until the e1000_check_for_link establishes link
2531 * for copper adapters ONLY
2532 */
2533 switch (hw->phy.media_type) {
2534 case e1000_media_type_copper:
2535 if (hw->mac.get_link_status) {
2536 ret_val = hw->mac.ops.check_for_link(hw);
2537 link_active = !hw->mac.get_link_status;
2538 } else {
2539 link_active = true;
2540 }
2541 break;
2542 case e1000_media_type_fiber:
2543 ret_val = hw->mac.ops.check_for_link(hw);
2544 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2545 break;
2546 case e1000_media_type_internal_serdes:
2547 ret_val = hw->mac.ops.check_for_link(hw);
2548 link_active = hw->mac.serdes_has_link;
2549 break;
2550 default:
2551 case e1000_media_type_unknown:
2552 break;
2553 }
2554
2555 return link_active;
2556}
2557
9d5c8243
AK
2558/**
2559 * igb_watchdog - Timer Call-back
2560 * @data: pointer to adapter cast into an unsigned long
2561 **/
2562static void igb_watchdog(unsigned long data)
2563{
2564 struct igb_adapter *adapter = (struct igb_adapter *)data;
2565 /* Do the rest outside of interrupt context */
2566 schedule_work(&adapter->watchdog_task);
2567}
2568
2569static void igb_watchdog_task(struct work_struct *work)
2570{
2571 struct igb_adapter *adapter = container_of(work,
2572 struct igb_adapter, watchdog_task);
2573 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2574 struct net_device *netdev = adapter->netdev;
2575 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2576 u32 link;
7a6ea550 2577 u32 eics = 0;
7a6ea550 2578 int i;
9d5c8243 2579
4d6b725e
AD
2580 link = igb_has_link(adapter);
2581 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2582 goto link_up;
2583
9d5c8243
AK
2584 if (link) {
2585 if (!netif_carrier_ok(netdev)) {
2586 u32 ctrl;
2587 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2588 &adapter->link_speed,
2589 &adapter->link_duplex);
2590
2591 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2592 /* Links status message must follow this format */
2593 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2594 "Flow Control: %s\n",
527d47c1 2595 netdev->name,
9d5c8243
AK
2596 adapter->link_speed,
2597 adapter->link_duplex == FULL_DUPLEX ?
2598 "Full Duplex" : "Half Duplex",
2599 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2600 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2601 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2602 E1000_CTRL_TFCE) ? "TX" : "None")));
2603
2604 /* tweak tx_queue_len according to speed/duplex and
2605 * adjust the timeout factor */
2606 netdev->tx_queue_len = adapter->tx_queue_len;
2607 adapter->tx_timeout_factor = 1;
2608 switch (adapter->link_speed) {
2609 case SPEED_10:
2610 netdev->tx_queue_len = 10;
2611 adapter->tx_timeout_factor = 14;
2612 break;
2613 case SPEED_100:
2614 netdev->tx_queue_len = 100;
2615 /* maybe add some timeout factor ? */
2616 break;
2617 }
2618
2619 netif_carrier_on(netdev);
fd2ea0a7 2620 netif_tx_wake_all_queues(netdev);
9d5c8243 2621
4ae196df
AD
2622 igb_ping_all_vfs(adapter);
2623
4b1a9877 2624 /* link state has changed, schedule phy info update */
9d5c8243
AK
2625 if (!test_bit(__IGB_DOWN, &adapter->state))
2626 mod_timer(&adapter->phy_info_timer,
2627 round_jiffies(jiffies + 2 * HZ));
2628 }
2629 } else {
2630 if (netif_carrier_ok(netdev)) {
2631 adapter->link_speed = 0;
2632 adapter->link_duplex = 0;
527d47c1
AD
2633 /* Links status message must follow this format */
2634 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2635 netdev->name);
9d5c8243 2636 netif_carrier_off(netdev);
fd2ea0a7 2637 netif_tx_stop_all_queues(netdev);
4b1a9877 2638
4ae196df
AD
2639 igb_ping_all_vfs(adapter);
2640
4b1a9877 2641 /* link state has changed, schedule phy info update */
9d5c8243
AK
2642 if (!test_bit(__IGB_DOWN, &adapter->state))
2643 mod_timer(&adapter->phy_info_timer,
2644 round_jiffies(jiffies + 2 * HZ));
2645 }
2646 }
2647
2648link_up:
2649 igb_update_stats(adapter);
2650
4b1a9877 2651 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2652 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2653 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2654 adapter->colc_old = adapter->stats.colc;
2655
2656 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2657 adapter->gorc_old = adapter->stats.gorc;
2658 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2659 adapter->gotc_old = adapter->stats.gotc;
2660
2661 igb_update_adaptive(&adapter->hw);
2662
2663 if (!netif_carrier_ok(netdev)) {
2664 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2665 /* We've lost link, so the controller stops DMA,
2666 * but we've got queued Tx work that's never going
2667 * to get done, so reset controller to flush Tx.
2668 * (Do the reset outside of interrupt context). */
2669 adapter->tx_timeout_count++;
2670 schedule_work(&adapter->reset_task);
2671 }
2672 }
2673
2674 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550
AD
2675 if (adapter->msix_entries) {
2676 for (i = 0; i < adapter->num_rx_queues; i++)
2677 eics |= adapter->rx_ring[i].eims_value;
2678 wr32(E1000_EICS, eics);
2679 } else {
2680 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2681 }
9d5c8243
AK
2682
2683 /* Force detection of hung controller every watchdog period */
2684 tx_ring->detect_tx_hung = true;
2685
2686 /* Reset the timer */
2687 if (!test_bit(__IGB_DOWN, &adapter->state))
2688 mod_timer(&adapter->watchdog_timer,
2689 round_jiffies(jiffies + 2 * HZ));
2690}
2691
2692enum latency_range {
2693 lowest_latency = 0,
2694 low_latency = 1,
2695 bulk_latency = 2,
2696 latency_invalid = 255
2697};
2698
2699
6eb5a7f1
AD
2700/**
2701 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2702 *
2703 * Stores a new ITR value based on strictly on packet size. This
2704 * algorithm is less sophisticated than that used in igb_update_itr,
2705 * due to the difficulty of synchronizing statistics across multiple
2706 * receive rings. The divisors and thresholds used by this fuction
2707 * were determined based on theoretical maximum wire speed and testing
2708 * data, in order to minimize response time while increasing bulk
2709 * throughput.
2710 * This functionality is controlled by the InterruptThrottleRate module
2711 * parameter (see igb_param.c)
2712 * NOTE: This function is called only when operating in a multiqueue
2713 * receive environment.
2714 * @rx_ring: pointer to ring
2715 **/
2716static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2717{
6eb5a7f1
AD
2718 int new_val = rx_ring->itr_val;
2719 int avg_wire_size = 0;
2720 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2721
6eb5a7f1
AD
2722 if (!rx_ring->total_packets)
2723 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2724
6eb5a7f1
AD
2725 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2726 * ints/sec - ITR timer value of 120 ticks.
2727 */
2728 if (adapter->link_speed != SPEED_1000) {
2729 new_val = 120;
2730 goto set_itr_val;
9d5c8243 2731 }
6eb5a7f1 2732 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2733
6eb5a7f1
AD
2734 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2735 avg_wire_size += 24;
2736
2737 /* Don't starve jumbo frames */
2738 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2739
6eb5a7f1
AD
2740 /* Give a little boost to mid-size frames */
2741 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2742 new_val = avg_wire_size / 3;
2743 else
2744 new_val = avg_wire_size / 2;
9d5c8243 2745
6eb5a7f1 2746set_itr_val:
9d5c8243
AK
2747 if (new_val != rx_ring->itr_val) {
2748 rx_ring->itr_val = new_val;
6eb5a7f1 2749 rx_ring->set_itr = 1;
9d5c8243 2750 }
6eb5a7f1
AD
2751clear_counts:
2752 rx_ring->total_bytes = 0;
2753 rx_ring->total_packets = 0;
9d5c8243
AK
2754}
2755
2756/**
2757 * igb_update_itr - update the dynamic ITR value based on statistics
2758 * Stores a new ITR value based on packets and byte
2759 * counts during the last interrupt. The advantage of per interrupt
2760 * computation is faster updates and more accurate ITR for the current
2761 * traffic pattern. Constants in this function were computed
2762 * based on theoretical maximum wire speed and thresholds were set based
2763 * on testing data as well as attempting to minimize response time
2764 * while increasing bulk throughput.
2765 * this functionality is controlled by the InterruptThrottleRate module
2766 * parameter (see igb_param.c)
2767 * NOTE: These calculations are only valid when operating in a single-
2768 * queue environment.
2769 * @adapter: pointer to adapter
2770 * @itr_setting: current adapter->itr
2771 * @packets: the number of packets during this measurement interval
2772 * @bytes: the number of bytes during this measurement interval
2773 **/
2774static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2775 int packets, int bytes)
2776{
2777 unsigned int retval = itr_setting;
2778
2779 if (packets == 0)
2780 goto update_itr_done;
2781
2782 switch (itr_setting) {
2783 case lowest_latency:
2784 /* handle TSO and jumbo frames */
2785 if (bytes/packets > 8000)
2786 retval = bulk_latency;
2787 else if ((packets < 5) && (bytes > 512))
2788 retval = low_latency;
2789 break;
2790 case low_latency: /* 50 usec aka 20000 ints/s */
2791 if (bytes > 10000) {
2792 /* this if handles the TSO accounting */
2793 if (bytes/packets > 8000) {
2794 retval = bulk_latency;
2795 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2796 retval = bulk_latency;
2797 } else if ((packets > 35)) {
2798 retval = lowest_latency;
2799 }
2800 } else if (bytes/packets > 2000) {
2801 retval = bulk_latency;
2802 } else if (packets <= 2 && bytes < 512) {
2803 retval = lowest_latency;
2804 }
2805 break;
2806 case bulk_latency: /* 250 usec aka 4000 ints/s */
2807 if (bytes > 25000) {
2808 if (packets > 35)
2809 retval = low_latency;
1e5c3d21 2810 } else if (bytes < 1500) {
9d5c8243
AK
2811 retval = low_latency;
2812 }
2813 break;
2814 }
2815
2816update_itr_done:
2817 return retval;
2818}
2819
6eb5a7f1 2820static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2821{
2822 u16 current_itr;
2823 u32 new_itr = adapter->itr;
2824
2825 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2826 if (adapter->link_speed != SPEED_1000) {
2827 current_itr = 0;
2828 new_itr = 4000;
2829 goto set_itr_now;
2830 }
2831
2832 adapter->rx_itr = igb_update_itr(adapter,
2833 adapter->rx_itr,
2834 adapter->rx_ring->total_packets,
2835 adapter->rx_ring->total_bytes);
9d5c8243 2836
6eb5a7f1 2837 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2838 adapter->tx_itr = igb_update_itr(adapter,
2839 adapter->tx_itr,
2840 adapter->tx_ring->total_packets,
2841 adapter->tx_ring->total_bytes);
9d5c8243
AK
2842 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2843 } else {
2844 current_itr = adapter->rx_itr;
2845 }
2846
6eb5a7f1 2847 /* conservative mode (itr 3) eliminates the lowest_latency setting */
73cd78f1 2848 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
2849 current_itr = low_latency;
2850
9d5c8243
AK
2851 switch (current_itr) {
2852 /* counts and packets in update_itr are dependent on these numbers */
2853 case lowest_latency:
2854 new_itr = 70000;
2855 break;
2856 case low_latency:
2857 new_itr = 20000; /* aka hwitr = ~200 */
2858 break;
2859 case bulk_latency:
2860 new_itr = 4000;
2861 break;
2862 default:
2863 break;
2864 }
2865
2866set_itr_now:
6eb5a7f1
AD
2867 adapter->rx_ring->total_bytes = 0;
2868 adapter->rx_ring->total_packets = 0;
2869 if (adapter->rx_ring->buddy) {
2870 adapter->rx_ring->buddy->total_bytes = 0;
2871 adapter->rx_ring->buddy->total_packets = 0;
2872 }
2873
9d5c8243
AK
2874 if (new_itr != adapter->itr) {
2875 /* this attempts to bias the interrupt rate towards Bulk
2876 * by adding intermediate steps when interrupt rate is
2877 * increasing */
2878 new_itr = new_itr > adapter->itr ?
