igb: add support for in kernel LRO
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
fe4506b6
JC
44#ifdef CONFIG_DCA
45#include <linux/dca.h>
46#endif
9d5c8243
AK
47#include "igb.h"
48
0024fd00 49#define DRV_VERSION "1.2.45-k2"
9d5c8243
AK
50char igb_driver_name[] = "igb";
51char igb_driver_version[] = DRV_VERSION;
52static const char igb_driver_string[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
2d064c06 54static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
9d5c8243 55
9d5c8243
AK
56static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58};
59
60static struct pci_device_id igb_pci_tbl[] = {
2d064c06
AD
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
69 {0, }
70};
71
72MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74void igb_reset(struct igb_adapter *);
75static int igb_setup_all_tx_resources(struct igb_adapter *);
76static int igb_setup_all_rx_resources(struct igb_adapter *);
77static void igb_free_all_tx_resources(struct igb_adapter *);
78static void igb_free_all_rx_resources(struct igb_adapter *);
3b644cf6
MW
79static void igb_free_tx_resources(struct igb_ring *);
80static void igb_free_rx_resources(struct igb_ring *);
9d5c8243
AK
81void igb_update_stats(struct igb_adapter *);
82static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83static void __devexit igb_remove(struct pci_dev *pdev);
84static int igb_sw_init(struct igb_adapter *);
85static int igb_open(struct net_device *);
86static int igb_close(struct net_device *);
87static void igb_configure_tx(struct igb_adapter *);
88static void igb_configure_rx(struct igb_adapter *);
89static void igb_setup_rctl(struct igb_adapter *);
90static void igb_clean_all_tx_rings(struct igb_adapter *);
91static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
92static void igb_clean_tx_ring(struct igb_ring *);
93static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
94static void igb_set_multi(struct net_device *);
95static void igb_update_phy_info(unsigned long);
96static void igb_watchdog(unsigned long);
97static void igb_watchdog_task(struct work_struct *);
98static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 struct igb_ring *);
100static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101static struct net_device_stats *igb_get_stats(struct net_device *);
102static int igb_change_mtu(struct net_device *, int);
103static int igb_set_mac(struct net_device *, void *);
104static irqreturn_t igb_intr(int irq, void *);
105static irqreturn_t igb_intr_msi(int irq, void *);
106static irqreturn_t igb_msix_other(int irq, void *);
107static irqreturn_t igb_msix_rx(int irq, void *);
108static irqreturn_t igb_msix_tx(int irq, void *);
109static int igb_clean_rx_ring_msix(struct napi_struct *, int);
fe4506b6
JC
110#ifdef CONFIG_DCA
111static void igb_update_rx_dca(struct igb_ring *);
112static void igb_update_tx_dca(struct igb_ring *);
113static void igb_setup_dca(struct igb_adapter *);
114#endif /* CONFIG_DCA */
3b644cf6 115static bool igb_clean_tx_irq(struct igb_ring *);
661086df 116static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
117static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
d3352520
AD
119#ifdef CONFIG_IGB_LRO
120static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121#endif
9d5c8243
AK
122static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123static void igb_tx_timeout(struct net_device *);
124static void igb_reset_task(struct work_struct *);
125static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126static void igb_vlan_rx_add_vid(struct net_device *, u16);
127static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128static void igb_restore_vlan(struct igb_adapter *);
129
130static int igb_suspend(struct pci_dev *, pm_message_t);
131#ifdef CONFIG_PM
132static int igb_resume(struct pci_dev *);
133#endif
134static void igb_shutdown(struct pci_dev *);
fe4506b6
JC
135#ifdef CONFIG_DCA
136static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137static struct notifier_block dca_notifier = {
138 .notifier_call = igb_notify_dca,
139 .next = NULL,
140 .priority = 0
141};
142#endif
9d5c8243
AK
143
144#ifdef CONFIG_NET_POLL_CONTROLLER
145/* for netdump / net console */
146static void igb_netpoll(struct net_device *);
147#endif
148
149static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150 pci_channel_state_t);
151static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152static void igb_io_resume(struct pci_dev *);
153
154static struct pci_error_handlers igb_err_handler = {
155 .error_detected = igb_io_error_detected,
156 .slot_reset = igb_io_slot_reset,
157 .resume = igb_io_resume,
158};
159
160
161static struct pci_driver igb_driver = {
162 .name = igb_driver_name,
163 .id_table = igb_pci_tbl,
164 .probe = igb_probe,
165 .remove = __devexit_p(igb_remove),
166#ifdef CONFIG_PM
167 /* Power Managment Hooks */
168 .suspend = igb_suspend,
169 .resume = igb_resume,
170#endif
171 .shutdown = igb_shutdown,
172 .err_handler = &igb_err_handler
173};
174
7dfc16fa
AD
175static int global_quad_port_a; /* global quad port a indication */
176
9d5c8243
AK
177MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179MODULE_LICENSE("GPL");
180MODULE_VERSION(DRV_VERSION);
181
182#ifdef DEBUG
183/**
184 * igb_get_hw_dev_name - return device name string
185 * used by hardware layer to print debugging information
186 **/
187char *igb_get_hw_dev_name(struct e1000_hw *hw)
188{
189 struct igb_adapter *adapter = hw->back;
190 return adapter->netdev->name;
191}
192#endif
193
194/**
195 * igb_init_module - Driver Registration Routine
196 *
197 * igb_init_module is the first routine called when the driver is
198 * loaded. All it does is register with the PCI subsystem.
199 **/
200static int __init igb_init_module(void)
201{
202 int ret;
203 printk(KERN_INFO "%s - version %s\n",
204 igb_driver_string, igb_driver_version);
205
206 printk(KERN_INFO "%s\n", igb_copyright);
207
7dfc16fa
AD
208 global_quad_port_a = 0;
209
9d5c8243 210 ret = pci_register_driver(&igb_driver);
fe4506b6
JC
211#ifdef CONFIG_DCA
212 dca_register_notify(&dca_notifier);
213#endif
9d5c8243
AK
214 return ret;
215}
216
217module_init(igb_init_module);
218
219/**
220 * igb_exit_module - Driver Exit Cleanup Routine
221 *
222 * igb_exit_module is called just before the driver is removed
223 * from memory.
224 **/
225static void __exit igb_exit_module(void)
226{
fe4506b6
JC
227#ifdef CONFIG_DCA
228 dca_unregister_notify(&dca_notifier);
229#endif
9d5c8243
AK
230 pci_unregister_driver(&igb_driver);
231}
232
233module_exit(igb_exit_module);
234
235/**
236 * igb_alloc_queues - Allocate memory for all rings
237 * @adapter: board private structure to initialize
238 *
239 * We allocate one ring per queue at run-time since we don't know the
240 * number of queues at compile-time.
241 **/
242static int igb_alloc_queues(struct igb_adapter *adapter)
243{
244 int i;
245
246 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247 sizeof(struct igb_ring), GFP_KERNEL);
248 if (!adapter->tx_ring)
249 return -ENOMEM;
250
251 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252 sizeof(struct igb_ring), GFP_KERNEL);
253 if (!adapter->rx_ring) {
254 kfree(adapter->tx_ring);
255 return -ENOMEM;
256 }
257
661086df
PWJ
258 for (i = 0; i < adapter->num_tx_queues; i++) {
259 struct igb_ring *ring = &(adapter->tx_ring[i]);
260 ring->adapter = adapter;
261 ring->queue_index = i;
262 }
9d5c8243
AK
263 for (i = 0; i < adapter->num_rx_queues; i++) {
264 struct igb_ring *ring = &(adapter->rx_ring[i]);
265 ring->adapter = adapter;
844290e5 266 ring->queue_index = i;
9d5c8243
AK
267 ring->itr_register = E1000_ITR;
268
844290e5 269 /* set a default napi handler for each rx_ring */
661086df 270 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243
AK
271 }
272 return 0;
273}
274
275#define IGB_N0_QUEUE -1
276static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
277 int tx_queue, int msix_vector)
278{
279 u32 msixbm = 0;
280 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
281 u32 ivar, index;
282
283 switch (hw->mac.type) {
284 case e1000_82575:
9d5c8243
AK
285 /* The 82575 assigns vectors using a bitmask, which matches the
286 bitmask for the EICR/EIMS/EIMC registers. To assign one
287 or more queues to a vector, we write the appropriate bits
288 into the MSIXBM register for that vector. */
289 if (rx_queue > IGB_N0_QUEUE) {
290 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
291 adapter->rx_ring[rx_queue].eims_value = msixbm;
292 }
293 if (tx_queue > IGB_N0_QUEUE) {
294 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
295 adapter->tx_ring[tx_queue].eims_value =
296 E1000_EICR_TX_QUEUE0 << tx_queue;
297 }
298 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
299 break;
300 case e1000_82576:
301 /* Kawela uses a table-based method for assigning vectors.
302 Each queue has a single entry in the table to which we write
303 a vector number along with a "valid" bit. Sadly, the layout
304 of the table is somewhat counterintuitive. */
305 if (rx_queue > IGB_N0_QUEUE) {
306 index = (rx_queue & 0x7);
307 ivar = array_rd32(E1000_IVAR0, index);
308 if (rx_queue < 8) {
309 /* vector goes into low byte of register */
310 ivar = ivar & 0xFFFFFF00;
311 ivar |= msix_vector | E1000_IVAR_VALID;
312 } else {
313 /* vector goes into third byte of register */
314 ivar = ivar & 0xFF00FFFF;
315 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
316 }
317 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
318 array_wr32(E1000_IVAR0, index, ivar);
319 }
320 if (tx_queue > IGB_N0_QUEUE) {
321 index = (tx_queue & 0x7);
322 ivar = array_rd32(E1000_IVAR0, index);
323 if (tx_queue < 8) {
324 /* vector goes into second byte of register */
325 ivar = ivar & 0xFFFF00FF;
326 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
327 } else {
328 /* vector goes into high byte of register */
329 ivar = ivar & 0x00FFFFFF;
330 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
331 }
332 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
333 array_wr32(E1000_IVAR0, index, ivar);
334 }
335 break;
336 default:
337 BUG();
338 break;
339 }
9d5c8243
AK
340}
341
342/**
343 * igb_configure_msix - Configure MSI-X hardware
344 *
345 * igb_configure_msix sets up the hardware to properly
346 * generate MSI-X interrupts.
347 **/
348static void igb_configure_msix(struct igb_adapter *adapter)
349{
350 u32 tmp;
351 int i, vector = 0;
352 struct e1000_hw *hw = &adapter->hw;
353
354 adapter->eims_enable_mask = 0;
2d064c06
AD
355 if (hw->mac.type == e1000_82576)
356 /* Turn on MSI-X capability first, or our settings
357 * won't stick. And it will take days to debug. */
358 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
359 E1000_GPIE_PBA | E1000_GPIE_EIAME |
360 E1000_GPIE_NSICR);
9d5c8243
AK
361
362 for (i = 0; i < adapter->num_tx_queues; i++) {
363 struct igb_ring *tx_ring = &adapter->tx_ring[i];
364 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
365 adapter->eims_enable_mask |= tx_ring->eims_value;
366 if (tx_ring->itr_val)
367 writel(1000000000 / (tx_ring->itr_val * 256),
368 hw->hw_addr + tx_ring->itr_register);
369 else
370 writel(1, hw->hw_addr + tx_ring->itr_register);
371 }
372
373 for (i = 0; i < adapter->num_rx_queues; i++) {
374 struct igb_ring *rx_ring = &adapter->rx_ring[i];
375 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
376 adapter->eims_enable_mask |= rx_ring->eims_value;
377 if (rx_ring->itr_val)
378 writel(1000000000 / (rx_ring->itr_val * 256),
379 hw->hw_addr + rx_ring->itr_register);
380 else
381 writel(1, hw->hw_addr + rx_ring->itr_register);
382 }
383
384
385 /* set vector for other causes, i.e. link changes */
2d064c06
AD
386 switch (hw->mac.type) {
387 case e1000_82575:
9d5c8243
AK
388 array_wr32(E1000_MSIXBM(0), vector++,
389 E1000_EIMS_OTHER);
390
9d5c8243
AK
391 tmp = rd32(E1000_CTRL_EXT);
392 /* enable MSI-X PBA support*/
393 tmp |= E1000_CTRL_EXT_PBA_CLR;
394
395 /* Auto-Mask interrupts upon ICR read. */
396 tmp |= E1000_CTRL_EXT_EIAME;
397 tmp |= E1000_CTRL_EXT_IRCA;
398
399 wr32(E1000_CTRL_EXT, tmp);
400 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 401 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 402
2d064c06
AD
403 break;
404
405 case e1000_82576:
406 tmp = (vector++ | E1000_IVAR_VALID) << 8;
407 wr32(E1000_IVAR_MISC, tmp);
408
409 adapter->eims_enable_mask = (1 << (vector)) - 1;
410 adapter->eims_other = 1 << (vector - 1);
411 break;
412 default:
413 /* do nothing, since nothing else supports MSI-X */
414 break;
415 } /* switch (hw->mac.type) */
9d5c8243
AK
416 wrfl();
417}
418
419/**
420 * igb_request_msix - Initialize MSI-X interrupts
421 *
422 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
423 * kernel.
424 **/
425static int igb_request_msix(struct igb_adapter *adapter)
426{
427 struct net_device *netdev = adapter->netdev;
428 int i, err = 0, vector = 0;
429
430 vector = 0;
431
432 for (i = 0; i < adapter->num_tx_queues; i++) {
433 struct igb_ring *ring = &(adapter->tx_ring[i]);
434 sprintf(ring->name, "%s-tx%d", netdev->name, i);
435 err = request_irq(adapter->msix_entries[vector].vector,
436 &igb_msix_tx, 0, ring->name,
437 &(adapter->tx_ring[i]));
438 if (err)
439 goto out;
440 ring->itr_register = E1000_EITR(0) + (vector << 2);
441 ring->itr_val = adapter->itr;
442 vector++;
443 }
444 for (i = 0; i < adapter->num_rx_queues; i++) {
445 struct igb_ring *ring = &(adapter->rx_ring[i]);
446 if (strlen(netdev->name) < (IFNAMSIZ - 5))
447 sprintf(ring->name, "%s-rx%d", netdev->name, i);
448 else
449 memcpy(ring->name, netdev->name, IFNAMSIZ);
450 err = request_irq(adapter->msix_entries[vector].vector,
451 &igb_msix_rx, 0, ring->name,
452 &(adapter->rx_ring[i]));
453 if (err)
454 goto out;
455 ring->itr_register = E1000_EITR(0) + (vector << 2);
456 ring->itr_val = adapter->itr;
844290e5
PW
457 /* overwrite the poll routine for MSIX, we've already done
458 * netif_napi_add */
459 ring->napi.poll = &igb_clean_rx_ring_msix;
9d5c8243
AK
460 vector++;
461 }
462
463 err = request_irq(adapter->msix_entries[vector].vector,
464 &igb_msix_other, 0, netdev->name, netdev);
465 if (err)
466 goto out;
467
9d5c8243
AK
468 igb_configure_msix(adapter);
469 return 0;
470out:
471 return err;
472}
473
474static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
475{
476 if (adapter->msix_entries) {
477 pci_disable_msix(adapter->pdev);
478 kfree(adapter->msix_entries);
479 adapter->msix_entries = NULL;
7dfc16fa 480 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
481 pci_disable_msi(adapter->pdev);
482 return;
483}
484
485
486/**
487 * igb_set_interrupt_capability - set MSI or MSI-X if supported
488 *
489 * Attempt to configure interrupts using the best available
490 * capabilities of the hardware and kernel.
491 **/
492static void igb_set_interrupt_capability(struct igb_adapter *adapter)
493{
494 int err;
495 int numvecs, i;
496
497 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
498 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
499 GFP_KERNEL);
500 if (!adapter->msix_entries)
501 goto msi_only;
502
503 for (i = 0; i < numvecs; i++)
504 adapter->msix_entries[i].entry = i;
505
506 err = pci_enable_msix(adapter->pdev,
507 adapter->msix_entries,
508 numvecs);
509 if (err == 0)
510 return;
511
512 igb_reset_interrupt_capability(adapter);
513
514 /* If we can't do MSI-X, try MSI */
515msi_only:
516 adapter->num_rx_queues = 1;
661086df 517 adapter->num_tx_queues = 1;
9d5c8243 518 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 519 adapter->flags |= IGB_FLAG_HAS_MSI;
661086df
PWJ
520
521#ifdef CONFIG_NETDEVICES_MULTIQUEUE
522 /* Notify the stack of the (possibly) reduced Tx Queue count. */
523 adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
524#endif
9d5c8243
AK
525 return;
526}
527
528/**
529 * igb_request_irq - initialize interrupts
530 *
531 * Attempts to configure interrupts using the best available
532 * capabilities of the hardware and kernel.
