dcbnl: add support for retrieving peer configuration - cee
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
c2b6a059 53#define DRV_VERSION "2.4.13-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 58static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
90 /* required last entry */
91 {0, }
92};
93
94MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
95
96void igb_reset(struct igb_adapter *);
97static int igb_setup_all_tx_resources(struct igb_adapter *);
98static int igb_setup_all_rx_resources(struct igb_adapter *);
99static void igb_free_all_tx_resources(struct igb_adapter *);
100static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 101static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
102static int igb_probe(struct pci_dev *, const struct pci_device_id *);
103static void __devexit igb_remove(struct pci_dev *pdev);
104static int igb_sw_init(struct igb_adapter *);
105static int igb_open(struct net_device *);
106static int igb_close(struct net_device *);
107static void igb_configure_tx(struct igb_adapter *);
108static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
109static void igb_clean_all_tx_rings(struct igb_adapter *);
110static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
111static void igb_clean_tx_ring(struct igb_ring *);
112static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 113static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
114static void igb_update_phy_info(unsigned long);
115static void igb_watchdog(unsigned long);
116static void igb_watchdog_task(struct work_struct *);
b1a436c3 117static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
118static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
119 struct rtnl_link_stats64 *stats);
9d5c8243
AK
120static int igb_change_mtu(struct net_device *, int);
121static int igb_set_mac(struct net_device *, void *);
68d480c4 122static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
123static irqreturn_t igb_intr(int irq, void *);
124static irqreturn_t igb_intr_msi(int irq, void *);
125static irqreturn_t igb_msix_other(int irq, void *);
047e0030 126static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 127#ifdef CONFIG_IGB_DCA
047e0030 128static void igb_update_dca(struct igb_q_vector *);
fe4506b6 129static void igb_setup_dca(struct igb_adapter *);
421e02f0 130#endif /* CONFIG_IGB_DCA */
047e0030 131static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 132static int igb_poll(struct napi_struct *, int);
047e0030 133static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
134static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
135static void igb_tx_timeout(struct net_device *);
136static void igb_reset_task(struct work_struct *);
137static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
138static void igb_vlan_rx_add_vid(struct net_device *, u16);
139static void igb_vlan_rx_kill_vid(struct net_device *, u16);
140static void igb_restore_vlan(struct igb_adapter *);
26ad9178 141static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
142static void igb_ping_all_vfs(struct igb_adapter *);
143static void igb_msg_task(struct igb_adapter *);
4ae196df 144static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 145static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 146static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
147static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
148static int igb_ndo_set_vf_vlan(struct net_device *netdev,
149 int vf, u16 vlan, u8 qos);
150static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
151static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
152 struct ifla_vf_info *ivi);
17dc566c 153static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 154
9d5c8243 155#ifdef CONFIG_PM
3fe7c4c9 156static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
157static int igb_resume(struct pci_dev *);
158#endif
159static void igb_shutdown(struct pci_dev *);
421e02f0 160#ifdef CONFIG_IGB_DCA
fe4506b6
JC
161static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
162static struct notifier_block dca_notifier = {
163 .notifier_call = igb_notify_dca,
164 .next = NULL,
165 .priority = 0
166};
167#endif
9d5c8243
AK
168#ifdef CONFIG_NET_POLL_CONTROLLER
169/* for netdump / net console */
170static void igb_netpoll(struct net_device *);
171#endif
37680117 172#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
173static unsigned int max_vfs = 0;
174module_param(max_vfs, uint, 0);
175MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
176 "per physical function");
177#endif /* CONFIG_PCI_IOV */
178
9d5c8243
AK
179static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
180 pci_channel_state_t);
181static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
182static void igb_io_resume(struct pci_dev *);
183
184static struct pci_error_handlers igb_err_handler = {
185 .error_detected = igb_io_error_detected,
186 .slot_reset = igb_io_slot_reset,
187 .resume = igb_io_resume,
188};
189
190
191static struct pci_driver igb_driver = {
192 .name = igb_driver_name,
193 .id_table = igb_pci_tbl,
194 .probe = igb_probe,
195 .remove = __devexit_p(igb_remove),
196#ifdef CONFIG_PM
197 /* Power Managment Hooks */
198 .suspend = igb_suspend,
199 .resume = igb_resume,
200#endif
201 .shutdown = igb_shutdown,
202 .err_handler = &igb_err_handler
203};
204
205MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
206MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
207MODULE_LICENSE("GPL");
208MODULE_VERSION(DRV_VERSION);
209
c97ec42a
TI
210struct igb_reg_info {
211 u32 ofs;
212 char *name;
213};
214
215static const struct igb_reg_info igb_reg_info_tbl[] = {
216
217 /* General Registers */
218 {E1000_CTRL, "CTRL"},
219 {E1000_STATUS, "STATUS"},
220 {E1000_CTRL_EXT, "CTRL_EXT"},
221
222 /* Interrupt Registers */
223 {E1000_ICR, "ICR"},
224
225 /* RX Registers */
226 {E1000_RCTL, "RCTL"},
227 {E1000_RDLEN(0), "RDLEN"},
228 {E1000_RDH(0), "RDH"},
229 {E1000_RDT(0), "RDT"},
230 {E1000_RXDCTL(0), "RXDCTL"},
231 {E1000_RDBAL(0), "RDBAL"},
232 {E1000_RDBAH(0), "RDBAH"},
233
234 /* TX Registers */
235 {E1000_TCTL, "TCTL"},
236 {E1000_TDBAL(0), "TDBAL"},
237 {E1000_TDBAH(0), "TDBAH"},
238 {E1000_TDLEN(0), "TDLEN"},
239 {E1000_TDH(0), "TDH"},
240 {E1000_TDT(0), "TDT"},
241 {E1000_TXDCTL(0), "TXDCTL"},
242 {E1000_TDFH, "TDFH"},
243 {E1000_TDFT, "TDFT"},
244 {E1000_TDFHS, "TDFHS"},
245 {E1000_TDFPC, "TDFPC"},
246
247 /* List Terminator */
248 {}
249};
250
251/*
252 * igb_regdump - register printout routine
253 */
254static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255{
256 int n = 0;
257 char rname[16];
258 u32 regs[8];
259
260 switch (reginfo->ofs) {
261 case E1000_RDLEN(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
264 break;
265 case E1000_RDH(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
268 break;
269 case E1000_RDT(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
272 break;
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
276 break;
277 case E1000_RDBAL(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
280 break;
281 case E1000_RDBAH(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
284 break;
285 case E1000_TDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDBAL(n));
288 break;
289 case E1000_TDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
292 break;
293 case E1000_TDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
296 break;
297 case E1000_TDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
300 break;
301 case E1000_TDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
304 break;
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
308 break;
309 default:
310 printk(KERN_INFO "%-15s %08x\n",
311 reginfo->name, rd32(reginfo->ofs));
312 return;
313 }
314
315 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
316 printk(KERN_INFO "%-15s ", rname);
317 for (n = 0; n < 4; n++)
318 printk(KERN_CONT "%08x ", regs[n]);
319 printk(KERN_CONT "\n");
320}
321
322/*
323 * igb_dump - Print registers, tx-rings and rx-rings
324 */
325static void igb_dump(struct igb_adapter *adapter)
326{
327 struct net_device *netdev = adapter->netdev;
328 struct e1000_hw *hw = &adapter->hw;
329 struct igb_reg_info *reginfo;
330 int n = 0;
331 struct igb_ring *tx_ring;
332 union e1000_adv_tx_desc *tx_desc;
333 struct my_u0 { u64 a; u64 b; } *u0;
334 struct igb_buffer *buffer_info;
335 struct igb_ring *rx_ring;
336 union e1000_adv_rx_desc *rx_desc;
337 u32 staterr;
338 int i = 0;
339
340 if (!netif_msg_hw(adapter))
341 return;
342
343 /* Print netdevice Info */
344 if (netdev) {
345 dev_info(&adapter->pdev->dev, "Net device Info\n");
346 printk(KERN_INFO "Device Name state "
347 "trans_start last_rx\n");
348 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
349 netdev->name,
350 netdev->state,
351 netdev->trans_start,
352 netdev->last_rx);
353 }
354
355 /* Print Registers */
356 dev_info(&adapter->pdev->dev, "Register Dump\n");
357 printk(KERN_INFO " Register Name Value\n");
358 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
359 reginfo->name; reginfo++) {
360 igb_regdump(hw, reginfo);
361 }
362
363 /* Print TX Ring Summary */
364 if (!netdev || !netif_running(netdev))
365 goto exit;
366
367 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
368 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
369 " leng ntw timestamp\n");
370 for (n = 0; n < adapter->num_tx_queues; n++) {
371 tx_ring = adapter->tx_ring[n];
372 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
373 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
374 n, tx_ring->next_to_use, tx_ring->next_to_clean,
375 (u64)buffer_info->dma,
376 buffer_info->length,
377 buffer_info->next_to_watch,
378 (u64)buffer_info->time_stamp);
379 }
380
381 /* Print TX Rings */
382 if (!netif_msg_tx_done(adapter))
383 goto rx_ring_summary;
384
385 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
386
387 /* Transmit Descriptor Formats
388 *
389 * Advanced Transmit Descriptor
390 * +--------------------------------------------------------------+
391 * 0 | Buffer Address [63:0] |
392 * +--------------------------------------------------------------+
393 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
394 * +--------------------------------------------------------------+
395 * 63 46 45 40 39 38 36 35 32 31 24 15 0
396 */
397
398 for (n = 0; n < adapter->num_tx_queues; n++) {
399 tx_ring = adapter->tx_ring[n];
400 printk(KERN_INFO "------------------------------------\n");
401 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
402 printk(KERN_INFO "------------------------------------\n");
403 printk(KERN_INFO "T [desc] [address 63:0 ] "
404 "[PlPOCIStDDM Ln] [bi->dma ] "
405 "leng ntw timestamp bi->skb\n");
406
407 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
408 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
409 buffer_info = &tx_ring->buffer_info[i];
410 u0 = (struct my_u0 *)tx_desc;
411 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
412 " %04X %3X %016llX %p", i,
413 le64_to_cpu(u0->a),
414 le64_to_cpu(u0->b),
415 (u64)buffer_info->dma,
416 buffer_info->length,
417 buffer_info->next_to_watch,
418 (u64)buffer_info->time_stamp,
419 buffer_info->skb);
420 if (i == tx_ring->next_to_use &&
421 i == tx_ring->next_to_clean)
422 printk(KERN_CONT " NTC/U\n");
423 else if (i == tx_ring->next_to_use)
424 printk(KERN_CONT " NTU\n");
425 else if (i == tx_ring->next_to_clean)
426 printk(KERN_CONT " NTC\n");
427 else
428 printk(KERN_CONT "\n");
429
430 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
431 print_hex_dump(KERN_INFO, "",
432 DUMP_PREFIX_ADDRESS,
433 16, 1, phys_to_virt(buffer_info->dma),
434 buffer_info->length, true);
435 }
436 }
437
438 /* Print RX Rings Summary */
439rx_ring_summary:
440 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
441 printk(KERN_INFO "Queue [NTU] [NTC]\n");
442 for (n = 0; n < adapter->num_rx_queues; n++) {
443 rx_ring = adapter->rx_ring[n];
444 printk(KERN_INFO " %5d %5X %5X\n", n,
445 rx_ring->next_to_use, rx_ring->next_to_clean);
446 }
447
448 /* Print RX Rings */
449 if (!netif_msg_rx_status(adapter))
450 goto exit;
451
452 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
453
454 /* Advanced Receive Descriptor (Read) Format
455 * 63 1 0
456 * +-----------------------------------------------------+
457 * 0 | Packet Buffer Address [63:1] |A0/NSE|
458 * +----------------------------------------------+------+
459 * 8 | Header Buffer Address [63:1] | DD |
460 * +-----------------------------------------------------+
461 *
462 *
463 * Advanced Receive Descriptor (Write-Back) Format
464 *
465 * 63 48 47 32 31 30 21 20 17 16 4 3 0
466 * +------------------------------------------------------+
467 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
468 * | Checksum Ident | | | | Type | Type |
469 * +------------------------------------------------------+
470 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
471 * +------------------------------------------------------+
472 * 63 48 47 32 31 20 19 0
473 */
474
475 for (n = 0; n < adapter->num_rx_queues; n++) {
476 rx_ring = adapter->rx_ring[n];
477 printk(KERN_INFO "------------------------------------\n");
478 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
479 printk(KERN_INFO "------------------------------------\n");
480 printk(KERN_INFO "R [desc] [ PktBuf A0] "
481 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
482 "<-- Adv Rx Read format\n");
483 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
484 "[vl er S cks ln] ---------------- [bi->skb] "
485 "<-- Adv Rx Write-Back format\n");
486
487 for (i = 0; i < rx_ring->count; i++) {
488 buffer_info = &rx_ring->buffer_info[i];
489 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
490 u0 = (struct my_u0 *)rx_desc;
491 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
492 if (staterr & E1000_RXD_STAT_DD) {
493 /* Descriptor Done */
494 printk(KERN_INFO "RWB[0x%03X] %016llX "
495 "%016llX ---------------- %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 buffer_info->skb);
499 } else {
500 printk(KERN_INFO "R [0x%03X] %016llX "
501 "%016llX %016llX %p", i,
502 le64_to_cpu(u0->a),
503 le64_to_cpu(u0->b),
504 (u64)buffer_info->dma,
505 buffer_info->skb);
506
507 if (netif_msg_pktdata(adapter)) {
508 print_hex_dump(KERN_INFO, "",
509 DUMP_PREFIX_ADDRESS,
510 16, 1,
511 phys_to_virt(buffer_info->dma),
512 rx_ring->rx_buffer_len, true);
513 if (rx_ring->rx_buffer_len
514 < IGB_RXBUFFER_1024)
515 print_hex_dump(KERN_INFO, "",
516 DUMP_PREFIX_ADDRESS,
517 16, 1,
518 phys_to_virt(
519 buffer_info->page_dma +
520 buffer_info->page_offset),
521 PAGE_SIZE/2, true);
522 }
523 }
524
525 if (i == rx_ring->next_to_use)
526 printk(KERN_CONT " NTU\n");
527 else if (i == rx_ring->next_to_clean)
528 printk(KERN_CONT " NTC\n");
529 else
530 printk(KERN_CONT "\n");
531
532 }
533 }
534
535exit:
536 return;
537}
538
539
38c845c7
PO
540/**
541 * igb_read_clock - read raw cycle counter (to be used by time counter)
542 */
543static cycle_t igb_read_clock(const struct cyclecounter *tc)
544{
545 struct igb_adapter *adapter =
546 container_of(tc, struct igb_adapter, cycles);
547 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
548 u64 stamp = 0;
549 int shift = 0;
38c845c7 550
55cac248
AD
551 /*
552 * The timestamp latches on lowest register read. For the 82580
553 * the lowest register is SYSTIMR instead of SYSTIML. However we never
554 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
555 */
556 if (hw->mac.type == e1000_82580) {
557 stamp = rd32(E1000_SYSTIMR) >> 8;
558 shift = IGB_82580_TSYNC_SHIFT;
559 }
560
c5b9bd5e
AD
561 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
562 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
563 return stamp;
564}
565
9d5c8243 566/**
c041076a 567 * igb_get_hw_dev - return device
9d5c8243
AK
568 * used by hardware layer to print debugging information
569 **/
c041076a 570struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
571{
572 struct igb_adapter *adapter = hw->back;
c041076a 573 return adapter->netdev;
9d5c8243 574}
38c845c7 575
9d5c8243
AK
576/**
577 * igb_init_module - Driver Registration Routine
578 *
579 * igb_init_module is the first routine called when the driver is
580 * loaded. All it does is register with the PCI subsystem.
581 **/
582static int __init igb_init_module(void)
583{
584 int ret;
585 printk(KERN_INFO "%s - version %s\n",
586 igb_driver_string, igb_driver_version);
587
588 printk(KERN_INFO "%s\n", igb_copyright);
589
421e02f0 590#ifdef CONFIG_IGB_DCA
fe4506b6
JC
591 dca_register_notify(&dca_notifier);
592#endif
bbd98fe4 593 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
594 return ret;
595}
596
597module_init(igb_init_module);
598
599/**
600 * igb_exit_module - Driver Exit Cleanup Routine
601 *
602 * igb_exit_module is called just before the driver is removed
603 * from memory.
604 **/
605static void __exit igb_exit_module(void)
606{
421e02f0 607#ifdef CONFIG_IGB_DCA
fe4506b6
JC
608 dca_unregister_notify(&dca_notifier);
609#endif
9d5c8243
AK
610 pci_unregister_driver(&igb_driver);
611}
612
613module_exit(igb_exit_module);
614
26bc19ec
AD
615#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
616/**
617 * igb_cache_ring_register - Descriptor ring to register mapping
618 * @adapter: board private structure to initialize
619 *
620 * Once we know the feature-set enabled for the device, we'll cache
621 * the register offset the descriptor ring is assigned to.
622 **/
623static void igb_cache_ring_register(struct igb_adapter *adapter)
624{
ee1b9f06 625 int i = 0, j = 0;
047e0030 626 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
627
628 switch (adapter->hw.mac.type) {
629 case e1000_82576:
630 /* The queues are allocated for virtualization such that VF 0
631 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
632 * In order to avoid collision we start at the first free queue
633 * and continue consuming queues in the same sequence
634 */
ee1b9f06 635 if (adapter->vfs_allocated_count) {
a99955fc 636 for (; i < adapter->rss_queues; i++)
3025a446
AD
637 adapter->rx_ring[i]->reg_idx = rbase_offset +
638 Q_IDX_82576(i);
ee1b9f06 639 }
26bc19ec 640 case e1000_82575:
55cac248 641 case e1000_82580:
d2ba2ed8 642 case e1000_i350:
26bc19ec 643 default:
ee1b9f06 644 for (; i < adapter->num_rx_queues; i++)
3025a446 645 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 646 for (; j < adapter->num_tx_queues; j++)
3025a446 647 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
648 break;
649 }
650}
651
047e0030
AD
652static void igb_free_queues(struct igb_adapter *adapter)
653{
3025a446 654 int i;
047e0030 655
3025a446
AD
656 for (i = 0; i < adapter->num_tx_queues; i++) {
657 kfree(adapter->tx_ring[i]);
658 adapter->tx_ring[i] = NULL;
659 }
660 for (i = 0; i < adapter->num_rx_queues; i++) {
661 kfree(adapter->rx_ring[i]);
662 adapter->rx_ring[i] = NULL;
663 }
047e0030
AD
664 adapter->num_rx_queues = 0;
665 adapter->num_tx_queues = 0;
666}
667
9d5c8243
AK
668/**
669 * igb_alloc_queues - Allocate memory for all rings
670 * @adapter: board private structure to initialize
671 *
672 * We allocate one ring per queue at run-time since we don't know the
673 * number of queues at compile-time.
674 **/
675static int igb_alloc_queues(struct igb_adapter *adapter)
676{
3025a446 677 struct igb_ring *ring;
9d5c8243
AK
678 int i;
679
661086df 680 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
681 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
682 if (!ring)
683 goto err;
68fd9910 684 ring->count = adapter->tx_ring_count;
661086df 685 ring->queue_index = i;
59d71989 686 ring->dev = &adapter->pdev->dev;
e694e964 687 ring->netdev = adapter->netdev;
85ad76b2
AD
688 /* For 82575, context index must be unique per ring. */
689 if (adapter->hw.mac.type == e1000_82575)
690 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 691 adapter->tx_ring[i] = ring;
661086df 692 }
85ad76b2 693
9d5c8243 694 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
695 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
696 if (!ring)
697 goto err;
68fd9910 698 ring->count = adapter->rx_ring_count;
844290e5 699 ring->queue_index = i;
59d71989 700 ring->dev = &adapter->pdev->dev;
e694e964 701 ring->netdev = adapter->netdev;
4c844851 702 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
703 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
704 /* set flag indicating ring supports SCTP checksum offload */
705 if (adapter->hw.mac.type >= e1000_82576)
706 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 707 adapter->rx_ring[i] = ring;
9d5c8243 708 }
26bc19ec
AD
709
710 igb_cache_ring_register(adapter);
9d5c8243 711
047e0030 712 return 0;
a88f10ec 713
047e0030
AD
714err:
715 igb_free_queues(adapter);
d1a8c9e1 716
047e0030 717 return -ENOMEM;
a88f10ec
AD
718}
719
9d5c8243 720#define IGB_N0_QUEUE -1
047e0030 721static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
722{
723 u32 msixbm = 0;
047e0030 724 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 725 struct e1000_hw *hw = &adapter->hw;
2d064c06 726 u32 ivar, index;
047e0030
AD
727 int rx_queue = IGB_N0_QUEUE;
728 int tx_queue = IGB_N0_QUEUE;
729
730 if (q_vector->rx_ring)
731 rx_queue = q_vector->rx_ring->reg_idx;
732 if (q_vector->tx_ring)
733 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
734
735 switch (hw->mac.type) {
736 case e1000_82575:
9d5c8243
AK
737 /* The 82575 assigns vectors using a bitmask, which matches the
738 bitmask for the EICR/EIMS/EIMC registers. To assign one
739 or more queues to a vector, we write the appropriate bits
740 into the MSIXBM register for that vector. */
047e0030 741 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 742 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 743 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 744 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
745 if (!adapter->msix_entries && msix_vector == 0)
746 msixbm |= E1000_EIMS_OTHER;
9d5c8243 747 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 748 q_vector->eims_value = msixbm;
2d064c06
AD
749 break;
750 case e1000_82576:
26bc19ec 751 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
752 Each queue has a single entry in the table to which we write
753 a vector number along with a "valid" bit. Sadly, the layout
754 of the table is somewhat counterintuitive. */
755 if (rx_queue > IGB_N0_QUEUE) {
047e0030 756 index = (rx_queue & 0x7);
2d064c06 757 ivar = array_rd32(E1000_IVAR0, index);
047e0030 758 if (rx_queue < 8) {
26bc19ec
AD
759 /* vector goes into low byte of register */
760 ivar = ivar & 0xFFFFFF00;
761 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
762 } else {
763 /* vector goes into third byte of register */
764 ivar = ivar & 0xFF00FFFF;
765 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 766 }
2d064c06
AD
767 array_wr32(E1000_IVAR0, index, ivar);
768 }
769 if (tx_queue > IGB_N0_QUEUE) {
047e0030 770 index = (tx_queue & 0x7);
2d064c06 771 ivar = array_rd32(E1000_IVAR0, index);
047e0030 772 if (tx_queue < 8) {
26bc19ec
AD
773 /* vector goes into second byte of register */
774 ivar = ivar & 0xFFFF00FF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
776 } else {
777 /* vector goes into high byte of register */
778 ivar = ivar & 0x00FFFFFF;
779 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 780 }
2d064c06
AD
781 array_wr32(E1000_IVAR0, index, ivar);
782 }
047e0030 783 q_vector->eims_value = 1 << msix_vector;
2d064c06 784 break;
55cac248 785 case e1000_82580:
d2ba2ed8 786 case e1000_i350:
55cac248
AD
787 /* 82580 uses the same table-based approach as 82576 but has fewer
788 entries as a result we carry over for queues greater than 4. */
789 if (rx_queue > IGB_N0_QUEUE) {
790 index = (rx_queue >> 1);
791 ivar = array_rd32(E1000_IVAR0, index);
792 if (rx_queue & 0x1) {
793 /* vector goes into third byte of register */
794 ivar = ivar & 0xFF00FFFF;
795 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
796 } else {
797 /* vector goes into low byte of register */
798 ivar = ivar & 0xFFFFFF00;
799 ivar |= msix_vector | E1000_IVAR_VALID;
800 }
801 array_wr32(E1000_IVAR0, index, ivar);
802 }
803 if (tx_queue > IGB_N0_QUEUE) {
804 index = (tx_queue >> 1);
805 ivar = array_rd32(E1000_IVAR0, index);
806 if (tx_queue & 0x1) {
807 /* vector goes into high byte of register */
808 ivar = ivar & 0x00FFFFFF;
809 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
810 } else {
811 /* vector goes into second byte of register */
812 ivar = ivar & 0xFFFF00FF;
813 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
814 }
815 array_wr32(E1000_IVAR0, index, ivar);
816 }
817 q_vector->eims_value = 1 << msix_vector;
818 break;
2d064c06
AD
819 default:
820 BUG();
821 break;
822 }
26b39276
AD
823
824 /* add q_vector eims value to global eims_enable_mask */
825 adapter->eims_enable_mask |= q_vector->eims_value;
826
827 /* configure q_vector to set itr on first interrupt */
828 q_vector->set_itr = 1;
9d5c8243
AK
829}
830
831/**
832 * igb_configure_msix - Configure MSI-X hardware
833 *
834 * igb_configure_msix sets up the hardware to properly
835 * generate MSI-X interrupts.
836 **/
837static void igb_configure_msix(struct igb_adapter *adapter)
838{
839 u32 tmp;
840 int i, vector = 0;
841 struct e1000_hw *hw = &adapter->hw;
842
843 adapter->eims_enable_mask = 0;
9d5c8243
AK
844
845 /* set vector for other causes, i.e. link changes */
2d064c06
AD
846 switch (hw->mac.type) {
847 case e1000_82575:
9d5c8243
AK
848 tmp = rd32(E1000_CTRL_EXT);
849 /* enable MSI-X PBA support*/
850 tmp |= E1000_CTRL_EXT_PBA_CLR;
851
852 /* Auto-Mask interrupts upon ICR read. */
853 tmp |= E1000_CTRL_EXT_EIAME;
854 tmp |= E1000_CTRL_EXT_IRCA;
855
856 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
857
858 /* enable msix_other interrupt */
859 array_wr32(E1000_MSIXBM(0), vector++,
860 E1000_EIMS_OTHER);
844290e5 861 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 862
2d064c06
AD
863 break;
864
865 case e1000_82576:
55cac248 866 case e1000_82580:
d2ba2ed8 867 case e1000_i350:
047e0030
AD
868 /* Turn on MSI-X capability first, or our settings
869 * won't stick. And it will take days to debug. */
870 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
871 E1000_GPIE_PBA | E1000_GPIE_EIAME |
872 E1000_GPIE_NSICR);
873
874 /* enable msix_other interrupt */
875 adapter->eims_other = 1 << vector;
2d064c06 876 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 877
047e0030 878 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
879 break;
880 default:
881 /* do nothing, since nothing else supports MSI-X */
882 break;
883 } /* switch (hw->mac.type) */
047e0030
AD
884
885 adapter->eims_enable_mask |= adapter->eims_other;
886
26b39276
AD
887 for (i = 0; i < adapter->num_q_vectors; i++)
888 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 889
9d5c8243
AK
890 wrfl();
891}
892
893/**
894 * igb_request_msix - Initialize MSI-X interrupts
895 *
896 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
897 * kernel.
