netdrv intel: disable VLAN filtering in promiscous mode
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
fe4506b6
JC
44#ifdef CONFIG_DCA
45#include <linux/dca.h>
46#endif
9d5c8243
AK
47#include "igb.h"
48
0024fd00 49#define DRV_VERSION "1.2.45-k2"
9d5c8243
AK
50char igb_driver_name[] = "igb";
51char igb_driver_version[] = DRV_VERSION;
52static const char igb_driver_string[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
2d064c06 54static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
9d5c8243 55
9d5c8243
AK
56static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58};
59
60static struct pci_device_id igb_pci_tbl[] = {
2d064c06
AD
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
69 {0, }
70};
71
72MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74void igb_reset(struct igb_adapter *);
75static int igb_setup_all_tx_resources(struct igb_adapter *);
76static int igb_setup_all_rx_resources(struct igb_adapter *);
77static void igb_free_all_tx_resources(struct igb_adapter *);
78static void igb_free_all_rx_resources(struct igb_adapter *);
3b644cf6
MW
79static void igb_free_tx_resources(struct igb_ring *);
80static void igb_free_rx_resources(struct igb_ring *);
9d5c8243
AK
81void igb_update_stats(struct igb_adapter *);
82static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83static void __devexit igb_remove(struct pci_dev *pdev);
84static int igb_sw_init(struct igb_adapter *);
85static int igb_open(struct net_device *);
86static int igb_close(struct net_device *);
87static void igb_configure_tx(struct igb_adapter *);
88static void igb_configure_rx(struct igb_adapter *);
89static void igb_setup_rctl(struct igb_adapter *);
90static void igb_clean_all_tx_rings(struct igb_adapter *);
91static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
92static void igb_clean_tx_ring(struct igb_ring *);
93static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
94static void igb_set_multi(struct net_device *);
95static void igb_update_phy_info(unsigned long);
96static void igb_watchdog(unsigned long);
97static void igb_watchdog_task(struct work_struct *);
98static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 struct igb_ring *);
100static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101static struct net_device_stats *igb_get_stats(struct net_device *);
102static int igb_change_mtu(struct net_device *, int);
103static int igb_set_mac(struct net_device *, void *);
104static irqreturn_t igb_intr(int irq, void *);
105static irqreturn_t igb_intr_msi(int irq, void *);
106static irqreturn_t igb_msix_other(int irq, void *);
107static irqreturn_t igb_msix_rx(int irq, void *);
108static irqreturn_t igb_msix_tx(int irq, void *);
109static int igb_clean_rx_ring_msix(struct napi_struct *, int);
fe4506b6
JC
110#ifdef CONFIG_DCA
111static void igb_update_rx_dca(struct igb_ring *);
112static void igb_update_tx_dca(struct igb_ring *);
113static void igb_setup_dca(struct igb_adapter *);
114#endif /* CONFIG_DCA */
3b644cf6 115static bool igb_clean_tx_irq(struct igb_ring *);
661086df 116static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
117static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
d3352520
AD
119#ifdef CONFIG_IGB_LRO
120static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121#endif
9d5c8243
AK
122static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123static void igb_tx_timeout(struct net_device *);
124static void igb_reset_task(struct work_struct *);
125static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126static void igb_vlan_rx_add_vid(struct net_device *, u16);
127static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128static void igb_restore_vlan(struct igb_adapter *);
129
130static int igb_suspend(struct pci_dev *, pm_message_t);
131#ifdef CONFIG_PM
132static int igb_resume(struct pci_dev *);
133#endif
134static void igb_shutdown(struct pci_dev *);
fe4506b6
JC
135#ifdef CONFIG_DCA
136static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137static struct notifier_block dca_notifier = {
138 .notifier_call = igb_notify_dca,
139 .next = NULL,
140 .priority = 0
141};
142#endif
9d5c8243
AK
143
144#ifdef CONFIG_NET_POLL_CONTROLLER
145/* for netdump / net console */
146static void igb_netpoll(struct net_device *);
147#endif
148
149static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150 pci_channel_state_t);
151static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152static void igb_io_resume(struct pci_dev *);
153
154static struct pci_error_handlers igb_err_handler = {
155 .error_detected = igb_io_error_detected,
156 .slot_reset = igb_io_slot_reset,
157 .resume = igb_io_resume,
158};
159
160
161static struct pci_driver igb_driver = {
162 .name = igb_driver_name,
163 .id_table = igb_pci_tbl,
164 .probe = igb_probe,
165 .remove = __devexit_p(igb_remove),
166#ifdef CONFIG_PM
167 /* Power Managment Hooks */
168 .suspend = igb_suspend,
169 .resume = igb_resume,
170#endif
171 .shutdown = igb_shutdown,
172 .err_handler = &igb_err_handler
173};
174
7dfc16fa
AD
175static int global_quad_port_a; /* global quad port a indication */
176
9d5c8243
AK
177MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179MODULE_LICENSE("GPL");
180MODULE_VERSION(DRV_VERSION);
181
182#ifdef DEBUG
183/**
184 * igb_get_hw_dev_name - return device name string
185 * used by hardware layer to print debugging information
186 **/
187char *igb_get_hw_dev_name(struct e1000_hw *hw)
188{
189 struct igb_adapter *adapter = hw->back;
190 return adapter->netdev->name;
191}
192#endif
193
194/**
195 * igb_init_module - Driver Registration Routine
196 *
197 * igb_init_module is the first routine called when the driver is
198 * loaded. All it does is register with the PCI subsystem.
199 **/
200static int __init igb_init_module(void)
201{
202 int ret;
203 printk(KERN_INFO "%s - version %s\n",
204 igb_driver_string, igb_driver_version);
205
206 printk(KERN_INFO "%s\n", igb_copyright);
207
7dfc16fa
AD
208 global_quad_port_a = 0;
209
9d5c8243 210 ret = pci_register_driver(&igb_driver);
fe4506b6
JC
211#ifdef CONFIG_DCA
212 dca_register_notify(&dca_notifier);
213#endif
9d5c8243
AK
214 return ret;
215}
216
217module_init(igb_init_module);
218
219/**
220 * igb_exit_module - Driver Exit Cleanup Routine
221 *
222 * igb_exit_module is called just before the driver is removed
223 * from memory.
224 **/
225static void __exit igb_exit_module(void)
226{
fe4506b6
JC
227#ifdef CONFIG_DCA
228 dca_unregister_notify(&dca_notifier);
229#endif
9d5c8243
AK
230 pci_unregister_driver(&igb_driver);
231}
232
233module_exit(igb_exit_module);
234
235/**
236 * igb_alloc_queues - Allocate memory for all rings
237 * @adapter: board private structure to initialize
238 *
239 * We allocate one ring per queue at run-time since we don't know the
240 * number of queues at compile-time.
241 **/
242static int igb_alloc_queues(struct igb_adapter *adapter)
243{
244 int i;
245
246 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247 sizeof(struct igb_ring), GFP_KERNEL);
248 if (!adapter->tx_ring)
249 return -ENOMEM;
250
251 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252 sizeof(struct igb_ring), GFP_KERNEL);
253 if (!adapter->rx_ring) {
254 kfree(adapter->tx_ring);
255 return -ENOMEM;
256 }
257
6eb5a7f1
AD
258 adapter->rx_ring->buddy = adapter->tx_ring;
259
661086df
PWJ
260 for (i = 0; i < adapter->num_tx_queues; i++) {
261 struct igb_ring *ring = &(adapter->tx_ring[i]);
262 ring->adapter = adapter;
263 ring->queue_index = i;
264 }
9d5c8243
AK
265 for (i = 0; i < adapter->num_rx_queues; i++) {
266 struct igb_ring *ring = &(adapter->rx_ring[i]);
267 ring->adapter = adapter;
844290e5 268 ring->queue_index = i;
9d5c8243
AK
269 ring->itr_register = E1000_ITR;
270
844290e5 271 /* set a default napi handler for each rx_ring */
661086df 272 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243
AK
273 }
274 return 0;
275}
276
a88f10ec
AD
277static void igb_free_queues(struct igb_adapter *adapter)
278{
279 int i;
280
281 for (i = 0; i < adapter->num_rx_queues; i++)
282 netif_napi_del(&adapter->rx_ring[i].napi);
283
284 kfree(adapter->tx_ring);
285 kfree(adapter->rx_ring);
286}
287
9d5c8243
AK
288#define IGB_N0_QUEUE -1
289static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290 int tx_queue, int msix_vector)
291{
292 u32 msixbm = 0;
293 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
294 u32 ivar, index;
295
296 switch (hw->mac.type) {
297 case e1000_82575:
9d5c8243
AK
298 /* The 82575 assigns vectors using a bitmask, which matches the
299 bitmask for the EICR/EIMS/EIMC registers. To assign one
300 or more queues to a vector, we write the appropriate bits
301 into the MSIXBM register for that vector. */
302 if (rx_queue > IGB_N0_QUEUE) {
303 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304 adapter->rx_ring[rx_queue].eims_value = msixbm;
305 }
306 if (tx_queue > IGB_N0_QUEUE) {
307 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308 adapter->tx_ring[tx_queue].eims_value =
309 E1000_EICR_TX_QUEUE0 << tx_queue;
310 }
311 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
312 break;
313 case e1000_82576:
314 /* Kawela uses a table-based method for assigning vectors.
315 Each queue has a single entry in the table to which we write
316 a vector number along with a "valid" bit. Sadly, the layout
317 of the table is somewhat counterintuitive. */
318 if (rx_queue > IGB_N0_QUEUE) {
319 index = (rx_queue & 0x7);
320 ivar = array_rd32(E1000_IVAR0, index);
321 if (rx_queue < 8) {
322 /* vector goes into low byte of register */
323 ivar = ivar & 0xFFFFFF00;
324 ivar |= msix_vector | E1000_IVAR_VALID;
325 } else {
326 /* vector goes into third byte of register */
327 ivar = ivar & 0xFF00FFFF;
328 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329 }
330 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331 array_wr32(E1000_IVAR0, index, ivar);
332 }
333 if (tx_queue > IGB_N0_QUEUE) {
334 index = (tx_queue & 0x7);
335 ivar = array_rd32(E1000_IVAR0, index);
336 if (tx_queue < 8) {
337 /* vector goes into second byte of register */
338 ivar = ivar & 0xFFFF00FF;
339 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340 } else {
341 /* vector goes into high byte of register */
342 ivar = ivar & 0x00FFFFFF;
343 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344 }
345 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346 array_wr32(E1000_IVAR0, index, ivar);
347 }
348 break;
349 default:
350 BUG();
351 break;
352 }
9d5c8243
AK
353}
354
355/**
356 * igb_configure_msix - Configure MSI-X hardware
357 *
358 * igb_configure_msix sets up the hardware to properly
359 * generate MSI-X interrupts.
360 **/
361static void igb_configure_msix(struct igb_adapter *adapter)
362{
363 u32 tmp;
364 int i, vector = 0;
365 struct e1000_hw *hw = &adapter->hw;
366
367 adapter->eims_enable_mask = 0;
2d064c06
AD
368 if (hw->mac.type == e1000_82576)
369 /* Turn on MSI-X capability first, or our settings
370 * won't stick. And it will take days to debug. */
371 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372 E1000_GPIE_PBA | E1000_GPIE_EIAME |
373 E1000_GPIE_NSICR);
9d5c8243
AK
374
375 for (i = 0; i < adapter->num_tx_queues; i++) {
376 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378 adapter->eims_enable_mask |= tx_ring->eims_value;
379 if (tx_ring->itr_val)
6eb5a7f1 380 writel(tx_ring->itr_val,
9d5c8243
AK
381 hw->hw_addr + tx_ring->itr_register);
382 else
383 writel(1, hw->hw_addr + tx_ring->itr_register);
384 }
385
386 for (i = 0; i < adapter->num_rx_queues; i++) {
387 struct igb_ring *rx_ring = &adapter->rx_ring[i];
6eb5a7f1 388 rx_ring->buddy = 0;
9d5c8243
AK
389 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390 adapter->eims_enable_mask |= rx_ring->eims_value;
391 if (rx_ring->itr_val)
6eb5a7f1 392 writel(rx_ring->itr_val,
9d5c8243
AK
393 hw->hw_addr + rx_ring->itr_register);
394 else
395 writel(1, hw->hw_addr + rx_ring->itr_register);
396 }
397
398
399 /* set vector for other causes, i.e. link changes */
2d064c06
AD
400 switch (hw->mac.type) {
401 case e1000_82575:
9d5c8243
AK
402 array_wr32(E1000_MSIXBM(0), vector++,
403 E1000_EIMS_OTHER);
404
9d5c8243
AK
405 tmp = rd32(E1000_CTRL_EXT);
406 /* enable MSI-X PBA support*/
407 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409 /* Auto-Mask interrupts upon ICR read. */
410 tmp |= E1000_CTRL_EXT_EIAME;
411 tmp |= E1000_CTRL_EXT_IRCA;
412
413 wr32(E1000_CTRL_EXT, tmp);
414 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 415 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 416
2d064c06
AD
417 break;
418
419 case e1000_82576:
420 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421 wr32(E1000_IVAR_MISC, tmp);
422
423 adapter->eims_enable_mask = (1 << (vector)) - 1;
424 adapter->eims_other = 1 << (vector - 1);
425 break;
426 default:
427 /* do nothing, since nothing else supports MSI-X */
428 break;
429 } /* switch (hw->mac.type) */
9d5c8243
AK
430 wrfl();
431}
432
433/**
434 * igb_request_msix - Initialize MSI-X interrupts
435 *
436 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437 * kernel.
438 **/
439static int igb_request_msix(struct igb_adapter *adapter)
440{
441 struct net_device *netdev = adapter->netdev;
442 int i, err = 0, vector = 0;
443
444 vector = 0;
445
446 for (i = 0; i < adapter->num_tx_queues; i++) {
447 struct igb_ring *ring = &(adapter->tx_ring[i]);
448 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449 err = request_irq(adapter->msix_entries[vector].vector,
450 &igb_msix_tx, 0, ring->name,
451 &(adapter->tx_ring[i]));
452 if (err)
453 goto out;
454 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 455 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
456 vector++;
457 }
458 for (i = 0; i < adapter->num_rx_queues; i++) {
459 struct igb_ring *ring = &(adapter->rx_ring[i]);
460 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461 sprintf(ring->name, "%s-rx%d", netdev->name, i);
462 else
463 memcpy(ring->name, netdev->name, IFNAMSIZ);
464 err = request_irq(adapter->msix_entries[vector].vector,
465 &igb_msix_rx, 0, ring->name,
466 &(adapter->rx_ring[i]));
467 if (err)
468 goto out;
469 ring->itr_register = E1000_EITR(0) + (vector << 2);
470 ring->itr_val = adapter->itr;
844290e5
PW
471 /* overwrite the poll routine for MSIX, we've already done
472 * netif_napi_add */
473 ring->napi.poll = &igb_clean_rx_ring_msix;
9d5c8243
AK
474 vector++;
475 }
476
477 err = request_irq(adapter->msix_entries[vector].vector,
478 &igb_msix_other, 0, netdev->name, netdev);
479 if (err)
480 goto out;
481
9d5c8243
AK
482 igb_configure_msix(adapter);
483 return 0;
484out:
485 return err;
486}
487
488static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489{
490 if (adapter->msix_entries) {
491 pci_disable_msix(adapter->pdev);
492 kfree(adapter->msix_entries);
493 adapter->msix_entries = NULL;
7dfc16fa 494 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
495 pci_disable_msi(adapter->pdev);
496 return;
497}
498
499
500/**
501 * igb_set_interrupt_capability - set MSI or MSI-X if supported
502 *
503 * Attempt to configure interrupts using the best available
504 * capabilities of the hardware and kernel.
505 **/
506static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507{
508 int err;
509 int numvecs, i;
510
511 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513 GFP_KERNEL);
514 if (!adapter->msix_entries)
515 goto msi_only;
516
517 for (i = 0; i < numvecs; i++)
518 adapter->msix_entries[i].entry = i;
519
520 err = pci_enable_msix(adapter->pdev,
521 adapter->msix_entries,
522 numvecs);
523 if (err == 0)
524 return;
525
526 igb_reset_interrupt_capability(adapter);
527
528 /* If we can't do MSI-X, try MSI */
529msi_only:
530 adapter->num_rx_queues = 1;
661086df 531 adapter->num_tx_queues = 1;
9d5c8243 532 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 533 adapter->flags |= IGB_FLAG_HAS_MSI;
661086df
PWJ
534
535#ifdef CONFIG_NETDEVICES_MULTIQUEUE
536 /* Notify the stack of the (possibly) reduced Tx Queue count. */
537 adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
538#endif
9d5c8243
AK
539 return;
540}
541
542/**
543 * igb_request_irq - initialize interrupts
544 *
545 * Attempts to configure interrupts using the best available
546 * capabilities of the hardware and kernel.
