e1000e: checkpatch warnings - braces
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
2d064c06 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
87 /* required last entry */
88 {0, }
89};
90
91MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
92
93void igb_reset(struct igb_adapter *);
94static int igb_setup_all_tx_resources(struct igb_adapter *);
95static int igb_setup_all_rx_resources(struct igb_adapter *);
96static void igb_free_all_tx_resources(struct igb_adapter *);
97static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 98static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
99static int igb_probe(struct pci_dev *, const struct pci_device_id *);
100static void __devexit igb_remove(struct pci_dev *pdev);
101static int igb_sw_init(struct igb_adapter *);
102static int igb_open(struct net_device *);
103static int igb_close(struct net_device *);
104static void igb_configure_tx(struct igb_adapter *);
105static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
106static void igb_clean_all_tx_rings(struct igb_adapter *);
107static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
108static void igb_clean_tx_ring(struct igb_ring *);
109static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 110static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
111static void igb_update_phy_info(unsigned long);
112static void igb_watchdog(unsigned long);
113static void igb_watchdog_task(struct work_struct *);
b1a436c3 114static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
115static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
116 struct rtnl_link_stats64 *stats);
9d5c8243
AK
117static int igb_change_mtu(struct net_device *, int);
118static int igb_set_mac(struct net_device *, void *);
68d480c4 119static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
120static irqreturn_t igb_intr(int irq, void *);
121static irqreturn_t igb_intr_msi(int irq, void *);
122static irqreturn_t igb_msix_other(int irq, void *);
047e0030 123static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 124#ifdef CONFIG_IGB_DCA
047e0030 125static void igb_update_dca(struct igb_q_vector *);
fe4506b6 126static void igb_setup_dca(struct igb_adapter *);
421e02f0 127#endif /* CONFIG_IGB_DCA */
047e0030 128static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 129static int igb_poll(struct napi_struct *, int);
047e0030 130static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
131static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
132static void igb_tx_timeout(struct net_device *);
133static void igb_reset_task(struct work_struct *);
134static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
135static void igb_vlan_rx_add_vid(struct net_device *, u16);
136static void igb_vlan_rx_kill_vid(struct net_device *, u16);
137static void igb_restore_vlan(struct igb_adapter *);
26ad9178 138static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
139static void igb_ping_all_vfs(struct igb_adapter *);
140static void igb_msg_task(struct igb_adapter *);
4ae196df 141static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 142static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 143static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
144static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
145static int igb_ndo_set_vf_vlan(struct net_device *netdev,
146 int vf, u16 vlan, u8 qos);
147static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
148static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
149 struct ifla_vf_info *ivi);
9d5c8243 150
9d5c8243 151#ifdef CONFIG_PM
3fe7c4c9 152static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
153static int igb_resume(struct pci_dev *);
154#endif
155static void igb_shutdown(struct pci_dev *);
421e02f0 156#ifdef CONFIG_IGB_DCA
fe4506b6
JC
157static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
158static struct notifier_block dca_notifier = {
159 .notifier_call = igb_notify_dca,
160 .next = NULL,
161 .priority = 0
162};
163#endif
9d5c8243
AK
164#ifdef CONFIG_NET_POLL_CONTROLLER
165/* for netdump / net console */
166static void igb_netpoll(struct net_device *);
167#endif
37680117 168#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
169static unsigned int max_vfs = 0;
170module_param(max_vfs, uint, 0);
171MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
172 "per physical function");
173#endif /* CONFIG_PCI_IOV */
174
9d5c8243
AK
175static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
176 pci_channel_state_t);
177static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
178static void igb_io_resume(struct pci_dev *);
179
180static struct pci_error_handlers igb_err_handler = {
181 .error_detected = igb_io_error_detected,
182 .slot_reset = igb_io_slot_reset,
183 .resume = igb_io_resume,
184};
185
186
187static struct pci_driver igb_driver = {
188 .name = igb_driver_name,
189 .id_table = igb_pci_tbl,
190 .probe = igb_probe,
191 .remove = __devexit_p(igb_remove),
192#ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = igb_suspend,
195 .resume = igb_resume,
196#endif
197 .shutdown = igb_shutdown,
198 .err_handler = &igb_err_handler
199};
200
201MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
202MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
203MODULE_LICENSE("GPL");
204MODULE_VERSION(DRV_VERSION);
205
c97ec42a
TI
206struct igb_reg_info {
207 u32 ofs;
208 char *name;
209};
210
211static const struct igb_reg_info igb_reg_info_tbl[] = {
212
213 /* General Registers */
214 {E1000_CTRL, "CTRL"},
215 {E1000_STATUS, "STATUS"},
216 {E1000_CTRL_EXT, "CTRL_EXT"},
217
218 /* Interrupt Registers */
219 {E1000_ICR, "ICR"},
220
221 /* RX Registers */
222 {E1000_RCTL, "RCTL"},
223 {E1000_RDLEN(0), "RDLEN"},
224 {E1000_RDH(0), "RDH"},
225 {E1000_RDT(0), "RDT"},
226 {E1000_RXDCTL(0), "RXDCTL"},
227 {E1000_RDBAL(0), "RDBAL"},
228 {E1000_RDBAH(0), "RDBAH"},
229
230 /* TX Registers */
231 {E1000_TCTL, "TCTL"},
232 {E1000_TDBAL(0), "TDBAL"},
233 {E1000_TDBAH(0), "TDBAH"},
234 {E1000_TDLEN(0), "TDLEN"},
235 {E1000_TDH(0), "TDH"},
236 {E1000_TDT(0), "TDT"},
237 {E1000_TXDCTL(0), "TXDCTL"},
238 {E1000_TDFH, "TDFH"},
239 {E1000_TDFT, "TDFT"},
240 {E1000_TDFHS, "TDFHS"},
241 {E1000_TDFPC, "TDFPC"},
242
243 /* List Terminator */
244 {}
245};
246
247/*
248 * igb_regdump - register printout routine
249 */
250static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
251{
252 int n = 0;
253 char rname[16];
254 u32 regs[8];
255
256 switch (reginfo->ofs) {
257 case E1000_RDLEN(0):
258 for (n = 0; n < 4; n++)
259 regs[n] = rd32(E1000_RDLEN(n));
260 break;
261 case E1000_RDH(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDH(n));
264 break;
265 case E1000_RDT(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDT(n));
268 break;
269 case E1000_RXDCTL(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RXDCTL(n));
272 break;
273 case E1000_RDBAL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDBAL(n));
276 break;
277 case E1000_RDBAH(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAH(n));
280 break;
281 case E1000_TDBAL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAL(n));
284 break;
285 case E1000_TDBAH(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAH(n));
288 break;
289 case E1000_TDLEN(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDLEN(n));
292 break;
293 case E1000_TDH(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDH(n));
296 break;
297 case E1000_TDT(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDT(n));
300 break;
301 case E1000_TXDCTL(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TXDCTL(n));
304 break;
305 default:
306 printk(KERN_INFO "%-15s %08x\n",
307 reginfo->name, rd32(reginfo->ofs));
308 return;
309 }
310
311 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
312 printk(KERN_INFO "%-15s ", rname);
313 for (n = 0; n < 4; n++)
314 printk(KERN_CONT "%08x ", regs[n]);
315 printk(KERN_CONT "\n");
316}
317
318/*
319 * igb_dump - Print registers, tx-rings and rx-rings
320 */
321static void igb_dump(struct igb_adapter *adapter)
322{
323 struct net_device *netdev = adapter->netdev;
324 struct e1000_hw *hw = &adapter->hw;
325 struct igb_reg_info *reginfo;
326 int n = 0;
327 struct igb_ring *tx_ring;
328 union e1000_adv_tx_desc *tx_desc;
329 struct my_u0 { u64 a; u64 b; } *u0;
330 struct igb_buffer *buffer_info;
331 struct igb_ring *rx_ring;
332 union e1000_adv_rx_desc *rx_desc;
333 u32 staterr;
334 int i = 0;
335
336 if (!netif_msg_hw(adapter))
337 return;
338
339 /* Print netdevice Info */
340 if (netdev) {
341 dev_info(&adapter->pdev->dev, "Net device Info\n");
342 printk(KERN_INFO "Device Name state "
343 "trans_start last_rx\n");
344 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
345 netdev->name,
346 netdev->state,
347 netdev->trans_start,
348 netdev->last_rx);
349 }
350
351 /* Print Registers */
352 dev_info(&adapter->pdev->dev, "Register Dump\n");
353 printk(KERN_INFO " Register Name Value\n");
354 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
355 reginfo->name; reginfo++) {
356 igb_regdump(hw, reginfo);
357 }
358
359 /* Print TX Ring Summary */
360 if (!netdev || !netif_running(netdev))
361 goto exit;
362
363 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
364 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
365 " leng ntw timestamp\n");
366 for (n = 0; n < adapter->num_tx_queues; n++) {
367 tx_ring = adapter->tx_ring[n];
368 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
369 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
370 n, tx_ring->next_to_use, tx_ring->next_to_clean,
371 (u64)buffer_info->dma,
372 buffer_info->length,
373 buffer_info->next_to_watch,
374 (u64)buffer_info->time_stamp);
375 }
376
377 /* Print TX Rings */
378 if (!netif_msg_tx_done(adapter))
379 goto rx_ring_summary;
380
381 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
382
383 /* Transmit Descriptor Formats
384 *
385 * Advanced Transmit Descriptor
386 * +--------------------------------------------------------------+
387 * 0 | Buffer Address [63:0] |
388 * +--------------------------------------------------------------+
389 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
390 * +--------------------------------------------------------------+
391 * 63 46 45 40 39 38 36 35 32 31 24 15 0
392 */
393
394 for (n = 0; n < adapter->num_tx_queues; n++) {
395 tx_ring = adapter->tx_ring[n];
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
398 printk(KERN_INFO "------------------------------------\n");
399 printk(KERN_INFO "T [desc] [address 63:0 ] "
400 "[PlPOCIStDDM Ln] [bi->dma ] "
401 "leng ntw timestamp bi->skb\n");
402
403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
404 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
405 buffer_info = &tx_ring->buffer_info[i];
406 u0 = (struct my_u0 *)tx_desc;
407 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
408 " %04X %3X %016llX %p", i,
409 le64_to_cpu(u0->a),
410 le64_to_cpu(u0->b),
411 (u64)buffer_info->dma,
412 buffer_info->length,
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp,
415 buffer_info->skb);
416 if (i == tx_ring->next_to_use &&
417 i == tx_ring->next_to_clean)
418 printk(KERN_CONT " NTC/U\n");
419 else if (i == tx_ring->next_to_use)
420 printk(KERN_CONT " NTU\n");
421 else if (i == tx_ring->next_to_clean)
422 printk(KERN_CONT " NTC\n");
423 else
424 printk(KERN_CONT "\n");
425
426 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
427 print_hex_dump(KERN_INFO, "",
428 DUMP_PREFIX_ADDRESS,
429 16, 1, phys_to_virt(buffer_info->dma),
430 buffer_info->length, true);
431 }
432 }
433
434 /* Print RX Rings Summary */
435rx_ring_summary:
436 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
437 printk(KERN_INFO "Queue [NTU] [NTC]\n");
438 for (n = 0; n < adapter->num_rx_queues; n++) {
439 rx_ring = adapter->rx_ring[n];
440 printk(KERN_INFO " %5d %5X %5X\n", n,
441 rx_ring->next_to_use, rx_ring->next_to_clean);
442 }
443
444 /* Print RX Rings */
445 if (!netif_msg_rx_status(adapter))
446 goto exit;
447
448 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
449
450 /* Advanced Receive Descriptor (Read) Format
451 * 63 1 0
452 * +-----------------------------------------------------+
453 * 0 | Packet Buffer Address [63:1] |A0/NSE|
454 * +----------------------------------------------+------+
455 * 8 | Header Buffer Address [63:1] | DD |
456 * +-----------------------------------------------------+
457 *
458 *
459 * Advanced Receive Descriptor (Write-Back) Format
460 *
461 * 63 48 47 32 31 30 21 20 17 16 4 3 0
462 * +------------------------------------------------------+
463 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
464 * | Checksum Ident | | | | Type | Type |
465 * +------------------------------------------------------+
466 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
467 * +------------------------------------------------------+
468 * 63 48 47 32 31 20 19 0
469 */
470
471 for (n = 0; n < adapter->num_rx_queues; n++) {
472 rx_ring = adapter->rx_ring[n];
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
475 printk(KERN_INFO "------------------------------------\n");
476 printk(KERN_INFO "R [desc] [ PktBuf A0] "
477 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
478 "<-- Adv Rx Read format\n");
479 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
480 "[vl er S cks ln] ---------------- [bi->skb] "
481 "<-- Adv Rx Write-Back format\n");
482
483 for (i = 0; i < rx_ring->count; i++) {
484 buffer_info = &rx_ring->buffer_info[i];
485 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
486 u0 = (struct my_u0 *)rx_desc;
487 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
488 if (staterr & E1000_RXD_STAT_DD) {
489 /* Descriptor Done */
490 printk(KERN_INFO "RWB[0x%03X] %016llX "
491 "%016llX ---------------- %p", i,
492 le64_to_cpu(u0->a),
493 le64_to_cpu(u0->b),
494 buffer_info->skb);
495 } else {
496 printk(KERN_INFO "R [0x%03X] %016llX "
497 "%016llX %016llX %p", i,
498 le64_to_cpu(u0->a),
499 le64_to_cpu(u0->b),
500 (u64)buffer_info->dma,
501 buffer_info->skb);
502
503 if (netif_msg_pktdata(adapter)) {
504 print_hex_dump(KERN_INFO, "",
505 DUMP_PREFIX_ADDRESS,
506 16, 1,
507 phys_to_virt(buffer_info->dma),
508 rx_ring->rx_buffer_len, true);
509 if (rx_ring->rx_buffer_len
510 < IGB_RXBUFFER_1024)
511 print_hex_dump(KERN_INFO, "",
512 DUMP_PREFIX_ADDRESS,
513 16, 1,
514 phys_to_virt(
515 buffer_info->page_dma +
516 buffer_info->page_offset),
517 PAGE_SIZE/2, true);
518 }
519 }
520
521 if (i == rx_ring->next_to_use)
522 printk(KERN_CONT " NTU\n");
523 else if (i == rx_ring->next_to_clean)
524 printk(KERN_CONT " NTC\n");
525 else
526 printk(KERN_CONT "\n");
527
528 }
529 }
530
531exit:
532 return;
533}
534
535
38c845c7
PO
536/**
537 * igb_read_clock - read raw cycle counter (to be used by time counter)
538 */
539static cycle_t igb_read_clock(const struct cyclecounter *tc)
540{
541 struct igb_adapter *adapter =
542 container_of(tc, struct igb_adapter, cycles);
543 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
544 u64 stamp = 0;
545 int shift = 0;
38c845c7 546
55cac248
AD
547 /*
548 * The timestamp latches on lowest register read. For the 82580
549 * the lowest register is SYSTIMR instead of SYSTIML. However we never
550 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
551 */
552 if (hw->mac.type == e1000_82580) {
553 stamp = rd32(E1000_SYSTIMR) >> 8;
554 shift = IGB_82580_TSYNC_SHIFT;
555 }
556
c5b9bd5e
AD
557 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
558 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
559 return stamp;
560}
561
9d5c8243 562/**
c041076a 563 * igb_get_hw_dev - return device
9d5c8243
AK
564 * used by hardware layer to print debugging information
565 **/
c041076a 566struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
567{
568 struct igb_adapter *adapter = hw->back;
c041076a 569 return adapter->netdev;
9d5c8243 570}
38c845c7 571
9d5c8243
AK
572/**
573 * igb_init_module - Driver Registration Routine
574 *
575 * igb_init_module is the first routine called when the driver is
576 * loaded. All it does is register with the PCI subsystem.
577 **/
578static int __init igb_init_module(void)
579{
580 int ret;
581 printk(KERN_INFO "%s - version %s\n",
582 igb_driver_string, igb_driver_version);
583
584 printk(KERN_INFO "%s\n", igb_copyright);
585
421e02f0 586#ifdef CONFIG_IGB_DCA
fe4506b6
JC
587 dca_register_notify(&dca_notifier);
588#endif
bbd98fe4 589 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
590 return ret;
591}
592
593module_init(igb_init_module);
594
595/**
596 * igb_exit_module - Driver Exit Cleanup Routine
597 *
598 * igb_exit_module is called just before the driver is removed
599 * from memory.
600 **/
601static void __exit igb_exit_module(void)
602{
421e02f0 603#ifdef CONFIG_IGB_DCA
fe4506b6
JC
604 dca_unregister_notify(&dca_notifier);
605#endif
9d5c8243
AK
606 pci_unregister_driver(&igb_driver);
607}
608
609module_exit(igb_exit_module);
610
26bc19ec
AD
611#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
612/**
613 * igb_cache_ring_register - Descriptor ring to register mapping
614 * @adapter: board private structure to initialize
615 *
616 * Once we know the feature-set enabled for the device, we'll cache
617 * the register offset the descriptor ring is assigned to.
618 **/
619static void igb_cache_ring_register(struct igb_adapter *adapter)
620{
ee1b9f06 621 int i = 0, j = 0;
047e0030 622 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
623
624 switch (adapter->hw.mac.type) {
625 case e1000_82576:
626 /* The queues are allocated for virtualization such that VF 0
627 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
628 * In order to avoid collision we start at the first free queue
629 * and continue consuming queues in the same sequence
630 */
ee1b9f06 631 if (adapter->vfs_allocated_count) {
a99955fc 632 for (; i < adapter->rss_queues; i++)
3025a446
AD
633 adapter->rx_ring[i]->reg_idx = rbase_offset +
634 Q_IDX_82576(i);
ee1b9f06 635 }
26bc19ec 636 case e1000_82575:
55cac248 637 case e1000_82580:
d2ba2ed8 638 case e1000_i350:
26bc19ec 639 default:
ee1b9f06 640 for (; i < adapter->num_rx_queues; i++)
3025a446 641 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 642 for (; j < adapter->num_tx_queues; j++)
3025a446 643 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
644 break;
645 }
646}
647
047e0030
AD
648static void igb_free_queues(struct igb_adapter *adapter)
649{
3025a446 650 int i;
047e0030 651
3025a446
AD
652 for (i = 0; i < adapter->num_tx_queues; i++) {
653 kfree(adapter->tx_ring[i]);
654 adapter->tx_ring[i] = NULL;
655 }
656 for (i = 0; i < adapter->num_rx_queues; i++) {
657 kfree(adapter->rx_ring[i]);
658 adapter->rx_ring[i] = NULL;
659 }
047e0030
AD
660 adapter->num_rx_queues = 0;
661 adapter->num_tx_queues = 0;
662}
663
9d5c8243
AK
664/**
665 * igb_alloc_queues - Allocate memory for all rings
666 * @adapter: board private structure to initialize
667 *
668 * We allocate one ring per queue at run-time since we don't know the
669 * number of queues at compile-time.
670 **/
671static int igb_alloc_queues(struct igb_adapter *adapter)
672{
3025a446 673 struct igb_ring *ring;
9d5c8243
AK
674 int i;
675
661086df 676 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
677 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
678 if (!ring)
679 goto err;
68fd9910 680 ring->count = adapter->tx_ring_count;
661086df 681 ring->queue_index = i;
59d71989 682 ring->dev = &adapter->pdev->dev;
e694e964 683 ring->netdev = adapter->netdev;
85ad76b2
AD
684 /* For 82575, context index must be unique per ring. */
685 if (adapter->hw.mac.type == e1000_82575)
686 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 687 adapter->tx_ring[i] = ring;
661086df 688 }
85ad76b2 689
9d5c8243 690 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
691 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
692 if (!ring)
693 goto err;
68fd9910 694 ring->count = adapter->rx_ring_count;
844290e5 695 ring->queue_index = i;
59d71989 696 ring->dev = &adapter->pdev->dev;
e694e964 697 ring->netdev = adapter->netdev;
4c844851 698 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
699 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
700 /* set flag indicating ring supports SCTP checksum offload */
701 if (adapter->hw.mac.type >= e1000_82576)
702 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 703 adapter->rx_ring[i] = ring;
9d5c8243 704 }
26bc19ec
AD
705
706 igb_cache_ring_register(adapter);
9d5c8243 707
047e0030 708 return 0;
a88f10ec 709
047e0030
AD
710err:
711 igb_free_queues(adapter);
d1a8c9e1 712
047e0030 713 return -ENOMEM;
a88f10ec
AD
714}
715
9d5c8243 716#define IGB_N0_QUEUE -1
047e0030 717static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
718{
719 u32 msixbm = 0;
047e0030 720 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 721 struct e1000_hw *hw = &adapter->hw;
2d064c06 722 u32 ivar, index;
047e0030
AD
723 int rx_queue = IGB_N0_QUEUE;
724 int tx_queue = IGB_N0_QUEUE;
725
726 if (q_vector->rx_ring)
727 rx_queue = q_vector->rx_ring->reg_idx;
728 if (q_vector->tx_ring)
729 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
730
731 switch (hw->mac.type) {
732 case e1000_82575:
9d5c8243
AK
733 /* The 82575 assigns vectors using a bitmask, which matches the
734 bitmask for the EICR/EIMS/EIMC registers. To assign one
735 or more queues to a vector, we write the appropriate bits
736 into the MSIXBM register for that vector. */
047e0030 737 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 738 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 739 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 740 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
741 if (!adapter->msix_entries && msix_vector == 0)
742 msixbm |= E1000_EIMS_OTHER;
9d5c8243 743 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 744 q_vector->eims_value = msixbm;
2d064c06
AD
745 break;
746 case e1000_82576:
26bc19ec 747 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
748 Each queue has a single entry in the table to which we write
749 a vector number along with a "valid" bit. Sadly, the layout
750 of the table is somewhat counterintuitive. */
751 if (rx_queue > IGB_N0_QUEUE) {
047e0030 752 index = (rx_queue & 0x7);
2d064c06 753 ivar = array_rd32(E1000_IVAR0, index);
047e0030 754 if (rx_queue < 8) {
26bc19ec
AD
755 /* vector goes into low byte of register */
756 ivar = ivar & 0xFFFFFF00;
757 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
758 } else {
759 /* vector goes into third byte of register */
760 ivar = ivar & 0xFF00FFFF;
761 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 762 }
2d064c06
AD
763 array_wr32(E1000_IVAR0, index, ivar);
764 }
765 if (tx_queue > IGB_N0_QUEUE) {
047e0030 766 index = (tx_queue & 0x7);
2d064c06 767 ivar = array_rd32(E1000_IVAR0, index);
047e0030 768 if (tx_queue < 8) {
26bc19ec
AD
769 /* vector goes into second byte of register */
770 ivar = ivar & 0xFFFF00FF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
772 } else {
773 /* vector goes into high byte of register */
774 ivar = ivar & 0x00FFFFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 776 }
2d064c06
AD
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
047e0030 779 q_vector->eims_value = 1 << msix_vector;
2d064c06 780 break;
55cac248 781 case e1000_82580:
d2ba2ed8 782 case e1000_i350:
55cac248
AD
783 /* 82580 uses the same table-based approach as 82576 but has fewer
784 entries as a result we carry over for queues greater than 4. */
785 if (rx_queue > IGB_N0_QUEUE) {
786 index = (rx_queue >> 1);
787 ivar = array_rd32(E1000_IVAR0, index);
788 if (rx_queue & 0x1) {
789 /* vector goes into third byte of register */
790 ivar = ivar & 0xFF00FFFF;
791 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
792 } else {
793 /* vector goes into low byte of register */
794 ivar = ivar & 0xFFFFFF00;
795 ivar |= msix_vector | E1000_IVAR_VALID;
796 }
797 array_wr32(E1000_IVAR0, index, ivar);
798 }
799 if (tx_queue > IGB_N0_QUEUE) {
800 index = (tx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (tx_queue & 0x1) {
803 /* vector goes into high byte of register */
804 ivar = ivar & 0x00FFFFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
806 } else {
807 /* vector goes into second byte of register */
808 ivar = ivar & 0xFFFF00FF;
809 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
810 }
811 array_wr32(E1000_IVAR0, index, ivar);
812 }
813 q_vector->eims_value = 1 << msix_vector;
814 break;
2d064c06
AD
815 default:
816 BUG();
817 break;
818 }
26b39276
AD
819
820 /* add q_vector eims value to global eims_enable_mask */
821 adapter->eims_enable_mask |= q_vector->eims_value;
822
823 /* configure q_vector to set itr on first interrupt */
824 q_vector->set_itr = 1;
9d5c8243
AK
825}
826
827/**
828 * igb_configure_msix - Configure MSI-X hardware
829 *
830 * igb_configure_msix sets up the hardware to properly
831 * generate MSI-X interrupts.
832 **/
833static void igb_configure_msix(struct igb_adapter *adapter)
834{
835 u32 tmp;
836 int i, vector = 0;
837 struct e1000_hw *hw = &adapter->hw;
838
839 adapter->eims_enable_mask = 0;
9d5c8243
AK
840
841 /* set vector for other causes, i.e. link changes */
2d064c06
AD
842 switch (hw->mac.type) {
843 case e1000_82575:
9d5c8243
AK
844 tmp = rd32(E1000_CTRL_EXT);
845 /* enable MSI-X PBA support*/
846 tmp |= E1000_CTRL_EXT_PBA_CLR;
847
848 /* Auto-Mask interrupts upon ICR read. */
849 tmp |= E1000_CTRL_EXT_EIAME;
850 tmp |= E1000_CTRL_EXT_IRCA;
851
852 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
853
854 /* enable msix_other interrupt */
855 array_wr32(E1000_MSIXBM(0), vector++,
856 E1000_EIMS_OTHER);
844290e5 857 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 858
2d064c06
AD
859 break;
860
861 case e1000_82576:
55cac248 862 case e1000_82580:
d2ba2ed8 863 case e1000_i350:
047e0030
AD
864 /* Turn on MSI-X capability first, or our settings
865 * won't stick. And it will take days to debug. */
866 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
867 E1000_GPIE_PBA | E1000_GPIE_EIAME |
868 E1000_GPIE_NSICR);
869
870 /* enable msix_other interrupt */
871 adapter->eims_other = 1 << vector;
2d064c06 872 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 873
047e0030 874 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
875 break;
876 default:
877 /* do nothing, since nothing else supports MSI-X */
878 break;
879 } /* switch (hw->mac.type) */
047e0030
AD
880
881 adapter->eims_enable_mask |= adapter->eims_other;
882
26b39276
AD
883 for (i = 0; i < adapter->num_q_vectors; i++)
884 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 885
9d5c8243
AK
886 wrfl();
887}
888
889/**
890 * igb_request_msix - Initialize MSI-X interrupts
891 *
892 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
893 * kernel.