2879 min(adapter->itr + (new_itr >> 2), new_itr) :
2880 new_itr;
2881 /* Don't write the value here; it resets the adapter's
2882 * internal timer, and causes us to delay far longer than
2883 * we should between interrupts. Instead, we write the ITR
2884 * value at the beginning of the next interrupt so the timing
2885 * ends up being correct.
2886 */
2887 adapter->itr = new_itr;
6eb5a7f1
AD
2888 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2889 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2890 }
2891
2892 return;
2893}
2894
2895
2896#define IGB_TX_FLAGS_CSUM 0x00000001
2897#define IGB_TX_FLAGS_VLAN 0x00000002
2898#define IGB_TX_FLAGS_TSO 0x00000004
2899#define IGB_TX_FLAGS_IPV4 0x00000008
33af6bcc 2900#define IGB_TX_FLAGS_TSTAMP 0x00000010
9d5c8243
AK
2901#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2902#define IGB_TX_FLAGS_VLAN_SHIFT 16
2903
2904static inline int igb_tso_adv(struct igb_adapter *adapter,
2905 struct igb_ring *tx_ring,
2906 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2907{
2908 struct e1000_adv_tx_context_desc *context_desc;
2909 unsigned int i;
2910 int err;
2911 struct igb_buffer *buffer_info;
2912 u32 info = 0, tu_cmd = 0;
2913 u32 mss_l4len_idx, l4len;
2914 *hdr_len = 0;
2915
2916 if (skb_header_cloned(skb)) {
2917 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 if (err)
2919 return err;
2920 }
2921
2922 l4len = tcp_hdrlen(skb);
2923 *hdr_len += l4len;
2924
2925 if (skb->protocol == htons(ETH_P_IP)) {
2926 struct iphdr *iph = ip_hdr(skb);
2927 iph->tot_len = 0;
2928 iph->check = 0;
2929 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2930 iph->daddr, 0,
2931 IPPROTO_TCP,
2932 0);
2933 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2934 ipv6_hdr(skb)->payload_len = 0;
2935 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2936 &ipv6_hdr(skb)->daddr,
2937 0, IPPROTO_TCP, 0);
2938 }
2939
2940 i = tx_ring->next_to_use;
2941
2942 buffer_info = &tx_ring->buffer_info[i];
2943 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2944 /* VLAN MACLEN IPLEN */
2945 if (tx_flags & IGB_TX_FLAGS_VLAN)
2946 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2947 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2948 *hdr_len += skb_network_offset(skb);
2949 info |= skb_network_header_len(skb);
2950 *hdr_len += skb_network_header_len(skb);
2951 context_desc->vlan_macip_lens = cpu_to_le32(info);
2952
2953 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2954 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2955
2956 if (skb->protocol == htons(ETH_P_IP))
2957 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2958 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2959
2960 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2961
2962 /* MSS L4LEN IDX */
2963 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2964 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2965
73cd78f1 2966 /* For 82575, context index must be unique per ring. */
7dfc16fa
AD
2967 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2968 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
2969
2970 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2971 context_desc->seqnum_seed = 0;
2972
2973 buffer_info->time_stamp = jiffies;
0e014cb1 2974 buffer_info->next_to_watch = i;
9d5c8243
AK
2975 buffer_info->dma = 0;
2976 i++;
2977 if (i == tx_ring->count)
2978 i = 0;
2979
2980 tx_ring->next_to_use = i;
2981
2982 return true;
2983}
2984
2985static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2986 struct igb_ring *tx_ring,
2987 struct sk_buff *skb, u32 tx_flags)
2988{
2989 struct e1000_adv_tx_context_desc *context_desc;
2990 unsigned int i;
2991 struct igb_buffer *buffer_info;
2992 u32 info = 0, tu_cmd = 0;
2993
2994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2995 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2996 i = tx_ring->next_to_use;
2997 buffer_info = &tx_ring->buffer_info[i];
2998 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2999
3000 if (tx_flags & IGB_TX_FLAGS_VLAN)
3001 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3002 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3003 if (skb->ip_summed == CHECKSUM_PARTIAL)
3004 info |= skb_network_header_len(skb);
3005
3006 context_desc->vlan_macip_lens = cpu_to_le32(info);
3007
3008 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3009
3010 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3 3011 switch (skb->protocol) {
09640e63 3012 case cpu_to_be16(ETH_P_IP):
9d5c8243 3013 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3014 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3015 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3016 break;
09640e63 3017 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3018 /* XXX what about other V6 headers?? */
3019 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3020 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3021 break;
3022 default:
3023 if (unlikely(net_ratelimit()))
3024 dev_warn(&adapter->pdev->dev,
3025 "partial checksum but proto=%x!\n",
3026 skb->protocol);
3027 break;
3028 }
9d5c8243
AK
3029 }
3030
3031 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3032 context_desc->seqnum_seed = 0;
7dfc16fa
AD
3033 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3034 context_desc->mss_l4len_idx =
3035 cpu_to_le32(tx_ring->queue_index << 4);
265de409
AD
3036 else
3037 context_desc->mss_l4len_idx = 0;
9d5c8243
AK
3038
3039 buffer_info->time_stamp = jiffies;
0e014cb1 3040 buffer_info->next_to_watch = i;
9d5c8243
AK
3041 buffer_info->dma = 0;
3042
3043 i++;
3044 if (i == tx_ring->count)
3045 i = 0;
3046 tx_ring->next_to_use = i;
3047
3048 return true;
3049 }
9d5c8243
AK
3050 return false;
3051}
3052
3053#define IGB_MAX_TXD_PWR 16
3054#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3055
3056static inline int igb_tx_map_adv(struct igb_adapter *adapter,
0e014cb1
AD
3057 struct igb_ring *tx_ring, struct sk_buff *skb,
3058 unsigned int first)
9d5c8243
AK
3059{
3060 struct igb_buffer *buffer_info;
3061 unsigned int len = skb_headlen(skb);
3062 unsigned int count = 0, i;
3063 unsigned int f;
3064
3065 i = tx_ring->next_to_use;
3066
3067 buffer_info = &tx_ring->buffer_info[i];
3068 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3069 buffer_info->length = len;
3070 /* set time_stamp *before* dma to help avoid a possible race */
3071 buffer_info->time_stamp = jiffies;
0e014cb1 3072 buffer_info->next_to_watch = i;
9d5c8243
AK
3073 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
3074 PCI_DMA_TODEVICE);
3075 count++;
3076 i++;
3077 if (i == tx_ring->count)
3078 i = 0;
3079
3080 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3081 struct skb_frag_struct *frag;
3082
3083 frag = &skb_shinfo(skb)->frags[f];
3084 len = frag->size;
3085
3086 buffer_info = &tx_ring->buffer_info[i];
3087 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3088 buffer_info->length = len;
3089 buffer_info->time_stamp = jiffies;
0e014cb1 3090 buffer_info->next_to_watch = i;
9d5c8243
AK
3091 buffer_info->dma = pci_map_page(adapter->pdev,
3092 frag->page,
3093 frag->page_offset,
3094 len,
3095 PCI_DMA_TODEVICE);
3096
3097 count++;
3098 i++;
3099 if (i == tx_ring->count)
3100 i = 0;
3101 }
3102
0e014cb1 3103 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
9d5c8243 3104 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3105 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243
AK
3106
3107 return count;
3108}
3109
3110static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3111 struct igb_ring *tx_ring,
3112 int tx_flags, int count, u32 paylen,
3113 u8 hdr_len)
3114{
3115 union e1000_adv_tx_desc *tx_desc = NULL;
3116 struct igb_buffer *buffer_info;
3117 u32 olinfo_status = 0, cmd_type_len;
3118 unsigned int i;
3119
3120 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3121 E1000_ADVTXD_DCMD_DEXT);
3122
3123 if (tx_flags & IGB_TX_FLAGS_VLAN)
3124 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3125
33af6bcc
PO
3126 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3127 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3128
9d5c8243
AK
3129 if (tx_flags & IGB_TX_FLAGS_TSO) {
3130 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3131
3132 /* insert tcp checksum */
3133 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3134
3135 /* insert ip checksum */
3136 if (tx_flags & IGB_TX_FLAGS_IPV4)
3137 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3138
3139 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3140 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3141 }
3142
7dfc16fa
AD
3143 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3144 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3145 IGB_TX_FLAGS_VLAN)))
661086df 3146 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
3147
3148 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3149
3150 i = tx_ring->next_to_use;
3151 while (count--) {
3152 buffer_info = &tx_ring->buffer_info[i];
3153 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3154 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3155 tx_desc->read.cmd_type_len =
3156 cpu_to_le32(cmd_type_len | buffer_info->length);
3157 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3158 i++;
3159 if (i == tx_ring->count)
3160 i = 0;
3161 }
3162
3163 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3164 /* Force memory writes to complete before letting h/w
3165 * know there are new descriptors to fetch. (Only
3166 * applicable for weak-ordered memory model archs,
3167 * such as IA-64). */
3168 wmb();
3169
3170 tx_ring->next_to_use = i;
3171 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3172 /* we need this if more than one processor can write to our tail
3173 * at a time, it syncronizes IO on IA64/Altix systems */
3174 mmiowb();
3175}
3176
3177static int __igb_maybe_stop_tx(struct net_device *netdev,
3178 struct igb_ring *tx_ring, int size)
3179{
3180 struct igb_adapter *adapter = netdev_priv(netdev);
3181
661086df 3182 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3183
9d5c8243
AK
3184 /* Herbert's original patch had:
3185 * smp_mb__after_netif_stop_queue();
3186 * but since that doesn't exist yet, just open code it. */
3187 smp_mb();
3188
3189 /* We need to check again in a case another CPU has just
3190 * made room available. */
3191 if (IGB_DESC_UNUSED(tx_ring) < size)
3192 return -EBUSY;
3193
3194 /* A reprieve! */
661086df 3195 netif_wake_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
3196 ++adapter->restart_queue;
3197 return 0;
3198}
3199
3200static int igb_maybe_stop_tx(struct net_device *netdev,
3201 struct igb_ring *tx_ring, int size)
3202{
3203 if (IGB_DESC_UNUSED(tx_ring) >= size)
3204 return 0;
3205 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3206}
3207
9d5c8243
AK
3208static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3209 struct net_device *netdev,
3210 struct igb_ring *tx_ring)
3211{
3212 struct igb_adapter *adapter = netdev_priv(netdev);
0e014cb1 3213 unsigned int first;
9d5c8243 3214 unsigned int tx_flags = 0;
9d5c8243
AK
3215 u8 hdr_len = 0;
3216 int tso = 0;
33af6bcc 3217 union skb_shared_tx *shtx;
9d5c8243 3218
9d5c8243
AK
3219 if (test_bit(__IGB_DOWN, &adapter->state)) {
3220 dev_kfree_skb_any(skb);
3221 return NETDEV_TX_OK;
3222 }
3223
3224 if (skb->len <= 0) {
3225 dev_kfree_skb_any(skb);
3226 return NETDEV_TX_OK;
3227 }
3228
9d5c8243
AK
3229 /* need: 1 descriptor per page,
3230 * + 2 desc gap to keep tail from touching head,
3231 * + 1 desc for skb->data,
3232 * + 1 desc for context descriptor,
3233 * otherwise try next time */
3234 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3235 /* this is a hard error */
9d5c8243
AK
3236 return NETDEV_TX_BUSY;
3237 }
33af6bcc
PO
3238
3239 /*
3240 * TODO: check that there currently is no other packet with
3241 * time stamping in the queue
3242 *
3243 * When doing time stamping, keep the connection to the socket
3244 * a while longer: it is still needed by skb_hwtstamp_tx(),
3245 * called either in igb_tx_hwtstamp() or by our caller when
3246 * doing software time stamping.