547 **/
548static int igb_request_irq(struct igb_adapter *adapter)
549{
550 struct net_device *netdev = adapter->netdev;
551 struct e1000_hw *hw = &adapter->hw;
552 int err = 0;
553
554 if (adapter->msix_entries) {
555 err = igb_request_msix(adapter);
844290e5 556 if (!err)
9d5c8243 557 goto request_done;
9d5c8243
AK
558 /* fall back to MSI */
559 igb_reset_interrupt_capability(adapter);
560 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 561 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
562 igb_free_all_tx_resources(adapter);
563 igb_free_all_rx_resources(adapter);
564 adapter->num_rx_queues = 1;
565 igb_alloc_queues(adapter);
844290e5 566 } else {
2d064c06
AD
567 switch (hw->mac.type) {
568 case e1000_82575:
569 wr32(E1000_MSIXBM(0),
570 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
571 break;
572 case e1000_82576:
573 wr32(E1000_IVAR0, E1000_IVAR_VALID);
574 break;
575 default:
576 break;
577 }
9d5c8243 578 }
844290e5 579
7dfc16fa 580 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
581 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
582 netdev->name, netdev);
583 if (!err)
584 goto request_done;
585 /* fall back to legacy interrupts */
586 igb_reset_interrupt_capability(adapter);
7dfc16fa 587 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
588 }
589
590 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
591 netdev->name, netdev);
592
6cb5e577 593 if (err)
9d5c8243
AK
594 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
595 err);
9d5c8243
AK
596
597request_done:
598 return err;
599}
600
601static void igb_free_irq(struct igb_adapter *adapter)
602{
603 struct net_device *netdev = adapter->netdev;
604
605 if (adapter->msix_entries) {
606 int vector = 0, i;
607
608 for (i = 0; i < adapter->num_tx_queues; i++)
609 free_irq(adapter->msix_entries[vector++].vector,
610 &(adapter->tx_ring[i]));
611 for (i = 0; i < adapter->num_rx_queues; i++)
612 free_irq(adapter->msix_entries[vector++].vector,
613 &(adapter->rx_ring[i]));
614
615 free_irq(adapter->msix_entries[vector++].vector, netdev);
616 return;
617 }
618
619 free_irq(adapter->pdev->irq, netdev);
620}
621
622/**
623 * igb_irq_disable - Mask off interrupt generation on the NIC
624 * @adapter: board private structure
625 **/
626static void igb_irq_disable(struct igb_adapter *adapter)
627{
628 struct e1000_hw *hw = &adapter->hw;
629
630 if (adapter->msix_entries) {
844290e5 631 wr32(E1000_EIAM, 0);
9d5c8243
AK
632 wr32(E1000_EIMC, ~0);
633 wr32(E1000_EIAC, 0);
634 }
844290e5
PW
635
636 wr32(E1000_IAM, 0);
9d5c8243
AK
637 wr32(E1000_IMC, ~0);
638 wrfl();
639 synchronize_irq(adapter->pdev->irq);
640}
641
642/**
643 * igb_irq_enable - Enable default interrupt generation settings
644 * @adapter: board private structure
645 **/
646static void igb_irq_enable(struct igb_adapter *adapter)
647{
648 struct e1000_hw *hw = &adapter->hw;
649
650 if (adapter->msix_entries) {
844290e5
PW
651 wr32(E1000_EIAC, adapter->eims_enable_mask);
652 wr32(E1000_EIAM, adapter->eims_enable_mask);
653 wr32(E1000_EIMS, adapter->eims_enable_mask);
9d5c8243 654 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5
PW
655 } else {
656 wr32(E1000_IMS, IMS_ENABLE_MASK);
657 wr32(E1000_IAM, IMS_ENABLE_MASK);
658 }
9d5c8243
AK
659}
660
661static void igb_update_mng_vlan(struct igb_adapter *adapter)
662{
663 struct net_device *netdev = adapter->netdev;
664 u16 vid = adapter->hw.mng_cookie.vlan_id;
665 u16 old_vid = adapter->mng_vlan_id;
666 if (adapter->vlgrp) {
667 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
668 if (adapter->hw.mng_cookie.status &
669 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
670 igb_vlan_rx_add_vid(netdev, vid);
671 adapter->mng_vlan_id = vid;
672 } else
673 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
674
675 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
676 (vid != old_vid) &&
677 !vlan_group_get_device(adapter->vlgrp, old_vid))
678 igb_vlan_rx_kill_vid(netdev, old_vid);
679 } else
680 adapter->mng_vlan_id = vid;
681 }
682}
683
684/**
685 * igb_release_hw_control - release control of the h/w to f/w
686 * @adapter: address of board private structure
687 *
688 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
689 * For ASF and Pass Through versions of f/w this means that the
690 * driver is no longer loaded.
691 *
692 **/
693static void igb_release_hw_control(struct igb_adapter *adapter)
694{
695 struct e1000_hw *hw = &adapter->hw;
696 u32 ctrl_ext;
697
698 /* Let firmware take over control of h/w */
699 ctrl_ext = rd32(E1000_CTRL_EXT);
700 wr32(E1000_CTRL_EXT,
701 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
702}
703
704
705/**
706 * igb_get_hw_control - get control of the h/w from f/w
707 * @adapter: address of board private structure
708 *
709 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
710 * For ASF and Pass Through versions of f/w this means that
711 * the driver is loaded.
712 *
713 **/
714static void igb_get_hw_control(struct igb_adapter *adapter)
715{
716 struct e1000_hw *hw = &adapter->hw;
717 u32 ctrl_ext;
718
719 /* Let firmware know the driver has taken over */
720 ctrl_ext = rd32(E1000_CTRL_EXT);
721 wr32(E1000_CTRL_EXT,
722 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
723}
724
725static void igb_init_manageability(struct igb_adapter *adapter)
726{
727 struct e1000_hw *hw = &adapter->hw;
728
729 if (adapter->en_mng_pt) {
730 u32 manc2h = rd32(E1000_MANC2H);
731 u32 manc = rd32(E1000_MANC);
732
9d5c8243
AK
733 /* enable receiving management packets to the host */
734 /* this will probably generate destination unreachable messages
735 * from the host OS, but the packets will be handled on SMBUS */
736 manc |= E1000_MANC_EN_MNG2HOST;
737#define E1000_MNG2HOST_PORT_623 (1 << 5)
738#define E1000_MNG2HOST_PORT_664 (1 << 6)
739 manc2h |= E1000_MNG2HOST_PORT_623;
740 manc2h |= E1000_MNG2HOST_PORT_664;
741 wr32(E1000_MANC2H, manc2h);
742
743 wr32(E1000_MANC, manc);
744 }
745}
746
9d5c8243
AK
747/**
748 * igb_configure - configure the hardware for RX and TX
749 * @adapter: private board structure
750 **/
751static void igb_configure(struct igb_adapter *adapter)
752{
753 struct net_device *netdev = adapter->netdev;
754 int i;
755
756 igb_get_hw_control(adapter);
757 igb_set_multi(netdev);
758
759 igb_restore_vlan(adapter);
760 igb_init_manageability(adapter);
761
762 igb_configure_tx(adapter);
763 igb_setup_rctl(adapter);
764 igb_configure_rx(adapter);
662d7205
AD
765
766 igb_rx_fifo_flush_82575(&adapter->hw);
767
9d5c8243
AK
768 /* call IGB_DESC_UNUSED which always leaves
769 * at least 1 descriptor unused to make sure
770 * next_to_use != next_to_clean */
771 for (i = 0; i < adapter->num_rx_queues; i++) {
772 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 773 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
774 }
775
776
777 adapter->tx_queue_len = netdev->tx_queue_len;
778}
779
780
781/**
782 * igb_up - Open the interface and prepare it to handle traffic
783 * @adapter: board private structure
784 **/
785
786int igb_up(struct igb_adapter *adapter)
787{
788 struct e1000_hw *hw = &adapter->hw;
789 int i;
790
791 /* hardware has been reset, we need to reload some things */
792 igb_configure(adapter);
793
794 clear_bit(__IGB_DOWN, &adapter->state);
795
844290e5
PW
796 for (i = 0; i < adapter->num_rx_queues; i++)
797 napi_enable(&adapter->rx_ring[i].napi);
798 if (adapter->msix_entries)
9d5c8243 799 igb_configure_msix(adapter);
9d5c8243
AK
800
801 /* Clear any pending interrupts. */
802 rd32(E1000_ICR);
803 igb_irq_enable(adapter);
804
805 /* Fire a link change interrupt to start the watchdog. */
806 wr32(E1000_ICS, E1000_ICS_LSC);
807 return 0;
808}
809
810void igb_down(struct igb_adapter *adapter)
811{
812 struct e1000_hw *hw = &adapter->hw;
813 struct net_device *netdev = adapter->netdev;
814 u32 tctl, rctl;
815 int i;
816
817 /* signal that we're down so the interrupt handler does not
818 * reschedule our watchdog timer */
819 set_bit(__IGB_DOWN, &adapter->state);
820
821 /* disable receives in the hardware */
822 rctl = rd32(E1000_RCTL);
823 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
824 /* flush and sleep below */
825
826 netif_stop_queue(netdev);
661086df
PWJ
827#ifdef CONFIG_NETDEVICES_MULTIQUEUE
828 for (i = 0; i < adapter->num_tx_queues; i++)
829 netif_stop_subqueue(netdev, i);
830#endif
9d5c8243
AK
831
832 /* disable transmits in the hardware */
833 tctl = rd32(E1000_TCTL);
834 tctl &= ~E1000_TCTL_EN;
835 wr32(E1000_TCTL, tctl);
836 /* flush both disables and wait for them to finish */
837 wrfl();
838 msleep(10);
839
844290e5
PW
840 for (i = 0; i < adapter->num_rx_queues; i++)
841 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 842
9d5c8243
AK
843 igb_irq_disable(adapter);
844
845 del_timer_sync(&adapter->watchdog_timer);
846 del_timer_sync(&adapter->phy_info_timer);
847
848 netdev->tx_queue_len = adapter->tx_queue_len;
849 netif_carrier_off(netdev);
850 adapter->link_speed = 0;
851 adapter->link_duplex = 0;
852
3023682e
JK
853 if (!pci_channel_offline(adapter->pdev))
854 igb_reset(adapter);
9d5c8243
AK
855 igb_clean_all_tx_rings(adapter);
856 igb_clean_all_rx_rings(adapter);
857}
858
859void igb_reinit_locked(struct igb_adapter *adapter)
860{
861 WARN_ON(in_interrupt());
862 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
863 msleep(1);
864 igb_down(adapter);
865 igb_up(adapter);
866 clear_bit(__IGB_RESETTING, &adapter->state);
867}
868
869void igb_reset(struct igb_adapter *adapter)
870{
871 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
872 struct e1000_mac_info *mac = &hw->mac;
873 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
874 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
875 u16 hwm;
876
877 /* Repartition Pba for greater than 9k mtu
878 * To take effect CTRL.RST is required.
879 */
2d064c06 880 if (mac->type != e1000_82576) {
9d5c8243 881 pba = E1000_PBA_34K;
2d064c06
AD
882 }
883 else {
884 pba = E1000_PBA_64K;
885 }
9d5c8243 886
2d064c06
AD
887 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
888 (mac->type < e1000_82576)) {
9d5c8243
AK
889 /* adjust PBA for jumbo frames */
890 wr32(E1000_PBA, pba);
891
892 /* To maintain wire speed transmits, the Tx FIFO should be
893 * large enough to accommodate two full transmit packets,
894 * rounded up to the next 1KB and expressed in KB. Likewise,
895 * the Rx FIFO should be large enough to accommodate at least
896 * one full receive packet and is similarly rounded up and
897 * expressed in KB. */
898 pba = rd32(E1000_PBA);
899 /* upper 16 bits has Tx packet buffer allocation size in KB */
900 tx_space = pba >> 16;
901 /* lower 16 bits has Rx packet buffer allocation size in KB */
902 pba &= 0xffff;
903 /* the tx fifo also stores 16 bytes of information about the tx
904 * but don't include ethernet FCS because hardware appends it */
905 min_tx_space = (adapter->max_frame_size +
906 sizeof(struct e1000_tx_desc) -
907 ETH_FCS_LEN) * 2;
908 min_tx_space = ALIGN(min_tx_space, 1024);
909 min_tx_space >>= 10;
910 /* software strips receive CRC, so leave room for it */
911 min_rx_space = adapter->max_frame_size;
912 min_rx_space = ALIGN(min_rx_space, 1024);
913 min_rx_space >>= 10;
914
915 /* If current Tx allocation is less than the min Tx FIFO size,
916 * and the min Tx FIFO size is less than the current Rx FIFO
917 * allocation, take space away from current Rx allocation */
918 if (tx_space < min_tx_space &&
919 ((min_tx_space - tx_space) < pba)) {
920 pba = pba - (min_tx_space - tx_space);
921
922 /* if short on rx space, rx wins and must trump tx
923 * adjustment */
924 if (pba < min_rx_space)
925 pba = min_rx_space;
926 }
2d064c06 927 wr32(E1000_PBA, pba);
9d5c8243 928 }
9d5c8243
AK
929
930 /* flow control settings */
931 /* The high water mark must be low enough to fit one full frame
932 * (or the size used for early receive) above it in the Rx FIFO.
933 * Set it to the lower of:
934 * - 90% of the Rx FIFO size, or
935 * - the full Rx FIFO size minus one full frame */
936 hwm = min(((pba << 10) * 9 / 10),
2d064c06 937 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 938
2d064c06
AD
939 if (mac->type < e1000_82576) {
940 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
941 fc->low_water = fc->high_water - 8;
942 } else {
943 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
944 fc->low_water = fc->high_water - 16;
945 }
9d5c8243
AK
946 fc->pause_time = 0xFFFF;
947 fc->send_xon = 1;
948 fc->type = fc->original_type;
949
950 /* Allow time for pending master requests to run */
951 adapter->hw.mac.ops.reset_hw(&adapter->hw);
952 wr32(E1000_WUC, 0);
953
954 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
955 dev_err(&adapter->pdev->dev, "Hardware Error\n");
956
957 igb_update_mng_vlan(adapter);
958
959 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
960 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
961
962 igb_reset_adaptive(&adapter->hw);
68707acb
BH
963 if (adapter->hw.phy.ops.get_phy_info)
964 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
965}
966
42bfd33a
TI
967/**
968 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
969 * @pdev: PCI device information struct
970 *
971 * Returns true if an adapter needs ioport resources
972 **/
973static int igb_is_need_ioport(struct pci_dev *pdev)
974{
975 switch (pdev->device) {
976 /* Currently there are no adapters that need ioport resources */
977 default:
978 return false;
979 }
980}
981
9d5c8243
AK
982/**
983 * igb_probe - Device Initialization Routine
984 * @pdev: PCI device information struct
985 * @ent: entry in igb_pci_tbl
986 *
987 * Returns 0 on success, negative on failure
988 *
989 * igb_probe initializes an adapter identified by a pci_dev structure.
990 * The OS initialization, configuring of the adapter private structure,
991 * and a hardware reset occur.
992 **/
993static int __devinit igb_probe(struct pci_dev *pdev,
994 const struct pci_device_id *ent)
995{
996 struct net_device *netdev;
997 struct igb_adapter *adapter;
998 struct e1000_hw *hw;
999 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1000 unsigned long mmio_start, mmio_len;
9d5c8243
AK
1001 int i, err, pci_using_dac;
1002 u16 eeprom_data = 0;
1003 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1004 u32 part_num;
42bfd33a 1005 int bars, need_ioport;
9d5c8243 1006
42bfd33a
TI
1007 /* do not allocate ioport bars when not needed */
1008 need_ioport = igb_is_need_ioport(pdev);
1009 if (need_ioport) {
1010 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1011 err = pci_enable_device(pdev);
1012 } else {
1013 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1014 err = pci_enable_device_mem(pdev);
1015 }
9d5c8243
AK
1016 if (err)
1017 return err;
1018
1019 pci_using_dac = 0;
1020 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1021 if (!err) {
1022 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1023 if (!err)
1024 pci_using_dac = 1;
1025 } else {
1026 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1027 if (err) {
1028 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1029 if (err) {
1030 dev_err(&pdev->dev, "No usable DMA "
1031 "configuration, aborting\n");
1032 goto err_dma;
1033 }
1034 }
1035 }
1036
42bfd33a 1037 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
9d5c8243
AK
1038 if (err)
1039 goto err_pci_reg;
1040
1041 pci_set_master(pdev);
c682fc23 1042 pci_save_state(pdev);
9d5c8243
AK
1043
1044 err = -ENOMEM;
661086df
PWJ
1045#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1046 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1047#else
9d5c8243 1048 netdev = alloc_etherdev(sizeof(struct igb_adapter));
661086df 1049#endif /* CONFIG_NETDEVICES_MULTIQUEUE */
9d5c8243
AK
1050 if (!netdev)
1051 goto err_alloc_etherdev;
1052
1053 SET_NETDEV_DEV(netdev, &pdev->dev);
1054
1055 pci_set_drvdata(pdev, netdev);
1056 adapter = netdev_priv(netdev);
1057 adapter->netdev = netdev;
1058 adapter->pdev = pdev;
1059 hw = &adapter->hw;
1060 hw->back = adapter;
1061 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
42bfd33a
TI
1062 adapter->bars = bars;
1063 adapter->need_ioport = need_ioport;
9d5c8243
AK
1064
1065 mmio_start = pci_resource_start(pdev, 0);
1066 mmio_len = pci_resource_len(pdev, 0);
1067
1068 err = -EIO;
1069 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1070 if (!adapter->hw.hw_addr)
1071 goto err_ioremap;
1072
1073 netdev->open = &igb_open;
1074 netdev->stop = &igb_close;
1075 netdev->get_stats = &igb_get_stats;
1076 netdev->set_multicast_list = &igb_set_multi;
1077 netdev->set_mac_address = &igb_set_mac;
1078 netdev->change_mtu = &igb_change_mtu;
1079 netdev->do_ioctl = &igb_ioctl;
1080 igb_set_ethtool_ops(netdev);
1081 netdev->tx_timeout = &igb_tx_timeout;
1082 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1083 netdev->vlan_rx_register = igb_vlan_rx_register;
1084 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1085 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1086#ifdef CONFIG_NET_POLL_CONTROLLER
1087 netdev->poll_controller = igb_netpoll;
1088#endif
1089 netdev->hard_start_xmit = &igb_xmit_frame_adv;
1090
1091 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1092
1093 netdev->mem_start = mmio_start;
1094 netdev->mem_end = mmio_start + mmio_len;
1095
9d5c8243
AK
1096 /* PCI config space info */
1097 hw->vendor_id = pdev->vendor;
1098 hw->device_id = pdev->device;
1099 hw->revision_id = pdev->revision;
1100 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1101 hw->subsystem_device_id = pdev->subsystem_device;
1102
1103 /* setup the private structure */
1104 hw->back = adapter;
1105 /* Copy the default MAC, PHY and NVM function pointers */
1106 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1107 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1108 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1109 /* Initialize skew-specific constants */
1110 err = ei->get_invariants(hw);
1111 if (err)
1112 goto err_hw_init;
1113
1114 err = igb_sw_init(adapter);
1115 if (err)
1116 goto err_sw_init;
1117
1118 igb_get_bus_info_pcie(hw);
1119
7dfc16fa
AD
1120 /* set flags */
1121 switch (hw->mac.type) {
1122 case e1000_82576:
1123 case e1000_82575:
1124 adapter->flags |= IGB_FLAG_HAS_DCA;
1125 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1126 break;
1127 default:
1128 break;
1129 }
1130
9d5c8243
AK