894 **/
895static int igb_request_msix(struct igb_adapter *adapter)
896{
897 struct net_device *netdev = adapter->netdev;
047e0030 898 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
899 int i, err = 0, vector = 0;
900
047e0030 901 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 902 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
903 if (err)
904 goto out;
905 vector++;
906
907 for (i = 0; i < adapter->num_q_vectors; i++) {
908 struct igb_q_vector *q_vector = adapter->q_vector[i];
909
910 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
911
912 if (q_vector->rx_ring && q_vector->tx_ring)
913 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
914 q_vector->rx_ring->queue_index);
915 else if (q_vector->tx_ring)
916 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
917 q_vector->tx_ring->queue_index);
918 else if (q_vector->rx_ring)
919 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
920 q_vector->rx_ring->queue_index);
9d5c8243 921 else
047e0030
AD
922 sprintf(q_vector->name, "%s-unused", netdev->name);
923
9d5c8243 924 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 925 igb_msix_ring, 0, q_vector->name,
047e0030 926 q_vector);
9d5c8243
AK
927 if (err)
928 goto out;
9d5c8243
AK
929 vector++;
930 }
931
9d5c8243
AK
932 igb_configure_msix(adapter);
933 return 0;
934out:
935 return err;
936}
937
938static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
939{
940 if (adapter->msix_entries) {
941 pci_disable_msix(adapter->pdev);
942 kfree(adapter->msix_entries);
943 adapter->msix_entries = NULL;
047e0030 944 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 945 pci_disable_msi(adapter->pdev);
047e0030 946 }
9d5c8243
AK
947}
948
047e0030
AD
949/**
950 * igb_free_q_vectors - Free memory allocated for interrupt vectors
951 * @adapter: board private structure to initialize
952 *
953 * This function frees the memory allocated to the q_vectors. In addition if
954 * NAPI is enabled it will delete any references to the NAPI struct prior
955 * to freeing the q_vector.
956 **/
957static void igb_free_q_vectors(struct igb_adapter *adapter)
958{
959 int v_idx;
960
961 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
962 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
963 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
964 if (!q_vector)
965 continue;
047e0030
AD
966 netif_napi_del(&q_vector->napi);
967 kfree(q_vector);
968 }
969 adapter->num_q_vectors = 0;
970}
971
972/**
973 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
974 *
975 * This function resets the device so that it has 0 rx queues, tx queues, and
976 * MSI-X interrupts allocated.
977 */
978static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
979{
980 igb_free_queues(adapter);
981 igb_free_q_vectors(adapter);
982 igb_reset_interrupt_capability(adapter);
983}
9d5c8243
AK
984
985/**
986 * igb_set_interrupt_capability - set MSI or MSI-X if supported
987 *
988 * Attempt to configure interrupts using the best available
989 * capabilities of the hardware and kernel.
990 **/
21adef3e 991static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
992{
993 int err;
994 int numvecs, i;
995
83b7180d 996 /* Number of supported queues. */
a99955fc 997 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
998 if (adapter->vfs_allocated_count)
999 adapter->num_tx_queues = 1;
1000 else
1001 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1002
047e0030
AD
1003 /* start with one vector for every rx queue */
1004 numvecs = adapter->num_rx_queues;
1005
3ad2f3fb 1006 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1007 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1008 numvecs += adapter->num_tx_queues;
047e0030
AD
1009
1010 /* store the number of vectors reserved for queues */
1011 adapter->num_q_vectors = numvecs;
1012
1013 /* add 1 vector for link status interrupts */
1014 numvecs++;
9d5c8243
AK
1015 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1016 GFP_KERNEL);
1017 if (!adapter->msix_entries)
1018 goto msi_only;
1019
1020 for (i = 0; i < numvecs; i++)
1021 adapter->msix_entries[i].entry = i;
1022
1023 err = pci_enable_msix(adapter->pdev,
1024 adapter->msix_entries,
1025 numvecs);
1026 if (err == 0)
34a20e89 1027 goto out;
9d5c8243
AK
1028
1029 igb_reset_interrupt_capability(adapter);
1030
1031 /* If we can't do MSI-X, try MSI */
1032msi_only:
2a3abf6d
AD
1033#ifdef CONFIG_PCI_IOV
1034 /* disable SR-IOV for non MSI-X configurations */
1035 if (adapter->vf_data) {
1036 struct e1000_hw *hw = &adapter->hw;
1037 /* disable iov and allow time for transactions to clear */
1038 pci_disable_sriov(adapter->pdev);
1039 msleep(500);
1040
1041 kfree(adapter->vf_data);
1042 adapter->vf_data = NULL;
1043 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1044 msleep(100);
1045 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1046 }
1047#endif
4fc82adf 1048 adapter->vfs_allocated_count = 0;
a99955fc 1049 adapter->rss_queues = 1;
4fc82adf 1050 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1051 adapter->num_rx_queues = 1;
661086df 1052 adapter->num_tx_queues = 1;
047e0030 1053 adapter->num_q_vectors = 1;
9d5c8243 1054 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1055 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1056out:
21adef3e
BH
1057 /* Notify the stack of the (possibly) reduced queue counts. */
1058 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1059 return netif_set_real_num_rx_queues(adapter->netdev,
1060 adapter->num_rx_queues);
9d5c8243
AK
1061}
1062
047e0030
AD
1063/**
1064 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1065 * @adapter: board private structure to initialize
1066 *
1067 * We allocate one q_vector per queue interrupt. If allocation fails we
1068 * return -ENOMEM.
1069 **/
1070static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1071{
1072 struct igb_q_vector *q_vector;
1073 struct e1000_hw *hw = &adapter->hw;
1074 int v_idx;
1075
1076 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1077 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1078 if (!q_vector)
1079 goto err_out;
1080 q_vector->adapter = adapter;
047e0030
AD
1081 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1082 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1083 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1084 adapter->q_vector[v_idx] = q_vector;
1085 }
1086 return 0;
1087
1088err_out:
fe0592b4 1089 igb_free_q_vectors(adapter);
047e0030
AD
1090 return -ENOMEM;
1091}
1092
1093static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1094 int ring_idx, int v_idx)
1095{
3025a446 1096 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1097
3025a446 1098 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1099 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1100 q_vector->itr_val = adapter->rx_itr_setting;
1101 if (q_vector->itr_val && q_vector->itr_val <= 3)
1102 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1103}
1104
1105static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1106 int ring_idx, int v_idx)
1107{
3025a446 1108 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1109
3025a446 1110 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1111 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1112 q_vector->itr_val = adapter->tx_itr_setting;
1113 if (q_vector->itr_val && q_vector->itr_val <= 3)
1114 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1115}
1116
1117/**
1118 * igb_map_ring_to_vector - maps allocated queues to vectors
1119 *
1120 * This function maps the recently allocated queues to vectors.
1121 **/
1122static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1123{
1124 int i;
1125 int v_idx = 0;
1126
1127 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1128 (adapter->num_q_vectors < adapter->num_tx_queues))
1129 return -ENOMEM;
1130
1131 if (adapter->num_q_vectors >=
1132 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1133 for (i = 0; i < adapter->num_rx_queues; i++)
1134 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1135 for (i = 0; i < adapter->num_tx_queues; i++)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1137 } else {
1138 for (i = 0; i < adapter->num_rx_queues; i++) {
1139 if (i < adapter->num_tx_queues)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1141 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1142 }
1143 for (; i < adapter->num_tx_queues; i++)
1144 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1145 }
1146 return 0;
1147}
1148
1149/**
1150 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1151 *
1152 * This function initializes the interrupts and allocates all of the queues.
1153 **/
1154static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1155{
1156 struct pci_dev *pdev = adapter->pdev;
1157 int err;
1158
21adef3e
BH
1159 err = igb_set_interrupt_capability(adapter);
1160 if (err)
1161 return err;
047e0030
AD
1162
1163 err = igb_alloc_q_vectors(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1166 goto err_alloc_q_vectors;
1167 }
1168
1169 err = igb_alloc_queues(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1172 goto err_alloc_queues;
1173 }
1174
1175 err = igb_map_ring_to_vector(adapter);
1176 if (err) {
1177 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1178 goto err_map_queues;
1179 }
1180
1181
1182 return 0;
1183err_map_queues:
1184 igb_free_queues(adapter);
1185err_alloc_queues:
1186 igb_free_q_vectors(adapter);
1187err_alloc_q_vectors:
1188 igb_reset_interrupt_capability(adapter);
1189 return err;
1190}
1191
9d5c8243
AK
1192/**
1193 * igb_request_irq - initialize interrupts
1194 *
1195 * Attempts to configure interrupts using the best available
1196 * capabilities of the hardware and kernel.
1197 **/
1198static int igb_request_irq(struct igb_adapter *adapter)
1199{
1200 struct net_device *netdev = adapter->netdev;
047e0030 1201 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1202 int err = 0;
1203
1204 if (adapter->msix_entries) {
1205 err = igb_request_msix(adapter);
844290e5 1206 if (!err)
9d5c8243 1207 goto request_done;
9d5c8243 1208 /* fall back to MSI */
047e0030 1209 igb_clear_interrupt_scheme(adapter);
9d5c8243 1210 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1211 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1212 igb_free_all_tx_resources(adapter);
1213 igb_free_all_rx_resources(adapter);
047e0030 1214 adapter->num_tx_queues = 1;
9d5c8243 1215 adapter->num_rx_queues = 1;
047e0030
AD
1216 adapter->num_q_vectors = 1;
1217 err = igb_alloc_q_vectors(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for vectors\n");
1221 goto request_done;
1222 }
1223 err = igb_alloc_queues(adapter);
1224 if (err) {
1225 dev_err(&pdev->dev,
1226 "Unable to allocate memory for queues\n");
1227 igb_free_q_vectors(adapter);
1228 goto request_done;
1229 }
1230 igb_setup_all_tx_resources(adapter);
1231 igb_setup_all_rx_resources(adapter);
844290e5 1232 } else {
feeb2721 1233 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1234 }
844290e5 1235
7dfc16fa 1236 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1237 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1238 netdev->name, adapter);
9d5c8243
AK
1239 if (!err)
1240 goto request_done;
047e0030 1241
9d5c8243
AK
1242 /* fall back to legacy interrupts */
1243 igb_reset_interrupt_capability(adapter);
7dfc16fa 1244 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1245 }
1246
a0607fd3 1247 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1248 netdev->name, adapter);
9d5c8243 1249
6cb5e577 1250 if (err)
9d5c8243
AK
1251 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1252 err);
9d5c8243
AK
1253
1254request_done:
1255 return err;
1256}
1257
1258static void igb_free_irq(struct igb_adapter *adapter)
1259{
9d5c8243
AK
1260 if (adapter->msix_entries) {
1261 int vector = 0, i;
1262
047e0030 1263 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1264
047e0030
AD
1265 for (i = 0; i < adapter->num_q_vectors; i++) {
1266 struct igb_q_vector *q_vector = adapter->q_vector[i];
1267 free_irq(adapter->msix_entries[vector++].vector,
1268 q_vector);
1269 }
1270 } else {
1271 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1272 }
9d5c8243
AK
1273}
1274
1275/**
1276 * igb_irq_disable - Mask off interrupt generation on the NIC
1277 * @adapter: board private structure
1278 **/
1279static void igb_irq_disable(struct igb_adapter *adapter)
1280{
1281 struct e1000_hw *hw = &adapter->hw;
1282
25568a53
AD
1283 /*
1284 * we need to be careful when disabling interrupts. The VFs are also
1285 * mapped into these registers and so clearing the bits can cause
1286 * issues on the VF drivers so we only need to clear what we set
1287 */
9d5c8243 1288 if (adapter->msix_entries) {
2dfd1212
AD
1289 u32 regval = rd32(E1000_EIAM);
1290 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1291 wr32(E1000_EIMC, adapter->eims_enable_mask);
1292 regval = rd32(E1000_EIAC);
1293 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1294 }
844290e5
PW
1295
1296 wr32(E1000_IAM, 0);
9d5c8243
AK
1297 wr32(E1000_IMC, ~0);
1298 wrfl();
81a61859
ET
1299 if (adapter->msix_entries) {
1300 int i;
1301 for (i = 0; i < adapter->num_q_vectors; i++)
1302 synchronize_irq(adapter->msix_entries[i].vector);
1303 } else {
1304 synchronize_irq(adapter->pdev->irq);
1305 }
9d5c8243
AK
1306}
1307
1308/**
1309 * igb_irq_enable - Enable default interrupt generation settings
1310 * @adapter: board private structure
1311 **/
1312static void igb_irq_enable(struct igb_adapter *adapter)
1313{
1314 struct e1000_hw *hw = &adapter->hw;
1315
1316 if (adapter->msix_entries) {
25568a53 1317 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1318 u32 regval = rd32(E1000_EIAC);
1319 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1320 regval = rd32(E1000_EIAM);
1321 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1322 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1323 if (adapter->vfs_allocated_count) {
4ae196df 1324 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1325 ims |= E1000_IMS_VMMB;
1326 }
55cac248
AD
1327 if (adapter->hw.mac.type == e1000_82580)
1328 ims |= E1000_IMS_DRSTA;
1329
25568a53 1330 wr32(E1000_IMS, ims);
844290e5 1331 } else {
55cac248
AD
1332 wr32(E1000_IMS, IMS_ENABLE_MASK |
1333 E1000_IMS_DRSTA);
1334 wr32(E1000_IAM, IMS_ENABLE_MASK |
1335 E1000_IMS_DRSTA);
844290e5 1336 }
9d5c8243
AK
1337}
1338
1339static void igb_update_mng_vlan(struct igb_adapter *adapter)
1340{
51466239 1341 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1342 u16 vid = adapter->hw.mng_cookie.vlan_id;
1343 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1344
1345 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1346 /* add VID to filter table */
1347 igb_vfta_set(hw, vid, true);
1348 adapter->mng_vlan_id = vid;
1349 } else {
1350 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1351 }
1352
1353 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1354 (vid != old_vid) &&
1355 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1356 /* remove VID from filter table */
1357 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1358 }
1359}
1360
1361/**
1362 * igb_release_hw_control - release control of the h/w to f/w
1363 * @adapter: address of board private structure
1364 *
1365 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1366 * For ASF and Pass Through versions of f/w this means that the
1367 * driver is no longer loaded.
1368 *
1369 **/
1370static void igb_release_hw_control(struct igb_adapter *adapter)
1371{
1372 struct e1000_hw *hw = &adapter->hw;
1373 u32 ctrl_ext;
1374
1375 /* Let firmware take over control of h/w */
1376 ctrl_ext = rd32(E1000_CTRL_EXT);
1377 wr32(E1000_CTRL_EXT,
1378 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1379}
1380
9d5c8243
AK
1381/**
1382 * igb_get_hw_control - get control of the h/w from f/w
1383 * @adapter: address of board private structure
1384 *
1385 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1386 * For ASF and Pass Through versions of f/w this means that
1387 * the driver is loaded.
1388 *
1389 **/
1390static void igb_get_hw_control(struct igb_adapter *adapter)
1391{
1392 struct e1000_hw *hw = &adapter->hw;
1393 u32 ctrl_ext;
1394
1395 /* Let firmware know the driver has taken over */
1396 ctrl_ext = rd32(E1000_CTRL_EXT);
1397 wr32(E1000_CTRL_EXT,
1398 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1399}
1400
9d5c8243
AK
1401/**
1402 * igb_configure - configure the hardware for RX and TX
1403 * @adapter: private board structure
1404 **/
1405static void igb_configure(struct igb_adapter *adapter)
1406{
1407 struct net_device *netdev = adapter->netdev;
1408 int i;
1409
1410 igb_get_hw_control(adapter);
ff41f8dc 1411 igb_set_rx_mode(netdev);
9d5c8243
AK
1412
1413 igb_restore_vlan(adapter);
9d5c8243 1414
85b430b4 1415 igb_setup_tctl(adapter);
06cf2666 1416 igb_setup_mrqc(adapter);
9d5c8243 1417 igb_setup_rctl(adapter);
85b430b4
AD
1418
1419 igb_configure_tx(adapter);
9d5c8243 1420 igb_configure_rx(adapter);
662d7205
AD
1421
1422 igb_rx_fifo_flush_82575(&adapter->hw);
1423
c493ea45 1424 /* call igb_desc_unused which always leaves
9d5c8243
AK
1425 * at least 1 descriptor unused to make sure
1426 * next_to_use != next_to_clean */
1427 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1428 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1429 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1430 }
9d5c8243
AK
1431}
1432
88a268c1
NN
1433/**
1434 * igb_power_up_link - Power up the phy/serdes link
1435 * @adapter: address of board private structure
1436 **/
1437void igb_power_up_link(struct igb_adapter *adapter)
1438{
1439 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1440 igb_power_up_phy_copper(&adapter->hw);
1441 else
1442 igb_power_up_serdes_link_82575(&adapter->hw);
1443}
1444
1445/**
1446 * igb_power_down_link - Power down the phy/serdes link
1447 * @adapter: address of board private structure
1448 */
1449static void igb_power_down_link(struct igb_adapter *adapter)
1450{
1451 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1452 igb_power_down_phy_copper_82575(&adapter->hw);
1453 else
1454 igb_shutdown_serdes_link_82575(&adapter->hw);
1455}
9d5c8243
AK
1456
1457/**
1458 * igb_up - Open the interface and prepare it to handle traffic
1459 * @adapter: board private structure
1460 **/
9d5c8243
AK
1461int igb_up(struct igb_adapter *adapter)
1462{
1463 struct e1000_hw *hw = &adapter->hw;
1464 int i;
1465
1466 /* hardware has been reset, we need to reload some things */
1467 igb_configure(adapter);
1468
1469 clear_bit(__IGB_DOWN, &adapter->state);
1470
047e0030
AD
1471 for (i = 0; i < adapter->num_q_vectors; i++) {
1472 struct igb_q_vector *q_vector = adapter->q_vector[i];
1473 napi_enable(&q_vector->napi);
1474 }
844290e5 1475 if (adapter->msix_entries)
9d5c8243 1476 igb_configure_msix(adapter);
feeb2721
AD
1477 else
1478 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1479
1480 /* Clear any pending interrupts. */
1481 rd32(E1000_ICR);
1482 igb_irq_enable(adapter);
1483
d4960307
AD
1484 /* notify VFs that reset has been completed */
1485 if (adapter->vfs_allocated_count) {
1486 u32 reg_data = rd32(E1000_CTRL_EXT);
1487 reg_data |= E1000_CTRL_EXT_PFRSTD;
1488 wr32(E1000_CTRL_EXT, reg_data);
1489 }
1490
4cb9be7a
JB
1491 netif_tx_start_all_queues(adapter->netdev);
1492
25568a53
AD
1493 /* start the watchdog. */
1494 hw->mac.get_link_status = 1;
1495 schedule_work(&adapter->watchdog_task);
1496
9d5c8243
AK
1497 return 0;
1498}
1499
1500void igb_down(struct igb_adapter *adapter)
1501{
9d5c8243 1502 struct net_device *netdev = adapter->netdev;
330a6d6a 1503 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1504 u32 tctl, rctl;
1505 int i;
1506
1507 /* signal that we're down so the interrupt handler does not
1508 * reschedule our watchdog timer */
1509 set_bit(__IGB_DOWN, &adapter->state);
1510
1511 /* disable receives in the hardware */
1512 rctl = rd32(E1000_RCTL);
1513 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1514 /* flush and sleep below */
1515
fd2ea0a7 1516 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1517
1518 /* disable transmits in the hardware */
1519 tctl = rd32(E1000_TCTL);
1520 tctl &= ~E1000_TCTL_EN;
1521 wr32(E1000_TCTL, tctl);
1522 /* flush both disables and wait for them to finish */
1523 wrfl();
1524 msleep(10);
1525
047e0030
AD
1526 for (i = 0; i < adapter->num_q_vectors; i++) {
1527 struct igb_q_vector *q_vector = adapter->q_vector[i];
1528 napi_disable(&q_vector->napi);
1529 }
9d5c8243 1530
9d5c8243
AK
1531 igb_irq_disable(adapter);
1532
1533 del_timer_sync(&adapter->watchdog_timer);
1534 del_timer_sync(&adapter->phy_info_timer);
1535
9d5c8243 1536 netif_carrier_off(netdev);
04fe6358
AD
1537
1538 /* record the stats before reset*/
12dcd86b
ED
1539 spin_lock(&adapter->stats64_lock);
1540 igb_update_stats(adapter, &adapter->stats64);
1541 spin_unlock(&adapter->stats64_lock);
04fe6358 1542
9d5c8243
AK
1543 adapter->link_speed = 0;
1544 adapter->link_duplex = 0;
1545
3023682e
JK
1546 if (!pci_channel_offline(adapter->pdev))
1547 igb_reset(adapter);
9d5c8243
AK
1548 igb_clean_all_tx_rings(adapter);
1549 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1550#ifdef CONFIG_IGB_DCA
1551
1552 /* since we reset the hardware DCA settings were cleared */
1553 igb_setup_dca(adapter);
1554#endif
9d5c8243
AK
1555}
1556
1557void igb_reinit_locked(struct igb_adapter *adapter)
1558{
1559 WARN_ON(in_interrupt());
1560 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1561 msleep(1);
1562 igb_down(adapter);
1563 igb_up(adapter);
1564 clear_bit(__IGB_RESETTING, &adapter->state);
1565}
1566
1567void igb_reset(struct igb_adapter *adapter)
1568{
090b1795 1569 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1570 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1571 struct e1000_mac_info *mac = &hw->mac;
1572 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1573 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1574 u16 hwm;
1575
1576 /* Repartition Pba for greater than 9k mtu
1577 * To take effect CTRL.RST is required.
1578 */
fa4dfae0 1579 switch (mac->type) {
d2ba2ed8 1580 case e1000_i350:
55cac248
AD
1581 case e1000_82580:
1582 pba = rd32(E1000_RXPBS);
1583 pba = igb_rxpbs_adjust_82580(pba);
1584 break;
fa4dfae0 1585 case e1000_82576:
d249be54
AD
1586 pba = rd32(E1000_RXPBS);
1587 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1588 break;
1589 case e1000_82575:
1590 default:
1591 pba = E1000_PBA_34K;
1592 break;
2d064c06 1593 }
9d5c8243 1594
2d064c06
AD
1595 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1596 (mac->type < e1000_82576)) {
9d5c8243
AK
1597 /* adjust PBA for jumbo frames */
1598 wr32(E1000_PBA, pba);
1599
1600 /* To maintain wire speed transmits, the Tx FIFO should be
1601 * large enough to accommodate two full transmit packets,
1602 * rounded up to the next 1KB and expressed in KB. Likewise,
1603 * the Rx FIFO should be large enough to accommodate at least
1604 * one full receive packet and is similarly rounded up and
1605 * expressed in KB. */
1606 pba = rd32(E1000_PBA);
1607 /* upper 16 bits has Tx packet buffer allocation size in KB */
1608 tx_space = pba >> 16;
1609 /* lower 16 bits has Rx packet buffer allocation size in KB */
1610 pba &= 0xffff;
1611 /* the tx fifo also stores 16 bytes of information about the tx
1612 * but don't include ethernet FCS because hardware appends it */
1613 min_tx_space = (adapter->max_frame_size +
85e8d004 1614 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1615 ETH_FCS_LEN) * 2;
1616 min_tx_space = ALIGN(min_tx_space, 1024);
1617 min_tx_space >>= 10;
1618 /* software strips receive CRC, so leave room for it */
1619 min_rx_space = adapter->max_frame_size;
1620 min_rx_space = ALIGN(min_rx_space, 1024);
1621 min_rx_space >>= 10;
1622
1623 /* If current Tx allocation is less than the min Tx FIFO size,
1624 * and the min Tx FIFO size is less than the current Rx FIFO
1625 * allocation, take space away from current Rx allocation */
1626 if (tx_space < min_tx_space &&
1627 ((min_tx_space - tx_space) < pba)) {
1628 pba = pba - (min_tx_space - tx_space);
1629
1630 /* if short on rx space, rx wins and must trump tx
1631 * adjustment */
1632 if (pba < min_rx_space)
1633 pba = min_rx_space;
1634 }
2d064c06 1635 wr32(E1000_PBA, pba);
9d5c8243 1636 }
9d5c8243
AK
1637
1638 /* flow control settings */
1639 /* The high water mark must be low enough to fit one full frame
1640 * (or the size used for early receive) above it in the Rx FIFO.