533 **/
534static int igb_request_irq(struct igb_adapter *adapter)
535{
536 struct net_device *netdev = adapter->netdev;
537 struct e1000_hw *hw = &adapter->hw;
538 int err = 0;
539
540 if (adapter->msix_entries) {
541 err = igb_request_msix(adapter);
844290e5 542 if (!err)
9d5c8243 543 goto request_done;
9d5c8243
AK
544 /* fall back to MSI */
545 igb_reset_interrupt_capability(adapter);
546 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 547 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
548 igb_free_all_tx_resources(adapter);
549 igb_free_all_rx_resources(adapter);
550 adapter->num_rx_queues = 1;
551 igb_alloc_queues(adapter);
844290e5 552 } else {
2d064c06
AD
553 switch (hw->mac.type) {
554 case e1000_82575:
555 wr32(E1000_MSIXBM(0),
556 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
557 break;
558 case e1000_82576:
559 wr32(E1000_IVAR0, E1000_IVAR_VALID);
560 break;
561 default:
562 break;
563 }
9d5c8243 564 }
844290e5 565
7dfc16fa 566 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
567 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
568 netdev->name, netdev);
569 if (!err)
570 goto request_done;
571 /* fall back to legacy interrupts */
572 igb_reset_interrupt_capability(adapter);
7dfc16fa 573 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
574 }
575
576 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
577 netdev->name, netdev);
578
6cb5e577 579 if (err)
9d5c8243
AK
580 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
581 err);
9d5c8243
AK
582
583request_done:
584 return err;
585}
586
587static void igb_free_irq(struct igb_adapter *adapter)
588{
589 struct net_device *netdev = adapter->netdev;
590
591 if (adapter->msix_entries) {
592 int vector = 0, i;
593
594 for (i = 0; i < adapter->num_tx_queues; i++)
595 free_irq(adapter->msix_entries[vector++].vector,
596 &(adapter->tx_ring[i]));
597 for (i = 0; i < adapter->num_rx_queues; i++)
598 free_irq(adapter->msix_entries[vector++].vector,
599 &(adapter->rx_ring[i]));
600
601 free_irq(adapter->msix_entries[vector++].vector, netdev);
602 return;
603 }
604
605 free_irq(adapter->pdev->irq, netdev);
606}
607
608/**
609 * igb_irq_disable - Mask off interrupt generation on the NIC
610 * @adapter: board private structure
611 **/
612static void igb_irq_disable(struct igb_adapter *adapter)
613{
614 struct e1000_hw *hw = &adapter->hw;
615
616 if (adapter->msix_entries) {
844290e5 617 wr32(E1000_EIAM, 0);
9d5c8243
AK
618 wr32(E1000_EIMC, ~0);
619 wr32(E1000_EIAC, 0);
620 }
844290e5
PW
621
622 wr32(E1000_IAM, 0);
9d5c8243
AK
623 wr32(E1000_IMC, ~0);
624 wrfl();
625 synchronize_irq(adapter->pdev->irq);
626}
627
628/**
629 * igb_irq_enable - Enable default interrupt generation settings
630 * @adapter: board private structure
631 **/
632static void igb_irq_enable(struct igb_adapter *adapter)
633{
634 struct e1000_hw *hw = &adapter->hw;
635
636 if (adapter->msix_entries) {
844290e5
PW
637 wr32(E1000_EIAC, adapter->eims_enable_mask);
638 wr32(E1000_EIAM, adapter->eims_enable_mask);
639 wr32(E1000_EIMS, adapter->eims_enable_mask);
9d5c8243 640 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5
PW
641 } else {
642 wr32(E1000_IMS, IMS_ENABLE_MASK);
643 wr32(E1000_IAM, IMS_ENABLE_MASK);
644 }
9d5c8243
AK
645}
646
647static void igb_update_mng_vlan(struct igb_adapter *adapter)
648{
649 struct net_device *netdev = adapter->netdev;
650 u16 vid = adapter->hw.mng_cookie.vlan_id;
651 u16 old_vid = adapter->mng_vlan_id;
652 if (adapter->vlgrp) {
653 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
654 if (adapter->hw.mng_cookie.status &
655 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
656 igb_vlan_rx_add_vid(netdev, vid);
657 adapter->mng_vlan_id = vid;
658 } else
659 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
660
661 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
662 (vid != old_vid) &&
663 !vlan_group_get_device(adapter->vlgrp, old_vid))
664 igb_vlan_rx_kill_vid(netdev, old_vid);
665 } else
666 adapter->mng_vlan_id = vid;
667 }
668}
669
670/**
671 * igb_release_hw_control - release control of the h/w to f/w
672 * @adapter: address of board private structure
673 *
674 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
675 * For ASF and Pass Through versions of f/w this means that the
676 * driver is no longer loaded.
677 *
678 **/
679static void igb_release_hw_control(struct igb_adapter *adapter)
680{
681 struct e1000_hw *hw = &adapter->hw;
682 u32 ctrl_ext;
683
684 /* Let firmware take over control of h/w */
685 ctrl_ext = rd32(E1000_CTRL_EXT);
686 wr32(E1000_CTRL_EXT,
687 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
688}
689
690
691/**
692 * igb_get_hw_control - get control of the h/w from f/w
693 * @adapter: address of board private structure
694 *
695 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
696 * For ASF and Pass Through versions of f/w this means that
697 * the driver is loaded.
698 *
699 **/
700static void igb_get_hw_control(struct igb_adapter *adapter)
701{
702 struct e1000_hw *hw = &adapter->hw;
703 u32 ctrl_ext;
704
705 /* Let firmware know the driver has taken over */
706 ctrl_ext = rd32(E1000_CTRL_EXT);
707 wr32(E1000_CTRL_EXT,
708 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
709}
710
711static void igb_init_manageability(struct igb_adapter *adapter)
712{
713 struct e1000_hw *hw = &adapter->hw;
714
715 if (adapter->en_mng_pt) {
716 u32 manc2h = rd32(E1000_MANC2H);
717 u32 manc = rd32(E1000_MANC);
718
9d5c8243
AK
719 /* enable receiving management packets to the host */
720 /* this will probably generate destination unreachable messages
721 * from the host OS, but the packets will be handled on SMBUS */
722 manc |= E1000_MANC_EN_MNG2HOST;
723#define E1000_MNG2HOST_PORT_623 (1 << 5)
724#define E1000_MNG2HOST_PORT_664 (1 << 6)
725 manc2h |= E1000_MNG2HOST_PORT_623;
726 manc2h |= E1000_MNG2HOST_PORT_664;
727 wr32(E1000_MANC2H, manc2h);
728
729 wr32(E1000_MANC, manc);
730 }
731}
732
9d5c8243
AK
733/**
734 * igb_configure - configure the hardware for RX and TX
735 * @adapter: private board structure
736 **/
737static void igb_configure(struct igb_adapter *adapter)
738{
739 struct net_device *netdev = adapter->netdev;
740 int i;
741
742 igb_get_hw_control(adapter);
743 igb_set_multi(netdev);
744
745 igb_restore_vlan(adapter);
746 igb_init_manageability(adapter);
747
748 igb_configure_tx(adapter);
749 igb_setup_rctl(adapter);
750 igb_configure_rx(adapter);
662d7205
AD
751
752 igb_rx_fifo_flush_82575(&adapter->hw);
753
9d5c8243
AK
754 /* call IGB_DESC_UNUSED which always leaves
755 * at least 1 descriptor unused to make sure
756 * next_to_use != next_to_clean */
757 for (i = 0; i < adapter->num_rx_queues; i++) {
758 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 759 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
760 }
761
762
763 adapter->tx_queue_len = netdev->tx_queue_len;
764}
765
766
767/**
768 * igb_up - Open the interface and prepare it to handle traffic
769 * @adapter: board private structure
770 **/
771
772int igb_up(struct igb_adapter *adapter)
773{
774 struct e1000_hw *hw = &adapter->hw;
775 int i;
776
777 /* hardware has been reset, we need to reload some things */
778 igb_configure(adapter);
779
780 clear_bit(__IGB_DOWN, &adapter->state);
781
844290e5
PW
782 for (i = 0; i < adapter->num_rx_queues; i++)
783 napi_enable(&adapter->rx_ring[i].napi);
784 if (adapter->msix_entries)
9d5c8243 785 igb_configure_msix(adapter);
9d5c8243
AK
786
787 /* Clear any pending interrupts. */
788 rd32(E1000_ICR);
789 igb_irq_enable(adapter);
790
791 /* Fire a link change interrupt to start the watchdog. */
792 wr32(E1000_ICS, E1000_ICS_LSC);
793 return 0;
794}
795
796void igb_down(struct igb_adapter *adapter)
797{
798 struct e1000_hw *hw = &adapter->hw;
799 struct net_device *netdev = adapter->netdev;
800 u32 tctl, rctl;
801 int i;
802
803 /* signal that we're down so the interrupt handler does not
804 * reschedule our watchdog timer */
805 set_bit(__IGB_DOWN, &adapter->state);
806
807 /* disable receives in the hardware */
808 rctl = rd32(E1000_RCTL);
809 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
810 /* flush and sleep below */
811
812 netif_stop_queue(netdev);
661086df
PWJ
813#ifdef CONFIG_NETDEVICES_MULTIQUEUE
814 for (i = 0; i < adapter->num_tx_queues; i++)
815 netif_stop_subqueue(netdev, i);
816#endif
9d5c8243
AK
817
818 /* disable transmits in the hardware */
819 tctl = rd32(E1000_TCTL);
820 tctl &= ~E1000_TCTL_EN;
821 wr32(E1000_TCTL, tctl);
822 /* flush both disables and wait for them to finish */
823 wrfl();
824 msleep(10);
825
844290e5
PW
826 for (i = 0; i < adapter->num_rx_queues; i++)
827 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 828
9d5c8243
AK
829 igb_irq_disable(adapter);
830
831 del_timer_sync(&adapter->watchdog_timer);
832 del_timer_sync(&adapter->phy_info_timer);
833
834 netdev->tx_queue_len = adapter->tx_queue_len;
835 netif_carrier_off(netdev);
836 adapter->link_speed = 0;
837 adapter->link_duplex = 0;
838
3023682e
JK
839 if (!pci_channel_offline(adapter->pdev))
840 igb_reset(adapter);
9d5c8243
AK
841 igb_clean_all_tx_rings(adapter);
842 igb_clean_all_rx_rings(adapter);
843}
844
845void igb_reinit_locked(struct igb_adapter *adapter)
846{
847 WARN_ON(in_interrupt());
848 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
849 msleep(1);
850 igb_down(adapter);
851 igb_up(adapter);
852 clear_bit(__IGB_RESETTING, &adapter->state);
853}
854
855void igb_reset(struct igb_adapter *adapter)
856{
857 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
858 struct e1000_mac_info *mac = &hw->mac;
859 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
860 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
861 u16 hwm;
862
863 /* Repartition Pba for greater than 9k mtu
864 * To take effect CTRL.RST is required.
865 */
2d064c06 866 if (mac->type != e1000_82576) {
9d5c8243 867 pba = E1000_PBA_34K;
2d064c06
AD
868 }
869 else {
870 pba = E1000_PBA_64K;
871 }
9d5c8243 872
2d064c06
AD
873 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
874 (mac->type < e1000_82576)) {
9d5c8243
AK
875 /* adjust PBA for jumbo frames */
876 wr32(E1000_PBA, pba);
877
878 /* To maintain wire speed transmits, the Tx FIFO should be
879 * large enough to accommodate two full transmit packets,
880 * rounded up to the next 1KB and expressed in KB. Likewise,
881 * the Rx FIFO should be large enough to accommodate at least
882 * one full receive packet and is similarly rounded up and
883 * expressed in KB. */
884 pba = rd32(E1000_PBA);
885 /* upper 16 bits has Tx packet buffer allocation size in KB */
886 tx_space = pba >> 16;
887 /* lower 16 bits has Rx packet buffer allocation size in KB */
888 pba &= 0xffff;
889 /* the tx fifo also stores 16 bytes of information about the tx
890 * but don't include ethernet FCS because hardware appends it */
891 min_tx_space = (adapter->max_frame_size +
892 sizeof(struct e1000_tx_desc) -
893 ETH_FCS_LEN) * 2;
894 min_tx_space = ALIGN(min_tx_space, 1024);
895 min_tx_space >>= 10;
896 /* software strips receive CRC, so leave room for it */
897 min_rx_space = adapter->max_frame_size;
898 min_rx_space = ALIGN(min_rx_space, 1024);
899 min_rx_space >>= 10;
900
901 /* If current Tx allocation is less than the min Tx FIFO size,
902 * and the min Tx FIFO size is less than the current Rx FIFO
903 * allocation, take space away from current Rx allocation */
904 if (tx_space < min_tx_space &&
905 ((min_tx_space - tx_space) < pba)) {
906 pba = pba - (min_tx_space - tx_space);
907
908 /* if short on rx space, rx wins and must trump tx
909 * adjustment */
910 if (pba < min_rx_space)
911 pba = min_rx_space;
912 }
2d064c06 913 wr32(E1000_PBA, pba);
9d5c8243 914 }
9d5c8243
AK
915
916 /* flow control settings */
917 /* The high water mark must be low enough to fit one full frame
918 * (or the size used for early receive) above it in the Rx FIFO.
919 * Set it to the lower of:
920 * - 90% of the Rx FIFO size, or
921 * - the full Rx FIFO size minus one full frame */
922 hwm = min(((pba << 10) * 9 / 10),
2d064c06 923 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 924
2d064c06
AD
925 if (mac->type < e1000_82576) {
926 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
927 fc->low_water = fc->high_water - 8;
928 } else {
929 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
930 fc->low_water = fc->high_water - 16;
931 }
9d5c8243
AK
932 fc->pause_time = 0xFFFF;
933 fc->send_xon = 1;
934 fc->type = fc->original_type;
935
936 /* Allow time for pending master requests to run */
937 adapter->hw.mac.ops.reset_hw(&adapter->hw);
938 wr32(E1000_WUC, 0);
939
940 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
941 dev_err(&adapter->pdev->dev, "Hardware Error\n");
942
943 igb_update_mng_vlan(adapter);
944
945 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
946 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
947
948 igb_reset_adaptive(&adapter->hw);
68707acb
BH
949 if (adapter->hw.phy.ops.get_phy_info)
950 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
951}
952
42bfd33a
TI
953/**
954 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
955 * @pdev: PCI device information struct
956 *
957 * Returns true if an adapter needs ioport resources
958 **/
959static int igb_is_need_ioport(struct pci_dev *pdev)
960{
961 switch (pdev->device) {
962 /* Currently there are no adapters that need ioport resources */
963 default:
964 return false;
965 }
966}
967
9d5c8243
AK
968/**
969 * igb_probe - Device Initialization Routine
970 * @pdev: PCI device information struct
971 * @ent: entry in igb_pci_tbl
972 *
973 * Returns 0 on success, negative on failure
974 *
975 * igb_probe initializes an adapter identified by a pci_dev structure.
976 * The OS initialization, configuring of the adapter private structure,
977 * and a hardware reset occur.