1131 hw->phy.autoneg_wait_to_complete = false;
1132 hw->mac.adaptive_ifs = true;
1133
1134 /* Copper options */
1135 if (hw->phy.media_type == e1000_media_type_copper) {
1136 hw->phy.mdix = AUTO_ALL_MODES;
1137 hw->phy.disable_polarity_correction = false;
1138 hw->phy.ms_type = e1000_ms_hw_default;
1139 }
1140
1141 if (igb_check_reset_block(hw))
1142 dev_info(&pdev->dev,
1143 "PHY reset is blocked due to SOL/IDER session.\n");
1144
1145 netdev->features = NETIF_F_SG |
1146 NETIF_F_HW_CSUM |
1147 NETIF_F_HW_VLAN_TX |
1148 NETIF_F_HW_VLAN_RX |
1149 NETIF_F_HW_VLAN_FILTER;
1150
1151 netdev->features |= NETIF_F_TSO;
9d5c8243 1152 netdev->features |= NETIF_F_TSO6;
48f29ffc 1153
d3352520
AD
1154#ifdef CONFIG_IGB_LRO
1155 netdev->features |= NETIF_F_LRO;
1156#endif
1157
48f29ffc
JK
1158 netdev->vlan_features |= NETIF_F_TSO;
1159 netdev->vlan_features |= NETIF_F_TSO6;
1160 netdev->vlan_features |= NETIF_F_HW_CSUM;
1161 netdev->vlan_features |= NETIF_F_SG;
1162
9d5c8243
AK
1163 if (pci_using_dac)
1164 netdev->features |= NETIF_F_HIGHDMA;
1165
661086df
PWJ
1166#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1167 netdev->features |= NETIF_F_MULTI_QUEUE;
1168#endif
1169
9d5c8243
AK
1170 netdev->features |= NETIF_F_LLTX;
1171 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1172
1173 /* before reading the NVM, reset the controller to put the device in a
1174 * known good starting state */
1175 hw->mac.ops.reset_hw(hw);
1176
1177 /* make sure the NVM is good */
1178 if (igb_validate_nvm_checksum(hw) < 0) {
1179 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1180 err = -EIO;
1181 goto err_eeprom;
1182 }
1183
1184 /* copy the MAC address out of the NVM */
1185 if (hw->mac.ops.read_mac_addr(hw))
1186 dev_err(&pdev->dev, "NVM Read Error\n");
1187
1188 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1189 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1190
1191 if (!is_valid_ether_addr(netdev->perm_addr)) {
1192 dev_err(&pdev->dev, "Invalid MAC Address\n");
1193 err = -EIO;
1194 goto err_eeprom;
1195 }
1196
1197 init_timer(&adapter->watchdog_timer);
1198 adapter->watchdog_timer.function = &igb_watchdog;
1199 adapter->watchdog_timer.data = (unsigned long) adapter;
1200
1201 init_timer(&adapter->phy_info_timer);
1202 adapter->phy_info_timer.function = &igb_update_phy_info;
1203 adapter->phy_info_timer.data = (unsigned long) adapter;
1204
1205 INIT_WORK(&adapter->reset_task, igb_reset_task);
1206 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1207
1208 /* Initialize link & ring properties that are user-changeable */
1209 adapter->tx_ring->count = 256;
1210 for (i = 0; i < adapter->num_tx_queues; i++)
1211 adapter->tx_ring[i].count = adapter->tx_ring->count;
1212 adapter->rx_ring->count = 256;
1213 for (i = 0; i < adapter->num_rx_queues; i++)
1214 adapter->rx_ring[i].count = adapter->rx_ring->count;
1215
1216 adapter->fc_autoneg = true;
1217 hw->mac.autoneg = true;
1218 hw->phy.autoneg_advertised = 0x2f;
1219
1220 hw->fc.original_type = e1000_fc_default;
1221 hw->fc.type = e1000_fc_default;
1222
1223 adapter->itr_setting = 3;
1224 adapter->itr = IGB_START_ITR;
1225
1226 igb_validate_mdi_setting(hw);
1227
1228 adapter->rx_csum = 1;
1229
1230 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1231 * enable the ACPI Magic Packet filter
1232 */
1233
1234 if (hw->bus.func == 0 ||
1235 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1236 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1237 &eeprom_data);
1238
1239 if (eeprom_data & eeprom_apme_mask)
1240 adapter->eeprom_wol |= E1000_WUFC_MAG;
1241
1242 /* now that we have the eeprom settings, apply the special cases where
1243 * the eeprom may be wrong or the board simply won't support wake on
1244 * lan on a particular port */
1245 switch (pdev->device) {
1246 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1247 adapter->eeprom_wol = 0;
1248 break;
1249 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1250 case E1000_DEV_ID_82576_FIBER:
1251 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1252 /* Wake events only supported on port A for dual fiber
1253 * regardless of eeprom setting */
1254 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1255 adapter->eeprom_wol = 0;
1256 break;
7dfc16fa
AD
1257 case E1000_DEV_ID_82576_QUAD_COPPER:
1258 /* if quad port adapter, disable WoL on all but port A */
1259 if (global_quad_port_a != 0)
1260 adapter->eeprom_wol = 0;
1261 else
1262 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1263 /* Reset for multiple quad port adapters */
1264 if (++global_quad_port_a == 4)
1265 global_quad_port_a = 0;
1266 break;
9d5c8243
AK
1267 }
1268
1269 /* initialize the wol settings based on the eeprom settings */
1270 adapter->wol = adapter->eeprom_wol;
1271
1272 /* reset the hardware with the new settings */
1273 igb_reset(adapter);
1274
1275 /* let the f/w know that the h/w is now under the control of the
1276 * driver. */
1277 igb_get_hw_control(adapter);
1278
1279 /* tell the stack to leave us alone until igb_open() is called */
1280 netif_carrier_off(netdev);
1281 netif_stop_queue(netdev);
661086df
PWJ
1282#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1283 for (i = 0; i < adapter->num_tx_queues; i++)
1284 netif_stop_subqueue(netdev, i);
1285#endif
9d5c8243
AK
1286
1287 strcpy(netdev->name, "eth%d");
1288 err = register_netdev(netdev);
1289 if (err)
1290 goto err_register;
1291
fe4506b6 1292#ifdef CONFIG_DCA
7dfc16fa
AD
1293 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1294 (dca_add_requester(&pdev->dev) == 0)) {
1295 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1296 dev_info(&pdev->dev, "DCA enabled\n");
1297 /* Always use CB2 mode, difference is masked
1298 * in the CB driver. */
1299 wr32(E1000_DCA_CTRL, 2);
1300 igb_setup_dca(adapter);
1301 }
1302#endif
1303
9d5c8243
AK
1304 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1305 /* print bus type/speed/width info */
1306 dev_info(&pdev->dev,
1307 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1308 netdev->name,
1309 ((hw->bus.speed == e1000_bus_speed_2500)
1310 ? "2.5Gb/s" : "unknown"),
1311 ((hw->bus.width == e1000_bus_width_pcie_x4)
1312 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1313 ? "Width x1" : "unknown"),
1314 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1315 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1316
1317 igb_read_part_num(hw, &part_num);
1318 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1319 (part_num >> 8), (part_num & 0xff));
1320
1321 dev_info(&pdev->dev,
1322 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1323 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1324 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1325 adapter->num_rx_queues, adapter->num_tx_queues);
1326
9d5c8243
AK
1327 return 0;
1328
1329err_register:
1330 igb_release_hw_control(adapter);
1331err_eeprom:
1332 if (!igb_check_reset_block(hw))
1333 hw->phy.ops.reset_phy(hw);
1334
1335 if (hw->flash_address)
1336 iounmap(hw->flash_address);
1337
1338 igb_remove_device(hw);
a88f10ec 1339 igb_free_queues(adapter);
9d5c8243
AK
1340err_sw_init:
1341err_hw_init:
1342 iounmap(hw->hw_addr);
1343err_ioremap:
1344 free_netdev(netdev);
1345err_alloc_etherdev:
42bfd33a 1346 pci_release_selected_regions(pdev, bars);
9d5c8243
AK
1347err_pci_reg:
1348err_dma:
1349 pci_disable_device(pdev);
1350 return err;
1351}
1352
1353/**
1354 * igb_remove - Device Removal Routine
1355 * @pdev: PCI device information struct
1356 *
1357 * igb_remove is called by the PCI subsystem to alert the driver
1358 * that it should release a PCI device. The could be caused by a
1359 * Hot-Plug event, or because the driver is going to be removed from
1360 * memory.
1361 **/
1362static void __devexit igb_remove(struct pci_dev *pdev)
1363{
1364 struct net_device *netdev = pci_get_drvdata(pdev);
1365 struct igb_adapter *adapter = netdev_priv(netdev);
9280fa52 1366#ifdef CONFIG_DCA
fe4506b6 1367 struct e1000_hw *hw = &adapter->hw;
9280fa52 1368#endif
9d5c8243
AK
1369
1370 /* flush_scheduled work may reschedule our watchdog task, so
1371 * explicitly disable watchdog tasks from being rescheduled */
1372 set_bit(__IGB_DOWN, &adapter->state);
1373 del_timer_sync(&adapter->watchdog_timer);
1374 del_timer_sync(&adapter->phy_info_timer);
1375
1376 flush_scheduled_work();
1377
fe4506b6 1378#ifdef CONFIG_DCA
7dfc16fa 1379 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1380 dev_info(&pdev->dev, "DCA disabled\n");
1381 dca_remove_requester(&pdev->dev);
7dfc16fa 1382 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1383 wr32(E1000_DCA_CTRL, 1);
1384 }
1385#endif
1386
9d5c8243
AK
1387 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1388 * would have already happened in close and is redundant. */
1389 igb_release_hw_control(adapter);
1390
1391 unregister_netdev(netdev);
1392
1393 if (!igb_check_reset_block(&adapter->hw))
1394 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1395
1396 igb_remove_device(&adapter->hw);
1397 igb_reset_interrupt_capability(adapter);
1398
a88f10ec 1399 igb_free_queues(adapter);
9d5c8243
AK
1400
1401 iounmap(adapter->hw.hw_addr);
1402 if (adapter->hw.flash_address)
1403 iounmap(adapter->hw.flash_address);
42bfd33a 1404 pci_release_selected_regions(pdev, adapter->bars);
9d5c8243
AK
1405
1406 free_netdev(netdev);
1407
1408 pci_disable_device(pdev);
1409}
1410
1411/**
1412 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1413 * @adapter: board private structure to initialize
1414 *
1415 * igb_sw_init initializes the Adapter private data structure.
1416 * Fields are initialized based on PCI device information and
1417 * OS network device settings (MTU size).
1418 **/
1419static int __devinit igb_sw_init(struct igb_adapter *adapter)
1420{
1421 struct e1000_hw *hw = &adapter->hw;
1422 struct net_device *netdev = adapter->netdev;
1423 struct pci_dev *pdev = adapter->pdev;
1424
1425 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1426
1427 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1428 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1429 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1430 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1431
1432 /* Number of supported queues. */
1433 /* Having more queues than CPUs doesn't make sense. */
661086df
PWJ
1434 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1435#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1436 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1437#else
9d5c8243 1438 adapter->num_tx_queues = 1;
661086df 1439#endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
9d5c8243 1440
661086df
PWJ
1441 /* This call may decrease the number of queues depending on
1442 * interrupt mode. */
9d5c8243
AK
1443 igb_set_interrupt_capability(adapter);
1444
1445 if (igb_alloc_queues(adapter)) {
1446 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1447 return -ENOMEM;
1448 }
1449
1450 /* Explicitly disable IRQ since the NIC can be in any state. */
1451 igb_irq_disable(adapter);
1452
1453 set_bit(__IGB_DOWN, &adapter->state);
1454 return 0;
1455}
1456
1457/**
1458 * igb_open - Called when a network interface is made active
1459 * @netdev: network interface device structure
1460 *
1461 * Returns 0 on success, negative value on failure
1462 *
1463 * The open entry point is called when a network interface is made
1464 * active by the system (IFF_UP). At this point all resources needed
1465 * for transmit and receive operations are allocated, the interrupt
1466 * handler is registered with the OS, the watchdog timer is started,
1467 * and the stack is notified that the interface is ready.
1468 **/
1469static int igb_open(struct net_device *netdev)
1470{
1471 struct igb_adapter *adapter = netdev_priv(netdev);
1472 struct e1000_hw *hw = &adapter->hw;
1473 int err;
1474 int i;
1475
1476 /* disallow open during test */
1477 if (test_bit(__IGB_TESTING, &adapter->state))
1478 return -EBUSY;
1479
1480 /* allocate transmit descriptors */
1481 err = igb_setup_all_tx_resources(adapter);
1482 if (err)
1483 goto err_setup_tx;
1484
1485 /* allocate receive descriptors */
1486 err = igb_setup_all_rx_resources(adapter);
1487 if (err)
1488 goto err_setup_rx;
1489
1490 /* e1000_power_up_phy(adapter); */
1491
1492 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1493 if ((adapter->hw.mng_cookie.status &
1494 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1495 igb_update_mng_vlan(adapter);
1496
1497 /* before we allocate an interrupt, we must be ready to handle it.
1498 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1499 * as soon as we call pci_request_irq, so we have to setup our
1500 * clean_rx handler before we do so. */
1501 igb_configure(adapter);
1502
1503 err = igb_request_irq(adapter);
1504 if (err)
1505 goto err_req_irq;
1506
1507 /* From here on the code is the same as igb_up() */
1508 clear_bit(__IGB_DOWN, &adapter->state);
1509
844290e5
PW
1510 for (i = 0; i < adapter->num_rx_queues; i++)
1511 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1512
1513 /* Clear any pending interrupts. */
1514 rd32(E1000_ICR);
844290e5
PW
1515
1516 igb_irq_enable(adapter);
1517
9d5c8243
AK
1518 /* Fire a link status change interrupt to start the watchdog. */
1519 wr32(E1000_ICS, E1000_ICS_LSC);
1520
1521 return 0;
1522
1523err_req_irq:
1524 igb_release_hw_control(adapter);
1525 /* e1000_power_down_phy(adapter); */
1526 igb_free_all_rx_resources(adapter);
1527err_setup_rx:
1528 igb_free_all_tx_resources(adapter);
1529err_setup_tx:
1530 igb_reset(adapter);
1531
1532 return err;
1533}
1534
1535/**
1536 * igb_close - Disables a network interface
1537 * @netdev: network interface device structure
1538 *
1539 * Returns 0, this is not allowed to fail
1540 *
1541 * The close entry point is called when an interface is de-activated
1542 * by the OS. The hardware is still under the driver's control, but
1543 * needs to be disabled. A global MAC reset is issued to stop the
1544 * hardware, and all transmit and receive resources are freed.
1545 **/
1546static int igb_close(struct net_device *netdev)
1547{
1548 struct igb_adapter *adapter = netdev_priv(netdev);
1549
1550 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1551 igb_down(adapter);
1552
1553 igb_free_irq(adapter);
1554
1555 igb_free_all_tx_resources(adapter);
1556 igb_free_all_rx_resources(adapter);
1557
1558 /* kill manageability vlan ID if supported, but not if a vlan with
1559 * the same ID is registered on the host OS (let 8021q kill it) */
1560 if ((adapter->hw.mng_cookie.status &
1561 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1562 !(adapter->vlgrp &&
1563 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1564 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1565
1566 return 0;
1567}
1568
1569/**
1570 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1571 * @adapter: board private structure
1572 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1573 *
1574 * Return 0 on success, negative on failure
1575 **/
1576
1577int igb_setup_tx_resources(struct igb_adapter *adapter,
1578 struct igb_ring *tx_ring)
1579{
1580 struct pci_dev *pdev = adapter->pdev;
1581 int size;
1582
1583 size = sizeof(struct igb_buffer) * tx_ring->count;
1584 tx_ring->buffer_info = vmalloc(size);
1585 if (!tx_ring->buffer_info)
1586 goto err;
1587 memset(tx_ring->buffer_info, 0, size);
1588
1589 /* round up to nearest 4K */
1590 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1591 + sizeof(u32);
1592 tx_ring->size = ALIGN(tx_ring->size, 4096);
1593
1594 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1595 &tx_ring->dma);
1596
1597 if (!tx_ring->desc)
1598 goto err;
1599
1600 tx_ring->adapter = adapter;
1601 tx_ring->next_to_use = 0;
1602 tx_ring->next_to_clean = 0;
9d5c8243
AK
1603 return 0;
1604
1605err:
1606 vfree(tx_ring->buffer_info);
1607 dev_err(&adapter->pdev->dev,
1608 "Unable to allocate memory for the transmit descriptor ring\n");
1609 return -ENOMEM;
1610}
1611
1612/**
1613 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1614 * (Descriptors) for all queues
1615 * @adapter: board private structure
1616 *
1617 * Return 0 on success, negative on failure
1618 **/
1619static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1620{
1621 int i, err = 0;
661086df
PWJ
1622#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1623 int r_idx;
1624#endif
9d5c8243
AK
1625
1626 for (i = 0; i < adapter->num_tx_queues; i++) {
1627 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1628 if (err) {
1629 dev_err(&adapter->pdev->dev,
1630 "Allocation for Tx Queue %u failed\n", i);
1631 for (i--; i >= 0; i--)
3b644cf6 1632 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1633 break;
1634 }
1635 }
1636
661086df
PWJ
1637#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1638 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1639 r_idx = i % adapter->num_tx_queues;
1640 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1641 }
1642#endif
9d5c8243
AK
1643 return err;
1644}
1645
1646/**
1647 * igb_configure_tx - Configure transmit Unit after Reset
1648 * @adapter: board private structure
1649 *
1650 * Configure the Tx unit of the MAC after a reset.
1651 **/
1652static void igb_configure_tx(struct igb_adapter *adapter)
1653{
1654 u64 tdba, tdwba;
1655 struct e1000_hw *hw = &adapter->hw;
1656 u32 tctl;
1657 u32 txdctl, txctrl;
1658 int i;
1659
1660 for (i = 0; i < adapter->num_tx_queues; i++) {
1661 struct igb_ring *ring = &(adapter->tx_ring[i]);
1662
1663 wr32(E1000_TDLEN(i),
1664 ring->count * sizeof(struct e1000_tx_desc));
1665 tdba = ring->dma;
1666 wr32(E1000_TDBAL(i),
1667 tdba & 0x00000000ffffffffULL);
1668 wr32(E1000_TDBAH(i), tdba >> 32);
1669
1670 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1671 tdwba |= 1; /* enable head wb */
1672 wr32(E1000_TDWBAL(i),
1673 tdwba & 0x00000000ffffffffULL);
1674 wr32(E1000_TDWBAH(i), tdwba >> 32);
1675
1676 ring->head = E1000_TDH(i);
1677 ring->tail = E1000_TDT(i);
1678 writel(0, hw->hw_addr + ring->tail);
1679 writel(0, hw->hw_addr + ring->head);
1680 txdctl = rd32(E1000_TXDCTL(i));
1681 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1682 wr32(E1000_TXDCTL(i), txdctl);
1683
1684 /* Turn off Relaxed Ordering on head write-backs. The
1685 * writebacks MUST be delivered in order or it will
1686 * completely screw up our bookeeping.