1641 * Set it to the lower of:
1642 * - 90% of the Rx FIFO size, or
1643 * - the full Rx FIFO size minus one full frame */
1644 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1645 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1646
d405ea3e
AD
1647 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1648 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1649 fc->pause_time = 0xFFFF;
1650 fc->send_xon = 1;
0cce119a 1651 fc->current_mode = fc->requested_mode;
9d5c8243 1652
4ae196df
AD
1653 /* disable receive for all VFs and wait one second */
1654 if (adapter->vfs_allocated_count) {
1655 int i;
1656 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1657 adapter->vf_data[i].flags = 0;
4ae196df
AD
1658
1659 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1660 igb_ping_all_vfs(adapter);
4ae196df
AD
1661
1662 /* disable transmits and receives */
1663 wr32(E1000_VFRE, 0);
1664 wr32(E1000_VFTE, 0);
1665 }
1666
9d5c8243 1667 /* Allow time for pending master requests to run */
330a6d6a 1668 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1669 wr32(E1000_WUC, 0);
1670
330a6d6a 1671 if (hw->mac.ops.init_hw(hw))
090b1795 1672 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1673
55cac248
AD
1674 if (hw->mac.type == e1000_82580) {
1675 u32 reg = rd32(E1000_PCIEMISC);
1676 wr32(E1000_PCIEMISC,
1677 reg & ~E1000_PCIEMISC_LX_DECISION);
1678 }
88a268c1
NN
1679 if (!netif_running(adapter->netdev))
1680 igb_power_down_link(adapter);
1681
9d5c8243
AK
1682 igb_update_mng_vlan(adapter);
1683
1684 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1685 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1686
330a6d6a 1687 igb_get_phy_info(hw);
9d5c8243
AK
1688}
1689
2e5c6922 1690static const struct net_device_ops igb_netdev_ops = {
559e9c49 1691 .ndo_open = igb_open,
2e5c6922 1692 .ndo_stop = igb_close,
00829823 1693 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1694 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1695 .ndo_set_rx_mode = igb_set_rx_mode,
1696 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1697 .ndo_set_mac_address = igb_set_mac,
1698 .ndo_change_mtu = igb_change_mtu,
1699 .ndo_do_ioctl = igb_ioctl,
1700 .ndo_tx_timeout = igb_tx_timeout,
1701 .ndo_validate_addr = eth_validate_addr,
1702 .ndo_vlan_rx_register = igb_vlan_rx_register,
1703 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1704 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1705 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1706 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1707 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1708 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1709#ifdef CONFIG_NET_POLL_CONTROLLER
1710 .ndo_poll_controller = igb_netpoll,
1711#endif
1712};
1713
9d5c8243
AK
1714/**
1715 * igb_probe - Device Initialization Routine
1716 * @pdev: PCI device information struct
1717 * @ent: entry in igb_pci_tbl
1718 *
1719 * Returns 0 on success, negative on failure
1720 *
1721 * igb_probe initializes an adapter identified by a pci_dev structure.
1722 * The OS initialization, configuring of the adapter private structure,
1723 * and a hardware reset occur.
1724 **/
1725static int __devinit igb_probe(struct pci_dev *pdev,
1726 const struct pci_device_id *ent)
1727{
1728 struct net_device *netdev;
1729 struct igb_adapter *adapter;
1730 struct e1000_hw *hw;
4337e993 1731 u16 eeprom_data = 0;
9835fd73 1732 s32 ret_val;
4337e993 1733 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1734 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1735 unsigned long mmio_start, mmio_len;
2d6a5e95 1736 int err, pci_using_dac;
9d5c8243 1737 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1738 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1739
bded64a7
AG
1740 /* Catch broken hardware that put the wrong VF device ID in
1741 * the PCIe SR-IOV capability.
1742 */
1743 if (pdev->is_virtfn) {
1744 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1745 pci_name(pdev), pdev->vendor, pdev->device);
1746 return -EINVAL;
1747 }
1748
aed5dec3 1749 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1750 if (err)
1751 return err;
1752
1753 pci_using_dac = 0;
59d71989 1754 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1755 if (!err) {
59d71989 1756 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1757 if (!err)
1758 pci_using_dac = 1;
1759 } else {
59d71989 1760 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1761 if (err) {
59d71989 1762 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1763 if (err) {
1764 dev_err(&pdev->dev, "No usable DMA "
1765 "configuration, aborting\n");
1766 goto err_dma;
1767 }
1768 }
1769 }
1770
aed5dec3
AD
1771 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1772 IORESOURCE_MEM),
1773 igb_driver_name);
9d5c8243
AK
1774 if (err)
1775 goto err_pci_reg;
1776
19d5afd4 1777 pci_enable_pcie_error_reporting(pdev);
40a914fa 1778
9d5c8243 1779 pci_set_master(pdev);
c682fc23 1780 pci_save_state(pdev);
9d5c8243
AK
1781
1782 err = -ENOMEM;
1bfaf07b
AD
1783 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1784 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1785 if (!netdev)
1786 goto err_alloc_etherdev;
1787
1788 SET_NETDEV_DEV(netdev, &pdev->dev);
1789
1790 pci_set_drvdata(pdev, netdev);
1791 adapter = netdev_priv(netdev);
1792 adapter->netdev = netdev;
1793 adapter->pdev = pdev;
1794 hw = &adapter->hw;
1795 hw->back = adapter;
1796 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1797
1798 mmio_start = pci_resource_start(pdev, 0);
1799 mmio_len = pci_resource_len(pdev, 0);
1800
1801 err = -EIO;
28b0759c
AD
1802 hw->hw_addr = ioremap(mmio_start, mmio_len);
1803 if (!hw->hw_addr)
9d5c8243
AK
1804 goto err_ioremap;
1805
2e5c6922 1806 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1807 igb_set_ethtool_ops(netdev);
9d5c8243 1808 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1809
1810 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1811
1812 netdev->mem_start = mmio_start;
1813 netdev->mem_end = mmio_start + mmio_len;
1814
9d5c8243
AK
1815 /* PCI config space info */
1816 hw->vendor_id = pdev->vendor;
1817 hw->device_id = pdev->device;
1818 hw->revision_id = pdev->revision;
1819 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1820 hw->subsystem_device_id = pdev->subsystem_device;
1821
9d5c8243
AK
1822 /* Copy the default MAC, PHY and NVM function pointers */
1823 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1824 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1825 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1826 /* Initialize skew-specific constants */
1827 err = ei->get_invariants(hw);
1828 if (err)
450c87c8 1829 goto err_sw_init;
9d5c8243 1830
450c87c8 1831 /* setup the private structure */
9d5c8243
AK
1832 err = igb_sw_init(adapter);
1833 if (err)
1834 goto err_sw_init;
1835
1836 igb_get_bus_info_pcie(hw);
1837
1838 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1839
1840 /* Copper options */
1841 if (hw->phy.media_type == e1000_media_type_copper) {
1842 hw->phy.mdix = AUTO_ALL_MODES;
1843 hw->phy.disable_polarity_correction = false;
1844 hw->phy.ms_type = e1000_ms_hw_default;
1845 }
1846
1847 if (igb_check_reset_block(hw))
1848 dev_info(&pdev->dev,
1849 "PHY reset is blocked due to SOL/IDER session.\n");
1850
1851 netdev->features = NETIF_F_SG |
7d8eb29e 1852 NETIF_F_IP_CSUM |
9d5c8243
AK
1853 NETIF_F_HW_VLAN_TX |
1854 NETIF_F_HW_VLAN_RX |
1855 NETIF_F_HW_VLAN_FILTER;
1856
7d8eb29e 1857 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1858 netdev->features |= NETIF_F_TSO;
9d5c8243 1859 netdev->features |= NETIF_F_TSO6;
5c0999b7 1860 netdev->features |= NETIF_F_GRO;
d3352520 1861
48f29ffc
JK
1862 netdev->vlan_features |= NETIF_F_TSO;
1863 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1864 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1865 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1866 netdev->vlan_features |= NETIF_F_SG;
1867
7b872a55 1868 if (pci_using_dac) {
9d5c8243 1869 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1870 netdev->vlan_features |= NETIF_F_HIGHDMA;
1871 }
9d5c8243 1872
5b043fb0 1873 if (hw->mac.type >= e1000_82576)
b9473560
JB
1874 netdev->features |= NETIF_F_SCTP_CSUM;
1875
330a6d6a 1876 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1877
1878 /* before reading the NVM, reset the controller to put the device in a
1879 * known good starting state */
1880 hw->mac.ops.reset_hw(hw);
1881
1882 /* make sure the NVM is good */
1883 if (igb_validate_nvm_checksum(hw) < 0) {
1884 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1885 err = -EIO;
1886 goto err_eeprom;
1887 }
1888
1889 /* copy the MAC address out of the NVM */
1890 if (hw->mac.ops.read_mac_addr(hw))
1891 dev_err(&pdev->dev, "NVM Read Error\n");
1892
1893 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1894 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1895
1896 if (!is_valid_ether_addr(netdev->perm_addr)) {
1897 dev_err(&pdev->dev, "Invalid MAC Address\n");
1898 err = -EIO;
1899 goto err_eeprom;
1900 }
1901
c061b18d 1902 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1903 (unsigned long) adapter);
c061b18d 1904 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1905 (unsigned long) adapter);
9d5c8243
AK
1906
1907 INIT_WORK(&adapter->reset_task, igb_reset_task);
1908 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1909
450c87c8 1910 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1911 adapter->fc_autoneg = true;
1912 hw->mac.autoneg = true;
1913 hw->phy.autoneg_advertised = 0x2f;
1914
0cce119a
AD
1915 hw->fc.requested_mode = e1000_fc_default;
1916 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1917
9d5c8243
AK
1918 igb_validate_mdi_setting(hw);
1919
9d5c8243
AK
1920 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1921 * enable the ACPI Magic Packet filter
1922 */
1923
a2cf8b6c 1924 if (hw->bus.func == 0)
312c75ae 1925 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1926 else if (hw->mac.type == e1000_82580)
1927 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1928 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1929 &eeprom_data);
a2cf8b6c
AD
1930 else if (hw->bus.func == 1)
1931 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1932
1933 if (eeprom_data & eeprom_apme_mask)
1934 adapter->eeprom_wol |= E1000_WUFC_MAG;
1935
1936 /* now that we have the eeprom settings, apply the special cases where
1937 * the eeprom may be wrong or the board simply won't support wake on
1938 * lan on a particular port */
1939 switch (pdev->device) {
1940 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1941 adapter->eeprom_wol = 0;
1942 break;
1943 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1944 case E1000_DEV_ID_82576_FIBER:
1945 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1946 /* Wake events only supported on port A for dual fiber
1947 * regardless of eeprom setting */
1948 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1949 adapter->eeprom_wol = 0;
1950 break;
c8ea5ea9 1951 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1952 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1953 /* if quad port adapter, disable WoL on all but port A */
1954 if (global_quad_port_a != 0)
1955 adapter->eeprom_wol = 0;
1956 else
1957 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1958 /* Reset for multiple quad port adapters */
1959 if (++global_quad_port_a == 4)
1960 global_quad_port_a = 0;
1961 break;
9d5c8243
AK
1962 }
1963
1964 /* initialize the wol settings based on the eeprom settings */
1965 adapter->wol = adapter->eeprom_wol;
e1b86d84 1966 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1967
1968 /* reset the hardware with the new settings */
1969 igb_reset(adapter);
1970
1971 /* let the f/w know that the h/w is now under the control of the
1972 * driver. */
1973 igb_get_hw_control(adapter);
1974
9d5c8243
AK
1975 strcpy(netdev->name, "eth%d");
1976 err = register_netdev(netdev);
1977 if (err)
1978 goto err_register;
1979
b168dfc5
JB
1980 /* carrier off reporting is important to ethtool even BEFORE open */
1981 netif_carrier_off(netdev);
1982
421e02f0 1983#ifdef CONFIG_IGB_DCA
bbd98fe4 1984 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1985 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1986 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1987 igb_setup_dca(adapter);
1988 }
fe4506b6 1989
38c845c7 1990#endif
9d5c8243
AK
1991 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1992 /* print bus type/speed/width info */
7c510e4b 1993 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1994 netdev->name,
559e9c49 1995 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1996 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 1997 "unknown"),
59c3de89
AD
1998 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1999 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2000 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2001 "unknown"),
7c510e4b 2002 netdev->dev_addr);
9d5c8243 2003
9835fd73
CW
2004 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2005 if (ret_val)
2006 strcpy(part_str, "Unknown");
2007 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2008 dev_info(&pdev->dev,
2009 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2010 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2011 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
2012 adapter->num_rx_queues, adapter->num_tx_queues);
2013
9d5c8243
AK
2014 return 0;
2015
2016err_register:
2017 igb_release_hw_control(adapter);
2018err_eeprom:
2019 if (!igb_check_reset_block(hw))
f5f4cf08 2020 igb_reset_phy(hw);
9d5c8243
AK
2021
2022 if (hw->flash_address)
2023 iounmap(hw->flash_address);
9d5c8243 2024err_sw_init:
047e0030 2025 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2026 iounmap(hw->hw_addr);
2027err_ioremap:
2028 free_netdev(netdev);
2029err_alloc_etherdev:
559e9c49
AD
2030 pci_release_selected_regions(pdev,
2031 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2032err_pci_reg:
2033err_dma:
2034 pci_disable_device(pdev);
2035 return err;
2036}
2037
2038/**
2039 * igb_remove - Device Removal Routine
2040 * @pdev: PCI device information struct
2041 *
2042 * igb_remove is called by the PCI subsystem to alert the driver
2043 * that it should release a PCI device. The could be caused by a
2044 * Hot-Plug event, or because the driver is going to be removed from
2045 * memory.
2046 **/
2047static void __devexit igb_remove(struct pci_dev *pdev)
2048{
2049 struct net_device *netdev = pci_get_drvdata(pdev);
2050 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2051 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2052
760141a5
TH
2053 /*
2054 * The watchdog timer may be rescheduled, so explicitly
2055 * disable watchdog from being rescheduled.
2056 */
9d5c8243
AK
2057 set_bit(__IGB_DOWN, &adapter->state);
2058 del_timer_sync(&adapter->watchdog_timer);
2059 del_timer_sync(&adapter->phy_info_timer);
2060
760141a5
TH
2061 cancel_work_sync(&adapter->reset_task);
2062 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2063
421e02f0 2064#ifdef CONFIG_IGB_DCA
7dfc16fa 2065 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2066 dev_info(&pdev->dev, "DCA disabled\n");
2067 dca_remove_requester(&pdev->dev);
7dfc16fa 2068 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2069 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2070 }
2071#endif
2072
9d5c8243
AK
2073 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2074 * would have already happened in close and is redundant. */
2075 igb_release_hw_control(adapter);
2076
2077 unregister_netdev(netdev);
2078
047e0030 2079 igb_clear_interrupt_scheme(adapter);
9d5c8243 2080
37680117
AD
2081#ifdef CONFIG_PCI_IOV
2082 /* reclaim resources allocated to VFs */
2083 if (adapter->vf_data) {
2084 /* disable iov and allow time for transactions to clear */
2085 pci_disable_sriov(pdev);
2086 msleep(500);
2087
2088 kfree(adapter->vf_data);
2089 adapter->vf_data = NULL;
2090 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2091 msleep(100);
2092 dev_info(&pdev->dev, "IOV Disabled\n");
2093 }
2094#endif
559e9c49 2095
28b0759c
AD
2096 iounmap(hw->hw_addr);
2097 if (hw->flash_address)
2098 iounmap(hw->flash_address);
559e9c49
AD
2099 pci_release_selected_regions(pdev,
2100 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2101
2102 free_netdev(netdev);
2103
19d5afd4 2104 pci_disable_pcie_error_reporting(pdev);
40a914fa 2105
9d5c8243
AK
2106 pci_disable_device(pdev);
2107}
2108
a6b623e0
AD
2109/**
2110 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2111 * @adapter: board private structure to initialize
2112 *
2113 * This function initializes the vf specific data storage and then attempts to
2114 * allocate the VFs. The reason for ordering it this way is because it is much
2115 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2116 * the memory for the VFs.
2117 **/
2118static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2119{
2120#ifdef CONFIG_PCI_IOV
2121 struct pci_dev *pdev = adapter->pdev;
2122
a6b623e0
AD
2123 if (adapter->vfs_allocated_count) {
2124 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2125 sizeof(struct vf_data_storage),
2126 GFP_KERNEL);
2127 /* if allocation failed then we do not support SR-IOV */
2128 if (!adapter->vf_data) {
2129 adapter->vfs_allocated_count = 0;
2130 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2131 "Data Storage\n");
2132 }
2133 }
2134
2135 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2136 kfree(adapter->vf_data);
2137 adapter->vf_data = NULL;
2138#endif /* CONFIG_PCI_IOV */
2139 adapter->vfs_allocated_count = 0;
2140#ifdef CONFIG_PCI_IOV
2141 } else {
2142 unsigned char mac_addr[ETH_ALEN];
2143 int i;
2144 dev_info(&pdev->dev, "%d vfs allocated\n",
2145 adapter->vfs_allocated_count);
2146 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2147 random_ether_addr(mac_addr);
2148 igb_set_vf_mac(adapter, i, mac_addr);
2149 }
2150 }
2151#endif /* CONFIG_PCI_IOV */
2152}
2153
115f459a
AD
2154
2155/**
2156 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2157 * @adapter: board private structure to initialize
2158 *
2159 * igb_init_hw_timer initializes the function pointer and values for the hw
2160 * timer found in hardware.
2161 **/
2162static void igb_init_hw_timer(struct igb_adapter *adapter)
2163{
2164 struct e1000_hw *hw = &adapter->hw;
2165
2166 switch (hw->mac.type) {
d2ba2ed8 2167 case e1000_i350:
55cac248
AD
2168 case e1000_82580:
2169 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2170 adapter->cycles.read = igb_read_clock;
2171 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2172 adapter->cycles.mult = 1;
2173 /*
2174 * The 82580 timesync updates the system timer every 8ns by 8ns
2175 * and the value cannot be shifted. Instead we need to shift
2176 * the registers to generate a 64bit timer value. As a result
2177 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2178 * 24 in order to generate a larger value for synchronization.
2179 */
2180 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2181 /* disable system timer temporarily by setting bit 31 */
2182 wr32(E1000_TSAUXC, 0x80000000);
2183 wrfl();
2184
2185 /* Set registers so that rollover occurs soon to test this. */
2186 wr32(E1000_SYSTIMR, 0x00000000);
2187 wr32(E1000_SYSTIML, 0x80000000);
2188 wr32(E1000_SYSTIMH, 0x000000FF);
2189 wrfl();
2190
2191 /* enable system timer by clearing bit 31 */
2192 wr32(E1000_TSAUXC, 0x0);
2193 wrfl();
2194
2195 timecounter_init(&adapter->clock,
2196 &adapter->cycles,
2197 ktime_to_ns(ktime_get_real()));
2198 /*
2199 * Synchronize our NIC clock against system wall clock. NIC
2200 * time stamp reading requires ~3us per sample, each sample
2201 * was pretty stable even under load => only require 10
2202 * samples for each offset comparison.
2203 */
2204 memset(&adapter->compare, 0, sizeof(adapter->compare));
2205 adapter->compare.source = &adapter->clock;
2206 adapter->compare.target = ktime_get_real;
2207 adapter->compare.num_samples = 10;
2208 timecompare_update(&adapter->compare, 0);
2209 break;
115f459a
AD
2210 case e1000_82576:
2211 /*
2212 * Initialize hardware timer: we keep it running just in case
2213 * that some program needs it later on.
2214 */
2215 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2216 adapter->cycles.read = igb_read_clock;
2217 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2218 adapter->cycles.mult = 1;
2219 /**
2220 * Scale the NIC clock cycle by a large factor so that
2221 * relatively small clock corrections can be added or
2222 * substracted at each clock tick. The drawbacks of a large
2223 * factor are a) that the clock register overflows more quickly
2224 * (not such a big deal) and b) that the increment per tick has
2225 * to fit into 24 bits. As a result we need to use a shift of
2226 * 19 so we can fit a value of 16 into the TIMINCA register.
2227 */
2228 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2229 wr32(E1000_TIMINCA,
2230 (1 << E1000_TIMINCA_16NS_SHIFT) |
2231 (16 << IGB_82576_TSYNC_SHIFT));
2232
2233 /* Set registers so that rollover occurs soon to test this. */
2234 wr32(E1000_SYSTIML, 0x00000000);
2235 wr32(E1000_SYSTIMH, 0xFF800000);
2236 wrfl();
2237
2238 timecounter_init(&adapter->clock,
2239 &adapter->cycles,
2240 ktime_to_ns(ktime_get_real()));
2241 /*
2242 * Synchronize our NIC clock against system wall clock. NIC
2243 * time stamp reading requires ~3us per sample, each sample
2244 * was pretty stable even under load => only require 10
2245 * samples for each offset comparison.
2246 */
2247 memset(&adapter->compare, 0, sizeof(adapter->compare));
2248 adapter->compare.source = &adapter->clock;
2249 adapter->compare.target = ktime_get_real;
2250 adapter->compare.num_samples = 10;
2251 timecompare_update(&adapter->compare, 0);
2252 break;
2253 case e1000_82575:
2254 /* 82575 does not support timesync */
2255 default:
2256 break;
2257 }
2258
2259}
2260
9d5c8243
AK
2261/**
2262 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2263 * @adapter: board private structure to initialize
2264 *
2265 * igb_sw_init initializes the Adapter private data structure.
2266 * Fields are initialized based on PCI device information and
2267 * OS network device settings (MTU size).
2268 **/
2269static int __devinit igb_sw_init(struct igb_adapter *adapter)
2270{
2271 struct e1000_hw *hw = &adapter->hw;
2272 struct net_device *netdev = adapter->netdev;
2273 struct pci_dev *pdev = adapter->pdev;
2274
2275 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2276
68fd9910
AD
2277 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2278 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2279 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2280 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2281
9d5c8243
AK
2282 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2283 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2284
12dcd86b 2285 spin_lock_init(&adapter->stats64_lock);
a6b623e0
AD
2286#ifdef CONFIG_PCI_IOV
2287 if (hw->mac.type == e1000_82576)
c0f2276f 2288 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
a6b623e0
AD
2289
2290#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2291 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2292
2293 /*
2294 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2295 * then we should combine the queues into a queue pair in order to
2296 * conserve interrupts due to limited supply
2297 */
2298 if ((adapter->rss_queues > 4) ||
2299 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2300 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2301
a6b623e0 2302 /* This call may decrease the number of queues */
047e0030 2303 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2304 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2305 return -ENOMEM;
2306 }
2307
115f459a 2308 igb_init_hw_timer(adapter);
a6b623e0
AD
2309 igb_probe_vfs(adapter);
2310
9d5c8243
AK
2311 /* Explicitly disable IRQ since the NIC can be in any state. */
2312 igb_irq_disable(adapter);
2313
2314 set_bit(__IGB_DOWN, &adapter->state);
2315 return 0;
2316}
2317
2318/**
2319 * igb_open - Called when a network interface is made active
2320 * @netdev: network interface device structure
2321 *
2322 * Returns 0 on success, negative value on failure
2323 *
2324 * The open entry point is called when a network interface is made
2325 * active by the system (IFF_UP). At this point all resources needed
2326 * for transmit and receive operations are allocated, the interrupt
2327 * handler is registered with the OS, the watchdog timer is started,
2328 * and the stack is notified that the interface is ready.
2329 **/
2330static int igb_open(struct net_device *netdev)
2331{
2332 struct igb_adapter *adapter = netdev_priv(netdev);
2333 struct e1000_hw *hw = &adapter->hw;
2334 int err;
2335 int i;
2336
2337 /* disallow open during test */
2338 if (test_bit(__IGB_TESTING, &adapter->state))
2339 return -EBUSY;
2340
b168dfc5
JB
2341 netif_carrier_off(netdev);
2342
9d5c8243
AK
2343 /* allocate transmit descriptors */
2344 err = igb_setup_all_tx_resources(adapter);
2345 if (err)
2346 goto err_setup_tx;
2347
2348 /* allocate receive descriptors */
2349 err = igb_setup_all_rx_resources(adapter);
2350 if (err)
2351 goto err_setup_rx;
2352
88a268c1 2353 igb_power_up_link(adapter);
9d5c8243 2354
9d5c8243
AK
2355 /* before we allocate an interrupt, we must be ready to handle it.
2356 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2357 * as soon as we call pci_request_irq, so we have to setup our
2358 * clean_rx handler before we do so. */
2359 igb_configure(adapter);
2360
2361 err = igb_request_irq(adapter);
2362 if (err)
2363 goto err_req_irq;
2364
2365 /* From here on the code is the same as igb_up() */
2366 clear_bit(__IGB_DOWN, &adapter->state);
2367
047e0030
AD
2368 for (i = 0; i < adapter->num_q_vectors; i++) {
2369 struct igb_q_vector *q_vector = adapter->q_vector[i];
2370 napi_enable(&q_vector->napi);
2371 }
9d5c8243
AK
2372
2373 /* Clear any pending interrupts. */
2374 rd32(E1000_ICR);
844290e5
PW
2375
2376 igb_irq_enable(adapter);
2377
d4960307
AD
2378 /* notify VFs that reset has been completed */
2379 if (adapter->vfs_allocated_count) {
2380 u32 reg_data = rd32(E1000_CTRL_EXT);
2381 reg_data |= E1000_CTRL_EXT_PFRSTD;
2382 wr32(E1000_CTRL_EXT, reg_data);
2383 }
2384
d55b53ff
JK
2385 netif_tx_start_all_queues(netdev);
2386
25568a53
AD
2387 /* start the watchdog. */
2388 hw->mac.get_link_status = 1;
2389 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2390
2391 return 0;
2392
2393err_req_irq:
2394 igb_release_hw_control(adapter);
88a268c1 2395 igb_power_down_link(adapter);
9d5c8243
AK
2396 igb_free_all_rx_resources(adapter);
2397err_setup_rx:
2398 igb_free_all_tx_resources(adapter);
2399err_setup_tx:
2400 igb_reset(adapter);
2401
2402 return err;
2403}
2404
2405/**
2406 * igb_close - Disables a network interface
2407 * @netdev: network interface device structure
2408 *
2409 * Returns 0, this is not allowed to fail
2410 *
2411 * The close entry point is called when an interface is de-activated
2412 * by the OS. The hardware is still under the driver's control, but
2413 * needs to be disabled. A global MAC reset is issued to stop the
2414 * hardware, and all transmit and receive resources are freed.