978 **/
979static int __devinit igb_probe(struct pci_dev *pdev,
980 const struct pci_device_id *ent)
981{
982 struct net_device *netdev;
983 struct igb_adapter *adapter;
984 struct e1000_hw *hw;
985 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
986 unsigned long mmio_start, mmio_len;
9d5c8243
AK
987 int i, err, pci_using_dac;
988 u16 eeprom_data = 0;
989 u16 eeprom_apme_mask = IGB_EEPROM_APME;
990 u32 part_num;
42bfd33a 991 int bars, need_ioport;
9d5c8243 992
42bfd33a
TI
993 /* do not allocate ioport bars when not needed */
994 need_ioport = igb_is_need_ioport(pdev);
995 if (need_ioport) {
996 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
997 err = pci_enable_device(pdev);
998 } else {
999 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1000 err = pci_enable_device_mem(pdev);
1001 }
9d5c8243
AK
1002 if (err)
1003 return err;
1004
1005 pci_using_dac = 0;
1006 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1007 if (!err) {
1008 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1009 if (!err)
1010 pci_using_dac = 1;
1011 } else {
1012 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1013 if (err) {
1014 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1015 if (err) {
1016 dev_err(&pdev->dev, "No usable DMA "
1017 "configuration, aborting\n");
1018 goto err_dma;
1019 }
1020 }
1021 }
1022
42bfd33a 1023 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
9d5c8243
AK
1024 if (err)
1025 goto err_pci_reg;
1026
1027 pci_set_master(pdev);
c682fc23 1028 pci_save_state(pdev);
9d5c8243
AK
1029
1030 err = -ENOMEM;
661086df
PWJ
1031#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1032 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1033#else
9d5c8243 1034 netdev = alloc_etherdev(sizeof(struct igb_adapter));
661086df 1035#endif /* CONFIG_NETDEVICES_MULTIQUEUE */
9d5c8243
AK
1036 if (!netdev)
1037 goto err_alloc_etherdev;
1038
1039 SET_NETDEV_DEV(netdev, &pdev->dev);
1040
1041 pci_set_drvdata(pdev, netdev);
1042 adapter = netdev_priv(netdev);
1043 adapter->netdev = netdev;
1044 adapter->pdev = pdev;
1045 hw = &adapter->hw;
1046 hw->back = adapter;
1047 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
42bfd33a
TI
1048 adapter->bars = bars;
1049 adapter->need_ioport = need_ioport;
9d5c8243
AK
1050
1051 mmio_start = pci_resource_start(pdev, 0);
1052 mmio_len = pci_resource_len(pdev, 0);
1053
1054 err = -EIO;
1055 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1056 if (!adapter->hw.hw_addr)
1057 goto err_ioremap;
1058
1059 netdev->open = &igb_open;
1060 netdev->stop = &igb_close;
1061 netdev->get_stats = &igb_get_stats;
1062 netdev->set_multicast_list = &igb_set_multi;
1063 netdev->set_mac_address = &igb_set_mac;
1064 netdev->change_mtu = &igb_change_mtu;
1065 netdev->do_ioctl = &igb_ioctl;
1066 igb_set_ethtool_ops(netdev);
1067 netdev->tx_timeout = &igb_tx_timeout;
1068 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1069 netdev->vlan_rx_register = igb_vlan_rx_register;
1070 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1071 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1072#ifdef CONFIG_NET_POLL_CONTROLLER
1073 netdev->poll_controller = igb_netpoll;
1074#endif
1075 netdev->hard_start_xmit = &igb_xmit_frame_adv;
1076
1077 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1078
1079 netdev->mem_start = mmio_start;
1080 netdev->mem_end = mmio_start + mmio_len;
1081
9d5c8243
AK
1082 /* PCI config space info */
1083 hw->vendor_id = pdev->vendor;
1084 hw->device_id = pdev->device;
1085 hw->revision_id = pdev->revision;
1086 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1087 hw->subsystem_device_id = pdev->subsystem_device;
1088
1089 /* setup the private structure */
1090 hw->back = adapter;
1091 /* Copy the default MAC, PHY and NVM function pointers */
1092 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1093 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1094 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1095 /* Initialize skew-specific constants */
1096 err = ei->get_invariants(hw);
1097 if (err)
1098 goto err_hw_init;
1099
1100 err = igb_sw_init(adapter);
1101 if (err)
1102 goto err_sw_init;
1103
1104 igb_get_bus_info_pcie(hw);
1105
7dfc16fa
AD
1106 /* set flags */
1107 switch (hw->mac.type) {
1108 case e1000_82576:
1109 case e1000_82575:
1110 adapter->flags |= IGB_FLAG_HAS_DCA;
1111 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1112 break;
1113 default:
1114 break;
1115 }
1116
9d5c8243
AK
1117 hw->phy.autoneg_wait_to_complete = false;
1118 hw->mac.adaptive_ifs = true;
1119
1120 /* Copper options */
1121 if (hw->phy.media_type == e1000_media_type_copper) {
1122 hw->phy.mdix = AUTO_ALL_MODES;
1123 hw->phy.disable_polarity_correction = false;
1124 hw->phy.ms_type = e1000_ms_hw_default;
1125 }
1126
1127 if (igb_check_reset_block(hw))
1128 dev_info(&pdev->dev,
1129 "PHY reset is blocked due to SOL/IDER session.\n");
1130
1131 netdev->features = NETIF_F_SG |
1132 NETIF_F_HW_CSUM |
1133 NETIF_F_HW_VLAN_TX |
1134 NETIF_F_HW_VLAN_RX |
1135 NETIF_F_HW_VLAN_FILTER;
1136
1137 netdev->features |= NETIF_F_TSO;
9d5c8243 1138 netdev->features |= NETIF_F_TSO6;
48f29ffc 1139
d3352520
AD
1140#ifdef CONFIG_IGB_LRO
1141 netdev->features |= NETIF_F_LRO;
1142#endif
1143
48f29ffc
JK
1144 netdev->vlan_features |= NETIF_F_TSO;
1145 netdev->vlan_features |= NETIF_F_TSO6;
1146 netdev->vlan_features |= NETIF_F_HW_CSUM;
1147 netdev->vlan_features |= NETIF_F_SG;
1148
9d5c8243
AK
1149 if (pci_using_dac)
1150 netdev->features |= NETIF_F_HIGHDMA;
1151
661086df
PWJ
1152#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1153 netdev->features |= NETIF_F_MULTI_QUEUE;
1154#endif
1155
9d5c8243
AK
1156 netdev->features |= NETIF_F_LLTX;
1157 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1158
1159 /* before reading the NVM, reset the controller to put the device in a
1160 * known good starting state */
1161 hw->mac.ops.reset_hw(hw);
1162
1163 /* make sure the NVM is good */
1164 if (igb_validate_nvm_checksum(hw) < 0) {
1165 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1166 err = -EIO;
1167 goto err_eeprom;
1168 }
1169
1170 /* copy the MAC address out of the NVM */
1171 if (hw->mac.ops.read_mac_addr(hw))
1172 dev_err(&pdev->dev, "NVM Read Error\n");
1173
1174 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1175 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1176
1177 if (!is_valid_ether_addr(netdev->perm_addr)) {
1178 dev_err(&pdev->dev, "Invalid MAC Address\n");
1179 err = -EIO;
1180 goto err_eeprom;
1181 }
1182
1183 init_timer(&adapter->watchdog_timer);
1184 adapter->watchdog_timer.function = &igb_watchdog;
1185 adapter->watchdog_timer.data = (unsigned long) adapter;
1186
1187 init_timer(&adapter->phy_info_timer);
1188 adapter->phy_info_timer.function = &igb_update_phy_info;
1189 adapter->phy_info_timer.data = (unsigned long) adapter;
1190
1191 INIT_WORK(&adapter->reset_task, igb_reset_task);
1192 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1193
1194 /* Initialize link & ring properties that are user-changeable */
1195 adapter->tx_ring->count = 256;
1196 for (i = 0; i < adapter->num_tx_queues; i++)
1197 adapter->tx_ring[i].count = adapter->tx_ring->count;
1198 adapter->rx_ring->count = 256;
1199 for (i = 0; i < adapter->num_rx_queues; i++)
1200 adapter->rx_ring[i].count = adapter->rx_ring->count;
1201
1202 adapter->fc_autoneg = true;
1203 hw->mac.autoneg = true;
1204 hw->phy.autoneg_advertised = 0x2f;
1205
1206 hw->fc.original_type = e1000_fc_default;
1207 hw->fc.type = e1000_fc_default;
1208
1209 adapter->itr_setting = 3;
1210 adapter->itr = IGB_START_ITR;
1211
1212 igb_validate_mdi_setting(hw);
1213
1214 adapter->rx_csum = 1;
1215
1216 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1217 * enable the ACPI Magic Packet filter
1218 */
1219
1220 if (hw->bus.func == 0 ||
1221 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1222 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1223 &eeprom_data);
1224
1225 if (eeprom_data & eeprom_apme_mask)
1226 adapter->eeprom_wol |= E1000_WUFC_MAG;
1227
1228 /* now that we have the eeprom settings, apply the special cases where
1229 * the eeprom may be wrong or the board simply won't support wake on
1230 * lan on a particular port */
1231 switch (pdev->device) {
1232 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1233 adapter->eeprom_wol = 0;
1234 break;
1235 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1236 case E1000_DEV_ID_82576_FIBER:
1237 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1238 /* Wake events only supported on port A for dual fiber
1239 * regardless of eeprom setting */
1240 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1241 adapter->eeprom_wol = 0;
1242 break;
7dfc16fa
AD
1243 case E1000_DEV_ID_82576_QUAD_COPPER:
1244 /* if quad port adapter, disable WoL on all but port A */
1245 if (global_quad_port_a != 0)
1246 adapter->eeprom_wol = 0;
1247 else
1248 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1249 /* Reset for multiple quad port adapters */
1250 if (++global_quad_port_a == 4)
1251 global_quad_port_a = 0;
1252 break;
9d5c8243
AK
1253 }
1254
1255 /* initialize the wol settings based on the eeprom settings */
1256 adapter->wol = adapter->eeprom_wol;
1257
1258 /* reset the hardware with the new settings */
1259 igb_reset(adapter);
1260
1261 /* let the f/w know that the h/w is now under the control of the
1262 * driver. */
1263 igb_get_hw_control(adapter);
1264
1265 /* tell the stack to leave us alone until igb_open() is called */
1266 netif_carrier_off(netdev);
1267 netif_stop_queue(netdev);
661086df
PWJ
1268#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1269 for (i = 0; i < adapter->num_tx_queues; i++)
1270 netif_stop_subqueue(netdev, i);
1271#endif
9d5c8243
AK
1272
1273 strcpy(netdev->name, "eth%d");
1274 err = register_netdev(netdev);
1275 if (err)
1276 goto err_register;
1277
fe4506b6 1278#ifdef CONFIG_DCA
7dfc16fa
AD
1279 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1280 (dca_add_requester(&pdev->dev) == 0)) {
1281 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1282 dev_info(&pdev->dev, "DCA enabled\n");
1283 /* Always use CB2 mode, difference is masked
1284 * in the CB driver. */
1285 wr32(E1000_DCA_CTRL, 2);
1286 igb_setup_dca(adapter);
1287 }
1288#endif
1289
9d5c8243
AK
1290 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1291 /* print bus type/speed/width info */
1292 dev_info(&pdev->dev,
1293 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1294 netdev->name,
1295 ((hw->bus.speed == e1000_bus_speed_2500)
1296 ? "2.5Gb/s" : "unknown"),
1297 ((hw->bus.width == e1000_bus_width_pcie_x4)
1298 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1299 ? "Width x1" : "unknown"),
1300 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1301 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1302
1303 igb_read_part_num(hw, &part_num);
1304 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1305 (part_num >> 8), (part_num & 0xff));
1306
1307 dev_info(&pdev->dev,
1308 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1309 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1310 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1311 adapter->num_rx_queues, adapter->num_tx_queues);
1312
9d5c8243
AK
1313 return 0;
1314
1315err_register:
1316 igb_release_hw_control(adapter);
1317err_eeprom:
1318 if (!igb_check_reset_block(hw))
1319 hw->phy.ops.reset_phy(hw);
1320
1321 if (hw->flash_address)
1322 iounmap(hw->flash_address);
1323
1324 igb_remove_device(hw);
1325 kfree(adapter->tx_ring);
1326 kfree(adapter->rx_ring);
1327err_sw_init:
1328err_hw_init:
1329 iounmap(hw->hw_addr);
1330err_ioremap:
1331 free_netdev(netdev);
1332err_alloc_etherdev:
42bfd33a 1333 pci_release_selected_regions(pdev, bars);
9d5c8243
AK
1334err_pci_reg:
1335err_dma:
1336 pci_disable_device(pdev);
1337 return err;
1338}
1339
1340/**
1341 * igb_remove - Device Removal Routine
1342 * @pdev: PCI device information struct
1343 *
1344 * igb_remove is called by the PCI subsystem to alert the driver
1345 * that it should release a PCI device. The could be caused by a
1346 * Hot-Plug event, or because the driver is going to be removed from
1347 * memory.
1348 **/
1349static void __devexit igb_remove(struct pci_dev *pdev)
1350{
1351 struct net_device *netdev = pci_get_drvdata(pdev);
1352 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1353 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1354
1355 /* flush_scheduled work may reschedule our watchdog task, so
1356 * explicitly disable watchdog tasks from being rescheduled */
1357 set_bit(__IGB_DOWN, &adapter->state);
1358 del_timer_sync(&adapter->watchdog_timer);
1359 del_timer_sync(&adapter->phy_info_timer);
1360
1361 flush_scheduled_work();
1362
fe4506b6 1363#ifdef CONFIG_DCA
7dfc16fa 1364 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1365 dev_info(&pdev->dev, "DCA disabled\n");
1366 dca_remove_requester(&pdev->dev);
7dfc16fa 1367 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1368 wr32(E1000_DCA_CTRL, 1);
1369 }
1370#endif
1371
9d5c8243
AK
1372 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1373 * would have already happened in close and is redundant. */
1374 igb_release_hw_control(adapter);
1375
1376 unregister_netdev(netdev);
1377
1378 if (!igb_check_reset_block(&adapter->hw))
1379 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1380
1381 igb_remove_device(&adapter->hw);
1382 igb_reset_interrupt_capability(adapter);
1383
1384 kfree(adapter->tx_ring);
1385 kfree(adapter->rx_ring);
1386
1387 iounmap(adapter->hw.hw_addr);
1388 if (adapter->hw.flash_address)
1389 iounmap(adapter->hw.flash_address);
42bfd33a 1390 pci_release_selected_regions(pdev, adapter->bars);
9d5c8243
AK
1391
1392 free_netdev(netdev);
1393
1394 pci_disable_device(pdev);
1395}
1396
1397/**
1398 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1399 * @adapter: board private structure to initialize
1400 *
1401 * igb_sw_init initializes the Adapter private data structure.
1402 * Fields are initialized based on PCI device information and
1403 * OS network device settings (MTU size).
1404 **/
1405static int __devinit igb_sw_init(struct igb_adapter *adapter)
1406{
1407 struct e1000_hw *hw = &adapter->hw;
1408 struct net_device *netdev = adapter->netdev;
1409 struct pci_dev *pdev = adapter->pdev;
1410
1411 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1412
1413 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1414 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1415 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1416 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1417
1418 /* Number of supported queues. */
1419 /* Having more queues than CPUs doesn't make sense. */
661086df
PWJ
1420 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1421#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1422 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1423#else
9d5c8243 1424 adapter->num_tx_queues = 1;
661086df 1425#endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
9d5c8243 1426
661086df
PWJ
1427 /* This call may decrease the number of queues depending on
1428 * interrupt mode. */
9d5c8243
AK
1429 igb_set_interrupt_capability(adapter);
1430
1431 if (igb_alloc_queues(adapter)) {
1432 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1433 return -ENOMEM;
1434 }
1435
1436 /* Explicitly disable IRQ since the NIC can be in any state. */
1437 igb_irq_disable(adapter);
1438
1439 set_bit(__IGB_DOWN, &adapter->state);
1440 return 0;
1441}
1442
1443/**
1444 * igb_open - Called when a network interface is made active
1445 * @netdev: network interface device structure
1446 *
1447 * Returns 0 on success, negative value on failure
1448 *
1449 * The open entry point is called when a network interface is made
1450 * active by the system (IFF_UP). At this point all resources needed
1451 * for transmit and receive operations are allocated, the interrupt
1452 * handler is registered with the OS, the watchdog timer is started,
1453 * and the stack is notified that the interface is ready.
1454 **/
1455static int igb_open(struct net_device *netdev)
1456{
1457 struct igb_adapter *adapter = netdev_priv(netdev);
1458 struct e1000_hw *hw = &adapter->hw;
1459 int err;
1460 int i;
1461
1462 /* disallow open during test */
1463 if (test_bit(__IGB_TESTING, &adapter->state))
1464 return -EBUSY;
1465
1466 /* allocate transmit descriptors */
1467 err = igb_setup_all_tx_resources(adapter);
1468 if (err)
1469 goto err_setup_tx;
1470
1471 /* allocate receive descriptors */
1472 err = igb_setup_all_rx_resources(adapter);
1473 if (err)
1474 goto err_setup_rx;
1475
1476 /* e1000_power_up_phy(adapter); */
1477
1478 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1479 if ((adapter->hw.mng_cookie.status &
1480 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1481 igb_update_mng_vlan(adapter);
1482
1483 /* before we allocate an interrupt, we must be ready to handle it.
1484 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1485 * as soon as we call pci_request_irq, so we have to setup our
1486 * clean_rx handler before we do so. */
1487 igb_configure(adapter);
1488
1489 err = igb_request_irq(adapter);
1490 if (err)
1491 goto err_req_irq;
1492
1493 /* From here on the code is the same as igb_up() */
1494 clear_bit(__IGB_DOWN, &adapter->state);
1495
844290e5
PW
1496 for (i = 0; i < adapter->num_rx_queues; i++)
1497 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1498
1499 /* Clear any pending interrupts. */
1500 rd32(E1000_ICR);
844290e5
PW
1501
1502 igb_irq_enable(adapter);
1503
9d5c8243
AK
1504 /* Fire a link status change interrupt to start the watchdog. */
1505 wr32(E1000_ICS, E1000_ICS_LSC);
1506
1507 return 0;
1508
1509err_req_irq:
1510 igb_release_hw_control(adapter);
1511 /* e1000_power_down_phy(adapter); */
1512 igb_free_all_rx_resources(adapter);
1513err_setup_rx:
1514 igb_free_all_tx_resources(adapter);
1515err_setup_tx:
1516 igb_reset(adapter);
1517
1518 return err;
1519}
1520
1521/**
1522 * igb_close - Disables a network interface
1523 * @netdev: network interface device structure
1524 *
1525 * Returns 0, this is not allowed to fail
1526 *
1527 * The close entry point is called when an interface is de-activated
1528 * by the OS. The hardware is still under the driver's control, but
1529 * needs to be disabled. A global MAC reset is issued to stop the
1530 * hardware, and all transmit and receive resources are freed.
1531 **/
1532static int igb_close(struct net_device *netdev)
1533{
1534 struct igb_adapter *adapter = netdev_priv(netdev);
1535
1536 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1537 igb_down(adapter);
1538
1539 igb_free_irq(adapter);
1540
1541 igb_free_all_tx_resources(adapter);
1542 igb_free_all_rx_resources(adapter);
1543
1544 /* kill manageability vlan ID if supported, but not if a vlan with
1545 * the same ID is registered on the host OS (let 8021q kill it) */
1546 if ((adapter->hw.mng_cookie.status &
1547 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1548 !(adapter->vlgrp &&
1549 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1550 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1551
1552 return 0;
1553}
1554
1555/**
1556 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1557 * @adapter: board private structure
1558 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1559 *
1560 * Return 0 on success, negative on failure
1561 **/
1562
1563int igb_setup_tx_resources(struct igb_adapter *adapter,
1564 struct igb_ring *tx_ring)
1565{
1566 struct pci_dev *pdev = adapter->pdev;
1567 int size;
1568
1569 size = sizeof(struct igb_buffer) * tx_ring->count;
1570 tx_ring->buffer_info = vmalloc(size);
1571 if (!tx_ring->buffer_info)
1572 goto err;
1573 memset(tx_ring->buffer_info, 0, size);
1574
1575 /* round up to nearest 4K */
1576 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1577 + sizeof(u32);
1578 tx_ring->size = ALIGN(tx_ring->size, 4096);
1579
1580 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1581 &tx_ring->dma);
1582
1583 if (!tx_ring->desc)
1584 goto err;
1585
1586 tx_ring->adapter = adapter;
1587 tx_ring->next_to_use = 0;
1588 tx_ring->next_to_clean = 0;
9d5c8243
AK
1589 return 0;
1590
1591err:
1592 vfree(tx_ring->buffer_info);
1593 dev_err(&adapter->pdev->dev,
1594 "Unable to allocate memory for the transmit descriptor ring\n");
1595 return -ENOMEM;
1596}
1597
1598/**
1599 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1600 * (Descriptors) for all queues
1601 * @adapter: board private structure
1602 *
1603 * Return 0 on success, negative on failure
1604 **/
1605static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1606{
1607 int i, err = 0;
661086df
PWJ
1608#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1609 int r_idx;
1610#endif
9d5c8243
AK
1611
1612 for (i = 0; i < adapter->num_tx_queues; i++) {
1613 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1614 if (err) {
1615 dev_err(&adapter->pdev->dev,
1616 "Allocation for Tx Queue %u failed\n", i);
1617 for (i--; i >= 0; i--)
3b644cf6 1618 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1619 break;
1620 }
1621 }
1622
661086df
PWJ
1623#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1624 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1625 r_idx = i % adapter->num_tx_queues;
1626 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1627 }
1628#endif
9d5c8243
AK
1629 return err;
1630}
1631
1632/**
1633 * igb_configure_tx - Configure transmit Unit after Reset
1634 * @adapter: board private structure
1635 *
1636 * Configure the Tx unit of the MAC after a reset.
1637 **/
1638static void igb_configure_tx(struct igb_adapter *adapter)
1639{
1640 u64 tdba, tdwba;
1641 struct e1000_hw *hw = &adapter->hw;
1642 u32 tctl;
1643 u32 txdctl, txctrl;
1644 int i;
1645
1646 for (i = 0; i < adapter->num_tx_queues; i++) {
1647 struct igb_ring *ring = &(adapter->tx_ring[i]);
1648
1649 wr32(E1000_TDLEN(i),
1650 ring->count * sizeof(struct e1000_tx_desc));
1651 tdba = ring->dma;
1652 wr32(E1000_TDBAL(i),
1653 tdba & 0x00000000ffffffffULL);
1654 wr32(E1000_TDBAH(i), tdba >> 32);
1655
1656 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1657 tdwba |= 1; /* enable head wb */
1658 wr32(E1000_TDWBAL(i),
1659 tdwba & 0x00000000ffffffffULL);
1660 wr32(E1000_TDWBAH(i), tdwba >> 32);
1661
1662 ring->head = E1000_TDH(i);
1663 ring->tail = E1000_TDT(i);
1664 writel(0, hw->hw_addr + ring->tail);
1665 writel(0, hw->hw_addr + ring->head);
1666 txdctl = rd32(E1000_TXDCTL(i));
1667 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1668 wr32(E1000_TXDCTL(i), txdctl);
1669
1670 /* Turn off Relaxed Ordering on head write-backs. The
1671 * writebacks MUST be delivered in order or it will
1672 * completely screw up our bookeeping.