1687 */
1688 txctrl = rd32(E1000_DCA_TXCTRL(i));
1689 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1690 wr32(E1000_DCA_TXCTRL(i), txctrl);
1691 }
1692
1693
1694
1695 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1696
1697 /* Program the Transmit Control Register */
1698
1699 tctl = rd32(E1000_TCTL);
1700 tctl &= ~E1000_TCTL_CT;
1701 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1702 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1703
1704 igb_config_collision_dist(hw);
1705
1706 /* Setup Transmit Descriptor Settings for eop descriptor */
1707 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1708
1709 /* Enable transmits */
1710 tctl |= E1000_TCTL_EN;
1711
1712 wr32(E1000_TCTL, tctl);
1713}
1714
1715/**
1716 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1717 * @adapter: board private structure
1718 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1719 *
1720 * Returns 0 on success, negative on failure
1721 **/
1722
1723int igb_setup_rx_resources(struct igb_adapter *adapter,
1724 struct igb_ring *rx_ring)
1725{
1726 struct pci_dev *pdev = adapter->pdev;
1727 int size, desc_len;
1728
d3352520
AD
1729#ifdef CONFIG_IGB_LRO
1730 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1731 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1732 if (!rx_ring->lro_mgr.lro_arr)
1733 goto err;
1734 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1735#endif
1736
9d5c8243
AK
1737 size = sizeof(struct igb_buffer) * rx_ring->count;
1738 rx_ring->buffer_info = vmalloc(size);
1739 if (!rx_ring->buffer_info)
1740 goto err;
1741 memset(rx_ring->buffer_info, 0, size);
1742
1743 desc_len = sizeof(union e1000_adv_rx_desc);
1744
1745 /* Round up to nearest 4K */
1746 rx_ring->size = rx_ring->count * desc_len;
1747 rx_ring->size = ALIGN(rx_ring->size, 4096);
1748
1749 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1750 &rx_ring->dma);
1751
1752 if (!rx_ring->desc)
1753 goto err;
1754
1755 rx_ring->next_to_clean = 0;
1756 rx_ring->next_to_use = 0;
9d5c8243
AK
1757
1758 rx_ring->adapter = adapter;
9d5c8243
AK
1759
1760 return 0;
1761
1762err:
d3352520
AD
1763#ifdef CONFIG_IGB_LRO
1764 vfree(rx_ring->lro_mgr.lro_arr);
1765 rx_ring->lro_mgr.lro_arr = NULL;
1766#endif
9d5c8243
AK
1767 vfree(rx_ring->buffer_info);
1768 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1769 "the receive descriptor ring\n");
1770 return -ENOMEM;
1771}
1772
1773/**
1774 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1775 * (Descriptors) for all queues
1776 * @adapter: board private structure
1777 *
1778 * Return 0 on success, negative on failure
1779 **/
1780static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1781{
1782 int i, err = 0;
1783
1784 for (i = 0; i < adapter->num_rx_queues; i++) {
1785 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1786 if (err) {
1787 dev_err(&adapter->pdev->dev,
1788 "Allocation for Rx Queue %u failed\n", i);
1789 for (i--; i >= 0; i--)
3b644cf6 1790 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1791 break;
1792 }
1793 }
1794
1795 return err;
1796}
1797
1798/**
1799 * igb_setup_rctl - configure the receive control registers
1800 * @adapter: Board private structure
1801 **/
1802static void igb_setup_rctl(struct igb_adapter *adapter)
1803{
1804 struct e1000_hw *hw = &adapter->hw;
1805 u32 rctl;
1806 u32 srrctl = 0;
1807 int i;
1808
1809 rctl = rd32(E1000_RCTL);
1810
1811 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1812
1813 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1814 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1815 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1816
87cb7e8c
AK
1817 /*
1818 * enable stripping of CRC. It's unlikely this will break BMC
1819 * redirection as it did with e1000. Newer features require
1820 * that the HW strips the CRC.
9d5c8243 1821 */
87cb7e8c 1822 rctl |= E1000_RCTL_SECRC;
9d5c8243
AK
1823
1824 rctl &= ~E1000_RCTL_SBP;
1825
1826 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1827 rctl &= ~E1000_RCTL_LPE;
1828 else
1829 rctl |= E1000_RCTL_LPE;
1830 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1831 /* Setup buffer sizes */
1832 rctl &= ~E1000_RCTL_SZ_4096;
1833 rctl |= E1000_RCTL_BSEX;
1834 switch (adapter->rx_buffer_len) {
1835 case IGB_RXBUFFER_256:
1836 rctl |= E1000_RCTL_SZ_256;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case IGB_RXBUFFER_512:
1840 rctl |= E1000_RCTL_SZ_512;
1841 rctl &= ~E1000_RCTL_BSEX;
1842 break;
1843 case IGB_RXBUFFER_1024:
1844 rctl |= E1000_RCTL_SZ_1024;
1845 rctl &= ~E1000_RCTL_BSEX;
1846 break;
1847 case IGB_RXBUFFER_2048:
1848 default:
1849 rctl |= E1000_RCTL_SZ_2048;
1850 rctl &= ~E1000_RCTL_BSEX;
1851 break;
9d5c8243
AK
1852 }
1853 } else {
1854 rctl &= ~E1000_RCTL_BSEX;
1855 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1856 }
1857
1858 /* 82575 and greater support packet-split where the protocol
1859 * header is placed in skb->data and the packet data is
1860 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1861 * In the case of a non-split, skb->data is linearly filled,
1862 * followed by the page buffers. Therefore, skb->data is
1863 * sized to hold the largest protocol header.
1864 */
1865 /* allocations using alloc_page take too long for regular MTU
1866 * so only enable packet split for jumbo frames */
1867 if (rctl & E1000_RCTL_LPE) {
1868 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 1869 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 1870 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
1871 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1872 } else {
1873 adapter->rx_ps_hdr_size = 0;
1874 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1875 }
1876
1877 for (i = 0; i < adapter->num_rx_queues; i++)
1878 wr32(E1000_SRRCTL(i), srrctl);
1879
1880 wr32(E1000_RCTL, rctl);
1881}
1882
1883/**
1884 * igb_configure_rx - Configure receive Unit after Reset
1885 * @adapter: board private structure
1886 *
1887 * Configure the Rx unit of the MAC after a reset.
1888 **/
1889static void igb_configure_rx(struct igb_adapter *adapter)
1890{
1891 u64 rdba;
1892 struct e1000_hw *hw = &adapter->hw;
1893 u32 rctl, rxcsum;
1894 u32 rxdctl;
1895 int i;
1896
1897 /* disable receives while setting up the descriptors */
1898 rctl = rd32(E1000_RCTL);
1899 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1900 wrfl();
1901 mdelay(10);
1902
1903 if (adapter->itr_setting > 3)
6eb5a7f1 1904 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
1905
1906 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1907 * the Base and Length of the Rx Descriptor Ring */
1908 for (i = 0; i < adapter->num_rx_queues; i++) {
1909 struct igb_ring *ring = &(adapter->rx_ring[i]);
1910 rdba = ring->dma;
1911 wr32(E1000_RDBAL(i),
1912 rdba & 0x00000000ffffffffULL);
1913 wr32(E1000_RDBAH(i), rdba >> 32);
1914 wr32(E1000_RDLEN(i),
1915 ring->count * sizeof(union e1000_adv_rx_desc));
1916
1917 ring->head = E1000_RDH(i);
1918 ring->tail = E1000_RDT(i);
1919 writel(0, hw->hw_addr + ring->tail);
1920 writel(0, hw->hw_addr + ring->head);
1921
1922 rxdctl = rd32(E1000_RXDCTL(i));
1923 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1924 rxdctl &= 0xFFF00000;
1925 rxdctl |= IGB_RX_PTHRESH;
1926 rxdctl |= IGB_RX_HTHRESH << 8;
1927 rxdctl |= IGB_RX_WTHRESH << 16;
1928 wr32(E1000_RXDCTL(i), rxdctl);
d3352520
AD
1929#ifdef CONFIG_IGB_LRO
1930 /* Intitial LRO Settings */
1931 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1932 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1933 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1934 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1935 ring->lro_mgr.dev = adapter->netdev;
1936 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1937 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1938#endif
9d5c8243
AK
1939 }
1940
1941 if (adapter->num_rx_queues > 1) {
1942 u32 random[10];
1943 u32 mrqc;
1944 u32 j, shift;
1945 union e1000_reta {
1946 u32 dword;
1947 u8 bytes[4];
1948 } reta;
1949
1950 get_random_bytes(&random[0], 40);
1951
2d064c06
AD
1952 if (hw->mac.type >= e1000_82576)
1953 shift = 0;
1954 else
1955 shift = 6;
9d5c8243
AK
1956 for (j = 0; j < (32 * 4); j++) {
1957 reta.bytes[j & 3] =
1958 (j % adapter->num_rx_queues) << shift;
1959 if ((j & 3) == 3)
1960 writel(reta.dword,
1961 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1962 }
1963 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1964
1965 /* Fill out hash function seeds */
1966 for (j = 0; j < 10; j++)
1967 array_wr32(E1000_RSSRK(0), j, random[j]);
1968
1969 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1970 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1971 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1972 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1973 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1974 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1975 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1976 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1977
1978
1979 wr32(E1000_MRQC, mrqc);
1980
1981 /* Multiqueue and raw packet checksumming are mutually
1982 * exclusive. Note that this not the same as TCP/IP
1983 * checksumming, which works fine. */
1984 rxcsum = rd32(E1000_RXCSUM);
1985 rxcsum |= E1000_RXCSUM_PCSD;
1986 wr32(E1000_RXCSUM, rxcsum);
1987 } else {
1988 /* Enable Receive Checksum Offload for TCP and UDP */
1989 rxcsum = rd32(E1000_RXCSUM);
1990 if (adapter->rx_csum) {
1991 rxcsum |= E1000_RXCSUM_TUOFL;
1992
1993 /* Enable IPv4 payload checksum for UDP fragments
1994 * Must be used in conjunction with packet-split. */
1995 if (adapter->rx_ps_hdr_size)
1996 rxcsum |= E1000_RXCSUM_IPPCSE;
1997 } else {
1998 rxcsum &= ~E1000_RXCSUM_TUOFL;
1999 /* don't need to clear IPPCSE as it defaults to 0 */
2000 }
2001 wr32(E1000_RXCSUM, rxcsum);
2002 }
2003
2004 if (adapter->vlgrp)
2005 wr32(E1000_RLPML,
2006 adapter->max_frame_size + VLAN_TAG_SIZE);
2007 else
2008 wr32(E1000_RLPML, adapter->max_frame_size);
2009
2010 /* Enable Receives */
2011 wr32(E1000_RCTL, rctl);
2012}
2013
2014/**
2015 * igb_free_tx_resources - Free Tx Resources per Queue
2016 * @adapter: board private structure
2017 * @tx_ring: Tx descriptor ring for a specific queue
2018 *
2019 * Free all transmit software resources
2020 **/
3b644cf6 2021static void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2022{
3b644cf6 2023 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2024
3b644cf6 2025 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2026
2027 vfree(tx_ring->buffer_info);
2028 tx_ring->buffer_info = NULL;
2029
2030 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2031
2032 tx_ring->desc = NULL;
2033}
2034
2035/**
2036 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2037 * @adapter: board private structure
2038 *
2039 * Free all transmit software resources
2040 **/
2041static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2042{
2043 int i;
2044
2045 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2046 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2047}
2048
2049static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2050 struct igb_buffer *buffer_info)
2051{
2052 if (buffer_info->dma) {
2053 pci_unmap_page(adapter->pdev,
2054 buffer_info->dma,
2055 buffer_info->length,
2056 PCI_DMA_TODEVICE);
2057 buffer_info->dma = 0;
2058 }
2059 if (buffer_info->skb) {
2060 dev_kfree_skb_any(buffer_info->skb);
2061 buffer_info->skb = NULL;
2062 }
2063 buffer_info->time_stamp = 0;
2064 /* buffer_info must be completely set up in the transmit path */
2065}
2066
2067/**
2068 * igb_clean_tx_ring - Free Tx Buffers
2069 * @adapter: board private structure
2070 * @tx_ring: ring to be cleaned
2071 **/
3b644cf6 2072static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2073{
3b644cf6 2074 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2075 struct igb_buffer *buffer_info;
2076 unsigned long size;
2077 unsigned int i;
2078
2079 if (!tx_ring->buffer_info)
2080 return;
2081 /* Free all the Tx ring sk_buffs */
2082
2083 for (i = 0; i < tx_ring->count; i++) {
2084 buffer_info = &tx_ring->buffer_info[i];
2085 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2086 }
2087
2088 size = sizeof(struct igb_buffer) * tx_ring->count;
2089 memset(tx_ring->buffer_info, 0, size);
2090
2091 /* Zero out the descriptor ring */
2092
2093 memset(tx_ring->desc, 0, tx_ring->size);
2094
2095 tx_ring->next_to_use = 0;
2096 tx_ring->next_to_clean = 0;
2097
2098 writel(0, adapter->hw.hw_addr + tx_ring->head);
2099 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2100}
2101
2102/**
2103 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2104 * @adapter: board private structure
2105 **/
2106static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2107{
2108 int i;
2109
2110 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2111 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2112}
2113
2114/**
2115 * igb_free_rx_resources - Free Rx Resources
2116 * @adapter: board private structure
2117 * @rx_ring: ring to clean the resources from
2118 *
2119 * Free all receive software resources
2120 **/
3b644cf6 2121static void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2122{
3b644cf6 2123 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2124
3b644cf6 2125 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2126
2127 vfree(rx_ring->buffer_info);
2128 rx_ring->buffer_info = NULL;
2129
d3352520
AD
2130#ifdef CONFIG_IGB_LRO
2131 vfree(rx_ring->lro_mgr.lro_arr);
2132 rx_ring->lro_mgr.lro_arr = NULL;
2133#endif
2134
9d5c8243
AK
2135 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2136
2137 rx_ring->desc = NULL;
2138}
2139
2140/**
2141 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2142 * @adapter: board private structure
2143 *
2144 * Free all receive software resources
2145 **/
2146static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2147{
2148 int i;
2149
2150 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2151 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2152}
2153
2154/**
2155 * igb_clean_rx_ring - Free Rx Buffers per Queue
2156 * @adapter: board private structure
2157 * @rx_ring: ring to free buffers from
2158 **/
3b644cf6 2159static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2160{
3b644cf6 2161 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2162 struct igb_buffer *buffer_info;
2163 struct pci_dev *pdev = adapter->pdev;
2164 unsigned long size;
2165 unsigned int i;
2166
2167 if (!rx_ring->buffer_info)
2168 return;
2169 /* Free all the Rx ring sk_buffs */
2170 for (i = 0; i < rx_ring->count; i++) {
2171 buffer_info = &rx_ring->buffer_info[i];
2172 if (buffer_info->dma) {
2173 if (adapter->rx_ps_hdr_size)
2174 pci_unmap_single(pdev, buffer_info->dma,
2175 adapter->rx_ps_hdr_size,
2176 PCI_DMA_FROMDEVICE);
2177 else
2178 pci_unmap_single(pdev, buffer_info->dma,
2179 adapter->rx_buffer_len,
2180 PCI_DMA_FROMDEVICE);
2181 buffer_info->dma = 0;
2182 }
2183
2184 if (buffer_info->skb) {
2185 dev_kfree_skb(buffer_info->skb);
2186 buffer_info->skb = NULL;
2187 }
2188 if (buffer_info->page) {
bf36c1a0
AD
2189 if (buffer_info->page_dma)
2190 pci_unmap_page(pdev, buffer_info->page_dma,
2191 PAGE_SIZE / 2,
2192 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2193 put_page(buffer_info->page);
2194 buffer_info->page = NULL;
2195 buffer_info->page_dma = 0;
bf36c1a0 2196 buffer_info->page_offset = 0;
9d5c8243
AK
2197 }
2198 }
2199
9d5c8243
AK
2200 size = sizeof(struct igb_buffer) * rx_ring->count;
2201 memset(rx_ring->buffer_info, 0, size);
2202
2203 /* Zero out the descriptor ring */
2204 memset(rx_ring->desc, 0, rx_ring->size);
2205
2206 rx_ring->next_to_clean = 0;
2207 rx_ring->next_to_use = 0;
2208
2209 writel(0, adapter->hw.hw_addr + rx_ring->head);
2210 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2211}
2212
2213/**
2214 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2215 * @adapter: board private structure
2216 **/
2217static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2218{
2219 int i;
2220
2221 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2222 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2223}
2224
2225/**
2226 * igb_set_mac - Change the Ethernet Address of the NIC
2227 * @netdev: network interface device structure
2228 * @p: pointer to an address structure
2229 *
2230 * Returns 0 on success, negative on failure
2231 **/
2232static int igb_set_mac(struct net_device *netdev, void *p)
2233{
2234 struct igb_adapter *adapter = netdev_priv(netdev);
2235 struct sockaddr *addr = p;
2236
2237 if (!is_valid_ether_addr(addr->sa_data))
2238 return -EADDRNOTAVAIL;
2239
2240 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2241 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2242
2243 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2244
2245 return 0;
2246}
2247
2248/**
2249 * igb_set_multi - Multicast and Promiscuous mode set
2250 * @netdev: network interface device structure
2251 *
2252 * The set_multi entry point is called whenever the multicast address
2253 * list or the network interface flags are updated. This routine is
2254 * responsible for configuring the hardware for proper multicast,
2255 * promiscuous mode, and all-multi behavior.
2256 **/
2257static void igb_set_multi(struct net_device *netdev)
2258{
2259 struct igb_adapter *adapter = netdev_priv(netdev);
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct e1000_mac_info *mac = &hw->mac;
2262 struct dev_mc_list *mc_ptr;
2263 u8 *mta_list;
2264 u32 rctl;
2265 int i;
2266
2267 /* Check for Promiscuous and All Multicast modes */
2268
2269 rctl = rd32(E1000_RCTL);
2270
746b9f02 2271 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2273 rctl &= ~E1000_RCTL_VFE;
2274 } else {
2275 if (netdev->flags & IFF_ALLMULTI) {
2276 rctl |= E1000_RCTL_MPE;
2277 rctl &= ~E1000_RCTL_UPE;
2278 } else
2279 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2280 if (adapter->vlgrp)
2281 rctl |= E1000_RCTL_VFE;
2282 }
9d5c8243
AK
2283 wr32(E1000_RCTL, rctl);
2284
2285 if (!netdev->mc_count) {
2286 /* nothing to program, so clear mc list */
2d064c06 2287 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
9d5c8243
AK
2288 mac->rar_entry_count);
2289 return;
2290 }
2291
2292 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2293 if (!mta_list)
2294 return;
2295
2296 /* The shared function expects a packed array of only addresses. */
2297 mc_ptr = netdev->mc_list;
2298
2299 for (i = 0; i < netdev->mc_count; i++) {
2300 if (!mc_ptr)
2301 break;
2302 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2303 mc_ptr = mc_ptr->next;
2304 }
2d064c06
AD
2305 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2306 mac->rar_entry_count);
9d5c8243
AK
2307 kfree(mta_list);
2308}
2309
2310/* Need to wait a few seconds after link up to get diagnostic information from
2311 * the phy */
2312static void igb_update_phy_info(unsigned long data)
2313{
2314 struct igb_adapter *adapter = (struct igb_adapter *) data;
68707acb
BH
2315 if (adapter->hw.phy.ops.get_phy_info)
2316 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
2317}
2318
2319/**
2320 * igb_watchdog - Timer Call-back
2321 * @data: pointer to adapter cast into an unsigned long
2322 **/
2323static void igb_watchdog(unsigned long data)
2324{
2325 struct igb_adapter *adapter = (struct igb_adapter *)data;
2326 /* Do the rest outside of interrupt context */
2327 schedule_work(&adapter->watchdog_task);
2328}
2329
2330static void igb_watchdog_task(struct work_struct *work)
2331{
2332 struct igb_adapter *adapter = container_of(work,
2333 struct igb_adapter, watchdog_task);
2334 struct e1000_hw *hw = &adapter->hw;
2335
2336 struct net_device *netdev = adapter->netdev;
2337 struct igb_ring *tx_ring = adapter->tx_ring;
2338 struct e1000_mac_info *mac = &adapter->hw.mac;
2339 u32 link;
2340 s32 ret_val;
661086df
PWJ
2341#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2342 int i;
2343#endif
9d5c8243
AK
2344
2345 if ((netif_carrier_ok(netdev)) &&
2346 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2347 goto link_up;
2348
2349 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2350 if ((ret_val == E1000_ERR_PHY) &&
2351 (hw->phy.type == e1000_phy_igp_3) &&
2352 (rd32(E1000_CTRL) &
2353 E1000_PHY_CTRL_GBE_DISABLE))
2354 dev_info(&adapter->pdev->dev,
2355 "Gigabit has been disabled, downgrading speed\n");
2356
2357 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2358 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2359 link = mac->serdes_has_link;
2360 else
2361 link = rd32(E1000_STATUS) &
2362 E1000_STATUS_LU;
2363
2364 if (link) {
2365 if (!netif_carrier_ok(netdev)) {
2366 u32 ctrl;
2367 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2368 &adapter->link_speed,
2369 &adapter->link_duplex);
2370
2371 ctrl = rd32(E1000_CTRL);
2372 dev_info(&adapter->pdev->dev,
2373 "NIC Link is Up %d Mbps %s, "
2374 "Flow Control: %s\n",
2375 adapter->link_speed,
2376 adapter->link_duplex == FULL_DUPLEX ?