2415 **/
2416static int igb_close(struct net_device *netdev)
2417{
2418 struct igb_adapter *adapter = netdev_priv(netdev);
2419
2420 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2421 igb_down(adapter);
2422
2423 igb_free_irq(adapter);
2424
2425 igb_free_all_tx_resources(adapter);
2426 igb_free_all_rx_resources(adapter);
2427
9d5c8243
AK
2428 return 0;
2429}
2430
2431/**
2432 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2433 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
80785298 2437int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2438{
59d71989 2439 struct device *dev = tx_ring->dev;
9d5c8243
AK
2440 int size;
2441
2442 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2443 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2444 if (!tx_ring->buffer_info)
2445 goto err;
9d5c8243
AK
2446
2447 /* round up to nearest 4K */
85e8d004 2448 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2449 tx_ring->size = ALIGN(tx_ring->size, 4096);
2450
59d71989
AD
2451 tx_ring->desc = dma_alloc_coherent(dev,
2452 tx_ring->size,
2453 &tx_ring->dma,
2454 GFP_KERNEL);
9d5c8243
AK
2455
2456 if (!tx_ring->desc)
2457 goto err;
2458
9d5c8243
AK
2459 tx_ring->next_to_use = 0;
2460 tx_ring->next_to_clean = 0;
9d5c8243
AK
2461 return 0;
2462
2463err:
2464 vfree(tx_ring->buffer_info);
59d71989 2465 dev_err(dev,
9d5c8243
AK
2466 "Unable to allocate memory for the transmit descriptor ring\n");
2467 return -ENOMEM;
2468}
2469
2470/**
2471 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2472 * (Descriptors) for all queues
2473 * @adapter: board private structure
2474 *
2475 * Return 0 on success, negative on failure
2476 **/
2477static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2478{
439705e1 2479 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2480 int i, err = 0;
2481
2482 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2483 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2484 if (err) {
439705e1 2485 dev_err(&pdev->dev,
9d5c8243
AK
2486 "Allocation for Tx Queue %u failed\n", i);
2487 for (i--; i >= 0; i--)
3025a446 2488 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2489 break;
2490 }
2491 }
2492
a99955fc 2493 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2494 int r_idx = i % adapter->num_tx_queues;
3025a446 2495 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2496 }
9d5c8243
AK
2497 return err;
2498}
2499
2500/**
85b430b4
AD
2501 * igb_setup_tctl - configure the transmit control registers
2502 * @adapter: Board private structure
9d5c8243 2503 **/
d7ee5b3a 2504void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2505{
9d5c8243
AK
2506 struct e1000_hw *hw = &adapter->hw;
2507 u32 tctl;
9d5c8243 2508
85b430b4
AD
2509 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2510 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2511
2512 /* Program the Transmit Control Register */
9d5c8243
AK
2513 tctl = rd32(E1000_TCTL);
2514 tctl &= ~E1000_TCTL_CT;
2515 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2516 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2517
2518 igb_config_collision_dist(hw);
2519
9d5c8243
AK
2520 /* Enable transmits */
2521 tctl |= E1000_TCTL_EN;
2522
2523 wr32(E1000_TCTL, tctl);
2524}
2525
85b430b4
AD
2526/**
2527 * igb_configure_tx_ring - Configure transmit ring after Reset
2528 * @adapter: board private structure
2529 * @ring: tx ring to configure
2530 *
2531 * Configure a transmit ring after a reset.
2532 **/
d7ee5b3a
AD
2533void igb_configure_tx_ring(struct igb_adapter *adapter,
2534 struct igb_ring *ring)
85b430b4
AD
2535{
2536 struct e1000_hw *hw = &adapter->hw;
2537 u32 txdctl;
2538 u64 tdba = ring->dma;
2539 int reg_idx = ring->reg_idx;
2540
2541 /* disable the queue */
2542 txdctl = rd32(E1000_TXDCTL(reg_idx));
2543 wr32(E1000_TXDCTL(reg_idx),
2544 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2545 wrfl();
2546 mdelay(10);
2547
2548 wr32(E1000_TDLEN(reg_idx),
2549 ring->count * sizeof(union e1000_adv_tx_desc));
2550 wr32(E1000_TDBAL(reg_idx),
2551 tdba & 0x00000000ffffffffULL);
2552 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2553
fce99e34
AD
2554 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2555 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2556 writel(0, ring->head);
2557 writel(0, ring->tail);
85b430b4
AD
2558
2559 txdctl |= IGB_TX_PTHRESH;
2560 txdctl |= IGB_TX_HTHRESH << 8;
2561 txdctl |= IGB_TX_WTHRESH << 16;
2562
2563 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2564 wr32(E1000_TXDCTL(reg_idx), txdctl);
2565}
2566
2567/**
2568 * igb_configure_tx - Configure transmit Unit after Reset
2569 * @adapter: board private structure
2570 *
2571 * Configure the Tx unit of the MAC after a reset.
2572 **/
2573static void igb_configure_tx(struct igb_adapter *adapter)
2574{
2575 int i;
2576
2577 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2578 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2579}
2580
9d5c8243
AK
2581/**
2582 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2583 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2584 *
2585 * Returns 0 on success, negative on failure
2586 **/
80785298 2587int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2588{
59d71989 2589 struct device *dev = rx_ring->dev;
9d5c8243
AK
2590 int size, desc_len;
2591
2592 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2593 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2594 if (!rx_ring->buffer_info)
2595 goto err;
9d5c8243
AK
2596
2597 desc_len = sizeof(union e1000_adv_rx_desc);
2598
2599 /* Round up to nearest 4K */
2600 rx_ring->size = rx_ring->count * desc_len;
2601 rx_ring->size = ALIGN(rx_ring->size, 4096);
2602
59d71989
AD
2603 rx_ring->desc = dma_alloc_coherent(dev,
2604 rx_ring->size,
2605 &rx_ring->dma,
2606 GFP_KERNEL);
9d5c8243
AK
2607
2608 if (!rx_ring->desc)
2609 goto err;
2610
2611 rx_ring->next_to_clean = 0;
2612 rx_ring->next_to_use = 0;
9d5c8243 2613
9d5c8243
AK
2614 return 0;
2615
2616err:
2617 vfree(rx_ring->buffer_info);
439705e1 2618 rx_ring->buffer_info = NULL;
59d71989
AD
2619 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2620 " ring\n");
9d5c8243
AK
2621 return -ENOMEM;
2622}
2623
2624/**
2625 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2626 * (Descriptors) for all queues
2627 * @adapter: board private structure
2628 *
2629 * Return 0 on success, negative on failure
2630 **/
2631static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2632{
439705e1 2633 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2634 int i, err = 0;
2635
2636 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2637 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2638 if (err) {
439705e1 2639 dev_err(&pdev->dev,
9d5c8243
AK
2640 "Allocation for Rx Queue %u failed\n", i);
2641 for (i--; i >= 0; i--)
3025a446 2642 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2643 break;
2644 }
2645 }
2646
2647 return err;
2648}
2649
06cf2666
AD
2650/**
2651 * igb_setup_mrqc - configure the multiple receive queue control registers
2652 * @adapter: Board private structure
2653 **/
2654static void igb_setup_mrqc(struct igb_adapter *adapter)
2655{
2656 struct e1000_hw *hw = &adapter->hw;
2657 u32 mrqc, rxcsum;
2658 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2659 union e1000_reta {
2660 u32 dword;
2661 u8 bytes[4];
2662 } reta;
2663 static const u8 rsshash[40] = {
2664 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2665 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2666 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2667 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2668
2669 /* Fill out hash function seeds */
2670 for (j = 0; j < 10; j++) {
2671 u32 rsskey = rsshash[(j * 4)];
2672 rsskey |= rsshash[(j * 4) + 1] << 8;
2673 rsskey |= rsshash[(j * 4) + 2] << 16;
2674 rsskey |= rsshash[(j * 4) + 3] << 24;
2675 array_wr32(E1000_RSSRK(0), j, rsskey);
2676 }
2677
a99955fc 2678 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2679
2680 if (adapter->vfs_allocated_count) {
2681 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2682 switch (hw->mac.type) {
d2ba2ed8 2683 case e1000_i350:
55cac248
AD
2684 case e1000_82580:
2685 num_rx_queues = 1;
2686 shift = 0;
2687 break;
06cf2666
AD
2688 case e1000_82576:
2689 shift = 3;
2690 num_rx_queues = 2;
2691 break;
2692 case e1000_82575:
2693 shift = 2;
2694 shift2 = 6;
2695 default:
2696 break;
2697 }
2698 } else {
2699 if (hw->mac.type == e1000_82575)
2700 shift = 6;
2701 }
2702
2703 for (j = 0; j < (32 * 4); j++) {
2704 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2705 if (shift2)
2706 reta.bytes[j & 3] |= num_rx_queues << shift2;
2707 if ((j & 3) == 3)
2708 wr32(E1000_RETA(j >> 2), reta.dword);
2709 }
2710
2711 /*
2712 * Disable raw packet checksumming so that RSS hash is placed in
2713 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2714 * offloads as they are enabled by default
2715 */
2716 rxcsum = rd32(E1000_RXCSUM);
2717 rxcsum |= E1000_RXCSUM_PCSD;
2718
2719 if (adapter->hw.mac.type >= e1000_82576)
2720 /* Enable Receive Checksum Offload for SCTP */
2721 rxcsum |= E1000_RXCSUM_CRCOFL;
2722
2723 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2724 wr32(E1000_RXCSUM, rxcsum);
2725
2726 /* If VMDq is enabled then we set the appropriate mode for that, else
2727 * we default to RSS so that an RSS hash is calculated per packet even
2728 * if we are only using one queue */
2729 if (adapter->vfs_allocated_count) {
2730 if (hw->mac.type > e1000_82575) {
2731 /* Set the default pool for the PF's first queue */
2732 u32 vtctl = rd32(E1000_VT_CTL);
2733 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2734 E1000_VT_CTL_DISABLE_DEF_POOL);
2735 vtctl |= adapter->vfs_allocated_count <<
2736 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2737 wr32(E1000_VT_CTL, vtctl);
2738 }
a99955fc 2739 if (adapter->rss_queues > 1)
06cf2666
AD
2740 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2741 else
2742 mrqc = E1000_MRQC_ENABLE_VMDQ;
2743 } else {
2744 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2745 }
2746 igb_vmm_control(adapter);
2747
4478a9cd
AD
2748 /*
2749 * Generate RSS hash based on TCP port numbers and/or
2750 * IPv4/v6 src and dst addresses since UDP cannot be
2751 * hashed reliably due to IP fragmentation
2752 */
2753 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2754 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2755 E1000_MRQC_RSS_FIELD_IPV6 |
2756 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2757 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2758
2759 wr32(E1000_MRQC, mrqc);
2760}
2761
9d5c8243
AK
2762/**
2763 * igb_setup_rctl - configure the receive control registers
2764 * @adapter: Board private structure
2765 **/
d7ee5b3a 2766void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2767{
2768 struct e1000_hw *hw = &adapter->hw;
2769 u32 rctl;
9d5c8243
AK
2770
2771 rctl = rd32(E1000_RCTL);
2772
2773 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2774 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2775
69d728ba 2776 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2777 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2778
87cb7e8c
AK
2779 /*
2780 * enable stripping of CRC. It's unlikely this will break BMC
2781 * redirection as it did with e1000. Newer features require
2782 * that the HW strips the CRC.
73cd78f1 2783 */
87cb7e8c 2784 rctl |= E1000_RCTL_SECRC;
9d5c8243 2785
559e9c49 2786 /* disable store bad packets and clear size bits. */
ec54d7d6 2787 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2788
6ec43fe6
AD
2789 /* enable LPE to prevent packets larger than max_frame_size */
2790 rctl |= E1000_RCTL_LPE;
9d5c8243 2791
952f72a8
AD
2792 /* disable queue 0 to prevent tail write w/o re-config */
2793 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2794
e1739522
AD
2795 /* Attention!!! For SR-IOV PF driver operations you must enable
2796 * queue drop for all VF and PF queues to prevent head of line blocking
2797 * if an un-trusted VF does not provide descriptors to hardware.
2798 */
2799 if (adapter->vfs_allocated_count) {
e1739522
AD
2800 /* set all queue drop enable bits */
2801 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2802 }
2803
9d5c8243
AK
2804 wr32(E1000_RCTL, rctl);
2805}
2806
7d5753f0
AD
2807static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2808 int vfn)
2809{
2810 struct e1000_hw *hw = &adapter->hw;
2811 u32 vmolr;
2812
2813 /* if it isn't the PF check to see if VFs are enabled and
2814 * increase the size to support vlan tags */
2815 if (vfn < adapter->vfs_allocated_count &&
2816 adapter->vf_data[vfn].vlans_enabled)
2817 size += VLAN_TAG_SIZE;
2818
2819 vmolr = rd32(E1000_VMOLR(vfn));
2820 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2821 vmolr |= size | E1000_VMOLR_LPE;
2822 wr32(E1000_VMOLR(vfn), vmolr);
2823
2824 return 0;
2825}
2826
e1739522
AD
2827/**
2828 * igb_rlpml_set - set maximum receive packet size
2829 * @adapter: board private structure
2830 *
2831 * Configure maximum receivable packet size.
2832 **/
2833static void igb_rlpml_set(struct igb_adapter *adapter)
2834{
2835 u32 max_frame_size = adapter->max_frame_size;
2836 struct e1000_hw *hw = &adapter->hw;
2837 u16 pf_id = adapter->vfs_allocated_count;
2838
2839 if (adapter->vlgrp)
2840 max_frame_size += VLAN_TAG_SIZE;
2841
2842 /* if vfs are enabled we set RLPML to the largest possible request
2843 * size and set the VMOLR RLPML to the size we need */
2844 if (pf_id) {
2845 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2846 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2847 }
2848
2849 wr32(E1000_RLPML, max_frame_size);
2850}
2851
8151d294
WM
2852static inline void igb_set_vmolr(struct igb_adapter *adapter,
2853 int vfn, bool aupe)
7d5753f0
AD
2854{
2855 struct e1000_hw *hw = &adapter->hw;
2856 u32 vmolr;
2857
2858 /*
2859 * This register exists only on 82576 and newer so if we are older then
2860 * we should exit and do nothing
2861 */
2862 if (hw->mac.type < e1000_82576)
2863 return;
2864
2865 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2866 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2867 if (aupe)
2868 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2869 else
2870 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2871
2872 /* clear all bits that might not be set */
2873 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2874
a99955fc 2875 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2876 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2877 /*
2878 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2879 * multicast packets
2880 */
2881 if (vfn <= adapter->vfs_allocated_count)
2882 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2883
2884 wr32(E1000_VMOLR(vfn), vmolr);
2885}
2886
85b430b4
AD
2887/**
2888 * igb_configure_rx_ring - Configure a receive ring after Reset
2889 * @adapter: board private structure
2890 * @ring: receive ring to be configured
2891 *
2892 * Configure the Rx unit of the MAC after a reset.
2893 **/
d7ee5b3a
AD
2894void igb_configure_rx_ring(struct igb_adapter *adapter,
2895 struct igb_ring *ring)
85b430b4
AD
2896{
2897 struct e1000_hw *hw = &adapter->hw;
2898 u64 rdba = ring->dma;
2899 int reg_idx = ring->reg_idx;
952f72a8 2900 u32 srrctl, rxdctl;
85b430b4
AD
2901
2902 /* disable the queue */
2903 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2904 wr32(E1000_RXDCTL(reg_idx),
2905 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2906
2907 /* Set DMA base address registers */
2908 wr32(E1000_RDBAL(reg_idx),
2909 rdba & 0x00000000ffffffffULL);
2910 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2911 wr32(E1000_RDLEN(reg_idx),
2912 ring->count * sizeof(union e1000_adv_rx_desc));
2913
2914 /* initialize head and tail */
fce99e34
AD
2915 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2916 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2917 writel(0, ring->head);
2918 writel(0, ring->tail);
85b430b4 2919
952f72a8 2920 /* set descriptor configuration */
4c844851
AD
2921 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2922 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2923 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2924#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2925 srrctl |= IGB_RXBUFFER_16384 >>
2926 E1000_SRRCTL_BSIZEPKT_SHIFT;
2927#else
2928 srrctl |= (PAGE_SIZE / 2) >>
2929 E1000_SRRCTL_BSIZEPKT_SHIFT;
2930#endif
2931 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2932 } else {
4c844851 2933 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2934 E1000_SRRCTL_BSIZEPKT_SHIFT;
2935 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2936 }
757b77e2
NN
2937 if (hw->mac.type == e1000_82580)
2938 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2939 /* Only set Drop Enable if we are supporting multiple queues */
2940 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2941 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2942
2943 wr32(E1000_SRRCTL(reg_idx), srrctl);
2944
7d5753f0 2945 /* set filtering for VMDQ pools */
8151d294 2946 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2947
85b430b4
AD
2948 /* enable receive descriptor fetching */
2949 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2950 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2951 rxdctl &= 0xFFF00000;
2952 rxdctl |= IGB_RX_PTHRESH;
2953 rxdctl |= IGB_RX_HTHRESH << 8;
2954 rxdctl |= IGB_RX_WTHRESH << 16;
2955 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2956}
2957
9d5c8243
AK
2958/**
2959 * igb_configure_rx - Configure receive Unit after Reset
2960 * @adapter: board private structure
2961 *
2962 * Configure the Rx unit of the MAC after a reset.
2963 **/
2964static void igb_configure_rx(struct igb_adapter *adapter)
2965{
9107584e 2966 int i;
9d5c8243 2967
68d480c4
AD
2968 /* set UTA to appropriate mode */
2969 igb_set_uta(adapter);
2970
26ad9178
AD
2971 /* set the correct pool for the PF default MAC address in entry 0 */
2972 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2973 adapter->vfs_allocated_count);
2974
06cf2666
AD
2975 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2976 * the Base and Length of the Rx Descriptor Ring */
2977 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2978 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2979}
2980
2981/**
2982 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2983 * @tx_ring: Tx descriptor ring for a specific queue
2984 *
2985 * Free all transmit software resources
2986 **/
68fd9910 2987void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2988{
3b644cf6 2989 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2990
2991 vfree(tx_ring->buffer_info);
2992 tx_ring->buffer_info = NULL;
2993
439705e1
AD
2994 /* if not set, then don't free */
2995 if (!tx_ring->desc)
2996 return;
2997
59d71989
AD
2998 dma_free_coherent(tx_ring->dev, tx_ring->size,
2999 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3000
3001 tx_ring->desc = NULL;
3002}
3003
3004/**
3005 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3006 * @adapter: board private structure
3007 *
3008 * Free all transmit software resources
3009 **/
3010static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3011{
3012 int i;
3013
3014 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3015 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3016}
3017
b1a436c3
AD
3018void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3019 struct igb_buffer *buffer_info)
9d5c8243 3020{
6366ad33
AD
3021 if (buffer_info->dma) {
3022 if (buffer_info->mapped_as_page)
59d71989 3023 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3024 buffer_info->dma,
3025 buffer_info->length,
59d71989 3026 DMA_TO_DEVICE);
6366ad33 3027 else
59d71989 3028 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3029 buffer_info->dma,
3030 buffer_info->length,
59d71989 3031 DMA_TO_DEVICE);
6366ad33
AD
3032 buffer_info->dma = 0;
3033 }
9d5c8243
AK
3034 if (buffer_info->skb) {
3035 dev_kfree_skb_any(buffer_info->skb);
3036 buffer_info->skb = NULL;
3037 }
3038 buffer_info->time_stamp = 0;
6366ad33
AD
3039 buffer_info->length = 0;
3040 buffer_info->next_to_watch = 0;
3041 buffer_info->mapped_as_page = false;
9d5c8243
AK
3042}
3043
3044/**
3045 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3046 * @tx_ring: ring to be cleaned
3047 **/
3b644cf6 3048static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3049{
3050 struct igb_buffer *buffer_info;
3051 unsigned long size;
3052 unsigned int i;
3053
3054 if (!tx_ring->buffer_info)
3055 return;
3056 /* Free all the Tx ring sk_buffs */
3057
3058 for (i = 0; i < tx_ring->count; i++) {
3059 buffer_info = &tx_ring->buffer_info[i];
80785298 3060 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3061 }
3062
3063 size = sizeof(struct igb_buffer) * tx_ring->count;
3064 memset(tx_ring->buffer_info, 0, size);
3065
3066 /* Zero out the descriptor ring */
9d5c8243
AK
3067 memset(tx_ring->desc, 0, tx_ring->size);
3068
3069 tx_ring->next_to_use = 0;
3070 tx_ring->next_to_clean = 0;
9d5c8243
AK
3071}
3072
3073/**
3074 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3075 * @adapter: board private structure
3076 **/
3077static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3078{
3079 int i;
3080
3081 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3082 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3083}
3084
3085/**
3086 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3087 * @rx_ring: ring to clean the resources from
3088 *
3089 * Free all receive software resources
3090 **/
68fd9910 3091void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3092{
3b644cf6 3093 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3094
3095 vfree(rx_ring->buffer_info);
3096 rx_ring->buffer_info = NULL;
3097
439705e1
AD
3098 /* if not set, then don't free */
3099 if (!rx_ring->desc)
3100 return;
3101
59d71989
AD
3102 dma_free_coherent(rx_ring->dev, rx_ring->size,
3103 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3104
3105 rx_ring->desc = NULL;
3106}
3107
3108/**
3109 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3110 * @adapter: board private structure
3111 *
3112 * Free all receive software resources
3113 **/
3114static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3115{
3116 int i;
3117
3118 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3119 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3120}
3121
3122/**
3123 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3124 * @rx_ring: ring to free buffers from
3125 **/
3b644cf6 3126static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3127{
3128 struct igb_buffer *buffer_info;
9d5c8243
AK
3129 unsigned long size;
3130 unsigned int i;
3131
3132 if (!rx_ring->buffer_info)
3133 return;
439705e1 3134
9d5c8243
AK
3135 /* Free all the Rx ring sk_buffs */
3136 for (i = 0; i < rx_ring->count; i++) {
3137 buffer_info = &rx_ring->buffer_info[i];
3138 if (buffer_info->dma) {
59d71989 3139 dma_unmap_single(rx_ring->dev,
80785298 3140 buffer_info->dma,
4c844851 3141 rx_ring->rx_buffer_len,
59d71989 3142 DMA_FROM_DEVICE);
9d5c8243
AK
3143 buffer_info->dma = 0;
3144 }
3145
3146 if (buffer_info->skb) {
3147 dev_kfree_skb(buffer_info->skb);
3148 buffer_info->skb = NULL;
3149 }
6ec43fe6 3150 if (buffer_info->page_dma) {
59d71989 3151 dma_unmap_page(rx_ring->dev,
80785298 3152 buffer_info->page_dma,
6ec43fe6 3153 PAGE_SIZE / 2,
59d71989 3154 DMA_FROM_DEVICE);
6ec43fe6
AD
3155 buffer_info->page_dma = 0;
3156 }
9d5c8243 3157 if (buffer_info->page) {
9d5c8243
AK
3158 put_page(buffer_info->page);
3159 buffer_info->page = NULL;
bf36c1a0 3160 buffer_info->page_offset = 0;
9d5c8243
AK
3161 }
3162 }
3163
9d5c8243
AK
3164 size = sizeof(struct igb_buffer) * rx_ring->count;
3165 memset(rx_ring->buffer_info, 0, size);
3166
3167 /* Zero out the descriptor ring */
3168 memset(rx_ring->desc, 0, rx_ring->size);
3169
3170 rx_ring->next_to_clean = 0;
3171 rx_ring->next_to_use = 0;
9d5c8243
AK
3172}
3173
3174/**
3175 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3176 * @adapter: board private structure
3177 **/
3178static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3179{
3180 int i;
3181
3182 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3183 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3184}
3185
3186/**
3187 * igb_set_mac - Change the Ethernet Address of the NIC
3188 * @netdev: network interface device structure
3189 * @p: pointer to an address structure
3190 *
3191 * Returns 0 on success, negative on failure
3192 **/
3193static int igb_set_mac(struct net_device *netdev, void *p)
3194{
3195 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3196 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3197 struct sockaddr *addr = p;
3198
3199 if (!is_valid_ether_addr(addr->sa_data))
3200 return -EADDRNOTAVAIL;
3201
3202 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3203 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3204
26ad9178
AD
3205 /* set the correct pool for the new PF MAC address in entry 0 */
3206 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3207 adapter->vfs_allocated_count);
e1739522 3208
9d5c8243
AK
3209 return 0;
3210}
3211
3212/**
68d480c4 3213 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3214 * @netdev: network interface device structure
3215 *
68d480c4
AD
3216 * Writes multicast address list to the MTA hash table.
3217 * Returns: -ENOMEM on failure
3218 * 0 on no addresses written
3219 * X on writing X addresses to MTA
9d5c8243 3220 **/
68d480c4 3221static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3222{
3223 struct igb_adapter *adapter = netdev_priv(netdev);
3224 struct e1000_hw *hw = &adapter->hw;
22bedad3 3225 struct netdev_hw_addr *ha;
68d480c4 3226 u8 *mta_list;
9d5c8243
AK
3227 int i;
3228
4cd24eaf 3229 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3230 /* nothing to program, so clear mc list */
3231 igb_update_mc_addr_list(hw, NULL, 0);
3232 igb_restore_vf_multicasts(adapter);
3233 return 0;
3234 }
9d5c8243 3235
4cd24eaf 3236 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3237 if (!mta_list)
3238 return -ENOMEM;
ff41f8dc 3239
68d480c4 3240 /* The shared function expects a packed array of only addresses. */
48e2f183 3241 i = 0;
22bedad3
JP
3242 netdev_for_each_mc_addr(ha, netdev)
3243 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3244
68d480c4
AD
3245 igb_update_mc_addr_list(hw, mta_list, i);
3246 kfree(mta_list);
3247
4cd24eaf 3248 return netdev_mc_count(netdev);
68d480c4
AD
3249}
3250
3251/**
3252 * igb_write_uc_addr_list - write unicast addresses to RAR table
3253 * @netdev: network interface device structure
3254 *
3255 * Writes unicast address list to the RAR table.
3256 * Returns: -ENOMEM on failure/insufficient address space
3257 * 0 on no addresses written
3258 * X on writing X addresses to the RAR table
3259 **/
3260static int igb_write_uc_addr_list(struct net_device *netdev)
3261{
3262 struct igb_adapter *adapter = netdev_priv(netdev);
3263 struct e1000_hw *hw = &adapter->hw;
3264 unsigned int vfn = adapter->vfs_allocated_count;
3265 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3266 int count = 0;
3267
3268 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3269 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3270 return -ENOMEM;
9d5c8243 3271
32e7bfc4 3272 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3273 struct netdev_hw_addr *ha;
32e7bfc4
JP
3274
3275 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3276 if (!rar_entries)
3277 break;
26ad9178
AD
3278 igb_rar_set_qsel(adapter, ha->addr,
3279 rar_entries--,
68d480c4
AD
3280 vfn);
3281 count++;
ff41f8dc
AD
3282 }
3283 }
3284 /* write the addresses in reverse order to avoid write combining */
3285 for (; rar_entries > 0 ; rar_entries--) {
3286 wr32(E1000_RAH(rar_entries), 0);
3287 wr32(E1000_RAL(rar_entries), 0);
3288 }
3289 wrfl();
3290
68d480c4
AD
3291 return count;
3292}
3293
3294/**
3295 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3296 * @netdev: network interface device structure
3297 *
3298 * The set_rx_mode entry point is called whenever the unicast or multicast
3299 * address lists or the network interface flags are updated. This routine is
3300 * responsible for configuring the hardware for proper unicast, multicast,
3301 * promiscuous mode, and all-multi behavior.