898 **/
899static int igb_request_msix(struct igb_adapter *adapter)
900{
901 struct net_device *netdev = adapter->netdev;
047e0030 902 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
903 int i, err = 0, vector = 0;
904
047e0030 905 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 906 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
907 if (err)
908 goto out;
909 vector++;
910
911 for (i = 0; i < adapter->num_q_vectors; i++) {
912 struct igb_q_vector *q_vector = adapter->q_vector[i];
913
914 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
915
916 if (q_vector->rx_ring && q_vector->tx_ring)
917 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
918 q_vector->rx_ring->queue_index);
919 else if (q_vector->tx_ring)
920 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
921 q_vector->tx_ring->queue_index);
922 else if (q_vector->rx_ring)
923 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
924 q_vector->rx_ring->queue_index);
9d5c8243 925 else
047e0030
AD
926 sprintf(q_vector->name, "%s-unused", netdev->name);
927
9d5c8243 928 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 929 igb_msix_ring, 0, q_vector->name,
047e0030 930 q_vector);
9d5c8243
AK
931 if (err)
932 goto out;
9d5c8243
AK
933 vector++;
934 }
935
9d5c8243
AK
936 igb_configure_msix(adapter);
937 return 0;
938out:
939 return err;
940}
941
942static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
943{
944 if (adapter->msix_entries) {
945 pci_disable_msix(adapter->pdev);
946 kfree(adapter->msix_entries);
947 adapter->msix_entries = NULL;
047e0030 948 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 949 pci_disable_msi(adapter->pdev);
047e0030 950 }
9d5c8243
AK
951}
952
047e0030
AD
953/**
954 * igb_free_q_vectors - Free memory allocated for interrupt vectors
955 * @adapter: board private structure to initialize
956 *
957 * This function frees the memory allocated to the q_vectors. In addition if
958 * NAPI is enabled it will delete any references to the NAPI struct prior
959 * to freeing the q_vector.
960 **/
961static void igb_free_q_vectors(struct igb_adapter *adapter)
962{
963 int v_idx;
964
965 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
966 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
967 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
968 if (!q_vector)
969 continue;
047e0030
AD
970 netif_napi_del(&q_vector->napi);
971 kfree(q_vector);
972 }
973 adapter->num_q_vectors = 0;
974}
975
976/**
977 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
978 *
979 * This function resets the device so that it has 0 rx queues, tx queues, and
980 * MSI-X interrupts allocated.
981 */
982static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
983{
984 igb_free_queues(adapter);
985 igb_free_q_vectors(adapter);
986 igb_reset_interrupt_capability(adapter);
987}
9d5c8243
AK
988
989/**
990 * igb_set_interrupt_capability - set MSI or MSI-X if supported
991 *
992 * Attempt to configure interrupts using the best available
993 * capabilities of the hardware and kernel.
994 **/
21adef3e 995static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
996{
997 int err;
998 int numvecs, i;
999
83b7180d 1000 /* Number of supported queues. */
a99955fc 1001 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1002 if (adapter->vfs_allocated_count)
1003 adapter->num_tx_queues = 1;
1004 else
1005 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1006
047e0030
AD
1007 /* start with one vector for every rx queue */
1008 numvecs = adapter->num_rx_queues;
1009
3ad2f3fb 1010 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1011 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1012 numvecs += adapter->num_tx_queues;
047e0030
AD
1013
1014 /* store the number of vectors reserved for queues */
1015 adapter->num_q_vectors = numvecs;
1016
1017 /* add 1 vector for link status interrupts */
1018 numvecs++;
9d5c8243
AK
1019 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1020 GFP_KERNEL);
1021 if (!adapter->msix_entries)
1022 goto msi_only;
1023
1024 for (i = 0; i < numvecs; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix(adapter->pdev,
1028 adapter->msix_entries,
1029 numvecs);
1030 if (err == 0)
34a20e89 1031 goto out;
9d5c8243
AK
1032
1033 igb_reset_interrupt_capability(adapter);
1034
1035 /* If we can't do MSI-X, try MSI */
1036msi_only:
2a3abf6d
AD
1037#ifdef CONFIG_PCI_IOV
1038 /* disable SR-IOV for non MSI-X configurations */
1039 if (adapter->vf_data) {
1040 struct e1000_hw *hw = &adapter->hw;
1041 /* disable iov and allow time for transactions to clear */
1042 pci_disable_sriov(adapter->pdev);
1043 msleep(500);
1044
1045 kfree(adapter->vf_data);
1046 adapter->vf_data = NULL;
1047 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1048 msleep(100);
1049 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1050 }
1051#endif
4fc82adf 1052 adapter->vfs_allocated_count = 0;
a99955fc 1053 adapter->rss_queues = 1;
4fc82adf 1054 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1055 adapter->num_rx_queues = 1;
661086df 1056 adapter->num_tx_queues = 1;
047e0030 1057 adapter->num_q_vectors = 1;
9d5c8243 1058 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1059 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1060out:
21adef3e
BH
1061 /* Notify the stack of the (possibly) reduced queue counts. */
1062 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1063 return netif_set_real_num_rx_queues(adapter->netdev,
1064 adapter->num_rx_queues);
9d5c8243
AK
1065}
1066
047e0030
AD
1067/**
1068 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1069 * @adapter: board private structure to initialize
1070 *
1071 * We allocate one q_vector per queue interrupt. If allocation fails we
1072 * return -ENOMEM.
1073 **/
1074static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1075{
1076 struct igb_q_vector *q_vector;
1077 struct e1000_hw *hw = &adapter->hw;
1078 int v_idx;
1079
1080 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1081 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1082 if (!q_vector)
1083 goto err_out;
1084 q_vector->adapter = adapter;
047e0030
AD
1085 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1086 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1087 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1088 adapter->q_vector[v_idx] = q_vector;
1089 }
1090 return 0;
1091
1092err_out:
fe0592b4 1093 igb_free_q_vectors(adapter);
047e0030
AD
1094 return -ENOMEM;
1095}
1096
1097static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1098 int ring_idx, int v_idx)
1099{
3025a446 1100 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1101
3025a446 1102 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1103 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1104 q_vector->itr_val = adapter->rx_itr_setting;
1105 if (q_vector->itr_val && q_vector->itr_val <= 3)
1106 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1107}
1108
1109static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1110 int ring_idx, int v_idx)
1111{
3025a446 1112 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1113
3025a446 1114 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1115 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1116 q_vector->itr_val = adapter->tx_itr_setting;
1117 if (q_vector->itr_val && q_vector->itr_val <= 3)
1118 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1119}
1120
1121/**
1122 * igb_map_ring_to_vector - maps allocated queues to vectors
1123 *
1124 * This function maps the recently allocated queues to vectors.
1125 **/
1126static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1127{
1128 int i;
1129 int v_idx = 0;
1130
1131 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1132 (adapter->num_q_vectors < adapter->num_tx_queues))
1133 return -ENOMEM;
1134
1135 if (adapter->num_q_vectors >=
1136 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1137 for (i = 0; i < adapter->num_rx_queues; i++)
1138 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1139 for (i = 0; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1141 } else {
1142 for (i = 0; i < adapter->num_rx_queues; i++) {
1143 if (i < adapter->num_tx_queues)
1144 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1145 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1146 }
1147 for (; i < adapter->num_tx_queues; i++)
1148 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1149 }
1150 return 0;
1151}
1152
1153/**
1154 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1155 *
1156 * This function initializes the interrupts and allocates all of the queues.
1157 **/
1158static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1159{
1160 struct pci_dev *pdev = adapter->pdev;
1161 int err;
1162
21adef3e
BH
1163 err = igb_set_interrupt_capability(adapter);
1164 if (err)
1165 return err;
047e0030
AD
1166
1167 err = igb_alloc_q_vectors(adapter);
1168 if (err) {
1169 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1170 goto err_alloc_q_vectors;
1171 }
1172
1173 err = igb_alloc_queues(adapter);
1174 if (err) {
1175 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1176 goto err_alloc_queues;
1177 }
1178
1179 err = igb_map_ring_to_vector(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1182 goto err_map_queues;
1183 }
1184
1185
1186 return 0;
1187err_map_queues:
1188 igb_free_queues(adapter);
1189err_alloc_queues:
1190 igb_free_q_vectors(adapter);
1191err_alloc_q_vectors:
1192 igb_reset_interrupt_capability(adapter);
1193 return err;
1194}
1195
9d5c8243
AK
1196/**
1197 * igb_request_irq - initialize interrupts
1198 *
1199 * Attempts to configure interrupts using the best available
1200 * capabilities of the hardware and kernel.
1201 **/
1202static int igb_request_irq(struct igb_adapter *adapter)
1203{
1204 struct net_device *netdev = adapter->netdev;
047e0030 1205 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1206 int err = 0;
1207
1208 if (adapter->msix_entries) {
1209 err = igb_request_msix(adapter);
844290e5 1210 if (!err)
9d5c8243 1211 goto request_done;
9d5c8243 1212 /* fall back to MSI */
047e0030 1213 igb_clear_interrupt_scheme(adapter);
9d5c8243 1214 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1215 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1216 igb_free_all_tx_resources(adapter);
1217 igb_free_all_rx_resources(adapter);
047e0030 1218 adapter->num_tx_queues = 1;
9d5c8243 1219 adapter->num_rx_queues = 1;
047e0030
AD
1220 adapter->num_q_vectors = 1;
1221 err = igb_alloc_q_vectors(adapter);
1222 if (err) {
1223 dev_err(&pdev->dev,
1224 "Unable to allocate memory for vectors\n");
1225 goto request_done;
1226 }
1227 err = igb_alloc_queues(adapter);
1228 if (err) {
1229 dev_err(&pdev->dev,
1230 "Unable to allocate memory for queues\n");
1231 igb_free_q_vectors(adapter);
1232 goto request_done;
1233 }
1234 igb_setup_all_tx_resources(adapter);
1235 igb_setup_all_rx_resources(adapter);
844290e5 1236 } else {
feeb2721 1237 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1238 }
844290e5 1239
7dfc16fa 1240 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1241 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1242 netdev->name, adapter);
9d5c8243
AK
1243 if (!err)
1244 goto request_done;
047e0030 1245
9d5c8243
AK
1246 /* fall back to legacy interrupts */
1247 igb_reset_interrupt_capability(adapter);
7dfc16fa 1248 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1249 }
1250
a0607fd3 1251 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1252 netdev->name, adapter);
9d5c8243 1253
6cb5e577 1254 if (err)
9d5c8243
AK
1255 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1256 err);
9d5c8243
AK
1257
1258request_done:
1259 return err;
1260}
1261
1262static void igb_free_irq(struct igb_adapter *adapter)
1263{
9d5c8243
AK
1264 if (adapter->msix_entries) {
1265 int vector = 0, i;
1266
047e0030 1267 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1268
047e0030
AD
1269 for (i = 0; i < adapter->num_q_vectors; i++) {
1270 struct igb_q_vector *q_vector = adapter->q_vector[i];
1271 free_irq(adapter->msix_entries[vector++].vector,
1272 q_vector);
1273 }
1274 } else {
1275 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1276 }
9d5c8243
AK
1277}
1278
1279/**
1280 * igb_irq_disable - Mask off interrupt generation on the NIC
1281 * @adapter: board private structure
1282 **/
1283static void igb_irq_disable(struct igb_adapter *adapter)
1284{
1285 struct e1000_hw *hw = &adapter->hw;
1286
25568a53
AD
1287 /*
1288 * we need to be careful when disabling interrupts. The VFs are also
1289 * mapped into these registers and so clearing the bits can cause
1290 * issues on the VF drivers so we only need to clear what we set
1291 */
9d5c8243 1292 if (adapter->msix_entries) {
2dfd1212
AD
1293 u32 regval = rd32(E1000_EIAM);
1294 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1295 wr32(E1000_EIMC, adapter->eims_enable_mask);
1296 regval = rd32(E1000_EIAC);
1297 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1298 }
844290e5
PW
1299
1300 wr32(E1000_IAM, 0);
9d5c8243
AK
1301 wr32(E1000_IMC, ~0);
1302 wrfl();
81a61859
ET
1303 if (adapter->msix_entries) {
1304 int i;
1305 for (i = 0; i < adapter->num_q_vectors; i++)
1306 synchronize_irq(adapter->msix_entries[i].vector);
1307 } else {
1308 synchronize_irq(adapter->pdev->irq);
1309 }
9d5c8243
AK
1310}
1311
1312/**
1313 * igb_irq_enable - Enable default interrupt generation settings
1314 * @adapter: board private structure
1315 **/
1316static void igb_irq_enable(struct igb_adapter *adapter)
1317{
1318 struct e1000_hw *hw = &adapter->hw;
1319
1320 if (adapter->msix_entries) {
25568a53 1321 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1322 u32 regval = rd32(E1000_EIAC);
1323 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1324 regval = rd32(E1000_EIAM);
1325 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1326 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1327 if (adapter->vfs_allocated_count) {
4ae196df 1328 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1329 ims |= E1000_IMS_VMMB;
1330 }
55cac248
AD
1331 if (adapter->hw.mac.type == e1000_82580)
1332 ims |= E1000_IMS_DRSTA;
1333
25568a53 1334 wr32(E1000_IMS, ims);
844290e5 1335 } else {
55cac248
AD
1336 wr32(E1000_IMS, IMS_ENABLE_MASK |
1337 E1000_IMS_DRSTA);
1338 wr32(E1000_IAM, IMS_ENABLE_MASK |
1339 E1000_IMS_DRSTA);
844290e5 1340 }
9d5c8243
AK
1341}
1342
1343static void igb_update_mng_vlan(struct igb_adapter *adapter)
1344{
51466239 1345 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1346 u16 vid = adapter->hw.mng_cookie.vlan_id;
1347 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1348
1349 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1350 /* add VID to filter table */
1351 igb_vfta_set(hw, vid, true);
1352 adapter->mng_vlan_id = vid;
1353 } else {
1354 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1355 }
1356
1357 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1358 (vid != old_vid) &&
1359 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1360 /* remove VID from filter table */
1361 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1362 }
1363}
1364
1365/**
1366 * igb_release_hw_control - release control of the h/w to f/w
1367 * @adapter: address of board private structure
1368 *
1369 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1370 * For ASF and Pass Through versions of f/w this means that the
1371 * driver is no longer loaded.
1372 *
1373 **/
1374static void igb_release_hw_control(struct igb_adapter *adapter)
1375{
1376 struct e1000_hw *hw = &adapter->hw;
1377 u32 ctrl_ext;
1378
1379 /* Let firmware take over control of h/w */
1380 ctrl_ext = rd32(E1000_CTRL_EXT);
1381 wr32(E1000_CTRL_EXT,
1382 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1383}
1384
9d5c8243
AK
1385/**
1386 * igb_get_hw_control - get control of the h/w from f/w
1387 * @adapter: address of board private structure
1388 *
1389 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1390 * For ASF and Pass Through versions of f/w this means that
1391 * the driver is loaded.
1392 *
1393 **/
1394static void igb_get_hw_control(struct igb_adapter *adapter)
1395{
1396 struct e1000_hw *hw = &adapter->hw;
1397 u32 ctrl_ext;
1398
1399 /* Let firmware know the driver has taken over */
1400 ctrl_ext = rd32(E1000_CTRL_EXT);
1401 wr32(E1000_CTRL_EXT,
1402 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1403}
1404
9d5c8243
AK
1405/**
1406 * igb_configure - configure the hardware for RX and TX
1407 * @adapter: private board structure
1408 **/
1409static void igb_configure(struct igb_adapter *adapter)
1410{
1411 struct net_device *netdev = adapter->netdev;
1412 int i;
1413
1414 igb_get_hw_control(adapter);
ff41f8dc 1415 igb_set_rx_mode(netdev);
9d5c8243
AK
1416
1417 igb_restore_vlan(adapter);
9d5c8243 1418
85b430b4 1419 igb_setup_tctl(adapter);
06cf2666 1420 igb_setup_mrqc(adapter);
9d5c8243 1421 igb_setup_rctl(adapter);
85b430b4
AD
1422
1423 igb_configure_tx(adapter);
9d5c8243 1424 igb_configure_rx(adapter);
662d7205
AD
1425
1426 igb_rx_fifo_flush_82575(&adapter->hw);
1427
c493ea45 1428 /* call igb_desc_unused which always leaves
9d5c8243
AK
1429 * at least 1 descriptor unused to make sure
1430 * next_to_use != next_to_clean */
1431 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1432 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1433 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1434 }
9d5c8243
AK
1435}
1436
88a268c1
NN
1437/**
1438 * igb_power_up_link - Power up the phy/serdes link
1439 * @adapter: address of board private structure
1440 **/
1441void igb_power_up_link(struct igb_adapter *adapter)
1442{
1443 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1444 igb_power_up_phy_copper(&adapter->hw);
1445 else
1446 igb_power_up_serdes_link_82575(&adapter->hw);
1447}
1448
1449/**
1450 * igb_power_down_link - Power down the phy/serdes link
1451 * @adapter: address of board private structure
1452 */
1453static void igb_power_down_link(struct igb_adapter *adapter)
1454{
1455 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1456 igb_power_down_phy_copper_82575(&adapter->hw);
1457 else
1458 igb_shutdown_serdes_link_82575(&adapter->hw);
1459}
9d5c8243
AK
1460
1461/**
1462 * igb_up - Open the interface and prepare it to handle traffic
1463 * @adapter: board private structure
1464 **/
9d5c8243
AK
1465int igb_up(struct igb_adapter *adapter)
1466{
1467 struct e1000_hw *hw = &adapter->hw;
1468 int i;
1469
1470 /* hardware has been reset, we need to reload some things */
1471 igb_configure(adapter);
1472
1473 clear_bit(__IGB_DOWN, &adapter->state);
1474
047e0030
AD
1475 for (i = 0; i < adapter->num_q_vectors; i++) {
1476 struct igb_q_vector *q_vector = adapter->q_vector[i];
1477 napi_enable(&q_vector->napi);
1478 }
844290e5 1479 if (adapter->msix_entries)
9d5c8243 1480 igb_configure_msix(adapter);
feeb2721
AD
1481 else
1482 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1483
1484 /* Clear any pending interrupts. */
1485 rd32(E1000_ICR);
1486 igb_irq_enable(adapter);
1487
d4960307
AD
1488 /* notify VFs that reset has been completed */
1489 if (adapter->vfs_allocated_count) {
1490 u32 reg_data = rd32(E1000_CTRL_EXT);
1491 reg_data |= E1000_CTRL_EXT_PFRSTD;
1492 wr32(E1000_CTRL_EXT, reg_data);
1493 }
1494
4cb9be7a
JB
1495 netif_tx_start_all_queues(adapter->netdev);
1496
25568a53
AD
1497 /* start the watchdog. */
1498 hw->mac.get_link_status = 1;
1499 schedule_work(&adapter->watchdog_task);
1500
9d5c8243
AK
1501 return 0;
1502}
1503
1504void igb_down(struct igb_adapter *adapter)
1505{
9d5c8243 1506 struct net_device *netdev = adapter->netdev;
330a6d6a 1507 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1508 u32 tctl, rctl;
1509 int i;
1510
1511 /* signal that we're down so the interrupt handler does not
1512 * reschedule our watchdog timer */
1513 set_bit(__IGB_DOWN, &adapter->state);
1514
1515 /* disable receives in the hardware */
1516 rctl = rd32(E1000_RCTL);
1517 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1518 /* flush and sleep below */
1519
fd2ea0a7 1520 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1521
1522 /* disable transmits in the hardware */
1523 tctl = rd32(E1000_TCTL);
1524 tctl &= ~E1000_TCTL_EN;
1525 wr32(E1000_TCTL, tctl);
1526 /* flush both disables and wait for them to finish */
1527 wrfl();
1528 msleep(10);
1529
047e0030
AD
1530 for (i = 0; i < adapter->num_q_vectors; i++) {
1531 struct igb_q_vector *q_vector = adapter->q_vector[i];
1532 napi_disable(&q_vector->napi);
1533 }
9d5c8243 1534
9d5c8243
AK
1535 igb_irq_disable(adapter);
1536
1537 del_timer_sync(&adapter->watchdog_timer);
1538 del_timer_sync(&adapter->phy_info_timer);
1539
9d5c8243 1540 netif_carrier_off(netdev);
04fe6358
AD
1541
1542 /* record the stats before reset*/
12dcd86b
ED
1543 spin_lock(&adapter->stats64_lock);
1544 igb_update_stats(adapter, &adapter->stats64);
1545 spin_unlock(&adapter->stats64_lock);
04fe6358 1546
9d5c8243
AK
1547 adapter->link_speed = 0;
1548 adapter->link_duplex = 0;
1549
3023682e
JK
1550 if (!pci_channel_offline(adapter->pdev))
1551 igb_reset(adapter);
9d5c8243
AK
1552 igb_clean_all_tx_rings(adapter);
1553 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1554#ifdef CONFIG_IGB_DCA
1555
1556 /* since we reset the hardware DCA settings were cleared */
1557 igb_setup_dca(adapter);
1558#endif
9d5c8243
AK
1559}
1560
1561void igb_reinit_locked(struct igb_adapter *adapter)
1562{
1563 WARN_ON(in_interrupt());
1564 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1565 msleep(1);
1566 igb_down(adapter);
1567 igb_up(adapter);
1568 clear_bit(__IGB_RESETTING, &adapter->state);
1569}
1570
1571void igb_reset(struct igb_adapter *adapter)
1572{
090b1795 1573 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1574 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1575 struct e1000_mac_info *mac = &hw->mac;
1576 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1577 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1578 u16 hwm;
1579
1580 /* Repartition Pba for greater than 9k mtu
1581 * To take effect CTRL.RST is required.
1582 */
fa4dfae0 1583 switch (mac->type) {
d2ba2ed8 1584 case e1000_i350:
55cac248
AD
1585 case e1000_82580:
1586 pba = rd32(E1000_RXPBS);
1587 pba = igb_rxpbs_adjust_82580(pba);
1588 break;
fa4dfae0 1589 case e1000_82576:
d249be54
AD
1590 pba = rd32(E1000_RXPBS);
1591 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1592 break;
1593 case e1000_82575:
1594 default:
1595 pba = E1000_PBA_34K;
1596 break;
2d064c06 1597 }
9d5c8243 1598
2d064c06
AD
1599 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1600 (mac->type < e1000_82576)) {
9d5c8243
AK
1601 /* adjust PBA for jumbo frames */
1602 wr32(E1000_PBA, pba);
1603
1604 /* To maintain wire speed transmits, the Tx FIFO should be
1605 * large enough to accommodate two full transmit packets,
1606 * rounded up to the next 1KB and expressed in KB. Likewise,
1607 * the Rx FIFO should be large enough to accommodate at least
1608 * one full receive packet and is similarly rounded up and
1609 * expressed in KB. */
1610 pba = rd32(E1000_PBA);
1611 /* upper 16 bits has Tx packet buffer allocation size in KB */
1612 tx_space = pba >> 16;
1613 /* lower 16 bits has Rx packet buffer allocation size in KB */
1614 pba &= 0xffff;
1615 /* the tx fifo also stores 16 bytes of information about the tx
1616 * but don't include ethernet FCS because hardware appends it */
1617 min_tx_space = (adapter->max_frame_size +
85e8d004 1618 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1619 ETH_FCS_LEN) * 2;
1620 min_tx_space = ALIGN(min_tx_space, 1024);
1621 min_tx_space >>= 10;
1622 /* software strips receive CRC, so leave room for it */
1623 min_rx_space = adapter->max_frame_size;
1624 min_rx_space = ALIGN(min_rx_space, 1024);
1625 min_rx_space >>= 10;
1626
1627 /* If current Tx allocation is less than the min Tx FIFO size,
1628 * and the min Tx FIFO size is less than the current Rx FIFO
1629 * allocation, take space away from current Rx allocation */
1630 if (tx_space < min_tx_space &&
1631 ((min_tx_space - tx_space) < pba)) {
1632 pba = pba - (min_tx_space - tx_space);
1633
1634 /* if short on rx space, rx wins and must trump tx
1635 * adjustment */
1636 if (pba < min_rx_space)
1637 pba = min_rx_space;
1638 }
2d064c06 1639 wr32(E1000_PBA, pba);
9d5c8243 1640 }
9d5c8243
AK
1641
1642 /* flow control settings */
1643 /* The high water mark must be low enough to fit one full frame
1644 * (or the size used for early receive) above it in the Rx FIFO.