1673 */
1674 txctrl = rd32(E1000_DCA_TXCTRL(i));
1675 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1676 wr32(E1000_DCA_TXCTRL(i), txctrl);
1677 }
1678
1679
1680
1681 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1682
1683 /* Program the Transmit Control Register */
1684
1685 tctl = rd32(E1000_TCTL);
1686 tctl &= ~E1000_TCTL_CT;
1687 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1688 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1689
1690 igb_config_collision_dist(hw);
1691
1692 /* Setup Transmit Descriptor Settings for eop descriptor */
1693 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1694
1695 /* Enable transmits */
1696 tctl |= E1000_TCTL_EN;
1697
1698 wr32(E1000_TCTL, tctl);
1699}
1700
1701/**
1702 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708
1709int igb_setup_rx_resources(struct igb_adapter *adapter,
1710 struct igb_ring *rx_ring)
1711{
1712 struct pci_dev *pdev = adapter->pdev;
1713 int size, desc_len;
1714
d3352520
AD
1715#ifdef CONFIG_IGB_LRO
1716 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1717 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1718 if (!rx_ring->lro_mgr.lro_arr)
1719 goto err;
1720 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1721#endif
1722
9d5c8243
AK
1723 size = sizeof(struct igb_buffer) * rx_ring->count;
1724 rx_ring->buffer_info = vmalloc(size);
1725 if (!rx_ring->buffer_info)
1726 goto err;
1727 memset(rx_ring->buffer_info, 0, size);
1728
1729 desc_len = sizeof(union e1000_adv_rx_desc);
1730
1731 /* Round up to nearest 4K */
1732 rx_ring->size = rx_ring->count * desc_len;
1733 rx_ring->size = ALIGN(rx_ring->size, 4096);
1734
1735 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1736 &rx_ring->dma);
1737
1738 if (!rx_ring->desc)
1739 goto err;
1740
1741 rx_ring->next_to_clean = 0;
1742 rx_ring->next_to_use = 0;
9d5c8243
AK
1743
1744 rx_ring->adapter = adapter;
9d5c8243
AK
1745
1746 return 0;
1747
1748err:
d3352520
AD
1749#ifdef CONFIG_IGB_LRO
1750 vfree(rx_ring->lro_mgr.lro_arr);
1751 rx_ring->lro_mgr.lro_arr = NULL;
1752#endif
9d5c8243
AK
1753 vfree(rx_ring->buffer_info);
1754 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1755 "the receive descriptor ring\n");
1756 return -ENOMEM;
1757}
1758
1759/**
1760 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1761 * (Descriptors) for all queues
1762 * @adapter: board private structure
1763 *
1764 * Return 0 on success, negative on failure
1765 **/
1766static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1767{
1768 int i, err = 0;
1769
1770 for (i = 0; i < adapter->num_rx_queues; i++) {
1771 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1772 if (err) {
1773 dev_err(&adapter->pdev->dev,
1774 "Allocation for Rx Queue %u failed\n", i);
1775 for (i--; i >= 0; i--)
3b644cf6 1776 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1777 break;
1778 }
1779 }
1780
1781 return err;
1782}
1783
1784/**
1785 * igb_setup_rctl - configure the receive control registers
1786 * @adapter: Board private structure
1787 **/
1788static void igb_setup_rctl(struct igb_adapter *adapter)
1789{
1790 struct e1000_hw *hw = &adapter->hw;
1791 u32 rctl;
1792 u32 srrctl = 0;
1793 int i;
1794
1795 rctl = rd32(E1000_RCTL);
1796
1797 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1798
1799 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1800 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1801 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1802
87cb7e8c
AK
1803 /*
1804 * enable stripping of CRC. It's unlikely this will break BMC
1805 * redirection as it did with e1000. Newer features require
1806 * that the HW strips the CRC.
9d5c8243 1807 */
87cb7e8c 1808 rctl |= E1000_RCTL_SECRC;
9d5c8243
AK
1809
1810 rctl &= ~E1000_RCTL_SBP;
1811
1812 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1813 rctl &= ~E1000_RCTL_LPE;
1814 else
1815 rctl |= E1000_RCTL_LPE;
1816 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1817 /* Setup buffer sizes */
1818 rctl &= ~E1000_RCTL_SZ_4096;
1819 rctl |= E1000_RCTL_BSEX;
1820 switch (adapter->rx_buffer_len) {
1821 case IGB_RXBUFFER_256:
1822 rctl |= E1000_RCTL_SZ_256;
1823 rctl &= ~E1000_RCTL_BSEX;
1824 break;
1825 case IGB_RXBUFFER_512:
1826 rctl |= E1000_RCTL_SZ_512;
1827 rctl &= ~E1000_RCTL_BSEX;
1828 break;
1829 case IGB_RXBUFFER_1024:
1830 rctl |= E1000_RCTL_SZ_1024;
1831 rctl &= ~E1000_RCTL_BSEX;
1832 break;
1833 case IGB_RXBUFFER_2048:
1834 default:
1835 rctl |= E1000_RCTL_SZ_2048;
1836 rctl &= ~E1000_RCTL_BSEX;
1837 break;
9d5c8243
AK
1838 }
1839 } else {
1840 rctl &= ~E1000_RCTL_BSEX;
1841 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1842 }
1843
1844 /* 82575 and greater support packet-split where the protocol
1845 * header is placed in skb->data and the packet data is
1846 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1847 * In the case of a non-split, skb->data is linearly filled,
1848 * followed by the page buffers. Therefore, skb->data is
1849 * sized to hold the largest protocol header.
1850 */
1851 /* allocations using alloc_page take too long for regular MTU
1852 * so only enable packet split for jumbo frames */
1853 if (rctl & E1000_RCTL_LPE) {
1854 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 1855 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 1856 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
1857 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1858 } else {
1859 adapter->rx_ps_hdr_size = 0;
1860 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1861 }
1862
1863 for (i = 0; i < adapter->num_rx_queues; i++)
1864 wr32(E1000_SRRCTL(i), srrctl);
1865
1866 wr32(E1000_RCTL, rctl);
1867}
1868
1869/**
1870 * igb_configure_rx - Configure receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875static void igb_configure_rx(struct igb_adapter *adapter)
1876{
1877 u64 rdba;
1878 struct e1000_hw *hw = &adapter->hw;
1879 u32 rctl, rxcsum;
1880 u32 rxdctl;
1881 int i;
1882
1883 /* disable receives while setting up the descriptors */
1884 rctl = rd32(E1000_RCTL);
1885 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1886 wrfl();
1887 mdelay(10);
1888
1889 if (adapter->itr_setting > 3)
1890 wr32(E1000_ITR,
1891 1000000000 / (adapter->itr * 256));
1892
1893 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1894 * the Base and Length of the Rx Descriptor Ring */
1895 for (i = 0; i < adapter->num_rx_queues; i++) {
1896 struct igb_ring *ring = &(adapter->rx_ring[i]);
1897 rdba = ring->dma;
1898 wr32(E1000_RDBAL(i),
1899 rdba & 0x00000000ffffffffULL);
1900 wr32(E1000_RDBAH(i), rdba >> 32);
1901 wr32(E1000_RDLEN(i),
1902 ring->count * sizeof(union e1000_adv_rx_desc));
1903
1904 ring->head = E1000_RDH(i);
1905 ring->tail = E1000_RDT(i);
1906 writel(0, hw->hw_addr + ring->tail);
1907 writel(0, hw->hw_addr + ring->head);
1908
1909 rxdctl = rd32(E1000_RXDCTL(i));
1910 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1911 rxdctl &= 0xFFF00000;
1912 rxdctl |= IGB_RX_PTHRESH;
1913 rxdctl |= IGB_RX_HTHRESH << 8;
1914 rxdctl |= IGB_RX_WTHRESH << 16;
1915 wr32(E1000_RXDCTL(i), rxdctl);
d3352520
AD
1916#ifdef CONFIG_IGB_LRO
1917 /* Intitial LRO Settings */
1918 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1919 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1920 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1921 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1922 ring->lro_mgr.dev = adapter->netdev;
1923 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1924 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1925#endif
9d5c8243
AK
1926 }
1927
1928 if (adapter->num_rx_queues > 1) {
1929 u32 random[10];
1930 u32 mrqc;
1931 u32 j, shift;
1932 union e1000_reta {
1933 u32 dword;
1934 u8 bytes[4];
1935 } reta;
1936
1937 get_random_bytes(&random[0], 40);
1938
2d064c06
AD
1939 if (hw->mac.type >= e1000_82576)
1940 shift = 0;
1941 else
1942 shift = 6;
9d5c8243
AK
1943 for (j = 0; j < (32 * 4); j++) {
1944 reta.bytes[j & 3] =
1945 (j % adapter->num_rx_queues) << shift;
1946 if ((j & 3) == 3)
1947 writel(reta.dword,
1948 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1949 }
1950 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1951
1952 /* Fill out hash function seeds */
1953 for (j = 0; j < 10; j++)
1954 array_wr32(E1000_RSSRK(0), j, random[j]);
1955
1956 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1957 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1958 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1959 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1960 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1961 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1962 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1963 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1964
1965
1966 wr32(E1000_MRQC, mrqc);
1967
1968 /* Multiqueue and raw packet checksumming are mutually
1969 * exclusive. Note that this not the same as TCP/IP
1970 * checksumming, which works fine. */
1971 rxcsum = rd32(E1000_RXCSUM);
1972 rxcsum |= E1000_RXCSUM_PCSD;
1973 wr32(E1000_RXCSUM, rxcsum);
1974 } else {
1975 /* Enable Receive Checksum Offload for TCP and UDP */
1976 rxcsum = rd32(E1000_RXCSUM);
1977 if (adapter->rx_csum) {
1978 rxcsum |= E1000_RXCSUM_TUOFL;
1979
1980 /* Enable IPv4 payload checksum for UDP fragments
1981 * Must be used in conjunction with packet-split. */
1982 if (adapter->rx_ps_hdr_size)
1983 rxcsum |= E1000_RXCSUM_IPPCSE;
1984 } else {
1985 rxcsum &= ~E1000_RXCSUM_TUOFL;
1986 /* don't need to clear IPPCSE as it defaults to 0 */
1987 }
1988 wr32(E1000_RXCSUM, rxcsum);
1989 }
1990
1991 if (adapter->vlgrp)
1992 wr32(E1000_RLPML,
1993 adapter->max_frame_size + VLAN_TAG_SIZE);
1994 else
1995 wr32(E1000_RLPML, adapter->max_frame_size);
1996
1997 /* Enable Receives */
1998 wr32(E1000_RCTL, rctl);
1999}
2000
2001/**
2002 * igb_free_tx_resources - Free Tx Resources per Queue
2003 * @adapter: board private structure
2004 * @tx_ring: Tx descriptor ring for a specific queue
2005 *
2006 * Free all transmit software resources
2007 **/
3b644cf6 2008static void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2009{
3b644cf6 2010 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2011
3b644cf6 2012 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2013
2014 vfree(tx_ring->buffer_info);
2015 tx_ring->buffer_info = NULL;
2016
2017 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2018
2019 tx_ring->desc = NULL;
2020}
2021
2022/**
2023 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2024 * @adapter: board private structure
2025 *
2026 * Free all transmit software resources
2027 **/
2028static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2029{
2030 int i;
2031
2032 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2033 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2034}
2035
2036static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2037 struct igb_buffer *buffer_info)
2038{
2039 if (buffer_info->dma) {
2040 pci_unmap_page(adapter->pdev,
2041 buffer_info->dma,
2042 buffer_info->length,
2043 PCI_DMA_TODEVICE);
2044 buffer_info->dma = 0;
2045 }
2046 if (buffer_info->skb) {
2047 dev_kfree_skb_any(buffer_info->skb);
2048 buffer_info->skb = NULL;
2049 }
2050 buffer_info->time_stamp = 0;
2051 /* buffer_info must be completely set up in the transmit path */
2052}
2053
2054/**
2055 * igb_clean_tx_ring - Free Tx Buffers
2056 * @adapter: board private structure
2057 * @tx_ring: ring to be cleaned
2058 **/
3b644cf6 2059static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2060{
3b644cf6 2061 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2062 struct igb_buffer *buffer_info;
2063 unsigned long size;
2064 unsigned int i;
2065
2066 if (!tx_ring->buffer_info)
2067 return;
2068 /* Free all the Tx ring sk_buffs */
2069
2070 for (i = 0; i < tx_ring->count; i++) {
2071 buffer_info = &tx_ring->buffer_info[i];
2072 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2073 }
2074
2075 size = sizeof(struct igb_buffer) * tx_ring->count;
2076 memset(tx_ring->buffer_info, 0, size);
2077
2078 /* Zero out the descriptor ring */
2079
2080 memset(tx_ring->desc, 0, tx_ring->size);
2081
2082 tx_ring->next_to_use = 0;
2083 tx_ring->next_to_clean = 0;
2084
2085 writel(0, adapter->hw.hw_addr + tx_ring->head);
2086 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2087}
2088
2089/**
2090 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2091 * @adapter: board private structure
2092 **/
2093static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2094{
2095 int i;
2096
2097 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2098 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2099}
2100
2101/**
2102 * igb_free_rx_resources - Free Rx Resources
2103 * @adapter: board private structure
2104 * @rx_ring: ring to clean the resources from
2105 *
2106 * Free all receive software resources
2107 **/
3b644cf6 2108static void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2109{
3b644cf6 2110 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2111
3b644cf6 2112 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2113
2114 vfree(rx_ring->buffer_info);
2115 rx_ring->buffer_info = NULL;
2116
d3352520
AD
2117#ifdef CONFIG_IGB_LRO
2118 vfree(rx_ring->lro_mgr.lro_arr);
2119 rx_ring->lro_mgr.lro_arr = NULL;
2120#endif
2121
9d5c8243
AK
2122 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2123
2124 rx_ring->desc = NULL;
2125}
2126
2127/**
2128 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2129 * @adapter: board private structure
2130 *
2131 * Free all receive software resources
2132 **/
2133static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2134{
2135 int i;
2136
2137 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2138 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2139}
2140
2141/**
2142 * igb_clean_rx_ring - Free Rx Buffers per Queue
2143 * @adapter: board private structure
2144 * @rx_ring: ring to free buffers from
2145 **/
3b644cf6 2146static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2147{
3b644cf6 2148 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2149 struct igb_buffer *buffer_info;
2150 struct pci_dev *pdev = adapter->pdev;
2151 unsigned long size;
2152 unsigned int i;
2153
2154 if (!rx_ring->buffer_info)
2155 return;
2156 /* Free all the Rx ring sk_buffs */
2157 for (i = 0; i < rx_ring->count; i++) {
2158 buffer_info = &rx_ring->buffer_info[i];
2159 if (buffer_info->dma) {
2160 if (adapter->rx_ps_hdr_size)
2161 pci_unmap_single(pdev, buffer_info->dma,
2162 adapter->rx_ps_hdr_size,
2163 PCI_DMA_FROMDEVICE);
2164 else
2165 pci_unmap_single(pdev, buffer_info->dma,
2166 adapter->rx_buffer_len,
2167 PCI_DMA_FROMDEVICE);
2168 buffer_info->dma = 0;
2169 }
2170
2171 if (buffer_info->skb) {
2172 dev_kfree_skb(buffer_info->skb);
2173 buffer_info->skb = NULL;
2174 }
2175 if (buffer_info->page) {
bf36c1a0
AD
2176 if (buffer_info->page_dma)
2177 pci_unmap_page(pdev, buffer_info->page_dma,
2178 PAGE_SIZE / 2,
2179 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2180 put_page(buffer_info->page);
2181 buffer_info->page = NULL;
2182 buffer_info->page_dma = 0;
bf36c1a0 2183 buffer_info->page_offset = 0;
9d5c8243
AK
2184 }
2185 }
2186
9d5c8243
AK
2187 size = sizeof(struct igb_buffer) * rx_ring->count;
2188 memset(rx_ring->buffer_info, 0, size);
2189
2190 /* Zero out the descriptor ring */
2191 memset(rx_ring->desc, 0, rx_ring->size);
2192
2193 rx_ring->next_to_clean = 0;
2194 rx_ring->next_to_use = 0;
2195
2196 writel(0, adapter->hw.hw_addr + rx_ring->head);
2197 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2198}
2199
2200/**
2201 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2202 * @adapter: board private structure
2203 **/
2204static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2205{
2206 int i;
2207
2208 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2209 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2210}
2211
2212/**
2213 * igb_set_mac - Change the Ethernet Address of the NIC
2214 * @netdev: network interface device structure
2215 * @p: pointer to an address structure
2216 *
2217 * Returns 0 on success, negative on failure
2218 **/
2219static int igb_set_mac(struct net_device *netdev, void *p)
2220{
2221 struct igb_adapter *adapter = netdev_priv(netdev);
2222 struct sockaddr *addr = p;
2223
2224 if (!is_valid_ether_addr(addr->sa_data))
2225 return -EADDRNOTAVAIL;
2226
2227 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2228 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2229
2230 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2231
2232 return 0;
2233}
2234
2235/**
2236 * igb_set_multi - Multicast and Promiscuous mode set
2237 * @netdev: network interface device structure
2238 *
2239 * The set_multi entry point is called whenever the multicast address
2240 * list or the network interface flags are updated. This routine is
2241 * responsible for configuring the hardware for proper multicast,
2242 * promiscuous mode, and all-multi behavior.