3247 */
3248 shtx = skb_tx(skb);
3249 if (unlikely(shtx->hardware)) {
3250 shtx->in_progress = 1;
3251 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3252 }
9d5c8243
AK
3253
3254 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3255 tx_flags |= IGB_TX_FLAGS_VLAN;
3256 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3257 }
3258
661086df
PWJ
3259 if (skb->protocol == htons(ETH_P_IP))
3260 tx_flags |= IGB_TX_FLAGS_IPV4;
3261
0e014cb1 3262 first = tx_ring->next_to_use;
9d5c8243
AK
3263 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3264 &hdr_len) : 0;
3265
3266 if (tso < 0) {
3267 dev_kfree_skb_any(skb);
9d5c8243
AK
3268 return NETDEV_TX_OK;
3269 }
3270
3271 if (tso)
3272 tx_flags |= IGB_TX_FLAGS_TSO;
bc1cbd34
AD
3273 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3274 (skb->ip_summed == CHECKSUM_PARTIAL))
3275 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3276
9d5c8243 3277 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
0e014cb1 3278 igb_tx_map_adv(adapter, tx_ring, skb, first),
9d5c8243
AK
3279 skb->len, hdr_len);
3280
3281 netdev->trans_start = jiffies;
3282
3283 /* Make sure there is space in the ring for the next send. */
3284 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3285
9d5c8243
AK
3286 return NETDEV_TX_OK;
3287}
3288
3289static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3290{
3291 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3292 struct igb_ring *tx_ring;
3293
661086df 3294 int r_idx = 0;
1bfaf07b 3295 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3296 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3297
3298 /* This goes back to the question of how to logically map a tx queue
3299 * to a flow. Right now, performance is impacted slightly negatively
3300 * if using multiple tx queues. If the stack breaks away from a
3301 * single qdisc implementation, we can look at this again. */
3302 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3303}
3304
3305/**
3306 * igb_tx_timeout - Respond to a Tx Hang
3307 * @netdev: network interface device structure
3308 **/
3309static void igb_tx_timeout(struct net_device *netdev)
3310{
3311 struct igb_adapter *adapter = netdev_priv(netdev);
3312 struct e1000_hw *hw = &adapter->hw;
3313
3314 /* Do the reset outside of interrupt context */
3315 adapter->tx_timeout_count++;
3316 schedule_work(&adapter->reset_task);
265de409
AD
3317 wr32(E1000_EICS,
3318 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3319}
3320
3321static void igb_reset_task(struct work_struct *work)
3322{
3323 struct igb_adapter *adapter;
3324 adapter = container_of(work, struct igb_adapter, reset_task);
3325
3326 igb_reinit_locked(adapter);
3327}
3328
3329/**
3330 * igb_get_stats - Get System Network Statistics
3331 * @netdev: network interface device structure
3332 *
3333 * Returns the address of the device statistics structure.
3334 * The statistics are actually updated from the timer callback.
3335 **/
73cd78f1 3336static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243
AK
3337{
3338 struct igb_adapter *adapter = netdev_priv(netdev);
3339
3340 /* only return the current stats */
3341 return &adapter->net_stats;
3342}
3343
3344/**
3345 * igb_change_mtu - Change the Maximum Transfer Unit
3346 * @netdev: network interface device structure
3347 * @new_mtu: new value for maximum frame size
3348 *
3349 * Returns 0 on success, negative on failure
3350 **/
3351static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3352{
3353 struct igb_adapter *adapter = netdev_priv(netdev);
3354 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3355
3356 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3357 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3358 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3359 return -EINVAL;
3360 }
3361
9d5c8243
AK
3362 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3363 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3364 return -EINVAL;
3365 }
3366
3367 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3368 msleep(1);
73cd78f1 3369
9d5c8243
AK
3370 /* igb_down has a dependency on max_frame_size */
3371 adapter->max_frame_size = max_frame;
3372 if (netif_running(netdev))
3373 igb_down(adapter);
3374
3375 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3376 * means we reserve 2 more, this pushes us to allocate from the next
3377 * larger slab size.
3378 * i.e. RXBUFFER_2048 --> size-4096 slab
3379 */
3380
3381 if (max_frame <= IGB_RXBUFFER_256)
3382 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3383 else if (max_frame <= IGB_RXBUFFER_512)
3384 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3385 else if (max_frame <= IGB_RXBUFFER_1024)
3386 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3387 else if (max_frame <= IGB_RXBUFFER_2048)
3388 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3389 else
bf36c1a0
AD
3390#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3391 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3392#else
3393 adapter->rx_buffer_len = PAGE_SIZE / 2;
3394#endif
e1739522
AD
3395
3396 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3397 if (adapter->vfs_allocated_count &&
3398 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3399 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3400
9d5c8243
AK
3401 /* adjust allocation if LPE protects us, and we aren't using SBP */
3402 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3403 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3404 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3405
3406 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3407 netdev->mtu, new_mtu);
3408 netdev->mtu = new_mtu;
3409
3410 if (netif_running(netdev))
3411 igb_up(adapter);
3412 else
3413 igb_reset(adapter);
3414
3415 clear_bit(__IGB_RESETTING, &adapter->state);
3416
3417 return 0;
3418}
3419
3420/**
3421 * igb_update_stats - Update the board statistics counters
3422 * @adapter: board private structure
3423 **/
3424
3425void igb_update_stats(struct igb_adapter *adapter)
3426{
3427 struct e1000_hw *hw = &adapter->hw;
3428 struct pci_dev *pdev = adapter->pdev;
3429 u16 phy_tmp;
3430
3431#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3432
3433 /*
3434 * Prevent stats update while adapter is being reset, or if the pci
3435 * connection is down.
3436 */
3437 if (adapter->link_speed == 0)
3438 return;
3439 if (pci_channel_offline(pdev))
3440 return;
3441
3442 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3443 adapter->stats.gprc += rd32(E1000_GPRC);
3444 adapter->stats.gorc += rd32(E1000_GORCL);
3445 rd32(E1000_GORCH); /* clear GORCL */
3446 adapter->stats.bprc += rd32(E1000_BPRC);
3447 adapter->stats.mprc += rd32(E1000_MPRC);
3448 adapter->stats.roc += rd32(E1000_ROC);
3449
3450 adapter->stats.prc64 += rd32(E1000_PRC64);
3451 adapter->stats.prc127 += rd32(E1000_PRC127);
3452 adapter->stats.prc255 += rd32(E1000_PRC255);
3453 adapter->stats.prc511 += rd32(E1000_PRC511);
3454 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3455 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3456 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3457 adapter->stats.sec += rd32(E1000_SEC);
3458
3459 adapter->stats.mpc += rd32(E1000_MPC);
3460 adapter->stats.scc += rd32(E1000_SCC);
3461 adapter->stats.ecol += rd32(E1000_ECOL);
3462 adapter->stats.mcc += rd32(E1000_MCC);
3463 adapter->stats.latecol += rd32(E1000_LATECOL);
3464 adapter->stats.dc += rd32(E1000_DC);
3465 adapter->stats.rlec += rd32(E1000_RLEC);
3466 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3467 adapter->stats.xontxc += rd32(E1000_XONTXC);
3468 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3469 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3470 adapter->stats.fcruc += rd32(E1000_FCRUC);
3471 adapter->stats.gptc += rd32(E1000_GPTC);
3472 adapter->stats.gotc += rd32(E1000_GOTCL);
3473 rd32(E1000_GOTCH); /* clear GOTCL */
3474 adapter->stats.rnbc += rd32(E1000_RNBC);
3475 adapter->stats.ruc += rd32(E1000_RUC);
3476 adapter->stats.rfc += rd32(E1000_RFC);
3477 adapter->stats.rjc += rd32(E1000_RJC);
3478 adapter->stats.tor += rd32(E1000_TORH);
3479 adapter->stats.tot += rd32(E1000_TOTH);
3480 adapter->stats.tpr += rd32(E1000_TPR);
3481
3482 adapter->stats.ptc64 += rd32(E1000_PTC64);
3483 adapter->stats.ptc127 += rd32(E1000_PTC127);
3484 adapter->stats.ptc255 += rd32(E1000_PTC255);
3485 adapter->stats.ptc511 += rd32(E1000_PTC511);
3486 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3487 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3488
3489 adapter->stats.mptc += rd32(E1000_MPTC);
3490 adapter->stats.bptc += rd32(E1000_BPTC);
3491
3492 /* used for adaptive IFS */
3493
3494 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3495 adapter->stats.tpt += hw->mac.tx_packet_delta;
3496 hw->mac.collision_delta = rd32(E1000_COLC);
3497 adapter->stats.colc += hw->mac.collision_delta;
3498
3499 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3500 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3501 adapter->stats.tncrs += rd32(E1000_TNCRS);
3502 adapter->stats.tsctc += rd32(E1000_TSCTC);
3503 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3504
3505 adapter->stats.iac += rd32(E1000_IAC);
3506 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3507 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3508 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3509 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3510 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3511 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3512 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3513 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3514
3515 /* Fill out the OS statistics structure */
3516 adapter->net_stats.multicast = adapter->stats.mprc;
3517 adapter->net_stats.collisions = adapter->stats.colc;
3518
3519 /* Rx Errors */
3520
3521 /* RLEC on some newer hardware can be incorrect so build
3522 * our own version based on RUC and ROC */
3523 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3524 adapter->stats.crcerrs + adapter->stats.algnerrc +
3525 adapter->stats.ruc + adapter->stats.roc +
3526 adapter->stats.cexterr;
3527 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3528 adapter->stats.roc;
3529 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3530 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3531 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3532
3533 /* Tx Errors */
3534 adapter->net_stats.tx_errors = adapter->stats.ecol +
3535 adapter->stats.latecol;
3536 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3537 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3538 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3539
3540 /* Tx Dropped needs to be maintained elsewhere */
3541
3542 /* Phy Stats */
3543 if (hw->phy.media_type == e1000_media_type_copper) {
3544 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3545 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3546 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3547 adapter->phy_stats.idle_errors += phy_tmp;
3548 }
3549 }
3550
3551 /* Management Stats */
3552 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3553 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3554 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3555}
3556
9d5c8243
AK
3557static irqreturn_t igb_msix_other(int irq, void *data)
3558{
3559 struct net_device *netdev = data;
3560 struct igb_adapter *adapter = netdev_priv(netdev);
3561 struct e1000_hw *hw = &adapter->hw;
844290e5 3562 u32 icr = rd32(E1000_ICR);
9d5c8243 3563
844290e5 3564 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083
AD
3565
3566 if(icr & E1000_ICR_DOUTSYNC) {
3567 /* HW is reporting DMA is out of sync */
3568 adapter->stats.doosync++;
3569 }
eebbbdba 3570
4ae196df
AD
3571 /* Check for a mailbox event */
3572 if (icr & E1000_ICR_VMMB)
3573 igb_msg_task(adapter);
3574
3575 if (icr & E1000_ICR_LSC) {
3576 hw->mac.get_link_status = 1;
3577 /* guard against interrupt when we're going down */
3578 if (!test_bit(__IGB_DOWN, &adapter->state))
3579 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3580 }
3581
3582 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
844290e5 3583 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3584
3585 return IRQ_HANDLED;
3586}
3587
3588static irqreturn_t igb_msix_tx(int irq, void *data)
3589{
3590 struct igb_ring *tx_ring = data;
3591 struct igb_adapter *adapter = tx_ring->adapter;
3592 struct e1000_hw *hw = &adapter->hw;
3593
421e02f0 3594#ifdef CONFIG_IGB_DCA
7dfc16fa 3595 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3596 igb_update_tx_dca(tx_ring);
3597#endif
73cd78f1 3598
9d5c8243
AK
3599 tx_ring->total_bytes = 0;
3600 tx_ring->total_packets = 0;
661086df
PWJ
3601
3602 /* auto mask will automatically reenable the interrupt when we write
3603 * EICS */
3b644cf6 3604 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3605 /* Ring was not completely cleaned, so fire another interrupt */
3606 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3607 else
9d5c8243 3608 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3609
9d5c8243
AK
3610 return IRQ_HANDLED;
3611}
3612
6eb5a7f1
AD
3613static void igb_write_itr(struct igb_ring *ring)
3614{
3615 struct e1000_hw *hw = &ring->adapter->hw;
3616 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3617 switch (hw->mac.type) {
3618 case e1000_82576:
73cd78f1 3619 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3620 0x80000000);
3621 break;
3622 default:
73cd78f1 3623 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3624 (ring->itr_val << 16));
3625 break;
3626 }
3627 ring->set_itr = 0;
3628 }
3629}
3630
9d5c8243
AK
3631static irqreturn_t igb_msix_rx(int irq, void *data)
3632{
3633 struct igb_ring *rx_ring = data;
9d5c8243 3634
844290e5
PW
3635 /* Write the ITR value calculated at the end of the
3636 * previous interrupt.