1645 * Set it to the lower of:
1646 * - 90% of the Rx FIFO size, or
1647 * - the full Rx FIFO size minus one full frame */
1648 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1649 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1650
d405ea3e
AD
1651 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1652 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1653 fc->pause_time = 0xFFFF;
1654 fc->send_xon = 1;
0cce119a 1655 fc->current_mode = fc->requested_mode;
9d5c8243 1656
4ae196df
AD
1657 /* disable receive for all VFs and wait one second */
1658 if (adapter->vfs_allocated_count) {
1659 int i;
1660 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1661 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1662
1663 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1664 igb_ping_all_vfs(adapter);
4ae196df
AD
1665
1666 /* disable transmits and receives */
1667 wr32(E1000_VFRE, 0);
1668 wr32(E1000_VFTE, 0);
1669 }
1670
9d5c8243 1671 /* Allow time for pending master requests to run */
330a6d6a 1672 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1673 wr32(E1000_WUC, 0);
1674
330a6d6a 1675 if (hw->mac.ops.init_hw(hw))
090b1795 1676 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1677
55cac248
AD
1678 if (hw->mac.type == e1000_82580) {
1679 u32 reg = rd32(E1000_PCIEMISC);
1680 wr32(E1000_PCIEMISC,
1681 reg & ~E1000_PCIEMISC_LX_DECISION);
1682 }
88a268c1
NN
1683 if (!netif_running(adapter->netdev))
1684 igb_power_down_link(adapter);
1685
9d5c8243
AK
1686 igb_update_mng_vlan(adapter);
1687
1688 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1689 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1690
330a6d6a 1691 igb_get_phy_info(hw);
9d5c8243
AK
1692}
1693
2e5c6922 1694static const struct net_device_ops igb_netdev_ops = {
559e9c49 1695 .ndo_open = igb_open,
2e5c6922 1696 .ndo_stop = igb_close,
00829823 1697 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1698 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1699 .ndo_set_rx_mode = igb_set_rx_mode,
1700 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1701 .ndo_set_mac_address = igb_set_mac,
1702 .ndo_change_mtu = igb_change_mtu,
1703 .ndo_do_ioctl = igb_ioctl,
1704 .ndo_tx_timeout = igb_tx_timeout,
1705 .ndo_validate_addr = eth_validate_addr,
1706 .ndo_vlan_rx_register = igb_vlan_rx_register,
1707 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1708 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1709 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1710 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1711 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1712 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1713#ifdef CONFIG_NET_POLL_CONTROLLER
1714 .ndo_poll_controller = igb_netpoll,
1715#endif
1716};
1717
9d5c8243
AK
1718/**
1719 * igb_probe - Device Initialization Routine
1720 * @pdev: PCI device information struct
1721 * @ent: entry in igb_pci_tbl
1722 *
1723 * Returns 0 on success, negative on failure
1724 *
1725 * igb_probe initializes an adapter identified by a pci_dev structure.
1726 * The OS initialization, configuring of the adapter private structure,
1727 * and a hardware reset occur.
1728 **/
1729static int __devinit igb_probe(struct pci_dev *pdev,
1730 const struct pci_device_id *ent)
1731{
1732 struct net_device *netdev;
1733 struct igb_adapter *adapter;
1734 struct e1000_hw *hw;
4337e993 1735 u16 eeprom_data = 0;
9835fd73 1736 s32 ret_val;
4337e993 1737 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1738 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1739 unsigned long mmio_start, mmio_len;
2d6a5e95 1740 int err, pci_using_dac;
9d5c8243 1741 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1742 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1743
bded64a7
AG
1744 /* Catch broken hardware that put the wrong VF device ID in
1745 * the PCIe SR-IOV capability.
1746 */
1747 if (pdev->is_virtfn) {
1748 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1749 pci_name(pdev), pdev->vendor, pdev->device);
1750 return -EINVAL;
1751 }
1752
aed5dec3 1753 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1754 if (err)
1755 return err;
1756
1757 pci_using_dac = 0;
59d71989 1758 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1759 if (!err) {
59d71989 1760 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1761 if (!err)
1762 pci_using_dac = 1;
1763 } else {
59d71989 1764 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1765 if (err) {
59d71989 1766 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1767 if (err) {
1768 dev_err(&pdev->dev, "No usable DMA "
1769 "configuration, aborting\n");
1770 goto err_dma;
1771 }
1772 }
1773 }
1774
aed5dec3
AD
1775 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1776 IORESOURCE_MEM),
1777 igb_driver_name);
9d5c8243
AK
1778 if (err)
1779 goto err_pci_reg;
1780
19d5afd4 1781 pci_enable_pcie_error_reporting(pdev);
40a914fa 1782
9d5c8243 1783 pci_set_master(pdev);
c682fc23 1784 pci_save_state(pdev);
9d5c8243
AK
1785
1786 err = -ENOMEM;
1bfaf07b
AD
1787 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1788 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1789 if (!netdev)
1790 goto err_alloc_etherdev;
1791
1792 SET_NETDEV_DEV(netdev, &pdev->dev);
1793
1794 pci_set_drvdata(pdev, netdev);
1795 adapter = netdev_priv(netdev);
1796 adapter->netdev = netdev;
1797 adapter->pdev = pdev;
1798 hw = &adapter->hw;
1799 hw->back = adapter;
1800 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1801
1802 mmio_start = pci_resource_start(pdev, 0);
1803 mmio_len = pci_resource_len(pdev, 0);
1804
1805 err = -EIO;
28b0759c
AD
1806 hw->hw_addr = ioremap(mmio_start, mmio_len);
1807 if (!hw->hw_addr)
9d5c8243
AK
1808 goto err_ioremap;
1809
2e5c6922 1810 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1811 igb_set_ethtool_ops(netdev);
9d5c8243 1812 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1813
1814 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1815
1816 netdev->mem_start = mmio_start;
1817 netdev->mem_end = mmio_start + mmio_len;
1818
9d5c8243
AK
1819 /* PCI config space info */
1820 hw->vendor_id = pdev->vendor;
1821 hw->device_id = pdev->device;
1822 hw->revision_id = pdev->revision;
1823 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1824 hw->subsystem_device_id = pdev->subsystem_device;
1825
9d5c8243
AK
1826 /* Copy the default MAC, PHY and NVM function pointers */
1827 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1828 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1829 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1830 /* Initialize skew-specific constants */
1831 err = ei->get_invariants(hw);
1832 if (err)
450c87c8 1833 goto err_sw_init;
9d5c8243 1834
450c87c8 1835 /* setup the private structure */
9d5c8243
AK
1836 err = igb_sw_init(adapter);
1837 if (err)
1838 goto err_sw_init;
1839
1840 igb_get_bus_info_pcie(hw);
1841
1842 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1843
1844 /* Copper options */
1845 if (hw->phy.media_type == e1000_media_type_copper) {
1846 hw->phy.mdix = AUTO_ALL_MODES;
1847 hw->phy.disable_polarity_correction = false;
1848 hw->phy.ms_type = e1000_ms_hw_default;
1849 }
1850
1851 if (igb_check_reset_block(hw))
1852 dev_info(&pdev->dev,
1853 "PHY reset is blocked due to SOL/IDER session.\n");
1854
1855 netdev->features = NETIF_F_SG |
7d8eb29e 1856 NETIF_F_IP_CSUM |
9d5c8243
AK
1857 NETIF_F_HW_VLAN_TX |
1858 NETIF_F_HW_VLAN_RX |
1859 NETIF_F_HW_VLAN_FILTER;
1860
7d8eb29e 1861 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1862 netdev->features |= NETIF_F_TSO;
9d5c8243 1863 netdev->features |= NETIF_F_TSO6;
5c0999b7 1864 netdev->features |= NETIF_F_GRO;
d3352520 1865
48f29ffc
JK
1866 netdev->vlan_features |= NETIF_F_TSO;
1867 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1868 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1869 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1870 netdev->vlan_features |= NETIF_F_SG;
1871
7b872a55 1872 if (pci_using_dac) {
9d5c8243 1873 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1874 netdev->vlan_features |= NETIF_F_HIGHDMA;
1875 }
9d5c8243 1876
5b043fb0 1877 if (hw->mac.type >= e1000_82576)
b9473560
JB
1878 netdev->features |= NETIF_F_SCTP_CSUM;
1879
330a6d6a 1880 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1881
1882 /* before reading the NVM, reset the controller to put the device in a
1883 * known good starting state */
1884 hw->mac.ops.reset_hw(hw);
1885
1886 /* make sure the NVM is good */
1887 if (igb_validate_nvm_checksum(hw) < 0) {
1888 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1889 err = -EIO;
1890 goto err_eeprom;
1891 }
1892
1893 /* copy the MAC address out of the NVM */
1894 if (hw->mac.ops.read_mac_addr(hw))
1895 dev_err(&pdev->dev, "NVM Read Error\n");
1896
1897 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1898 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1899
1900 if (!is_valid_ether_addr(netdev->perm_addr)) {
1901 dev_err(&pdev->dev, "Invalid MAC Address\n");
1902 err = -EIO;
1903 goto err_eeprom;
1904 }
1905
c061b18d 1906 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1907 (unsigned long) adapter);
c061b18d 1908 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1909 (unsigned long) adapter);
9d5c8243
AK
1910
1911 INIT_WORK(&adapter->reset_task, igb_reset_task);
1912 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1913
450c87c8 1914 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1915 adapter->fc_autoneg = true;
1916 hw->mac.autoneg = true;
1917 hw->phy.autoneg_advertised = 0x2f;
1918
0cce119a
AD
1919 hw->fc.requested_mode = e1000_fc_default;
1920 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1921
9d5c8243
AK
1922 igb_validate_mdi_setting(hw);
1923
9d5c8243
AK
1924 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1925 * enable the ACPI Magic Packet filter
1926 */
1927
a2cf8b6c 1928 if (hw->bus.func == 0)
312c75ae 1929 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1930 else if (hw->mac.type == e1000_82580)
1931 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1932 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1933 &eeprom_data);
a2cf8b6c
AD
1934 else if (hw->bus.func == 1)
1935 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1936
1937 if (eeprom_data & eeprom_apme_mask)
1938 adapter->eeprom_wol |= E1000_WUFC_MAG;
1939
1940 /* now that we have the eeprom settings, apply the special cases where
1941 * the eeprom may be wrong or the board simply won't support wake on
1942 * lan on a particular port */
1943 switch (pdev->device) {
1944 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1945 adapter->eeprom_wol = 0;
1946 break;
1947 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1948 case E1000_DEV_ID_82576_FIBER:
1949 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1950 /* Wake events only supported on port A for dual fiber
1951 * regardless of eeprom setting */
1952 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1953 adapter->eeprom_wol = 0;
1954 break;
c8ea5ea9 1955 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1956 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1957 /* if quad port adapter, disable WoL on all but port A */
1958 if (global_quad_port_a != 0)
1959 adapter->eeprom_wol = 0;
1960 else
1961 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1962 /* Reset for multiple quad port adapters */
1963 if (++global_quad_port_a == 4)
1964 global_quad_port_a = 0;
1965 break;
9d5c8243
AK
1966 }
1967
1968 /* initialize the wol settings based on the eeprom settings */
1969 adapter->wol = adapter->eeprom_wol;
e1b86d84 1970 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1971
1972 /* reset the hardware with the new settings */
1973 igb_reset(adapter);
1974
1975 /* let the f/w know that the h/w is now under the control of the
1976 * driver. */
1977 igb_get_hw_control(adapter);
1978
9d5c8243
AK
1979 strcpy(netdev->name, "eth%d");
1980 err = register_netdev(netdev);
1981 if (err)
1982 goto err_register;
1983
b168dfc5
JB
1984 /* carrier off reporting is important to ethtool even BEFORE open */
1985 netif_carrier_off(netdev);
1986
421e02f0 1987#ifdef CONFIG_IGB_DCA
bbd98fe4 1988 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1989 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1990 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1991 igb_setup_dca(adapter);
1992 }
fe4506b6 1993
38c845c7 1994#endif
9d5c8243
AK
1995 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1996 /* print bus type/speed/width info */
7c510e4b 1997 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1998 netdev->name,
559e9c49 1999 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2000 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2001 "unknown"),
59c3de89
AD
2002 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2003 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2004 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2005 "unknown"),
7c510e4b 2006 netdev->dev_addr);
9d5c8243 2007
9835fd73
CW
2008 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2009 if (ret_val)
2010 strcpy(part_str, "Unknown");
2011 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2012 dev_info(&pdev->dev,
2013 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2014 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2015 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
2016 adapter->num_rx_queues, adapter->num_tx_queues);
2017
9d5c8243
AK
2018 return 0;
2019
2020err_register:
2021 igb_release_hw_control(adapter);
2022err_eeprom:
2023 if (!igb_check_reset_block(hw))
f5f4cf08 2024 igb_reset_phy(hw);
9d5c8243
AK
2025
2026 if (hw->flash_address)
2027 iounmap(hw->flash_address);
9d5c8243 2028err_sw_init:
047e0030 2029 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2030 iounmap(hw->hw_addr);
2031err_ioremap:
2032 free_netdev(netdev);
2033err_alloc_etherdev:
559e9c49
AD
2034 pci_release_selected_regions(pdev,
2035 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2036err_pci_reg:
2037err_dma:
2038 pci_disable_device(pdev);
2039 return err;
2040}
2041
2042/**
2043 * igb_remove - Device Removal Routine
2044 * @pdev: PCI device information struct
2045 *
2046 * igb_remove is called by the PCI subsystem to alert the driver
2047 * that it should release a PCI device. The could be caused by a
2048 * Hot-Plug event, or because the driver is going to be removed from
2049 * memory.
2050 **/
2051static void __devexit igb_remove(struct pci_dev *pdev)
2052{
2053 struct net_device *netdev = pci_get_drvdata(pdev);
2054 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2055 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2056
760141a5
TH
2057 /*
2058 * The watchdog timer may be rescheduled, so explicitly
2059 * disable watchdog from being rescheduled.
2060 */
9d5c8243
AK
2061 set_bit(__IGB_DOWN, &adapter->state);
2062 del_timer_sync(&adapter->watchdog_timer);
2063 del_timer_sync(&adapter->phy_info_timer);
2064
760141a5
TH
2065 cancel_work_sync(&adapter->reset_task);
2066 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2067
421e02f0 2068#ifdef CONFIG_IGB_DCA
7dfc16fa 2069 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2070 dev_info(&pdev->dev, "DCA disabled\n");
2071 dca_remove_requester(&pdev->dev);
7dfc16fa 2072 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2073 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2074 }
2075#endif
2076
9d5c8243
AK
2077 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2078 * would have already happened in close and is redundant. */
2079 igb_release_hw_control(adapter);
2080
2081 unregister_netdev(netdev);
2082
047e0030 2083 igb_clear_interrupt_scheme(adapter);
9d5c8243 2084
37680117
AD
2085#ifdef CONFIG_PCI_IOV
2086 /* reclaim resources allocated to VFs */
2087 if (adapter->vf_data) {
2088 /* disable iov and allow time for transactions to clear */
2089 pci_disable_sriov(pdev);
2090 msleep(500);
2091
2092 kfree(adapter->vf_data);
2093 adapter->vf_data = NULL;
2094 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2095 msleep(100);
2096 dev_info(&pdev->dev, "IOV Disabled\n");
2097 }
2098#endif
559e9c49 2099
28b0759c
AD
2100 iounmap(hw->hw_addr);
2101 if (hw->flash_address)
2102 iounmap(hw->flash_address);
559e9c49
AD
2103 pci_release_selected_regions(pdev,
2104 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2105
2106 free_netdev(netdev);
2107
19d5afd4 2108 pci_disable_pcie_error_reporting(pdev);
40a914fa 2109
9d5c8243
AK
2110 pci_disable_device(pdev);
2111}
2112
a6b623e0
AD
2113/**
2114 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2115 * @adapter: board private structure to initialize
2116 *
2117 * This function initializes the vf specific data storage and then attempts to
2118 * allocate the VFs. The reason for ordering it this way is because it is much
2119 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2120 * the memory for the VFs.
2121 **/
2122static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2123{
2124#ifdef CONFIG_PCI_IOV
2125 struct pci_dev *pdev = adapter->pdev;
2126
a6b623e0
AD
2127 if (adapter->vfs_allocated_count) {
2128 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2129 sizeof(struct vf_data_storage),
2130 GFP_KERNEL);
2131 /* if allocation failed then we do not support SR-IOV */
2132 if (!adapter->vf_data) {
2133 adapter->vfs_allocated_count = 0;
2134 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2135 "Data Storage\n");
2136 }
2137 }
2138
2139 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2140 kfree(adapter->vf_data);
2141 adapter->vf_data = NULL;
2142#endif /* CONFIG_PCI_IOV */
2143 adapter->vfs_allocated_count = 0;
2144#ifdef CONFIG_PCI_IOV
2145 } else {
2146 unsigned char mac_addr[ETH_ALEN];
2147 int i;
2148 dev_info(&pdev->dev, "%d vfs allocated\n",
2149 adapter->vfs_allocated_count);
2150 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2151 random_ether_addr(mac_addr);
2152 igb_set_vf_mac(adapter, i, mac_addr);
2153 }
2154 }
2155#endif /* CONFIG_PCI_IOV */
2156}
2157
115f459a
AD
2158
2159/**
2160 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2161 * @adapter: board private structure to initialize
2162 *
2163 * igb_init_hw_timer initializes the function pointer and values for the hw
2164 * timer found in hardware.
2165 **/
2166static void igb_init_hw_timer(struct igb_adapter *adapter)
2167{
2168 struct e1000_hw *hw = &adapter->hw;
2169
2170 switch (hw->mac.type) {
d2ba2ed8 2171 case e1000_i350:
55cac248
AD
2172 case e1000_82580:
2173 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2174 adapter->cycles.read = igb_read_clock;
2175 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2176 adapter->cycles.mult = 1;
2177 /*
2178 * The 82580 timesync updates the system timer every 8ns by 8ns
2179 * and the value cannot be shifted. Instead we need to shift
2180 * the registers to generate a 64bit timer value. As a result
2181 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2182 * 24 in order to generate a larger value for synchronization.
2183 */
2184 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2185 /* disable system timer temporarily by setting bit 31 */
2186 wr32(E1000_TSAUXC, 0x80000000);
2187 wrfl();
2188
2189 /* Set registers so that rollover occurs soon to test this. */
2190 wr32(E1000_SYSTIMR, 0x00000000);
2191 wr32(E1000_SYSTIML, 0x80000000);
2192 wr32(E1000_SYSTIMH, 0x000000FF);
2193 wrfl();
2194
2195 /* enable system timer by clearing bit 31 */
2196 wr32(E1000_TSAUXC, 0x0);
2197 wrfl();
2198
2199 timecounter_init(&adapter->clock,
2200 &adapter->cycles,
2201 ktime_to_ns(ktime_get_real()));
2202 /*
2203 * Synchronize our NIC clock against system wall clock. NIC
2204 * time stamp reading requires ~3us per sample, each sample
2205 * was pretty stable even under load => only require 10
2206 * samples for each offset comparison.
2207 */
2208 memset(&adapter->compare, 0, sizeof(adapter->compare));
2209 adapter->compare.source = &adapter->clock;
2210 adapter->compare.target = ktime_get_real;
2211 adapter->compare.num_samples = 10;
2212 timecompare_update(&adapter->compare, 0);
2213 break;
115f459a
AD
2214 case e1000_82576:
2215 /*
2216 * Initialize hardware timer: we keep it running just in case
2217 * that some program needs it later on.
2218 */
2219 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2220 adapter->cycles.read = igb_read_clock;
2221 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2222 adapter->cycles.mult = 1;
2223 /**
2224 * Scale the NIC clock cycle by a large factor so that
2225 * relatively small clock corrections can be added or
2226 * substracted at each clock tick. The drawbacks of a large
2227 * factor are a) that the clock register overflows more quickly
2228 * (not such a big deal) and b) that the increment per tick has
2229 * to fit into 24 bits. As a result we need to use a shift of
2230 * 19 so we can fit a value of 16 into the TIMINCA register.
2231 */
2232 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2233 wr32(E1000_TIMINCA,
2234 (1 << E1000_TIMINCA_16NS_SHIFT) |
2235 (16 << IGB_82576_TSYNC_SHIFT));
2236
2237 /* Set registers so that rollover occurs soon to test this. */
2238 wr32(E1000_SYSTIML, 0x00000000);
2239 wr32(E1000_SYSTIMH, 0xFF800000);
2240 wrfl();
2241
2242 timecounter_init(&adapter->clock,
2243 &adapter->cycles,
2244 ktime_to_ns(ktime_get_real()));
2245 /*
2246 * Synchronize our NIC clock against system wall clock. NIC
2247 * time stamp reading requires ~3us per sample, each sample
2248 * was pretty stable even under load => only require 10
2249 * samples for each offset comparison.
2250 */
2251 memset(&adapter->compare, 0, sizeof(adapter->compare));
2252 adapter->compare.source = &adapter->clock;
2253 adapter->compare.target = ktime_get_real;
2254 adapter->compare.num_samples = 10;
2255 timecompare_update(&adapter->compare, 0);
2256 break;
2257 case e1000_82575:
2258 /* 82575 does not support timesync */
2259 default:
2260 break;
2261 }
2262
2263}
2264
9d5c8243
AK
2265/**
2266 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2267 * @adapter: board private structure to initialize
2268 *
2269 * igb_sw_init initializes the Adapter private data structure.
2270 * Fields are initialized based on PCI device information and
2271 * OS network device settings (MTU size).
2272 **/
2273static int __devinit igb_sw_init(struct igb_adapter *adapter)
2274{
2275 struct e1000_hw *hw = &adapter->hw;
2276 struct net_device *netdev = adapter->netdev;
2277 struct pci_dev *pdev = adapter->pdev;
2278
2279 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2280
68fd9910
AD
2281 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2282 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2283 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2284 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2285
9d5c8243
AK
2286 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2287 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2288
12dcd86b 2289 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2290#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2291 switch (hw->mac.type) {
2292 case e1000_82576:
2293 case e1000_i350:
c0f2276f 2294 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
6b78bb1d
CW
2295 break;
2296 default:
2297 break;
2298 }
a6b623e0 2299#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2300 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2301
2302 /*
2303 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2304 * then we should combine the queues into a queue pair in order to
2305 * conserve interrupts due to limited supply
2306 */
2307 if ((adapter->rss_queues > 4) ||
2308 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2309 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2310
a6b623e0 2311 /* This call may decrease the number of queues */
047e0030 2312 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2313 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2314 return -ENOMEM;
2315 }
2316
115f459a 2317 igb_init_hw_timer(adapter);
a6b623e0
AD
2318 igb_probe_vfs(adapter);
2319
9d5c8243
AK
2320 /* Explicitly disable IRQ since the NIC can be in any state. */
2321 igb_irq_disable(adapter);
2322
2323 set_bit(__IGB_DOWN, &adapter->state);
2324 return 0;
2325}
2326
2327/**
2328 * igb_open - Called when a network interface is made active
2329 * @netdev: network interface device structure
2330 *
2331 * Returns 0 on success, negative value on failure
2332 *
2333 * The open entry point is called when a network interface is made
2334 * active by the system (IFF_UP). At this point all resources needed
2335 * for transmit and receive operations are allocated, the interrupt
2336 * handler is registered with the OS, the watchdog timer is started,
2337 * and the stack is notified that the interface is ready.
2338 **/
2339static int igb_open(struct net_device *netdev)
2340{
2341 struct igb_adapter *adapter = netdev_priv(netdev);
2342 struct e1000_hw *hw = &adapter->hw;
2343 int err;
2344 int i;
2345
2346 /* disallow open during test */
2347 if (test_bit(__IGB_TESTING, &adapter->state))
2348 return -EBUSY;
2349
b168dfc5
JB
2350 netif_carrier_off(netdev);
2351
9d5c8243
AK
2352 /* allocate transmit descriptors */
2353 err = igb_setup_all_tx_resources(adapter);
2354 if (err)
2355 goto err_setup_tx;
2356
2357 /* allocate receive descriptors */
2358 err = igb_setup_all_rx_resources(adapter);
2359 if (err)
2360 goto err_setup_rx;
2361
88a268c1 2362 igb_power_up_link(adapter);
9d5c8243 2363
9d5c8243
AK
2364 /* before we allocate an interrupt, we must be ready to handle it.
2365 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2366 * as soon as we call pci_request_irq, so we have to setup our
2367 * clean_rx handler before we do so. */
2368 igb_configure(adapter);
2369
2370 err = igb_request_irq(adapter);
2371 if (err)
2372 goto err_req_irq;
2373
2374 /* From here on the code is the same as igb_up() */
2375 clear_bit(__IGB_DOWN, &adapter->state);
2376
047e0030
AD
2377 for (i = 0; i < adapter->num_q_vectors; i++) {
2378 struct igb_q_vector *q_vector = adapter->q_vector[i];
2379 napi_enable(&q_vector->napi);
2380 }
9d5c8243
AK
2381
2382 /* Clear any pending interrupts. */
2383 rd32(E1000_ICR);
844290e5
PW
2384
2385 igb_irq_enable(adapter);
2386
d4960307
AD
2387 /* notify VFs that reset has been completed */
2388 if (adapter->vfs_allocated_count) {
2389 u32 reg_data = rd32(E1000_CTRL_EXT);
2390 reg_data |= E1000_CTRL_EXT_PFRSTD;
2391 wr32(E1000_CTRL_EXT, reg_data);
2392 }
2393
d55b53ff
JK
2394 netif_tx_start_all_queues(netdev);
2395
25568a53
AD
2396 /* start the watchdog. */
2397 hw->mac.get_link_status = 1;
2398 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2399
2400 return 0;
2401
2402err_req_irq:
2403 igb_release_hw_control(adapter);
88a268c1 2404 igb_power_down_link(adapter);
9d5c8243
AK
2405 igb_free_all_rx_resources(adapter);
2406err_setup_rx:
2407 igb_free_all_tx_resources(adapter);
2408err_setup_tx:
2409 igb_reset(adapter);
2410
2411 return err;
2412}
2413
2414/**
2415 * igb_close - Disables a network interface
2416 * @netdev: network interface device structure
2417 *
2418 * Returns 0, this is not allowed to fail
2419 *
2420 * The close entry point is called when an interface is de-activated
2421 * by the OS. The hardware is still under the driver's control, but
2422 * needs to be disabled. A global MAC reset is issued to stop the
2423 * hardware, and all transmit and receive resources are freed.