2243 **/
2244static void igb_set_multi(struct net_device *netdev)
2245{
2246 struct igb_adapter *adapter = netdev_priv(netdev);
2247 struct e1000_hw *hw = &adapter->hw;
2248 struct e1000_mac_info *mac = &hw->mac;
2249 struct dev_mc_list *mc_ptr;
2250 u8 *mta_list;
2251 u32 rctl;
2252 int i;
2253
2254 /* Check for Promiscuous and All Multicast modes */
2255
2256 rctl = rd32(E1000_RCTL);
2257
2258 if (netdev->flags & IFF_PROMISC)
2259 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2260 else if (netdev->flags & IFF_ALLMULTI) {
2261 rctl |= E1000_RCTL_MPE;
2262 rctl &= ~E1000_RCTL_UPE;
2263 } else
2264 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2265
2266 wr32(E1000_RCTL, rctl);
2267
2268 if (!netdev->mc_count) {
2269 /* nothing to program, so clear mc list */
2d064c06 2270 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
9d5c8243
AK
2271 mac->rar_entry_count);
2272 return;
2273 }
2274
2275 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2276 if (!mta_list)
2277 return;
2278
2279 /* The shared function expects a packed array of only addresses. */
2280 mc_ptr = netdev->mc_list;
2281
2282 for (i = 0; i < netdev->mc_count; i++) {
2283 if (!mc_ptr)
2284 break;
2285 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2286 mc_ptr = mc_ptr->next;
2287 }
2d064c06
AD
2288 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2289 mac->rar_entry_count);
9d5c8243
AK
2290 kfree(mta_list);
2291}
2292
2293/* Need to wait a few seconds after link up to get diagnostic information from
2294 * the phy */
2295static void igb_update_phy_info(unsigned long data)
2296{
2297 struct igb_adapter *adapter = (struct igb_adapter *) data;
68707acb
BH
2298 if (adapter->hw.phy.ops.get_phy_info)
2299 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
2300}
2301
2302/**
2303 * igb_watchdog - Timer Call-back
2304 * @data: pointer to adapter cast into an unsigned long
2305 **/
2306static void igb_watchdog(unsigned long data)
2307{
2308 struct igb_adapter *adapter = (struct igb_adapter *)data;
2309 /* Do the rest outside of interrupt context */
2310 schedule_work(&adapter->watchdog_task);
2311}
2312
2313static void igb_watchdog_task(struct work_struct *work)
2314{
2315 struct igb_adapter *adapter = container_of(work,
2316 struct igb_adapter, watchdog_task);
2317 struct e1000_hw *hw = &adapter->hw;
2318
2319 struct net_device *netdev = adapter->netdev;
2320 struct igb_ring *tx_ring = adapter->tx_ring;
2321 struct e1000_mac_info *mac = &adapter->hw.mac;
2322 u32 link;
2323 s32 ret_val;
661086df
PWJ
2324#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2325 int i;
2326#endif
9d5c8243
AK
2327
2328 if ((netif_carrier_ok(netdev)) &&
2329 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2330 goto link_up;
2331
2332 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2333 if ((ret_val == E1000_ERR_PHY) &&
2334 (hw->phy.type == e1000_phy_igp_3) &&
2335 (rd32(E1000_CTRL) &
2336 E1000_PHY_CTRL_GBE_DISABLE))
2337 dev_info(&adapter->pdev->dev,
2338 "Gigabit has been disabled, downgrading speed\n");
2339
2340 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2341 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2342 link = mac->serdes_has_link;
2343 else
2344 link = rd32(E1000_STATUS) &
2345 E1000_STATUS_LU;
2346
2347 if (link) {
2348 if (!netif_carrier_ok(netdev)) {
2349 u32 ctrl;
2350 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2351 &adapter->link_speed,
2352 &adapter->link_duplex);
2353
2354 ctrl = rd32(E1000_CTRL);
2355 dev_info(&adapter->pdev->dev,
2356 "NIC Link is Up %d Mbps %s, "
2357 "Flow Control: %s\n",
2358 adapter->link_speed,
2359 adapter->link_duplex == FULL_DUPLEX ?
2360 "Full Duplex" : "Half Duplex",
2361 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2362 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2363 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2364 E1000_CTRL_TFCE) ? "TX" : "None")));
2365
2366 /* tweak tx_queue_len according to speed/duplex and
2367 * adjust the timeout factor */
2368 netdev->tx_queue_len = adapter->tx_queue_len;
2369 adapter->tx_timeout_factor = 1;
2370 switch (adapter->link_speed) {
2371 case SPEED_10:
2372 netdev->tx_queue_len = 10;
2373 adapter->tx_timeout_factor = 14;
2374 break;
2375 case SPEED_100:
2376 netdev->tx_queue_len = 100;
2377 /* maybe add some timeout factor ? */
2378 break;
2379 }
2380
2381 netif_carrier_on(netdev);
2382 netif_wake_queue(netdev);
661086df
PWJ
2383#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2384 for (i = 0; i < adapter->num_tx_queues; i++)
2385 netif_wake_subqueue(netdev, i);
2386#endif
9d5c8243
AK
2387
2388 if (!test_bit(__IGB_DOWN, &adapter->state))
2389 mod_timer(&adapter->phy_info_timer,
2390 round_jiffies(jiffies + 2 * HZ));
2391 }
2392 } else {
2393 if (netif_carrier_ok(netdev)) {
2394 adapter->link_speed = 0;
2395 adapter->link_duplex = 0;
2396 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2397 netif_carrier_off(netdev);
2398 netif_stop_queue(netdev);
661086df
PWJ
2399#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2400 for (i = 0; i < adapter->num_tx_queues; i++)
2401 netif_stop_subqueue(netdev, i);
2402#endif
9d5c8243
AK
2403 if (!test_bit(__IGB_DOWN, &adapter->state))
2404 mod_timer(&adapter->phy_info_timer,
2405 round_jiffies(jiffies + 2 * HZ));
2406 }
2407 }
2408
2409link_up:
2410 igb_update_stats(adapter);
2411
2412 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2413 adapter->tpt_old = adapter->stats.tpt;
2414 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2415 adapter->colc_old = adapter->stats.colc;
2416
2417 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2418 adapter->gorc_old = adapter->stats.gorc;
2419 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2420 adapter->gotc_old = adapter->stats.gotc;
2421
2422 igb_update_adaptive(&adapter->hw);
2423
2424 if (!netif_carrier_ok(netdev)) {
2425 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2426 /* We've lost link, so the controller stops DMA,
2427 * but we've got queued Tx work that's never going
2428 * to get done, so reset controller to flush Tx.
2429 * (Do the reset outside of interrupt context). */
2430 adapter->tx_timeout_count++;
2431 schedule_work(&adapter->reset_task);
2432 }
2433 }
2434
2435 /* Cause software interrupt to ensure rx ring is cleaned */
2436 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2437
2438 /* Force detection of hung controller every watchdog period */
2439 tx_ring->detect_tx_hung = true;
2440
2441 /* Reset the timer */
2442 if (!test_bit(__IGB_DOWN, &adapter->state))
2443 mod_timer(&adapter->watchdog_timer,
2444 round_jiffies(jiffies + 2 * HZ));
2445}
2446
2447enum latency_range {
2448 lowest_latency = 0,
2449 low_latency = 1,
2450 bulk_latency = 2,
2451 latency_invalid = 255
2452};
2453
2454
2455static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2456 struct igb_ring *rx_ring)
2457{
2458 struct e1000_hw *hw = &adapter->hw;
2459 int new_val;
2460
2461 new_val = rx_ring->itr_val / 2;
2462 if (new_val < IGB_MIN_DYN_ITR)
2463 new_val = IGB_MIN_DYN_ITR;
2464
2465 if (new_val != rx_ring->itr_val) {
2466 rx_ring->itr_val = new_val;
2467 wr32(rx_ring->itr_register,
2468 1000000000 / (new_val * 256));
2469 }
2470}
2471
2472static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2473 struct igb_ring *rx_ring)
2474{
2475 struct e1000_hw *hw = &adapter->hw;
2476 int new_val;
2477
2478 new_val = rx_ring->itr_val * 2;
2479 if (new_val > IGB_MAX_DYN_ITR)
2480 new_val = IGB_MAX_DYN_ITR;
2481
2482 if (new_val != rx_ring->itr_val) {
2483 rx_ring->itr_val = new_val;
2484 wr32(rx_ring->itr_register,
2485 1000000000 / (new_val * 256));
2486 }
2487}
2488
2489/**
2490 * igb_update_itr - update the dynamic ITR value based on statistics
2491 * Stores a new ITR value based on packets and byte
2492 * counts during the last interrupt. The advantage of per interrupt
2493 * computation is faster updates and more accurate ITR for the current
2494 * traffic pattern. Constants in this function were computed
2495 * based on theoretical maximum wire speed and thresholds were set based
2496 * on testing data as well as attempting to minimize response time
2497 * while increasing bulk throughput.
2498 * this functionality is controlled by the InterruptThrottleRate module
2499 * parameter (see igb_param.c)
2500 * NOTE: These calculations are only valid when operating in a single-
2501 * queue environment.
2502 * @adapter: pointer to adapter
2503 * @itr_setting: current adapter->itr
2504 * @packets: the number of packets during this measurement interval
2505 * @bytes: the number of bytes during this measurement interval
2506 **/
2507static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2508 int packets, int bytes)
2509{
2510 unsigned int retval = itr_setting;
2511
2512 if (packets == 0)
2513 goto update_itr_done;
2514
2515 switch (itr_setting) {
2516 case lowest_latency:
2517 /* handle TSO and jumbo frames */
2518 if (bytes/packets > 8000)
2519 retval = bulk_latency;
2520 else if ((packets < 5) && (bytes > 512))
2521 retval = low_latency;
2522 break;
2523 case low_latency: /* 50 usec aka 20000 ints/s */
2524 if (bytes > 10000) {
2525 /* this if handles the TSO accounting */
2526 if (bytes/packets > 8000) {
2527 retval = bulk_latency;
2528 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2529 retval = bulk_latency;
2530 } else if ((packets > 35)) {
2531 retval = lowest_latency;
2532 }
2533 } else if (bytes/packets > 2000) {
2534 retval = bulk_latency;
2535 } else if (packets <= 2 && bytes < 512) {
2536 retval = lowest_latency;
2537 }
2538 break;
2539 case bulk_latency: /* 250 usec aka 4000 ints/s */
2540 if (bytes > 25000) {
2541 if (packets > 35)
2542 retval = low_latency;
2543 } else if (bytes < 6000) {
2544 retval = low_latency;
2545 }
2546 break;
2547 }
2548
2549update_itr_done:
2550 return retval;
2551}
2552
2553static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2554 int rx_only)
2555{
2556 u16 current_itr;
2557 u32 new_itr = adapter->itr;
2558
2559 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2560 if (adapter->link_speed != SPEED_1000) {
2561 current_itr = 0;
2562 new_itr = 4000;
2563 goto set_itr_now;
2564 }
2565
2566 adapter->rx_itr = igb_update_itr(adapter,
2567 adapter->rx_itr,
2568 adapter->rx_ring->total_packets,
2569 adapter->rx_ring->total_bytes);
2570 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2571 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2572 adapter->rx_itr = low_latency;
2573
2574 if (!rx_only) {
2575 adapter->tx_itr = igb_update_itr(adapter,
2576 adapter->tx_itr,
2577 adapter->tx_ring->total_packets,
2578 adapter->tx_ring->total_bytes);
2579 /* conservative mode (itr 3) eliminates the
2580 * lowest_latency setting */
2581 if (adapter->itr_setting == 3 &&
2582 adapter->tx_itr == lowest_latency)
2583 adapter->tx_itr = low_latency;
2584
2585 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2586 } else {
2587 current_itr = adapter->rx_itr;
2588 }
2589
2590 switch (current_itr) {
2591 /* counts and packets in update_itr are dependent on these numbers */
2592 case lowest_latency:
2593 new_itr = 70000;
2594 break;
2595 case low_latency:
2596 new_itr = 20000; /* aka hwitr = ~200 */
2597 break;
2598 case bulk_latency:
2599 new_itr = 4000;
2600 break;
2601 default:
2602 break;
2603 }
2604
2605set_itr_now:
2606 if (new_itr != adapter->itr) {
2607 /* this attempts to bias the interrupt rate towards Bulk
2608 * by adding intermediate steps when interrupt rate is
2609 * increasing */
2610 new_itr = new_itr > adapter->itr ?
2611 min(adapter->itr + (new_itr >> 2), new_itr) :
2612 new_itr;
2613 /* Don't write the value here; it resets the adapter's
2614 * internal timer, and causes us to delay far longer than
2615 * we should between interrupts. Instead, we write the ITR
2616 * value at the beginning of the next interrupt so the timing
2617 * ends up being correct.
2618 */
2619 adapter->itr = new_itr;
2620 adapter->set_itr = 1;
2621 }
2622
2623 return;
2624}
2625
2626
2627#define IGB_TX_FLAGS_CSUM 0x00000001
2628#define IGB_TX_FLAGS_VLAN 0x00000002
2629#define IGB_TX_FLAGS_TSO 0x00000004
2630#define IGB_TX_FLAGS_IPV4 0x00000008
2631#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2632#define IGB_TX_FLAGS_VLAN_SHIFT 16
2633
2634static inline int igb_tso_adv(struct igb_adapter *adapter,
2635 struct igb_ring *tx_ring,
2636 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2637{
2638 struct e1000_adv_tx_context_desc *context_desc;
2639 unsigned int i;
2640 int err;
2641 struct igb_buffer *buffer_info;
2642 u32 info = 0, tu_cmd = 0;
2643 u32 mss_l4len_idx, l4len;
2644 *hdr_len = 0;
2645
2646 if (skb_header_cloned(skb)) {
2647 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2648 if (err)
2649 return err;
2650 }
2651
2652 l4len = tcp_hdrlen(skb);
2653 *hdr_len += l4len;
2654
2655 if (skb->protocol == htons(ETH_P_IP)) {
2656 struct iphdr *iph = ip_hdr(skb);
2657 iph->tot_len = 0;
2658 iph->check = 0;
2659 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2660 iph->daddr, 0,
2661 IPPROTO_TCP,
2662 0);
2663 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2664 ipv6_hdr(skb)->payload_len = 0;
2665 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2666 &ipv6_hdr(skb)->daddr,
2667 0, IPPROTO_TCP, 0);
2668 }
2669
2670 i = tx_ring->next_to_use;
2671
2672 buffer_info = &tx_ring->buffer_info[i];
2673 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2674 /* VLAN MACLEN IPLEN */
2675 if (tx_flags & IGB_TX_FLAGS_VLAN)
2676 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2677 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2678 *hdr_len += skb_network_offset(skb);
2679 info |= skb_network_header_len(skb);
2680 *hdr_len += skb_network_header_len(skb);
2681 context_desc->vlan_macip_lens = cpu_to_le32(info);
2682
2683 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2684 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2685
2686 if (skb->protocol == htons(ETH_P_IP))
2687 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2688 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2689
2690 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2691
2692 /* MSS L4LEN IDX */
2693 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2694 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2695
7dfc16fa
AD
2696 /* Context index must be unique per ring. */
2697 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2698 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
2699
2700 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2701 context_desc->seqnum_seed = 0;
2702
2703 buffer_info->time_stamp = jiffies;
2704 buffer_info->dma = 0;
2705 i++;
2706 if (i == tx_ring->count)
2707 i = 0;
2708
2709 tx_ring->next_to_use = i;
2710
2711 return true;
2712}
2713
2714static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2715 struct igb_ring *tx_ring,
2716 struct sk_buff *skb, u32 tx_flags)
2717{
2718 struct e1000_adv_tx_context_desc *context_desc;
2719 unsigned int i;
2720 struct igb_buffer *buffer_info;
2721 u32 info = 0, tu_cmd = 0;
2722
2723 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2724 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2725 i = tx_ring->next_to_use;
2726 buffer_info = &tx_ring->buffer_info[i];
2727 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2728
2729 if (tx_flags & IGB_TX_FLAGS_VLAN)
2730 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2731 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2732 if (skb->ip_summed == CHECKSUM_PARTIAL)
2733 info |= skb_network_header_len(skb);
2734
2735 context_desc->vlan_macip_lens = cpu_to_le32(info);
2736
2737 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2738
2739 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3
MW
2740 switch (skb->protocol) {
2741 case __constant_htons(ETH_P_IP):
9d5c8243 2742 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
2743 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2744 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2745 break;
2746 case __constant_htons(ETH_P_IPV6):
2747 /* XXX what about other V6 headers?? */
2748 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2749 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2750 break;
2751 default:
2752 if (unlikely(net_ratelimit()))
2753 dev_warn(&adapter->pdev->dev,
2754 "partial checksum but proto=%x!\n",
2755 skb->protocol);
2756 break;
2757 }
9d5c8243
AK
2758 }
2759
2760 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2761 context_desc->seqnum_seed = 0;
7dfc16fa
AD
2762 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2763 context_desc->mss_l4len_idx =
2764 cpu_to_le32(tx_ring->queue_index << 4);
9d5c8243
AK
2765
2766 buffer_info->time_stamp = jiffies;
2767 buffer_info->dma = 0;
2768
2769 i++;
2770 if (i == tx_ring->count)
2771 i = 0;
2772 tx_ring->next_to_use = i;
2773
2774 return true;
2775 }
2776
2777
2778 return false;
2779}
2780
2781#define IGB_MAX_TXD_PWR 16
2782#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2783
2784static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2785 struct igb_ring *tx_ring,
2786 struct sk_buff *skb)
2787{
2788 struct igb_buffer *buffer_info;
2789 unsigned int len = skb_headlen(skb);
2790 unsigned int count = 0, i;
2791 unsigned int f;
2792
2793 i = tx_ring->next_to_use;
2794
2795 buffer_info = &tx_ring->buffer_info[i];
2796 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2797 buffer_info->length = len;
2798 /* set time_stamp *before* dma to help avoid a possible race */
2799 buffer_info->time_stamp = jiffies;
2800 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2801 PCI_DMA_TODEVICE);
2802 count++;
2803 i++;
2804 if (i == tx_ring->count)
2805 i = 0;
2806
2807 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2808 struct skb_frag_struct *frag;
2809
2810 frag = &skb_shinfo(skb)->frags[f];
2811 len = frag->size;
2812
2813 buffer_info = &tx_ring->buffer_info[i];
2814 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2815 buffer_info->length = len;
2816 buffer_info->time_stamp = jiffies;
2817 buffer_info->dma = pci_map_page(adapter->pdev,
2818 frag->page,
2819 frag->page_offset,
2820 len,
2821 PCI_DMA_TODEVICE);
2822
2823 count++;
2824 i++;
2825 if (i == tx_ring->count)
2826 i = 0;
2827 }
2828
2829 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2830 tx_ring->buffer_info[i].skb = skb;
2831
2832 return count;
2833}
2834
2835static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2836 struct igb_ring *tx_ring,
2837 int tx_flags, int count, u32 paylen,
2838 u8 hdr_len)
2839{
2840 union e1000_adv_tx_desc *tx_desc = NULL;
2841 struct igb_buffer *buffer_info;
2842 u32 olinfo_status = 0, cmd_type_len;
2843 unsigned int i;
2844
2845 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2846 E1000_ADVTXD_DCMD_DEXT);
2847
2848 if (tx_flags & IGB_TX_FLAGS_VLAN)
2849 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2850
2851 if (tx_flags & IGB_TX_FLAGS_TSO) {
2852 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2853
2854 /* insert tcp checksum */
2855 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2856
2857 /* insert ip checksum */
2858 if (tx_flags & IGB_TX_FLAGS_IPV4)
2859 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2860
2861 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2862 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2863 }
2864
7dfc16fa
AD
2865 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2866 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2867 IGB_TX_FLAGS_VLAN)))
661086df 2868 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
2869
2870 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2871
2872 i = tx_ring->next_to_use;
2873 while (count--) {
2874 buffer_info = &tx_ring->buffer_info[i];
2875 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2876 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2877 tx_desc->read.cmd_type_len =
2878 cpu_to_le32(cmd_type_len | buffer_info->length);
2879 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2880 i++;
2881 if (i == tx_ring->count)
2882 i = 0;
2883 }
2884
2885 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2886 /* Force memory writes to complete before letting h/w
2887 * know there are new descriptors to fetch. (Only
2888 * applicable for weak-ordered memory model archs,
2889 * such as IA-64). */
2890 wmb();
2891
2892 tx_ring->next_to_use = i;
2893 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2894 /* we need this if more than one processor can write to our tail
2895 * at a time, it syncronizes IO on IA64/Altix systems */
2896 mmiowb();
2897}
2898
2899static int __igb_maybe_stop_tx(struct net_device *netdev,
2900 struct igb_ring *tx_ring, int size)
2901{
2902 struct igb_adapter *adapter = netdev_priv(netdev);
2903
661086df
PWJ
2904#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2905 netif_stop_subqueue(netdev, tx_ring->queue_index);
2906#else
9d5c8243 2907 netif_stop_queue(netdev);
661086df
PWJ
2908#endif
2909
9d5c8243
AK
2910 /* Herbert's original patch had:
2911 * smp_mb__after_netif_stop_queue();
2912 * but since that doesn't exist yet, just open code it. */
2913 smp_mb();
2914
2915 /* We need to check again in a case another CPU has just
2916 * made room available. */
2917 if (IGB_DESC_UNUSED(tx_ring) < size)
2918 return -EBUSY;
2919
2920 /* A reprieve! */
661086df
PWJ
2921#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2922 netif_wake_subqueue(netdev, tx_ring->queue_index);
2923#else
2924 netif_wake_queue(netdev);
2925#endif
9d5c8243
AK
2926 ++adapter->restart_queue;
2927 return 0;
2928}
2929
2930static int igb_maybe_stop_tx(struct net_device *netdev,
2931 struct igb_ring *tx_ring, int size)
2932{
2933 if (IGB_DESC_UNUSED(tx_ring) >= size)
2934 return 0;
2935 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2936}
2937
2938#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2939
2940static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2941 struct net_device *netdev,
2942 struct igb_ring *tx_ring)
2943{
2944 struct igb_adapter *adapter = netdev_priv(netdev);
2945 unsigned int tx_flags = 0;
2946 unsigned int len;
9d5c8243
AK
2947 u8 hdr_len = 0;
2948 int tso = 0;
2949
2950 len = skb_headlen(skb);
2951
2952 if (test_bit(__IGB_DOWN, &adapter->state)) {
2953 dev_kfree_skb_any(skb);
2954 return NETDEV_TX_OK;
2955 }
2956
2957 if (skb->len <= 0) {
2958 dev_kfree_skb_any(skb);
2959 return NETDEV_TX_OK;
2960 }
2961
9d5c8243
AK
2962 /* need: 1 descriptor per page,
2963 * + 2 desc gap to keep tail from touching head,
2964 * + 1 desc for skb->data,
2965 * + 1 desc for context descriptor,
2966 * otherwise try next time */
2967 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2968 /* this is a hard error */
9d5c8243
AK
2969 return NETDEV_TX_BUSY;
2970 }
2971
2972 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2973 tx_flags |= IGB_TX_FLAGS_VLAN;
2974 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2975 }
2976
661086df
PWJ
2977 if (skb->protocol == htons(ETH_P_IP))
2978 tx_flags |= IGB_TX_FLAGS_IPV4;
2979
9d5c8243
AK
2980 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2981 &hdr_len) : 0;
2982
2983 if (tso < 0) {
2984 dev_kfree_skb_any(skb);
9d5c8243
AK
2985 return NETDEV_TX_OK;
2986 }
2987
2988 if (tso)
2989 tx_flags |= IGB_TX_FLAGS_TSO;
2990 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2991 if (skb->ip_summed == CHECKSUM_PARTIAL)
2992 tx_flags |= IGB_TX_FLAGS_CSUM;
2993
9d5c8243
AK
2994 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2995 igb_tx_map_adv(adapter, tx_ring, skb),
2996 skb->len, hdr_len);
2997
2998 netdev->trans_start = jiffies;
2999
3000 /* Make sure there is space in the ring for the next send. */
3001 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3002
9d5c8243
AK
3003 return NETDEV_TX_OK;
3004}
3005
3006static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3007{
3008 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3009 struct igb_ring *tx_ring;
3010
3011#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3012 int r_idx = 0;
3013 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3014 tx_ring = adapter->multi_tx_table[r_idx];
3015#else
3016 tx_ring = &adapter->tx_ring[0];
3017#endif
3018
9d5c8243
AK
3019
3020 /* This goes back to the question of how to logically map a tx queue
3021 * to a flow. Right now, performance is impacted slightly negatively
3022 * if using multiple tx queues. If the stack breaks away from a
3023 * single qdisc implementation, we can look at this again. */
3024 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3025}
3026
3027/**
3028 * igb_tx_timeout - Respond to a Tx Hang
3029 * @netdev: network interface device structure
3030 **/
3031static void igb_tx_timeout(struct net_device *netdev)
3032{
3033 struct igb_adapter *adapter = netdev_priv(netdev);
3034 struct e1000_hw *hw = &adapter->hw;
3035
3036 /* Do the reset outside of interrupt context */
3037 adapter->tx_timeout_count++;
3038 schedule_work(&adapter->reset_task);
3039 wr32(E1000_EICS, adapter->eims_enable_mask &
3040 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3041}
3042
3043static void igb_reset_task(struct work_struct *work)
3044{
3045 struct igb_adapter *adapter;
3046 adapter = container_of(work, struct igb_adapter, reset_task);
3047
3048 igb_reinit_locked(adapter);
3049}
3050
3051/**
3052 * igb_get_stats - Get System Network Statistics
3053 * @netdev: network interface device structure
3054 *
3055 * Returns the address of the device statistics structure.