3302 **/
3303static void igb_set_rx_mode(struct net_device *netdev)
3304{
3305 struct igb_adapter *adapter = netdev_priv(netdev);
3306 struct e1000_hw *hw = &adapter->hw;
3307 unsigned int vfn = adapter->vfs_allocated_count;
3308 u32 rctl, vmolr = 0;
3309 int count;
3310
3311 /* Check for Promiscuous and All Multicast modes */
3312 rctl = rd32(E1000_RCTL);
3313
3314 /* clear the effected bits */
3315 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3316
3317 if (netdev->flags & IFF_PROMISC) {
3318 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3319 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3320 } else {
3321 if (netdev->flags & IFF_ALLMULTI) {
3322 rctl |= E1000_RCTL_MPE;
3323 vmolr |= E1000_VMOLR_MPME;
3324 } else {
3325 /*
3326 * Write addresses to the MTA, if the attempt fails
3327 * then we should just turn on promiscous mode so
3328 * that we can at least receive multicast traffic
3329 */
3330 count = igb_write_mc_addr_list(netdev);
3331 if (count < 0) {
3332 rctl |= E1000_RCTL_MPE;
3333 vmolr |= E1000_VMOLR_MPME;
3334 } else if (count) {
3335 vmolr |= E1000_VMOLR_ROMPE;
3336 }
3337 }
3338 /*
3339 * Write addresses to available RAR registers, if there is not
3340 * sufficient space to store all the addresses then enable
3341 * unicast promiscous mode
3342 */
3343 count = igb_write_uc_addr_list(netdev);
3344 if (count < 0) {
3345 rctl |= E1000_RCTL_UPE;
3346 vmolr |= E1000_VMOLR_ROPE;
3347 }
3348 rctl |= E1000_RCTL_VFE;
28fc06f5 3349 }
68d480c4 3350 wr32(E1000_RCTL, rctl);
28fc06f5 3351
68d480c4
AD
3352 /*
3353 * In order to support SR-IOV and eventually VMDq it is necessary to set
3354 * the VMOLR to enable the appropriate modes. Without this workaround
3355 * we will have issues with VLAN tag stripping not being done for frames
3356 * that are only arriving because we are the default pool
3357 */
3358 if (hw->mac.type < e1000_82576)
28fc06f5 3359 return;
9d5c8243 3360
68d480c4
AD
3361 vmolr |= rd32(E1000_VMOLR(vfn)) &
3362 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3363 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3364 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3365}
3366
3367/* Need to wait a few seconds after link up to get diagnostic information from
3368 * the phy */
3369static void igb_update_phy_info(unsigned long data)
3370{
3371 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3372 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3373}
3374
4d6b725e
AD
3375/**
3376 * igb_has_link - check shared code for link and determine up/down
3377 * @adapter: pointer to driver private info
3378 **/
3145535a 3379bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3380{
3381 struct e1000_hw *hw = &adapter->hw;
3382 bool link_active = false;
3383 s32 ret_val = 0;
3384
3385 /* get_link_status is set on LSC (link status) interrupt or
3386 * rx sequence error interrupt. get_link_status will stay
3387 * false until the e1000_check_for_link establishes link
3388 * for copper adapters ONLY
3389 */
3390 switch (hw->phy.media_type) {
3391 case e1000_media_type_copper:
3392 if (hw->mac.get_link_status) {
3393 ret_val = hw->mac.ops.check_for_link(hw);
3394 link_active = !hw->mac.get_link_status;
3395 } else {
3396 link_active = true;
3397 }
3398 break;
4d6b725e
AD
3399 case e1000_media_type_internal_serdes:
3400 ret_val = hw->mac.ops.check_for_link(hw);
3401 link_active = hw->mac.serdes_has_link;
3402 break;
3403 default:
3404 case e1000_media_type_unknown:
3405 break;
3406 }
3407
3408 return link_active;
3409}
3410
9d5c8243
AK
3411/**
3412 * igb_watchdog - Timer Call-back
3413 * @data: pointer to adapter cast into an unsigned long
3414 **/
3415static void igb_watchdog(unsigned long data)
3416{
3417 struct igb_adapter *adapter = (struct igb_adapter *)data;
3418 /* Do the rest outside of interrupt context */
3419 schedule_work(&adapter->watchdog_task);
3420}
3421
3422static void igb_watchdog_task(struct work_struct *work)
3423{
3424 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3425 struct igb_adapter,
3426 watchdog_task);
9d5c8243 3427 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3428 struct net_device *netdev = adapter->netdev;
9d5c8243 3429 u32 link;
7a6ea550 3430 int i;
9d5c8243 3431
4d6b725e 3432 link = igb_has_link(adapter);
9d5c8243
AK
3433 if (link) {
3434 if (!netif_carrier_ok(netdev)) {
3435 u32 ctrl;
330a6d6a
AD
3436 hw->mac.ops.get_speed_and_duplex(hw,
3437 &adapter->link_speed,
3438 &adapter->link_duplex);
9d5c8243
AK
3439
3440 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3441 /* Links status message must follow this format */
3442 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3443 "Flow Control: %s\n",
559e9c49
AD
3444 netdev->name,
3445 adapter->link_speed,
3446 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3447 "Full Duplex" : "Half Duplex",
559e9c49
AD
3448 ((ctrl & E1000_CTRL_TFCE) &&
3449 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3450 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3451 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3452
d07f3e37 3453 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3454 adapter->tx_timeout_factor = 1;
3455 switch (adapter->link_speed) {
3456 case SPEED_10:
9d5c8243
AK
3457 adapter->tx_timeout_factor = 14;
3458 break;
3459 case SPEED_100:
9d5c8243
AK
3460 /* maybe add some timeout factor ? */
3461 break;
3462 }
3463
3464 netif_carrier_on(netdev);
9d5c8243 3465
4ae196df
AD
3466 igb_ping_all_vfs(adapter);
3467
4b1a9877 3468 /* link state has changed, schedule phy info update */
9d5c8243
AK
3469 if (!test_bit(__IGB_DOWN, &adapter->state))
3470 mod_timer(&adapter->phy_info_timer,
3471 round_jiffies(jiffies + 2 * HZ));
3472 }
3473 } else {
3474 if (netif_carrier_ok(netdev)) {
3475 adapter->link_speed = 0;
3476 adapter->link_duplex = 0;
527d47c1
AD
3477 /* Links status message must follow this format */
3478 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3479 netdev->name);
9d5c8243 3480 netif_carrier_off(netdev);
4b1a9877 3481
4ae196df
AD
3482 igb_ping_all_vfs(adapter);
3483
4b1a9877 3484 /* link state has changed, schedule phy info update */
9d5c8243
AK
3485 if (!test_bit(__IGB_DOWN, &adapter->state))
3486 mod_timer(&adapter->phy_info_timer,
3487 round_jiffies(jiffies + 2 * HZ));
3488 }
3489 }
3490
12dcd86b
ED
3491 spin_lock(&adapter->stats64_lock);
3492 igb_update_stats(adapter, &adapter->stats64);
3493 spin_unlock(&adapter->stats64_lock);
9d5c8243 3494
dbabb065 3495 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3496 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3497 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3498 /* We've lost link, so the controller stops DMA,
3499 * but we've got queued Tx work that's never going
3500 * to get done, so reset controller to flush Tx.
3501 * (Do the reset outside of interrupt context). */
dbabb065
AD
3502 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3503 adapter->tx_timeout_count++;
3504 schedule_work(&adapter->reset_task);
3505 /* return immediately since reset is imminent */
3506 return;
3507 }
9d5c8243 3508 }
9d5c8243 3509
dbabb065
AD
3510 /* Force detection of hung controller every watchdog period */
3511 tx_ring->detect_tx_hung = true;
3512 }
f7ba205e 3513
9d5c8243 3514 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3515 if (adapter->msix_entries) {
047e0030
AD
3516 u32 eics = 0;
3517 for (i = 0; i < adapter->num_q_vectors; i++) {
3518 struct igb_q_vector *q_vector = adapter->q_vector[i];
3519 eics |= q_vector->eims_value;
3520 }
7a6ea550
AD
3521 wr32(E1000_EICS, eics);
3522 } else {
3523 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3524 }
9d5c8243 3525
9d5c8243
AK
3526 /* Reset the timer */
3527 if (!test_bit(__IGB_DOWN, &adapter->state))
3528 mod_timer(&adapter->watchdog_timer,
3529 round_jiffies(jiffies + 2 * HZ));
3530}
3531
3532enum latency_range {
3533 lowest_latency = 0,
3534 low_latency = 1,
3535 bulk_latency = 2,
3536 latency_invalid = 255
3537};
3538
6eb5a7f1
AD
3539/**
3540 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3541 *
3542 * Stores a new ITR value based on strictly on packet size. This
3543 * algorithm is less sophisticated than that used in igb_update_itr,
3544 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3545 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3546 * were determined based on theoretical maximum wire speed and testing
3547 * data, in order to minimize response time while increasing bulk
3548 * throughput.
3549 * This functionality is controlled by the InterruptThrottleRate module
3550 * parameter (see igb_param.c)
3551 * NOTE: This function is called only when operating in a multiqueue
3552 * receive environment.
047e0030 3553 * @q_vector: pointer to q_vector
6eb5a7f1 3554 **/
047e0030 3555static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3556{
047e0030 3557 int new_val = q_vector->itr_val;
6eb5a7f1 3558 int avg_wire_size = 0;
047e0030 3559 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3560 struct igb_ring *ring;
3561 unsigned int packets;
9d5c8243 3562
6eb5a7f1
AD
3563 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3564 * ints/sec - ITR timer value of 120 ticks.
3565 */
3566 if (adapter->link_speed != SPEED_1000) {
047e0030 3567 new_val = 976;
6eb5a7f1 3568 goto set_itr_val;
9d5c8243 3569 }
047e0030 3570
12dcd86b
ED
3571 ring = q_vector->rx_ring;
3572 if (ring) {
3573 packets = ACCESS_ONCE(ring->total_packets);
3574
3575 if (packets)
3576 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3577 }
3578
12dcd86b
ED
3579 ring = q_vector->tx_ring;
3580 if (ring) {
3581 packets = ACCESS_ONCE(ring->total_packets);
3582
3583 if (packets)
3584 avg_wire_size = max_t(u32, avg_wire_size,
3585 ring->total_bytes / packets);
047e0030
AD
3586 }
3587
3588 /* if avg_wire_size isn't set no work was done */
3589 if (!avg_wire_size)
3590 goto clear_counts;
9d5c8243 3591
6eb5a7f1
AD
3592 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3593 avg_wire_size += 24;
3594
3595 /* Don't starve jumbo frames */
3596 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3597
6eb5a7f1
AD
3598 /* Give a little boost to mid-size frames */
3599 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3600 new_val = avg_wire_size / 3;
3601 else
3602 new_val = avg_wire_size / 2;
9d5c8243 3603
abe1c363
NN
3604 /* when in itr mode 3 do not exceed 20K ints/sec */
3605 if (adapter->rx_itr_setting == 3 && new_val < 196)
3606 new_val = 196;
3607
6eb5a7f1 3608set_itr_val:
047e0030
AD
3609 if (new_val != q_vector->itr_val) {
3610 q_vector->itr_val = new_val;
3611 q_vector->set_itr = 1;
9d5c8243 3612 }
6eb5a7f1 3613clear_counts:
047e0030
AD
3614 if (q_vector->rx_ring) {
3615 q_vector->rx_ring->total_bytes = 0;
3616 q_vector->rx_ring->total_packets = 0;
3617 }
3618 if (q_vector->tx_ring) {
3619 q_vector->tx_ring->total_bytes = 0;
3620 q_vector->tx_ring->total_packets = 0;
3621 }
9d5c8243
AK
3622}
3623
3624/**
3625 * igb_update_itr - update the dynamic ITR value based on statistics
3626 * Stores a new ITR value based on packets and byte
3627 * counts during the last interrupt. The advantage of per interrupt
3628 * computation is faster updates and more accurate ITR for the current
3629 * traffic pattern. Constants in this function were computed
3630 * based on theoretical maximum wire speed and thresholds were set based
3631 * on testing data as well as attempting to minimize response time
3632 * while increasing bulk throughput.
3633 * this functionality is controlled by the InterruptThrottleRate module
3634 * parameter (see igb_param.c)
3635 * NOTE: These calculations are only valid when operating in a single-
3636 * queue environment.
3637 * @adapter: pointer to adapter
047e0030 3638 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3639 * @packets: the number of packets during this measurement interval
3640 * @bytes: the number of bytes during this measurement interval
3641 **/
3642static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3643 int packets, int bytes)
3644{
3645 unsigned int retval = itr_setting;
3646
3647 if (packets == 0)
3648 goto update_itr_done;
3649
3650 switch (itr_setting) {
3651 case lowest_latency:
3652 /* handle TSO and jumbo frames */
3653 if (bytes/packets > 8000)
3654 retval = bulk_latency;
3655 else if ((packets < 5) && (bytes > 512))
3656 retval = low_latency;
3657 break;
3658 case low_latency: /* 50 usec aka 20000 ints/s */
3659 if (bytes > 10000) {
3660 /* this if handles the TSO accounting */
3661 if (bytes/packets > 8000) {
3662 retval = bulk_latency;
3663 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3664 retval = bulk_latency;
3665 } else if ((packets > 35)) {
3666 retval = lowest_latency;
3667 }
3668 } else if (bytes/packets > 2000) {
3669 retval = bulk_latency;
3670 } else if (packets <= 2 && bytes < 512) {
3671 retval = lowest_latency;
3672 }
3673 break;
3674 case bulk_latency: /* 250 usec aka 4000 ints/s */
3675 if (bytes > 25000) {
3676 if (packets > 35)
3677 retval = low_latency;
1e5c3d21 3678 } else if (bytes < 1500) {
9d5c8243
AK
3679 retval = low_latency;
3680 }
3681 break;
3682 }
3683
3684update_itr_done:
3685 return retval;
3686}
3687
6eb5a7f1 3688static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3689{
047e0030 3690 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3691 u16 current_itr;
047e0030 3692 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3693
3694 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3695 if (adapter->link_speed != SPEED_1000) {
3696 current_itr = 0;
3697 new_itr = 4000;
3698 goto set_itr_now;
3699 }
3700
3701 adapter->rx_itr = igb_update_itr(adapter,
3702 adapter->rx_itr,
3025a446
AD
3703 q_vector->rx_ring->total_packets,
3704 q_vector->rx_ring->total_bytes);
9d5c8243 3705
047e0030
AD
3706 adapter->tx_itr = igb_update_itr(adapter,
3707 adapter->tx_itr,
3025a446
AD
3708 q_vector->tx_ring->total_packets,
3709 q_vector->tx_ring->total_bytes);
047e0030 3710 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3711
6eb5a7f1 3712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3713 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3714 current_itr = low_latency;
3715
9d5c8243
AK
3716 switch (current_itr) {
3717 /* counts and packets in update_itr are dependent on these numbers */
3718 case lowest_latency:
78b1f607 3719 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3720 break;
3721 case low_latency:
78b1f607 3722 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3723 break;
3724 case bulk_latency:
78b1f607 3725 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3726 break;
3727 default:
3728 break;
3729 }
3730
3731set_itr_now:
3025a446
AD
3732 q_vector->rx_ring->total_bytes = 0;
3733 q_vector->rx_ring->total_packets = 0;
3734 q_vector->tx_ring->total_bytes = 0;
3735 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3736
047e0030 3737 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3738 /* this attempts to bias the interrupt rate towards Bulk
3739 * by adding intermediate steps when interrupt rate is
3740 * increasing */
047e0030
AD
3741 new_itr = new_itr > q_vector->itr_val ?
3742 max((new_itr * q_vector->itr_val) /
3743 (new_itr + (q_vector->itr_val >> 2)),
3744 new_itr) :
9d5c8243
AK
3745 new_itr;
3746 /* Don't write the value here; it resets the adapter's
3747 * internal timer, and causes us to delay far longer than
3748 * we should between interrupts. Instead, we write the ITR
3749 * value at the beginning of the next interrupt so the timing
3750 * ends up being correct.
3751 */
047e0030
AD
3752 q_vector->itr_val = new_itr;
3753 q_vector->set_itr = 1;
9d5c8243 3754 }
9d5c8243
AK
3755}
3756
9d5c8243
AK
3757#define IGB_TX_FLAGS_CSUM 0x00000001
3758#define IGB_TX_FLAGS_VLAN 0x00000002
3759#define IGB_TX_FLAGS_TSO 0x00000004
3760#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3761#define IGB_TX_FLAGS_TSTAMP 0x00000010
3762#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3763#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3764
85ad76b2 3765static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3766 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3767{
3768 struct e1000_adv_tx_context_desc *context_desc;
3769 unsigned int i;
3770 int err;
3771 struct igb_buffer *buffer_info;
3772 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3773 u32 mss_l4len_idx;
3774 u8 l4len;
9d5c8243
AK
3775
3776 if (skb_header_cloned(skb)) {
3777 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3778 if (err)
3779 return err;
3780 }
3781
3782 l4len = tcp_hdrlen(skb);
3783 *hdr_len += l4len;
3784
3785 if (skb->protocol == htons(ETH_P_IP)) {
3786 struct iphdr *iph = ip_hdr(skb);
3787 iph->tot_len = 0;
3788 iph->check = 0;
3789 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3790 iph->daddr, 0,
3791 IPPROTO_TCP,
3792 0);
8e1e8a47 3793 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3794 ipv6_hdr(skb)->payload_len = 0;
3795 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3796 &ipv6_hdr(skb)->daddr,
3797 0, IPPROTO_TCP, 0);
3798 }
3799
3800 i = tx_ring->next_to_use;
3801
3802 buffer_info = &tx_ring->buffer_info[i];
3803 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3804 /* VLAN MACLEN IPLEN */
3805 if (tx_flags & IGB_TX_FLAGS_VLAN)
3806 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3807 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3808 *hdr_len += skb_network_offset(skb);
3809 info |= skb_network_header_len(skb);
3810 *hdr_len += skb_network_header_len(skb);
3811 context_desc->vlan_macip_lens = cpu_to_le32(info);
3812
3813 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3814 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3815
3816 if (skb->protocol == htons(ETH_P_IP))
3817 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3818 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3819
3820 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3821
3822 /* MSS L4LEN IDX */
3823 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3824 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3825
73cd78f1 3826 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3827 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3828 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3829
3830 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3831 context_desc->seqnum_seed = 0;
3832
3833 buffer_info->time_stamp = jiffies;
0e014cb1 3834 buffer_info->next_to_watch = i;
9d5c8243
AK
3835 buffer_info->dma = 0;
3836 i++;
3837 if (i == tx_ring->count)
3838 i = 0;
3839
3840 tx_ring->next_to_use = i;
3841
3842 return true;
3843}
3844
85ad76b2
AD
3845static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3846 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3847{
3848 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3849 struct device *dev = tx_ring->dev;
9d5c8243
AK
3850 struct igb_buffer *buffer_info;
3851 u32 info = 0, tu_cmd = 0;
80785298 3852 unsigned int i;
9d5c8243
AK
3853
3854 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3855 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3856 i = tx_ring->next_to_use;
3857 buffer_info = &tx_ring->buffer_info[i];
3858 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3859
3860 if (tx_flags & IGB_TX_FLAGS_VLAN)
3861 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3862
9d5c8243
AK
3863 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3864 if (skb->ip_summed == CHECKSUM_PARTIAL)
3865 info |= skb_network_header_len(skb);
3866
3867 context_desc->vlan_macip_lens = cpu_to_le32(info);
3868
3869 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3870
3871 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3872 __be16 protocol;
3873
3874 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3875 const struct vlan_ethhdr *vhdr =
3876 (const struct vlan_ethhdr*)skb->data;
3877
3878 protocol = vhdr->h_vlan_encapsulated_proto;
3879 } else {
3880 protocol = skb->protocol;
3881 }
3882
3883 switch (protocol) {
09640e63 3884 case cpu_to_be16(ETH_P_IP):
9d5c8243 3885 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3886 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3887 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3888 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3889 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3890 break;
09640e63 3891 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3892 /* XXX what about other V6 headers?? */
3893 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3894 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3895 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3896 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3897 break;
3898 default:
3899 if (unlikely(net_ratelimit()))
59d71989 3900 dev_warn(dev,
44b0cda3
MW
3901 "partial checksum but proto=%x!\n",
3902 skb->protocol);
3903 break;
3904 }
9d5c8243
AK
3905 }
3906
3907 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3908 context_desc->seqnum_seed = 0;
85ad76b2 3909 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3910 context_desc->mss_l4len_idx =
85ad76b2 3911 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3912
3913 buffer_info->time_stamp = jiffies;
0e014cb1 3914 buffer_info->next_to_watch = i;
9d5c8243
AK
3915 buffer_info->dma = 0;
3916
3917 i++;
3918 if (i == tx_ring->count)
3919 i = 0;
3920 tx_ring->next_to_use = i;
3921
3922 return true;
3923 }
9d5c8243
AK
3924 return false;
3925}
3926
3927#define IGB_MAX_TXD_PWR 16
3928#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3929
80785298 3930static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3931 unsigned int first)
9d5c8243
AK
3932{
3933 struct igb_buffer *buffer_info;
59d71989 3934 struct device *dev = tx_ring->dev;
2873957d 3935 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3936 unsigned int count = 0, i;
3937 unsigned int f;
2873957d 3938 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3939
3940 i = tx_ring->next_to_use;
3941
3942 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3943 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3944 buffer_info->length = hlen;
9d5c8243
AK
3945 /* set time_stamp *before* dma to help avoid a possible race */
3946 buffer_info->time_stamp = jiffies;
0e014cb1 3947 buffer_info->next_to_watch = i;
2873957d 3948 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
3949 DMA_TO_DEVICE);
3950 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3951 goto dma_error;
9d5c8243
AK
3952
3953 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
3954 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3955 unsigned int len = frag->size;
9d5c8243 3956
8581145f 3957 count++;
65689fef
AD
3958 i++;
3959 if (i == tx_ring->count)
3960 i = 0;
3961
9d5c8243
AK
3962 buffer_info = &tx_ring->buffer_info[i];
3963 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3964 buffer_info->length = len;
3965 buffer_info->time_stamp = jiffies;
0e014cb1 3966 buffer_info->next_to_watch = i;
6366ad33 3967 buffer_info->mapped_as_page = true;
59d71989 3968 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
3969 frag->page,
3970 frag->page_offset,
3971 len,
59d71989
AD
3972 DMA_TO_DEVICE);
3973 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
3974 goto dma_error;
3975
9d5c8243
AK
3976 }
3977
9d5c8243 3978 tx_ring->buffer_info[i].skb = skb;
2244d07b 3979 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
3980 /* multiply data chunks by size of headers */
3981 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3982 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 3983 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3984
cdfd01fc 3985 return ++count;
6366ad33
AD
3986
3987dma_error:
59d71989 3988 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
3989
3990 /* clear timestamp and dma mappings for failed buffer_info mapping */
3991 buffer_info->dma = 0;
3992 buffer_info->time_stamp = 0;
3993 buffer_info->length = 0;
3994 buffer_info->next_to_watch = 0;
3995 buffer_info->mapped_as_page = false;
6366ad33
AD
3996
3997 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
3998 while (count--) {
3999 if (i == 0)
4000 i = tx_ring->count;
6366ad33 4001 i--;
6366ad33
AD
4002 buffer_info = &tx_ring->buffer_info[i];
4003 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4004 }
4005
4006 return 0;
9d5c8243
AK
4007}
4008
85ad76b2 4009static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4010 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4011 u8 hdr_len)
4012{
cdfd01fc 4013 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4014 struct igb_buffer *buffer_info;
4015 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4016 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4017
4018 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4019 E1000_ADVTXD_DCMD_DEXT);
4020
4021 if (tx_flags & IGB_TX_FLAGS_VLAN)
4022 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4023
33af6bcc
PO
4024 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4025 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4026
9d5c8243
AK
4027 if (tx_flags & IGB_TX_FLAGS_TSO) {
4028 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4029
4030 /* insert tcp checksum */
4031 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4032
4033 /* insert ip checksum */
4034 if (tx_flags & IGB_TX_FLAGS_IPV4)
4035 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4036
4037 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4038 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4039 }
4040
85ad76b2
AD
4041 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4042 (tx_flags & (IGB_TX_FLAGS_CSUM |
4043 IGB_TX_FLAGS_TSO |
7dfc16fa 4044 IGB_TX_FLAGS_VLAN)))
85ad76b2 4045 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4046
4047 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4048
cdfd01fc 4049 do {
9d5c8243
AK
4050 buffer_info = &tx_ring->buffer_info[i];
4051 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4052 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4053 tx_desc->read.cmd_type_len =
4054 cpu_to_le32(cmd_type_len | buffer_info->length);
4055 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4056 count--;
9d5c8243
AK
4057 i++;
4058 if (i == tx_ring->count)
4059 i = 0;
cdfd01fc 4060 } while (count > 0);
9d5c8243 4061
85ad76b2 4062 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4063 /* Force memory writes to complete before letting h/w
4064 * know there are new descriptors to fetch. (Only
4065 * applicable for weak-ordered memory model archs,
4066 * such as IA-64). */
4067 wmb();
4068
4069 tx_ring->next_to_use = i;
fce99e34 4070 writel(i, tx_ring->tail);
9d5c8243
AK
4071 /* we need this if more than one processor can write to our tail
4072 * at a time, it syncronizes IO on IA64/Altix systems */
4073 mmiowb();
4074}
4075
e694e964 4076static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4077{
e694e964
AD
4078 struct net_device *netdev = tx_ring->netdev;
4079
661086df 4080 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4081
9d5c8243
AK
4082 /* Herbert's original patch had:
4083 * smp_mb__after_netif_stop_queue();
4084 * but since that doesn't exist yet, just open code it. */
4085 smp_mb();
4086
4087 /* We need to check again in a case another CPU has just
4088 * made room available. */
c493ea45 4089 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4090 return -EBUSY;
4091
4092 /* A reprieve! */
661086df 4093 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4094
4095 u64_stats_update_begin(&tx_ring->tx_syncp2);
4096 tx_ring->tx_stats.restart_queue2++;
4097 u64_stats_update_end(&tx_ring->tx_syncp2);
4098
9d5c8243
AK
4099 return 0;
4100}
4101
717ba089 4102static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4103{
c493ea45 4104 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4105 return 0;
e694e964 4106 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4107}
4108
b1a436c3
AD
4109netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4110 struct igb_ring *tx_ring)
9d5c8243 4111{
cdfd01fc 4112 int tso = 0, count;
91d4ee33
NN
4113 u32 tx_flags = 0;
4114 u16 first;
4115 u8 hdr_len = 0;
9d5c8243 4116
9d5c8243
AK
4117 /* need: 1 descriptor per page,
4118 * + 2 desc gap to keep tail from touching head,
4119 * + 1 desc for skb->data,
4120 * + 1 desc for context descriptor,
4121 * otherwise try next time */
e694e964 4122 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4123 /* this is a hard error */
9d5c8243
AK
4124 return NETDEV_TX_BUSY;
4125 }
33af6bcc 4126
2244d07b
OH
4127 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4128 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4129 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4130 }
9d5c8243 4131
eab6d18d 4132 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4133 tx_flags |= IGB_TX_FLAGS_VLAN;
4134 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4135 }
4136
661086df
PWJ
4137 if (skb->protocol == htons(ETH_P_IP))
4138 tx_flags |= IGB_TX_FLAGS_IPV4;
4139
0e014cb1 4140 first = tx_ring->next_to_use;
85ad76b2
AD
4141 if (skb_is_gso(skb)) {
4142 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4143
85ad76b2
AD
4144 if (tso < 0) {
4145 dev_kfree_skb_any(skb);
4146 return NETDEV_TX_OK;
4147 }
9d5c8243
AK
4148 }
4149
4150 if (tso)
4151 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4152 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4153 (skb->ip_summed == CHECKSUM_PARTIAL))
4154 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4155
65689fef 4156 /*
cdfd01fc 4157 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4158 * has occured and we need to rewind the descriptor queue
4159 */
80785298 4160 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4161 if (!count) {
65689fef
AD
4162 dev_kfree_skb_any(skb);
4163 tx_ring->buffer_info[first].time_stamp = 0;
4164 tx_ring->next_to_use = first;
85ad76b2 4165 return NETDEV_TX_OK;
65689fef 4166 }
9d5c8243 4167
85ad76b2
AD
4168 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4169
4170 /* Make sure there is space in the ring for the next send. */
e694e964 4171 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4172
9d5c8243
AK
4173 return NETDEV_TX_OK;
4174}
4175
3b29a56d
SH
4176static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4177 struct net_device *netdev)
9d5c8243
AK
4178{
4179 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4180 struct igb_ring *tx_ring;
661086df 4181 int r_idx = 0;
b1a436c3
AD
4182
4183 if (test_bit(__IGB_DOWN, &adapter->state)) {
4184 dev_kfree_skb_any(skb);
4185 return NETDEV_TX_OK;
4186 }
4187
4188 if (skb->len <= 0) {
4189 dev_kfree_skb_any(skb);
4190 return NETDEV_TX_OK;
4191 }
4192
1bfaf07b 4193 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4194 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4195
4196 /* This goes back to the question of how to logically map a tx queue
4197 * to a flow. Right now, performance is impacted slightly negatively
4198 * if using multiple tx queues. If the stack breaks away from a
4199 * single qdisc implementation, we can look at this again. */
e694e964 4200 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4201}
4202
4203/**
4204 * igb_tx_timeout - Respond to a Tx Hang
4205 * @netdev: network interface device structure
4206 **/
4207static void igb_tx_timeout(struct net_device *netdev)
4208{
4209 struct igb_adapter *adapter = netdev_priv(netdev);
4210 struct e1000_hw *hw = &adapter->hw;
4211
4212 /* Do the reset outside of interrupt context */
4213 adapter->tx_timeout_count++;
f7ba205e 4214
55cac248
AD
4215 if (hw->mac.type == e1000_82580)
4216 hw->dev_spec._82575.global_device_reset = true;
4217
9d5c8243 4218 schedule_work(&adapter->reset_task);
265de409
AD
4219 wr32(E1000_EICS,
4220 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4221}
4222
4223static void igb_reset_task(struct work_struct *work)
4224{
4225 struct igb_adapter *adapter;
4226 adapter = container_of(work, struct igb_adapter, reset_task);
4227
c97ec42a
TI
4228 igb_dump(adapter);
4229 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4230 igb_reinit_locked(adapter);
4231}
4232
4233/**
12dcd86b 4234 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4235 * @netdev: network interface device structure
12dcd86b 4236 * @stats: rtnl_link_stats64 pointer
9d5c8243 4237 *
9d5c8243 4238 **/
12dcd86b
ED
4239static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4240 struct rtnl_link_stats64 *stats)
9d5c8243 4241{
12dcd86b
ED
4242 struct igb_adapter *adapter = netdev_priv(netdev);
4243
4244 spin_lock(&adapter->stats64_lock);
4245 igb_update_stats(adapter, &adapter->stats64);
4246 memcpy(stats, &adapter->stats64, sizeof(*stats));
4247 spin_unlock(&adapter->stats64_lock);
4248
4249 return stats;
9d5c8243
AK
4250}
4251
4252/**
4253 * igb_change_mtu - Change the Maximum Transfer Unit
4254 * @netdev: network interface device structure
4255 * @new_mtu: new value for maximum frame size
4256 *
4257 * Returns 0 on success, negative on failure
4258 **/
4259static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4260{
4261 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4262 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4263 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4264 u32 rx_buffer_len, i;
9d5c8243 4265
c809d227 4266 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4267 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4268 return -EINVAL;
4269 }
4270
9d5c8243 4271 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4272 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4273 return -EINVAL;
4274 }
4275
4276 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4277 msleep(1);
73cd78f1 4278
9d5c8243
AK
4279 /* igb_down has a dependency on max_frame_size */
4280 adapter->max_frame_size = max_frame;
559e9c49 4281
9d5c8243
AK
4282 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4283 * means we reserve 2 more, this pushes us to allocate from the next
4284 * larger slab size.