2377 "Full Duplex" : "Half Duplex",
2378 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2379 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2380 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2381 E1000_CTRL_TFCE) ? "TX" : "None")));
2382
2383 /* tweak tx_queue_len according to speed/duplex and
2384 * adjust the timeout factor */
2385 netdev->tx_queue_len = adapter->tx_queue_len;
2386 adapter->tx_timeout_factor = 1;
2387 switch (adapter->link_speed) {
2388 case SPEED_10:
2389 netdev->tx_queue_len = 10;
2390 adapter->tx_timeout_factor = 14;
2391 break;
2392 case SPEED_100:
2393 netdev->tx_queue_len = 100;
2394 /* maybe add some timeout factor ? */
2395 break;
2396 }
2397
2398 netif_carrier_on(netdev);
2399 netif_wake_queue(netdev);
661086df
PWJ
2400#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2401 for (i = 0; i < adapter->num_tx_queues; i++)
2402 netif_wake_subqueue(netdev, i);
2403#endif
9d5c8243
AK
2404
2405 if (!test_bit(__IGB_DOWN, &adapter->state))
2406 mod_timer(&adapter->phy_info_timer,
2407 round_jiffies(jiffies + 2 * HZ));
2408 }
2409 } else {
2410 if (netif_carrier_ok(netdev)) {
2411 adapter->link_speed = 0;
2412 adapter->link_duplex = 0;
2413 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2414 netif_carrier_off(netdev);
2415 netif_stop_queue(netdev);
661086df
PWJ
2416#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2417 for (i = 0; i < adapter->num_tx_queues; i++)
2418 netif_stop_subqueue(netdev, i);
2419#endif
9d5c8243
AK
2420 if (!test_bit(__IGB_DOWN, &adapter->state))
2421 mod_timer(&adapter->phy_info_timer,
2422 round_jiffies(jiffies + 2 * HZ));
2423 }
2424 }
2425
2426link_up:
2427 igb_update_stats(adapter);
2428
2429 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2430 adapter->tpt_old = adapter->stats.tpt;
2431 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2432 adapter->colc_old = adapter->stats.colc;
2433
2434 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2435 adapter->gorc_old = adapter->stats.gorc;
2436 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2437 adapter->gotc_old = adapter->stats.gotc;
2438
2439 igb_update_adaptive(&adapter->hw);
2440
2441 if (!netif_carrier_ok(netdev)) {
2442 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2443 /* We've lost link, so the controller stops DMA,
2444 * but we've got queued Tx work that's never going
2445 * to get done, so reset controller to flush Tx.
2446 * (Do the reset outside of interrupt context). */
2447 adapter->tx_timeout_count++;
2448 schedule_work(&adapter->reset_task);
2449 }
2450 }
2451
2452 /* Cause software interrupt to ensure rx ring is cleaned */
2453 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2454
2455 /* Force detection of hung controller every watchdog period */
2456 tx_ring->detect_tx_hung = true;
2457
2458 /* Reset the timer */
2459 if (!test_bit(__IGB_DOWN, &adapter->state))
2460 mod_timer(&adapter->watchdog_timer,
2461 round_jiffies(jiffies + 2 * HZ));
2462}
2463
2464enum latency_range {
2465 lowest_latency = 0,
2466 low_latency = 1,
2467 bulk_latency = 2,
2468 latency_invalid = 255
2469};
2470
2471
6eb5a7f1
AD
2472/**
2473 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2474 *
2475 * Stores a new ITR value based on strictly on packet size. This
2476 * algorithm is less sophisticated than that used in igb_update_itr,
2477 * due to the difficulty of synchronizing statistics across multiple
2478 * receive rings. The divisors and thresholds used by this fuction
2479 * were determined based on theoretical maximum wire speed and testing
2480 * data, in order to minimize response time while increasing bulk
2481 * throughput.
2482 * This functionality is controlled by the InterruptThrottleRate module
2483 * parameter (see igb_param.c)
2484 * NOTE: This function is called only when operating in a multiqueue
2485 * receive environment.
2486 * @rx_ring: pointer to ring
2487 **/
2488static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2489{
6eb5a7f1
AD
2490 int new_val = rx_ring->itr_val;
2491 int avg_wire_size = 0;
2492 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2493
6eb5a7f1
AD
2494 if (!rx_ring->total_packets)
2495 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2496
6eb5a7f1
AD
2497 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2498 * ints/sec - ITR timer value of 120 ticks.
2499 */
2500 if (adapter->link_speed != SPEED_1000) {
2501 new_val = 120;
2502 goto set_itr_val;
9d5c8243 2503 }
6eb5a7f1 2504 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2505
6eb5a7f1
AD
2506 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2507 avg_wire_size += 24;
2508
2509 /* Don't starve jumbo frames */
2510 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2511
6eb5a7f1
AD
2512 /* Give a little boost to mid-size frames */
2513 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2514 new_val = avg_wire_size / 3;
2515 else
2516 new_val = avg_wire_size / 2;
9d5c8243 2517
6eb5a7f1 2518set_itr_val:
9d5c8243
AK
2519 if (new_val != rx_ring->itr_val) {
2520 rx_ring->itr_val = new_val;
6eb5a7f1 2521 rx_ring->set_itr = 1;
9d5c8243 2522 }
6eb5a7f1
AD
2523clear_counts:
2524 rx_ring->total_bytes = 0;
2525 rx_ring->total_packets = 0;
9d5c8243
AK
2526}
2527
2528/**
2529 * igb_update_itr - update the dynamic ITR value based on statistics
2530 * Stores a new ITR value based on packets and byte
2531 * counts during the last interrupt. The advantage of per interrupt
2532 * computation is faster updates and more accurate ITR for the current
2533 * traffic pattern. Constants in this function were computed
2534 * based on theoretical maximum wire speed and thresholds were set based
2535 * on testing data as well as attempting to minimize response time
2536 * while increasing bulk throughput.
2537 * this functionality is controlled by the InterruptThrottleRate module
2538 * parameter (see igb_param.c)
2539 * NOTE: These calculations are only valid when operating in a single-
2540 * queue environment.
2541 * @adapter: pointer to adapter
2542 * @itr_setting: current adapter->itr
2543 * @packets: the number of packets during this measurement interval
2544 * @bytes: the number of bytes during this measurement interval
2545 **/
2546static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2547 int packets, int bytes)
2548{
2549 unsigned int retval = itr_setting;
2550
2551 if (packets == 0)
2552 goto update_itr_done;
2553
2554 switch (itr_setting) {
2555 case lowest_latency:
2556 /* handle TSO and jumbo frames */
2557 if (bytes/packets > 8000)
2558 retval = bulk_latency;
2559 else if ((packets < 5) && (bytes > 512))
2560 retval = low_latency;
2561 break;
2562 case low_latency: /* 50 usec aka 20000 ints/s */
2563 if (bytes > 10000) {
2564 /* this if handles the TSO accounting */
2565 if (bytes/packets > 8000) {
2566 retval = bulk_latency;
2567 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2568 retval = bulk_latency;
2569 } else if ((packets > 35)) {
2570 retval = lowest_latency;
2571 }
2572 } else if (bytes/packets > 2000) {
2573 retval = bulk_latency;
2574 } else if (packets <= 2 && bytes < 512) {
2575 retval = lowest_latency;
2576 }
2577 break;
2578 case bulk_latency: /* 250 usec aka 4000 ints/s */
2579 if (bytes > 25000) {
2580 if (packets > 35)
2581 retval = low_latency;
2582 } else if (bytes < 6000) {
2583 retval = low_latency;
2584 }
2585 break;
2586 }
2587
2588update_itr_done:
2589 return retval;
2590}
2591
6eb5a7f1 2592static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2593{
2594 u16 current_itr;
2595 u32 new_itr = adapter->itr;
2596
2597 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2598 if (adapter->link_speed != SPEED_1000) {
2599 current_itr = 0;
2600 new_itr = 4000;
2601 goto set_itr_now;
2602 }
2603
2604 adapter->rx_itr = igb_update_itr(adapter,
2605 adapter->rx_itr,
2606 adapter->rx_ring->total_packets,
2607 adapter->rx_ring->total_bytes);
9d5c8243 2608
6eb5a7f1 2609 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2610 adapter->tx_itr = igb_update_itr(adapter,
2611 adapter->tx_itr,
2612 adapter->tx_ring->total_packets,
2613 adapter->tx_ring->total_bytes);
9d5c8243
AK
2614
2615 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2616 } else {
2617 current_itr = adapter->rx_itr;
2618 }
2619
6eb5a7f1
AD
2620 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2621 if (adapter->itr_setting == 3 &&
2622 current_itr == lowest_latency)
2623 current_itr = low_latency;
2624
9d5c8243
AK
2625 switch (current_itr) {
2626 /* counts and packets in update_itr are dependent on these numbers */
2627 case lowest_latency:
2628 new_itr = 70000;
2629 break;
2630 case low_latency:
2631 new_itr = 20000; /* aka hwitr = ~200 */
2632 break;
2633 case bulk_latency:
2634 new_itr = 4000;
2635 break;
2636 default:
2637 break;
2638 }
2639
2640set_itr_now:
6eb5a7f1
AD
2641 adapter->rx_ring->total_bytes = 0;
2642 adapter->rx_ring->total_packets = 0;
2643 if (adapter->rx_ring->buddy) {
2644 adapter->rx_ring->buddy->total_bytes = 0;
2645 adapter->rx_ring->buddy->total_packets = 0;
2646 }
2647
9d5c8243
AK
2648 if (new_itr != adapter->itr) {
2649 /* this attempts to bias the interrupt rate towards Bulk
2650 * by adding intermediate steps when interrupt rate is
2651 * increasing */
2652 new_itr = new_itr > adapter->itr ?
2653 min(adapter->itr + (new_itr >> 2), new_itr) :
2654 new_itr;
2655 /* Don't write the value here; it resets the adapter's
2656 * internal timer, and causes us to delay far longer than
2657 * we should between interrupts. Instead, we write the ITR
2658 * value at the beginning of the next interrupt so the timing
2659 * ends up being correct.
2660 */
2661 adapter->itr = new_itr;
6eb5a7f1
AD
2662 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2663 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2664 }
2665
2666 return;
2667}
2668
2669
2670#define IGB_TX_FLAGS_CSUM 0x00000001
2671#define IGB_TX_FLAGS_VLAN 0x00000002
2672#define IGB_TX_FLAGS_TSO 0x00000004
2673#define IGB_TX_FLAGS_IPV4 0x00000008
2674#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2675#define IGB_TX_FLAGS_VLAN_SHIFT 16
2676
2677static inline int igb_tso_adv(struct igb_adapter *adapter,
2678 struct igb_ring *tx_ring,
2679 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2680{
2681 struct e1000_adv_tx_context_desc *context_desc;
2682 unsigned int i;
2683 int err;
2684 struct igb_buffer *buffer_info;
2685 u32 info = 0, tu_cmd = 0;
2686 u32 mss_l4len_idx, l4len;
2687 *hdr_len = 0;
2688
2689 if (skb_header_cloned(skb)) {
2690 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691 if (err)
2692 return err;
2693 }
2694
2695 l4len = tcp_hdrlen(skb);
2696 *hdr_len += l4len;
2697
2698 if (skb->protocol == htons(ETH_P_IP)) {
2699 struct iphdr *iph = ip_hdr(skb);
2700 iph->tot_len = 0;
2701 iph->check = 0;
2702 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2703 iph->daddr, 0,
2704 IPPROTO_TCP,
2705 0);
2706 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2707 ipv6_hdr(skb)->payload_len = 0;
2708 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709 &ipv6_hdr(skb)->daddr,
2710 0, IPPROTO_TCP, 0);
2711 }
2712
2713 i = tx_ring->next_to_use;
2714
2715 buffer_info = &tx_ring->buffer_info[i];
2716 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2717 /* VLAN MACLEN IPLEN */
2718 if (tx_flags & IGB_TX_FLAGS_VLAN)
2719 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2720 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2721 *hdr_len += skb_network_offset(skb);
2722 info |= skb_network_header_len(skb);
2723 *hdr_len += skb_network_header_len(skb);
2724 context_desc->vlan_macip_lens = cpu_to_le32(info);
2725
2726 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2727 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2728
2729 if (skb->protocol == htons(ETH_P_IP))
2730 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2731 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2732
2733 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2734
2735 /* MSS L4LEN IDX */
2736 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2737 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2738
7dfc16fa
AD
2739 /* Context index must be unique per ring. */
2740 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2741 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
2742
2743 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2744 context_desc->seqnum_seed = 0;
2745
2746 buffer_info->time_stamp = jiffies;
2747 buffer_info->dma = 0;
2748 i++;
2749 if (i == tx_ring->count)
2750 i = 0;
2751
2752 tx_ring->next_to_use = i;
2753
2754 return true;
2755}
2756
2757static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2758 struct igb_ring *tx_ring,
2759 struct sk_buff *skb, u32 tx_flags)
2760{
2761 struct e1000_adv_tx_context_desc *context_desc;
2762 unsigned int i;
2763 struct igb_buffer *buffer_info;
2764 u32 info = 0, tu_cmd = 0;
2765
2766 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2767 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2768 i = tx_ring->next_to_use;
2769 buffer_info = &tx_ring->buffer_info[i];
2770 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2771
2772 if (tx_flags & IGB_TX_FLAGS_VLAN)
2773 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2774 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2775 if (skb->ip_summed == CHECKSUM_PARTIAL)
2776 info |= skb_network_header_len(skb);
2777
2778 context_desc->vlan_macip_lens = cpu_to_le32(info);
2779
2780 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2781
2782 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3
MW
2783 switch (skb->protocol) {
2784 case __constant_htons(ETH_P_IP):
9d5c8243 2785 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
2786 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2787 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2788 break;
2789 case __constant_htons(ETH_P_IPV6):
2790 /* XXX what about other V6 headers?? */
2791 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2792 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2793 break;
2794 default:
2795 if (unlikely(net_ratelimit()))
2796 dev_warn(&adapter->pdev->dev,
2797 "partial checksum but proto=%x!\n",
2798 skb->protocol);
2799 break;
2800 }
9d5c8243
AK
2801 }
2802
2803 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2804 context_desc->seqnum_seed = 0;
7dfc16fa
AD
2805 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2806 context_desc->mss_l4len_idx =
2807 cpu_to_le32(tx_ring->queue_index << 4);
9d5c8243
AK
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->dma = 0;
2811
2812 i++;
2813 if (i == tx_ring->count)
2814 i = 0;
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818 }
2819
2820
2821 return false;
2822}
2823
2824#define IGB_MAX_TXD_PWR 16
2825#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2826
2827static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2828 struct igb_ring *tx_ring,
2829 struct sk_buff *skb)
2830{
2831 struct igb_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int count = 0, i;
2834 unsigned int f;
2835
2836 i = tx_ring->next_to_use;
2837
2838 buffer_info = &tx_ring->buffer_info[i];
2839 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2840 buffer_info->length = len;
2841 /* set time_stamp *before* dma to help avoid a possible race */
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2844 PCI_DMA_TODEVICE);
2845 count++;
2846 i++;
2847 if (i == tx_ring->count)
2848 i = 0;
2849
2850 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2851 struct skb_frag_struct *frag;
2852
2853 frag = &skb_shinfo(skb)->frags[f];
2854 len = frag->size;
2855
2856 buffer_info = &tx_ring->buffer_info[i];
2857 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2858 buffer_info->length = len;
2859 buffer_info->time_stamp = jiffies;
2860 buffer_info->dma = pci_map_page(adapter->pdev,
2861 frag->page,
2862 frag->page_offset,
2863 len,
2864 PCI_DMA_TODEVICE);
2865
2866 count++;
2867 i++;
2868 if (i == tx_ring->count)
2869 i = 0;
2870 }
2871
2872 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2873 tx_ring->buffer_info[i].skb = skb;
2874
2875 return count;
2876}
2877
2878static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2879 struct igb_ring *tx_ring,
2880 int tx_flags, int count, u32 paylen,
2881 u8 hdr_len)
2882{
2883 union e1000_adv_tx_desc *tx_desc = NULL;
2884 struct igb_buffer *buffer_info;
2885 u32 olinfo_status = 0, cmd_type_len;
2886 unsigned int i;
2887
2888 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2889 E1000_ADVTXD_DCMD_DEXT);
2890
2891 if (tx_flags & IGB_TX_FLAGS_VLAN)
2892 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2893
2894 if (tx_flags & IGB_TX_FLAGS_TSO) {
2895 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2896
2897 /* insert tcp checksum */
2898 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2899
2900 /* insert ip checksum */
2901 if (tx_flags & IGB_TX_FLAGS_IPV4)
2902 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2903
2904 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2905 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2906 }
2907
7dfc16fa
AD
2908 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2909 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2910 IGB_TX_FLAGS_VLAN)))
661086df 2911 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
2912
2913 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2914
2915 i = tx_ring->next_to_use;
2916 while (count--) {
2917 buffer_info = &tx_ring->buffer_info[i];
2918 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2919 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2920 tx_desc->read.cmd_type_len =
2921 cpu_to_le32(cmd_type_len | buffer_info->length);
2922 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2923 i++;
2924 if (i == tx_ring->count)
2925 i = 0;
2926 }
2927
2928 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2929 /* Force memory writes to complete before letting h/w
2930 * know there are new descriptors to fetch. (Only
2931 * applicable for weak-ordered memory model archs,
2932 * such as IA-64). */
2933 wmb();
2934
2935 tx_ring->next_to_use = i;
2936 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2937 /* we need this if more than one processor can write to our tail
2938 * at a time, it syncronizes IO on IA64/Altix systems */
2939 mmiowb();
2940}
2941
2942static int __igb_maybe_stop_tx(struct net_device *netdev,
2943 struct igb_ring *tx_ring, int size)
2944{
2945 struct igb_adapter *adapter = netdev_priv(netdev);
2946
661086df
PWJ
2947#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2948 netif_stop_subqueue(netdev, tx_ring->queue_index);
2949#else
9d5c8243 2950 netif_stop_queue(netdev);
661086df
PWJ
2951#endif
2952
9d5c8243
AK
2953 /* Herbert's original patch had:
2954 * smp_mb__after_netif_stop_queue();
2955 * but since that doesn't exist yet, just open code it. */
2956 smp_mb();
2957
2958 /* We need to check again in a case another CPU has just
2959 * made room available. */
2960 if (IGB_DESC_UNUSED(tx_ring) < size)
2961 return -EBUSY;
2962
2963 /* A reprieve! */
661086df
PWJ
2964#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2965 netif_wake_subqueue(netdev, tx_ring->queue_index);
2966#else
2967 netif_wake_queue(netdev);
2968#endif
9d5c8243
AK
2969 ++adapter->restart_queue;
2970 return 0;
2971}
2972
2973static int igb_maybe_stop_tx(struct net_device *netdev,
2974 struct igb_ring *tx_ring, int size)
2975{
2976 if (IGB_DESC_UNUSED(tx_ring) >= size)
2977 return 0;
2978 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2979}
2980
2981#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2982
2983static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2984 struct net_device *netdev,
2985 struct igb_ring *tx_ring)
2986{
2987 struct igb_adapter *adapter = netdev_priv(netdev);
2988 unsigned int tx_flags = 0;
2989 unsigned int len;
9d5c8243
AK
2990 u8 hdr_len = 0;
2991 int tso = 0;
2992
2993 len = skb_headlen(skb);
2994
2995 if (test_bit(__IGB_DOWN, &adapter->state)) {
2996 dev_kfree_skb_any(skb);
2997 return NETDEV_TX_OK;
2998 }
2999
3000 if (skb->len <= 0) {
3001 dev_kfree_skb_any(skb);
3002 return NETDEV_TX_OK;
3003 }
3004
9d5c8243
AK
3005 /* need: 1 descriptor per page,
3006 * + 2 desc gap to keep tail from touching head,
3007 * + 1 desc for skb->data,
3008 * + 1 desc for context descriptor,
3009 * otherwise try next time */
3010 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3011 /* this is a hard error */
9d5c8243
AK
3012 return NETDEV_TX_BUSY;
3013 }
6eb5a7f1 3014 skb_orphan(skb);
9d5c8243
AK
3015
3016 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3017 tx_flags |= IGB_TX_FLAGS_VLAN;
3018 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3019 }
3020
661086df
PWJ
3021 if (skb->protocol == htons(ETH_P_IP))
3022 tx_flags |= IGB_TX_FLAGS_IPV4;
3023
9d5c8243
AK
3024 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3025 &hdr_len) : 0;
3026
3027 if (tso < 0) {
3028 dev_kfree_skb_any(skb);
9d5c8243
AK
3029 return NETDEV_TX_OK;
3030 }
3031
3032 if (tso)
3033 tx_flags |= IGB_TX_FLAGS_TSO;
3034 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3035 if (skb->ip_summed == CHECKSUM_PARTIAL)
3036 tx_flags |= IGB_TX_FLAGS_CSUM;
3037
9d5c8243
AK
3038 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3039 igb_tx_map_adv(adapter, tx_ring, skb),
3040 skb->len, hdr_len);
3041
3042 netdev->trans_start = jiffies;
3043
3044 /* Make sure there is space in the ring for the next send. */
3045 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3046
9d5c8243
AK
3047 return NETDEV_TX_OK;
3048}
3049
3050static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3051{
3052 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3053 struct igb_ring *tx_ring;
3054
3055#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3056 int r_idx = 0;
3057 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3058 tx_ring = adapter->multi_tx_table[r_idx];
3059#else
3060 tx_ring = &adapter->tx_ring[0];
3061#endif
3062
9d5c8243
AK
3063
3064 /* This goes back to the question of how to logically map a tx queue
3065 * to a flow. Right now, performance is impacted slightly negatively
3066 * if using multiple tx queues. If the stack breaks away from a
3067 * single qdisc implementation, we can look at this again. */
3068 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3069}
3070
3071/**
3072 * igb_tx_timeout - Respond to a Tx Hang
3073 * @netdev: network interface device structure
3074 **/
3075static void igb_tx_timeout(struct net_device *netdev)
3076{
3077 struct igb_adapter *adapter = netdev_priv(netdev);
3078 struct e1000_hw *hw = &adapter->hw;
3079
3080 /* Do the reset outside of interrupt context */
3081 adapter->tx_timeout_count++;
3082 schedule_work(&adapter->reset_task);
3083 wr32(E1000_EICS, adapter->eims_enable_mask &
3084 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3085}
3086
3087static void igb_reset_task(struct work_struct *work)
3088{
3089 struct igb_adapter *adapter;
3090 adapter = container_of(work, struct igb_adapter, reset_task);
3091
3092 igb_reinit_locked(adapter);
3093}
3094
3095/**
3096 * igb_get_stats - Get System Network Statistics
3097 * @netdev: network interface device structure
3098 *
3099 * Returns the address of the device statistics structure.