3056 * The statistics are actually updated from the timer callback.
3057 **/
3058static struct net_device_stats *
3059igb_get_stats(struct net_device *netdev)
3060{
3061 struct igb_adapter *adapter = netdev_priv(netdev);
3062
3063 /* only return the current stats */
3064 return &adapter->net_stats;
3065}
3066
3067/**
3068 * igb_change_mtu - Change the Maximum Transfer Unit
3069 * @netdev: network interface device structure
3070 * @new_mtu: new value for maximum frame size
3071 *
3072 * Returns 0 on success, negative on failure
3073 **/
3074static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3075{
3076 struct igb_adapter *adapter = netdev_priv(netdev);
3077 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3078
3079 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3080 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3081 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3082 return -EINVAL;
3083 }
3084
3085#define MAX_STD_JUMBO_FRAME_SIZE 9234
3086 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3087 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3088 return -EINVAL;
3089 }
3090
3091 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3092 msleep(1);
3093 /* igb_down has a dependency on max_frame_size */
3094 adapter->max_frame_size = max_frame;
3095 if (netif_running(netdev))
3096 igb_down(adapter);
3097
3098 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3099 * means we reserve 2 more, this pushes us to allocate from the next
3100 * larger slab size.
3101 * i.e. RXBUFFER_2048 --> size-4096 slab
3102 */
3103
3104 if (max_frame <= IGB_RXBUFFER_256)
3105 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3106 else if (max_frame <= IGB_RXBUFFER_512)
3107 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3108 else if (max_frame <= IGB_RXBUFFER_1024)
3109 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3110 else if (max_frame <= IGB_RXBUFFER_2048)
3111 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3112 else
bf36c1a0
AD
3113#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3114 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3115#else
3116 adapter->rx_buffer_len = PAGE_SIZE / 2;
3117#endif
9d5c8243
AK
3118 /* adjust allocation if LPE protects us, and we aren't using SBP */
3119 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3120 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3121 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3122
3123 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3124 netdev->mtu, new_mtu);
3125 netdev->mtu = new_mtu;
3126
3127 if (netif_running(netdev))
3128 igb_up(adapter);
3129 else
3130 igb_reset(adapter);
3131
3132 clear_bit(__IGB_RESETTING, &adapter->state);
3133
3134 return 0;
3135}
3136
3137/**
3138 * igb_update_stats - Update the board statistics counters
3139 * @adapter: board private structure
3140 **/
3141
3142void igb_update_stats(struct igb_adapter *adapter)
3143{
3144 struct e1000_hw *hw = &adapter->hw;
3145 struct pci_dev *pdev = adapter->pdev;
3146 u16 phy_tmp;
3147
3148#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3149
3150 /*
3151 * Prevent stats update while adapter is being reset, or if the pci
3152 * connection is down.
3153 */
3154 if (adapter->link_speed == 0)
3155 return;
3156 if (pci_channel_offline(pdev))
3157 return;
3158
3159 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3160 adapter->stats.gprc += rd32(E1000_GPRC);
3161 adapter->stats.gorc += rd32(E1000_GORCL);
3162 rd32(E1000_GORCH); /* clear GORCL */
3163 adapter->stats.bprc += rd32(E1000_BPRC);
3164 adapter->stats.mprc += rd32(E1000_MPRC);
3165 adapter->stats.roc += rd32(E1000_ROC);
3166
3167 adapter->stats.prc64 += rd32(E1000_PRC64);
3168 adapter->stats.prc127 += rd32(E1000_PRC127);
3169 adapter->stats.prc255 += rd32(E1000_PRC255);
3170 adapter->stats.prc511 += rd32(E1000_PRC511);
3171 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3172 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3173 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3174 adapter->stats.sec += rd32(E1000_SEC);
3175
3176 adapter->stats.mpc += rd32(E1000_MPC);
3177 adapter->stats.scc += rd32(E1000_SCC);
3178 adapter->stats.ecol += rd32(E1000_ECOL);
3179 adapter->stats.mcc += rd32(E1000_MCC);
3180 adapter->stats.latecol += rd32(E1000_LATECOL);
3181 adapter->stats.dc += rd32(E1000_DC);
3182 adapter->stats.rlec += rd32(E1000_RLEC);
3183 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3184 adapter->stats.xontxc += rd32(E1000_XONTXC);
3185 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3186 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3187 adapter->stats.fcruc += rd32(E1000_FCRUC);
3188 adapter->stats.gptc += rd32(E1000_GPTC);
3189 adapter->stats.gotc += rd32(E1000_GOTCL);
3190 rd32(E1000_GOTCH); /* clear GOTCL */
3191 adapter->stats.rnbc += rd32(E1000_RNBC);
3192 adapter->stats.ruc += rd32(E1000_RUC);
3193 adapter->stats.rfc += rd32(E1000_RFC);
3194 adapter->stats.rjc += rd32(E1000_RJC);
3195 adapter->stats.tor += rd32(E1000_TORH);
3196 adapter->stats.tot += rd32(E1000_TOTH);
3197 adapter->stats.tpr += rd32(E1000_TPR);
3198
3199 adapter->stats.ptc64 += rd32(E1000_PTC64);
3200 adapter->stats.ptc127 += rd32(E1000_PTC127);
3201 adapter->stats.ptc255 += rd32(E1000_PTC255);
3202 adapter->stats.ptc511 += rd32(E1000_PTC511);
3203 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3204 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3205
3206 adapter->stats.mptc += rd32(E1000_MPTC);
3207 adapter->stats.bptc += rd32(E1000_BPTC);
3208
3209 /* used for adaptive IFS */
3210
3211 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3212 adapter->stats.tpt += hw->mac.tx_packet_delta;
3213 hw->mac.collision_delta = rd32(E1000_COLC);
3214 adapter->stats.colc += hw->mac.collision_delta;
3215
3216 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3217 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3218 adapter->stats.tncrs += rd32(E1000_TNCRS);
3219 adapter->stats.tsctc += rd32(E1000_TSCTC);
3220 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3221
3222 adapter->stats.iac += rd32(E1000_IAC);
3223 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3224 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3225 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3226 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3227 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3228 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3229 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3230 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3231
3232 /* Fill out the OS statistics structure */
3233 adapter->net_stats.multicast = adapter->stats.mprc;
3234 adapter->net_stats.collisions = adapter->stats.colc;
3235
3236 /* Rx Errors */
3237
3238 /* RLEC on some newer hardware can be incorrect so build
3239 * our own version based on RUC and ROC */
3240 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3241 adapter->stats.crcerrs + adapter->stats.algnerrc +
3242 adapter->stats.ruc + adapter->stats.roc +
3243 adapter->stats.cexterr;
3244 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3245 adapter->stats.roc;
3246 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3247 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3248 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3249
3250 /* Tx Errors */
3251 adapter->net_stats.tx_errors = adapter->stats.ecol +
3252 adapter->stats.latecol;
3253 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3254 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3255 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3256
3257 /* Tx Dropped needs to be maintained elsewhere */
3258
3259 /* Phy Stats */
3260 if (hw->phy.media_type == e1000_media_type_copper) {
3261 if ((adapter->link_speed == SPEED_1000) &&
3262 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3263 &phy_tmp))) {
3264 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3265 adapter->phy_stats.idle_errors += phy_tmp;
3266 }
3267 }
3268
3269 /* Management Stats */
3270 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3271 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3272 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3273}
3274
3275
3276static irqreturn_t igb_msix_other(int irq, void *data)
3277{
3278 struct net_device *netdev = data;
3279 struct igb_adapter *adapter = netdev_priv(netdev);
3280 struct e1000_hw *hw = &adapter->hw;
844290e5 3281 u32 icr = rd32(E1000_ICR);
9d5c8243 3282
844290e5
PW
3283 /* reading ICR causes bit 31 of EICR to be cleared */
3284 if (!(icr & E1000_ICR_LSC))
3285 goto no_link_interrupt;
3286 hw->mac.get_link_status = 1;
3287 /* guard against interrupt when we're going down */
3288 if (!test_bit(__IGB_DOWN, &adapter->state))
3289 mod_timer(&adapter->watchdog_timer, jiffies + 1);
661086df 3290
9d5c8243
AK
3291no_link_interrupt:
3292 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5 3293 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3294
3295 return IRQ_HANDLED;
3296}
3297
3298static irqreturn_t igb_msix_tx(int irq, void *data)
3299{
3300 struct igb_ring *tx_ring = data;
3301 struct igb_adapter *adapter = tx_ring->adapter;
3302 struct e1000_hw *hw = &adapter->hw;
3303
3304 if (!tx_ring->itr_val)
3305 wr32(E1000_EIMC, tx_ring->eims_value);
fe4506b6 3306#ifdef CONFIG_DCA
7dfc16fa 3307 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3308 igb_update_tx_dca(tx_ring);
3309#endif
9d5c8243
AK
3310 tx_ring->total_bytes = 0;
3311 tx_ring->total_packets = 0;
661086df
PWJ
3312
3313 /* auto mask will automatically reenable the interrupt when we write
3314 * EICS */
3b644cf6 3315 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3316 /* Ring was not completely cleaned, so fire another interrupt */
3317 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3318 else
9d5c8243 3319 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3320
9d5c8243
AK
3321 return IRQ_HANDLED;
3322}
3323
3324static irqreturn_t igb_msix_rx(int irq, void *data)
3325{
3326 struct igb_ring *rx_ring = data;
3327 struct igb_adapter *adapter = rx_ring->adapter;
3328 struct e1000_hw *hw = &adapter->hw;
3329
844290e5
PW
3330 /* Write the ITR value calculated at the end of the
3331 * previous interrupt.
3332 */
9d5c8243 3333
844290e5
PW
3334 if (adapter->set_itr) {
3335 wr32(rx_ring->itr_register,
3336 1000000000 / (rx_ring->itr_val * 256));
3337 adapter->set_itr = 0;
9d5c8243
AK
3338 }
3339
844290e5
PW
3340 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3341 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3342
fe4506b6 3343#ifdef CONFIG_DCA
7dfc16fa 3344 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3345 igb_update_rx_dca(rx_ring);
3346#endif
3347 return IRQ_HANDLED;
3348}
3349
3350#ifdef CONFIG_DCA
3351static void igb_update_rx_dca(struct igb_ring *rx_ring)
3352{
3353 u32 dca_rxctrl;
3354 struct igb_adapter *adapter = rx_ring->adapter;
3355 struct e1000_hw *hw = &adapter->hw;
3356 int cpu = get_cpu();
3357 int q = rx_ring - adapter->rx_ring;
3358
3359 if (rx_ring->cpu != cpu) {
3360 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3361 if (hw->mac.type == e1000_82576) {
3362 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3363 dca_rxctrl |= dca_get_tag(cpu) <<
3364 E1000_DCA_RXCTRL_CPUID_SHIFT;
3365 } else {
3366 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3367 dca_rxctrl |= dca_get_tag(cpu);
3368 }
fe4506b6
JC
3369 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3370 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3371 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3372 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3373 rx_ring->cpu = cpu;
3374 }
3375 put_cpu();
3376}
3377
3378static void igb_update_tx_dca(struct igb_ring *tx_ring)
3379{
3380 u32 dca_txctrl;
3381 struct igb_adapter *adapter = tx_ring->adapter;
3382 struct e1000_hw *hw = &adapter->hw;
3383 int cpu = get_cpu();
3384 int q = tx_ring - adapter->tx_ring;
3385
3386 if (tx_ring->cpu != cpu) {
3387 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3388 if (hw->mac.type == e1000_82576) {
3389 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3390 dca_txctrl |= dca_get_tag(cpu) <<
3391 E1000_DCA_TXCTRL_CPUID_SHIFT;
3392 } else {
3393 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3394 dca_txctrl |= dca_get_tag(cpu);
3395 }
fe4506b6
JC
3396 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3397 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3398 tx_ring->cpu = cpu;
3399 }
3400 put_cpu();
3401}
3402
3403static void igb_setup_dca(struct igb_adapter *adapter)
3404{
3405 int i;
3406
7dfc16fa 3407 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3408 return;
3409
3410 for (i = 0; i < adapter->num_tx_queues; i++) {
3411 adapter->tx_ring[i].cpu = -1;
3412 igb_update_tx_dca(&adapter->tx_ring[i]);
3413 }
3414 for (i = 0; i < adapter->num_rx_queues; i++) {
3415 adapter->rx_ring[i].cpu = -1;
3416 igb_update_rx_dca(&adapter->rx_ring[i]);
3417 }
3418}
3419
3420static int __igb_notify_dca(struct device *dev, void *data)
3421{
3422 struct net_device *netdev = dev_get_drvdata(dev);
3423 struct igb_adapter *adapter = netdev_priv(netdev);
3424 struct e1000_hw *hw = &adapter->hw;
3425 unsigned long event = *(unsigned long *)data;
3426
7dfc16fa
AD
3427 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3428 goto out;
3429
fe4506b6
JC
3430 switch (event) {
3431 case DCA_PROVIDER_ADD:
3432 /* if already enabled, don't do it again */
7dfc16fa 3433 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3434 break;
7dfc16fa 3435 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3436 /* Always use CB2 mode, difference is masked
3437 * in the CB driver. */
3438 wr32(E1000_DCA_CTRL, 2);
3439 if (dca_add_requester(dev) == 0) {
3440 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3441 igb_setup_dca(adapter);
3442 break;
3443 }
3444 /* Fall Through since DCA is disabled. */
3445 case DCA_PROVIDER_REMOVE:
7dfc16fa 3446 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3447 /* without this a class_device is left
3448 * hanging around in the sysfs model */
3449 dca_remove_requester(dev);
3450 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3451 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3452 wr32(E1000_DCA_CTRL, 1);
3453 }
3454 break;
3455 }
7dfc16fa 3456out:
fe4506b6 3457 return 0;
9d5c8243
AK
3458}
3459
fe4506b6
JC
3460static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3461 void *p)
3462{
3463 int ret_val;
3464
3465 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3466 __igb_notify_dca);
3467
3468 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3469}
3470#endif /* CONFIG_DCA */
9d5c8243
AK
3471
3472/**
3473 * igb_intr_msi - Interrupt Handler
3474 * @irq: interrupt number
3475 * @data: pointer to a network interface device structure
3476 **/
3477static irqreturn_t igb_intr_msi(int irq, void *data)
3478{
3479 struct net_device *netdev = data;
3480 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3481 struct e1000_hw *hw = &adapter->hw;
3482 /* read ICR disables interrupts using IAM */
3483 u32 icr = rd32(E1000_ICR);
3484
3485 /* Write the ITR value calculated at the end of the
3486 * previous interrupt.