2424 **/
2425static int igb_close(struct net_device *netdev)
2426{
2427 struct igb_adapter *adapter = netdev_priv(netdev);
2428
2429 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2430 igb_down(adapter);
2431
2432 igb_free_irq(adapter);
2433
2434 igb_free_all_tx_resources(adapter);
2435 igb_free_all_rx_resources(adapter);
2436
9d5c8243
AK
2437 return 0;
2438}
2439
2440/**
2441 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2442 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2443 *
2444 * Return 0 on success, negative on failure
2445 **/
80785298 2446int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2447{
59d71989 2448 struct device *dev = tx_ring->dev;
9d5c8243
AK
2449 int size;
2450
2451 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2452 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2453 if (!tx_ring->buffer_info)
2454 goto err;
9d5c8243
AK
2455
2456 /* round up to nearest 4K */
85e8d004 2457 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2458 tx_ring->size = ALIGN(tx_ring->size, 4096);
2459
59d71989
AD
2460 tx_ring->desc = dma_alloc_coherent(dev,
2461 tx_ring->size,
2462 &tx_ring->dma,
2463 GFP_KERNEL);
9d5c8243
AK
2464
2465 if (!tx_ring->desc)
2466 goto err;
2467
9d5c8243
AK
2468 tx_ring->next_to_use = 0;
2469 tx_ring->next_to_clean = 0;
9d5c8243
AK
2470 return 0;
2471
2472err:
2473 vfree(tx_ring->buffer_info);
59d71989 2474 dev_err(dev,
9d5c8243
AK
2475 "Unable to allocate memory for the transmit descriptor ring\n");
2476 return -ENOMEM;
2477}
2478
2479/**
2480 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2481 * (Descriptors) for all queues
2482 * @adapter: board private structure
2483 *
2484 * Return 0 on success, negative on failure
2485 **/
2486static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2487{
439705e1 2488 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2489 int i, err = 0;
2490
2491 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2492 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2493 if (err) {
439705e1 2494 dev_err(&pdev->dev,
9d5c8243
AK
2495 "Allocation for Tx Queue %u failed\n", i);
2496 for (i--; i >= 0; i--)
3025a446 2497 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2498 break;
2499 }
2500 }
2501
a99955fc 2502 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2503 int r_idx = i % adapter->num_tx_queues;
3025a446 2504 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2505 }
9d5c8243
AK
2506 return err;
2507}
2508
2509/**
85b430b4
AD
2510 * igb_setup_tctl - configure the transmit control registers
2511 * @adapter: Board private structure
9d5c8243 2512 **/
d7ee5b3a 2513void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2514{
9d5c8243
AK
2515 struct e1000_hw *hw = &adapter->hw;
2516 u32 tctl;
9d5c8243 2517
85b430b4
AD
2518 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2519 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2520
2521 /* Program the Transmit Control Register */
9d5c8243
AK
2522 tctl = rd32(E1000_TCTL);
2523 tctl &= ~E1000_TCTL_CT;
2524 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2525 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2526
2527 igb_config_collision_dist(hw);
2528
9d5c8243
AK
2529 /* Enable transmits */
2530 tctl |= E1000_TCTL_EN;
2531
2532 wr32(E1000_TCTL, tctl);
2533}
2534
85b430b4
AD
2535/**
2536 * igb_configure_tx_ring - Configure transmit ring after Reset
2537 * @adapter: board private structure
2538 * @ring: tx ring to configure
2539 *
2540 * Configure a transmit ring after a reset.
2541 **/
d7ee5b3a
AD
2542void igb_configure_tx_ring(struct igb_adapter *adapter,
2543 struct igb_ring *ring)
85b430b4
AD
2544{
2545 struct e1000_hw *hw = &adapter->hw;
2546 u32 txdctl;
2547 u64 tdba = ring->dma;
2548 int reg_idx = ring->reg_idx;
2549
2550 /* disable the queue */
2551 txdctl = rd32(E1000_TXDCTL(reg_idx));
2552 wr32(E1000_TXDCTL(reg_idx),
2553 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2554 wrfl();
2555 mdelay(10);
2556
2557 wr32(E1000_TDLEN(reg_idx),
2558 ring->count * sizeof(union e1000_adv_tx_desc));
2559 wr32(E1000_TDBAL(reg_idx),
2560 tdba & 0x00000000ffffffffULL);
2561 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2562
fce99e34
AD
2563 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2564 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2565 writel(0, ring->head);
2566 writel(0, ring->tail);
85b430b4
AD
2567
2568 txdctl |= IGB_TX_PTHRESH;
2569 txdctl |= IGB_TX_HTHRESH << 8;
2570 txdctl |= IGB_TX_WTHRESH << 16;
2571
2572 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2573 wr32(E1000_TXDCTL(reg_idx), txdctl);
2574}
2575
2576/**
2577 * igb_configure_tx - Configure transmit Unit after Reset
2578 * @adapter: board private structure
2579 *
2580 * Configure the Tx unit of the MAC after a reset.
2581 **/
2582static void igb_configure_tx(struct igb_adapter *adapter)
2583{
2584 int i;
2585
2586 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2587 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2588}
2589
9d5c8243
AK
2590/**
2591 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2592 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2593 *
2594 * Returns 0 on success, negative on failure
2595 **/
80785298 2596int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2597{
59d71989 2598 struct device *dev = rx_ring->dev;
9d5c8243
AK
2599 int size, desc_len;
2600
2601 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2602 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2603 if (!rx_ring->buffer_info)
2604 goto err;
9d5c8243
AK
2605
2606 desc_len = sizeof(union e1000_adv_rx_desc);
2607
2608 /* Round up to nearest 4K */
2609 rx_ring->size = rx_ring->count * desc_len;
2610 rx_ring->size = ALIGN(rx_ring->size, 4096);
2611
59d71989
AD
2612 rx_ring->desc = dma_alloc_coherent(dev,
2613 rx_ring->size,
2614 &rx_ring->dma,
2615 GFP_KERNEL);
9d5c8243
AK
2616
2617 if (!rx_ring->desc)
2618 goto err;
2619
2620 rx_ring->next_to_clean = 0;
2621 rx_ring->next_to_use = 0;
9d5c8243 2622
9d5c8243
AK
2623 return 0;
2624
2625err:
2626 vfree(rx_ring->buffer_info);
439705e1 2627 rx_ring->buffer_info = NULL;
59d71989
AD
2628 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2629 " ring\n");
9d5c8243
AK
2630 return -ENOMEM;
2631}
2632
2633/**
2634 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2635 * (Descriptors) for all queues
2636 * @adapter: board private structure
2637 *
2638 * Return 0 on success, negative on failure
2639 **/
2640static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2641{
439705e1 2642 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2643 int i, err = 0;
2644
2645 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2646 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2647 if (err) {
439705e1 2648 dev_err(&pdev->dev,
9d5c8243
AK
2649 "Allocation for Rx Queue %u failed\n", i);
2650 for (i--; i >= 0; i--)
3025a446 2651 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2652 break;
2653 }
2654 }
2655
2656 return err;
2657}
2658
06cf2666
AD
2659/**
2660 * igb_setup_mrqc - configure the multiple receive queue control registers
2661 * @adapter: Board private structure
2662 **/
2663static void igb_setup_mrqc(struct igb_adapter *adapter)
2664{
2665 struct e1000_hw *hw = &adapter->hw;
2666 u32 mrqc, rxcsum;
2667 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2668 union e1000_reta {
2669 u32 dword;
2670 u8 bytes[4];
2671 } reta;
2672 static const u8 rsshash[40] = {
2673 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2674 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2675 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2676 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2677
2678 /* Fill out hash function seeds */
2679 for (j = 0; j < 10; j++) {
2680 u32 rsskey = rsshash[(j * 4)];
2681 rsskey |= rsshash[(j * 4) + 1] << 8;
2682 rsskey |= rsshash[(j * 4) + 2] << 16;
2683 rsskey |= rsshash[(j * 4) + 3] << 24;
2684 array_wr32(E1000_RSSRK(0), j, rsskey);
2685 }
2686
a99955fc 2687 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2688
2689 if (adapter->vfs_allocated_count) {
2690 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2691 switch (hw->mac.type) {
d2ba2ed8 2692 case e1000_i350:
55cac248
AD
2693 case e1000_82580:
2694 num_rx_queues = 1;
2695 shift = 0;
2696 break;
06cf2666
AD
2697 case e1000_82576:
2698 shift = 3;
2699 num_rx_queues = 2;
2700 break;
2701 case e1000_82575:
2702 shift = 2;
2703 shift2 = 6;
2704 default:
2705 break;
2706 }
2707 } else {
2708 if (hw->mac.type == e1000_82575)
2709 shift = 6;
2710 }
2711
2712 for (j = 0; j < (32 * 4); j++) {
2713 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2714 if (shift2)
2715 reta.bytes[j & 3] |= num_rx_queues << shift2;
2716 if ((j & 3) == 3)
2717 wr32(E1000_RETA(j >> 2), reta.dword);
2718 }
2719
2720 /*
2721 * Disable raw packet checksumming so that RSS hash is placed in
2722 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2723 * offloads as they are enabled by default
2724 */
2725 rxcsum = rd32(E1000_RXCSUM);
2726 rxcsum |= E1000_RXCSUM_PCSD;
2727
2728 if (adapter->hw.mac.type >= e1000_82576)
2729 /* Enable Receive Checksum Offload for SCTP */
2730 rxcsum |= E1000_RXCSUM_CRCOFL;
2731
2732 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2733 wr32(E1000_RXCSUM, rxcsum);
2734
2735 /* If VMDq is enabled then we set the appropriate mode for that, else
2736 * we default to RSS so that an RSS hash is calculated per packet even
2737 * if we are only using one queue */
2738 if (adapter->vfs_allocated_count) {
2739 if (hw->mac.type > e1000_82575) {
2740 /* Set the default pool for the PF's first queue */
2741 u32 vtctl = rd32(E1000_VT_CTL);
2742 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2743 E1000_VT_CTL_DISABLE_DEF_POOL);
2744 vtctl |= adapter->vfs_allocated_count <<
2745 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2746 wr32(E1000_VT_CTL, vtctl);
2747 }
a99955fc 2748 if (adapter->rss_queues > 1)
06cf2666
AD
2749 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2750 else
2751 mrqc = E1000_MRQC_ENABLE_VMDQ;
2752 } else {
2753 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2754 }
2755 igb_vmm_control(adapter);
2756
4478a9cd
AD
2757 /*
2758 * Generate RSS hash based on TCP port numbers and/or
2759 * IPv4/v6 src and dst addresses since UDP cannot be
2760 * hashed reliably due to IP fragmentation
2761 */
2762 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2763 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2764 E1000_MRQC_RSS_FIELD_IPV6 |
2765 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2766 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2767
2768 wr32(E1000_MRQC, mrqc);
2769}
2770
9d5c8243
AK
2771/**
2772 * igb_setup_rctl - configure the receive control registers
2773 * @adapter: Board private structure
2774 **/
d7ee5b3a 2775void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2776{
2777 struct e1000_hw *hw = &adapter->hw;
2778 u32 rctl;
9d5c8243
AK
2779
2780 rctl = rd32(E1000_RCTL);
2781
2782 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2783 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2784
69d728ba 2785 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2786 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2787
87cb7e8c
AK
2788 /*
2789 * enable stripping of CRC. It's unlikely this will break BMC
2790 * redirection as it did with e1000. Newer features require
2791 * that the HW strips the CRC.
73cd78f1 2792 */
87cb7e8c 2793 rctl |= E1000_RCTL_SECRC;
9d5c8243 2794
559e9c49 2795 /* disable store bad packets and clear size bits. */
ec54d7d6 2796 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2797
6ec43fe6
AD
2798 /* enable LPE to prevent packets larger than max_frame_size */
2799 rctl |= E1000_RCTL_LPE;
9d5c8243 2800
952f72a8
AD
2801 /* disable queue 0 to prevent tail write w/o re-config */
2802 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2803
e1739522
AD
2804 /* Attention!!! For SR-IOV PF driver operations you must enable
2805 * queue drop for all VF and PF queues to prevent head of line blocking
2806 * if an un-trusted VF does not provide descriptors to hardware.
2807 */
2808 if (adapter->vfs_allocated_count) {
e1739522
AD
2809 /* set all queue drop enable bits */
2810 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2811 }
2812
9d5c8243
AK
2813 wr32(E1000_RCTL, rctl);
2814}
2815
7d5753f0
AD
2816static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2817 int vfn)
2818{
2819 struct e1000_hw *hw = &adapter->hw;
2820 u32 vmolr;
2821
2822 /* if it isn't the PF check to see if VFs are enabled and
2823 * increase the size to support vlan tags */
2824 if (vfn < adapter->vfs_allocated_count &&
2825 adapter->vf_data[vfn].vlans_enabled)
2826 size += VLAN_TAG_SIZE;
2827
2828 vmolr = rd32(E1000_VMOLR(vfn));
2829 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2830 vmolr |= size | E1000_VMOLR_LPE;
2831 wr32(E1000_VMOLR(vfn), vmolr);
2832
2833 return 0;
2834}
2835
e1739522
AD
2836/**
2837 * igb_rlpml_set - set maximum receive packet size
2838 * @adapter: board private structure
2839 *
2840 * Configure maximum receivable packet size.
2841 **/
2842static void igb_rlpml_set(struct igb_adapter *adapter)
2843{
2844 u32 max_frame_size = adapter->max_frame_size;
2845 struct e1000_hw *hw = &adapter->hw;
2846 u16 pf_id = adapter->vfs_allocated_count;
2847
2848 if (adapter->vlgrp)
2849 max_frame_size += VLAN_TAG_SIZE;
2850
2851 /* if vfs are enabled we set RLPML to the largest possible request
2852 * size and set the VMOLR RLPML to the size we need */
2853 if (pf_id) {
2854 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2855 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2856 }
2857
2858 wr32(E1000_RLPML, max_frame_size);
2859}
2860
8151d294
WM
2861static inline void igb_set_vmolr(struct igb_adapter *adapter,
2862 int vfn, bool aupe)
7d5753f0
AD
2863{
2864 struct e1000_hw *hw = &adapter->hw;
2865 u32 vmolr;
2866
2867 /*
2868 * This register exists only on 82576 and newer so if we are older then
2869 * we should exit and do nothing
2870 */
2871 if (hw->mac.type < e1000_82576)
2872 return;
2873
2874 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2875 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2876 if (aupe)
2877 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2878 else
2879 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2880
2881 /* clear all bits that might not be set */
2882 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2883
a99955fc 2884 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2885 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2886 /*
2887 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2888 * multicast packets
2889 */
2890 if (vfn <= adapter->vfs_allocated_count)
2891 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2892
2893 wr32(E1000_VMOLR(vfn), vmolr);
2894}
2895
85b430b4
AD
2896/**
2897 * igb_configure_rx_ring - Configure a receive ring after Reset
2898 * @adapter: board private structure
2899 * @ring: receive ring to be configured
2900 *
2901 * Configure the Rx unit of the MAC after a reset.
2902 **/
d7ee5b3a
AD
2903void igb_configure_rx_ring(struct igb_adapter *adapter,
2904 struct igb_ring *ring)
85b430b4
AD
2905{
2906 struct e1000_hw *hw = &adapter->hw;
2907 u64 rdba = ring->dma;
2908 int reg_idx = ring->reg_idx;
952f72a8 2909 u32 srrctl, rxdctl;
85b430b4
AD
2910
2911 /* disable the queue */
2912 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2913 wr32(E1000_RXDCTL(reg_idx),
2914 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2915
2916 /* Set DMA base address registers */
2917 wr32(E1000_RDBAL(reg_idx),
2918 rdba & 0x00000000ffffffffULL);
2919 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2920 wr32(E1000_RDLEN(reg_idx),
2921 ring->count * sizeof(union e1000_adv_rx_desc));
2922
2923 /* initialize head and tail */
fce99e34
AD
2924 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2925 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2926 writel(0, ring->head);
2927 writel(0, ring->tail);
85b430b4 2928
952f72a8 2929 /* set descriptor configuration */
4c844851
AD
2930 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2931 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2932 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2933#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2934 srrctl |= IGB_RXBUFFER_16384 >>
2935 E1000_SRRCTL_BSIZEPKT_SHIFT;
2936#else
2937 srrctl |= (PAGE_SIZE / 2) >>
2938 E1000_SRRCTL_BSIZEPKT_SHIFT;
2939#endif
2940 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2941 } else {
4c844851 2942 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2943 E1000_SRRCTL_BSIZEPKT_SHIFT;
2944 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2945 }
757b77e2
NN
2946 if (hw->mac.type == e1000_82580)
2947 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2948 /* Only set Drop Enable if we are supporting multiple queues */
2949 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2950 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2951
2952 wr32(E1000_SRRCTL(reg_idx), srrctl);
2953
7d5753f0 2954 /* set filtering for VMDQ pools */
8151d294 2955 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2956
85b430b4
AD
2957 /* enable receive descriptor fetching */
2958 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2959 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2960 rxdctl &= 0xFFF00000;
2961 rxdctl |= IGB_RX_PTHRESH;
2962 rxdctl |= IGB_RX_HTHRESH << 8;
2963 rxdctl |= IGB_RX_WTHRESH << 16;
2964 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2965}
2966
9d5c8243
AK
2967/**
2968 * igb_configure_rx - Configure receive Unit after Reset
2969 * @adapter: board private structure
2970 *
2971 * Configure the Rx unit of the MAC after a reset.
2972 **/
2973static void igb_configure_rx(struct igb_adapter *adapter)
2974{
9107584e 2975 int i;
9d5c8243 2976
68d480c4
AD
2977 /* set UTA to appropriate mode */
2978 igb_set_uta(adapter);
2979
26ad9178
AD
2980 /* set the correct pool for the PF default MAC address in entry 0 */
2981 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2982 adapter->vfs_allocated_count);
2983
06cf2666
AD
2984 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2985 * the Base and Length of the Rx Descriptor Ring */
2986 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2987 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2988}
2989
2990/**
2991 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2992 * @tx_ring: Tx descriptor ring for a specific queue
2993 *
2994 * Free all transmit software resources
2995 **/
68fd9910 2996void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2997{
3b644cf6 2998 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2999
3000 vfree(tx_ring->buffer_info);
3001 tx_ring->buffer_info = NULL;
3002
439705e1
AD
3003 /* if not set, then don't free */
3004 if (!tx_ring->desc)
3005 return;
3006
59d71989
AD
3007 dma_free_coherent(tx_ring->dev, tx_ring->size,
3008 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3009
3010 tx_ring->desc = NULL;
3011}
3012
3013/**
3014 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3015 * @adapter: board private structure
3016 *
3017 * Free all transmit software resources
3018 **/
3019static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3020{
3021 int i;
3022
3023 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3024 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3025}
3026
b1a436c3
AD
3027void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3028 struct igb_buffer *buffer_info)
9d5c8243 3029{
6366ad33
AD
3030 if (buffer_info->dma) {
3031 if (buffer_info->mapped_as_page)
59d71989 3032 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3033 buffer_info->dma,
3034 buffer_info->length,
59d71989 3035 DMA_TO_DEVICE);
6366ad33 3036 else
59d71989 3037 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3038 buffer_info->dma,
3039 buffer_info->length,
59d71989 3040 DMA_TO_DEVICE);
6366ad33
AD
3041 buffer_info->dma = 0;
3042 }
9d5c8243
AK
3043 if (buffer_info->skb) {
3044 dev_kfree_skb_any(buffer_info->skb);
3045 buffer_info->skb = NULL;
3046 }
3047 buffer_info->time_stamp = 0;
6366ad33
AD
3048 buffer_info->length = 0;
3049 buffer_info->next_to_watch = 0;
3050 buffer_info->mapped_as_page = false;
9d5c8243
AK
3051}
3052
3053/**
3054 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3055 * @tx_ring: ring to be cleaned
3056 **/
3b644cf6 3057static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3058{
3059 struct igb_buffer *buffer_info;
3060 unsigned long size;
3061 unsigned int i;
3062
3063 if (!tx_ring->buffer_info)
3064 return;
3065 /* Free all the Tx ring sk_buffs */
3066
3067 for (i = 0; i < tx_ring->count; i++) {
3068 buffer_info = &tx_ring->buffer_info[i];
80785298 3069 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3070 }
3071
3072 size = sizeof(struct igb_buffer) * tx_ring->count;
3073 memset(tx_ring->buffer_info, 0, size);
3074
3075 /* Zero out the descriptor ring */
9d5c8243
AK
3076 memset(tx_ring->desc, 0, tx_ring->size);
3077
3078 tx_ring->next_to_use = 0;
3079 tx_ring->next_to_clean = 0;
9d5c8243
AK
3080}
3081
3082/**
3083 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3084 * @adapter: board private structure
3085 **/
3086static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3087{
3088 int i;
3089
3090 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3091 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3092}
3093
3094/**
3095 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3096 * @rx_ring: ring to clean the resources from
3097 *
3098 * Free all receive software resources
3099 **/
68fd9910 3100void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3101{
3b644cf6 3102 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3103
3104 vfree(rx_ring->buffer_info);
3105 rx_ring->buffer_info = NULL;
3106
439705e1
AD
3107 /* if not set, then don't free */
3108 if (!rx_ring->desc)
3109 return;
3110
59d71989
AD
3111 dma_free_coherent(rx_ring->dev, rx_ring->size,
3112 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3113
3114 rx_ring->desc = NULL;
3115}
3116
3117/**
3118 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3119 * @adapter: board private structure
3120 *
3121 * Free all receive software resources
3122 **/
3123static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3124{
3125 int i;
3126
3127 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3128 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3129}
3130
3131/**
3132 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3133 * @rx_ring: ring to free buffers from
3134 **/
3b644cf6 3135static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3136{
3137 struct igb_buffer *buffer_info;
9d5c8243
AK
3138 unsigned long size;
3139 unsigned int i;
3140
3141 if (!rx_ring->buffer_info)
3142 return;
439705e1 3143
9d5c8243
AK
3144 /* Free all the Rx ring sk_buffs */
3145 for (i = 0; i < rx_ring->count; i++) {
3146 buffer_info = &rx_ring->buffer_info[i];
3147 if (buffer_info->dma) {
59d71989 3148 dma_unmap_single(rx_ring->dev,
80785298 3149 buffer_info->dma,
4c844851 3150 rx_ring->rx_buffer_len,
59d71989 3151 DMA_FROM_DEVICE);
9d5c8243
AK
3152 buffer_info->dma = 0;
3153 }
3154
3155 if (buffer_info->skb) {
3156 dev_kfree_skb(buffer_info->skb);
3157 buffer_info->skb = NULL;
3158 }
6ec43fe6 3159 if (buffer_info->page_dma) {
59d71989 3160 dma_unmap_page(rx_ring->dev,
80785298 3161 buffer_info->page_dma,
6ec43fe6 3162 PAGE_SIZE / 2,
59d71989 3163 DMA_FROM_DEVICE);
6ec43fe6
AD
3164 buffer_info->page_dma = 0;
3165 }
9d5c8243 3166 if (buffer_info->page) {
9d5c8243
AK
3167 put_page(buffer_info->page);
3168 buffer_info->page = NULL;
bf36c1a0 3169 buffer_info->page_offset = 0;
9d5c8243
AK
3170 }
3171 }
3172
9d5c8243
AK
3173 size = sizeof(struct igb_buffer) * rx_ring->count;
3174 memset(rx_ring->buffer_info, 0, size);
3175
3176 /* Zero out the descriptor ring */
3177 memset(rx_ring->desc, 0, rx_ring->size);
3178
3179 rx_ring->next_to_clean = 0;
3180 rx_ring->next_to_use = 0;
9d5c8243
AK
3181}
3182
3183/**
3184 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3185 * @adapter: board private structure
3186 **/
3187static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3188{
3189 int i;
3190
3191 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3192 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3193}
3194
3195/**
3196 * igb_set_mac - Change the Ethernet Address of the NIC
3197 * @netdev: network interface device structure
3198 * @p: pointer to an address structure
3199 *
3200 * Returns 0 on success, negative on failure
3201 **/
3202static int igb_set_mac(struct net_device *netdev, void *p)
3203{
3204 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3205 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3206 struct sockaddr *addr = p;
3207
3208 if (!is_valid_ether_addr(addr->sa_data))
3209 return -EADDRNOTAVAIL;
3210
3211 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3212 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3213
26ad9178
AD
3214 /* set the correct pool for the new PF MAC address in entry 0 */
3215 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3216 adapter->vfs_allocated_count);
e1739522 3217
9d5c8243
AK
3218 return 0;
3219}
3220
3221/**
68d480c4 3222 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3223 * @netdev: network interface device structure
3224 *
68d480c4
AD
3225 * Writes multicast address list to the MTA hash table.
3226 * Returns: -ENOMEM on failure
3227 * 0 on no addresses written
3228 * X on writing X addresses to MTA
9d5c8243 3229 **/
68d480c4 3230static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3231{
3232 struct igb_adapter *adapter = netdev_priv(netdev);
3233 struct e1000_hw *hw = &adapter->hw;
22bedad3 3234 struct netdev_hw_addr *ha;
68d480c4 3235 u8 *mta_list;
9d5c8243
AK
3236 int i;
3237
4cd24eaf 3238 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3239 /* nothing to program, so clear mc list */
3240 igb_update_mc_addr_list(hw, NULL, 0);
3241 igb_restore_vf_multicasts(adapter);
3242 return 0;
3243 }
9d5c8243 3244
4cd24eaf 3245 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3246 if (!mta_list)
3247 return -ENOMEM;
ff41f8dc 3248
68d480c4 3249 /* The shared function expects a packed array of only addresses. */
48e2f183 3250 i = 0;
22bedad3
JP
3251 netdev_for_each_mc_addr(ha, netdev)
3252 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3253
68d480c4
AD
3254 igb_update_mc_addr_list(hw, mta_list, i);
3255 kfree(mta_list);
3256
4cd24eaf 3257 return netdev_mc_count(netdev);
68d480c4
AD
3258}
3259
3260/**
3261 * igb_write_uc_addr_list - write unicast addresses to RAR table
3262 * @netdev: network interface device structure
3263 *
3264 * Writes unicast address list to the RAR table.