3100 * The statistics are actually updated from the timer callback.
3101 **/
3102static struct net_device_stats *
3103igb_get_stats(struct net_device *netdev)
3104{
3105 struct igb_adapter *adapter = netdev_priv(netdev);
3106
3107 /* only return the current stats */
3108 return &adapter->net_stats;
3109}
3110
3111/**
3112 * igb_change_mtu - Change the Maximum Transfer Unit
3113 * @netdev: network interface device structure
3114 * @new_mtu: new value for maximum frame size
3115 *
3116 * Returns 0 on success, negative on failure
3117 **/
3118static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3119{
3120 struct igb_adapter *adapter = netdev_priv(netdev);
3121 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3122
3123 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3124 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3125 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3126 return -EINVAL;
3127 }
3128
3129#define MAX_STD_JUMBO_FRAME_SIZE 9234
3130 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3131 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3132 return -EINVAL;
3133 }
3134
3135 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3136 msleep(1);
3137 /* igb_down has a dependency on max_frame_size */
3138 adapter->max_frame_size = max_frame;
3139 if (netif_running(netdev))
3140 igb_down(adapter);
3141
3142 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3143 * means we reserve 2 more, this pushes us to allocate from the next
3144 * larger slab size.
3145 * i.e. RXBUFFER_2048 --> size-4096 slab
3146 */
3147
3148 if (max_frame <= IGB_RXBUFFER_256)
3149 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3150 else if (max_frame <= IGB_RXBUFFER_512)
3151 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3152 else if (max_frame <= IGB_RXBUFFER_1024)
3153 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3154 else if (max_frame <= IGB_RXBUFFER_2048)
3155 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3156 else
bf36c1a0
AD
3157#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3158 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3159#else
3160 adapter->rx_buffer_len = PAGE_SIZE / 2;
3161#endif
9d5c8243
AK
3162 /* adjust allocation if LPE protects us, and we aren't using SBP */
3163 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3164 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3165 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3166
3167 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3168 netdev->mtu, new_mtu);
3169 netdev->mtu = new_mtu;
3170
3171 if (netif_running(netdev))
3172 igb_up(adapter);
3173 else
3174 igb_reset(adapter);
3175
3176 clear_bit(__IGB_RESETTING, &adapter->state);
3177
3178 return 0;
3179}
3180
3181/**
3182 * igb_update_stats - Update the board statistics counters
3183 * @adapter: board private structure
3184 **/
3185
3186void igb_update_stats(struct igb_adapter *adapter)
3187{
3188 struct e1000_hw *hw = &adapter->hw;
3189 struct pci_dev *pdev = adapter->pdev;
3190 u16 phy_tmp;
3191
3192#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3193
3194 /*
3195 * Prevent stats update while adapter is being reset, or if the pci
3196 * connection is down.
3197 */
3198 if (adapter->link_speed == 0)
3199 return;
3200 if (pci_channel_offline(pdev))
3201 return;
3202
3203 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3204 adapter->stats.gprc += rd32(E1000_GPRC);
3205 adapter->stats.gorc += rd32(E1000_GORCL);
3206 rd32(E1000_GORCH); /* clear GORCL */
3207 adapter->stats.bprc += rd32(E1000_BPRC);
3208 adapter->stats.mprc += rd32(E1000_MPRC);
3209 adapter->stats.roc += rd32(E1000_ROC);
3210
3211 adapter->stats.prc64 += rd32(E1000_PRC64);
3212 adapter->stats.prc127 += rd32(E1000_PRC127);
3213 adapter->stats.prc255 += rd32(E1000_PRC255);
3214 adapter->stats.prc511 += rd32(E1000_PRC511);
3215 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3216 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3217 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3218 adapter->stats.sec += rd32(E1000_SEC);
3219
3220 adapter->stats.mpc += rd32(E1000_MPC);
3221 adapter->stats.scc += rd32(E1000_SCC);
3222 adapter->stats.ecol += rd32(E1000_ECOL);
3223 adapter->stats.mcc += rd32(E1000_MCC);
3224 adapter->stats.latecol += rd32(E1000_LATECOL);
3225 adapter->stats.dc += rd32(E1000_DC);
3226 adapter->stats.rlec += rd32(E1000_RLEC);
3227 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3228 adapter->stats.xontxc += rd32(E1000_XONTXC);
3229 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3230 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3231 adapter->stats.fcruc += rd32(E1000_FCRUC);
3232 adapter->stats.gptc += rd32(E1000_GPTC);
3233 adapter->stats.gotc += rd32(E1000_GOTCL);
3234 rd32(E1000_GOTCH); /* clear GOTCL */
3235 adapter->stats.rnbc += rd32(E1000_RNBC);
3236 adapter->stats.ruc += rd32(E1000_RUC);
3237 adapter->stats.rfc += rd32(E1000_RFC);
3238 adapter->stats.rjc += rd32(E1000_RJC);
3239 adapter->stats.tor += rd32(E1000_TORH);
3240 adapter->stats.tot += rd32(E1000_TOTH);
3241 adapter->stats.tpr += rd32(E1000_TPR);
3242
3243 adapter->stats.ptc64 += rd32(E1000_PTC64);
3244 adapter->stats.ptc127 += rd32(E1000_PTC127);
3245 adapter->stats.ptc255 += rd32(E1000_PTC255);
3246 adapter->stats.ptc511 += rd32(E1000_PTC511);
3247 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3248 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3249
3250 adapter->stats.mptc += rd32(E1000_MPTC);
3251 adapter->stats.bptc += rd32(E1000_BPTC);
3252
3253 /* used for adaptive IFS */
3254
3255 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3256 adapter->stats.tpt += hw->mac.tx_packet_delta;
3257 hw->mac.collision_delta = rd32(E1000_COLC);
3258 adapter->stats.colc += hw->mac.collision_delta;
3259
3260 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3261 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3262 adapter->stats.tncrs += rd32(E1000_TNCRS);
3263 adapter->stats.tsctc += rd32(E1000_TSCTC);
3264 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3265
3266 adapter->stats.iac += rd32(E1000_IAC);
3267 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3268 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3269 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3270 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3271 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3272 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3273 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3274 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3275
3276 /* Fill out the OS statistics structure */
3277 adapter->net_stats.multicast = adapter->stats.mprc;
3278 adapter->net_stats.collisions = adapter->stats.colc;
3279
3280 /* Rx Errors */
3281
3282 /* RLEC on some newer hardware can be incorrect so build
3283 * our own version based on RUC and ROC */
3284 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3285 adapter->stats.crcerrs + adapter->stats.algnerrc +
3286 adapter->stats.ruc + adapter->stats.roc +
3287 adapter->stats.cexterr;
3288 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3289 adapter->stats.roc;
3290 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3291 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3292 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3293
3294 /* Tx Errors */
3295 adapter->net_stats.tx_errors = adapter->stats.ecol +
3296 adapter->stats.latecol;
3297 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3298 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3299 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3300
3301 /* Tx Dropped needs to be maintained elsewhere */
3302
3303 /* Phy Stats */
3304 if (hw->phy.media_type == e1000_media_type_copper) {
3305 if ((adapter->link_speed == SPEED_1000) &&
3306 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3307 &phy_tmp))) {
3308 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3309 adapter->phy_stats.idle_errors += phy_tmp;
3310 }
3311 }
3312
3313 /* Management Stats */
3314 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3315 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3316 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3317}
3318
3319
3320static irqreturn_t igb_msix_other(int irq, void *data)
3321{
3322 struct net_device *netdev = data;
3323 struct igb_adapter *adapter = netdev_priv(netdev);
3324 struct e1000_hw *hw = &adapter->hw;
844290e5 3325 u32 icr = rd32(E1000_ICR);
9d5c8243 3326
844290e5
PW
3327 /* reading ICR causes bit 31 of EICR to be cleared */
3328 if (!(icr & E1000_ICR_LSC))
3329 goto no_link_interrupt;
3330 hw->mac.get_link_status = 1;
3331 /* guard against interrupt when we're going down */
3332 if (!test_bit(__IGB_DOWN, &adapter->state))
3333 mod_timer(&adapter->watchdog_timer, jiffies + 1);
661086df 3334
9d5c8243
AK
3335no_link_interrupt:
3336 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5 3337 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3338
3339 return IRQ_HANDLED;
3340}
3341
3342static irqreturn_t igb_msix_tx(int irq, void *data)
3343{
3344 struct igb_ring *tx_ring = data;
3345 struct igb_adapter *adapter = tx_ring->adapter;
3346 struct e1000_hw *hw = &adapter->hw;
3347
fe4506b6 3348#ifdef CONFIG_DCA
7dfc16fa 3349 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3350 igb_update_tx_dca(tx_ring);
3351#endif
9d5c8243
AK
3352 tx_ring->total_bytes = 0;
3353 tx_ring->total_packets = 0;
661086df
PWJ
3354
3355 /* auto mask will automatically reenable the interrupt when we write
3356 * EICS */
3b644cf6 3357 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3358 /* Ring was not completely cleaned, so fire another interrupt */
3359 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3360 else
9d5c8243 3361 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3362
9d5c8243
AK
3363 return IRQ_HANDLED;
3364}
3365
6eb5a7f1
AD
3366static void igb_write_itr(struct igb_ring *ring)
3367{
3368 struct e1000_hw *hw = &ring->adapter->hw;
3369 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3370 switch (hw->mac.type) {
3371 case e1000_82576:
3372 wr32(ring->itr_register,
3373 ring->itr_val |
3374 0x80000000);
3375 break;
3376 default:
3377 wr32(ring->itr_register,
3378 ring->itr_val |
3379 (ring->itr_val << 16));
3380 break;
3381 }
3382 ring->set_itr = 0;
3383 }
3384}
3385
9d5c8243
AK
3386static irqreturn_t igb_msix_rx(int irq, void *data)
3387{
3388 struct igb_ring *rx_ring = data;
3389 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 3390
844290e5
PW
3391 /* Write the ITR value calculated at the end of the
3392 * previous interrupt.