4285 * i.e. RXBUFFER_2048 --> size-4096 slab
4286 */
4287
757b77e2
NN
4288 if (adapter->hw.mac.type == e1000_82580)
4289 max_frame += IGB_TS_HDR_LEN;
4290
7d95b717 4291 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4292 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4293 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4294 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4295 else
4c844851
AD
4296 rx_buffer_len = IGB_RXBUFFER_128;
4297
757b77e2
NN
4298 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4299 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4300 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4301
4302 if ((adapter->hw.mac.type == e1000_82580) &&
4303 (rx_buffer_len == IGB_RXBUFFER_128))
4304 rx_buffer_len += IGB_RXBUFFER_64;
4305
4c844851
AD
4306 if (netif_running(netdev))
4307 igb_down(adapter);
9d5c8243 4308
090b1795 4309 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4310 netdev->mtu, new_mtu);
4311 netdev->mtu = new_mtu;
4312
4c844851 4313 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4314 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4315
9d5c8243
AK
4316 if (netif_running(netdev))
4317 igb_up(adapter);
4318 else
4319 igb_reset(adapter);
4320
4321 clear_bit(__IGB_RESETTING, &adapter->state);
4322
4323 return 0;
4324}
4325
4326/**
4327 * igb_update_stats - Update the board statistics counters
4328 * @adapter: board private structure
4329 **/
4330
12dcd86b
ED
4331void igb_update_stats(struct igb_adapter *adapter,
4332 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4333{
4334 struct e1000_hw *hw = &adapter->hw;
4335 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4336 u32 reg, mpc;
9d5c8243 4337 u16 phy_tmp;
3f9c0164
AD
4338 int i;
4339 u64 bytes, packets;
12dcd86b
ED
4340 unsigned int start;
4341 u64 _bytes, _packets;
9d5c8243
AK
4342
4343#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4344
4345 /*
4346 * Prevent stats update while adapter is being reset, or if the pci
4347 * connection is down.
4348 */
4349 if (adapter->link_speed == 0)
4350 return;
4351 if (pci_channel_offline(pdev))
4352 return;
4353
3f9c0164
AD
4354 bytes = 0;
4355 packets = 0;
4356 for (i = 0; i < adapter->num_rx_queues; i++) {
4357 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4358 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4359
3025a446 4360 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4361 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4362
4363 do {
4364 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4365 _bytes = ring->rx_stats.bytes;
4366 _packets = ring->rx_stats.packets;
4367 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4368 bytes += _bytes;
4369 packets += _packets;
3f9c0164
AD
4370 }
4371
128e45eb
AD
4372 net_stats->rx_bytes = bytes;
4373 net_stats->rx_packets = packets;
3f9c0164
AD
4374
4375 bytes = 0;
4376 packets = 0;
4377 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4378 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4379 do {
4380 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4381 _bytes = ring->tx_stats.bytes;
4382 _packets = ring->tx_stats.packets;
4383 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4384 bytes += _bytes;
4385 packets += _packets;
3f9c0164 4386 }
128e45eb
AD
4387 net_stats->tx_bytes = bytes;
4388 net_stats->tx_packets = packets;
3f9c0164
AD
4389
4390 /* read stats registers */
9d5c8243
AK
4391 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4392 adapter->stats.gprc += rd32(E1000_GPRC);
4393 adapter->stats.gorc += rd32(E1000_GORCL);
4394 rd32(E1000_GORCH); /* clear GORCL */
4395 adapter->stats.bprc += rd32(E1000_BPRC);
4396 adapter->stats.mprc += rd32(E1000_MPRC);
4397 adapter->stats.roc += rd32(E1000_ROC);
4398
4399 adapter->stats.prc64 += rd32(E1000_PRC64);
4400 adapter->stats.prc127 += rd32(E1000_PRC127);
4401 adapter->stats.prc255 += rd32(E1000_PRC255);
4402 adapter->stats.prc511 += rd32(E1000_PRC511);
4403 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4404 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4405 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4406 adapter->stats.sec += rd32(E1000_SEC);
4407
fa3d9a6d
MW
4408 mpc = rd32(E1000_MPC);
4409 adapter->stats.mpc += mpc;
4410 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4411 adapter->stats.scc += rd32(E1000_SCC);
4412 adapter->stats.ecol += rd32(E1000_ECOL);
4413 adapter->stats.mcc += rd32(E1000_MCC);
4414 adapter->stats.latecol += rd32(E1000_LATECOL);
4415 adapter->stats.dc += rd32(E1000_DC);
4416 adapter->stats.rlec += rd32(E1000_RLEC);
4417 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4418 adapter->stats.xontxc += rd32(E1000_XONTXC);
4419 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4420 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4421 adapter->stats.fcruc += rd32(E1000_FCRUC);
4422 adapter->stats.gptc += rd32(E1000_GPTC);
4423 adapter->stats.gotc += rd32(E1000_GOTCL);
4424 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4425 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4426 adapter->stats.ruc += rd32(E1000_RUC);
4427 adapter->stats.rfc += rd32(E1000_RFC);
4428 adapter->stats.rjc += rd32(E1000_RJC);
4429 adapter->stats.tor += rd32(E1000_TORH);
4430 adapter->stats.tot += rd32(E1000_TOTH);
4431 adapter->stats.tpr += rd32(E1000_TPR);
4432
4433 adapter->stats.ptc64 += rd32(E1000_PTC64);
4434 adapter->stats.ptc127 += rd32(E1000_PTC127);
4435 adapter->stats.ptc255 += rd32(E1000_PTC255);
4436 adapter->stats.ptc511 += rd32(E1000_PTC511);
4437 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4438 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4439
4440 adapter->stats.mptc += rd32(E1000_MPTC);
4441 adapter->stats.bptc += rd32(E1000_BPTC);
4442
2d0b0f69
NN
4443 adapter->stats.tpt += rd32(E1000_TPT);
4444 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4445
4446 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4447 /* read internal phy specific stats */
4448 reg = rd32(E1000_CTRL_EXT);
4449 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4450 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4451 adapter->stats.tncrs += rd32(E1000_TNCRS);
4452 }
4453
9d5c8243
AK
4454 adapter->stats.tsctc += rd32(E1000_TSCTC);
4455 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4456
4457 adapter->stats.iac += rd32(E1000_IAC);
4458 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4459 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4460 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4461 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4462 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4463 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4464 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4465 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4466
4467 /* Fill out the OS statistics structure */
128e45eb
AD
4468 net_stats->multicast = adapter->stats.mprc;
4469 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4470
4471 /* Rx Errors */
4472
4473 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4474 * our own version based on RUC and ROC */
128e45eb 4475 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4476 adapter->stats.crcerrs + adapter->stats.algnerrc +
4477 adapter->stats.ruc + adapter->stats.roc +
4478 adapter->stats.cexterr;
128e45eb
AD
4479 net_stats->rx_length_errors = adapter->stats.ruc +
4480 adapter->stats.roc;
4481 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4482 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4483 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4484
4485 /* Tx Errors */
128e45eb
AD
4486 net_stats->tx_errors = adapter->stats.ecol +
4487 adapter->stats.latecol;
4488 net_stats->tx_aborted_errors = adapter->stats.ecol;
4489 net_stats->tx_window_errors = adapter->stats.latecol;
4490 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4491
4492 /* Tx Dropped needs to be maintained elsewhere */
4493
4494 /* Phy Stats */
4495 if (hw->phy.media_type == e1000_media_type_copper) {
4496 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4497 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4498 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4499 adapter->phy_stats.idle_errors += phy_tmp;
4500 }
4501 }
4502
4503 /* Management Stats */
4504 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4505 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4506 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4507}
4508
9d5c8243
AK
4509static irqreturn_t igb_msix_other(int irq, void *data)
4510{
047e0030 4511 struct igb_adapter *adapter = data;
9d5c8243 4512 struct e1000_hw *hw = &adapter->hw;
844290e5 4513 u32 icr = rd32(E1000_ICR);
844290e5 4514 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4515
7f081d40
AD
4516 if (icr & E1000_ICR_DRSTA)
4517 schedule_work(&adapter->reset_task);
4518
047e0030 4519 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4520 /* HW is reporting DMA is out of sync */
4521 adapter->stats.doosync++;
4522 }
eebbbdba 4523
4ae196df
AD
4524 /* Check for a mailbox event */
4525 if (icr & E1000_ICR_VMMB)
4526 igb_msg_task(adapter);
4527
4528 if (icr & E1000_ICR_LSC) {
4529 hw->mac.get_link_status = 1;
4530 /* guard against interrupt when we're going down */
4531 if (!test_bit(__IGB_DOWN, &adapter->state))
4532 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4533 }
4534
25568a53
AD
4535 if (adapter->vfs_allocated_count)
4536 wr32(E1000_IMS, E1000_IMS_LSC |
4537 E1000_IMS_VMMB |
4538 E1000_IMS_DOUTSYNC);
4539 else
4540 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4541 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4542
4543 return IRQ_HANDLED;
4544}
4545
047e0030 4546static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4547{
26b39276 4548 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4549 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4550
047e0030
AD
4551 if (!q_vector->set_itr)
4552 return;
73cd78f1 4553
047e0030
AD
4554 if (!itr_val)
4555 itr_val = 0x4;
661086df 4556
26b39276
AD
4557 if (adapter->hw.mac.type == e1000_82575)
4558 itr_val |= itr_val << 16;
661086df 4559 else
047e0030 4560 itr_val |= 0x8000000;
661086df 4561
047e0030
AD
4562 writel(itr_val, q_vector->itr_register);
4563 q_vector->set_itr = 0;
6eb5a7f1
AD
4564}
4565
047e0030 4566static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4567{
047e0030 4568 struct igb_q_vector *q_vector = data;
9d5c8243 4569
047e0030
AD
4570 /* Write the ITR value calculated from the previous interrupt. */
4571 igb_write_itr(q_vector);
9d5c8243 4572
047e0030 4573 napi_schedule(&q_vector->napi);
844290e5 4574
047e0030 4575 return IRQ_HANDLED;
fe4506b6
JC
4576}
4577
421e02f0 4578#ifdef CONFIG_IGB_DCA
047e0030 4579static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4580{
047e0030 4581 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4582 struct e1000_hw *hw = &adapter->hw;
4583 int cpu = get_cpu();
fe4506b6 4584
047e0030
AD
4585 if (q_vector->cpu == cpu)
4586 goto out_no_update;
4587
4588 if (q_vector->tx_ring) {
4589 int q = q_vector->tx_ring->reg_idx;
4590 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4591 if (hw->mac.type == e1000_82575) {
4592 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4593 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4594 } else {
047e0030
AD
4595 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4596 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4597 E1000_DCA_TXCTRL_CPUID_SHIFT;
4598 }
4599 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4600 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4601 }
4602 if (q_vector->rx_ring) {
4603 int q = q_vector->rx_ring->reg_idx;
4604 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4605 if (hw->mac.type == e1000_82575) {
2d064c06 4606 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4607 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4608 } else {
4609 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4610 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4611 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4612 }
fe4506b6
JC
4613 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4614 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4615 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4616 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4617 }
047e0030
AD
4618 q_vector->cpu = cpu;
4619out_no_update:
fe4506b6
JC
4620 put_cpu();
4621}
4622
4623static void igb_setup_dca(struct igb_adapter *adapter)
4624{
7e0e99ef 4625 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4626 int i;
4627
7dfc16fa 4628 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4629 return;
4630
7e0e99ef
AD
4631 /* Always use CB2 mode, difference is masked in the CB driver. */
4632 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4633
047e0030 4634 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4635 adapter->q_vector[i]->cpu = -1;
4636 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4637 }
4638}
4639
4640static int __igb_notify_dca(struct device *dev, void *data)
4641{
4642 struct net_device *netdev = dev_get_drvdata(dev);
4643 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4644 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4645 struct e1000_hw *hw = &adapter->hw;
4646 unsigned long event = *(unsigned long *)data;
4647
4648 switch (event) {
4649 case DCA_PROVIDER_ADD:
4650 /* if already enabled, don't do it again */
7dfc16fa 4651 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4652 break;
fe4506b6 4653 if (dca_add_requester(dev) == 0) {
bbd98fe4 4654 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4655 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4656 igb_setup_dca(adapter);
4657 break;
4658 }
4659 /* Fall Through since DCA is disabled. */
4660 case DCA_PROVIDER_REMOVE:
7dfc16fa 4661 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4662 /* without this a class_device is left
047e0030 4663 * hanging around in the sysfs model */
fe4506b6 4664 dca_remove_requester(dev);
090b1795 4665 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4666 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4667 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4668 }
4669 break;
4670 }
bbd98fe4 4671
fe4506b6 4672 return 0;
9d5c8243
AK
4673}
4674
fe4506b6
JC
4675static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4676 void *p)
4677{
4678 int ret_val;
4679
4680 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4681 __igb_notify_dca);
4682
4683 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4684}
421e02f0 4685#endif /* CONFIG_IGB_DCA */
9d5c8243 4686
4ae196df
AD
4687static void igb_ping_all_vfs(struct igb_adapter *adapter)
4688{
4689 struct e1000_hw *hw = &adapter->hw;
4690 u32 ping;
4691 int i;
4692
4693 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4694 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4695 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4696 ping |= E1000_VT_MSGTYPE_CTS;
4697 igb_write_mbx(hw, &ping, 1, i);
4698 }
4699}
4700
7d5753f0
AD
4701static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4702{
4703 struct e1000_hw *hw = &adapter->hw;
4704 u32 vmolr = rd32(E1000_VMOLR(vf));
4705 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4706
d85b9004 4707 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4708 IGB_VF_FLAG_MULTI_PROMISC);
4709 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4710
4711 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4712 vmolr |= E1000_VMOLR_MPME;
d85b9004 4713 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4714 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4715 } else {
4716 /*
4717 * if we have hashes and we are clearing a multicast promisc
4718 * flag we need to write the hashes to the MTA as this step
4719 * was previously skipped
4720 */
4721 if (vf_data->num_vf_mc_hashes > 30) {
4722 vmolr |= E1000_VMOLR_MPME;
4723 } else if (vf_data->num_vf_mc_hashes) {
4724 int j;
4725 vmolr |= E1000_VMOLR_ROMPE;
4726 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4727 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4728 }
4729 }
4730
4731 wr32(E1000_VMOLR(vf), vmolr);
4732
4733 /* there are flags left unprocessed, likely not supported */
4734 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4735 return -EINVAL;
4736
4737 return 0;
4738
4739}
4740
4ae196df
AD
4741static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4742 u32 *msgbuf, u32 vf)
4743{
4744 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4745 u16 *hash_list = (u16 *)&msgbuf[1];
4746 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4747 int i;
4748
7d5753f0 4749 /* salt away the number of multicast addresses assigned
4ae196df
AD
4750 * to this VF for later use to restore when the PF multi cast
4751 * list changes
4752 */
4753 vf_data->num_vf_mc_hashes = n;
4754
7d5753f0
AD
4755 /* only up to 30 hash values supported */
4756 if (n > 30)
4757 n = 30;
4758
4759 /* store the hashes for later use */
4ae196df 4760 for (i = 0; i < n; i++)
a419aef8 4761 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4762
4763 /* Flush and reset the mta with the new values */
ff41f8dc 4764 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4765
4766 return 0;
4767}
4768
4769static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4770{
4771 struct e1000_hw *hw = &adapter->hw;
4772 struct vf_data_storage *vf_data;
4773 int i, j;
4774
4775 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4776 u32 vmolr = rd32(E1000_VMOLR(i));
4777 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4778
4ae196df 4779 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4780
4781 if ((vf_data->num_vf_mc_hashes > 30) ||
4782 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4783 vmolr |= E1000_VMOLR_MPME;
4784 } else if (vf_data->num_vf_mc_hashes) {
4785 vmolr |= E1000_VMOLR_ROMPE;
4786 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4787 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4788 }
4789 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4790 }
4791}
4792
4793static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4794{
4795 struct e1000_hw *hw = &adapter->hw;
4796 u32 pool_mask, reg, vid;
4797 int i;
4798
4799 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4800
4801 /* Find the vlan filter for this id */
4802 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4803 reg = rd32(E1000_VLVF(i));
4804
4805 /* remove the vf from the pool */
4806 reg &= ~pool_mask;
4807
4808 /* if pool is empty then remove entry from vfta */
4809 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4810 (reg & E1000_VLVF_VLANID_ENABLE)) {
4811 reg = 0;
4812 vid = reg & E1000_VLVF_VLANID_MASK;
4813 igb_vfta_set(hw, vid, false);
4814 }
4815
4816 wr32(E1000_VLVF(i), reg);
4817 }
ae641bdc
AD
4818
4819 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4820}
4821
4822static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4823{
4824 struct e1000_hw *hw = &adapter->hw;
4825 u32 reg, i;
4826
51466239
AD
4827 /* The vlvf table only exists on 82576 hardware and newer */
4828 if (hw->mac.type < e1000_82576)
4829 return -1;
4830
4831 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4832 if (!adapter->vfs_allocated_count)
4833 return -1;
4834
4835 /* Find the vlan filter for this id */
4836 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4837 reg = rd32(E1000_VLVF(i));
4838 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4839 vid == (reg & E1000_VLVF_VLANID_MASK))
4840 break;
4841 }
4842
4843 if (add) {
4844 if (i == E1000_VLVF_ARRAY_SIZE) {
4845 /* Did not find a matching VLAN ID entry that was
4846 * enabled. Search for a free filter entry, i.e.