3637 */
9d5c8243 3638
6eb5a7f1 3639 igb_write_itr(rx_ring);
9d5c8243 3640
288379f0
BH
3641 if (napi_schedule_prep(&rx_ring->napi))
3642 __napi_schedule(&rx_ring->napi);
844290e5 3643
421e02f0 3644#ifdef CONFIG_IGB_DCA
8d253320 3645 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3646 igb_update_rx_dca(rx_ring);
3647#endif
3648 return IRQ_HANDLED;
3649}
3650
421e02f0 3651#ifdef CONFIG_IGB_DCA
fe4506b6
JC
3652static void igb_update_rx_dca(struct igb_ring *rx_ring)
3653{
3654 u32 dca_rxctrl;
3655 struct igb_adapter *adapter = rx_ring->adapter;
3656 struct e1000_hw *hw = &adapter->hw;
3657 int cpu = get_cpu();
26bc19ec 3658 int q = rx_ring->reg_idx;
fe4506b6
JC
3659
3660 if (rx_ring->cpu != cpu) {
3661 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3662 if (hw->mac.type == e1000_82576) {
3663 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
92be7917 3664 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3665 E1000_DCA_RXCTRL_CPUID_SHIFT;
3666 } else {
3667 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 3668 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3669 }
fe4506b6
JC
3670 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3671 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3672 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3673 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3674 rx_ring->cpu = cpu;
3675 }
3676 put_cpu();
3677}
3678
3679static void igb_update_tx_dca(struct igb_ring *tx_ring)
3680{
3681 u32 dca_txctrl;
3682 struct igb_adapter *adapter = tx_ring->adapter;
3683 struct e1000_hw *hw = &adapter->hw;
3684 int cpu = get_cpu();
26bc19ec 3685 int q = tx_ring->reg_idx;
fe4506b6
JC
3686
3687 if (tx_ring->cpu != cpu) {
3688 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3689 if (hw->mac.type == e1000_82576) {
3690 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
92be7917 3691 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3692 E1000_DCA_TXCTRL_CPUID_SHIFT;
3693 } else {
3694 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
92be7917 3695 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3696 }
fe4506b6
JC
3697 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3698 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3699 tx_ring->cpu = cpu;
3700 }
3701 put_cpu();
3702}
3703
3704static void igb_setup_dca(struct igb_adapter *adapter)
3705{
3706 int i;
3707
7dfc16fa 3708 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3709 return;
3710
3711 for (i = 0; i < adapter->num_tx_queues; i++) {
3712 adapter->tx_ring[i].cpu = -1;
3713 igb_update_tx_dca(&adapter->tx_ring[i]);
3714 }
3715 for (i = 0; i < adapter->num_rx_queues; i++) {
3716 adapter->rx_ring[i].cpu = -1;
3717 igb_update_rx_dca(&adapter->rx_ring[i]);
3718 }
3719}
3720
3721static int __igb_notify_dca(struct device *dev, void *data)
3722{
3723 struct net_device *netdev = dev_get_drvdata(dev);
3724 struct igb_adapter *adapter = netdev_priv(netdev);
3725 struct e1000_hw *hw = &adapter->hw;
3726 unsigned long event = *(unsigned long *)data;
3727
3728 switch (event) {
3729 case DCA_PROVIDER_ADD:
3730 /* if already enabled, don't do it again */
7dfc16fa 3731 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3732 break;
fe4506b6
JC
3733 /* Always use CB2 mode, difference is masked
3734 * in the CB driver. */
cbd347ad 3735 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6 3736 if (dca_add_requester(dev) == 0) {
bbd98fe4 3737 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3738 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3739 igb_setup_dca(adapter);
3740 break;
3741 }
3742 /* Fall Through since DCA is disabled. */
3743 case DCA_PROVIDER_REMOVE:
7dfc16fa 3744 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3745 /* without this a class_device is left
3746 * hanging around in the sysfs model */
3747 dca_remove_requester(dev);
3748 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3749 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 3750 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
3751 }
3752 break;
3753 }
bbd98fe4 3754
fe4506b6 3755 return 0;
9d5c8243
AK
3756}
3757
fe4506b6
JC
3758static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3759 void *p)
3760{
3761 int ret_val;
3762
3763 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3764 __igb_notify_dca);
3765
3766 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3767}
421e02f0 3768#endif /* CONFIG_IGB_DCA */
9d5c8243 3769
4ae196df
AD
3770static void igb_ping_all_vfs(struct igb_adapter *adapter)
3771{
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 ping;
3774 int i;
3775
3776 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3777 ping = E1000_PF_CONTROL_MSG;
3778 if (adapter->vf_data[i].clear_to_send)
3779 ping |= E1000_VT_MSGTYPE_CTS;
3780 igb_write_mbx(hw, &ping, 1, i);
3781 }
3782}
3783
3784static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3785 u32 *msgbuf, u32 vf)
3786{
3787 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3788 u16 *hash_list = (u16 *)&msgbuf[1];
3789 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3790 int i;
3791
3792 /* only up to 30 hash values supported */
3793 if (n > 30)
3794 n = 30;
3795
3796 /* salt away the number of multi cast addresses assigned
3797 * to this VF for later use to restore when the PF multi cast
3798 * list changes
3799 */
3800 vf_data->num_vf_mc_hashes = n;
3801
3802 /* VFs are limited to using the MTA hash table for their multicast
3803 * addresses */
3804 for (i = 0; i < n; i++)
3805 vf_data->vf_mc_hashes[i] = hash_list[i];;
3806
3807 /* Flush and reset the mta with the new values */
3808 igb_set_multi(adapter->netdev);
3809
3810 return 0;
3811}
3812
3813static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3814{
3815 struct e1000_hw *hw = &adapter->hw;
3816 struct vf_data_storage *vf_data;
3817 int i, j;
3818
3819 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3820 vf_data = &adapter->vf_data[i];
75f4f382 3821 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4ae196df
AD
3822 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3823 }
3824}
3825
3826static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3827{
3828 struct e1000_hw *hw = &adapter->hw;
3829 u32 pool_mask, reg, vid;
3830 int i;
3831
3832 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3833
3834 /* Find the vlan filter for this id */
3835 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3836 reg = rd32(E1000_VLVF(i));
3837
3838 /* remove the vf from the pool */
3839 reg &= ~pool_mask;
3840
3841 /* if pool is empty then remove entry from vfta */
3842 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3843 (reg & E1000_VLVF_VLANID_ENABLE)) {
3844 reg = 0;
3845 vid = reg & E1000_VLVF_VLANID_MASK;
3846 igb_vfta_set(hw, vid, false);
3847 }
3848
3849 wr32(E1000_VLVF(i), reg);
3850 }
3851}
3852
3853static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3854{
3855 struct e1000_hw *hw = &adapter->hw;
3856 u32 reg, i;
3857
3858 /* It is an error to call this function when VFs are not enabled */
3859 if (!adapter->vfs_allocated_count)
3860 return -1;
3861
3862 /* Find the vlan filter for this id */
3863 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3864 reg = rd32(E1000_VLVF(i));
3865 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3866 vid == (reg & E1000_VLVF_VLANID_MASK))
3867 break;
3868 }
3869
3870 if (add) {
3871 if (i == E1000_VLVF_ARRAY_SIZE) {
3872 /* Did not find a matching VLAN ID entry that was
3873 * enabled. Search for a free filter entry, i.e.
3874 * one without the enable bit set
3875 */
3876 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3877 reg = rd32(E1000_VLVF(i));
3878 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3879 break;
3880 }
3881 }
3882 if (i < E1000_VLVF_ARRAY_SIZE) {
3883 /* Found an enabled/available entry */
3884 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3885
3886 /* if !enabled we need to set this up in vfta */
3887 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
cad6d05f
AD
3888 /* add VID to filter table, if bit already set
3889 * PF must have added it outside of table */
3890 if (igb_vfta_set(hw, vid, true))
3891 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3892 adapter->vfs_allocated_count);
4ae196df
AD
3893 reg |= E1000_VLVF_VLANID_ENABLE;
3894 }
cad6d05f
AD
3895 reg &= ~E1000_VLVF_VLANID_MASK;
3896 reg |= vid;
4ae196df
AD
3897
3898 wr32(E1000_VLVF(i), reg);
3899 return 0;
3900 }
3901 } else {
3902 if (i < E1000_VLVF_ARRAY_SIZE) {
3903 /* remove vf from the pool */
3904 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3905 /* if pool is empty then remove entry from vfta */
3906 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3907 reg = 0;
3908 igb_vfta_set(hw, vid, false);
3909 }
3910 wr32(E1000_VLVF(i), reg);
3911 return 0;
3912 }
3913 }
3914 return -1;
3915}
3916
3917static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3918{
3919 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3920 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3921
3922 return igb_vlvf_set(adapter, vid, add, vf);
3923}
3924
3925static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3926{
3927 struct e1000_hw *hw = &adapter->hw;
3928
3929 /* disable mailbox functionality for vf */
3930 adapter->vf_data[vf].clear_to_send = false;
3931
3932 /* reset offloads to defaults */
3933 igb_set_vmolr(hw, vf);
3934
3935 /* reset vlans for device */
3936 igb_clear_vf_vfta(adapter, vf);
3937
3938 /* reset multicast table array for vf */
3939 adapter->vf_data[vf].num_vf_mc_hashes = 0;
3940
3941 /* Flush and reset the mta with the new values */
3942 igb_set_multi(adapter->netdev);
3943}
3944
3945static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3946{
3947 struct e1000_hw *hw = &adapter->hw;
3948 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3949 u32 reg, msgbuf[3];
3950 u8 *addr = (u8 *)(&msgbuf[1]);
3951
3952 /* process all the same items cleared in a function level reset */
3953 igb_vf_reset_event(adapter, vf);
3954
3955 /* set vf mac address */
3956 igb_rar_set(hw, vf_mac, vf + 1);
3957 igb_set_rah_pool(hw, vf, vf + 1);
3958
3959 /* enable transmit and receive for vf */
3960 reg = rd32(E1000_VFTE);
3961 wr32(E1000_VFTE, reg | (1 << vf));
3962 reg = rd32(E1000_VFRE);
3963 wr32(E1000_VFRE, reg | (1 << vf));
3964
3965 /* enable mailbox functionality for vf */
3966 adapter->vf_data[vf].clear_to_send = true;
3967
3968 /* reply to reset with ack and vf mac address */
3969 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3970 memcpy(addr, vf_mac, 6);
3971 igb_write_mbx(hw, msgbuf, 3, vf);
3972}
3973
3974static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
3975{
3976 unsigned char *addr = (char *)&msg[1];
3977 int err = -1;
3978
3979 if (is_valid_ether_addr(addr))
3980 err = igb_set_vf_mac(adapter, vf, addr);
3981
3982 return err;
3983
3984}
3985
3986static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
3987{
3988 struct e1000_hw *hw = &adapter->hw;
3989 u32 msg = E1000_VT_MSGTYPE_NACK;
3990
3991 /* if device isn't clear to send it shouldn't be reading either */
3992 if (!adapter->vf_data[vf].clear_to_send)
3993 igb_write_mbx(hw, &msg, 1, vf);
3994}
3995
3996
3997static void igb_msg_task(struct igb_adapter *adapter)
3998{
3999 struct e1000_hw *hw = &adapter->hw;
4000 u32 vf;
4001
4002 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4003 /* process any reset requests */
4004 if (!igb_check_for_rst(hw, vf)) {
4005 adapter->vf_data[vf].clear_to_send = false;
4006 igb_vf_reset_event(adapter, vf);
4007 }
4008
4009 /* process any messages pending */
4010 if (!igb_check_for_msg(hw, vf))
4011 igb_rcv_msg_from_vf(adapter, vf);
4012
4013 /* process any acks */
4014 if (!igb_check_for_ack(hw, vf))
4015 igb_rcv_ack_from_vf(adapter, vf);
4016
4017 }
4018}
4019
4020static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4021{
4022 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4023 u32 msgbuf[mbx_size];
4024 struct e1000_hw *hw = &adapter->hw;
4025 s32 retval;
4026
4027 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4028
4029 if (retval)
4030 dev_err(&adapter->pdev->dev,
4031 "Error receiving message from VF\n");
4032
4033 /* this is a message we already processed, do nothing */
4034 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4035 return retval;
4036
4037 /*
4038 * until the vf completes a reset it should not be
4039 * allowed to start any configuration.