3393 */
9d5c8243 3394
6eb5a7f1 3395 igb_write_itr(rx_ring);
9d5c8243 3396
844290e5
PW
3397 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3398 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3399
fe4506b6 3400#ifdef CONFIG_DCA
7dfc16fa 3401 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3402 igb_update_rx_dca(rx_ring);
3403#endif
3404 return IRQ_HANDLED;
3405}
3406
3407#ifdef CONFIG_DCA
3408static void igb_update_rx_dca(struct igb_ring *rx_ring)
3409{
3410 u32 dca_rxctrl;
3411 struct igb_adapter *adapter = rx_ring->adapter;
3412 struct e1000_hw *hw = &adapter->hw;
3413 int cpu = get_cpu();
3414 int q = rx_ring - adapter->rx_ring;
3415
3416 if (rx_ring->cpu != cpu) {
3417 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3418 if (hw->mac.type == e1000_82576) {
3419 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3420 dca_rxctrl |= dca_get_tag(cpu) <<
3421 E1000_DCA_RXCTRL_CPUID_SHIFT;
3422 } else {
3423 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3424 dca_rxctrl |= dca_get_tag(cpu);
3425 }
fe4506b6
JC
3426 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3427 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3428 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3429 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3430 rx_ring->cpu = cpu;
3431 }
3432 put_cpu();
3433}
3434
3435static void igb_update_tx_dca(struct igb_ring *tx_ring)
3436{
3437 u32 dca_txctrl;
3438 struct igb_adapter *adapter = tx_ring->adapter;
3439 struct e1000_hw *hw = &adapter->hw;
3440 int cpu = get_cpu();
3441 int q = tx_ring - adapter->tx_ring;
3442
3443 if (tx_ring->cpu != cpu) {
3444 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3445 if (hw->mac.type == e1000_82576) {
3446 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3447 dca_txctrl |= dca_get_tag(cpu) <<
3448 E1000_DCA_TXCTRL_CPUID_SHIFT;
3449 } else {
3450 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3451 dca_txctrl |= dca_get_tag(cpu);
3452 }
fe4506b6
JC
3453 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3454 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3455 tx_ring->cpu = cpu;
3456 }
3457 put_cpu();
3458}
3459
3460static void igb_setup_dca(struct igb_adapter *adapter)
3461{
3462 int i;
3463
7dfc16fa 3464 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3465 return;
3466
3467 for (i = 0; i < adapter->num_tx_queues; i++) {
3468 adapter->tx_ring[i].cpu = -1;
3469 igb_update_tx_dca(&adapter->tx_ring[i]);
3470 }
3471 for (i = 0; i < adapter->num_rx_queues; i++) {
3472 adapter->rx_ring[i].cpu = -1;
3473 igb_update_rx_dca(&adapter->rx_ring[i]);
3474 }
3475}
3476
3477static int __igb_notify_dca(struct device *dev, void *data)
3478{
3479 struct net_device *netdev = dev_get_drvdata(dev);
3480 struct igb_adapter *adapter = netdev_priv(netdev);
3481 struct e1000_hw *hw = &adapter->hw;
3482 unsigned long event = *(unsigned long *)data;
3483
7dfc16fa
AD
3484 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3485 goto out;
3486
fe4506b6
JC
3487 switch (event) {
3488 case DCA_PROVIDER_ADD:
3489 /* if already enabled, don't do it again */
7dfc16fa 3490 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3491 break;
7dfc16fa 3492 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3493 /* Always use CB2 mode, difference is masked
3494 * in the CB driver. */
3495 wr32(E1000_DCA_CTRL, 2);
3496 if (dca_add_requester(dev) == 0) {
3497 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3498 igb_setup_dca(adapter);
3499 break;
3500 }
3501 /* Fall Through since DCA is disabled. */
3502 case DCA_PROVIDER_REMOVE:
7dfc16fa 3503 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3504 /* without this a class_device is left
3505 * hanging around in the sysfs model */
3506 dca_remove_requester(dev);
3507 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3508 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3509 wr32(E1000_DCA_CTRL, 1);
3510 }
3511 break;
3512 }
7dfc16fa 3513out:
fe4506b6 3514 return 0;
9d5c8243
AK
3515}
3516
fe4506b6
JC
3517static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3518 void *p)
3519{
3520 int ret_val;
3521
3522 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3523 __igb_notify_dca);
3524
3525 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3526}
3527#endif /* CONFIG_DCA */
9d5c8243
AK
3528
3529/**
3530 * igb_intr_msi - Interrupt Handler
3531 * @irq: interrupt number
3532 * @data: pointer to a network interface device structure
3533 **/
3534static irqreturn_t igb_intr_msi(int irq, void *data)
3535{
3536 struct net_device *netdev = data;
3537 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3538 struct e1000_hw *hw = &adapter->hw;
3539 /* read ICR disables interrupts using IAM */
3540 u32 icr = rd32(E1000_ICR);
3541
6eb5a7f1 3542 igb_write_itr(adapter->rx_ring);
9d5c8243 3543
9d5c8243
AK
3544 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3545 hw->mac.get_link_status = 1;
3546 if (!test_bit(__IGB_DOWN, &adapter->state))
3547 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3548 }
3549
844290e5 3550 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3551
3552 return IRQ_HANDLED;
3553}
3554
3555/**
3556 * igb_intr - Interrupt Handler
3557 * @irq: interrupt number
3558 * @data: pointer to a network interface device structure
3559 **/
3560static irqreturn_t igb_intr(int irq, void *data)
3561{
3562 struct net_device *netdev = data;
3563 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3564 struct e1000_hw *hw = &adapter->hw;
3565 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3566 * need for the IMC write */
3567 u32 icr = rd32(E1000_ICR);
3568 u32 eicr = 0;
3569 if (!icr)
3570 return IRQ_NONE; /* Not our interrupt */
3571
6eb5a7f1 3572 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
3573
3574 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3575 * not set, then the adapter didn't send an interrupt */
3576 if (!(icr & E1000_ICR_INT_ASSERTED))
3577 return IRQ_NONE;
3578
3579 eicr = rd32(E1000_EICR);
3580
3581 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3582 hw->mac.get_link_status = 1;
3583 /* guard against interrupt when we're going down */
3584 if (!test_bit(__IGB_DOWN, &adapter->state))
3585 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3586 }
3587
844290e5 3588 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3589
3590 return IRQ_HANDLED;
3591}
3592
3593/**
661086df
PWJ
3594 * igb_poll - NAPI Rx polling callback
3595 * @napi: napi polling structure
3596 * @budget: count of how many packets we should handle
9d5c8243 3597 **/
661086df 3598static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 3599{
661086df
PWJ
3600 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3601 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 3602 struct net_device *netdev = adapter->netdev;
661086df 3603 int tx_clean_complete, work_done = 0;
9d5c8243 3604
661086df 3605 /* this poll routine only supports one tx and one rx queue */
fe4506b6 3606#ifdef CONFIG_DCA
7dfc16fa 3607 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3608 igb_update_tx_dca(&adapter->tx_ring[0]);
3609#endif
661086df 3610 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
fe4506b6
JC
3611
3612#ifdef CONFIG_DCA
7dfc16fa 3613 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3614 igb_update_rx_dca(&adapter->rx_ring[0]);
3615#endif
661086df 3616 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
9d5c8243
AK
3617
3618 /* If no Tx and not enough Rx work done, exit the polling mode */
3619 if ((tx_clean_complete && (work_done < budget)) ||
3620 !netif_running(netdev)) {
9d5c8243 3621 if (adapter->itr_setting & 3)
6eb5a7f1 3622 igb_set_itr(adapter);
9d5c8243
AK
3623 netif_rx_complete(netdev, napi);
3624 if (!test_bit(__IGB_DOWN, &adapter->state))
3625 igb_irq_enable(adapter);
3626 return 0;
3627 }
3628
3629 return 1;
3630}
3631
3632static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3633{
3634 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3635 struct igb_adapter *adapter = rx_ring->adapter;
3636 struct e1000_hw *hw = &adapter->hw;
3637 struct net_device *netdev = adapter->netdev;
3638 int work_done = 0;
3639
3640 /* Keep link state information with original netdev */
3641 if (!netif_carrier_ok(netdev))
3642 goto quit_polling;
3643
fe4506b6 3644#ifdef CONFIG_DCA
7dfc16fa 3645 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3646 igb_update_rx_dca(rx_ring);
3647#endif
3b644cf6 3648 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243
AK
3649
3650
3651 /* If not enough Rx work done, exit the polling mode */
3652 if ((work_done == 0) || !netif_running(netdev)) {
3653quit_polling:
3654 netif_rx_complete(netdev, napi);
3655
6eb5a7f1
AD
3656 if (adapter->itr_setting & 3) {
3657 if (adapter->num_rx_queues == 1)
3658 igb_set_itr(adapter);
3659 else
3660 igb_update_ring_itr(rx_ring);
9d5c8243 3661 }
844290e5
PW
3662
3663 if (!test_bit(__IGB_DOWN, &adapter->state))
3664 wr32(E1000_EIMS, rx_ring->eims_value);
3665
9d5c8243
AK
3666 return 0;
3667 }
3668
3669 return 1;
3670}
6d8126f9
AV
3671
3672static inline u32 get_head(struct igb_ring *tx_ring)
3673{
3674 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3675 return le32_to_cpu(*(volatile __le32 *)end);
3676}
3677
9d5c8243
AK
3678/**
3679 * igb_clean_tx_irq - Reclaim resources after transmit completes
3680 * @adapter: board private structure
3681 * returns true if ring is completely cleaned
3682 **/
3b644cf6 3683static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 3684{
3b644cf6 3685 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243 3686 struct e1000_hw *hw = &adapter->hw;
3b644cf6 3687 struct net_device *netdev = adapter->netdev;
9d5c8243
AK
3688 struct e1000_tx_desc *tx_desc;
3689 struct igb_buffer *buffer_info;
3690 struct sk_buff *skb;
3691 unsigned int i;
3692 u32 head, oldhead;
3693 unsigned int count = 0;
3694 bool cleaned = false;
3695 bool retval = true;
3696 unsigned int total_bytes = 0, total_packets = 0;
3697
3698 rmb();
6d8126f9 3699 head = get_head(tx_ring);
9d5c8243
AK
3700 i = tx_ring->next_to_clean;
3701 while (1) {
3702 while (i != head) {
3703 cleaned = true;
3704 tx_desc = E1000_TX_DESC(*tx_ring, i);
3705 buffer_info = &tx_ring->buffer_info[i];
3706 skb = buffer_info->skb;
3707
3708 if (skb) {
3709 unsigned int segs, bytecount;
3710 /* gso_segs is currently only valid for tcp */
3711 segs = skb_shinfo(skb)->gso_segs ?: 1;
3712 /* multiply data chunks by size of headers */
3713 bytecount = ((segs - 1) * skb_headlen(skb)) +
3714 skb->len;
3715 total_packets += segs;
3716 total_bytes += bytecount;
3717 }
3718
3719 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3720 tx_desc->upper.data = 0;
3721
3722 i++;
3723 if (i == tx_ring->count)
3724 i = 0;
3725
3726 count++;
3727 if (count == IGB_MAX_TX_CLEAN) {
3728 retval = false;
3729 goto done_cleaning;
3730 }
3731 }
3732 oldhead = head;
3733 rmb();
6d8126f9 3734 head = get_head(tx_ring);
9d5c8243
AK
3735 if (head == oldhead)
3736 goto done_cleaning;
3737 } /* while (1) */
3738
3739done_cleaning:
3740 tx_ring->next_to_clean = i;
3741
3742 if (unlikely(cleaned &&
3743 netif_carrier_ok(netdev) &&
3744 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3745 /* Make sure that anybody stopping the queue after this
3746 * sees the new next_to_clean.
3747 */
3748 smp_mb();
661086df
PWJ
3749#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3750 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3751 !(test_bit(__IGB_DOWN, &adapter->state))) {
3752 netif_wake_subqueue(netdev, tx_ring->queue_index);
3753 ++adapter->restart_queue;
3754 }
3755#else
9d5c8243
AK
3756 if (netif_queue_stopped(netdev) &&
3757 !(test_bit(__IGB_DOWN, &adapter->state))) {
3758 netif_wake_queue(netdev);
3759 ++adapter->restart_queue;
3760 }
661086df 3761#endif
9d5c8243
AK
3762 }
3763
3764 if (tx_ring->detect_tx_hung) {
3765 /* Detect a transmit hang in hardware, this serializes the
3766 * check with the clearing of time_stamp and movement of i */
3767 tx_ring->detect_tx_hung = false;
3768 if (tx_ring->buffer_info[i].time_stamp &&
3769 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3770 (adapter->tx_timeout_factor * HZ))
3771 && !(rd32(E1000_STATUS) &
3772 E1000_STATUS_TXOFF)) {
3773
3774 tx_desc = E1000_TX_DESC(*tx_ring, i);
3775 /* detected Tx unit hang */
3776 dev_err(&adapter->pdev->dev,
3777 "Detected Tx Unit Hang\n"
2d064c06 3778 " Tx Queue <%d>\n"
9d5c8243
AK
3779 " TDH <%x>\n"
3780 " TDT <%x>\n"
3781 " next_to_use <%x>\n"
3782 " next_to_clean <%x>\n"
3783 " head (WB) <%x>\n"
3784 "buffer_info[next_to_clean]\n"
3785 " time_stamp <%lx>\n"
3786 " jiffies <%lx>\n"
3787 " desc.status <%x>\n",
2d064c06 3788 tx_ring->queue_index,
9d5c8243
AK
3789 readl(adapter->hw.hw_addr + tx_ring->head),
3790 readl(adapter->hw.hw_addr + tx_ring->tail),
3791 tx_ring->next_to_use,
3792 tx_ring->next_to_clean,
3793 head,
3794 tx_ring->buffer_info[i].time_stamp,
3795 jiffies,
3796 tx_desc->upper.fields.status);
661086df
PWJ
3797#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3798 netif_stop_subqueue(netdev, tx_ring->queue_index);
3799#else
9d5c8243 3800 netif_stop_queue(netdev);
661086df 3801#endif
9d5c8243
AK
3802 }
3803 }
3804 tx_ring->total_bytes += total_bytes;
3805 tx_ring->total_packets += total_packets;
e21ed353
AD
3806 tx_ring->tx_stats.bytes += total_bytes;
3807 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
3808 adapter->net_stats.tx_bytes += total_bytes;
3809 adapter->net_stats.tx_packets += total_packets;
3810 return retval;
3811}
3812
d3352520
AD
3813#ifdef CONFIG_IGB_LRO
3814 /**
3815 * igb_get_skb_hdr - helper function for LRO header processing
3816 * @skb: pointer to sk_buff to be added to LRO packet
3817 * @iphdr: pointer to ip header structure
3818 * @tcph: pointer to tcp header structure
3819 * @hdr_flags: pointer to header flags
3820 * @priv: pointer to the receive descriptor for the current sk_buff
3821 **/
3822static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3823 u64 *hdr_flags, void *priv)
3824{
3825 union e1000_adv_rx_desc *rx_desc = priv;
3826 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3827 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3828
3829 /* Verify that this is a valid IPv4 TCP packet */
3830 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3831 E1000_RXDADV_PKTTYPE_TCP))
3832 return -1;
3833
3834 /* Set network headers */
3835 skb_reset_network_header(skb);
3836 skb_set_transport_header(skb, ip_hdrlen(skb));
3837 *iphdr = ip_hdr(skb);
3838 *tcph = tcp_hdr(skb);
3839 *hdr_flags = LRO_IPV4 | LRO_TCP;
3840
3841 return 0;
3842
3843}
3844#endif /* CONFIG_IGB_LRO */
9d5c8243
AK
3845
3846/**
3847 * igb_receive_skb - helper function to handle rx indications
d3352520 3848 * @ring: pointer to receive ring receving this packet
9d5c8243
AK
3849 * @status: descriptor status field as written by hardware
3850 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3851 * @skb: pointer to sk_buff to be indicated to stack
3852 **/
d3352520
AD
3853static void igb_receive_skb(struct igb_ring *ring, u8 status,
3854 union e1000_adv_rx_desc * rx_desc,
3855 struct sk_buff *skb)
3856{
3857 struct igb_adapter * adapter = ring->adapter;
3858 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3859
3860#ifdef CONFIG_IGB_LRO
3861 if (adapter->netdev->features & NETIF_F_LRO &&
3862 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3863 if (vlan_extracted)
3864 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3865 adapter->vlgrp,
3866 le16_to_cpu(rx_desc->wb.upper.vlan),
3867 rx_desc);
3868 else
3869 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3870 ring->lro_used = 1;
3871 } else {
3872#endif
3873 if (vlan_extracted)
3874 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3875 le16_to_cpu(rx_desc->wb.upper.vlan));
3876 else
3877
3878 netif_receive_skb(skb);
3879#ifdef CONFIG_IGB_LRO
3880 }
3881#endif
9d5c8243
AK
3882}
3883
3884
3885static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3886 u32 status_err, struct sk_buff *skb)
3887{
3888 skb->ip_summed = CHECKSUM_NONE;
3889
3890 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3891 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3892 return;
3893 /* TCP/UDP checksum error bit is set */
3894 if (status_err &
3895 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3896 /* let the stack verify checksum errors */
3897 adapter->hw_csum_err++;
3898 return;
3899 }
3900 /* It must be a TCP or UDP packet with a valid checksum */
3901 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3902 skb->ip_summed = CHECKSUM_UNNECESSARY;
3903
3904 adapter->hw_csum_good++;
3905}
3906
3b644cf6
MW
3907static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3908 int *work_done, int budget)
9d5c8243 3909{
3b644cf6 3910 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3911 struct net_device *netdev = adapter->netdev;
3912 struct pci_dev *pdev = adapter->pdev;
3913 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3914 struct igb_buffer *buffer_info , *next_buffer;
3915 struct sk_buff *skb;
bf36c1a0 3916 unsigned int i;
9d5c8243
AK
3917 u32 length, hlen, staterr;
3918 bool cleaned = false;
3919 int cleaned_count = 0;
3920 unsigned int total_bytes = 0, total_packets = 0;
3921
3922 i = rx_ring->next_to_clean;
3923 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3924 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3925
3926 while (staterr & E1000_RXD_STAT_DD) {
3927 if (*work_done >= budget)
3928 break;
3929 (*work_done)++;
3930 buffer_info = &rx_ring->buffer_info[i];
3931
3932 /* HW will not DMA in data larger than the given buffer, even
3933 * if it parses the (NFS, of course) header to be larger. In
3934 * that case, it fills the header buffer and spills the rest
3935 * into the page.