3487 */
3488 if (adapter->set_itr) {
844290e5 3489 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
9d5c8243
AK
3490 adapter->set_itr = 0;
3491 }
3492
9d5c8243
AK
3493 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3494 hw->mac.get_link_status = 1;
3495 if (!test_bit(__IGB_DOWN, &adapter->state))
3496 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3497 }
3498
844290e5 3499 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3500
3501 return IRQ_HANDLED;
3502}
3503
3504/**
3505 * igb_intr - Interrupt Handler
3506 * @irq: interrupt number
3507 * @data: pointer to a network interface device structure
3508 **/
3509static irqreturn_t igb_intr(int irq, void *data)
3510{
3511 struct net_device *netdev = data;
3512 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3513 struct e1000_hw *hw = &adapter->hw;
3514 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3515 * need for the IMC write */
3516 u32 icr = rd32(E1000_ICR);
3517 u32 eicr = 0;
3518 if (!icr)
3519 return IRQ_NONE; /* Not our interrupt */
3520
3521 /* Write the ITR value calculated at the end of the
3522 * previous interrupt.
3523 */
3524 if (adapter->set_itr) {
844290e5 3525 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
9d5c8243
AK
3526 adapter->set_itr = 0;
3527 }
3528
3529 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3530 * not set, then the adapter didn't send an interrupt */
3531 if (!(icr & E1000_ICR_INT_ASSERTED))
3532 return IRQ_NONE;
3533
3534 eicr = rd32(E1000_EICR);
3535
3536 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3537 hw->mac.get_link_status = 1;
3538 /* guard against interrupt when we're going down */
3539 if (!test_bit(__IGB_DOWN, &adapter->state))
3540 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3541 }
3542
844290e5 3543 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3544
3545 return IRQ_HANDLED;
3546}
3547
3548/**
661086df
PWJ
3549 * igb_poll - NAPI Rx polling callback
3550 * @napi: napi polling structure
3551 * @budget: count of how many packets we should handle
9d5c8243 3552 **/
661086df 3553static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 3554{
661086df
PWJ
3555 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3556 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 3557 struct net_device *netdev = adapter->netdev;
661086df 3558 int tx_clean_complete, work_done = 0;
9d5c8243 3559
661086df 3560 /* this poll routine only supports one tx and one rx queue */
fe4506b6 3561#ifdef CONFIG_DCA
7dfc16fa 3562 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3563 igb_update_tx_dca(&adapter->tx_ring[0]);
3564#endif
661086df 3565 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
fe4506b6
JC
3566
3567#ifdef CONFIG_DCA
7dfc16fa 3568 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3569 igb_update_rx_dca(&adapter->rx_ring[0]);
3570#endif
661086df 3571 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
9d5c8243
AK
3572
3573 /* If no Tx and not enough Rx work done, exit the polling mode */
3574 if ((tx_clean_complete && (work_done < budget)) ||
3575 !netif_running(netdev)) {
9d5c8243
AK
3576 if (adapter->itr_setting & 3)
3577 igb_set_itr(adapter, E1000_ITR, false);
3578 netif_rx_complete(netdev, napi);
3579 if (!test_bit(__IGB_DOWN, &adapter->state))
3580 igb_irq_enable(adapter);
3581 return 0;
3582 }
3583
3584 return 1;
3585}
3586
3587static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3588{
3589 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3590 struct igb_adapter *adapter = rx_ring->adapter;
3591 struct e1000_hw *hw = &adapter->hw;
3592 struct net_device *netdev = adapter->netdev;
3593 int work_done = 0;
3594
3595 /* Keep link state information with original netdev */
3596 if (!netif_carrier_ok(netdev))
3597 goto quit_polling;
3598
fe4506b6 3599#ifdef CONFIG_DCA
7dfc16fa 3600 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3601 igb_update_rx_dca(rx_ring);
3602#endif
3b644cf6 3603 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243
AK
3604
3605
3606 /* If not enough Rx work done, exit the polling mode */
3607 if ((work_done == 0) || !netif_running(netdev)) {
3608quit_polling:
3609 netif_rx_complete(netdev, napi);
3610
3611 wr32(E1000_EIMS, rx_ring->eims_value);
3612 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3613 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3614 int mean_size = rx_ring->total_bytes /
3615 rx_ring->total_packets;
3616 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3617 igb_raise_rx_eitr(adapter, rx_ring);
3618 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3619 igb_lower_rx_eitr(adapter, rx_ring);
3620 }
844290e5
PW
3621
3622 if (!test_bit(__IGB_DOWN, &adapter->state))
3623 wr32(E1000_EIMS, rx_ring->eims_value);
3624
9d5c8243
AK
3625 return 0;
3626 }
3627
3628 return 1;
3629}
6d8126f9
AV
3630
3631static inline u32 get_head(struct igb_ring *tx_ring)
3632{
3633 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3634 return le32_to_cpu(*(volatile __le32 *)end);
3635}
3636
9d5c8243
AK
3637/**
3638 * igb_clean_tx_irq - Reclaim resources after transmit completes
3639 * @adapter: board private structure
3640 * returns true if ring is completely cleaned
3641 **/
3b644cf6 3642static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 3643{
3b644cf6 3644 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243 3645 struct e1000_hw *hw = &adapter->hw;
3b644cf6 3646 struct net_device *netdev = adapter->netdev;
9d5c8243
AK
3647 struct e1000_tx_desc *tx_desc;
3648 struct igb_buffer *buffer_info;
3649 struct sk_buff *skb;
3650 unsigned int i;
3651 u32 head, oldhead;
3652 unsigned int count = 0;
3653 bool cleaned = false;
3654 bool retval = true;
3655 unsigned int total_bytes = 0, total_packets = 0;
3656
3657 rmb();
6d8126f9 3658 head = get_head(tx_ring);
9d5c8243
AK
3659 i = tx_ring->next_to_clean;
3660 while (1) {
3661 while (i != head) {
3662 cleaned = true;
3663 tx_desc = E1000_TX_DESC(*tx_ring, i);
3664 buffer_info = &tx_ring->buffer_info[i];
3665 skb = buffer_info->skb;
3666
3667 if (skb) {
3668 unsigned int segs, bytecount;
3669 /* gso_segs is currently only valid for tcp */
3670 segs = skb_shinfo(skb)->gso_segs ?: 1;
3671 /* multiply data chunks by size of headers */
3672 bytecount = ((segs - 1) * skb_headlen(skb)) +
3673 skb->len;
3674 total_packets += segs;
3675 total_bytes += bytecount;
3676 }
3677
3678 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3679 tx_desc->upper.data = 0;
3680
3681 i++;
3682 if (i == tx_ring->count)
3683 i = 0;
3684
3685 count++;
3686 if (count == IGB_MAX_TX_CLEAN) {
3687 retval = false;
3688 goto done_cleaning;
3689 }
3690 }
3691 oldhead = head;
3692 rmb();
6d8126f9 3693 head = get_head(tx_ring);
9d5c8243
AK
3694 if (head == oldhead)
3695 goto done_cleaning;
3696 } /* while (1) */
3697
3698done_cleaning:
3699 tx_ring->next_to_clean = i;
3700
3701 if (unlikely(cleaned &&
3702 netif_carrier_ok(netdev) &&
3703 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3704 /* Make sure that anybody stopping the queue after this
3705 * sees the new next_to_clean.
3706 */
3707 smp_mb();
661086df
PWJ
3708#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3709 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3710 !(test_bit(__IGB_DOWN, &adapter->state))) {
3711 netif_wake_subqueue(netdev, tx_ring->queue_index);
3712 ++adapter->restart_queue;
3713 }
3714#else
9d5c8243
AK
3715 if (netif_queue_stopped(netdev) &&
3716 !(test_bit(__IGB_DOWN, &adapter->state))) {
3717 netif_wake_queue(netdev);
3718 ++adapter->restart_queue;
3719 }
661086df 3720#endif
9d5c8243
AK
3721 }
3722
3723 if (tx_ring->detect_tx_hung) {
3724 /* Detect a transmit hang in hardware, this serializes the
3725 * check with the clearing of time_stamp and movement of i */
3726 tx_ring->detect_tx_hung = false;
3727 if (tx_ring->buffer_info[i].time_stamp &&
3728 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3729 (adapter->tx_timeout_factor * HZ))
3730 && !(rd32(E1000_STATUS) &
3731 E1000_STATUS_TXOFF)) {
3732
3733 tx_desc = E1000_TX_DESC(*tx_ring, i);
3734 /* detected Tx unit hang */
3735 dev_err(&adapter->pdev->dev,
3736 "Detected Tx Unit Hang\n"
2d064c06 3737 " Tx Queue <%d>\n"
9d5c8243
AK
3738 " TDH <%x>\n"
3739 " TDT <%x>\n"
3740 " next_to_use <%x>\n"
3741 " next_to_clean <%x>\n"
3742 " head (WB) <%x>\n"
3743 "buffer_info[next_to_clean]\n"
3744 " time_stamp <%lx>\n"
3745 " jiffies <%lx>\n"
3746 " desc.status <%x>\n",
2d064c06 3747 tx_ring->queue_index,
9d5c8243
AK
3748 readl(adapter->hw.hw_addr + tx_ring->head),
3749 readl(adapter->hw.hw_addr + tx_ring->tail),
3750 tx_ring->next_to_use,
3751 tx_ring->next_to_clean,
3752 head,
3753 tx_ring->buffer_info[i].time_stamp,
3754 jiffies,
3755 tx_desc->upper.fields.status);
661086df
PWJ
3756#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3757 netif_stop_subqueue(netdev, tx_ring->queue_index);
3758#else
9d5c8243 3759 netif_stop_queue(netdev);
661086df 3760#endif
9d5c8243
AK
3761 }
3762 }
3763 tx_ring->total_bytes += total_bytes;
3764 tx_ring->total_packets += total_packets;
e21ed353
AD
3765 tx_ring->tx_stats.bytes += total_bytes;
3766 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
3767 adapter->net_stats.tx_bytes += total_bytes;
3768 adapter->net_stats.tx_packets += total_packets;
3769 return retval;
3770}
3771
d3352520
AD
3772#ifdef CONFIG_IGB_LRO
3773 /**
3774 * igb_get_skb_hdr - helper function for LRO header processing
3775 * @skb: pointer to sk_buff to be added to LRO packet
3776 * @iphdr: pointer to ip header structure
3777 * @tcph: pointer to tcp header structure
3778 * @hdr_flags: pointer to header flags
3779 * @priv: pointer to the receive descriptor for the current sk_buff
3780 **/
3781static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3782 u64 *hdr_flags, void *priv)
3783{
3784 union e1000_adv_rx_desc *rx_desc = priv;
3785 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3786 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3787
3788 /* Verify that this is a valid IPv4 TCP packet */
3789 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3790 E1000_RXDADV_PKTTYPE_TCP))
3791 return -1;
3792
3793 /* Set network headers */
3794 skb_reset_network_header(skb);
3795 skb_set_transport_header(skb, ip_hdrlen(skb));
3796 *iphdr = ip_hdr(skb);
3797 *tcph = tcp_hdr(skb);
3798 *hdr_flags = LRO_IPV4 | LRO_TCP;
3799
3800 return 0;
3801
3802}
3803#endif /* CONFIG_IGB_LRO */
9d5c8243
AK
3804
3805/**
3806 * igb_receive_skb - helper function to handle rx indications
d3352520 3807 * @ring: pointer to receive ring receving this packet
9d5c8243
AK
3808 * @status: descriptor status field as written by hardware
3809 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3810 * @skb: pointer to sk_buff to be indicated to stack
3811 **/
d3352520
AD
3812static void igb_receive_skb(struct igb_ring *ring, u8 status,
3813 union e1000_adv_rx_desc * rx_desc,
3814 struct sk_buff *skb)
3815{
3816 struct igb_adapter * adapter = ring->adapter;
3817 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3818
3819#ifdef CONFIG_IGB_LRO
3820 if (adapter->netdev->features & NETIF_F_LRO &&
3821 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3822 if (vlan_extracted)
3823 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3824 adapter->vlgrp,
3825 le16_to_cpu(rx_desc->wb.upper.vlan),
3826 rx_desc);
3827 else
3828 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3829 ring->lro_used = 1;
3830 } else {
3831#endif
3832 if (vlan_extracted)
3833 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3834 le16_to_cpu(rx_desc->wb.upper.vlan));
3835 else
3836
3837 netif_receive_skb(skb);
3838#ifdef CONFIG_IGB_LRO
3839 }
3840#endif
9d5c8243
AK
3841}
3842
3843
3844static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3845 u32 status_err, struct sk_buff *skb)
3846{
3847 skb->ip_summed = CHECKSUM_NONE;
3848
3849 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3850 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3851 return;
3852 /* TCP/UDP checksum error bit is set */
3853 if (status_err &
3854 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3855 /* let the stack verify checksum errors */
3856 adapter->hw_csum_err++;
3857 return;
3858 }
3859 /* It must be a TCP or UDP packet with a valid checksum */
3860 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3861 skb->ip_summed = CHECKSUM_UNNECESSARY;
3862
3863 adapter->hw_csum_good++;
3864}
3865
3b644cf6
MW
3866static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3867 int *work_done, int budget)
9d5c8243 3868{
3b644cf6 3869 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3870 struct net_device *netdev = adapter->netdev;
3871 struct pci_dev *pdev = adapter->pdev;
3872 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3873 struct igb_buffer *buffer_info , *next_buffer;
3874 struct sk_buff *skb;
bf36c1a0 3875 unsigned int i;
9d5c8243
AK
3876 u32 length, hlen, staterr;
3877 bool cleaned = false;
3878 int cleaned_count = 0;
3879 unsigned int total_bytes = 0, total_packets = 0;
3880
3881 i = rx_ring->next_to_clean;
3882 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3883 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3884
3885 while (staterr & E1000_RXD_STAT_DD) {
3886 if (*work_done >= budget)
3887 break;
3888 (*work_done)++;
3889 buffer_info = &rx_ring->buffer_info[i];
3890
3891 /* HW will not DMA in data larger than the given buffer, even
3892 * if it parses the (NFS, of course) header to be larger. In
3893 * that case, it fills the header buffer and spills the rest
3894 * into the page.