4040 */
4041
4042 if (msgbuf[0] == E1000_VF_RESET) {
4043 igb_vf_reset_msg(adapter, vf);
4044
4045 return retval;
4046 }
4047
4048 if (!adapter->vf_data[vf].clear_to_send) {
4049 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4050 igb_write_mbx(hw, msgbuf, 1, vf);
4051 return retval;
4052 }
4053
4054 switch ((msgbuf[0] & 0xFFFF)) {
4055 case E1000_VF_SET_MAC_ADDR:
4056 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4057 break;
4058 case E1000_VF_SET_MULTICAST:
4059 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4060 break;
4061 case E1000_VF_SET_LPE:
4062 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4063 break;
4064 case E1000_VF_SET_VLAN:
4065 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4066 break;
4067 default:
4068 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4069 retval = -1;
4070 break;
4071 }
4072
4073 /* notify the VF of the results of what it sent us */
4074 if (retval)
4075 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4076 else
4077 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4078
4079 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4080
4081 igb_write_mbx(hw, msgbuf, 1, vf);
4082
4083 return retval;
4084}
4085
9d5c8243
AK
4086/**
4087 * igb_intr_msi - Interrupt Handler
4088 * @irq: interrupt number
4089 * @data: pointer to a network interface device structure
4090 **/
4091static irqreturn_t igb_intr_msi(int irq, void *data)
4092{
4093 struct net_device *netdev = data;
4094 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4095 struct e1000_hw *hw = &adapter->hw;
4096 /* read ICR disables interrupts using IAM */
4097 u32 icr = rd32(E1000_ICR);
4098
6eb5a7f1 4099 igb_write_itr(adapter->rx_ring);
9d5c8243 4100
dda0e083
AD
4101 if(icr & E1000_ICR_DOUTSYNC) {
4102 /* HW is reporting DMA is out of sync */
4103 adapter->stats.doosync++;
4104 }
4105
9d5c8243
AK
4106 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4107 hw->mac.get_link_status = 1;
4108 if (!test_bit(__IGB_DOWN, &adapter->state))
4109 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4110 }
4111
288379f0 4112 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4113
4114 return IRQ_HANDLED;
4115}
4116
4117/**
4a3c6433 4118 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4119 * @irq: interrupt number
4120 * @data: pointer to a network interface device structure
4121 **/
4122static irqreturn_t igb_intr(int irq, void *data)
4123{
4124 struct net_device *netdev = data;
4125 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4126 struct e1000_hw *hw = &adapter->hw;
4127 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4128 * need for the IMC write */
4129 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4130 if (!icr)
4131 return IRQ_NONE; /* Not our interrupt */
4132
6eb5a7f1 4133 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
4134
4135 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4136 * not set, then the adapter didn't send an interrupt */
4137 if (!(icr & E1000_ICR_INT_ASSERTED))
4138 return IRQ_NONE;
4139
dda0e083
AD
4140 if(icr & E1000_ICR_DOUTSYNC) {
4141 /* HW is reporting DMA is out of sync */
4142 adapter->stats.doosync++;
4143 }
4144
9d5c8243
AK
4145 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4146 hw->mac.get_link_status = 1;
4147 /* guard against interrupt when we're going down */
4148 if (!test_bit(__IGB_DOWN, &adapter->state))
4149 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4150 }
4151
288379f0 4152 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4153
4154 return IRQ_HANDLED;
4155}
4156
46544258 4157static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
9d5c8243 4158{
661086df 4159 struct igb_adapter *adapter = rx_ring->adapter;
46544258 4160 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4161
46544258
AD
4162 if (adapter->itr_setting & 3) {
4163 if (adapter->num_rx_queues == 1)
6eb5a7f1 4164 igb_set_itr(adapter);
46544258
AD
4165 else
4166 igb_update_ring_itr(rx_ring);
9d5c8243
AK
4167 }
4168
46544258
AD
4169 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4170 if (adapter->msix_entries)
4171 wr32(E1000_EIMS, rx_ring->eims_value);
4172 else
4173 igb_irq_enable(adapter);
4174 }
9d5c8243
AK
4175}
4176
46544258
AD
4177/**
4178 * igb_poll - NAPI Rx polling callback
4179 * @napi: napi polling structure
4180 * @budget: count of how many packets we should handle
4181 **/
4182static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243
AK
4183{
4184 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
9d5c8243
AK
4185 int work_done = 0;
4186
421e02f0 4187#ifdef CONFIG_IGB_DCA
bd38e5d1 4188 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
4189 igb_update_rx_dca(rx_ring);
4190#endif
3b644cf6 4191 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243 4192
46544258
AD
4193 if (rx_ring->buddy) {
4194#ifdef CONFIG_IGB_DCA
bd38e5d1 4195 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
46544258
AD
4196 igb_update_tx_dca(rx_ring->buddy);
4197#endif
4198 if (!igb_clean_tx_irq(rx_ring->buddy))
4199 work_done = budget;
4200 }
4201
9d5c8243 4202 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4203 if (work_done < budget) {
288379f0 4204 napi_complete(napi);
46544258 4205 igb_rx_irq_enable(rx_ring);
9d5c8243
AK
4206 }
4207
46544258 4208 return work_done;
9d5c8243 4209}
6d8126f9 4210
33af6bcc
PO
4211/**
4212 * igb_hwtstamp - utility function which checks for TX time stamp
4213 * @adapter: board private structure
4214 * @skb: packet that was just sent
4215 *
4216 * If we were asked to do hardware stamping and such a time stamp is
4217 * available, then it must have been for this skb here because we only
4218 * allow only one such packet into the queue.
4219 */
4220static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4221{
4222 union skb_shared_tx *shtx = skb_tx(skb);
4223 struct e1000_hw *hw = &adapter->hw;
4224
4225 if (unlikely(shtx->hardware)) {
4226 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4227 if (valid) {
4228 u64 regval = rd32(E1000_TXSTMPL);
4229 u64 ns;
4230 struct skb_shared_hwtstamps shhwtstamps;
4231
4232 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4233 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4234 ns = timecounter_cyc2time(&adapter->clock,
4235 regval);
4236 timecompare_update(&adapter->compare, ns);
4237 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4238 shhwtstamps.syststamp =
4239 timecompare_transform(&adapter->compare, ns);
4240 skb_tstamp_tx(skb, &shhwtstamps);
4241 }
33af6bcc
PO
4242 }
4243}
4244
9d5c8243
AK
4245/**
4246 * igb_clean_tx_irq - Reclaim resources after transmit completes
4247 * @adapter: board private structure
4248 * returns true if ring is completely cleaned
4249 **/
3b644cf6 4250static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 4251{
3b644cf6 4252 struct igb_adapter *adapter = tx_ring->adapter;
3b644cf6 4253 struct net_device *netdev = adapter->netdev;
0e014cb1 4254 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4255 struct igb_buffer *buffer_info;
4256 struct sk_buff *skb;
0e014cb1 4257 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4258 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4259 unsigned int i, eop, count = 0;
4260 bool cleaned = false;
9d5c8243 4261
9d5c8243 4262 i = tx_ring->next_to_clean;
0e014cb1
AD
4263 eop = tx_ring->buffer_info[i].next_to_watch;
4264 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4265
4266 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4267 (count < tx_ring->count)) {
4268 for (cleaned = false; !cleaned; count++) {
4269 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4270 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4271 cleaned = (i == eop);
9d5c8243
AK
4272 skb = buffer_info->skb;
4273
4274 if (skb) {
4275 unsigned int segs, bytecount;
4276 /* gso_segs is currently only valid for tcp */
4277 segs = skb_shinfo(skb)->gso_segs ?: 1;
4278 /* multiply data chunks by size of headers */
4279 bytecount = ((segs - 1) * skb_headlen(skb)) +
4280 skb->len;
4281 total_packets += segs;
4282 total_bytes += bytecount;
33af6bcc
PO
4283
4284 igb_tx_hwtstamp(adapter, skb);
9d5c8243
AK
4285 }
4286
4287 igb_unmap_and_free_tx_resource(adapter, buffer_info);
0e014cb1 4288 tx_desc->wb.status = 0;
9d5c8243
AK
4289
4290 i++;
4291 if (i == tx_ring->count)
4292 i = 0;
9d5c8243 4293 }
0e014cb1
AD
4294 eop = tx_ring->buffer_info[i].next_to_watch;
4295 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4296 }
4297
9d5c8243
AK
4298 tx_ring->next_to_clean = i;
4299
fc7d345d 4300 if (unlikely(count &&
9d5c8243
AK
4301 netif_carrier_ok(netdev) &&
4302 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4303 /* Make sure that anybody stopping the queue after this
4304 * sees the new next_to_clean.
4305 */
4306 smp_mb();
661086df
PWJ
4307 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4308 !(test_bit(__IGB_DOWN, &adapter->state))) {
4309 netif_wake_subqueue(netdev, tx_ring->queue_index);
4310 ++adapter->restart_queue;
4311 }
9d5c8243
AK
4312 }
4313
4314 if (tx_ring->detect_tx_hung) {
4315 /* Detect a transmit hang in hardware, this serializes the
4316 * check with the clearing of time_stamp and movement of i */
4317 tx_ring->detect_tx_hung = false;
4318 if (tx_ring->buffer_info[i].time_stamp &&
4319 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4320 (adapter->tx_timeout_factor * HZ))
4321 && !(rd32(E1000_STATUS) &
4322 E1000_STATUS_TXOFF)) {
4323
9d5c8243
AK
4324 /* detected Tx unit hang */
4325 dev_err(&adapter->pdev->dev,
4326 "Detected Tx Unit Hang\n"
2d064c06 4327 " Tx Queue <%d>\n"
9d5c8243
AK
4328 " TDH <%x>\n"
4329 " TDT <%x>\n"
4330 " next_to_use <%x>\n"
4331 " next_to_clean <%x>\n"
9d5c8243
AK
4332 "buffer_info[next_to_clean]\n"
4333 " time_stamp <%lx>\n"
0e014cb1 4334 " next_to_watch <%x>\n"
9d5c8243
AK
4335 " jiffies <%lx>\n"
4336 " desc.status <%x>\n",
2d064c06 4337 tx_ring->queue_index,
9d5c8243
AK
4338 readl(adapter->hw.hw_addr + tx_ring->head),
4339 readl(adapter->hw.hw_addr + tx_ring->tail),
4340 tx_ring->next_to_use,
4341 tx_ring->next_to_clean,
9d5c8243 4342 tx_ring->buffer_info[i].time_stamp,
0e014cb1 4343 eop,
9d5c8243 4344 jiffies,
0e014cb1 4345 eop_desc->wb.status);
661086df 4346 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4347 }
4348 }
4349 tx_ring->total_bytes += total_bytes;
4350 tx_ring->total_packets += total_packets;
e21ed353
AD
4351 tx_ring->tx_stats.bytes += total_bytes;
4352 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
4353 adapter->net_stats.tx_bytes += total_bytes;
4354 adapter->net_stats.tx_packets += total_packets;
0e014cb1 4355 return (count < tx_ring->count);
9d5c8243
AK
4356}
4357
9d5c8243
AK
4358/**
4359 * igb_receive_skb - helper function to handle rx indications
eebbbdba 4360 * @ring: pointer to receive ring receving this packet
9d5c8243 4361 * @status: descriptor status field as written by hardware
73cd78f1 4362 * @rx_desc: receive descriptor containing vlan and type information.