4847 * one without the enable bit set
4848 */
4849 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4850 reg = rd32(E1000_VLVF(i));
4851 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4852 break;
4853 }
4854 }
4855 if (i < E1000_VLVF_ARRAY_SIZE) {
4856 /* Found an enabled/available entry */
4857 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4858
4859 /* if !enabled we need to set this up in vfta */
4860 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4861 /* add VID to filter table */
4862 igb_vfta_set(hw, vid, true);
4ae196df
AD
4863 reg |= E1000_VLVF_VLANID_ENABLE;
4864 }
cad6d05f
AD
4865 reg &= ~E1000_VLVF_VLANID_MASK;
4866 reg |= vid;
4ae196df 4867 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4868
4869 /* do not modify RLPML for PF devices */
4870 if (vf >= adapter->vfs_allocated_count)
4871 return 0;
4872
4873 if (!adapter->vf_data[vf].vlans_enabled) {
4874 u32 size;
4875 reg = rd32(E1000_VMOLR(vf));
4876 size = reg & E1000_VMOLR_RLPML_MASK;
4877 size += 4;
4878 reg &= ~E1000_VMOLR_RLPML_MASK;
4879 reg |= size;
4880 wr32(E1000_VMOLR(vf), reg);
4881 }
ae641bdc 4882
51466239 4883 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4884 return 0;
4885 }
4886 } else {
4887 if (i < E1000_VLVF_ARRAY_SIZE) {
4888 /* remove vf from the pool */
4889 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4890 /* if pool is empty then remove entry from vfta */
4891 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4892 reg = 0;
4893 igb_vfta_set(hw, vid, false);
4894 }
4895 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4896
4897 /* do not modify RLPML for PF devices */
4898 if (vf >= adapter->vfs_allocated_count)
4899 return 0;
4900
4901 adapter->vf_data[vf].vlans_enabled--;
4902 if (!adapter->vf_data[vf].vlans_enabled) {
4903 u32 size;
4904 reg = rd32(E1000_VMOLR(vf));
4905 size = reg & E1000_VMOLR_RLPML_MASK;
4906 size -= 4;
4907 reg &= ~E1000_VMOLR_RLPML_MASK;
4908 reg |= size;
4909 wr32(E1000_VMOLR(vf), reg);
4910 }
4ae196df
AD
4911 }
4912 }
8151d294
WM
4913 return 0;
4914}
4915
4916static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4917{
4918 struct e1000_hw *hw = &adapter->hw;
4919
4920 if (vid)
4921 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4922 else
4923 wr32(E1000_VMVIR(vf), 0);
4924}
4925
4926static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4927 int vf, u16 vlan, u8 qos)
4928{
4929 int err = 0;
4930 struct igb_adapter *adapter = netdev_priv(netdev);
4931
4932 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4933 return -EINVAL;
4934 if (vlan || qos) {
4935 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4936 if (err)
4937 goto out;
4938 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4939 igb_set_vmolr(adapter, vf, !vlan);
4940 adapter->vf_data[vf].pf_vlan = vlan;
4941 adapter->vf_data[vf].pf_qos = qos;
4942 dev_info(&adapter->pdev->dev,
4943 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4944 if (test_bit(__IGB_DOWN, &adapter->state)) {
4945 dev_warn(&adapter->pdev->dev,
4946 "The VF VLAN has been set,"
4947 " but the PF device is not up.\n");
4948 dev_warn(&adapter->pdev->dev,
4949 "Bring the PF device up before"
4950 " attempting to use the VF device.\n");
4951 }
4952 } else {
4953 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4954 false, vf);
4955 igb_set_vmvir(adapter, vlan, vf);
4956 igb_set_vmolr(adapter, vf, true);
4957 adapter->vf_data[vf].pf_vlan = 0;
4958 adapter->vf_data[vf].pf_qos = 0;
4959 }
4960out:
4961 return err;
4ae196df
AD
4962}
4963
4964static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4965{
4966 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4967 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4968
4969 return igb_vlvf_set(adapter, vid, add, vf);
4970}
4971
f2ca0dbe 4972static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4973{
8151d294
WM
4974 /* clear flags */
4975 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4976 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4977
4978 /* reset offloads to defaults */
8151d294 4979 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4980
4981 /* reset vlans for device */
4982 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4983 if (adapter->vf_data[vf].pf_vlan)
4984 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4985 adapter->vf_data[vf].pf_vlan,
4986 adapter->vf_data[vf].pf_qos);
4987 else
4988 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4989
4990 /* reset multicast table array for vf */
4991 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4992
4993 /* Flush and reset the mta with the new values */
ff41f8dc 4994 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4995}
4996
f2ca0dbe
AD
4997static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4998{
4999 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5000
5001 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5002 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5003 random_ether_addr(vf_mac);
f2ca0dbe
AD
5004
5005 /* process remaining reset events */
5006 igb_vf_reset(adapter, vf);
5007}
5008
5009static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5010{
5011 struct e1000_hw *hw = &adapter->hw;
5012 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5013 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5014 u32 reg, msgbuf[3];
5015 u8 *addr = (u8 *)(&msgbuf[1]);
5016
5017 /* process all the same items cleared in a function level reset */
f2ca0dbe 5018 igb_vf_reset(adapter, vf);
4ae196df
AD
5019
5020 /* set vf mac address */
26ad9178 5021 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5022
5023 /* enable transmit and receive for vf */
5024 reg = rd32(E1000_VFTE);
5025 wr32(E1000_VFTE, reg | (1 << vf));
5026 reg = rd32(E1000_VFRE);
5027 wr32(E1000_VFRE, reg | (1 << vf));
5028
f2ca0dbe 5029 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
5030
5031 /* reply to reset with ack and vf mac address */
5032 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5033 memcpy(addr, vf_mac, 6);
5034 igb_write_mbx(hw, msgbuf, 3, vf);
5035}
5036
5037static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5038{
de42edde
GR
5039 /*
5040 * The VF MAC Address is stored in a packed array of bytes
5041 * starting at the second 32 bit word of the msg array
5042 */
f2ca0dbe
AD
5043 unsigned char *addr = (char *)&msg[1];
5044 int err = -1;
4ae196df 5045
f2ca0dbe
AD
5046 if (is_valid_ether_addr(addr))
5047 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5048
f2ca0dbe 5049 return err;
4ae196df
AD
5050}
5051
5052static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5053{
5054 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5055 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5056 u32 msg = E1000_VT_MSGTYPE_NACK;
5057
5058 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5059 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5060 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5061 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5062 vf_data->last_nack = jiffies;
4ae196df
AD
5063 }
5064}
5065
f2ca0dbe 5066static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5067{
f2ca0dbe
AD
5068 struct pci_dev *pdev = adapter->pdev;
5069 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5070 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5071 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5072 s32 retval;
5073
f2ca0dbe 5074 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5075
fef45f4c
AD
5076 if (retval) {
5077 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5078 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5079 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5080 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5081 return;
5082 goto out;
5083 }
4ae196df
AD
5084
5085 /* this is a message we already processed, do nothing */
5086 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5087 return;
4ae196df
AD
5088
5089 /*
5090 * until the vf completes a reset it should not be
5091 * allowed to start any configuration.
5092 */
5093
5094 if (msgbuf[0] == E1000_VF_RESET) {
5095 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5096 return;
4ae196df
AD
5097 }
5098
f2ca0dbe 5099 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5100 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5101 return;
5102 retval = -1;
5103 goto out;
4ae196df
AD
5104 }
5105
5106 switch ((msgbuf[0] & 0xFFFF)) {
5107 case E1000_VF_SET_MAC_ADDR:
5108 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5109 break;
7d5753f0
AD
5110 case E1000_VF_SET_PROMISC:
5111 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5112 break;
4ae196df
AD
5113 case E1000_VF_SET_MULTICAST:
5114 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5115 break;
5116 case E1000_VF_SET_LPE:
5117 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5118 break;
5119 case E1000_VF_SET_VLAN:
8151d294
WM
5120 if (adapter->vf_data[vf].pf_vlan)
5121 retval = -1;
5122 else
5123 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5124 break;
5125 default:
090b1795 5126 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5127 retval = -1;
5128 break;
5129 }
5130
fef45f4c
AD
5131 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5132out:
4ae196df
AD
5133 /* notify the VF of the results of what it sent us */
5134 if (retval)
5135 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5136 else
5137 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5138
4ae196df 5139 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5140}
4ae196df 5141
f2ca0dbe
AD
5142static void igb_msg_task(struct igb_adapter *adapter)
5143{
5144 struct e1000_hw *hw = &adapter->hw;
5145 u32 vf;
5146
5147 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5148 /* process any reset requests */
5149 if (!igb_check_for_rst(hw, vf))
5150 igb_vf_reset_event(adapter, vf);
5151
5152 /* process any messages pending */
5153 if (!igb_check_for_msg(hw, vf))
5154 igb_rcv_msg_from_vf(adapter, vf);
5155
5156 /* process any acks */
5157 if (!igb_check_for_ack(hw, vf))
5158 igb_rcv_ack_from_vf(adapter, vf);
5159 }
4ae196df
AD
5160}
5161
68d480c4
AD
5162/**
5163 * igb_set_uta - Set unicast filter table address
5164 * @adapter: board private structure
5165 *
5166 * The unicast table address is a register array of 32-bit registers.
5167 * The table is meant to be used in a way similar to how the MTA is used
5168 * however due to certain limitations in the hardware it is necessary to
5169 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5170 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5171 **/
5172static void igb_set_uta(struct igb_adapter *adapter)
5173{
5174 struct e1000_hw *hw = &adapter->hw;
5175 int i;
5176
5177 /* The UTA table only exists on 82576 hardware and newer */
5178 if (hw->mac.type < e1000_82576)
5179 return;
5180
5181 /* we only need to do this if VMDq is enabled */
5182 if (!adapter->vfs_allocated_count)
5183 return;
5184
5185 for (i = 0; i < hw->mac.uta_reg_count; i++)
5186 array_wr32(E1000_UTA, i, ~0);
5187}
5188
9d5c8243
AK
5189/**
5190 * igb_intr_msi - Interrupt Handler
5191 * @irq: interrupt number
5192 * @data: pointer to a network interface device structure
5193 **/
5194static irqreturn_t igb_intr_msi(int irq, void *data)
5195{
047e0030
AD
5196 struct igb_adapter *adapter = data;
5197 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5198 struct e1000_hw *hw = &adapter->hw;
5199 /* read ICR disables interrupts using IAM */
5200 u32 icr = rd32(E1000_ICR);
5201
047e0030 5202 igb_write_itr(q_vector);
9d5c8243 5203
7f081d40
AD
5204 if (icr & E1000_ICR_DRSTA)
5205 schedule_work(&adapter->reset_task);
5206
047e0030 5207 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5208 /* HW is reporting DMA is out of sync */
5209 adapter->stats.doosync++;
5210 }
5211
9d5c8243
AK
5212 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5213 hw->mac.get_link_status = 1;
5214 if (!test_bit(__IGB_DOWN, &adapter->state))
5215 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5216 }
5217
047e0030 5218 napi_schedule(&q_vector->napi);
9d5c8243
AK
5219
5220 return IRQ_HANDLED;
5221}
5222
5223/**
4a3c6433 5224 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5225 * @irq: interrupt number
5226 * @data: pointer to a network interface device structure
5227 **/
5228static irqreturn_t igb_intr(int irq, void *data)
5229{
047e0030
AD
5230 struct igb_adapter *adapter = data;
5231 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5232 struct e1000_hw *hw = &adapter->hw;
5233 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5234 * need for the IMC write */
5235 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5236 if (!icr)
5237 return IRQ_NONE; /* Not our interrupt */
5238
047e0030 5239 igb_write_itr(q_vector);
9d5c8243
AK
5240
5241 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5242 * not set, then the adapter didn't send an interrupt */
5243 if (!(icr & E1000_ICR_INT_ASSERTED))
5244 return IRQ_NONE;
5245
7f081d40
AD
5246 if (icr & E1000_ICR_DRSTA)
5247 schedule_work(&adapter->reset_task);
5248
047e0030 5249 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5250 /* HW is reporting DMA is out of sync */
5251 adapter->stats.doosync++;
5252 }
5253
9d5c8243
AK
5254 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5255 hw->mac.get_link_status = 1;
5256 /* guard against interrupt when we're going down */
5257 if (!test_bit(__IGB_DOWN, &adapter->state))
5258 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5259 }
5260
047e0030 5261 napi_schedule(&q_vector->napi);
9d5c8243
AK
5262
5263 return IRQ_HANDLED;
5264}
5265
047e0030 5266static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5267{
047e0030 5268 struct igb_adapter *adapter = q_vector->adapter;
46544258 5269 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5270
4fc82adf
AD
5271 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5272 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5273 if (!adapter->msix_entries)
6eb5a7f1 5274 igb_set_itr(adapter);
46544258 5275 else
047e0030 5276 igb_update_ring_itr(q_vector);
9d5c8243
AK
5277 }
5278
46544258
AD
5279 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5280 if (adapter->msix_entries)
047e0030 5281 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5282 else
5283 igb_irq_enable(adapter);
5284 }
9d5c8243
AK
5285}
5286
46544258
AD
5287/**
5288 * igb_poll - NAPI Rx polling callback
5289 * @napi: napi polling structure
5290 * @budget: count of how many packets we should handle
5291 **/
5292static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5293{
047e0030
AD
5294 struct igb_q_vector *q_vector = container_of(napi,
5295 struct igb_q_vector,
5296 napi);
5297 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5298
421e02f0 5299#ifdef CONFIG_IGB_DCA
047e0030
AD
5300 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5301 igb_update_dca(q_vector);
fe4506b6 5302#endif
047e0030
AD
5303 if (q_vector->tx_ring)
5304 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5305
047e0030
AD
5306 if (q_vector->rx_ring)
5307 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5308
5309 if (!tx_clean_complete)
5310 work_done = budget;
46544258 5311
9d5c8243 5312 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5313 if (work_done < budget) {
288379f0 5314 napi_complete(napi);
047e0030 5315 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5316 }
5317
46544258 5318 return work_done;
9d5c8243 5319}
6d8126f9 5320
33af6bcc 5321/**
c5b9bd5e 5322 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5323 * @adapter: board private structure
c5b9bd5e
AD
5324 * @shhwtstamps: timestamp structure to update
5325 * @regval: unsigned 64bit system time value.
5326 *
5327 * We need to convert the system time value stored in the RX/TXSTMP registers
5328 * into a hwtstamp which can be used by the upper level timestamping functions
5329 */
5330static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5331 struct skb_shared_hwtstamps *shhwtstamps,
5332 u64 regval)
5333{
5334 u64 ns;
5335
55cac248
AD
5336 /*
5337 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5338 * 24 to match clock shift we setup earlier.
5339 */
5340 if (adapter->hw.mac.type == e1000_82580)
5341 regval <<= IGB_82580_TSYNC_SHIFT;
5342
c5b9bd5e
AD
5343 ns = timecounter_cyc2time(&adapter->clock, regval);
5344 timecompare_update(&adapter->compare, ns);
5345 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5346 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5347 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5348}
5349
5350/**
5351 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5352 * @q_vector: pointer to q_vector containing needed info
2873957d 5353 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5354 *
5355 * If we were asked to do hardware stamping and such a time stamp is
5356 * available, then it must have been for this skb here because we only
5357 * allow only one such packet into the queue.
5358 */
2873957d 5359static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5360{
c5b9bd5e 5361 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5362 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5363 struct skb_shared_hwtstamps shhwtstamps;
5364 u64 regval;
33af6bcc 5365
c5b9bd5e 5366 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5367 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5368 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5369 return;
5370
5371 regval = rd32(E1000_TXSTMPL);
5372 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5373
5374 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5375 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5376}
5377
9d5c8243
AK
5378/**
5379 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5380 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5381 * returns true if ring is completely cleaned
5382 **/
047e0030 5383static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5384{
047e0030
AD
5385 struct igb_adapter *adapter = q_vector->adapter;
5386 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5387 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5388 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5389 struct igb_buffer *buffer_info;
0e014cb1 5390 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5391 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5392 unsigned int i, eop, count = 0;
5393 bool cleaned = false;
9d5c8243 5394
9d5c8243 5395 i = tx_ring->next_to_clean;
0e014cb1
AD
5396 eop = tx_ring->buffer_info[i].next_to_watch;
5397 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5398
5399 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5400 (count < tx_ring->count)) {
2d0bb1c1 5401 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5402 for (cleaned = false; !cleaned; count++) {
5403 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5404 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5405 cleaned = (i == eop);
9d5c8243 5406
2873957d
NN
5407 if (buffer_info->skb) {
5408 total_bytes += buffer_info->bytecount;
9d5c8243 5409 /* gso_segs is currently only valid for tcp */
2873957d
NN
5410 total_packets += buffer_info->gso_segs;
5411 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5412 }
5413
80785298 5414 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5415 tx_desc->wb.status = 0;
9d5c8243
AK
5416
5417 i++;
5418 if (i == tx_ring->count)
5419 i = 0;
9d5c8243 5420 }
0e014cb1
AD
5421 eop = tx_ring->buffer_info[i].next_to_watch;
5422 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5423 }
5424
9d5c8243
AK
5425 tx_ring->next_to_clean = i;
5426
fc7d345d 5427 if (unlikely(count &&
9d5c8243 5428 netif_carrier_ok(netdev) &&
c493ea45 5429 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5430 /* Make sure that anybody stopping the queue after this
5431 * sees the new next_to_clean.
5432 */
5433 smp_mb();
661086df
PWJ
5434 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5435 !(test_bit(__IGB_DOWN, &adapter->state))) {
5436 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5437
5438 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5439 tx_ring->tx_stats.restart_queue++;
12dcd86b 5440 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5441 }
9d5c8243
AK
5442 }
5443
5444 if (tx_ring->detect_tx_hung) {
5445 /* Detect a transmit hang in hardware, this serializes the
5446 * check with the clearing of time_stamp and movement of i */
5447 tx_ring->detect_tx_hung = false;
5448 if (tx_ring->buffer_info[i].time_stamp &&
5449 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5450 (adapter->tx_timeout_factor * HZ)) &&
5451 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5452
9d5c8243 5453 /* detected Tx unit hang */
59d71989 5454 dev_err(tx_ring->dev,
9d5c8243 5455 "Detected Tx Unit Hang\n"
2d064c06 5456 " Tx Queue <%d>\n"
9d5c8243
AK
5457 " TDH <%x>\n"
5458 " TDT <%x>\n"
5459 " next_to_use <%x>\n"
5460 " next_to_clean <%x>\n"
9d5c8243
AK
5461 "buffer_info[next_to_clean]\n"
5462 " time_stamp <%lx>\n"
0e014cb1 5463 " next_to_watch <%x>\n"
9d5c8243
AK
5464 " jiffies <%lx>\n"
5465 " desc.status <%x>\n",
2d064c06 5466 tx_ring->queue_index,
fce99e34
AD
5467 readl(tx_ring->head),
5468 readl(tx_ring->tail),
9d5c8243
AK
5469 tx_ring->next_to_use,
5470 tx_ring->next_to_clean,
f7ba205e 5471 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5472 eop,
9d5c8243 5473 jiffies,
0e014cb1 5474 eop_desc->wb.status);
661086df 5475 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5476 }
5477 }
5478 tx_ring->total_bytes += total_bytes;
5479 tx_ring->total_packets += total_packets;
12dcd86b 5480 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5481 tx_ring->tx_stats.bytes += total_bytes;
5482 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5483 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5484 return count < tx_ring->count;
9d5c8243
AK
5485}
5486
9d5c8243
AK
5487/**
5488 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5489 * @q_vector: structure containing interrupt and ring information
5490 * @skb: packet to send up
5491 * @vlan_tag: vlan tag for packet
9d5c8243 5492 **/
047e0030
AD
5493static void igb_receive_skb(struct igb_q_vector *q_vector,
5494 struct sk_buff *skb,
5495 u16 vlan_tag)
5496{
5497 struct igb_adapter *adapter = q_vector->adapter;
5498
31b24b95 5499 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5500 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5501 vlan_tag, skb);
182ff8df 5502 else
047e0030 5503 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5504}
5505
04a5fcaa 5506static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5507 u32 status_err, struct sk_buff *skb)
5508{
bc8acf2c 5509 skb_checksum_none_assert(skb);
9d5c8243
AK
5510
5511 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5512 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5513 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5514 return;
85ad76b2 5515
9d5c8243
AK
5516 /* TCP/UDP checksum error bit is set */
5517 if (status_err &
5518 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5519 /*
5520 * work around errata with sctp packets where the TCPE aka
5521 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5522 * packets, (aka let the stack check the crc32c)
5523 */
85ad76b2 5524 if ((skb->len == 60) &&
12dcd86b
ED
5525 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5526 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5527 ring->rx_stats.csum_err++;
12dcd86b
ED
5528 u64_stats_update_end(&ring->rx_syncp);
5529 }
9d5c8243 5530 /* let the stack verify checksum errors */
9d5c8243
AK
5531 return;
5532 }
5533 /* It must be a TCP or UDP packet with a valid checksum */
5534 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5535 skb->ip_summed = CHECKSUM_UNNECESSARY;
5536
59d71989 5537 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5538}
5539
757b77e2 5540static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5541 struct sk_buff *skb)
5542{
5543 struct igb_adapter *adapter = q_vector->adapter;
5544 struct e1000_hw *hw = &adapter->hw;
5545 u64 regval;
5546
5547 /*
5548 * If this bit is set, then the RX registers contain the time stamp. No
5549 * other packet will be time stamped until we read these registers, so
5550 * read the registers to make them available again. Because only one
5551 * packet can be time stamped at a time, we know that the register
5552 * values must belong to this one here and therefore we don't need to
5553 * compare any of the additional attributes stored for it.
5554 *
2244d07b 5555 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5556 * can turn into a skb_shared_hwtstamps.
5557 */
757b77e2
NN
5558 if (staterr & E1000_RXDADV_STAT_TSIP) {
5559 u32 *stamp = (u32 *)skb->data;
5560 regval = le32_to_cpu(*(stamp + 2));
5561 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5562 skb_pull(skb, IGB_TS_HDR_LEN);
5563 } else {
5564 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5565 return;
c5b9bd5e 5566
757b77e2
NN
5567 regval = rd32(E1000_RXSTMPL);
5568 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5569 }
c5b9bd5e
AD
5570
5571 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5572}
4c844851 5573static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5574 union e1000_adv_rx_desc *rx_desc)
5575{
5576 /* HW will not DMA in data larger than the given buffer, even if it
5577 * parses the (NFS, of course) header to be larger. In that case, it
5578 * fills the header buffer and spills the rest into the page.
5579 */
5580 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5581 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5582 if (hlen > rx_ring->rx_buffer_len)
5583 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5584 return hlen;
5585}
5586
047e0030
AD
5587static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5588 int *work_done, int budget)
9d5c8243 5589{
047e0030 5590 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5591 struct net_device *netdev = rx_ring->netdev;
59d71989 5592 struct device *dev = rx_ring->dev;
9d5c8243
AK
5593 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5594 struct igb_buffer *buffer_info , *next_buffer;
5595 struct sk_buff *skb;
9d5c8243
AK
5596 bool cleaned = false;
5597 int cleaned_count = 0;
d1eff350 5598 int current_node = numa_node_id();
9d5c8243 5599 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5600 unsigned int i;
2d94d8ab
AD
5601 u32 staterr;
5602 u16 length;
047e0030 5603 u16 vlan_tag;
9d5c8243
AK
5604
5605 i = rx_ring->next_to_clean;
69d3ca53 5606 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5607 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5608 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5609
5610 while (staterr & E1000_RXD_STAT_DD) {
5611 if (*work_done >= budget)
5612 break;
5613 (*work_done)++;
2d0bb1c1 5614 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5615
69d3ca53
AD
5616 skb = buffer_info->skb;
5617 prefetch(skb->data - NET_IP_ALIGN);
5618 buffer_info->skb = NULL;
5619
5620 i++;
5621 if (i == rx_ring->count)
5622 i = 0;
42d0781a 5623
69d3ca53
AD
5624 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5625 prefetch(next_rxd);
5626 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5627
5628 length = le16_to_cpu(rx_desc->wb.upper.length);
5629 cleaned = true;
5630 cleaned_count++;
5631
2d94d8ab 5632 if (buffer_info->dma) {
59d71989 5633 dma_unmap_single(dev, buffer_info->dma,
4c844851 5634 rx_ring->rx_buffer_len,
59d71989 5635 DMA_FROM_DEVICE);
91615f76 5636 buffer_info->dma = 0;
4c844851 5637 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5638 skb_put(skb, length);
5639 goto send_up;
5640 }
4c844851 5641 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5642 }
5643
5644 if (length) {
59d71989
AD
5645 dma_unmap_page(dev, buffer_info->page_dma,
5646 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5647 buffer_info->page_dma = 0;
bf36c1a0 5648
aa913403 5649 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5650 buffer_info->page,
5651 buffer_info->page_offset,
5652 length);
5653
d1eff350
AD
5654 if ((page_count(buffer_info->page) != 1) ||
5655 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5656 buffer_info->page = NULL;
5657 else
5658 get_page(buffer_info->page);
9d5c8243
AK
5659
5660 skb->len += length;
5661 skb->data_len += length;
bf36c1a0 5662 skb->truesize += length;
9d5c8243 5663 }
9d5c8243 5664
bf36c1a0 5665 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5666 buffer_info->skb = next_buffer->skb;
5667 buffer_info->dma = next_buffer->dma;
5668 next_buffer->skb = skb;
5669 next_buffer->dma = 0;
bf36c1a0
AD
5670 goto next_desc;
5671 }
69d3ca53 5672send_up:
9d5c8243
AK
5673 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5674 dev_kfree_skb_irq(skb);
5675 goto next_desc;
5676 }
9d5c8243 5677
757b77e2
NN
5678 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5679 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5680 total_bytes += skb->len;
5681 total_packets++;
5682
85ad76b2 5683 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5684
5685 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5686 skb_record_rx_queue(skb, rx_ring->queue_index);
5687
5688 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5689 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5690
047e0030 5691 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5692
9d5c8243
AK
5693next_desc:
5694 rx_desc->wb.upper.status_error = 0;
5695
5696 /* return some buffers to hardware, one at a time is too slow */
5697 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5698 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5699 cleaned_count = 0;
5700 }
5701
5702 /* use prefetched values */
5703 rx_desc = next_rxd;
5704 buffer_info = next_buffer;
9d5c8243
AK
5705 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5706 }
bf36c1a0 5707
9d5c8243 5708 rx_ring->next_to_clean = i;
c493ea45 5709 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5710
5711 if (cleaned_count)
3b644cf6 5712 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5713
5714 rx_ring->total_packets += total_packets;
5715 rx_ring->total_bytes += total_bytes;
12dcd86b 5716 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5717 rx_ring->rx_stats.packets += total_packets;
5718 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5719 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5720 return cleaned;
5721}
5722
9d5c8243
AK
5723/**
5724 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5725 * @adapter: address of board private structure
5726 **/
d7ee5b3a 5727void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5728{
e694e964 5729 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5730 union e1000_adv_rx_desc *rx_desc;
5731 struct igb_buffer *buffer_info;
5732 struct sk_buff *skb;
5733 unsigned int i;
db761762 5734 int bufsz;
9d5c8243
AK
5735
5736 i = rx_ring->next_to_use;
5737 buffer_info = &rx_ring->buffer_info[i];
5738
4c844851 5739 bufsz = rx_ring->rx_buffer_len;
db761762 5740
9d5c8243
AK
5741 while (cleaned_count--) {
5742 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5743
6ec43fe6 5744 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5745 if (!buffer_info->page) {
42d0781a 5746 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5747 if (unlikely(!buffer_info->page)) {
5748 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5749 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5750 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5751 goto no_buffers;
5752 }
5753 buffer_info->page_offset = 0;
5754 } else {
5755 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5756 }
5757 buffer_info->page_dma =
59d71989 5758 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5759 buffer_info->page_offset,
5760 PAGE_SIZE / 2,
59d71989
AD
5761 DMA_FROM_DEVICE);
5762 if (dma_mapping_error(rx_ring->dev,
5763 buffer_info->page_dma)) {
42d0781a 5764 buffer_info->page_dma = 0;
12dcd86b 5765 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5766 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5767 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5768 goto no_buffers;
5769 }
9d5c8243
AK
5770 }
5771
42d0781a
AD
5772 skb = buffer_info->skb;
5773 if (!skb) {
89d71a66 5774 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5775 if (unlikely(!skb)) {
5776 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5777 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5778 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5779 goto no_buffers;
5780 }
5781
9d5c8243 5782 buffer_info->skb = skb;
42d0781a
AD
5783 }
5784 if (!buffer_info->dma) {
59d71989 5785 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5786 skb->data,
9d5c8243 5787 bufsz,
59d71989
AD
5788 DMA_FROM_DEVICE);
5789 if (dma_mapping_error(rx_ring->dev,
5790 buffer_info->dma)) {
42d0781a 5791 buffer_info->dma = 0;
12dcd86b 5792 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5793 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5794 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5795 goto no_buffers;
5796 }
9d5c8243
AK
5797 }
5798 /* Refresh the desc even if buffer_addrs didn't change because
5799 * each write-back erases this info. */
6ec43fe6 5800 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5801 rx_desc->read.pkt_addr =
5802 cpu_to_le64(buffer_info->page_dma);
5803 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5804 } else {
42d0781a 5805 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5806 rx_desc->read.hdr_addr = 0;
5807 }
5808
5809 i++;
5810 if (i == rx_ring->count)
5811 i = 0;
5812 buffer_info = &rx_ring->buffer_info[i];
5813 }
5814
5815no_buffers:
5816 if (rx_ring->next_to_use != i) {
5817 rx_ring->next_to_use = i;
5818 if (i == 0)
5819 i = (rx_ring->count - 1);
5820 else
5821 i--;
5822
5823 /* Force memory writes to complete before letting h/w
5824 * know there are new descriptors to fetch. (Only
5825 * applicable for weak-ordered memory model archs,
5826 * such as IA-64). */
5827 wmb();
fce99e34 5828 writel(i, rx_ring->tail);
9d5c8243
AK
5829 }
5830}
5831
5832/**
5833 * igb_mii_ioctl -
5834 * @netdev:
5835 * @ifreq:
5836 * @cmd:
5837 **/
5838static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5839{
5840 struct igb_adapter *adapter = netdev_priv(netdev);
5841 struct mii_ioctl_data *data = if_mii(ifr);
5842
5843 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5844 return -EOPNOTSUPP;
5845
5846 switch (cmd) {
5847 case SIOCGMIIPHY:
5848 data->phy_id = adapter->hw.phy.addr;
5849 break;
5850 case SIOCGMIIREG:
f5f4cf08
AD
5851 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5852 &data->val_out))
9d5c8243
AK
5853 return -EIO;
5854 break;
5855 case SIOCSMIIREG:
5856 default:
5857 return -EOPNOTSUPP;
5858 }
5859 return 0;
5860}
5861
c6cb090b
PO
5862/**
5863 * igb_hwtstamp_ioctl - control hardware time stamping
5864 * @netdev:
5865 * @ifreq:
5866 * @cmd:
5867 *
33af6bcc
PO
5868 * Outgoing time stamping can be enabled and disabled. Play nice and
5869 * disable it when requested, although it shouldn't case any overhead
5870 * when no packet needs it. At most one packet in the queue may be
5871 * marked for time stamping, otherwise it would be impossible to tell
5872 * for sure to which packet the hardware time stamp belongs.