3936 */
7deb07b1
AV
3937 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3938 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
9d5c8243
AK
3939 if (hlen > adapter->rx_ps_hdr_size)
3940 hlen = adapter->rx_ps_hdr_size;
3941
3942 length = le16_to_cpu(rx_desc->wb.upper.length);
3943 cleaned = true;
3944 cleaned_count++;
3945
bf36c1a0
AD
3946 skb = buffer_info->skb;
3947 prefetch(skb->data - NET_IP_ALIGN);
3948 buffer_info->skb = NULL;
3949 if (!adapter->rx_ps_hdr_size) {
3950 pci_unmap_single(pdev, buffer_info->dma,
3951 adapter->rx_buffer_len +
3952 NET_IP_ALIGN,
3953 PCI_DMA_FROMDEVICE);
3954 skb_put(skb, length);
3955 goto send_up;
9d5c8243
AK
3956 }
3957
bf36c1a0
AD
3958 if (!skb_shinfo(skb)->nr_frags) {
3959 pci_unmap_single(pdev, buffer_info->dma,
3960 adapter->rx_ps_hdr_size +
3961 NET_IP_ALIGN,
3962 PCI_DMA_FROMDEVICE);
3963 skb_put(skb, hlen);
3964 }
3965
3966 if (length) {
9d5c8243 3967 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 3968 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 3969 buffer_info->page_dma = 0;
bf36c1a0
AD
3970
3971 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3972 buffer_info->page,
3973 buffer_info->page_offset,
3974 length);
3975
3976 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3977 (page_count(buffer_info->page) != 1))
3978 buffer_info->page = NULL;
3979 else
3980 get_page(buffer_info->page);
9d5c8243
AK
3981
3982 skb->len += length;
3983 skb->data_len += length;
9d5c8243 3984
bf36c1a0 3985 skb->truesize += length;
9d5c8243
AK
3986 }
3987send_up:
9d5c8243
AK
3988 i++;
3989 if (i == rx_ring->count)
3990 i = 0;
3991 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3992 prefetch(next_rxd);
3993 next_buffer = &rx_ring->buffer_info[i];
3994
bf36c1a0
AD
3995 if (!(staterr & E1000_RXD_STAT_EOP)) {
3996 buffer_info->skb = xchg(&next_buffer->skb, skb);
3997 buffer_info->dma = xchg(&next_buffer->dma, 0);
3998 goto next_desc;
3999 }
4000
9d5c8243
AK
4001 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4002 dev_kfree_skb_irq(skb);
4003 goto next_desc;
4004 }
9d5c8243
AK
4005
4006 total_bytes += skb->len;
4007 total_packets++;
4008
4009 igb_rx_checksum_adv(adapter, staterr, skb);
4010
4011 skb->protocol = eth_type_trans(skb, netdev);
4012
d3352520 4013 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243
AK
4014
4015 netdev->last_rx = jiffies;
4016
4017next_desc:
4018 rx_desc->wb.upper.status_error = 0;
4019
4020 /* return some buffers to hardware, one at a time is too slow */
4021 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4022 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4023 cleaned_count = 0;
4024 }
4025
4026 /* use prefetched values */
4027 rx_desc = next_rxd;
4028 buffer_info = next_buffer;
4029
4030 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4031 }
bf36c1a0 4032
9d5c8243
AK
4033 rx_ring->next_to_clean = i;
4034 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4035
d3352520
AD
4036#ifdef CONFIG_IGB_LRO
4037 if (rx_ring->lro_used) {
4038 lro_flush_all(&rx_ring->lro_mgr);
4039 rx_ring->lro_used = 0;
4040 }
4041#endif
4042
9d5c8243 4043 if (cleaned_count)
3b644cf6 4044 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4045
4046 rx_ring->total_packets += total_packets;
4047 rx_ring->total_bytes += total_bytes;
4048 rx_ring->rx_stats.packets += total_packets;
4049 rx_ring->rx_stats.bytes += total_bytes;
4050 adapter->net_stats.rx_bytes += total_bytes;
4051 adapter->net_stats.rx_packets += total_packets;
4052 return cleaned;
4053}
4054
4055
4056/**
4057 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4058 * @adapter: address of board private structure
4059 **/
3b644cf6 4060static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4061 int cleaned_count)
4062{
3b644cf6 4063 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4064 struct net_device *netdev = adapter->netdev;
4065 struct pci_dev *pdev = adapter->pdev;
4066 union e1000_adv_rx_desc *rx_desc;
4067 struct igb_buffer *buffer_info;
4068 struct sk_buff *skb;
4069 unsigned int i;
4070
4071 i = rx_ring->next_to_use;
4072 buffer_info = &rx_ring->buffer_info[i];
4073
4074 while (cleaned_count--) {
4075 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4076
bf36c1a0 4077 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4078 if (!buffer_info->page) {
bf36c1a0
AD
4079 buffer_info->page = alloc_page(GFP_ATOMIC);
4080 if (!buffer_info->page) {
4081 adapter->alloc_rx_buff_failed++;
4082 goto no_buffers;
4083 }
4084 buffer_info->page_offset = 0;
4085 } else {
4086 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4087 }
4088 buffer_info->page_dma =
4089 pci_map_page(pdev,
4090 buffer_info->page,
bf36c1a0
AD
4091 buffer_info->page_offset,
4092 PAGE_SIZE / 2,
9d5c8243
AK
4093 PCI_DMA_FROMDEVICE);
4094 }
4095
4096 if (!buffer_info->skb) {
4097 int bufsz;
4098
4099 if (adapter->rx_ps_hdr_size)
4100 bufsz = adapter->rx_ps_hdr_size;
4101 else
4102 bufsz = adapter->rx_buffer_len;
4103 bufsz += NET_IP_ALIGN;
4104 skb = netdev_alloc_skb(netdev, bufsz);
4105
4106 if (!skb) {
4107 adapter->alloc_rx_buff_failed++;
4108 goto no_buffers;
4109 }
4110
4111 /* Make buffer alignment 2 beyond a 16 byte boundary
4112 * this will result in a 16 byte aligned IP header after
4113 * the 14 byte MAC header is removed
4114 */
4115 skb_reserve(skb, NET_IP_ALIGN);
4116
4117 buffer_info->skb = skb;
4118 buffer_info->dma = pci_map_single(pdev, skb->data,
4119 bufsz,
4120 PCI_DMA_FROMDEVICE);
4121
4122 }
4123 /* Refresh the desc even if buffer_addrs didn't change because
4124 * each write-back erases this info. */
4125 if (adapter->rx_ps_hdr_size) {
4126 rx_desc->read.pkt_addr =
4127 cpu_to_le64(buffer_info->page_dma);
4128 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4129 } else {
4130 rx_desc->read.pkt_addr =
4131 cpu_to_le64(buffer_info->dma);
4132 rx_desc->read.hdr_addr = 0;
4133 }
4134
4135 i++;
4136 if (i == rx_ring->count)
4137 i = 0;
4138 buffer_info = &rx_ring->buffer_info[i];
4139 }
4140
4141no_buffers:
4142 if (rx_ring->next_to_use != i) {
4143 rx_ring->next_to_use = i;
4144 if (i == 0)
4145 i = (rx_ring->count - 1);
4146 else
4147 i--;
4148
4149 /* Force memory writes to complete before letting h/w
4150 * know there are new descriptors to fetch. (Only
4151 * applicable for weak-ordered memory model archs,
4152 * such as IA-64). */
4153 wmb();
4154 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4155 }
4156}
4157
4158/**
4159 * igb_mii_ioctl -
4160 * @netdev:
4161 * @ifreq:
4162 * @cmd:
4163 **/
4164static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4165{
4166 struct igb_adapter *adapter = netdev_priv(netdev);
4167 struct mii_ioctl_data *data = if_mii(ifr);
4168
4169 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4170 return -EOPNOTSUPP;
4171
4172 switch (cmd) {
4173 case SIOCGMIIPHY:
4174 data->phy_id = adapter->hw.phy.addr;
4175 break;
4176 case SIOCGMIIREG:
4177 if (!capable(CAP_NET_ADMIN))
4178 return -EPERM;
4179 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4180 data->reg_num
4181 & 0x1F, &data->val_out))
4182 return -EIO;
4183 break;
4184 case SIOCSMIIREG:
4185 default:
4186 return -EOPNOTSUPP;
4187 }
4188 return 0;
4189}
4190
4191/**
4192 * igb_ioctl -
4193 * @netdev:
4194 * @ifreq:
4195 * @cmd:
4196 **/
4197static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4198{
4199 switch (cmd) {
4200 case SIOCGMIIPHY:
4201 case SIOCGMIIREG:
4202 case SIOCSMIIREG:
4203 return igb_mii_ioctl(netdev, ifr, cmd);
4204 default:
4205 return -EOPNOTSUPP;
4206 }
4207}
4208
4209static void igb_vlan_rx_register(struct net_device *netdev,
4210 struct vlan_group *grp)
4211{
4212 struct igb_adapter *adapter = netdev_priv(netdev);
4213 struct e1000_hw *hw = &adapter->hw;
4214 u32 ctrl, rctl;
4215
4216 igb_irq_disable(adapter);
4217 adapter->vlgrp = grp;
4218
4219 if (grp) {
4220 /* enable VLAN tag insert/strip */
4221 ctrl = rd32(E1000_CTRL);
4222 ctrl |= E1000_CTRL_VME;
4223 wr32(E1000_CTRL, ctrl);
4224
4225 /* enable VLAN receive filtering */
4226 rctl = rd32(E1000_RCTL);
746b9f02
PM
4227 if (!(netdev->flags & IFF_PROMISC))
4228 rctl |= E1000_RCTL_VFE;
9d5c8243
AK
4229 rctl &= ~E1000_RCTL_CFIEN;
4230 wr32(E1000_RCTL, rctl);
4231 igb_update_mng_vlan(adapter);
4232 wr32(E1000_RLPML,
4233 adapter->max_frame_size + VLAN_TAG_SIZE);
4234 } else {
4235 /* disable VLAN tag insert/strip */
4236 ctrl = rd32(E1000_CTRL);
4237 ctrl &= ~E1000_CTRL_VME;
4238 wr32(E1000_CTRL, ctrl);
4239
4240 /* disable VLAN filtering */
4241 rctl = rd32(E1000_RCTL);
4242 rctl &= ~E1000_RCTL_VFE;
4243 wr32(E1000_RCTL, rctl);
4244 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4245 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4246 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4247 }
4248 wr32(E1000_RLPML,
4249 adapter->max_frame_size);
4250 }
4251
4252 if (!test_bit(__IGB_DOWN, &adapter->state))
4253 igb_irq_enable(adapter);
4254}
4255
4256static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4257{
4258 struct igb_adapter *adapter = netdev_priv(netdev);
4259 struct e1000_hw *hw = &adapter->hw;
4260 u32 vfta, index;
4261
4262 if ((adapter->hw.mng_cookie.status &
4263 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4264 (vid == adapter->mng_vlan_id))
4265 return;
4266 /* add VID to filter table */
4267 index = (vid >> 5) & 0x7F;
4268 vfta = array_rd32(E1000_VFTA, index);
4269 vfta |= (1 << (vid & 0x1F));
4270 igb_write_vfta(&adapter->hw, index, vfta);
4271}
4272
4273static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4274{
4275 struct igb_adapter *adapter = netdev_priv(netdev);
4276 struct e1000_hw *hw = &adapter->hw;
4277 u32 vfta, index;
4278
4279 igb_irq_disable(adapter);
4280 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4281
4282 if (!test_bit(__IGB_DOWN, &adapter->state))
4283 igb_irq_enable(adapter);
4284
4285 if ((adapter->hw.mng_cookie.status &
4286 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4287 (vid == adapter->mng_vlan_id)) {
4288 /* release control to f/w */
4289 igb_release_hw_control(adapter);
4290 return;
4291 }
4292
4293 /* remove VID from filter table */
4294 index = (vid >> 5) & 0x7F;
4295 vfta = array_rd32(E1000_VFTA, index);
4296 vfta &= ~(1 << (vid & 0x1F));
4297 igb_write_vfta(&adapter->hw, index, vfta);
4298}
4299
4300static void igb_restore_vlan(struct igb_adapter *adapter)
4301{
4302 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4303
4304 if (adapter->vlgrp) {
4305 u16 vid;
4306 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4307 if (!vlan_group_get_device(adapter->vlgrp, vid))
4308 continue;
4309 igb_vlan_rx_add_vid(adapter->netdev, vid);
4310 }
4311 }
4312}
4313
4314int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4315{
4316 struct e1000_mac_info *mac = &adapter->hw.mac;
4317
4318 mac->autoneg = 0;
4319
4320 /* Fiber NICs only allow 1000 gbps Full duplex */
4321 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4322 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4323 dev_err(&adapter->pdev->dev,
4324 "Unsupported Speed/Duplex configuration\n");
4325 return -EINVAL;
4326 }
4327
4328 switch (spddplx) {
4329 case SPEED_10 + DUPLEX_HALF:
4330 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4331 break;
4332 case SPEED_10 + DUPLEX_FULL:
4333 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4334 break;
4335 case SPEED_100 + DUPLEX_HALF:
4336 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4337 break;
4338 case SPEED_100 + DUPLEX_FULL:
4339 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4340 break;
4341 case SPEED_1000 + DUPLEX_FULL:
4342 mac->autoneg = 1;
4343 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4344 break;
4345 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4346 default:
4347 dev_err(&adapter->pdev->dev,
4348 "Unsupported Speed/Duplex configuration\n");
4349 return -EINVAL;
4350 }
4351 return 0;
4352}
4353
4354
4355static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4356{
4357 struct net_device *netdev = pci_get_drvdata(pdev);
4358 struct igb_adapter *adapter = netdev_priv(netdev);
4359 struct e1000_hw *hw = &adapter->hw;
2d064c06 4360 u32 ctrl, rctl, status;
9d5c8243
AK
4361 u32 wufc = adapter->wol;
4362#ifdef CONFIG_PM
4363 int retval = 0;
4364#endif
4365
4366 netif_device_detach(netdev);
4367
a88f10ec
AD
4368 if (netif_running(netdev))
4369 igb_close(netdev);
4370
4371 igb_reset_interrupt_capability(adapter);
4372
4373 igb_free_queues(adapter);
9d5c8243
AK
4374
4375#ifdef CONFIG_PM
4376 retval = pci_save_state(pdev);
4377 if (retval)
4378 return retval;
4379#endif
4380
4381 status = rd32(E1000_STATUS);
4382 if (status & E1000_STATUS_LU)
4383 wufc &= ~E1000_WUFC_LNKC;
4384
4385 if (wufc) {
4386 igb_setup_rctl(adapter);
4387 igb_set_multi(netdev);
4388
4389 /* turn on all-multi mode if wake on multicast is enabled */
4390 if (wufc & E1000_WUFC_MC) {
4391 rctl = rd32(E1000_RCTL);
4392 rctl |= E1000_RCTL_MPE;
4393 wr32(E1000_RCTL, rctl);
4394 }
4395
4396 ctrl = rd32(E1000_CTRL);
4397 /* advertise wake from D3Cold */
4398 #define E1000_CTRL_ADVD3WUC 0x00100000
4399 /* phy power management enable */
4400 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4401 ctrl |= E1000_CTRL_ADVD3WUC;
4402 wr32(E1000_CTRL, ctrl);
4403
9d5c8243
AK
4404 /* Allow time for pending master requests to run */
4405 igb_disable_pcie_master(&adapter->hw);
4406
4407 wr32(E1000_WUC, E1000_WUC_PME_EN);
4408 wr32(E1000_WUFC, wufc);
9d5c8243
AK
4409 } else {
4410 wr32(E1000_WUC, 0);
4411 wr32(E1000_WUFC, 0);
9d5c8243
AK
4412 }
4413
2d064c06
AD
4414 /* make sure adapter isn't asleep if manageability/wol is enabled */
4415 if (wufc || adapter->en_mng_pt) {
9d5c8243
AK
4416 pci_enable_wake(pdev, PCI_D3hot, 1);
4417 pci_enable_wake(pdev, PCI_D3cold, 1);
2d064c06
AD
4418 } else {
4419 igb_shutdown_fiber_serdes_link_82575(hw);
4420 pci_enable_wake(pdev, PCI_D3hot, 0);
4421 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243
AK
4422 }
4423
4424 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4425 * would have already happened in close and is redundant. */
4426 igb_release_hw_control(adapter);
4427
4428 pci_disable_device(pdev);
4429
4430 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4431
4432 return 0;
4433}
4434
4435#ifdef CONFIG_PM
4436static int igb_resume(struct pci_dev *pdev)
4437{
4438 struct net_device *netdev = pci_get_drvdata(pdev);
4439 struct igb_adapter *adapter = netdev_priv(netdev);
4440 struct e1000_hw *hw = &adapter->hw;
4441 u32 err;
4442
4443 pci_set_power_state(pdev, PCI_D0);
4444 pci_restore_state(pdev);
42bfd33a
TI
4445
4446 if (adapter->need_ioport)
4447 err = pci_enable_device(pdev);
4448 else
4449 err = pci_enable_device_mem(pdev);
9d5c8243
AK
4450 if (err) {
4451 dev_err(&pdev->dev,
4452 "igb: Cannot enable PCI device from suspend\n");
4453 return err;
4454 }
4455 pci_set_master(pdev);
4456
4457 pci_enable_wake(pdev, PCI_D3hot, 0);
4458 pci_enable_wake(pdev, PCI_D3cold, 0);
4459
a88f10ec
AD
4460 igb_set_interrupt_capability(adapter);
4461
4462 if (igb_alloc_queues(adapter)) {
4463 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4464 return -ENOMEM;
9d5c8243
AK
4465 }
4466
4467 /* e1000_power_up_phy(adapter); */
4468
4469 igb_reset(adapter);
4470 wr32(E1000_WUS, ~0);
4471
a88f10ec
AD
4472 if (netif_running(netdev)) {
4473 err = igb_open(netdev);
4474 if (err)
4475 return err;
4476 }
9d5c8243
AK
4477
4478 netif_device_attach(netdev);
4479
4480 /* let the f/w know that the h/w is now under the control of the
4481 * driver. */
4482 igb_get_hw_control(adapter);
4483
4484 return 0;
4485}
4486#endif
4487
4488static void igb_shutdown(struct pci_dev *pdev)
4489{
4490 igb_suspend(pdev, PMSG_SUSPEND);
4491}
4492
4493#ifdef CONFIG_NET_POLL_CONTROLLER
4494/*
4495 * Polling 'interrupt' - used by things like netconsole to send skbs
4496 * without having to re-enable interrupts. It's not called while
4497 * the interrupt routine is executing.
4498 */
4499static void igb_netpoll(struct net_device *netdev)
4500{
4501 struct igb_adapter *adapter = netdev_priv(netdev);
4502 int i;
4503 int work_done = 0;
4504
4505 igb_irq_disable(adapter);
7dfc16fa
AD
4506 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4507
9d5c8243 4508 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 4509 igb_clean_tx_irq(&adapter->tx_ring[i]);
9d5c8243
AK
4510
4511 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 4512 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
9d5c8243
AK
4513 &work_done,
4514 adapter->rx_ring[i].napi.weight);
4515
7dfc16fa 4516 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
9d5c8243
AK
4517 igb_irq_enable(adapter);
4518}
4519#endif /* CONFIG_NET_POLL_CONTROLLER */
4520
4521/**
4522 * igb_io_error_detected - called when PCI error is detected
4523 * @pdev: Pointer to PCI device
4524 * @state: The current pci connection state
4525 *
4526 * This function is called after a PCI bus error affecting
4527 * this device has been detected.
4528 */
4529static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4530 pci_channel_state_t state)
4531{
4532 struct net_device *netdev = pci_get_drvdata(pdev);
4533 struct igb_adapter *adapter = netdev_priv(netdev);
4534
4535 netif_device_detach(netdev);
4536
4537 if (netif_running(netdev))
4538 igb_down(adapter);
4539 pci_disable_device(pdev);
4540
4541 /* Request a slot slot reset. */
4542 return PCI_ERS_RESULT_NEED_RESET;
4543}
4544
4545/**
4546 * igb_io_slot_reset - called after the pci bus has been reset.
4547 * @pdev: Pointer to PCI device
4548 *
4549 * Restart the card from scratch, as if from a cold-boot. Implementation
4550 * resembles the first-half of the igb_resume routine.
4551 */
4552static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4553{
4554 struct net_device *netdev = pci_get_drvdata(pdev);
4555 struct igb_adapter *adapter = netdev_priv(netdev);
4556 struct e1000_hw *hw = &adapter->hw;
42bfd33a 4557 int err;
9d5c8243 4558
42bfd33a
TI
4559 if (adapter->need_ioport)
4560 err = pci_enable_device(pdev);
4561 else
4562 err = pci_enable_device_mem(pdev);
4563 if (err) {
9d5c8243
AK
4564 dev_err(&pdev->dev,
4565 "Cannot re-enable PCI device after reset.\n");
4566 return PCI_ERS_RESULT_DISCONNECT;
4567 }
4568 pci_set_master(pdev);
c682fc23 4569 pci_restore_state(pdev);
9d5c8243
AK
4570
4571 pci_enable_wake(pdev, PCI_D3hot, 0);
4572 pci_enable_wake(pdev, PCI_D3cold, 0);
4573
4574 igb_reset(adapter);
4575 wr32(E1000_WUS, ~0);
4576
4577 return PCI_ERS_RESULT_RECOVERED;
4578}
4579
4580/**
4581 * igb_io_resume - called when traffic can start flowing again.
4582 * @pdev: Pointer to PCI device
4583 *
4584 * This callback is called when the error recovery driver tells us that
4585 * its OK to resume normal operation. Implementation resembles the
4586 * second-half of the igb_resume routine.
4587 */
4588static void igb_io_resume(struct pci_dev *pdev)
4589{
4590 struct net_device *netdev = pci_get_drvdata(pdev);
4591 struct igb_adapter *adapter = netdev_priv(netdev);
4592
4593 igb_init_manageability(adapter);
4594
4595 if (netif_running(netdev)) {
4596 if (igb_up(adapter)) {
4597 dev_err(&pdev->dev, "igb_up failed after reset\n");
4598 return;
4599 }
4600 }
4601
4602 netif_device_attach(netdev);
4603
4604 /* let the f/w know that the h/w is now under the control of the
4605 * driver. */
4606 igb_get_hw_control(adapter);
4607
4608}
4609
4610/* igb_main.c */
This page took 0.292675 seconds and 5 git commands to generate.