9d5c8243
AK
4363 * @skb: pointer to sk_buff to be indicated to stack
4364 **/
d3352520
AD
4365static void igb_receive_skb(struct igb_ring *ring, u8 status,
4366 union e1000_adv_rx_desc * rx_desc,
4367 struct sk_buff *skb)
4368{
4369 struct igb_adapter * adapter = ring->adapter;
4370 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4371
0c8dfc83 4372 skb_record_rx_queue(skb, ring->queue_index);
5c0999b7 4373 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
d3352520 4374 if (vlan_extracted)
5c0999b7
HX
4375 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4376 le16_to_cpu(rx_desc->wb.upper.vlan),
4377 skb);
d3352520 4378 else
5c0999b7 4379 napi_gro_receive(&ring->napi, skb);
d3352520 4380 } else {
d3352520
AD
4381 if (vlan_extracted)
4382 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4383 le16_to_cpu(rx_desc->wb.upper.vlan));
4384 else
d3352520 4385 netif_receive_skb(skb);
d3352520 4386 }
9d5c8243
AK
4387}
4388
9d5c8243
AK
4389static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4390 u32 status_err, struct sk_buff *skb)
4391{
4392 skb->ip_summed = CHECKSUM_NONE;
4393
4394 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4395 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4396 return;
4397 /* TCP/UDP checksum error bit is set */
4398 if (status_err &
4399 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4400 /* let the stack verify checksum errors */
4401 adapter->hw_csum_err++;
4402 return;
4403 }
4404 /* It must be a TCP or UDP packet with a valid checksum */
4405 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4406 skb->ip_summed = CHECKSUM_UNNECESSARY;
4407
4408 adapter->hw_csum_good++;
4409}
4410
3b644cf6
MW
4411static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4412 int *work_done, int budget)
9d5c8243 4413{
3b644cf6 4414 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 4415 struct net_device *netdev = adapter->netdev;
33af6bcc 4416 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4417 struct pci_dev *pdev = adapter->pdev;
4418 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4419 struct igb_buffer *buffer_info , *next_buffer;
4420 struct sk_buff *skb;
9d5c8243
AK
4421 bool cleaned = false;
4422 int cleaned_count = 0;
4423 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1
AD
4424 unsigned int i;
4425 u32 length, hlen, staterr;
9d5c8243
AK
4426
4427 i = rx_ring->next_to_clean;
69d3ca53 4428 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4429 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4430 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4431
4432 while (staterr & E1000_RXD_STAT_DD) {
4433 if (*work_done >= budget)
4434 break;
4435 (*work_done)++;
9d5c8243 4436
69d3ca53
AD
4437 skb = buffer_info->skb;
4438 prefetch(skb->data - NET_IP_ALIGN);
4439 buffer_info->skb = NULL;
4440
4441 i++;
4442 if (i == rx_ring->count)
4443 i = 0;
4444 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4445 prefetch(next_rxd);
4446 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4447
4448 length = le16_to_cpu(rx_desc->wb.upper.length);
4449 cleaned = true;
4450 cleaned_count++;
4451
bf36c1a0
AD
4452 if (!adapter->rx_ps_hdr_size) {
4453 pci_unmap_single(pdev, buffer_info->dma,
4454 adapter->rx_buffer_len +
4455 NET_IP_ALIGN,
4456 PCI_DMA_FROMDEVICE);
4457 skb_put(skb, length);
4458 goto send_up;
9d5c8243
AK
4459 }
4460
69d3ca53
AD
4461 /* HW will not DMA in data larger than the given buffer, even
4462 * if it parses the (NFS, of course) header to be larger. In
4463 * that case, it fills the header buffer and spills the rest
4464 * into the page.
4465 */
4466 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4467 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4468 if (hlen > adapter->rx_ps_hdr_size)
4469 hlen = adapter->rx_ps_hdr_size;
4470
bf36c1a0
AD
4471 if (!skb_shinfo(skb)->nr_frags) {
4472 pci_unmap_single(pdev, buffer_info->dma,
73cd78f1 4473 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
bf36c1a0
AD
4474 PCI_DMA_FROMDEVICE);
4475 skb_put(skb, hlen);
4476 }
4477
4478 if (length) {
9d5c8243 4479 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4480 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4481 buffer_info->page_dma = 0;
bf36c1a0
AD
4482
4483 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4484 buffer_info->page,
4485 buffer_info->page_offset,
4486 length);
4487
4488 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4489 (page_count(buffer_info->page) != 1))
4490 buffer_info->page = NULL;
4491 else
4492 get_page(buffer_info->page);
9d5c8243
AK
4493
4494 skb->len += length;
4495 skb->data_len += length;
9d5c8243 4496
bf36c1a0 4497 skb->truesize += length;
9d5c8243 4498 }
9d5c8243 4499
bf36c1a0 4500 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4501 buffer_info->skb = next_buffer->skb;
4502 buffer_info->dma = next_buffer->dma;
4503 next_buffer->skb = skb;
4504 next_buffer->dma = 0;
bf36c1a0
AD
4505 goto next_desc;
4506 }
69d3ca53 4507send_up:
33af6bcc
PO
4508 /*
4509 * If this bit is set, then the RX registers contain
4510 * the time stamp. No other packet will be time
4511 * stamped until we read these registers, so read the
4512 * registers to make them available again. Because
4513 * only one packet can be time stamped at a time, we
4514 * know that the register values must belong to this
4515 * one here and therefore we don't need to compare
4516 * any of the additional attributes stored for it.
4517 *
4518 * If nothing went wrong, then it should have a
4519 * skb_shared_tx that we can turn into a
4520 * skb_shared_hwtstamps.
4521 *
4522 * TODO: can time stamping be triggered (thus locking
4523 * the registers) without the packet reaching this point
4524 * here? In that case RX time stamping would get stuck.
4525 *
4526 * TODO: in "time stamp all packets" mode this bit is
4527 * not set. Need a global flag for this mode and then
4528 * always read the registers. Cannot be done without
4529 * a race condition.
4530 */
4531 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4532 u64 regval;
4533 u64 ns;
4534 struct skb_shared_hwtstamps *shhwtstamps =
4535 skb_hwtstamps(skb);
4536
4537 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4538 "igb: no RX time stamp available for time stamped packet");
4539 regval = rd32(E1000_RXSTMPL);
4540 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4541 ns = timecounter_cyc2time(&adapter->clock, regval);
4542 timecompare_update(&adapter->compare, ns);
4543 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4544 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4545 shhwtstamps->syststamp =
4546 timecompare_transform(&adapter->compare, ns);
4547 }
4548
9d5c8243
AK
4549 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4550 dev_kfree_skb_irq(skb);
4551 goto next_desc;
4552 }
9d5c8243
AK
4553
4554 total_bytes += skb->len;
4555 total_packets++;
4556
4557 igb_rx_checksum_adv(adapter, staterr, skb);
4558
4559 skb->protocol = eth_type_trans(skb, netdev);
4560
d3352520 4561 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243 4562
9d5c8243
AK
4563next_desc:
4564 rx_desc->wb.upper.status_error = 0;
4565
4566 /* return some buffers to hardware, one at a time is too slow */
4567 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4568 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4569 cleaned_count = 0;
4570 }
4571
4572 /* use prefetched values */
4573 rx_desc = next_rxd;
4574 buffer_info = next_buffer;
9d5c8243
AK
4575 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4576 }
bf36c1a0 4577
9d5c8243
AK
4578 rx_ring->next_to_clean = i;
4579 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4580
4581 if (cleaned_count)
3b644cf6 4582 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4583
4584 rx_ring->total_packets += total_packets;
4585 rx_ring->total_bytes += total_bytes;
4586 rx_ring->rx_stats.packets += total_packets;
4587 rx_ring->rx_stats.bytes += total_bytes;
4588 adapter->net_stats.rx_bytes += total_bytes;
4589 adapter->net_stats.rx_packets += total_packets;
4590 return cleaned;
4591}
4592
9d5c8243
AK
4593/**
4594 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4595 * @adapter: address of board private structure
4596 **/
3b644cf6 4597static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4598 int cleaned_count)
4599{
3b644cf6 4600 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4601 struct net_device *netdev = adapter->netdev;
4602 struct pci_dev *pdev = adapter->pdev;
4603 union e1000_adv_rx_desc *rx_desc;
4604 struct igb_buffer *buffer_info;
4605 struct sk_buff *skb;
4606 unsigned int i;
db761762 4607 int bufsz;
9d5c8243
AK
4608
4609 i = rx_ring->next_to_use;
4610 buffer_info = &rx_ring->buffer_info[i];
4611
db761762
AD
4612 if (adapter->rx_ps_hdr_size)
4613 bufsz = adapter->rx_ps_hdr_size;
4614 else
4615 bufsz = adapter->rx_buffer_len;
4616 bufsz += NET_IP_ALIGN;
4617
9d5c8243
AK
4618 while (cleaned_count--) {
4619 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4620
bf36c1a0 4621 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4622 if (!buffer_info->page) {
bf36c1a0
AD
4623 buffer_info->page = alloc_page(GFP_ATOMIC);
4624 if (!buffer_info->page) {
4625 adapter->alloc_rx_buff_failed++;
4626 goto no_buffers;
4627 }
4628 buffer_info->page_offset = 0;
4629 } else {
4630 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4631 }
4632 buffer_info->page_dma =
db761762 4633 pci_map_page(pdev, buffer_info->page,
bf36c1a0
AD
4634 buffer_info->page_offset,
4635 PAGE_SIZE / 2,
9d5c8243
AK
4636 PCI_DMA_FROMDEVICE);
4637 }
4638
4639 if (!buffer_info->skb) {
9d5c8243 4640 skb = netdev_alloc_skb(netdev, bufsz);
9d5c8243
AK
4641 if (!skb) {
4642 adapter->alloc_rx_buff_failed++;
4643 goto no_buffers;
4644 }
4645
4646 /* Make buffer alignment 2 beyond a 16 byte boundary
4647 * this will result in a 16 byte aligned IP header after
4648 * the 14 byte MAC header is removed
4649 */
4650 skb_reserve(skb, NET_IP_ALIGN);
4651
4652 buffer_info->skb = skb;
4653 buffer_info->dma = pci_map_single(pdev, skb->data,
4654 bufsz,
4655 PCI_DMA_FROMDEVICE);
9d5c8243
AK
4656 }
4657 /* Refresh the desc even if buffer_addrs didn't change because
4658 * each write-back erases this info. */
4659 if (adapter->rx_ps_hdr_size) {
4660 rx_desc->read.pkt_addr =
4661 cpu_to_le64(buffer_info->page_dma);
4662 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4663 } else {
4664 rx_desc->read.pkt_addr =
4665 cpu_to_le64(buffer_info->dma);
4666 rx_desc->read.hdr_addr = 0;
4667 }
4668
4669 i++;
4670 if (i == rx_ring->count)
4671 i = 0;
4672 buffer_info = &rx_ring->buffer_info[i];
4673 }
4674
4675no_buffers:
4676 if (rx_ring->next_to_use != i) {
4677 rx_ring->next_to_use = i;
4678 if (i == 0)
4679 i = (rx_ring->count - 1);
4680 else
4681 i--;
4682
4683 /* Force memory writes to complete before letting h/w
4684 * know there are new descriptors to fetch. (Only
4685 * applicable for weak-ordered memory model archs,
4686 * such as IA-64). */
4687 wmb();
4688 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4689 }
4690}
4691
4692/**
4693 * igb_mii_ioctl -
4694 * @netdev:
4695 * @ifreq:
4696 * @cmd:
4697 **/
4698static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4699{
4700 struct igb_adapter *adapter = netdev_priv(netdev);
4701 struct mii_ioctl_data *data = if_mii(ifr);
4702
4703 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4704 return -EOPNOTSUPP;
4705
4706 switch (cmd) {
4707 case SIOCGMIIPHY:
4708 data->phy_id = adapter->hw.phy.addr;
4709 break;
4710 case SIOCGMIIREG:
4711 if (!capable(CAP_NET_ADMIN))
4712 return -EPERM;
f5f4cf08
AD
4713 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4714 &data->val_out))
9d5c8243
AK
4715 return -EIO;
4716 break;
4717 case SIOCSMIIREG:
4718 default:
4719 return -EOPNOTSUPP;
4720 }
4721 return 0;
4722}
4723
c6cb090b
PO
4724/**
4725 * igb_hwtstamp_ioctl - control hardware time stamping
4726 * @netdev:
4727 * @ifreq:
4728 * @cmd:
4729 *
33af6bcc
PO
4730 * Outgoing time stamping can be enabled and disabled. Play nice and
4731 * disable it when requested, although it shouldn't case any overhead
4732 * when no packet needs it. At most one packet in the queue may be
4733 * marked for time stamping, otherwise it would be impossible to tell
4734 * for sure to which packet the hardware time stamp belongs.