3265 * Returns: -ENOMEM on failure/insufficient address space
3266 * 0 on no addresses written
3267 * X on writing X addresses to the RAR table
3268 **/
3269static int igb_write_uc_addr_list(struct net_device *netdev)
3270{
3271 struct igb_adapter *adapter = netdev_priv(netdev);
3272 struct e1000_hw *hw = &adapter->hw;
3273 unsigned int vfn = adapter->vfs_allocated_count;
3274 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3275 int count = 0;
3276
3277 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3278 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3279 return -ENOMEM;
9d5c8243 3280
32e7bfc4 3281 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3282 struct netdev_hw_addr *ha;
32e7bfc4
JP
3283
3284 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3285 if (!rar_entries)
3286 break;
26ad9178
AD
3287 igb_rar_set_qsel(adapter, ha->addr,
3288 rar_entries--,
68d480c4
AD
3289 vfn);
3290 count++;
ff41f8dc
AD
3291 }
3292 }
3293 /* write the addresses in reverse order to avoid write combining */
3294 for (; rar_entries > 0 ; rar_entries--) {
3295 wr32(E1000_RAH(rar_entries), 0);
3296 wr32(E1000_RAL(rar_entries), 0);
3297 }
3298 wrfl();
3299
68d480c4
AD
3300 return count;
3301}
3302
3303/**
3304 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3305 * @netdev: network interface device structure
3306 *
3307 * The set_rx_mode entry point is called whenever the unicast or multicast
3308 * address lists or the network interface flags are updated. This routine is
3309 * responsible for configuring the hardware for proper unicast, multicast,
3310 * promiscuous mode, and all-multi behavior.
3311 **/
3312static void igb_set_rx_mode(struct net_device *netdev)
3313{
3314 struct igb_adapter *adapter = netdev_priv(netdev);
3315 struct e1000_hw *hw = &adapter->hw;
3316 unsigned int vfn = adapter->vfs_allocated_count;
3317 u32 rctl, vmolr = 0;
3318 int count;
3319
3320 /* Check for Promiscuous and All Multicast modes */
3321 rctl = rd32(E1000_RCTL);
3322
3323 /* clear the effected bits */
3324 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3325
3326 if (netdev->flags & IFF_PROMISC) {
3327 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3328 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3329 } else {
3330 if (netdev->flags & IFF_ALLMULTI) {
3331 rctl |= E1000_RCTL_MPE;
3332 vmolr |= E1000_VMOLR_MPME;
3333 } else {
3334 /*
3335 * Write addresses to the MTA, if the attempt fails
3336 * then we should just turn on promiscous mode so
3337 * that we can at least receive multicast traffic
3338 */
3339 count = igb_write_mc_addr_list(netdev);
3340 if (count < 0) {
3341 rctl |= E1000_RCTL_MPE;
3342 vmolr |= E1000_VMOLR_MPME;
3343 } else if (count) {
3344 vmolr |= E1000_VMOLR_ROMPE;
3345 }
3346 }
3347 /*
3348 * Write addresses to available RAR registers, if there is not
3349 * sufficient space to store all the addresses then enable
3350 * unicast promiscous mode
3351 */
3352 count = igb_write_uc_addr_list(netdev);
3353 if (count < 0) {
3354 rctl |= E1000_RCTL_UPE;
3355 vmolr |= E1000_VMOLR_ROPE;
3356 }
3357 rctl |= E1000_RCTL_VFE;
28fc06f5 3358 }
68d480c4 3359 wr32(E1000_RCTL, rctl);
28fc06f5 3360
68d480c4
AD
3361 /*
3362 * In order to support SR-IOV and eventually VMDq it is necessary to set
3363 * the VMOLR to enable the appropriate modes. Without this workaround
3364 * we will have issues with VLAN tag stripping not being done for frames
3365 * that are only arriving because we are the default pool
3366 */
3367 if (hw->mac.type < e1000_82576)
28fc06f5 3368 return;
9d5c8243 3369
68d480c4
AD
3370 vmolr |= rd32(E1000_VMOLR(vfn)) &
3371 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3372 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3373 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3374}
3375
13800469
GR
3376static void igb_check_wvbr(struct igb_adapter *adapter)
3377{
3378 struct e1000_hw *hw = &adapter->hw;
3379 u32 wvbr = 0;
3380
3381 switch (hw->mac.type) {
3382 case e1000_82576:
3383 case e1000_i350:
3384 if (!(wvbr = rd32(E1000_WVBR)))
3385 return;
3386 break;
3387 default:
3388 break;
3389 }
3390
3391 adapter->wvbr |= wvbr;
3392}
3393
3394#define IGB_STAGGERED_QUEUE_OFFSET 8
3395
3396static void igb_spoof_check(struct igb_adapter *adapter)
3397{
3398 int j;
3399
3400 if (!adapter->wvbr)
3401 return;
3402
3403 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3404 if (adapter->wvbr & (1 << j) ||
3405 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3406 dev_warn(&adapter->pdev->dev,
3407 "Spoof event(s) detected on VF %d\n", j);
3408 adapter->wvbr &=
3409 ~((1 << j) |
3410 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3411 }
3412 }
3413}
3414
9d5c8243
AK
3415/* Need to wait a few seconds after link up to get diagnostic information from
3416 * the phy */
3417static void igb_update_phy_info(unsigned long data)
3418{
3419 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3420 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3421}
3422
4d6b725e
AD
3423/**
3424 * igb_has_link - check shared code for link and determine up/down
3425 * @adapter: pointer to driver private info
3426 **/
3145535a 3427bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3428{
3429 struct e1000_hw *hw = &adapter->hw;
3430 bool link_active = false;
3431 s32 ret_val = 0;
3432
3433 /* get_link_status is set on LSC (link status) interrupt or
3434 * rx sequence error interrupt. get_link_status will stay
3435 * false until the e1000_check_for_link establishes link
3436 * for copper adapters ONLY
3437 */
3438 switch (hw->phy.media_type) {
3439 case e1000_media_type_copper:
3440 if (hw->mac.get_link_status) {
3441 ret_val = hw->mac.ops.check_for_link(hw);
3442 link_active = !hw->mac.get_link_status;
3443 } else {
3444 link_active = true;
3445 }
3446 break;
4d6b725e
AD
3447 case e1000_media_type_internal_serdes:
3448 ret_val = hw->mac.ops.check_for_link(hw);
3449 link_active = hw->mac.serdes_has_link;
3450 break;
3451 default:
3452 case e1000_media_type_unknown:
3453 break;
3454 }
3455
3456 return link_active;
3457}
3458
9d5c8243
AK
3459/**
3460 * igb_watchdog - Timer Call-back
3461 * @data: pointer to adapter cast into an unsigned long
3462 **/
3463static void igb_watchdog(unsigned long data)
3464{
3465 struct igb_adapter *adapter = (struct igb_adapter *)data;
3466 /* Do the rest outside of interrupt context */
3467 schedule_work(&adapter->watchdog_task);
3468}
3469
3470static void igb_watchdog_task(struct work_struct *work)
3471{
3472 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3473 struct igb_adapter,
3474 watchdog_task);
9d5c8243 3475 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3476 struct net_device *netdev = adapter->netdev;
9d5c8243 3477 u32 link;
7a6ea550 3478 int i;
9d5c8243 3479
4d6b725e 3480 link = igb_has_link(adapter);
9d5c8243
AK
3481 if (link) {
3482 if (!netif_carrier_ok(netdev)) {
3483 u32 ctrl;
330a6d6a
AD
3484 hw->mac.ops.get_speed_and_duplex(hw,
3485 &adapter->link_speed,
3486 &adapter->link_duplex);
9d5c8243
AK
3487
3488 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3489 /* Links status message must follow this format */
3490 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3491 "Flow Control: %s\n",
559e9c49
AD
3492 netdev->name,
3493 adapter->link_speed,
3494 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3495 "Full Duplex" : "Half Duplex",
559e9c49
AD
3496 ((ctrl & E1000_CTRL_TFCE) &&
3497 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3498 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3499 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3500
d07f3e37 3501 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3502 adapter->tx_timeout_factor = 1;
3503 switch (adapter->link_speed) {
3504 case SPEED_10:
9d5c8243
AK
3505 adapter->tx_timeout_factor = 14;
3506 break;
3507 case SPEED_100:
9d5c8243
AK
3508 /* maybe add some timeout factor ? */
3509 break;
3510 }
3511
3512 netif_carrier_on(netdev);
9d5c8243 3513
4ae196df 3514 igb_ping_all_vfs(adapter);
17dc566c 3515 igb_check_vf_rate_limit(adapter);
4ae196df 3516
4b1a9877 3517 /* link state has changed, schedule phy info update */
9d5c8243
AK
3518 if (!test_bit(__IGB_DOWN, &adapter->state))
3519 mod_timer(&adapter->phy_info_timer,
3520 round_jiffies(jiffies + 2 * HZ));
3521 }
3522 } else {
3523 if (netif_carrier_ok(netdev)) {
3524 adapter->link_speed = 0;
3525 adapter->link_duplex = 0;
527d47c1
AD
3526 /* Links status message must follow this format */
3527 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3528 netdev->name);
9d5c8243 3529 netif_carrier_off(netdev);
4b1a9877 3530
4ae196df
AD
3531 igb_ping_all_vfs(adapter);
3532
4b1a9877 3533 /* link state has changed, schedule phy info update */
9d5c8243
AK
3534 if (!test_bit(__IGB_DOWN, &adapter->state))
3535 mod_timer(&adapter->phy_info_timer,
3536 round_jiffies(jiffies + 2 * HZ));
3537 }
3538 }
3539
12dcd86b
ED
3540 spin_lock(&adapter->stats64_lock);
3541 igb_update_stats(adapter, &adapter->stats64);
3542 spin_unlock(&adapter->stats64_lock);
9d5c8243 3543
dbabb065 3544 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3545 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3546 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3547 /* We've lost link, so the controller stops DMA,
3548 * but we've got queued Tx work that's never going
3549 * to get done, so reset controller to flush Tx.
3550 * (Do the reset outside of interrupt context). */
dbabb065
AD
3551 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3552 adapter->tx_timeout_count++;
3553 schedule_work(&adapter->reset_task);
3554 /* return immediately since reset is imminent */
3555 return;
3556 }
9d5c8243 3557 }
9d5c8243 3558
dbabb065
AD
3559 /* Force detection of hung controller every watchdog period */
3560 tx_ring->detect_tx_hung = true;
3561 }
f7ba205e 3562
9d5c8243 3563 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3564 if (adapter->msix_entries) {
047e0030
AD
3565 u32 eics = 0;
3566 for (i = 0; i < adapter->num_q_vectors; i++) {
3567 struct igb_q_vector *q_vector = adapter->q_vector[i];
3568 eics |= q_vector->eims_value;
3569 }
7a6ea550
AD
3570 wr32(E1000_EICS, eics);
3571 } else {
3572 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3573 }
9d5c8243 3574
13800469
GR
3575 igb_spoof_check(adapter);
3576
9d5c8243
AK
3577 /* Reset the timer */
3578 if (!test_bit(__IGB_DOWN, &adapter->state))
3579 mod_timer(&adapter->watchdog_timer,
3580 round_jiffies(jiffies + 2 * HZ));
3581}
3582
3583enum latency_range {
3584 lowest_latency = 0,
3585 low_latency = 1,
3586 bulk_latency = 2,
3587 latency_invalid = 255
3588};
3589
6eb5a7f1
AD
3590/**
3591 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3592 *
3593 * Stores a new ITR value based on strictly on packet size. This
3594 * algorithm is less sophisticated than that used in igb_update_itr,
3595 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3596 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3597 * were determined based on theoretical maximum wire speed and testing
3598 * data, in order to minimize response time while increasing bulk
3599 * throughput.
3600 * This functionality is controlled by the InterruptThrottleRate module
3601 * parameter (see igb_param.c)
3602 * NOTE: This function is called only when operating in a multiqueue
3603 * receive environment.
047e0030 3604 * @q_vector: pointer to q_vector
6eb5a7f1 3605 **/
047e0030 3606static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3607{
047e0030 3608 int new_val = q_vector->itr_val;
6eb5a7f1 3609 int avg_wire_size = 0;
047e0030 3610 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3611 struct igb_ring *ring;
3612 unsigned int packets;
9d5c8243 3613
6eb5a7f1
AD
3614 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3615 * ints/sec - ITR timer value of 120 ticks.
3616 */
3617 if (adapter->link_speed != SPEED_1000) {
047e0030 3618 new_val = 976;
6eb5a7f1 3619 goto set_itr_val;
9d5c8243 3620 }
047e0030 3621
12dcd86b
ED
3622 ring = q_vector->rx_ring;
3623 if (ring) {
3624 packets = ACCESS_ONCE(ring->total_packets);
3625
3626 if (packets)
3627 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3628 }
3629
12dcd86b
ED
3630 ring = q_vector->tx_ring;
3631 if (ring) {
3632 packets = ACCESS_ONCE(ring->total_packets);
3633
3634 if (packets)
3635 avg_wire_size = max_t(u32, avg_wire_size,
3636 ring->total_bytes / packets);
047e0030
AD
3637 }
3638
3639 /* if avg_wire_size isn't set no work was done */
3640 if (!avg_wire_size)
3641 goto clear_counts;
9d5c8243 3642
6eb5a7f1
AD
3643 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3644 avg_wire_size += 24;
3645
3646 /* Don't starve jumbo frames */
3647 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3648
6eb5a7f1
AD
3649 /* Give a little boost to mid-size frames */
3650 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3651 new_val = avg_wire_size / 3;
3652 else
3653 new_val = avg_wire_size / 2;
9d5c8243 3654
abe1c363
NN
3655 /* when in itr mode 3 do not exceed 20K ints/sec */
3656 if (adapter->rx_itr_setting == 3 && new_val < 196)
3657 new_val = 196;
3658
6eb5a7f1 3659set_itr_val:
047e0030
AD
3660 if (new_val != q_vector->itr_val) {
3661 q_vector->itr_val = new_val;
3662 q_vector->set_itr = 1;
9d5c8243 3663 }
6eb5a7f1 3664clear_counts:
047e0030
AD
3665 if (q_vector->rx_ring) {
3666 q_vector->rx_ring->total_bytes = 0;
3667 q_vector->rx_ring->total_packets = 0;
3668 }
3669 if (q_vector->tx_ring) {
3670 q_vector->tx_ring->total_bytes = 0;
3671 q_vector->tx_ring->total_packets = 0;
3672 }
9d5c8243
AK
3673}
3674
3675/**
3676 * igb_update_itr - update the dynamic ITR value based on statistics
3677 * Stores a new ITR value based on packets and byte
3678 * counts during the last interrupt. The advantage of per interrupt
3679 * computation is faster updates and more accurate ITR for the current
3680 * traffic pattern. Constants in this function were computed
3681 * based on theoretical maximum wire speed and thresholds were set based
3682 * on testing data as well as attempting to minimize response time
3683 * while increasing bulk throughput.
3684 * this functionality is controlled by the InterruptThrottleRate module
3685 * parameter (see igb_param.c)
3686 * NOTE: These calculations are only valid when operating in a single-
3687 * queue environment.
3688 * @adapter: pointer to adapter
047e0030 3689 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3690 * @packets: the number of packets during this measurement interval
3691 * @bytes: the number of bytes during this measurement interval
3692 **/
3693static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3694 int packets, int bytes)
3695{
3696 unsigned int retval = itr_setting;
3697
3698 if (packets == 0)
3699 goto update_itr_done;
3700
3701 switch (itr_setting) {
3702 case lowest_latency:
3703 /* handle TSO and jumbo frames */
3704 if (bytes/packets > 8000)
3705 retval = bulk_latency;
3706 else if ((packets < 5) && (bytes > 512))
3707 retval = low_latency;
3708 break;
3709 case low_latency: /* 50 usec aka 20000 ints/s */
3710 if (bytes > 10000) {
3711 /* this if handles the TSO accounting */
3712 if (bytes/packets > 8000) {
3713 retval = bulk_latency;
3714 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3715 retval = bulk_latency;
3716 } else if ((packets > 35)) {
3717 retval = lowest_latency;
3718 }
3719 } else if (bytes/packets > 2000) {
3720 retval = bulk_latency;
3721 } else if (packets <= 2 && bytes < 512) {
3722 retval = lowest_latency;
3723 }
3724 break;
3725 case bulk_latency: /* 250 usec aka 4000 ints/s */
3726 if (bytes > 25000) {
3727 if (packets > 35)
3728 retval = low_latency;
1e5c3d21 3729 } else if (bytes < 1500) {
9d5c8243
AK
3730 retval = low_latency;
3731 }
3732 break;
3733 }
3734
3735update_itr_done:
3736 return retval;
3737}
3738
6eb5a7f1 3739static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3740{
047e0030 3741 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3742 u16 current_itr;
047e0030 3743 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3744
3745 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3746 if (adapter->link_speed != SPEED_1000) {
3747 current_itr = 0;
3748 new_itr = 4000;
3749 goto set_itr_now;
3750 }
3751
3752 adapter->rx_itr = igb_update_itr(adapter,
3753 adapter->rx_itr,
3025a446
AD
3754 q_vector->rx_ring->total_packets,
3755 q_vector->rx_ring->total_bytes);
9d5c8243 3756
047e0030
AD
3757 adapter->tx_itr = igb_update_itr(adapter,
3758 adapter->tx_itr,
3025a446
AD
3759 q_vector->tx_ring->total_packets,
3760 q_vector->tx_ring->total_bytes);
047e0030 3761 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3762
6eb5a7f1 3763 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3764 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3765 current_itr = low_latency;
3766
9d5c8243
AK
3767 switch (current_itr) {
3768 /* counts and packets in update_itr are dependent on these numbers */
3769 case lowest_latency:
78b1f607 3770 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3771 break;
3772 case low_latency:
78b1f607 3773 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3774 break;
3775 case bulk_latency:
78b1f607 3776 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3777 break;
3778 default:
3779 break;
3780 }
3781
3782set_itr_now:
3025a446
AD
3783 q_vector->rx_ring->total_bytes = 0;
3784 q_vector->rx_ring->total_packets = 0;
3785 q_vector->tx_ring->total_bytes = 0;
3786 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3787
047e0030 3788 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3789 /* this attempts to bias the interrupt rate towards Bulk
3790 * by adding intermediate steps when interrupt rate is
3791 * increasing */
047e0030
AD
3792 new_itr = new_itr > q_vector->itr_val ?
3793 max((new_itr * q_vector->itr_val) /
3794 (new_itr + (q_vector->itr_val >> 2)),
3795 new_itr) :
9d5c8243
AK
3796 new_itr;
3797 /* Don't write the value here; it resets the adapter's
3798 * internal timer, and causes us to delay far longer than
3799 * we should between interrupts. Instead, we write the ITR
3800 * value at the beginning of the next interrupt so the timing
3801 * ends up being correct.