5873 *
5874 * Incoming time stamping has to be configured via the hardware
5875 * filters. Not all combinations are supported, in particular event
5876 * type has to be specified. Matching the kind of event packet is
5877 * not supported, with the exception of "all V2 events regardless of
5878 * level 2 or 4".
5879 *
c6cb090b
PO
5880 **/
5881static int igb_hwtstamp_ioctl(struct net_device *netdev,
5882 struct ifreq *ifr, int cmd)
5883{
33af6bcc
PO
5884 struct igb_adapter *adapter = netdev_priv(netdev);
5885 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5886 struct hwtstamp_config config;
c5b9bd5e
AD
5887 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5888 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5889 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5890 bool is_l4 = false;
5891 bool is_l2 = false;
33af6bcc 5892 u32 regval;
c6cb090b
PO
5893
5894 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5895 return -EFAULT;
5896
5897 /* reserved for future extensions */
5898 if (config.flags)
5899 return -EINVAL;
5900
33af6bcc
PO
5901 switch (config.tx_type) {
5902 case HWTSTAMP_TX_OFF:
c5b9bd5e 5903 tsync_tx_ctl = 0;
33af6bcc 5904 case HWTSTAMP_TX_ON:
33af6bcc
PO
5905 break;
5906 default:
5907 return -ERANGE;
5908 }
5909
5910 switch (config.rx_filter) {
5911 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5912 tsync_rx_ctl = 0;
33af6bcc
PO
5913 break;
5914 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5915 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5916 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5917 case HWTSTAMP_FILTER_ALL:
5918 /*
5919 * register TSYNCRXCFG must be set, therefore it is not
5920 * possible to time stamp both Sync and Delay_Req messages
5921 * => fall back to time stamping all packets
5922 */
c5b9bd5e 5923 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5924 config.rx_filter = HWTSTAMP_FILTER_ALL;
5925 break;
5926 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5927 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5928 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5929 is_l4 = true;
33af6bcc
PO
5930 break;
5931 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5932 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5933 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5934 is_l4 = true;
33af6bcc
PO
5935 break;
5936 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5937 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5938 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5939 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5940 is_l2 = true;
5941 is_l4 = true;
33af6bcc
PO
5942 config.rx_filter = HWTSTAMP_FILTER_SOME;
5943 break;
5944 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5945 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5946 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5947 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5948 is_l2 = true;
5949 is_l4 = true;
33af6bcc
PO
5950 config.rx_filter = HWTSTAMP_FILTER_SOME;
5951 break;
5952 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5953 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5954 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5955 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5956 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5957 is_l2 = true;
33af6bcc
PO
5958 break;
5959 default:
5960 return -ERANGE;
5961 }
5962
c5b9bd5e
AD
5963 if (hw->mac.type == e1000_82575) {
5964 if (tsync_rx_ctl | tsync_tx_ctl)
5965 return -EINVAL;
5966 return 0;
5967 }
5968
757b77e2
NN
5969 /*
5970 * Per-packet timestamping only works if all packets are
5971 * timestamped, so enable timestamping in all packets as
5972 * long as one rx filter was configured.
5973 */
5974 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5975 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5976 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5977 }
5978
33af6bcc
PO
5979 /* enable/disable TX */
5980 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5981 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5982 regval |= tsync_tx_ctl;
33af6bcc
PO
5983 wr32(E1000_TSYNCTXCTL, regval);
5984
c5b9bd5e 5985 /* enable/disable RX */
33af6bcc 5986 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5987 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5988 regval |= tsync_rx_ctl;
33af6bcc 5989 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5990
c5b9bd5e
AD
5991 /* define which PTP packets are time stamped */
5992 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5993
c5b9bd5e
AD
5994 /* define ethertype filter for timestamped packets */
5995 if (is_l2)
5996 wr32(E1000_ETQF(3),
5997 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5998 E1000_ETQF_1588 | /* enable timestamping */
5999 ETH_P_1588)); /* 1588 eth protocol type */
6000 else
6001 wr32(E1000_ETQF(3), 0);
6002
6003#define PTP_PORT 319
6004 /* L4 Queue Filter[3]: filter by destination port and protocol */
6005 if (is_l4) {
6006 u32 ftqf = (IPPROTO_UDP /* UDP */
6007 | E1000_FTQF_VF_BP /* VF not compared */
6008 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6009 | E1000_FTQF_MASK); /* mask all inputs */
6010 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6011
6012 wr32(E1000_IMIR(3), htons(PTP_PORT));
6013 wr32(E1000_IMIREXT(3),
6014 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6015 if (hw->mac.type == e1000_82576) {
6016 /* enable source port check */
6017 wr32(E1000_SPQF(3), htons(PTP_PORT));
6018 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6019 }
6020 wr32(E1000_FTQF(3), ftqf);
6021 } else {
6022 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6023 }
33af6bcc
PO
6024 wrfl();
6025
6026 adapter->hwtstamp_config = config;
6027
6028 /* clear TX/RX time stamp registers, just to be sure */
6029 regval = rd32(E1000_TXSTMPH);
6030 regval = rd32(E1000_RXSTMPH);
c6cb090b 6031
33af6bcc
PO
6032 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6033 -EFAULT : 0;
c6cb090b
PO
6034}
6035
9d5c8243
AK
6036/**
6037 * igb_ioctl -
6038 * @netdev:
6039 * @ifreq:
6040 * @cmd:
6041 **/
6042static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6043{
6044 switch (cmd) {
6045 case SIOCGMIIPHY:
6046 case SIOCGMIIREG:
6047 case SIOCSMIIREG:
6048 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6049 case SIOCSHWTSTAMP:
6050 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6051 default:
6052 return -EOPNOTSUPP;
6053 }
6054}
6055
009bc06e
AD
6056s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6057{
6058 struct igb_adapter *adapter = hw->back;
6059 u16 cap_offset;
6060
6061 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6062 if (!cap_offset)
6063 return -E1000_ERR_CONFIG;
6064
6065 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6066
6067 return 0;
6068}
6069
6070s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6071{
6072 struct igb_adapter *adapter = hw->back;
6073 u16 cap_offset;
6074
6075 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6076 if (!cap_offset)
6077 return -E1000_ERR_CONFIG;
6078
6079 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6080
6081 return 0;
6082}
6083
9d5c8243
AK
6084static void igb_vlan_rx_register(struct net_device *netdev,
6085 struct vlan_group *grp)
6086{
6087 struct igb_adapter *adapter = netdev_priv(netdev);
6088 struct e1000_hw *hw = &adapter->hw;
6089 u32 ctrl, rctl;
6090
6091 igb_irq_disable(adapter);
6092 adapter->vlgrp = grp;
6093
6094 if (grp) {
6095 /* enable VLAN tag insert/strip */
6096 ctrl = rd32(E1000_CTRL);
6097 ctrl |= E1000_CTRL_VME;
6098 wr32(E1000_CTRL, ctrl);
6099
51466239 6100 /* Disable CFI check */
9d5c8243 6101 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6102 rctl &= ~E1000_RCTL_CFIEN;
6103 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6104 } else {
6105 /* disable VLAN tag insert/strip */
6106 ctrl = rd32(E1000_CTRL);
6107 ctrl &= ~E1000_CTRL_VME;
6108 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6109 }
6110
e1739522
AD
6111 igb_rlpml_set(adapter);
6112
9d5c8243
AK
6113 if (!test_bit(__IGB_DOWN, &adapter->state))
6114 igb_irq_enable(adapter);
6115}
6116
6117static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6118{
6119 struct igb_adapter *adapter = netdev_priv(netdev);
6120 struct e1000_hw *hw = &adapter->hw;
4ae196df 6121 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6122
51466239
AD
6123 /* attempt to add filter to vlvf array */
6124 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6125
51466239
AD
6126 /* add the filter since PF can receive vlans w/o entry in vlvf */
6127 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6128}
6129
6130static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6131{
6132 struct igb_adapter *adapter = netdev_priv(netdev);
6133 struct e1000_hw *hw = &adapter->hw;
4ae196df 6134 int pf_id = adapter->vfs_allocated_count;
51466239 6135 s32 err;
9d5c8243
AK
6136
6137 igb_irq_disable(adapter);
6138 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6139
6140 if (!test_bit(__IGB_DOWN, &adapter->state))
6141 igb_irq_enable(adapter);
6142
51466239
AD
6143 /* remove vlan from VLVF table array */
6144 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6145
51466239
AD
6146 /* if vid was not present in VLVF just remove it from table */
6147 if (err)
4ae196df 6148 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6149}
6150
6151static void igb_restore_vlan(struct igb_adapter *adapter)
6152{
6153 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6154
6155 if (adapter->vlgrp) {
6156 u16 vid;
b738127d 6157 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6158 if (!vlan_group_get_device(adapter->vlgrp, vid))
6159 continue;
6160 igb_vlan_rx_add_vid(adapter->netdev, vid);
6161 }
6162 }
6163}
6164
6165int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6166{
090b1795 6167 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6168 struct e1000_mac_info *mac = &adapter->hw.mac;
6169
6170 mac->autoneg = 0;
6171
cd2638a8
CW
6172 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6173 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6174 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
6175 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6176 return -EINVAL;
6177 }
6178
9d5c8243
AK
6179 switch (spddplx) {
6180 case SPEED_10 + DUPLEX_HALF:
6181 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6182 break;
6183 case SPEED_10 + DUPLEX_FULL:
6184 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6185 break;
6186 case SPEED_100 + DUPLEX_HALF:
6187 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6188 break;
6189 case SPEED_100 + DUPLEX_FULL:
6190 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6191 break;
6192 case SPEED_1000 + DUPLEX_FULL:
6193 mac->autoneg = 1;
6194 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6195 break;
6196 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6197 default:
090b1795 6198 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6199 return -EINVAL;
6200 }
6201 return 0;
6202}
6203
3fe7c4c9 6204static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6205{
6206 struct net_device *netdev = pci_get_drvdata(pdev);
6207 struct igb_adapter *adapter = netdev_priv(netdev);
6208 struct e1000_hw *hw = &adapter->hw;
2d064c06 6209 u32 ctrl, rctl, status;
9d5c8243
AK
6210 u32 wufc = adapter->wol;
6211#ifdef CONFIG_PM
6212 int retval = 0;
6213#endif
6214
6215 netif_device_detach(netdev);
6216
a88f10ec
AD
6217 if (netif_running(netdev))
6218 igb_close(netdev);
6219
047e0030 6220 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6221
6222#ifdef CONFIG_PM
6223 retval = pci_save_state(pdev);
6224 if (retval)
6225 return retval;
6226#endif
6227
6228 status = rd32(E1000_STATUS);
6229 if (status & E1000_STATUS_LU)
6230 wufc &= ~E1000_WUFC_LNKC;
6231
6232 if (wufc) {
6233 igb_setup_rctl(adapter);
ff41f8dc 6234 igb_set_rx_mode(netdev);
9d5c8243
AK
6235
6236 /* turn on all-multi mode if wake on multicast is enabled */
6237 if (wufc & E1000_WUFC_MC) {
6238 rctl = rd32(E1000_RCTL);
6239 rctl |= E1000_RCTL_MPE;
6240 wr32(E1000_RCTL, rctl);
6241 }
6242
6243 ctrl = rd32(E1000_CTRL);
6244 /* advertise wake from D3Cold */
6245 #define E1000_CTRL_ADVD3WUC 0x00100000
6246 /* phy power management enable */
6247 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6248 ctrl |= E1000_CTRL_ADVD3WUC;
6249 wr32(E1000_CTRL, ctrl);
6250
9d5c8243 6251 /* Allow time for pending master requests to run */
330a6d6a 6252 igb_disable_pcie_master(hw);
9d5c8243
AK
6253
6254 wr32(E1000_WUC, E1000_WUC_PME_EN);
6255 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6256 } else {
6257 wr32(E1000_WUC, 0);
6258 wr32(E1000_WUFC, 0);
9d5c8243
AK
6259 }
6260
3fe7c4c9
RW
6261 *enable_wake = wufc || adapter->en_mng_pt;
6262 if (!*enable_wake)
88a268c1
NN
6263 igb_power_down_link(adapter);
6264 else
6265 igb_power_up_link(adapter);
9d5c8243
AK
6266
6267 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6268 * would have already happened in close and is redundant. */
6269 igb_release_hw_control(adapter);
6270
6271 pci_disable_device(pdev);
6272
9d5c8243
AK
6273 return 0;
6274}
6275
6276#ifdef CONFIG_PM
3fe7c4c9
RW
6277static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6278{
6279 int retval;
6280 bool wake;
6281
6282 retval = __igb_shutdown(pdev, &wake);
6283 if (retval)
6284 return retval;
6285
6286 if (wake) {
6287 pci_prepare_to_sleep(pdev);
6288 } else {
6289 pci_wake_from_d3(pdev, false);
6290 pci_set_power_state(pdev, PCI_D3hot);
6291 }
6292
6293 return 0;
6294}
6295
9d5c8243
AK
6296static int igb_resume(struct pci_dev *pdev)
6297{
6298 struct net_device *netdev = pci_get_drvdata(pdev);
6299 struct igb_adapter *adapter = netdev_priv(netdev);
6300 struct e1000_hw *hw = &adapter->hw;
6301 u32 err;
6302
6303 pci_set_power_state(pdev, PCI_D0);
6304 pci_restore_state(pdev);
b94f2d77 6305 pci_save_state(pdev);
42bfd33a 6306
aed5dec3 6307 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6308 if (err) {
6309 dev_err(&pdev->dev,
6310 "igb: Cannot enable PCI device from suspend\n");
6311 return err;
6312 }
6313 pci_set_master(pdev);
6314
6315 pci_enable_wake(pdev, PCI_D3hot, 0);
6316 pci_enable_wake(pdev, PCI_D3cold, 0);
6317
047e0030 6318 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6319 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6320 return -ENOMEM;
9d5c8243
AK
6321 }
6322
9d5c8243 6323 igb_reset(adapter);
a8564f03
AD
6324
6325 /* let the f/w know that the h/w is now under the control of the
6326 * driver. */
6327 igb_get_hw_control(adapter);
6328
9d5c8243
AK
6329 wr32(E1000_WUS, ~0);
6330
a88f10ec
AD
6331 if (netif_running(netdev)) {
6332 err = igb_open(netdev);
6333 if (err)
6334 return err;
6335 }
9d5c8243
AK
6336
6337 netif_device_attach(netdev);
6338
9d5c8243
AK
6339 return 0;
6340}
6341#endif
6342
6343static void igb_shutdown(struct pci_dev *pdev)
6344{
3fe7c4c9
RW
6345 bool wake;
6346
6347 __igb_shutdown(pdev, &wake);
6348
6349 if (system_state == SYSTEM_POWER_OFF) {
6350 pci_wake_from_d3(pdev, wake);
6351 pci_set_power_state(pdev, PCI_D3hot);
6352 }
9d5c8243
AK
6353}
6354
6355#ifdef CONFIG_NET_POLL_CONTROLLER
6356/*
6357 * Polling 'interrupt' - used by things like netconsole to send skbs
6358 * without having to re-enable interrupts. It's not called while
6359 * the interrupt routine is executing.
6360 */
6361static void igb_netpoll(struct net_device *netdev)
6362{
6363 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6364 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6365 int i;
9d5c8243 6366
eebbbdba 6367 if (!adapter->msix_entries) {
047e0030 6368 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6369 igb_irq_disable(adapter);
047e0030 6370 napi_schedule(&q_vector->napi);
eebbbdba
AD
6371 return;
6372 }
9d5c8243 6373
047e0030
AD
6374 for (i = 0; i < adapter->num_q_vectors; i++) {
6375 struct igb_q_vector *q_vector = adapter->q_vector[i];
6376 wr32(E1000_EIMC, q_vector->eims_value);
6377 napi_schedule(&q_vector->napi);
eebbbdba 6378 }
9d5c8243
AK
6379}
6380#endif /* CONFIG_NET_POLL_CONTROLLER */
6381
6382/**
6383 * igb_io_error_detected - called when PCI error is detected
6384 * @pdev: Pointer to PCI device
6385 * @state: The current pci connection state
6386 *
6387 * This function is called after a PCI bus error affecting
6388 * this device has been detected.
6389 */
6390static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6391 pci_channel_state_t state)
6392{
6393 struct net_device *netdev = pci_get_drvdata(pdev);
6394 struct igb_adapter *adapter = netdev_priv(netdev);
6395
6396 netif_device_detach(netdev);
6397
59ed6eec
AD
6398 if (state == pci_channel_io_perm_failure)
6399 return PCI_ERS_RESULT_DISCONNECT;
6400
9d5c8243
AK
6401 if (netif_running(netdev))
6402 igb_down(adapter);
6403 pci_disable_device(pdev);
6404
6405 /* Request a slot slot reset. */
6406 return PCI_ERS_RESULT_NEED_RESET;
6407}
6408
6409/**
6410 * igb_io_slot_reset - called after the pci bus has been reset.
6411 * @pdev: Pointer to PCI device
6412 *
6413 * Restart the card from scratch, as if from a cold-boot. Implementation
6414 * resembles the first-half of the igb_resume routine.
6415 */
6416static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6417{
6418 struct net_device *netdev = pci_get_drvdata(pdev);
6419 struct igb_adapter *adapter = netdev_priv(netdev);
6420 struct e1000_hw *hw = &adapter->hw;
40a914fa 6421 pci_ers_result_t result;
42bfd33a 6422 int err;
9d5c8243 6423
aed5dec3 6424 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6425 dev_err(&pdev->dev,
6426 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6427 result = PCI_ERS_RESULT_DISCONNECT;
6428 } else {
6429 pci_set_master(pdev);
6430 pci_restore_state(pdev);
b94f2d77 6431 pci_save_state(pdev);
9d5c8243 6432
40a914fa
AD
6433 pci_enable_wake(pdev, PCI_D3hot, 0);
6434 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6435
40a914fa
AD
6436 igb_reset(adapter);
6437 wr32(E1000_WUS, ~0);
6438 result = PCI_ERS_RESULT_RECOVERED;
6439 }
9d5c8243 6440
ea943d41
JK
6441 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6442 if (err) {
6443 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6444 "failed 0x%0x\n", err);
6445 /* non-fatal, continue */
6446 }
40a914fa
AD
6447
6448 return result;
9d5c8243
AK
6449}
6450
6451/**
6452 * igb_io_resume - called when traffic can start flowing again.
6453 * @pdev: Pointer to PCI device
6454 *
6455 * This callback is called when the error recovery driver tells us that
6456 * its OK to resume normal operation. Implementation resembles the
6457 * second-half of the igb_resume routine.
6458 */
6459static void igb_io_resume(struct pci_dev *pdev)
6460{
6461 struct net_device *netdev = pci_get_drvdata(pdev);
6462 struct igb_adapter *adapter = netdev_priv(netdev);
6463
9d5c8243
AK
6464 if (netif_running(netdev)) {
6465 if (igb_up(adapter)) {
6466 dev_err(&pdev->dev, "igb_up failed after reset\n");
6467 return;
6468 }
6469 }
6470
6471 netif_device_attach(netdev);
6472
6473 /* let the f/w know that the h/w is now under the control of the
6474 * driver. */
6475 igb_get_hw_control(adapter);
9d5c8243
AK
6476}
6477
26ad9178
AD
6478static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6479 u8 qsel)
6480{
6481 u32 rar_low, rar_high;
6482 struct e1000_hw *hw = &adapter->hw;
6483
6484 /* HW expects these in little endian so we reverse the byte order
6485 * from network order (big endian) to little endian
6486 */
6487 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6488 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6489 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6490
6491 /* Indicate to hardware the Address is Valid. */
6492 rar_high |= E1000_RAH_AV;
6493
6494 if (hw->mac.type == e1000_82575)
6495 rar_high |= E1000_RAH_POOL_1 * qsel;
6496 else
6497 rar_high |= E1000_RAH_POOL_1 << qsel;
6498
6499 wr32(E1000_RAL(index), rar_low);
6500 wrfl();
6501 wr32(E1000_RAH(index), rar_high);
6502 wrfl();
6503}
6504
4ae196df
AD
6505static int igb_set_vf_mac(struct igb_adapter *adapter,
6506 int vf, unsigned char *mac_addr)
6507{
6508 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6509 /* VF MAC addresses start at end of receive addresses and moves
6510 * torwards the first, as a result a collision should not be possible */
6511 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6512
37680117 6513 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6514
26ad9178 6515 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6516
6517 return 0;
6518}
6519
8151d294
WM
6520static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6521{
6522 struct igb_adapter *adapter = netdev_priv(netdev);
6523 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6524 return -EINVAL;
6525 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6526 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6527 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6528 " change effective.");
6529 if (test_bit(__IGB_DOWN, &adapter->state)) {
6530 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6531 " but the PF device is not up.\n");
6532 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6533 " attempting to use the VF device.\n");
6534 }
6535 return igb_set_vf_mac(adapter, vf, mac);
6536}
6537
6538static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6539{
6540 return -EOPNOTSUPP;
6541}
6542
6543static int igb_ndo_get_vf_config(struct net_device *netdev,
6544 int vf, struct ifla_vf_info *ivi)
6545{
6546 struct igb_adapter *adapter = netdev_priv(netdev);
6547 if (vf >= adapter->vfs_allocated_count)
6548 return -EINVAL;
6549 ivi->vf = vf;
6550 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6551 ivi->tx_rate = 0;
6552 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6553 ivi->qos = adapter->vf_data[vf].pf_qos;
6554 return 0;
6555}
6556
4ae196df
AD
6557static void igb_vmm_control(struct igb_adapter *adapter)
6558{
6559 struct e1000_hw *hw = &adapter->hw;
10d8e907 6560 u32 reg;
4ae196df 6561
52a1dd4d
AD
6562 switch (hw->mac.type) {
6563 case e1000_82575:
6564 default:
6565 /* replication is not supported for 82575 */
4ae196df 6566 return;
52a1dd4d
AD
6567 case e1000_82576:
6568 /* notify HW that the MAC is adding vlan tags */
6569 reg = rd32(E1000_DTXCTL);
6570 reg |= E1000_DTXCTL_VLAN_ADDED;
6571 wr32(E1000_DTXCTL, reg);
6572 case e1000_82580:
6573 /* enable replication vlan tag stripping */
6574 reg = rd32(E1000_RPLOLR);
6575 reg |= E1000_RPLOLR_STRVLAN;
6576 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6577 case e1000_i350:
6578 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6579 break;
6580 }
10d8e907 6581
d4960307
AD
6582 if (adapter->vfs_allocated_count) {
6583 igb_vmdq_set_loopback_pf(hw, true);
6584 igb_vmdq_set_replication_pf(hw, true);
6585 } else {
6586 igb_vmdq_set_loopback_pf(hw, false);
6587 igb_vmdq_set_replication_pf(hw, false);
6588 }
4ae196df
AD
6589}
6590
9d5c8243 6591/* igb_main.c */
This page took 0.871121 seconds and 5 git commands to generate.