4735 *
4736 * Incoming time stamping has to be configured via the hardware
4737 * filters. Not all combinations are supported, in particular event
4738 * type has to be specified. Matching the kind of event packet is
4739 * not supported, with the exception of "all V2 events regardless of
4740 * level 2 or 4".
4741 *
c6cb090b
PO
4742 **/
4743static int igb_hwtstamp_ioctl(struct net_device *netdev,
4744 struct ifreq *ifr, int cmd)
4745{
33af6bcc
PO
4746 struct igb_adapter *adapter = netdev_priv(netdev);
4747 struct e1000_hw *hw = &adapter->hw;
c6cb090b 4748 struct hwtstamp_config config;
33af6bcc
PO
4749 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4750 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4751 u32 tsync_rx_ctl_type = 0;
4752 u32 tsync_rx_cfg = 0;
4753 int is_l4 = 0;
4754 int is_l2 = 0;
4755 short port = 319; /* PTP */
4756 u32 regval;
c6cb090b
PO
4757
4758 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4759 return -EFAULT;
4760
4761 /* reserved for future extensions */
4762 if (config.flags)
4763 return -EINVAL;
4764
33af6bcc
PO
4765 switch (config.tx_type) {
4766 case HWTSTAMP_TX_OFF:
4767 tsync_tx_ctl_bit = 0;
4768 break;
4769 case HWTSTAMP_TX_ON:
4770 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4771 break;
4772 default:
4773 return -ERANGE;
4774 }
4775
4776 switch (config.rx_filter) {
4777 case HWTSTAMP_FILTER_NONE:
4778 tsync_rx_ctl_bit = 0;
4779 break;
4780 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4781 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4782 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4783 case HWTSTAMP_FILTER_ALL:
4784 /*
4785 * register TSYNCRXCFG must be set, therefore it is not
4786 * possible to time stamp both Sync and Delay_Req messages
4787 * => fall back to time stamping all packets
4788 */
4789 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4790 config.rx_filter = HWTSTAMP_FILTER_ALL;
4791 break;
4792 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4793 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4794 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4795 is_l4 = 1;
4796 break;
4797 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4798 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4799 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4800 is_l4 = 1;
4801 break;
4802 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4803 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4804 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4805 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4806 is_l2 = 1;
4807 is_l4 = 1;
4808 config.rx_filter = HWTSTAMP_FILTER_SOME;
4809 break;
4810 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4811 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4812 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4813 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4814 is_l2 = 1;
4815 is_l4 = 1;
4816 config.rx_filter = HWTSTAMP_FILTER_SOME;
4817 break;
4818 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4819 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4820 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4821 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4822 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4823 is_l2 = 1;
4824 break;
4825 default:
4826 return -ERANGE;
4827 }
4828
4829 /* enable/disable TX */
4830 regval = rd32(E1000_TSYNCTXCTL);
4831 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4832 wr32(E1000_TSYNCTXCTL, regval);
4833
4834 /* enable/disable RX, define which PTP packets are time stamped */
4835 regval = rd32(E1000_TSYNCRXCTL);
4836 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4837 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4838 wr32(E1000_TSYNCRXCTL, regval);
4839 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4840
4841 /*
4842 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4843 * (Ethertype to filter on)
4844 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4845 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4846 */
4847 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4848
4849 /* L4 Queue Filter[0]: only filter by source and destination port */
4850 wr32(E1000_SPQF0, htons(port));
4851 wr32(E1000_IMIREXT(0), is_l4 ?
4852 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4853 wr32(E1000_IMIR(0), is_l4 ?
4854 (htons(port)
4855 | (0<<16) /* immediate interrupt disabled */
4856 | 0 /* (1<<17) bit cleared: do not bypass
4857 destination port check */)
4858 : 0);
4859 wr32(E1000_FTQF0, is_l4 ?
4860 (0x11 /* UDP */
4861 | (1<<15) /* VF not compared */
4862 | (1<<27) /* Enable Timestamping */
4863 | (7<<28) /* only source port filter enabled,
4864 source/target address and protocol
4865 masked */)
4866 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4867 enabled */));
4868
4869 wrfl();
4870
4871 adapter->hwtstamp_config = config;
4872
4873 /* clear TX/RX time stamp registers, just to be sure */
4874 regval = rd32(E1000_TXSTMPH);
4875 regval = rd32(E1000_RXSTMPH);
c6cb090b 4876
33af6bcc
PO
4877 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4878 -EFAULT : 0;
c6cb090b
PO
4879}
4880
9d5c8243
AK
4881/**
4882 * igb_ioctl -
4883 * @netdev:
4884 * @ifreq:
4885 * @cmd:
4886 **/
4887static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4888{
4889 switch (cmd) {
4890 case SIOCGMIIPHY:
4891 case SIOCGMIIREG:
4892 case SIOCSMIIREG:
4893 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
4894 case SIOCSHWTSTAMP:
4895 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
4896 default:
4897 return -EOPNOTSUPP;
4898 }
4899}
4900
4901static void igb_vlan_rx_register(struct net_device *netdev,
4902 struct vlan_group *grp)
4903{
4904 struct igb_adapter *adapter = netdev_priv(netdev);
4905 struct e1000_hw *hw = &adapter->hw;
4906 u32 ctrl, rctl;
4907
4908 igb_irq_disable(adapter);
4909 adapter->vlgrp = grp;
4910
4911 if (grp) {
4912 /* enable VLAN tag insert/strip */
4913 ctrl = rd32(E1000_CTRL);
4914 ctrl |= E1000_CTRL_VME;
4915 wr32(E1000_CTRL, ctrl);
4916
4917 /* enable VLAN receive filtering */
4918 rctl = rd32(E1000_RCTL);
9d5c8243
AK
4919 rctl &= ~E1000_RCTL_CFIEN;
4920 wr32(E1000_RCTL, rctl);
4921 igb_update_mng_vlan(adapter);
9d5c8243
AK
4922 } else {
4923 /* disable VLAN tag insert/strip */
4924 ctrl = rd32(E1000_CTRL);
4925 ctrl &= ~E1000_CTRL_VME;
4926 wr32(E1000_CTRL, ctrl);
4927
9d5c8243
AK
4928 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4929 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4930 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4931 }
9d5c8243
AK
4932 }
4933
e1739522
AD
4934 igb_rlpml_set(adapter);
4935
9d5c8243
AK
4936 if (!test_bit(__IGB_DOWN, &adapter->state))
4937 igb_irq_enable(adapter);
4938}
4939
4940static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4941{
4942 struct igb_adapter *adapter = netdev_priv(netdev);
4943 struct e1000_hw *hw = &adapter->hw;
4ae196df 4944 int pf_id = adapter->vfs_allocated_count;
9d5c8243 4945
28b0759c 4946 if ((hw->mng_cookie.status &
9d5c8243
AK
4947 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4948 (vid == adapter->mng_vlan_id))
4949 return;
4ae196df
AD
4950
4951 /* add vid to vlvf if sr-iov is enabled,
4952 * if that fails add directly to filter table */
4953 if (igb_vlvf_set(adapter, vid, true, pf_id))
4954 igb_vfta_set(hw, vid, true);
4955
9d5c8243
AK
4956}
4957
4958static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4959{
4960 struct igb_adapter *adapter = netdev_priv(netdev);
4961 struct e1000_hw *hw = &adapter->hw;
4ae196df 4962 int pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
4963
4964 igb_irq_disable(adapter);
4965 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4966
4967 if (!test_bit(__IGB_DOWN, &adapter->state))
4968 igb_irq_enable(adapter);
4969
4970 if ((adapter->hw.mng_cookie.status &
4971 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4972 (vid == adapter->mng_vlan_id)) {
4973 /* release control to f/w */
4974 igb_release_hw_control(adapter);
4975 return;
4976 }
4977
4ae196df
AD
4978 /* remove vid from vlvf if sr-iov is enabled,
4979 * if not in vlvf remove from vfta */
4980 if (igb_vlvf_set(adapter, vid, false, pf_id))
4981 igb_vfta_set(hw, vid, false);
9d5c8243
AK
4982}
4983
4984static void igb_restore_vlan(struct igb_adapter *adapter)
4985{
4986 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4987
4988 if (adapter->vlgrp) {
4989 u16 vid;
4990 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4991 if (!vlan_group_get_device(adapter->vlgrp, vid))
4992 continue;
4993 igb_vlan_rx_add_vid(adapter->netdev, vid);
4994 }
4995 }
4996}
4997
4998int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4999{
5000 struct e1000_mac_info *mac = &adapter->hw.mac;
5001
5002 mac->autoneg = 0;
5003
5004 /* Fiber NICs only allow 1000 gbps Full duplex */
5005 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5006 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5007 dev_err(&adapter->pdev->dev,
5008 "Unsupported Speed/Duplex configuration\n");
5009 return -EINVAL;
5010 }
5011
5012 switch (spddplx) {
5013 case SPEED_10 + DUPLEX_HALF:
5014 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5015 break;
5016 case SPEED_10 + DUPLEX_FULL:
5017 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5018 break;
5019 case SPEED_100 + DUPLEX_HALF:
5020 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5021 break;
5022 case SPEED_100 + DUPLEX_FULL:
5023 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5024 break;
5025 case SPEED_1000 + DUPLEX_FULL:
5026 mac->autoneg = 1;
5027 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5028 break;
5029 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5030 default:
5031 dev_err(&adapter->pdev->dev,
5032 "Unsupported Speed/Duplex configuration\n");
5033 return -EINVAL;
5034 }
5035 return 0;
5036}
5037
9d5c8243
AK
5038static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5039{
5040 struct net_device *netdev = pci_get_drvdata(pdev);
5041 struct igb_adapter *adapter = netdev_priv(netdev);
5042 struct e1000_hw *hw = &adapter->hw;
2d064c06 5043 u32 ctrl, rctl, status;
9d5c8243
AK
5044 u32 wufc = adapter->wol;
5045#ifdef CONFIG_PM
5046 int retval = 0;
5047#endif
5048
5049 netif_device_detach(netdev);
5050
a88f10ec
AD
5051 if (netif_running(netdev))
5052 igb_close(netdev);
5053
5054 igb_reset_interrupt_capability(adapter);
5055
5056 igb_free_queues(adapter);
9d5c8243
AK
5057
5058#ifdef CONFIG_PM
5059 retval = pci_save_state(pdev);
5060 if (retval)
5061 return retval;
5062#endif
5063
5064 status = rd32(E1000_STATUS);
5065 if (status & E1000_STATUS_LU)
5066 wufc &= ~E1000_WUFC_LNKC;
5067
5068 if (wufc) {
5069 igb_setup_rctl(adapter);
5070 igb_set_multi(netdev);
5071
5072 /* turn on all-multi mode if wake on multicast is enabled */
5073 if (wufc & E1000_WUFC_MC) {
5074 rctl = rd32(E1000_RCTL);
5075 rctl |= E1000_RCTL_MPE;
5076 wr32(E1000_RCTL, rctl);
5077 }
5078
5079 ctrl = rd32(E1000_CTRL);
5080 /* advertise wake from D3Cold */
5081 #define E1000_CTRL_ADVD3WUC 0x00100000
5082 /* phy power management enable */
5083 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5084 ctrl |= E1000_CTRL_ADVD3WUC;
5085 wr32(E1000_CTRL, ctrl);
5086
9d5c8243
AK
5087 /* Allow time for pending master requests to run */
5088 igb_disable_pcie_master(&adapter->hw);
5089
5090 wr32(E1000_WUC, E1000_WUC_PME_EN);
5091 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5092 } else {
5093 wr32(E1000_WUC, 0);
5094 wr32(E1000_WUFC, 0);
9d5c8243
AK
5095 }
5096
2d064c06
AD
5097 /* make sure adapter isn't asleep if manageability/wol is enabled */
5098 if (wufc || adapter->en_mng_pt) {
9d5c8243
AK
5099 pci_enable_wake(pdev, PCI_D3hot, 1);
5100 pci_enable_wake(pdev, PCI_D3cold, 1);
2d064c06
AD
5101 } else {
5102 igb_shutdown_fiber_serdes_link_82575(hw);
5103 pci_enable_wake(pdev, PCI_D3hot, 0);
5104 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243
AK
5105 }
5106
5107 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5108 * would have already happened in close and is redundant. */
5109 igb_release_hw_control(adapter);
5110
5111 pci_disable_device(pdev);
5112
5113 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5114
5115 return 0;
5116}
5117
5118#ifdef CONFIG_PM
5119static int igb_resume(struct pci_dev *pdev)
5120{
5121 struct net_device *netdev = pci_get_drvdata(pdev);
5122 struct igb_adapter *adapter = netdev_priv(netdev);
5123 struct e1000_hw *hw = &adapter->hw;
5124 u32 err;
5125
5126 pci_set_power_state(pdev, PCI_D0);
5127 pci_restore_state(pdev);
42bfd33a 5128
aed5dec3 5129 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5130 if (err) {
5131 dev_err(&pdev->dev,
5132 "igb: Cannot enable PCI device from suspend\n");
5133 return err;
5134 }
5135 pci_set_master(pdev);
5136
5137 pci_enable_wake(pdev, PCI_D3hot, 0);
5138 pci_enable_wake(pdev, PCI_D3cold, 0);
5139
a88f10ec
AD
5140 igb_set_interrupt_capability(adapter);
5141
5142 if (igb_alloc_queues(adapter)) {
5143 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5144 return -ENOMEM;
9d5c8243
AK
5145 }
5146
5147 /* e1000_power_up_phy(adapter); */
5148
5149 igb_reset(adapter);
a8564f03
AD
5150
5151 /* let the f/w know that the h/w is now under the control of the
5152 * driver. */
5153 igb_get_hw_control(adapter);
5154
9d5c8243
AK
5155 wr32(E1000_WUS, ~0);
5156
a88f10ec
AD
5157 if (netif_running(netdev)) {
5158 err = igb_open(netdev);
5159 if (err)
5160 return err;
5161 }
9d5c8243
AK
5162
5163 netif_device_attach(netdev);
5164
9d5c8243
AK
5165 return 0;
5166}
5167#endif
5168
5169static void igb_shutdown(struct pci_dev *pdev)
5170{
5171 igb_suspend(pdev, PMSG_SUSPEND);
5172}
5173
5174#ifdef CONFIG_NET_POLL_CONTROLLER
5175/*
5176 * Polling 'interrupt' - used by things like netconsole to send skbs
5177 * without having to re-enable interrupts. It's not called while
5178 * the interrupt routine is executing.