3802 */
047e0030
AD
3803 q_vector->itr_val = new_itr;
3804 q_vector->set_itr = 1;
9d5c8243 3805 }
9d5c8243
AK
3806}
3807
9d5c8243
AK
3808#define IGB_TX_FLAGS_CSUM 0x00000001
3809#define IGB_TX_FLAGS_VLAN 0x00000002
3810#define IGB_TX_FLAGS_TSO 0x00000004
3811#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3812#define IGB_TX_FLAGS_TSTAMP 0x00000010
3813#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3814#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3815
85ad76b2 3816static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3817 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3818{
3819 struct e1000_adv_tx_context_desc *context_desc;
3820 unsigned int i;
3821 int err;
3822 struct igb_buffer *buffer_info;
3823 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3824 u32 mss_l4len_idx;
3825 u8 l4len;
9d5c8243
AK
3826
3827 if (skb_header_cloned(skb)) {
3828 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3829 if (err)
3830 return err;
3831 }
3832
3833 l4len = tcp_hdrlen(skb);
3834 *hdr_len += l4len;
3835
3836 if (skb->protocol == htons(ETH_P_IP)) {
3837 struct iphdr *iph = ip_hdr(skb);
3838 iph->tot_len = 0;
3839 iph->check = 0;
3840 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3841 iph->daddr, 0,
3842 IPPROTO_TCP,
3843 0);
8e1e8a47 3844 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3845 ipv6_hdr(skb)->payload_len = 0;
3846 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3847 &ipv6_hdr(skb)->daddr,
3848 0, IPPROTO_TCP, 0);
3849 }
3850
3851 i = tx_ring->next_to_use;
3852
3853 buffer_info = &tx_ring->buffer_info[i];
3854 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3855 /* VLAN MACLEN IPLEN */
3856 if (tx_flags & IGB_TX_FLAGS_VLAN)
3857 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3858 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3859 *hdr_len += skb_network_offset(skb);
3860 info |= skb_network_header_len(skb);
3861 *hdr_len += skb_network_header_len(skb);
3862 context_desc->vlan_macip_lens = cpu_to_le32(info);
3863
3864 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3865 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3866
3867 if (skb->protocol == htons(ETH_P_IP))
3868 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3869 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3870
3871 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3872
3873 /* MSS L4LEN IDX */
3874 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3875 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3876
73cd78f1 3877 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3878 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3879 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3880
3881 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3882 context_desc->seqnum_seed = 0;
3883
3884 buffer_info->time_stamp = jiffies;
0e014cb1 3885 buffer_info->next_to_watch = i;
9d5c8243
AK
3886 buffer_info->dma = 0;
3887 i++;
3888 if (i == tx_ring->count)
3889 i = 0;
3890
3891 tx_ring->next_to_use = i;
3892
3893 return true;
3894}
3895
85ad76b2
AD
3896static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3897 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3898{
3899 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3900 struct device *dev = tx_ring->dev;
9d5c8243
AK
3901 struct igb_buffer *buffer_info;
3902 u32 info = 0, tu_cmd = 0;
80785298 3903 unsigned int i;
9d5c8243
AK
3904
3905 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3906 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3907 i = tx_ring->next_to_use;
3908 buffer_info = &tx_ring->buffer_info[i];
3909 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3910
3911 if (tx_flags & IGB_TX_FLAGS_VLAN)
3912 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3913
9d5c8243
AK
3914 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3915 if (skb->ip_summed == CHECKSUM_PARTIAL)
3916 info |= skb_network_header_len(skb);
3917
3918 context_desc->vlan_macip_lens = cpu_to_le32(info);
3919
3920 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3921
3922 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3923 __be16 protocol;
3924
3925 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3926 const struct vlan_ethhdr *vhdr =
3927 (const struct vlan_ethhdr*)skb->data;
3928
3929 protocol = vhdr->h_vlan_encapsulated_proto;
3930 } else {
3931 protocol = skb->protocol;
3932 }
3933
3934 switch (protocol) {
09640e63 3935 case cpu_to_be16(ETH_P_IP):
9d5c8243 3936 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3937 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3938 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3939 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3940 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3941 break;
09640e63 3942 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3943 /* XXX what about other V6 headers?? */
3944 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3945 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3946 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3947 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3948 break;
3949 default:
3950 if (unlikely(net_ratelimit()))
59d71989 3951 dev_warn(dev,
44b0cda3
MW
3952 "partial checksum but proto=%x!\n",
3953 skb->protocol);
3954 break;
3955 }
9d5c8243
AK
3956 }
3957
3958 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3959 context_desc->seqnum_seed = 0;
85ad76b2 3960 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3961 context_desc->mss_l4len_idx =
85ad76b2 3962 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3963
3964 buffer_info->time_stamp = jiffies;
0e014cb1 3965 buffer_info->next_to_watch = i;
9d5c8243
AK
3966 buffer_info->dma = 0;
3967
3968 i++;
3969 if (i == tx_ring->count)
3970 i = 0;
3971 tx_ring->next_to_use = i;
3972
3973 return true;
3974 }
9d5c8243
AK
3975 return false;
3976}
3977
3978#define IGB_MAX_TXD_PWR 16
3979#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3980
80785298 3981static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3982 unsigned int first)
9d5c8243
AK
3983{
3984 struct igb_buffer *buffer_info;
59d71989 3985 struct device *dev = tx_ring->dev;
2873957d 3986 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3987 unsigned int count = 0, i;
3988 unsigned int f;
2873957d 3989 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3990
3991 i = tx_ring->next_to_use;
3992
3993 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3994 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3995 buffer_info->length = hlen;
9d5c8243
AK
3996 /* set time_stamp *before* dma to help avoid a possible race */
3997 buffer_info->time_stamp = jiffies;
0e014cb1 3998 buffer_info->next_to_watch = i;
2873957d 3999 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4000 DMA_TO_DEVICE);
4001 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4002 goto dma_error;
9d5c8243
AK
4003
4004 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4005 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4006 unsigned int len = frag->size;
9d5c8243 4007
8581145f 4008 count++;
65689fef
AD
4009 i++;
4010 if (i == tx_ring->count)
4011 i = 0;
4012
9d5c8243
AK
4013 buffer_info = &tx_ring->buffer_info[i];
4014 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4015 buffer_info->length = len;
4016 buffer_info->time_stamp = jiffies;
0e014cb1 4017 buffer_info->next_to_watch = i;
6366ad33 4018 buffer_info->mapped_as_page = true;
59d71989 4019 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
4020 frag->page,
4021 frag->page_offset,
4022 len,
59d71989
AD
4023 DMA_TO_DEVICE);
4024 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4025 goto dma_error;
4026
9d5c8243
AK
4027 }
4028
9d5c8243 4029 tx_ring->buffer_info[i].skb = skb;
2244d07b 4030 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4031 /* multiply data chunks by size of headers */
4032 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4033 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4034 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4035
cdfd01fc 4036 return ++count;
6366ad33
AD
4037
4038dma_error:
59d71989 4039 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4040
4041 /* clear timestamp and dma mappings for failed buffer_info mapping */
4042 buffer_info->dma = 0;
4043 buffer_info->time_stamp = 0;
4044 buffer_info->length = 0;
4045 buffer_info->next_to_watch = 0;
4046 buffer_info->mapped_as_page = false;
6366ad33
AD
4047
4048 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4049 while (count--) {
4050 if (i == 0)
4051 i = tx_ring->count;
6366ad33 4052 i--;
6366ad33
AD
4053 buffer_info = &tx_ring->buffer_info[i];
4054 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4055 }
4056
4057 return 0;
9d5c8243
AK
4058}
4059
85ad76b2 4060static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4061 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4062 u8 hdr_len)
4063{
cdfd01fc 4064 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4065 struct igb_buffer *buffer_info;
4066 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4067 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4068
4069 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4070 E1000_ADVTXD_DCMD_DEXT);
4071
4072 if (tx_flags & IGB_TX_FLAGS_VLAN)
4073 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4074
33af6bcc
PO
4075 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4076 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4077
9d5c8243
AK
4078 if (tx_flags & IGB_TX_FLAGS_TSO) {
4079 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4080
4081 /* insert tcp checksum */
4082 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4083
4084 /* insert ip checksum */
4085 if (tx_flags & IGB_TX_FLAGS_IPV4)
4086 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4087
4088 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4089 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4090 }
4091
85ad76b2
AD
4092 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4093 (tx_flags & (IGB_TX_FLAGS_CSUM |
4094 IGB_TX_FLAGS_TSO |
7dfc16fa 4095 IGB_TX_FLAGS_VLAN)))
85ad76b2 4096 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4097
4098 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4099
cdfd01fc 4100 do {
9d5c8243
AK
4101 buffer_info = &tx_ring->buffer_info[i];
4102 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4103 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4104 tx_desc->read.cmd_type_len =
4105 cpu_to_le32(cmd_type_len | buffer_info->length);
4106 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4107 count--;
9d5c8243
AK
4108 i++;
4109 if (i == tx_ring->count)
4110 i = 0;
cdfd01fc 4111 } while (count > 0);
9d5c8243 4112
85ad76b2 4113 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4114 /* Force memory writes to complete before letting h/w
4115 * know there are new descriptors to fetch. (Only
4116 * applicable for weak-ordered memory model archs,
4117 * such as IA-64). */
4118 wmb();
4119
4120 tx_ring->next_to_use = i;
fce99e34 4121 writel(i, tx_ring->tail);
9d5c8243
AK
4122 /* we need this if more than one processor can write to our tail
4123 * at a time, it syncronizes IO on IA64/Altix systems */
4124 mmiowb();
4125}
4126
e694e964 4127static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4128{
e694e964
AD
4129 struct net_device *netdev = tx_ring->netdev;
4130
661086df 4131 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4132
9d5c8243
AK
4133 /* Herbert's original patch had:
4134 * smp_mb__after_netif_stop_queue();
4135 * but since that doesn't exist yet, just open code it. */
4136 smp_mb();
4137
4138 /* We need to check again in a case another CPU has just
4139 * made room available. */
c493ea45 4140 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4141 return -EBUSY;
4142
4143 /* A reprieve! */
661086df 4144 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4145
4146 u64_stats_update_begin(&tx_ring->tx_syncp2);
4147 tx_ring->tx_stats.restart_queue2++;
4148 u64_stats_update_end(&tx_ring->tx_syncp2);
4149
9d5c8243
AK
4150 return 0;
4151}
4152
717ba089 4153static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4154{
c493ea45 4155 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4156 return 0;
e694e964 4157 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4158}
4159
b1a436c3
AD
4160netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4161 struct igb_ring *tx_ring)
9d5c8243 4162{
cdfd01fc 4163 int tso = 0, count;
91d4ee33
NN
4164 u32 tx_flags = 0;
4165 u16 first;
4166 u8 hdr_len = 0;
9d5c8243 4167
9d5c8243
AK
4168 /* need: 1 descriptor per page,
4169 * + 2 desc gap to keep tail from touching head,
4170 * + 1 desc for skb->data,
4171 * + 1 desc for context descriptor,
4172 * otherwise try next time */
e694e964 4173 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4174 /* this is a hard error */
9d5c8243
AK
4175 return NETDEV_TX_BUSY;
4176 }
33af6bcc 4177
2244d07b
OH
4178 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4179 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4180 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4181 }
9d5c8243 4182
eab6d18d 4183 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4184 tx_flags |= IGB_TX_FLAGS_VLAN;
4185 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4186 }
4187
661086df
PWJ
4188 if (skb->protocol == htons(ETH_P_IP))
4189 tx_flags |= IGB_TX_FLAGS_IPV4;
4190
0e014cb1 4191 first = tx_ring->next_to_use;
85ad76b2
AD
4192 if (skb_is_gso(skb)) {
4193 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4194
85ad76b2
AD
4195 if (tso < 0) {
4196 dev_kfree_skb_any(skb);
4197 return NETDEV_TX_OK;
4198 }
9d5c8243
AK
4199 }
4200
4201 if (tso)
4202 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4203 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4204 (skb->ip_summed == CHECKSUM_PARTIAL))
4205 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4206
65689fef 4207 /*
cdfd01fc 4208 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4209 * has occured and we need to rewind the descriptor queue
4210 */
80785298 4211 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4212 if (!count) {
65689fef
AD
4213 dev_kfree_skb_any(skb);
4214 tx_ring->buffer_info[first].time_stamp = 0;
4215 tx_ring->next_to_use = first;
85ad76b2 4216 return NETDEV_TX_OK;
65689fef 4217 }
9d5c8243 4218
85ad76b2
AD
4219 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4220
4221 /* Make sure there is space in the ring for the next send. */
e694e964 4222 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4223
9d5c8243
AK
4224 return NETDEV_TX_OK;
4225}
4226
3b29a56d
SH
4227static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4228 struct net_device *netdev)
9d5c8243
AK
4229{
4230 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4231 struct igb_ring *tx_ring;
661086df 4232 int r_idx = 0;
b1a436c3
AD
4233
4234 if (test_bit(__IGB_DOWN, &adapter->state)) {
4235 dev_kfree_skb_any(skb);
4236 return NETDEV_TX_OK;
4237 }
4238
4239 if (skb->len <= 0) {
4240 dev_kfree_skb_any(skb);
4241 return NETDEV_TX_OK;
4242 }
4243
1bfaf07b 4244 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4245 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4246
4247 /* This goes back to the question of how to logically map a tx queue
4248 * to a flow. Right now, performance is impacted slightly negatively
4249 * if using multiple tx queues. If the stack breaks away from a
4250 * single qdisc implementation, we can look at this again. */
e694e964 4251 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4252}
4253
4254/**
4255 * igb_tx_timeout - Respond to a Tx Hang
4256 * @netdev: network interface device structure
4257 **/
4258static void igb_tx_timeout(struct net_device *netdev)
4259{
4260 struct igb_adapter *adapter = netdev_priv(netdev);
4261 struct e1000_hw *hw = &adapter->hw;
4262
4263 /* Do the reset outside of interrupt context */
4264 adapter->tx_timeout_count++;
f7ba205e 4265
55cac248
AD
4266 if (hw->mac.type == e1000_82580)
4267 hw->dev_spec._82575.global_device_reset = true;
4268
9d5c8243 4269 schedule_work(&adapter->reset_task);
265de409
AD
4270 wr32(E1000_EICS,
4271 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4272}
4273
4274static void igb_reset_task(struct work_struct *work)
4275{
4276 struct igb_adapter *adapter;
4277 adapter = container_of(work, struct igb_adapter, reset_task);
4278
c97ec42a
TI
4279 igb_dump(adapter);
4280 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4281 igb_reinit_locked(adapter);
4282}
4283
4284/**
12dcd86b 4285 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4286 * @netdev: network interface device structure
12dcd86b 4287 * @stats: rtnl_link_stats64 pointer
9d5c8243 4288 *
9d5c8243 4289 **/
12dcd86b
ED
4290static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4291 struct rtnl_link_stats64 *stats)
9d5c8243 4292{
12dcd86b
ED
4293 struct igb_adapter *adapter = netdev_priv(netdev);
4294
4295 spin_lock(&adapter->stats64_lock);
4296 igb_update_stats(adapter, &adapter->stats64);
4297 memcpy(stats, &adapter->stats64, sizeof(*stats));
4298 spin_unlock(&adapter->stats64_lock);
4299
4300 return stats;
9d5c8243
AK
4301}
4302
4303/**
4304 * igb_change_mtu - Change the Maximum Transfer Unit
4305 * @netdev: network interface device structure
4306 * @new_mtu: new value for maximum frame size
4307 *
4308 * Returns 0 on success, negative on failure
4309 **/
4310static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4311{
4312 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4313 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4314 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4315 u32 rx_buffer_len, i;
9d5c8243 4316
c809d227 4317 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4318 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4319 return -EINVAL;
4320 }
4321
9d5c8243 4322 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4323 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4324 return -EINVAL;
4325 }
4326
4327 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4328 msleep(1);
73cd78f1 4329
9d5c8243
AK
4330 /* igb_down has a dependency on max_frame_size */
4331 adapter->max_frame_size = max_frame;
559e9c49 4332
9d5c8243
AK
4333 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4334 * means we reserve 2 more, this pushes us to allocate from the next
4335 * larger slab size.
4336 * i.e. RXBUFFER_2048 --> size-4096 slab
4337 */
4338
757b77e2
NN
4339 if (adapter->hw.mac.type == e1000_82580)
4340 max_frame += IGB_TS_HDR_LEN;
4341
7d95b717 4342 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4343 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4344 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4345 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4346 else
4c844851
AD
4347 rx_buffer_len = IGB_RXBUFFER_128;
4348
757b77e2
NN
4349 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4350 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4351 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4352
4353 if ((adapter->hw.mac.type == e1000_82580) &&
4354 (rx_buffer_len == IGB_RXBUFFER_128))
4355 rx_buffer_len += IGB_RXBUFFER_64;
4356
4c844851
AD
4357 if (netif_running(netdev))
4358 igb_down(adapter);
9d5c8243 4359
090b1795 4360 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4361 netdev->mtu, new_mtu);
4362 netdev->mtu = new_mtu;
4363
4c844851 4364 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4365 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4366
9d5c8243
AK
4367 if (netif_running(netdev))
4368 igb_up(adapter);
4369 else
4370 igb_reset(adapter);
4371
4372 clear_bit(__IGB_RESETTING, &adapter->state);
4373
4374 return 0;
4375}
4376
4377/**
4378 * igb_update_stats - Update the board statistics counters
4379 * @adapter: board private structure
4380 **/
4381
12dcd86b
ED
4382void igb_update_stats(struct igb_adapter *adapter,
4383 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4384{
4385 struct e1000_hw *hw = &adapter->hw;
4386 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4387 u32 reg, mpc;
9d5c8243 4388 u16 phy_tmp;
3f9c0164
AD
4389 int i;
4390 u64 bytes, packets;
12dcd86b
ED
4391 unsigned int start;
4392 u64 _bytes, _packets;
9d5c8243
AK
4393
4394#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4395
4396 /*
4397 * Prevent stats update while adapter is being reset, or if the pci
4398 * connection is down.
4399 */
4400 if (adapter->link_speed == 0)
4401 return;
4402 if (pci_channel_offline(pdev))
4403 return;
4404
3f9c0164
AD
4405 bytes = 0;
4406 packets = 0;
4407 for (i = 0; i < adapter->num_rx_queues; i++) {
4408 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4409 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4410
3025a446 4411 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4412 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4413
4414 do {
4415 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4416 _bytes = ring->rx_stats.bytes;
4417 _packets = ring->rx_stats.packets;
4418 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4419 bytes += _bytes;
4420 packets += _packets;
3f9c0164
AD
4421 }
4422
128e45eb
AD
4423 net_stats->rx_bytes = bytes;
4424 net_stats->rx_packets = packets;
3f9c0164
AD
4425
4426 bytes = 0;
4427 packets = 0;
4428 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4429 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4430 do {
4431 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4432 _bytes = ring->tx_stats.bytes;
4433 _packets = ring->tx_stats.packets;
4434 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4435 bytes += _bytes;
4436 packets += _packets;
3f9c0164 4437 }
128e45eb
AD
4438 net_stats->tx_bytes = bytes;
4439 net_stats->tx_packets = packets;
3f9c0164
AD
4440
4441 /* read stats registers */
9d5c8243
AK
4442 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4443 adapter->stats.gprc += rd32(E1000_GPRC);
4444 adapter->stats.gorc += rd32(E1000_GORCL);
4445 rd32(E1000_GORCH); /* clear GORCL */
4446 adapter->stats.bprc += rd32(E1000_BPRC);
4447 adapter->stats.mprc += rd32(E1000_MPRC);
4448 adapter->stats.roc += rd32(E1000_ROC);
4449
4450 adapter->stats.prc64 += rd32(E1000_PRC64);
4451 adapter->stats.prc127 += rd32(E1000_PRC127);
4452 adapter->stats.prc255 += rd32(E1000_PRC255);
4453 adapter->stats.prc511 += rd32(E1000_PRC511);
4454 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4455 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4456 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4457 adapter->stats.sec += rd32(E1000_SEC);
4458
fa3d9a6d
MW
4459 mpc = rd32(E1000_MPC);
4460 adapter->stats.mpc += mpc;
4461 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4462 adapter->stats.scc += rd32(E1000_SCC);
4463 adapter->stats.ecol += rd32(E1000_ECOL);
4464 adapter->stats.mcc += rd32(E1000_MCC);
4465 adapter->stats.latecol += rd32(E1000_LATECOL);
4466 adapter->stats.dc += rd32(E1000_DC);
4467 adapter->stats.rlec += rd32(E1000_RLEC);
4468 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4469 adapter->stats.xontxc += rd32(E1000_XONTXC);
4470 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4471 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4472 adapter->stats.fcruc += rd32(E1000_FCRUC);
4473 adapter->stats.gptc += rd32(E1000_GPTC);
4474 adapter->stats.gotc += rd32(E1000_GOTCL);
4475 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4476 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4477 adapter->stats.ruc += rd32(E1000_RUC);
4478 adapter->stats.rfc += rd32(E1000_RFC);
4479 adapter->stats.rjc += rd32(E1000_RJC);
4480 adapter->stats.tor += rd32(E1000_TORH);
4481 adapter->stats.tot += rd32(E1000_TOTH);
4482 adapter->stats.tpr += rd32(E1000_TPR);
4483
4484 adapter->stats.ptc64 += rd32(E1000_PTC64);
4485 adapter->stats.ptc127 += rd32(E1000_PTC127);
4486 adapter->stats.ptc255 += rd32(E1000_PTC255);
4487 adapter->stats.ptc511 += rd32(E1000_PTC511);
4488 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4489 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4490
4491 adapter->stats.mptc += rd32(E1000_MPTC);
4492 adapter->stats.bptc += rd32(E1000_BPTC);
4493
2d0b0f69
NN
4494 adapter->stats.tpt += rd32(E1000_TPT);
4495 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4496
4497 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4498 /* read internal phy specific stats */
4499 reg = rd32(E1000_CTRL_EXT);
4500 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4501 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4502 adapter->stats.tncrs += rd32(E1000_TNCRS);
4503 }
4504
9d5c8243
AK
4505 adapter->stats.tsctc += rd32(E1000_TSCTC);
4506 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4507
4508 adapter->stats.iac += rd32(E1000_IAC);
4509 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4510 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4511 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4512 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4513 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4514 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4515 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4516 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4517
4518 /* Fill out the OS statistics structure */
128e45eb
AD
4519 net_stats->multicast = adapter->stats.mprc;
4520 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4521
4522 /* Rx Errors */
4523
4524 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4525 * our own version based on RUC and ROC */
128e45eb 4526 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4527 adapter->stats.crcerrs + adapter->stats.algnerrc +
4528 adapter->stats.ruc + adapter->stats.roc +
4529 adapter->stats.cexterr;
128e45eb
AD
4530 net_stats->rx_length_errors = adapter->stats.ruc +
4531 adapter->stats.roc;
4532 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4533 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4534 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4535
4536 /* Tx Errors */
128e45eb
AD
4537 net_stats->tx_errors = adapter->stats.ecol +
4538 adapter->stats.latecol;
4539 net_stats->tx_aborted_errors = adapter->stats.ecol;
4540 net_stats->tx_window_errors = adapter->stats.latecol;
4541 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4542
4543 /* Tx Dropped needs to be maintained elsewhere */
4544
4545 /* Phy Stats */
4546 if (hw->phy.media_type == e1000_media_type_copper) {
4547 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4548 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4549 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4550 adapter->phy_stats.idle_errors += phy_tmp;
4551 }
4552 }
4553
4554 /* Management Stats */
4555 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4556 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4557 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4558}
4559
9d5c8243
AK
4560static irqreturn_t igb_msix_other(int irq, void *data)
4561{
047e0030 4562 struct igb_adapter *adapter = data;
9d5c8243 4563 struct e1000_hw *hw = &adapter->hw;
844290e5 4564 u32 icr = rd32(E1000_ICR);
844290e5 4565 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4566
7f081d40
AD
4567 if (icr & E1000_ICR_DRSTA)
4568 schedule_work(&adapter->reset_task);
4569
047e0030 4570 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4571 /* HW is reporting DMA is out of sync */
4572 adapter->stats.doosync++;
13800469
GR
4573 /* The DMA Out of Sync is also indication of a spoof event
4574 * in IOV mode. Check the Wrong VM Behavior register to
4575 * see if it is really a spoof event. */
4576 igb_check_wvbr(adapter);
dda0e083 4577 }
eebbbdba 4578
4ae196df
AD
4579 /* Check for a mailbox event */
4580 if (icr & E1000_ICR_VMMB)
4581 igb_msg_task(adapter);
4582
4583 if (icr & E1000_ICR_LSC) {
4584 hw->mac.get_link_status = 1;
4585 /* guard against interrupt when we're going down */
4586 if (!test_bit(__IGB_DOWN, &adapter->state))
4587 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4588 }
4589
25568a53
AD
4590 if (adapter->vfs_allocated_count)
4591 wr32(E1000_IMS, E1000_IMS_LSC |
4592 E1000_IMS_VMMB |
4593 E1000_IMS_DOUTSYNC);
4594 else
4595 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4596 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4597
4598 return IRQ_HANDLED;
4599}
4600
047e0030 4601static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4602{
26b39276 4603 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4604 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4605
047e0030
AD
4606 if (!q_vector->set_itr)
4607 return;
73cd78f1 4608
047e0030
AD
4609 if (!itr_val)
4610 itr_val = 0x4;
661086df 4611
26b39276
AD
4612 if (adapter->hw.mac.type == e1000_82575)
4613 itr_val |= itr_val << 16;
661086df 4614 else
047e0030 4615 itr_val |= 0x8000000;
661086df 4616
047e0030
AD
4617 writel(itr_val, q_vector->itr_register);
4618 q_vector->set_itr = 0;
6eb5a7f1
AD
4619}
4620
047e0030 4621static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4622{
047e0030 4623 struct igb_q_vector *q_vector = data;
9d5c8243 4624
047e0030
AD
4625 /* Write the ITR value calculated from the previous interrupt. */
4626 igb_write_itr(q_vector);
9d5c8243 4627
047e0030 4628 napi_schedule(&q_vector->napi);
844290e5 4629
047e0030 4630 return IRQ_HANDLED;
fe4506b6
JC
4631}
4632
421e02f0 4633#ifdef CONFIG_IGB_DCA
047e0030 4634static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4635{
047e0030 4636 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4637 struct e1000_hw *hw = &adapter->hw;
4638 int cpu = get_cpu();
fe4506b6 4639
047e0030
AD
4640 if (q_vector->cpu == cpu)
4641 goto out_no_update;
4642
4643 if (q_vector->tx_ring) {
4644 int q = q_vector->tx_ring->reg_idx;
4645 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4646 if (hw->mac.type == e1000_82575) {
4647 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4648 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4649 } else {
047e0030
AD
4650 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4651 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4652 E1000_DCA_TXCTRL_CPUID_SHIFT;
4653 }
4654 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4655 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4656 }
4657 if (q_vector->rx_ring) {
4658 int q = q_vector->rx_ring->reg_idx;
4659 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4660 if (hw->mac.type == e1000_82575) {
2d064c06 4661 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4662 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4663 } else {
4664 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4665 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4666 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4667 }
fe4506b6
JC
4668 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4669 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4670 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4671 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4672 }
047e0030
AD
4673 q_vector->cpu = cpu;
4674out_no_update:
fe4506b6
JC
4675 put_cpu();
4676}
4677
4678static void igb_setup_dca(struct igb_adapter *adapter)
4679{
7e0e99ef 4680 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4681 int i;
4682
7dfc16fa 4683 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4684 return;
4685
7e0e99ef
AD
4686 /* Always use CB2 mode, difference is masked in the CB driver. */
4687 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4688
047e0030 4689 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4690 adapter->q_vector[i]->cpu = -1;
4691 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4692 }
4693}
4694
4695static int __igb_notify_dca(struct device *dev, void *data)
4696{
4697 struct net_device *netdev = dev_get_drvdata(dev);
4698 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4699 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4700 struct e1000_hw *hw = &adapter->hw;
4701 unsigned long event = *(unsigned long *)data;
4702
4703 switch (event) {
4704 case DCA_PROVIDER_ADD:
4705 /* if already enabled, don't do it again */
7dfc16fa 4706 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4707 break;
fe4506b6 4708 if (dca_add_requester(dev) == 0) {
bbd98fe4 4709 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4710 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4711 igb_setup_dca(adapter);
4712 break;
4713 }
4714 /* Fall Through since DCA is disabled. */
4715 case DCA_PROVIDER_REMOVE:
7dfc16fa 4716 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4717 /* without this a class_device is left
047e0030 4718 * hanging around in the sysfs model */
fe4506b6 4719 dca_remove_requester(dev);
090b1795 4720 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4721 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4722 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4723 }
4724 break;
4725 }
bbd98fe4 4726
fe4506b6 4727 return 0;
9d5c8243
AK
4728}
4729
fe4506b6
JC
4730static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4731 void *p)
4732{
4733 int ret_val;
4734
4735 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4736 __igb_notify_dca);
4737
4738 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4739}
421e02f0 4740#endif /* CONFIG_IGB_DCA */
9d5c8243 4741
4ae196df
AD
4742static void igb_ping_all_vfs(struct igb_adapter *adapter)
4743{
4744 struct e1000_hw *hw = &adapter->hw;
4745 u32 ping;
4746 int i;
4747
4748 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4749 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4750 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4751 ping |= E1000_VT_MSGTYPE_CTS;
4752 igb_write_mbx(hw, &ping, 1, i);
4753 }
4754}
4755
7d5753f0
AD
4756static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4757{
4758 struct e1000_hw *hw = &adapter->hw;
4759 u32 vmolr = rd32(E1000_VMOLR(vf));
4760 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4761
d85b9004 4762 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4763 IGB_VF_FLAG_MULTI_PROMISC);
4764 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4765
4766 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4767 vmolr |= E1000_VMOLR_MPME;
d85b9004 4768 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4769 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4770 } else {
4771 /*
4772 * if we have hashes and we are clearing a multicast promisc
4773 * flag we need to write the hashes to the MTA as this step
4774 * was previously skipped
4775 */
4776 if (vf_data->num_vf_mc_hashes > 30) {
4777 vmolr |= E1000_VMOLR_MPME;
4778 } else if (vf_data->num_vf_mc_hashes) {
4779 int j;
4780 vmolr |= E1000_VMOLR_ROMPE;
4781 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4782 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4783 }
4784 }
4785
4786 wr32(E1000_VMOLR(vf), vmolr);
4787
4788 /* there are flags left unprocessed, likely not supported */
4789 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4790 return -EINVAL;
4791
4792 return 0;
4793
4794}
4795
4ae196df
AD
4796static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4797 u32 *msgbuf, u32 vf)
4798{
4799 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4800 u16 *hash_list = (u16 *)&msgbuf[1];
4801 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4802 int i;
4803
7d5753f0 4804 /* salt away the number of multicast addresses assigned
4ae196df
AD
4805 * to this VF for later use to restore when the PF multi cast
4806 * list changes
4807 */
4808 vf_data->num_vf_mc_hashes = n;
4809
7d5753f0
AD
4810 /* only up to 30 hash values supported */
4811 if (n > 30)
4812 n = 30;
4813
4814 /* store the hashes for later use */
4ae196df 4815 for (i = 0; i < n; i++)
a419aef8 4816 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4817
4818 /* Flush and reset the mta with the new values */
ff41f8dc 4819 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4820
4821 return 0;
4822}
4823
4824static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4825{
4826 struct e1000_hw *hw = &adapter->hw;
4827 struct vf_data_storage *vf_data;
4828 int i, j;
4829
4830 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4831 u32 vmolr = rd32(E1000_VMOLR(i));
4832 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4833
4ae196df 4834 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4835
4836 if ((vf_data->num_vf_mc_hashes > 30) ||
4837 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4838 vmolr |= E1000_VMOLR_MPME;
4839 } else if (vf_data->num_vf_mc_hashes) {
4840 vmolr |= E1000_VMOLR_ROMPE;
4841 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4842 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4843 }
4844 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4845 }
4846}
4847
4848static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4849{
4850 struct e1000_hw *hw = &adapter->hw;
4851 u32 pool_mask, reg, vid;
4852 int i;
4853
4854 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4855
4856 /* Find the vlan filter for this id */
4857 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4858 reg = rd32(E1000_VLVF(i));
4859
4860 /* remove the vf from the pool */
4861 reg &= ~pool_mask;
4862
4863 /* if pool is empty then remove entry from vfta */
4864 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4865 (reg & E1000_VLVF_VLANID_ENABLE)) {
4866 reg = 0;
4867 vid = reg & E1000_VLVF_VLANID_MASK;
4868 igb_vfta_set(hw, vid, false);
4869 }
4870
4871 wr32(E1000_VLVF(i), reg);
4872 }
ae641bdc
AD
4873
4874 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4875}
4876
4877static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4878{
4879 struct e1000_hw *hw = &adapter->hw;
4880 u32 reg, i;
4881
51466239
AD
4882 /* The vlvf table only exists on 82576 hardware and newer */
4883 if (hw->mac.type < e1000_82576)
4884 return -1;
4885
4886 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4887 if (!adapter->vfs_allocated_count)
4888 return -1;
4889
4890 /* Find the vlan filter for this id */
4891 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4892 reg = rd32(E1000_VLVF(i));
4893 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4894 vid == (reg & E1000_VLVF_VLANID_MASK))
4895 break;
4896 }
4897
4898 if (add) {
4899 if (i == E1000_VLVF_ARRAY_SIZE) {
4900 /* Did not find a matching VLAN ID entry that was
4901 * enabled. Search for a free filter entry, i.e.