3895 */
7deb07b1
AV
3896 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3897 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
9d5c8243
AK
3898 if (hlen > adapter->rx_ps_hdr_size)
3899 hlen = adapter->rx_ps_hdr_size;
3900
3901 length = le16_to_cpu(rx_desc->wb.upper.length);
3902 cleaned = true;
3903 cleaned_count++;
3904
bf36c1a0
AD
3905 skb = buffer_info->skb;
3906 prefetch(skb->data - NET_IP_ALIGN);
3907 buffer_info->skb = NULL;
3908 if (!adapter->rx_ps_hdr_size) {
3909 pci_unmap_single(pdev, buffer_info->dma,
3910 adapter->rx_buffer_len +
3911 NET_IP_ALIGN,
3912 PCI_DMA_FROMDEVICE);
3913 skb_put(skb, length);
3914 goto send_up;
9d5c8243
AK
3915 }
3916
bf36c1a0
AD
3917 if (!skb_shinfo(skb)->nr_frags) {
3918 pci_unmap_single(pdev, buffer_info->dma,
3919 adapter->rx_ps_hdr_size +
3920 NET_IP_ALIGN,
3921 PCI_DMA_FROMDEVICE);
3922 skb_put(skb, hlen);
3923 }
3924
3925 if (length) {
9d5c8243 3926 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 3927 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 3928 buffer_info->page_dma = 0;
bf36c1a0
AD
3929
3930 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3931 buffer_info->page,
3932 buffer_info->page_offset,
3933 length);
3934
3935 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3936 (page_count(buffer_info->page) != 1))
3937 buffer_info->page = NULL;
3938 else
3939 get_page(buffer_info->page);
9d5c8243
AK
3940
3941 skb->len += length;
3942 skb->data_len += length;
9d5c8243 3943
bf36c1a0 3944 skb->truesize += length;
9d5c8243
AK
3945 }
3946send_up:
9d5c8243
AK
3947 i++;
3948 if (i == rx_ring->count)
3949 i = 0;
3950 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3951 prefetch(next_rxd);
3952 next_buffer = &rx_ring->buffer_info[i];
3953
bf36c1a0
AD
3954 if (!(staterr & E1000_RXD_STAT_EOP)) {
3955 buffer_info->skb = xchg(&next_buffer->skb, skb);
3956 buffer_info->dma = xchg(&next_buffer->dma, 0);
3957 goto next_desc;
3958 }
3959
9d5c8243
AK
3960 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3961 dev_kfree_skb_irq(skb);
3962 goto next_desc;
3963 }
3964 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3965
3966 total_bytes += skb->len;
3967 total_packets++;
3968
3969 igb_rx_checksum_adv(adapter, staterr, skb);
3970
3971 skb->protocol = eth_type_trans(skb, netdev);
3972
d3352520 3973 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243
AK
3974
3975 netdev->last_rx = jiffies;
3976
3977next_desc:
3978 rx_desc->wb.upper.status_error = 0;
3979
3980 /* return some buffers to hardware, one at a time is too slow */
3981 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 3982 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
3983 cleaned_count = 0;
3984 }
3985
3986 /* use prefetched values */
3987 rx_desc = next_rxd;
3988 buffer_info = next_buffer;
3989
3990 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3991 }
bf36c1a0 3992
9d5c8243
AK
3993 rx_ring->next_to_clean = i;
3994 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3995
d3352520
AD
3996#ifdef CONFIG_IGB_LRO
3997 if (rx_ring->lro_used) {
3998 lro_flush_all(&rx_ring->lro_mgr);
3999 rx_ring->lro_used = 0;
4000 }
4001#endif
4002
9d5c8243 4003 if (cleaned_count)
3b644cf6 4004 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4005
4006 rx_ring->total_packets += total_packets;
4007 rx_ring->total_bytes += total_bytes;
4008 rx_ring->rx_stats.packets += total_packets;
4009 rx_ring->rx_stats.bytes += total_bytes;
4010 adapter->net_stats.rx_bytes += total_bytes;
4011 adapter->net_stats.rx_packets += total_packets;
4012 return cleaned;
4013}
4014
4015
4016/**
4017 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4018 * @adapter: address of board private structure
4019 **/
3b644cf6 4020static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4021 int cleaned_count)
4022{
3b644cf6 4023 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4024 struct net_device *netdev = adapter->netdev;
4025 struct pci_dev *pdev = adapter->pdev;
4026 union e1000_adv_rx_desc *rx_desc;
4027 struct igb_buffer *buffer_info;
4028 struct sk_buff *skb;
4029 unsigned int i;
4030
4031 i = rx_ring->next_to_use;
4032 buffer_info = &rx_ring->buffer_info[i];
4033
4034 while (cleaned_count--) {
4035 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4036
bf36c1a0 4037 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4038 if (!buffer_info->page) {
bf36c1a0
AD
4039 buffer_info->page = alloc_page(GFP_ATOMIC);
4040 if (!buffer_info->page) {
4041 adapter->alloc_rx_buff_failed++;
4042 goto no_buffers;
4043 }
4044 buffer_info->page_offset = 0;
4045 } else {
4046 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4047 }
4048 buffer_info->page_dma =
4049 pci_map_page(pdev,
4050 buffer_info->page,
bf36c1a0
AD
4051 buffer_info->page_offset,
4052 PAGE_SIZE / 2,
9d5c8243
AK
4053 PCI_DMA_FROMDEVICE);
4054 }
4055
4056 if (!buffer_info->skb) {
4057 int bufsz;
4058
4059 if (adapter->rx_ps_hdr_size)
4060 bufsz = adapter->rx_ps_hdr_size;
4061 else
4062 bufsz = adapter->rx_buffer_len;
4063 bufsz += NET_IP_ALIGN;
4064 skb = netdev_alloc_skb(netdev, bufsz);
4065
4066 if (!skb) {
4067 adapter->alloc_rx_buff_failed++;
4068 goto no_buffers;
4069 }
4070
4071 /* Make buffer alignment 2 beyond a 16 byte boundary
4072 * this will result in a 16 byte aligned IP header after
4073 * the 14 byte MAC header is removed
4074 */
4075 skb_reserve(skb, NET_IP_ALIGN);
4076
4077 buffer_info->skb = skb;
4078 buffer_info->dma = pci_map_single(pdev, skb->data,
4079 bufsz,
4080 PCI_DMA_FROMDEVICE);
4081
4082 }
4083 /* Refresh the desc even if buffer_addrs didn't change because
4084 * each write-back erases this info. */
4085 if (adapter->rx_ps_hdr_size) {
4086 rx_desc->read.pkt_addr =
4087 cpu_to_le64(buffer_info->page_dma);
4088 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4089 } else {
4090 rx_desc->read.pkt_addr =
4091 cpu_to_le64(buffer_info->dma);
4092 rx_desc->read.hdr_addr = 0;
4093 }
4094
4095 i++;
4096 if (i == rx_ring->count)
4097 i = 0;
4098 buffer_info = &rx_ring->buffer_info[i];
4099 }
4100
4101no_buffers:
4102 if (rx_ring->next_to_use != i) {
4103 rx_ring->next_to_use = i;
4104 if (i == 0)
4105 i = (rx_ring->count - 1);
4106 else
4107 i--;
4108
4109 /* Force memory writes to complete before letting h/w
4110 * know there are new descriptors to fetch. (Only
4111 * applicable for weak-ordered memory model archs,
4112 * such as IA-64). */
4113 wmb();
4114 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4115 }
4116}
4117
4118/**
4119 * igb_mii_ioctl -
4120 * @netdev:
4121 * @ifreq:
4122 * @cmd:
4123 **/
4124static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4125{
4126 struct igb_adapter *adapter = netdev_priv(netdev);
4127 struct mii_ioctl_data *data = if_mii(ifr);
4128
4129 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4130 return -EOPNOTSUPP;
4131
4132 switch (cmd) {
4133 case SIOCGMIIPHY:
4134 data->phy_id = adapter->hw.phy.addr;
4135 break;
4136 case SIOCGMIIREG:
4137 if (!capable(CAP_NET_ADMIN))
4138 return -EPERM;
4139 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4140 data->reg_num
4141 & 0x1F, &data->val_out))
4142 return -EIO;
4143 break;
4144 case SIOCSMIIREG:
4145 default:
4146 return -EOPNOTSUPP;
4147 }
4148 return 0;
4149}
4150
4151/**
4152 * igb_ioctl -
4153 * @netdev:
4154 * @ifreq:
4155 * @cmd:
4156 **/
4157static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4158{
4159 switch (cmd) {
4160 case SIOCGMIIPHY:
4161 case SIOCGMIIREG:
4162 case SIOCSMIIREG:
4163 return igb_mii_ioctl(netdev, ifr, cmd);
4164 default:
4165 return -EOPNOTSUPP;
4166 }
4167}
4168
4169static void igb_vlan_rx_register(struct net_device *netdev,
4170 struct vlan_group *grp)
4171{
4172 struct igb_adapter *adapter = netdev_priv(netdev);
4173 struct e1000_hw *hw = &adapter->hw;
4174 u32 ctrl, rctl;
4175
4176 igb_irq_disable(adapter);
4177 adapter->vlgrp = grp;
4178
4179 if (grp) {
4180 /* enable VLAN tag insert/strip */
4181 ctrl = rd32(E1000_CTRL);
4182 ctrl |= E1000_CTRL_VME;
4183 wr32(E1000_CTRL, ctrl);
4184
4185 /* enable VLAN receive filtering */
4186 rctl = rd32(E1000_RCTL);
4187 rctl |= E1000_RCTL_VFE;
4188 rctl &= ~E1000_RCTL_CFIEN;
4189 wr32(E1000_RCTL, rctl);
4190 igb_update_mng_vlan(adapter);
4191 wr32(E1000_RLPML,
4192 adapter->max_frame_size + VLAN_TAG_SIZE);
4193 } else {
4194 /* disable VLAN tag insert/strip */
4195 ctrl = rd32(E1000_CTRL);
4196 ctrl &= ~E1000_CTRL_VME;
4197 wr32(E1000_CTRL, ctrl);
4198
4199 /* disable VLAN filtering */
4200 rctl = rd32(E1000_RCTL);
4201 rctl &= ~E1000_RCTL_VFE;
4202 wr32(E1000_RCTL, rctl);
4203 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4204 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4205 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4206 }
4207 wr32(E1000_RLPML,
4208 adapter->max_frame_size);
4209 }
4210
4211 if (!test_bit(__IGB_DOWN, &adapter->state))
4212 igb_irq_enable(adapter);
4213}
4214
4215static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4216{
4217 struct igb_adapter *adapter = netdev_priv(netdev);
4218 struct e1000_hw *hw = &adapter->hw;
4219 u32 vfta, index;
4220
4221 if ((adapter->hw.mng_cookie.status &
4222 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4223 (vid == adapter->mng_vlan_id))
4224 return;
4225 /* add VID to filter table */
4226 index = (vid >> 5) & 0x7F;
4227 vfta = array_rd32(E1000_VFTA, index);
4228 vfta |= (1 << (vid & 0x1F));
4229 igb_write_vfta(&adapter->hw, index, vfta);
4230}
4231
4232static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4233{
4234 struct igb_adapter *adapter = netdev_priv(netdev);
4235 struct e1000_hw *hw = &adapter->hw;
4236 u32 vfta, index;
4237
4238 igb_irq_disable(adapter);
4239 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4240
4241 if (!test_bit(__IGB_DOWN, &adapter->state))
4242 igb_irq_enable(adapter);
4243
4244 if ((adapter->hw.mng_cookie.status &
4245 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4246 (vid == adapter->mng_vlan_id)) {
4247 /* release control to f/w */
4248 igb_release_hw_control(adapter);
4249 return;
4250 }
4251
4252 /* remove VID from filter table */
4253 index = (vid >> 5) & 0x7F;
4254 vfta = array_rd32(E1000_VFTA, index);
4255 vfta &= ~(1 << (vid & 0x1F));
4256 igb_write_vfta(&adapter->hw, index, vfta);
4257}
4258
4259static void igb_restore_vlan(struct igb_adapter *adapter)
4260{
4261 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4262
4263 if (adapter->vlgrp) {
4264 u16 vid;
4265 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4266 if (!vlan_group_get_device(adapter->vlgrp, vid))
4267 continue;
4268 igb_vlan_rx_add_vid(adapter->netdev, vid);
4269 }
4270 }
4271}
4272
4273int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4274{
4275 struct e1000_mac_info *mac = &adapter->hw.mac;
4276
4277 mac->autoneg = 0;
4278
4279 /* Fiber NICs only allow 1000 gbps Full duplex */
4280 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4281 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4282 dev_err(&adapter->pdev->dev,
4283 "Unsupported Speed/Duplex configuration\n");
4284 return -EINVAL;
4285 }
4286
4287 switch (spddplx) {
4288 case SPEED_10 + DUPLEX_HALF:
4289 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4290 break;
4291 case SPEED_10 + DUPLEX_FULL:
4292 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4293 break;
4294 case SPEED_100 + DUPLEX_HALF:
4295 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4296 break;
4297 case SPEED_100 + DUPLEX_FULL:
4298 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4299 break;
4300 case SPEED_1000 + DUPLEX_FULL:
4301 mac->autoneg = 1;
4302 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4303 break;
4304 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4305 default:
4306 dev_err(&adapter->pdev->dev,
4307 "Unsupported Speed/Duplex configuration\n");
4308 return -EINVAL;
4309 }
4310 return 0;
4311}
4312
4313
4314static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4315{
4316 struct net_device *netdev = pci_get_drvdata(pdev);
4317 struct igb_adapter *adapter = netdev_priv(netdev);
4318 struct e1000_hw *hw = &adapter->hw;
2d064c06 4319 u32 ctrl, rctl, status;
9d5c8243
AK
4320 u32 wufc = adapter->wol;
4321#ifdef CONFIG_PM
4322 int retval = 0;
4323#endif
4324
4325 netif_device_detach(netdev);
4326
4327 if (netif_running(netdev)) {
4328 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4329 igb_down(adapter);
4330 igb_free_irq(adapter);
4331 }
4332
4333#ifdef CONFIG_PM
4334 retval = pci_save_state(pdev);
4335 if (retval)
4336 return retval;
4337#endif
4338
4339 status = rd32(E1000_STATUS);
4340 if (status & E1000_STATUS_LU)
4341 wufc &= ~E1000_WUFC_LNKC;
4342
4343 if (wufc) {
4344 igb_setup_rctl(adapter);
4345 igb_set_multi(netdev);
4346
4347 /* turn on all-multi mode if wake on multicast is enabled */
4348 if (wufc & E1000_WUFC_MC) {
4349 rctl = rd32(E1000_RCTL);
4350 rctl |= E1000_RCTL_MPE;
4351 wr32(E1000_RCTL, rctl);
4352 }
4353
4354 ctrl = rd32(E1000_CTRL);
4355 /* advertise wake from D3Cold */
4356 #define E1000_CTRL_ADVD3WUC 0x00100000
4357 /* phy power management enable */
4358 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4359 ctrl |= E1000_CTRL_ADVD3WUC;
4360 wr32(E1000_CTRL, ctrl);
4361
9d5c8243
AK
4362 /* Allow time for pending master requests to run */
4363 igb_disable_pcie_master(&adapter->hw);
4364
4365 wr32(E1000_WUC, E1000_WUC_PME_EN);
4366 wr32(E1000_WUFC, wufc);
9d5c8243
AK
4367 } else {
4368 wr32(E1000_WUC, 0);
4369 wr32(E1000_WUFC, 0);
9d5c8243
AK
4370 }
4371
2d064c06
AD
4372 /* make sure adapter isn't asleep if manageability/wol is enabled */
4373 if (wufc || adapter->en_mng_pt) {
9d5c8243
AK
4374 pci_enable_wake(pdev, PCI_D3hot, 1);
4375 pci_enable_wake(pdev, PCI_D3cold, 1);
2d064c06
AD
4376 } else {
4377 igb_shutdown_fiber_serdes_link_82575(hw);
4378 pci_enable_wake(pdev, PCI_D3hot, 0);
4379 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243
AK
4380 }
4381
4382 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4383 * would have already happened in close and is redundant. */
4384 igb_release_hw_control(adapter);
4385
4386 pci_disable_device(pdev);
4387
4388 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4389
4390 return 0;
4391}
4392
4393#ifdef CONFIG_PM
4394static int igb_resume(struct pci_dev *pdev)
4395{
4396 struct net_device *netdev = pci_get_drvdata(pdev);
4397 struct igb_adapter *adapter = netdev_priv(netdev);
4398 struct e1000_hw *hw = &adapter->hw;
4399 u32 err;
4400
4401 pci_set_power_state(pdev, PCI_D0);
4402 pci_restore_state(pdev);
42bfd33a
TI
4403
4404 if (adapter->need_ioport)
4405 err = pci_enable_device(pdev);
4406 else
4407 err = pci_enable_device_mem(pdev);
9d5c8243
AK
4408 if (err) {
4409 dev_err(&pdev->dev,
4410 "igb: Cannot enable PCI device from suspend\n");
4411 return err;
4412 }
4413 pci_set_master(pdev);
4414
4415 pci_enable_wake(pdev, PCI_D3hot, 0);
4416 pci_enable_wake(pdev, PCI_D3cold, 0);
4417
4418 if (netif_running(netdev)) {
4419 err = igb_request_irq(adapter);
4420 if (err)
4421 return err;
4422 }
4423
4424 /* e1000_power_up_phy(adapter); */
4425
4426 igb_reset(adapter);
4427 wr32(E1000_WUS, ~0);
4428
4429 igb_init_manageability(adapter);
4430
4431 if (netif_running(netdev))
4432 igb_up(adapter);
4433
4434 netif_device_attach(netdev);
4435
4436 /* let the f/w know that the h/w is now under the control of the
4437 * driver. */
4438 igb_get_hw_control(adapter);
4439
4440 return 0;
4441}
4442#endif
4443
4444static void igb_shutdown(struct pci_dev *pdev)
4445{
4446 igb_suspend(pdev, PMSG_SUSPEND);
4447}
4448
4449#ifdef CONFIG_NET_POLL_CONTROLLER
4450/*
4451 * Polling 'interrupt' - used by things like netconsole to send skbs
4452 * without having to re-enable interrupts. It's not called while
4453 * the interrupt routine is executing.
4454 */
4455static void igb_netpoll(struct net_device *netdev)
4456{
4457 struct igb_adapter *adapter = netdev_priv(netdev);
4458 int i;
4459 int work_done = 0;
4460
4461 igb_irq_disable(adapter);
7dfc16fa
AD
4462 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4463
9d5c8243 4464 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 4465 igb_clean_tx_irq(&adapter->tx_ring[i]);
9d5c8243
AK
4466
4467 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 4468 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
9d5c8243
AK
4469 &work_done,
4470 adapter->rx_ring[i].napi.weight);
4471
7dfc16fa 4472 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
9d5c8243
AK
4473 igb_irq_enable(adapter);
4474}
4475#endif /* CONFIG_NET_POLL_CONTROLLER */
4476
4477/**
4478 * igb_io_error_detected - called when PCI error is detected
4479 * @pdev: Pointer to PCI device
4480 * @state: The current pci connection state
4481 *
4482 * This function is called after a PCI bus error affecting
4483 * this device has been detected.
4484 */
4485static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4486 pci_channel_state_t state)
4487{
4488 struct net_device *netdev = pci_get_drvdata(pdev);
4489 struct igb_adapter *adapter = netdev_priv(netdev);
4490
4491 netif_device_detach(netdev);
4492
4493 if (netif_running(netdev))
4494 igb_down(adapter);
4495 pci_disable_device(pdev);
4496
4497 /* Request a slot slot reset. */
4498 return PCI_ERS_RESULT_NEED_RESET;
4499}
4500
4501/**
4502 * igb_io_slot_reset - called after the pci bus has been reset.
4503 * @pdev: Pointer to PCI device
4504 *
4505 * Restart the card from scratch, as if from a cold-boot. Implementation
4506 * resembles the first-half of the igb_resume routine.
4507 */
4508static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4509{
4510 struct net_device *netdev = pci_get_drvdata(pdev);
4511 struct igb_adapter *adapter = netdev_priv(netdev);
4512 struct e1000_hw *hw = &adapter->hw;
42bfd33a 4513 int err;
9d5c8243 4514
42bfd33a
TI
4515 if (adapter->need_ioport)
4516 err = pci_enable_device(pdev);
4517 else
4518 err = pci_enable_device_mem(pdev);
4519 if (err) {
9d5c8243
AK
4520 dev_err(&pdev->dev,
4521 "Cannot re-enable PCI device after reset.\n");
4522 return PCI_ERS_RESULT_DISCONNECT;
4523 }
4524 pci_set_master(pdev);
c682fc23 4525 pci_restore_state(pdev);
9d5c8243
AK
4526
4527 pci_enable_wake(pdev, PCI_D3hot, 0);
4528 pci_enable_wake(pdev, PCI_D3cold, 0);
4529
4530 igb_reset(adapter);
4531 wr32(E1000_WUS, ~0);
4532
4533 return PCI_ERS_RESULT_RECOVERED;
4534}
4535
4536/**
4537 * igb_io_resume - called when traffic can start flowing again.
4538 * @pdev: Pointer to PCI device
4539 *
4540 * This callback is called when the error recovery driver tells us that
4541 * its OK to resume normal operation. Implementation resembles the
4542 * second-half of the igb_resume routine.
4543 */
4544static void igb_io_resume(struct pci_dev *pdev)
4545{
4546 struct net_device *netdev = pci_get_drvdata(pdev);
4547 struct igb_adapter *adapter = netdev_priv(netdev);
4548
4549 igb_init_manageability(adapter);
4550
4551 if (netif_running(netdev)) {
4552 if (igb_up(adapter)) {
4553 dev_err(&pdev->dev, "igb_up failed after reset\n");
4554 return;
4555 }
4556 }
4557
4558 netif_device_attach(netdev);
4559
4560 /* let the f/w know that the h/w is now under the control of the
4561 * driver. */
4562 igb_get_hw_control(adapter);
4563
4564}
4565
4566/* igb_main.c */
This page took 0.30172 seconds and 5 git commands to generate.