5179 */
5180static void igb_netpoll(struct net_device *netdev)
5181{
5182 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5183 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5184 int i;
9d5c8243 5185
eebbbdba
AD
5186 if (!adapter->msix_entries) {
5187 igb_irq_disable(adapter);
5188 napi_schedule(&adapter->rx_ring[0].napi);
5189 return;
5190 }
9d5c8243 5191
eebbbdba
AD
5192 for (i = 0; i < adapter->num_tx_queues; i++) {
5193 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5194 wr32(E1000_EIMC, tx_ring->eims_value);
5195 igb_clean_tx_irq(tx_ring);
5196 wr32(E1000_EIMS, tx_ring->eims_value);
5197 }
9d5c8243 5198
eebbbdba
AD
5199 for (i = 0; i < adapter->num_rx_queues; i++) {
5200 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5201 wr32(E1000_EIMC, rx_ring->eims_value);
5202 napi_schedule(&rx_ring->napi);
5203 }
9d5c8243
AK
5204}
5205#endif /* CONFIG_NET_POLL_CONTROLLER */
5206
5207/**
5208 * igb_io_error_detected - called when PCI error is detected
5209 * @pdev: Pointer to PCI device
5210 * @state: The current pci connection state
5211 *
5212 * This function is called after a PCI bus error affecting
5213 * this device has been detected.
5214 */
5215static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5216 pci_channel_state_t state)
5217{
5218 struct net_device *netdev = pci_get_drvdata(pdev);
5219 struct igb_adapter *adapter = netdev_priv(netdev);
5220
5221 netif_device_detach(netdev);
5222
5223 if (netif_running(netdev))
5224 igb_down(adapter);
5225 pci_disable_device(pdev);
5226
5227 /* Request a slot slot reset. */
5228 return PCI_ERS_RESULT_NEED_RESET;
5229}
5230
5231/**
5232 * igb_io_slot_reset - called after the pci bus has been reset.
5233 * @pdev: Pointer to PCI device
5234 *
5235 * Restart the card from scratch, as if from a cold-boot. Implementation
5236 * resembles the first-half of the igb_resume routine.
5237 */
5238static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5239{
5240 struct net_device *netdev = pci_get_drvdata(pdev);
5241 struct igb_adapter *adapter = netdev_priv(netdev);
5242 struct e1000_hw *hw = &adapter->hw;
40a914fa 5243 pci_ers_result_t result;
42bfd33a 5244 int err;
9d5c8243 5245
aed5dec3 5246 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5247 dev_err(&pdev->dev,
5248 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5249 result = PCI_ERS_RESULT_DISCONNECT;
5250 } else {
5251 pci_set_master(pdev);
5252 pci_restore_state(pdev);
9d5c8243 5253
40a914fa
AD
5254 pci_enable_wake(pdev, PCI_D3hot, 0);
5255 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5256
40a914fa
AD
5257 igb_reset(adapter);
5258 wr32(E1000_WUS, ~0);
5259 result = PCI_ERS_RESULT_RECOVERED;
5260 }
9d5c8243 5261
ea943d41
JK
5262 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5263 if (err) {
5264 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5265 "failed 0x%0x\n", err);
5266 /* non-fatal, continue */
5267 }
40a914fa
AD
5268
5269 return result;
9d5c8243
AK
5270}
5271
5272/**
5273 * igb_io_resume - called when traffic can start flowing again.
5274 * @pdev: Pointer to PCI device
5275 *
5276 * This callback is called when the error recovery driver tells us that
5277 * its OK to resume normal operation. Implementation resembles the
5278 * second-half of the igb_resume routine.
5279 */
5280static void igb_io_resume(struct pci_dev *pdev)
5281{
5282 struct net_device *netdev = pci_get_drvdata(pdev);
5283 struct igb_adapter *adapter = netdev_priv(netdev);
5284
9d5c8243
AK
5285 if (netif_running(netdev)) {
5286 if (igb_up(adapter)) {
5287 dev_err(&pdev->dev, "igb_up failed after reset\n");
5288 return;
5289 }
5290 }
5291
5292 netif_device_attach(netdev);
5293
5294 /* let the f/w know that the h/w is now under the control of the
5295 * driver. */
5296 igb_get_hw_control(adapter);
9d5c8243
AK
5297}
5298
e1739522
AD
5299static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5300{
5301 u32 reg_data;
5302
5303 reg_data = rd32(E1000_VMOLR(vfn));
5304 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5305 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5306 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5307 E1000_VMOLR_AUPE | /* Accept untagged packets */
5308 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5309 wr32(E1000_VMOLR(vfn), reg_data);
5310}
5311
4ae196df
AD
5312static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5313 int vfn)
e1739522
AD
5314{
5315 struct e1000_hw *hw = &adapter->hw;
5316 u32 vmolr;
5317
5318 vmolr = rd32(E1000_VMOLR(vfn));
5319 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5320 vmolr |= size | E1000_VMOLR_LPE;
5321 wr32(E1000_VMOLR(vfn), vmolr);
4ae196df
AD
5322
5323 return 0;
e1739522
AD
5324}
5325
5326static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5327{
5328 u32 reg_data;
5329
5330 reg_data = rd32(E1000_RAH(entry));
5331 reg_data &= ~E1000_RAH_POOL_MASK;
5332 reg_data |= E1000_RAH_POOL_1 << pool;;
5333 wr32(E1000_RAH(entry), reg_data);
5334}
5335
5336static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5337 int entry_count, u16 total_rar_filters)
5338{
5339 struct e1000_hw *hw = &adapter->hw;
5340 int i = adapter->vfs_allocated_count + 1;
5341
5342 if ((i + entry_count) < total_rar_filters)
5343 total_rar_filters = i + entry_count;
5344
5345 for (; i < total_rar_filters; i++)
5346 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5347}
5348
4ae196df
AD
5349static int igb_set_vf_mac(struct igb_adapter *adapter,
5350 int vf, unsigned char *mac_addr)
5351{
5352 struct e1000_hw *hw = &adapter->hw;
5353 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5354
5355 igb_rar_set(hw, mac_addr, rar_entry);
5356
37680117 5357 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df
AD
5358
5359 igb_set_rah_pool(hw, vf, rar_entry);
5360
5361 return 0;
5362}
5363
5364static void igb_vmm_control(struct igb_adapter *adapter)
5365{
5366 struct e1000_hw *hw = &adapter->hw;
5367 u32 reg_data;
5368
5369 if (!adapter->vfs_allocated_count)
5370 return;
5371
5372 /* VF's need PF reset indication before they
5373 * can send/receive mail */
5374 reg_data = rd32(E1000_CTRL_EXT);
5375 reg_data |= E1000_CTRL_EXT_PFRSTD;
5376 wr32(E1000_CTRL_EXT, reg_data);
5377
5378 igb_vmdq_set_loopback_pf(hw, true);
5379 igb_vmdq_set_replication_pf(hw, true);
5380}
5381
37680117
AD
5382#ifdef CONFIG_PCI_IOV
5383static ssize_t igb_show_num_vfs(struct device *dev,
5384 struct device_attribute *attr, char *buf)
5385{
5386 struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5387
5388 return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5389}
5390
5391static ssize_t igb_set_num_vfs(struct device *dev,
5392 struct device_attribute *attr,
5393 const char *buf, size_t count)
5394{
5395 struct net_device *netdev = to_net_dev(dev);
5396 struct igb_adapter *adapter = netdev_priv(netdev);
5397 struct e1000_hw *hw = &adapter->hw;
5398 struct pci_dev *pdev = adapter->pdev;
5399 unsigned int num_vfs, i;
5400 unsigned char mac_addr[ETH_ALEN];
5401 int err;
5402
5403 sscanf(buf, "%u", &num_vfs);
5404
5405 if (num_vfs > 7)
5406 num_vfs = 7;
5407
5408 /* value unchanged do nothing */
5409 if (num_vfs == adapter->vfs_allocated_count)
5410 return count;
5411
5412 if (netdev->flags & IFF_UP)
5413 igb_close(netdev);
5414
5415 igb_reset_interrupt_capability(adapter);
5416 igb_free_queues(adapter);
5417 adapter->tx_ring = NULL;
5418 adapter->rx_ring = NULL;
5419 adapter->vfs_allocated_count = 0;
5420
5421 /* reclaim resources allocated to VFs since we are changing count */
5422 if (adapter->vf_data) {
5423 /* disable iov and allow time for transactions to clear */
5424 pci_disable_sriov(pdev);
5425 msleep(500);
5426
5427 kfree(adapter->vf_data);
5428 adapter->vf_data = NULL;
5429 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5430 msleep(100);
5431 dev_info(&pdev->dev, "IOV Disabled\n");
5432 }
5433
5434 if (num_vfs) {
5435 adapter->vf_data = kcalloc(num_vfs,
5436 sizeof(struct vf_data_storage),
5437 GFP_KERNEL);
5438 if (!adapter->vf_data) {
5439 dev_err(&pdev->dev, "Could not allocate VF private "
5440 "data - IOV enable failed\n");
5441 } else {
5442 err = pci_enable_sriov(pdev, num_vfs);
5443 if (!err) {
5444 adapter->vfs_allocated_count = num_vfs;
5445 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5446 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5447 random_ether_addr(mac_addr);
5448 igb_set_vf_mac(adapter, i, mac_addr);
5449 }
5450 } else {
5451 kfree(adapter->vf_data);
5452 adapter->vf_data = NULL;
5453 }
5454 }
5455 }
5456
5457 igb_set_interrupt_capability(adapter);
5458 igb_alloc_queues(adapter);
5459 igb_reset(adapter);
5460
5461 if (netdev->flags & IFF_UP)
5462 igb_open(netdev);
5463
5464 return count;
5465}
5466#endif /* CONFIG_PCI_IOV */
9d5c8243 5467/* igb_main.c */
This page took 0.465773 seconds and 5 git commands to generate.