4902 * one without the enable bit set
4903 */
4904 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4905 reg = rd32(E1000_VLVF(i));
4906 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4907 break;
4908 }
4909 }
4910 if (i < E1000_VLVF_ARRAY_SIZE) {
4911 /* Found an enabled/available entry */
4912 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4913
4914 /* if !enabled we need to set this up in vfta */
4915 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4916 /* add VID to filter table */
4917 igb_vfta_set(hw, vid, true);
4ae196df
AD
4918 reg |= E1000_VLVF_VLANID_ENABLE;
4919 }
cad6d05f
AD
4920 reg &= ~E1000_VLVF_VLANID_MASK;
4921 reg |= vid;
4ae196df 4922 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4923
4924 /* do not modify RLPML for PF devices */
4925 if (vf >= adapter->vfs_allocated_count)
4926 return 0;
4927
4928 if (!adapter->vf_data[vf].vlans_enabled) {
4929 u32 size;
4930 reg = rd32(E1000_VMOLR(vf));
4931 size = reg & E1000_VMOLR_RLPML_MASK;
4932 size += 4;
4933 reg &= ~E1000_VMOLR_RLPML_MASK;
4934 reg |= size;
4935 wr32(E1000_VMOLR(vf), reg);
4936 }
ae641bdc 4937
51466239 4938 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4939 return 0;
4940 }
4941 } else {
4942 if (i < E1000_VLVF_ARRAY_SIZE) {
4943 /* remove vf from the pool */
4944 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4945 /* if pool is empty then remove entry from vfta */
4946 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4947 reg = 0;
4948 igb_vfta_set(hw, vid, false);
4949 }
4950 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4951
4952 /* do not modify RLPML for PF devices */
4953 if (vf >= adapter->vfs_allocated_count)
4954 return 0;
4955
4956 adapter->vf_data[vf].vlans_enabled--;
4957 if (!adapter->vf_data[vf].vlans_enabled) {
4958 u32 size;
4959 reg = rd32(E1000_VMOLR(vf));
4960 size = reg & E1000_VMOLR_RLPML_MASK;
4961 size -= 4;
4962 reg &= ~E1000_VMOLR_RLPML_MASK;
4963 reg |= size;
4964 wr32(E1000_VMOLR(vf), reg);
4965 }
4ae196df
AD
4966 }
4967 }
8151d294
WM
4968 return 0;
4969}
4970
4971static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4972{
4973 struct e1000_hw *hw = &adapter->hw;
4974
4975 if (vid)
4976 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4977 else
4978 wr32(E1000_VMVIR(vf), 0);
4979}
4980
4981static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4982 int vf, u16 vlan, u8 qos)
4983{
4984 int err = 0;
4985 struct igb_adapter *adapter = netdev_priv(netdev);
4986
4987 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4988 return -EINVAL;
4989 if (vlan || qos) {
4990 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4991 if (err)
4992 goto out;
4993 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4994 igb_set_vmolr(adapter, vf, !vlan);
4995 adapter->vf_data[vf].pf_vlan = vlan;
4996 adapter->vf_data[vf].pf_qos = qos;
4997 dev_info(&adapter->pdev->dev,
4998 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4999 if (test_bit(__IGB_DOWN, &adapter->state)) {
5000 dev_warn(&adapter->pdev->dev,
5001 "The VF VLAN has been set,"
5002 " but the PF device is not up.\n");
5003 dev_warn(&adapter->pdev->dev,
5004 "Bring the PF device up before"
5005 " attempting to use the VF device.\n");
5006 }
5007 } else {
5008 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5009 false, vf);
5010 igb_set_vmvir(adapter, vlan, vf);
5011 igb_set_vmolr(adapter, vf, true);
5012 adapter->vf_data[vf].pf_vlan = 0;
5013 adapter->vf_data[vf].pf_qos = 0;
5014 }
5015out:
5016 return err;
4ae196df
AD
5017}
5018
5019static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5020{
5021 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5022 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5023
5024 return igb_vlvf_set(adapter, vid, add, vf);
5025}
5026
f2ca0dbe 5027static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5028{
8fa7e0f7
GR
5029 /* clear flags - except flag that indicates PF has set the MAC */
5030 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5031 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5032
5033 /* reset offloads to defaults */
8151d294 5034 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5035
5036 /* reset vlans for device */
5037 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5038 if (adapter->vf_data[vf].pf_vlan)
5039 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5040 adapter->vf_data[vf].pf_vlan,
5041 adapter->vf_data[vf].pf_qos);
5042 else
5043 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5044
5045 /* reset multicast table array for vf */
5046 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5047
5048 /* Flush and reset the mta with the new values */
ff41f8dc 5049 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5050}
5051
f2ca0dbe
AD
5052static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5053{
5054 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5055
5056 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5057 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5058 random_ether_addr(vf_mac);
f2ca0dbe
AD
5059
5060 /* process remaining reset events */
5061 igb_vf_reset(adapter, vf);
5062}
5063
5064static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5065{
5066 struct e1000_hw *hw = &adapter->hw;
5067 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5068 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5069 u32 reg, msgbuf[3];
5070 u8 *addr = (u8 *)(&msgbuf[1]);
5071
5072 /* process all the same items cleared in a function level reset */
f2ca0dbe 5073 igb_vf_reset(adapter, vf);
4ae196df
AD
5074
5075 /* set vf mac address */
26ad9178 5076 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5077
5078 /* enable transmit and receive for vf */
5079 reg = rd32(E1000_VFTE);
5080 wr32(E1000_VFTE, reg | (1 << vf));
5081 reg = rd32(E1000_VFRE);
5082 wr32(E1000_VFRE, reg | (1 << vf));
5083
8fa7e0f7 5084 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5085
5086 /* reply to reset with ack and vf mac address */
5087 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5088 memcpy(addr, vf_mac, 6);
5089 igb_write_mbx(hw, msgbuf, 3, vf);
5090}
5091
5092static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5093{
de42edde
GR
5094 /*
5095 * The VF MAC Address is stored in a packed array of bytes
5096 * starting at the second 32 bit word of the msg array
5097 */
f2ca0dbe
AD
5098 unsigned char *addr = (char *)&msg[1];
5099 int err = -1;
4ae196df 5100
f2ca0dbe
AD
5101 if (is_valid_ether_addr(addr))
5102 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5103
f2ca0dbe 5104 return err;
4ae196df
AD
5105}
5106
5107static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5108{
5109 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5110 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5111 u32 msg = E1000_VT_MSGTYPE_NACK;
5112
5113 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5114 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5115 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5116 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5117 vf_data->last_nack = jiffies;
4ae196df
AD
5118 }
5119}
5120
f2ca0dbe 5121static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5122{
f2ca0dbe
AD
5123 struct pci_dev *pdev = adapter->pdev;
5124 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5125 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5126 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5127 s32 retval;
5128
f2ca0dbe 5129 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5130
fef45f4c
AD
5131 if (retval) {
5132 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5133 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5134 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5135 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5136 return;
5137 goto out;
5138 }
4ae196df
AD
5139
5140 /* this is a message we already processed, do nothing */
5141 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5142 return;
4ae196df
AD
5143
5144 /*
5145 * until the vf completes a reset it should not be
5146 * allowed to start any configuration.
5147 */
5148
5149 if (msgbuf[0] == E1000_VF_RESET) {
5150 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5151 return;
4ae196df
AD
5152 }
5153
f2ca0dbe 5154 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5155 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5156 return;
5157 retval = -1;
5158 goto out;
4ae196df
AD
5159 }
5160
5161 switch ((msgbuf[0] & 0xFFFF)) {
5162 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5163 retval = -EINVAL;
5164 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5165 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5166 else
5167 dev_warn(&pdev->dev,
5168 "VF %d attempted to override administratively "
5169 "set MAC address\nReload the VF driver to "
5170 "resume operations\n", vf);
4ae196df 5171 break;
7d5753f0
AD
5172 case E1000_VF_SET_PROMISC:
5173 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5174 break;
4ae196df
AD
5175 case E1000_VF_SET_MULTICAST:
5176 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5177 break;
5178 case E1000_VF_SET_LPE:
5179 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5180 break;
5181 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5182 retval = -1;
5183 if (vf_data->pf_vlan)
5184 dev_warn(&pdev->dev,
5185 "VF %d attempted to override administratively "
5186 "set VLAN tag\nReload the VF driver to "
5187 "resume operations\n", vf);
8151d294
WM
5188 else
5189 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5190 break;
5191 default:
090b1795 5192 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5193 retval = -1;
5194 break;
5195 }
5196
fef45f4c
AD
5197 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5198out:
4ae196df
AD
5199 /* notify the VF of the results of what it sent us */
5200 if (retval)
5201 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5202 else
5203 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5204
4ae196df 5205 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5206}
4ae196df 5207
f2ca0dbe
AD
5208static void igb_msg_task(struct igb_adapter *adapter)
5209{
5210 struct e1000_hw *hw = &adapter->hw;
5211 u32 vf;
5212
5213 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5214 /* process any reset requests */
5215 if (!igb_check_for_rst(hw, vf))
5216 igb_vf_reset_event(adapter, vf);
5217
5218 /* process any messages pending */
5219 if (!igb_check_for_msg(hw, vf))
5220 igb_rcv_msg_from_vf(adapter, vf);
5221
5222 /* process any acks */
5223 if (!igb_check_for_ack(hw, vf))
5224 igb_rcv_ack_from_vf(adapter, vf);
5225 }
4ae196df
AD
5226}
5227
68d480c4
AD
5228/**
5229 * igb_set_uta - Set unicast filter table address
5230 * @adapter: board private structure
5231 *
5232 * The unicast table address is a register array of 32-bit registers.
5233 * The table is meant to be used in a way similar to how the MTA is used
5234 * however due to certain limitations in the hardware it is necessary to
5235 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5236 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5237 **/
5238static void igb_set_uta(struct igb_adapter *adapter)
5239{
5240 struct e1000_hw *hw = &adapter->hw;
5241 int i;
5242
5243 /* The UTA table only exists on 82576 hardware and newer */
5244 if (hw->mac.type < e1000_82576)
5245 return;
5246
5247 /* we only need to do this if VMDq is enabled */
5248 if (!adapter->vfs_allocated_count)
5249 return;
5250
5251 for (i = 0; i < hw->mac.uta_reg_count; i++)
5252 array_wr32(E1000_UTA, i, ~0);
5253}
5254
9d5c8243
AK
5255/**
5256 * igb_intr_msi - Interrupt Handler
5257 * @irq: interrupt number
5258 * @data: pointer to a network interface device structure
5259 **/
5260static irqreturn_t igb_intr_msi(int irq, void *data)
5261{
047e0030
AD
5262 struct igb_adapter *adapter = data;
5263 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5264 struct e1000_hw *hw = &adapter->hw;
5265 /* read ICR disables interrupts using IAM */
5266 u32 icr = rd32(E1000_ICR);
5267
047e0030 5268 igb_write_itr(q_vector);
9d5c8243 5269
7f081d40
AD
5270 if (icr & E1000_ICR_DRSTA)
5271 schedule_work(&adapter->reset_task);
5272
047e0030 5273 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5274 /* HW is reporting DMA is out of sync */
5275 adapter->stats.doosync++;
5276 }
5277
9d5c8243
AK
5278 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5279 hw->mac.get_link_status = 1;
5280 if (!test_bit(__IGB_DOWN, &adapter->state))
5281 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5282 }
5283
047e0030 5284 napi_schedule(&q_vector->napi);
9d5c8243
AK
5285
5286 return IRQ_HANDLED;
5287}
5288
5289/**
4a3c6433 5290 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5291 * @irq: interrupt number
5292 * @data: pointer to a network interface device structure
5293 **/
5294static irqreturn_t igb_intr(int irq, void *data)
5295{
047e0030
AD
5296 struct igb_adapter *adapter = data;
5297 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5298 struct e1000_hw *hw = &adapter->hw;
5299 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5300 * need for the IMC write */
5301 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5302 if (!icr)
5303 return IRQ_NONE; /* Not our interrupt */
5304
047e0030 5305 igb_write_itr(q_vector);
9d5c8243
AK
5306
5307 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5308 * not set, then the adapter didn't send an interrupt */
5309 if (!(icr & E1000_ICR_INT_ASSERTED))
5310 return IRQ_NONE;
5311
7f081d40
AD
5312 if (icr & E1000_ICR_DRSTA)
5313 schedule_work(&adapter->reset_task);
5314
047e0030 5315 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5316 /* HW is reporting DMA is out of sync */
5317 adapter->stats.doosync++;
5318 }
5319
9d5c8243
AK
5320 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5321 hw->mac.get_link_status = 1;
5322 /* guard against interrupt when we're going down */
5323 if (!test_bit(__IGB_DOWN, &adapter->state))
5324 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5325 }
5326
047e0030 5327 napi_schedule(&q_vector->napi);
9d5c8243
AK
5328
5329 return IRQ_HANDLED;
5330}
5331
047e0030 5332static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5333{
047e0030 5334 struct igb_adapter *adapter = q_vector->adapter;
46544258 5335 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5336
4fc82adf
AD
5337 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5338 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5339 if (!adapter->msix_entries)
6eb5a7f1 5340 igb_set_itr(adapter);
46544258 5341 else
047e0030 5342 igb_update_ring_itr(q_vector);
9d5c8243
AK
5343 }
5344
46544258
AD
5345 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5346 if (adapter->msix_entries)
047e0030 5347 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5348 else
5349 igb_irq_enable(adapter);
5350 }
9d5c8243
AK
5351}
5352
46544258
AD
5353/**
5354 * igb_poll - NAPI Rx polling callback
5355 * @napi: napi polling structure
5356 * @budget: count of how many packets we should handle
5357 **/
5358static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5359{
047e0030
AD
5360 struct igb_q_vector *q_vector = container_of(napi,
5361 struct igb_q_vector,
5362 napi);
5363 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5364
421e02f0 5365#ifdef CONFIG_IGB_DCA
047e0030
AD
5366 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5367 igb_update_dca(q_vector);
fe4506b6 5368#endif
047e0030
AD
5369 if (q_vector->tx_ring)
5370 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5371
047e0030
AD
5372 if (q_vector->rx_ring)
5373 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5374
5375 if (!tx_clean_complete)
5376 work_done = budget;
46544258 5377
9d5c8243 5378 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5379 if (work_done < budget) {
288379f0 5380 napi_complete(napi);
047e0030 5381 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5382 }
5383
46544258 5384 return work_done;
9d5c8243 5385}
6d8126f9 5386
33af6bcc 5387/**
c5b9bd5e 5388 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5389 * @adapter: board private structure
c5b9bd5e
AD
5390 * @shhwtstamps: timestamp structure to update
5391 * @regval: unsigned 64bit system time value.
5392 *
5393 * We need to convert the system time value stored in the RX/TXSTMP registers
5394 * into a hwtstamp which can be used by the upper level timestamping functions
5395 */
5396static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5397 struct skb_shared_hwtstamps *shhwtstamps,
5398 u64 regval)
5399{
5400 u64 ns;
5401
55cac248
AD
5402 /*
5403 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5404 * 24 to match clock shift we setup earlier.
5405 */
5406 if (adapter->hw.mac.type == e1000_82580)
5407 regval <<= IGB_82580_TSYNC_SHIFT;
5408
c5b9bd5e
AD
5409 ns = timecounter_cyc2time(&adapter->clock, regval);
5410 timecompare_update(&adapter->compare, ns);
5411 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5412 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5413 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5414}
5415
5416/**
5417 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5418 * @q_vector: pointer to q_vector containing needed info
2873957d 5419 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5420 *
5421 * If we were asked to do hardware stamping and such a time stamp is
5422 * available, then it must have been for this skb here because we only
5423 * allow only one such packet into the queue.
5424 */
2873957d 5425static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5426{
c5b9bd5e 5427 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5428 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5429 struct skb_shared_hwtstamps shhwtstamps;
5430 u64 regval;
33af6bcc 5431
c5b9bd5e 5432 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5433 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5434 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5435 return;
5436
5437 regval = rd32(E1000_TXSTMPL);
5438 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5439
5440 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5441 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5442}
5443
9d5c8243
AK
5444/**
5445 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5446 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5447 * returns true if ring is completely cleaned
5448 **/
047e0030 5449static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5450{
047e0030
AD
5451 struct igb_adapter *adapter = q_vector->adapter;
5452 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5453 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5454 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5455 struct igb_buffer *buffer_info;
0e014cb1 5456 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5457 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5458 unsigned int i, eop, count = 0;
5459 bool cleaned = false;
9d5c8243 5460
9d5c8243 5461 i = tx_ring->next_to_clean;
0e014cb1
AD
5462 eop = tx_ring->buffer_info[i].next_to_watch;
5463 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5464
5465 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5466 (count < tx_ring->count)) {
2d0bb1c1 5467 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5468 for (cleaned = false; !cleaned; count++) {
5469 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5470 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5471 cleaned = (i == eop);
9d5c8243 5472
2873957d
NN
5473 if (buffer_info->skb) {
5474 total_bytes += buffer_info->bytecount;
9d5c8243 5475 /* gso_segs is currently only valid for tcp */
2873957d
NN
5476 total_packets += buffer_info->gso_segs;
5477 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5478 }
5479
80785298 5480 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5481 tx_desc->wb.status = 0;
9d5c8243
AK
5482
5483 i++;
5484 if (i == tx_ring->count)
5485 i = 0;
9d5c8243 5486 }
0e014cb1
AD
5487 eop = tx_ring->buffer_info[i].next_to_watch;
5488 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5489 }
5490
9d5c8243
AK
5491 tx_ring->next_to_clean = i;
5492
fc7d345d 5493 if (unlikely(count &&
9d5c8243 5494 netif_carrier_ok(netdev) &&
c493ea45 5495 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5496 /* Make sure that anybody stopping the queue after this
5497 * sees the new next_to_clean.
5498 */
5499 smp_mb();
661086df
PWJ
5500 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5501 !(test_bit(__IGB_DOWN, &adapter->state))) {
5502 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5503
5504 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5505 tx_ring->tx_stats.restart_queue++;
12dcd86b 5506 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5507 }
9d5c8243
AK
5508 }
5509
5510 if (tx_ring->detect_tx_hung) {
5511 /* Detect a transmit hang in hardware, this serializes the
5512 * check with the clearing of time_stamp and movement of i */
5513 tx_ring->detect_tx_hung = false;
5514 if (tx_ring->buffer_info[i].time_stamp &&
5515 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5516 (adapter->tx_timeout_factor * HZ)) &&
5517 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5518
9d5c8243 5519 /* detected Tx unit hang */
59d71989 5520 dev_err(tx_ring->dev,
9d5c8243 5521 "Detected Tx Unit Hang\n"
2d064c06 5522 " Tx Queue <%d>\n"
9d5c8243
AK
5523 " TDH <%x>\n"
5524 " TDT <%x>\n"
5525 " next_to_use <%x>\n"
5526 " next_to_clean <%x>\n"
9d5c8243
AK
5527 "buffer_info[next_to_clean]\n"
5528 " time_stamp <%lx>\n"
0e014cb1 5529 " next_to_watch <%x>\n"
9d5c8243
AK
5530 " jiffies <%lx>\n"
5531 " desc.status <%x>\n",
2d064c06 5532 tx_ring->queue_index,
fce99e34
AD
5533 readl(tx_ring->head),
5534 readl(tx_ring->tail),
9d5c8243
AK
5535 tx_ring->next_to_use,
5536 tx_ring->next_to_clean,
f7ba205e 5537 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5538 eop,
9d5c8243 5539 jiffies,
0e014cb1 5540 eop_desc->wb.status);
661086df 5541 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5542 }
5543 }
5544 tx_ring->total_bytes += total_bytes;
5545 tx_ring->total_packets += total_packets;
12dcd86b 5546 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5547 tx_ring->tx_stats.bytes += total_bytes;
5548 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5549 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5550 return count < tx_ring->count;
9d5c8243
AK
5551}
5552
9d5c8243
AK
5553/**
5554 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5555 * @q_vector: structure containing interrupt and ring information
5556 * @skb: packet to send up
5557 * @vlan_tag: vlan tag for packet
9d5c8243 5558 **/
047e0030
AD
5559static void igb_receive_skb(struct igb_q_vector *q_vector,
5560 struct sk_buff *skb,
5561 u16 vlan_tag)
5562{
5563 struct igb_adapter *adapter = q_vector->adapter;
5564
31b24b95 5565 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5566 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5567 vlan_tag, skb);
182ff8df 5568 else
047e0030 5569 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5570}
5571
04a5fcaa 5572static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5573 u32 status_err, struct sk_buff *skb)
5574{
bc8acf2c 5575 skb_checksum_none_assert(skb);
9d5c8243
AK
5576
5577 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5578 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5579 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5580 return;
85ad76b2 5581
9d5c8243
AK
5582 /* TCP/UDP checksum error bit is set */
5583 if (status_err &
5584 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5585 /*
5586 * work around errata with sctp packets where the TCPE aka
5587 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5588 * packets, (aka let the stack check the crc32c)
5589 */
85ad76b2 5590 if ((skb->len == 60) &&
12dcd86b
ED
5591 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5592 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5593 ring->rx_stats.csum_err++;
12dcd86b
ED
5594 u64_stats_update_end(&ring->rx_syncp);
5595 }
9d5c8243 5596 /* let the stack verify checksum errors */
9d5c8243
AK
5597 return;
5598 }
5599 /* It must be a TCP or UDP packet with a valid checksum */
5600 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5601 skb->ip_summed = CHECKSUM_UNNECESSARY;
5602
59d71989 5603 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5604}
5605
757b77e2 5606static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5607 struct sk_buff *skb)
5608{
5609 struct igb_adapter *adapter = q_vector->adapter;
5610 struct e1000_hw *hw = &adapter->hw;
5611 u64 regval;
5612
5613 /*
5614 * If this bit is set, then the RX registers contain the time stamp. No
5615 * other packet will be time stamped until we read these registers, so
5616 * read the registers to make them available again. Because only one
5617 * packet can be time stamped at a time, we know that the register
5618 * values must belong to this one here and therefore we don't need to
5619 * compare any of the additional attributes stored for it.
5620 *
2244d07b 5621 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5622 * can turn into a skb_shared_hwtstamps.
5623 */
757b77e2
NN
5624 if (staterr & E1000_RXDADV_STAT_TSIP) {
5625 u32 *stamp = (u32 *)skb->data;
5626 regval = le32_to_cpu(*(stamp + 2));
5627 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5628 skb_pull(skb, IGB_TS_HDR_LEN);
5629 } else {
5630 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5631 return;
c5b9bd5e 5632
757b77e2
NN
5633 regval = rd32(E1000_RXSTMPL);
5634 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5635 }
c5b9bd5e
AD
5636
5637 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5638}
4c844851 5639static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5640 union e1000_adv_rx_desc *rx_desc)
5641{
5642 /* HW will not DMA in data larger than the given buffer, even if it
5643 * parses the (NFS, of course) header to be larger. In that case, it
5644 * fills the header buffer and spills the rest into the page.
5645 */
5646 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5647 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5648 if (hlen > rx_ring->rx_buffer_len)
5649 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5650 return hlen;
5651}
5652
047e0030
AD
5653static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5654 int *work_done, int budget)
9d5c8243 5655{
047e0030 5656 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5657 struct net_device *netdev = rx_ring->netdev;
59d71989 5658 struct device *dev = rx_ring->dev;
9d5c8243
AK
5659 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5660 struct igb_buffer *buffer_info , *next_buffer;
5661 struct sk_buff *skb;
9d5c8243
AK
5662 bool cleaned = false;
5663 int cleaned_count = 0;
d1eff350 5664 int current_node = numa_node_id();
9d5c8243 5665 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5666 unsigned int i;
2d94d8ab
AD
5667 u32 staterr;
5668 u16 length;
047e0030 5669 u16 vlan_tag;
9d5c8243
AK
5670
5671 i = rx_ring->next_to_clean;
69d3ca53 5672 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5673 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5674 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5675
5676 while (staterr & E1000_RXD_STAT_DD) {
5677 if (*work_done >= budget)
5678 break;
5679 (*work_done)++;
2d0bb1c1 5680 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5681
69d3ca53
AD
5682 skb = buffer_info->skb;
5683 prefetch(skb->data - NET_IP_ALIGN);
5684 buffer_info->skb = NULL;
5685
5686 i++;
5687 if (i == rx_ring->count)
5688 i = 0;
42d0781a 5689
69d3ca53
AD
5690 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5691 prefetch(next_rxd);
5692 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5693
5694 length = le16_to_cpu(rx_desc->wb.upper.length);
5695 cleaned = true;
5696 cleaned_count++;
5697
2d94d8ab 5698 if (buffer_info->dma) {
59d71989 5699 dma_unmap_single(dev, buffer_info->dma,
4c844851 5700 rx_ring->rx_buffer_len,
59d71989 5701 DMA_FROM_DEVICE);
91615f76 5702 buffer_info->dma = 0;
4c844851 5703 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5704 skb_put(skb, length);
5705 goto send_up;
5706 }
4c844851 5707 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5708 }
5709
5710 if (length) {
59d71989
AD
5711 dma_unmap_page(dev, buffer_info->page_dma,
5712 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5713 buffer_info->page_dma = 0;
bf36c1a0 5714
aa913403 5715 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5716 buffer_info->page,
5717 buffer_info->page_offset,
5718 length);
5719
d1eff350
AD
5720 if ((page_count(buffer_info->page) != 1) ||
5721 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5722 buffer_info->page = NULL;
5723 else
5724 get_page(buffer_info->page);
9d5c8243
AK
5725
5726 skb->len += length;
5727 skb->data_len += length;
bf36c1a0 5728 skb->truesize += length;
9d5c8243 5729 }
9d5c8243 5730
bf36c1a0 5731 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5732 buffer_info->skb = next_buffer->skb;
5733 buffer_info->dma = next_buffer->dma;
5734 next_buffer->skb = skb;
5735 next_buffer->dma = 0;
bf36c1a0
AD
5736 goto next_desc;
5737 }
69d3ca53 5738send_up:
9d5c8243
AK
5739 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5740 dev_kfree_skb_irq(skb);
5741 goto next_desc;
5742 }
9d5c8243 5743
757b77e2
NN
5744 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5745 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5746 total_bytes += skb->len;
5747 total_packets++;
5748
85ad76b2 5749 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5750
5751 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5752 skb_record_rx_queue(skb, rx_ring->queue_index);
5753
5754 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5755 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5756
047e0030 5757 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5758
9d5c8243
AK
5759next_desc:
5760 rx_desc->wb.upper.status_error = 0;
5761
5762 /* return some buffers to hardware, one at a time is too slow */
5763 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5764 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5765 cleaned_count = 0;
5766 }
5767
5768 /* use prefetched values */
5769 rx_desc = next_rxd;
5770 buffer_info = next_buffer;
9d5c8243
AK
5771 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5772 }
bf36c1a0 5773
9d5c8243 5774 rx_ring->next_to_clean = i;
c493ea45 5775 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5776
5777 if (cleaned_count)
3b644cf6 5778 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5779
5780 rx_ring->total_packets += total_packets;
5781 rx_ring->total_bytes += total_bytes;
12dcd86b 5782 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5783 rx_ring->rx_stats.packets += total_packets;
5784 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5785 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5786 return cleaned;
5787}
5788
9d5c8243
AK
5789/**
5790 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5791 * @adapter: address of board private structure
5792 **/
d7ee5b3a 5793void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5794{
e694e964 5795 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5796 union e1000_adv_rx_desc *rx_desc;
5797 struct igb_buffer *buffer_info;
5798 struct sk_buff *skb;
5799 unsigned int i;
db761762 5800 int bufsz;
9d5c8243
AK
5801
5802 i = rx_ring->next_to_use;
5803 buffer_info = &rx_ring->buffer_info[i];
5804
4c844851 5805 bufsz = rx_ring->rx_buffer_len;
db761762 5806
9d5c8243
AK
5807 while (cleaned_count--) {
5808 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5809
6ec43fe6 5810 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5811 if (!buffer_info->page) {
42d0781a 5812 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5813 if (unlikely(!buffer_info->page)) {
5814 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5815 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5816 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5817 goto no_buffers;
5818 }
5819 buffer_info->page_offset = 0;
5820 } else {
5821 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5822 }
5823 buffer_info->page_dma =
59d71989 5824 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5825 buffer_info->page_offset,
5826 PAGE_SIZE / 2,
59d71989
AD
5827 DMA_FROM_DEVICE);
5828 if (dma_mapping_error(rx_ring->dev,
5829 buffer_info->page_dma)) {
42d0781a 5830 buffer_info->page_dma = 0;
12dcd86b 5831 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5832 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5833 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5834 goto no_buffers;
5835 }
9d5c8243
AK
5836 }
5837
42d0781a
AD
5838 skb = buffer_info->skb;
5839 if (!skb) {
89d71a66 5840 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5841 if (unlikely(!skb)) {
5842 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5843 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5844 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5845 goto no_buffers;
5846 }
5847
9d5c8243 5848 buffer_info->skb = skb;
42d0781a
AD
5849 }
5850 if (!buffer_info->dma) {
59d71989 5851 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5852 skb->data,
9d5c8243 5853 bufsz,
59d71989
AD
5854 DMA_FROM_DEVICE);
5855 if (dma_mapping_error(rx_ring->dev,
5856 buffer_info->dma)) {
42d0781a 5857 buffer_info->dma = 0;
12dcd86b 5858 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5859 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5860 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5861 goto no_buffers;
5862 }
9d5c8243
AK
5863 }
5864 /* Refresh the desc even if buffer_addrs didn't change because
5865 * each write-back erases this info. */
6ec43fe6 5866 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5867 rx_desc->read.pkt_addr =
5868 cpu_to_le64(buffer_info->page_dma);
5869 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5870 } else {
42d0781a 5871 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5872 rx_desc->read.hdr_addr = 0;
5873 }
5874
5875 i++;
5876 if (i == rx_ring->count)
5877 i = 0;
5878 buffer_info = &rx_ring->buffer_info[i];
5879 }
5880
5881no_buffers:
5882 if (rx_ring->next_to_use != i) {
5883 rx_ring->next_to_use = i;
5884 if (i == 0)
5885 i = (rx_ring->count - 1);
5886 else
5887 i--;
5888
5889 /* Force memory writes to complete before letting h/w
5890 * know there are new descriptors to fetch. (Only
5891 * applicable for weak-ordered memory model archs,
5892 * such as IA-64). */
5893 wmb();
fce99e34 5894 writel(i, rx_ring->tail);
9d5c8243
AK
5895 }
5896}
5897
5898/**
5899 * igb_mii_ioctl -
5900 * @netdev:
5901 * @ifreq:
5902 * @cmd:
5903 **/
5904static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5905{
5906 struct igb_adapter *adapter = netdev_priv(netdev);
5907 struct mii_ioctl_data *data = if_mii(ifr);
5908
5909 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5910 return -EOPNOTSUPP;
5911
5912 switch (cmd) {
5913 case SIOCGMIIPHY:
5914 data->phy_id = adapter->hw.phy.addr;
5915 break;
5916 case SIOCGMIIREG:
f5f4cf08
AD
5917 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5918 &data->val_out))
9d5c8243
AK
5919 return -EIO;
5920 break;
5921 case SIOCSMIIREG:
5922 default:
5923 return -EOPNOTSUPP;
5924 }
5925 return 0;
5926}
5927
c6cb090b
PO
5928/**
5929 * igb_hwtstamp_ioctl - control hardware time stamping
5930 * @netdev:
5931 * @ifreq:
5932 * @cmd:
5933 *
33af6bcc
PO
5934 * Outgoing time stamping can be enabled and disabled. Play nice and
5935 * disable it when requested, although it shouldn't case any overhead
5936 * when no packet needs it. At most one packet in the queue may be
5937 * marked for time stamping, otherwise it would be impossible to tell
5938 * for sure to which packet the hardware time stamp belongs.
5939 *
5940 * Incoming time stamping has to be configured via the hardware
5941 * filters. Not all combinations are supported, in particular event
5942 * type has to be specified. Matching the kind of event packet is
5943 * not supported, with the exception of "all V2 events regardless of
5944 * level 2 or 4".
5945 *
c6cb090b
PO
5946 **/
5947static int igb_hwtstamp_ioctl(struct net_device *netdev,
5948 struct ifreq *ifr, int cmd)
5949{
33af6bcc
PO
5950 struct igb_adapter *adapter = netdev_priv(netdev);
5951 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5952 struct hwtstamp_config config;
c5b9bd5e
AD
5953 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5954 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5955 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5956 bool is_l4 = false;
5957 bool is_l2 = false;
33af6bcc 5958 u32 regval;
c6cb090b
PO
5959
5960 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5961 return -EFAULT;
5962
5963 /* reserved for future extensions */
5964 if (config.flags)
5965 return -EINVAL;
5966
33af6bcc
PO
5967 switch (config.tx_type) {
5968 case HWTSTAMP_TX_OFF:
c5b9bd5e 5969 tsync_tx_ctl = 0;
33af6bcc 5970 case HWTSTAMP_TX_ON:
33af6bcc
PO
5971 break;
5972 default:
5973 return -ERANGE;
5974 }
5975
5976 switch (config.rx_filter) {
5977 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5978 tsync_rx_ctl = 0;
33af6bcc
PO
5979 break;
5980 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5981 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5982 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5983 case HWTSTAMP_FILTER_ALL:
5984 /*
5985 * register TSYNCRXCFG must be set, therefore it is not
5986 * possible to time stamp both Sync and Delay_Req messages
5987 * => fall back to time stamping all packets
5988 */
c5b9bd5e 5989 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5990 config.rx_filter = HWTSTAMP_FILTER_ALL;
5991 break;
5992 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5993 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5994 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5995 is_l4 = true;
33af6bcc
PO
5996 break;
5997 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5998 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5999 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6000 is_l4 = true;
33af6bcc
PO
6001 break;
6002 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6003 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6004 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6005 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6006 is_l2 = true;
6007 is_l4 = true;
33af6bcc
PO
6008 config.rx_filter = HWTSTAMP_FILTER_SOME;
6009 break;
6010 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6011 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6012 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6013 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6014 is_l2 = true;
6015 is_l4 = true;
33af6bcc
PO
6016 config.rx_filter = HWTSTAMP_FILTER_SOME;
6017 break;
6018 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6019 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6020 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6021 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6022 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6023 is_l2 = true;
33af6bcc
PO
6024 break;
6025 default:
6026 return -ERANGE;
6027 }
6028
c5b9bd5e
AD
6029 if (hw->mac.type == e1000_82575) {
6030 if (tsync_rx_ctl | tsync_tx_ctl)
6031 return -EINVAL;
6032 return 0;
6033 }
6034
757b77e2
NN
6035 /*
6036 * Per-packet timestamping only works if all packets are
6037 * timestamped, so enable timestamping in all packets as
6038 * long as one rx filter was configured.
6039 */
6040 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6041 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6042 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6043 }
6044
33af6bcc
PO
6045 /* enable/disable TX */
6046 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6047 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6048 regval |= tsync_tx_ctl;
33af6bcc
PO
6049 wr32(E1000_TSYNCTXCTL, regval);
6050
c5b9bd5e 6051 /* enable/disable RX */
33af6bcc 6052 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6053 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6054 regval |= tsync_rx_ctl;
33af6bcc 6055 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6056
c5b9bd5e
AD
6057 /* define which PTP packets are time stamped */
6058 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6059
c5b9bd5e
AD
6060 /* define ethertype filter for timestamped packets */
6061 if (is_l2)
6062 wr32(E1000_ETQF(3),
6063 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6064 E1000_ETQF_1588 | /* enable timestamping */
6065 ETH_P_1588)); /* 1588 eth protocol type */
6066 else
6067 wr32(E1000_ETQF(3), 0);
6068
6069#define PTP_PORT 319
6070 /* L4 Queue Filter[3]: filter by destination port and protocol */
6071 if (is_l4) {
6072 u32 ftqf = (IPPROTO_UDP /* UDP */
6073 | E1000_FTQF_VF_BP /* VF not compared */
6074 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6075 | E1000_FTQF_MASK); /* mask all inputs */
6076 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6077
6078 wr32(E1000_IMIR(3), htons(PTP_PORT));
6079 wr32(E1000_IMIREXT(3),
6080 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6081 if (hw->mac.type == e1000_82576) {
6082 /* enable source port check */
6083 wr32(E1000_SPQF(3), htons(PTP_PORT));
6084 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6085 }
6086 wr32(E1000_FTQF(3), ftqf);
6087 } else {
6088 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6089 }
33af6bcc
PO
6090 wrfl();
6091
6092 adapter->hwtstamp_config = config;
6093
6094 /* clear TX/RX time stamp registers, just to be sure */
6095 regval = rd32(E1000_TXSTMPH);
6096 regval = rd32(E1000_RXSTMPH);
c6cb090b 6097
33af6bcc
PO
6098 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6099 -EFAULT : 0;
c6cb090b
PO
6100}
6101
9d5c8243
AK
6102/**
6103 * igb_ioctl -
6104 * @netdev:
6105 * @ifreq:
6106 * @cmd:
6107 **/
6108static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6109{
6110 switch (cmd) {
6111 case SIOCGMIIPHY:
6112 case SIOCGMIIREG:
6113 case SIOCSMIIREG:
6114 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6115 case SIOCSHWTSTAMP:
6116 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6117 default:
6118 return -EOPNOTSUPP;
6119 }
6120}
6121
009bc06e
AD
6122s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6123{
6124 struct igb_adapter *adapter = hw->back;
6125 u16 cap_offset;
6126
6127 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6128 if (!cap_offset)
6129 return -E1000_ERR_CONFIG;
6130
6131 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6132
6133 return 0;
6134}
6135
6136s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6137{
6138 struct igb_adapter *adapter = hw->back;
6139 u16 cap_offset;
6140
6141 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6142 if (!cap_offset)
6143 return -E1000_ERR_CONFIG;
6144
6145 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6146
6147 return 0;
6148}
6149
9d5c8243
AK
6150static void igb_vlan_rx_register(struct net_device *netdev,
6151 struct vlan_group *grp)
6152{
6153 struct igb_adapter *adapter = netdev_priv(netdev);
6154 struct e1000_hw *hw = &adapter->hw;
6155 u32 ctrl, rctl;
6156
6157 igb_irq_disable(adapter);
6158 adapter->vlgrp = grp;
6159
6160 if (grp) {
6161 /* enable VLAN tag insert/strip */
6162 ctrl = rd32(E1000_CTRL);
6163 ctrl |= E1000_CTRL_VME;
6164 wr32(E1000_CTRL, ctrl);
6165
51466239 6166 /* Disable CFI check */
9d5c8243 6167 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6168 rctl &= ~E1000_RCTL_CFIEN;
6169 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6170 } else {
6171 /* disable VLAN tag insert/strip */
6172 ctrl = rd32(E1000_CTRL);
6173 ctrl &= ~E1000_CTRL_VME;
6174 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6175 }
6176
e1739522
AD
6177 igb_rlpml_set(adapter);
6178
9d5c8243
AK
6179 if (!test_bit(__IGB_DOWN, &adapter->state))
6180 igb_irq_enable(adapter);
6181}
6182
6183static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6184{
6185 struct igb_adapter *adapter = netdev_priv(netdev);
6186 struct e1000_hw *hw = &adapter->hw;
4ae196df 6187 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6188
51466239
AD
6189 /* attempt to add filter to vlvf array */
6190 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6191
51466239
AD
6192 /* add the filter since PF can receive vlans w/o entry in vlvf */
6193 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6194}
6195
6196static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6197{
6198 struct igb_adapter *adapter = netdev_priv(netdev);
6199 struct e1000_hw *hw = &adapter->hw;
4ae196df 6200 int pf_id = adapter->vfs_allocated_count;
51466239 6201 s32 err;
9d5c8243
AK
6202
6203 igb_irq_disable(adapter);
6204 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6205
6206 if (!test_bit(__IGB_DOWN, &adapter->state))
6207 igb_irq_enable(adapter);
6208
51466239
AD
6209 /* remove vlan from VLVF table array */
6210 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6211
51466239
AD
6212 /* if vid was not present in VLVF just remove it from table */
6213 if (err)
4ae196df 6214 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6215}
6216
6217static void igb_restore_vlan(struct igb_adapter *adapter)
6218{
6219 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6220
6221 if (adapter->vlgrp) {
6222 u16 vid;
b738127d 6223 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6224 if (!vlan_group_get_device(adapter->vlgrp, vid))
6225 continue;
6226 igb_vlan_rx_add_vid(adapter->netdev, vid);
6227 }
6228 }
6229}
6230
6231int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6232{
090b1795 6233 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6234 struct e1000_mac_info *mac = &adapter->hw.mac;
6235
6236 mac->autoneg = 0;
6237
cd2638a8
CW
6238 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6239 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6240 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
6241 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6242 return -EINVAL;
6243 }
6244
9d5c8243
AK
6245 switch (spddplx) {
6246 case SPEED_10 + DUPLEX_HALF:
6247 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6248 break;
6249 case SPEED_10 + DUPLEX_FULL:
6250 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6251 break;
6252 case SPEED_100 + DUPLEX_HALF:
6253 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6254 break;
6255 case SPEED_100 + DUPLEX_FULL:
6256 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6257 break;
6258 case SPEED_1000 + DUPLEX_FULL:
6259 mac->autoneg = 1;
6260 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6261 break;
6262 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6263 default:
090b1795 6264 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6265 return -EINVAL;
6266 }
6267 return 0;
6268}
6269
3fe7c4c9 6270static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6271{
6272 struct net_device *netdev = pci_get_drvdata(pdev);
6273 struct igb_adapter *adapter = netdev_priv(netdev);
6274 struct e1000_hw *hw = &adapter->hw;
2d064c06 6275 u32 ctrl, rctl, status;
9d5c8243
AK
6276 u32 wufc = adapter->wol;
6277#ifdef CONFIG_PM
6278 int retval = 0;
6279#endif
6280
6281 netif_device_detach(netdev);
6282
a88f10ec
AD
6283 if (netif_running(netdev))
6284 igb_close(netdev);
6285
047e0030 6286 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6287
6288#ifdef CONFIG_PM
6289 retval = pci_save_state(pdev);
6290 if (retval)
6291 return retval;
6292#endif
6293
6294 status = rd32(E1000_STATUS);
6295 if (status & E1000_STATUS_LU)
6296 wufc &= ~E1000_WUFC_LNKC;
6297
6298 if (wufc) {
6299 igb_setup_rctl(adapter);
ff41f8dc 6300 igb_set_rx_mode(netdev);
9d5c8243
AK
6301
6302 /* turn on all-multi mode if wake on multicast is enabled */
6303 if (wufc & E1000_WUFC_MC) {
6304 rctl = rd32(E1000_RCTL);
6305 rctl |= E1000_RCTL_MPE;
6306 wr32(E1000_RCTL, rctl);
6307 }
6308
6309 ctrl = rd32(E1000_CTRL);
6310 /* advertise wake from D3Cold */
6311 #define E1000_CTRL_ADVD3WUC 0x00100000
6312 /* phy power management enable */
6313 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6314 ctrl |= E1000_CTRL_ADVD3WUC;
6315 wr32(E1000_CTRL, ctrl);
6316
9d5c8243 6317 /* Allow time for pending master requests to run */
330a6d6a 6318 igb_disable_pcie_master(hw);
9d5c8243
AK
6319
6320 wr32(E1000_WUC, E1000_WUC_PME_EN);
6321 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6322 } else {
6323 wr32(E1000_WUC, 0);
6324 wr32(E1000_WUFC, 0);
9d5c8243
AK
6325 }
6326
3fe7c4c9
RW
6327 *enable_wake = wufc || adapter->en_mng_pt;
6328 if (!*enable_wake)
88a268c1
NN
6329 igb_power_down_link(adapter);
6330 else
6331 igb_power_up_link(adapter);
9d5c8243
AK
6332
6333 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6334 * would have already happened in close and is redundant. */
6335 igb_release_hw_control(adapter);
6336
6337 pci_disable_device(pdev);
6338
9d5c8243
AK
6339 return 0;
6340}
6341
6342#ifdef CONFIG_PM
3fe7c4c9
RW
6343static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6344{
6345 int retval;
6346 bool wake;
6347
6348 retval = __igb_shutdown(pdev, &wake);
6349 if (retval)
6350 return retval;
6351
6352 if (wake) {
6353 pci_prepare_to_sleep(pdev);
6354 } else {
6355 pci_wake_from_d3(pdev, false);
6356 pci_set_power_state(pdev, PCI_D3hot);
6357 }
6358
6359 return 0;
6360}
6361
9d5c8243
AK
6362static int igb_resume(struct pci_dev *pdev)
6363{
6364 struct net_device *netdev = pci_get_drvdata(pdev);
6365 struct igb_adapter *adapter = netdev_priv(netdev);
6366 struct e1000_hw *hw = &adapter->hw;
6367 u32 err;
6368
6369 pci_set_power_state(pdev, PCI_D0);
6370 pci_restore_state(pdev);
b94f2d77 6371 pci_save_state(pdev);
42bfd33a 6372
aed5dec3 6373 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6374 if (err) {
6375 dev_err(&pdev->dev,
6376 "igb: Cannot enable PCI device from suspend\n");
6377 return err;
6378 }
6379 pci_set_master(pdev);
6380
6381 pci_enable_wake(pdev, PCI_D3hot, 0);
6382 pci_enable_wake(pdev, PCI_D3cold, 0);
6383
047e0030 6384 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6385 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6386 return -ENOMEM;
9d5c8243
AK
6387 }
6388
9d5c8243 6389 igb_reset(adapter);
a8564f03
AD
6390
6391 /* let the f/w know that the h/w is now under the control of the
6392 * driver. */
6393 igb_get_hw_control(adapter);
6394
9d5c8243
AK
6395 wr32(E1000_WUS, ~0);
6396
a88f10ec
AD
6397 if (netif_running(netdev)) {
6398 err = igb_open(netdev);
6399 if (err)
6400 return err;
6401 }
9d5c8243
AK
6402
6403 netif_device_attach(netdev);
6404
9d5c8243
AK
6405 return 0;
6406}
6407#endif
6408
6409static void igb_shutdown(struct pci_dev *pdev)
6410{
3fe7c4c9
RW
6411 bool wake;
6412
6413 __igb_shutdown(pdev, &wake);
6414
6415 if (system_state == SYSTEM_POWER_OFF) {
6416 pci_wake_from_d3(pdev, wake);
6417 pci_set_power_state(pdev, PCI_D3hot);
6418 }
9d5c8243
AK
6419}
6420
6421#ifdef CONFIG_NET_POLL_CONTROLLER
6422/*
6423 * Polling 'interrupt' - used by things like netconsole to send skbs
6424 * without having to re-enable interrupts. It's not called while
6425 * the interrupt routine is executing.
6426 */
6427static void igb_netpoll(struct net_device *netdev)
6428{
6429 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6430 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6431 int i;
9d5c8243 6432
eebbbdba 6433 if (!adapter->msix_entries) {
047e0030 6434 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6435 igb_irq_disable(adapter);
047e0030 6436 napi_schedule(&q_vector->napi);
eebbbdba
AD
6437 return;
6438 }
9d5c8243 6439
047e0030
AD
6440 for (i = 0; i < adapter->num_q_vectors; i++) {
6441 struct igb_q_vector *q_vector = adapter->q_vector[i];
6442 wr32(E1000_EIMC, q_vector->eims_value);
6443 napi_schedule(&q_vector->napi);
eebbbdba 6444 }
9d5c8243
AK
6445}
6446#endif /* CONFIG_NET_POLL_CONTROLLER */
6447
6448/**
6449 * igb_io_error_detected - called when PCI error is detected
6450 * @pdev: Pointer to PCI device
6451 * @state: The current pci connection state
6452 *
6453 * This function is called after a PCI bus error affecting
6454 * this device has been detected.
6455 */
6456static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6457 pci_channel_state_t state)
6458{
6459 struct net_device *netdev = pci_get_drvdata(pdev);
6460 struct igb_adapter *adapter = netdev_priv(netdev);
6461
6462 netif_device_detach(netdev);
6463
59ed6eec
AD
6464 if (state == pci_channel_io_perm_failure)
6465 return PCI_ERS_RESULT_DISCONNECT;
6466
9d5c8243
AK
6467 if (netif_running(netdev))
6468 igb_down(adapter);
6469 pci_disable_device(pdev);
6470
6471 /* Request a slot slot reset. */
6472 return PCI_ERS_RESULT_NEED_RESET;
6473}
6474
6475/**
6476 * igb_io_slot_reset - called after the pci bus has been reset.
6477 * @pdev: Pointer to PCI device
6478 *
6479 * Restart the card from scratch, as if from a cold-boot. Implementation
6480 * resembles the first-half of the igb_resume routine.
6481 */
6482static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6483{
6484 struct net_device *netdev = pci_get_drvdata(pdev);
6485 struct igb_adapter *adapter = netdev_priv(netdev);
6486 struct e1000_hw *hw = &adapter->hw;
40a914fa 6487 pci_ers_result_t result;
42bfd33a 6488 int err;
9d5c8243 6489
aed5dec3 6490 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6491 dev_err(&pdev->dev,
6492 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6493 result = PCI_ERS_RESULT_DISCONNECT;
6494 } else {
6495 pci_set_master(pdev);
6496 pci_restore_state(pdev);
b94f2d77 6497 pci_save_state(pdev);
9d5c8243 6498
40a914fa
AD
6499 pci_enable_wake(pdev, PCI_D3hot, 0);
6500 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6501
40a914fa
AD
6502 igb_reset(adapter);
6503 wr32(E1000_WUS, ~0);
6504 result = PCI_ERS_RESULT_RECOVERED;
6505 }
9d5c8243 6506
ea943d41
JK
6507 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6508 if (err) {
6509 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6510 "failed 0x%0x\n", err);
6511 /* non-fatal, continue */
6512 }
40a914fa
AD
6513
6514 return result;
9d5c8243
AK
6515}
6516
6517/**
6518 * igb_io_resume - called when traffic can start flowing again.
6519 * @pdev: Pointer to PCI device
6520 *
6521 * This callback is called when the error recovery driver tells us that
6522 * its OK to resume normal operation. Implementation resembles the
6523 * second-half of the igb_resume routine.
6524 */
6525static void igb_io_resume(struct pci_dev *pdev)
6526{
6527 struct net_device *netdev = pci_get_drvdata(pdev);
6528 struct igb_adapter *adapter = netdev_priv(netdev);
6529
9d5c8243
AK
6530 if (netif_running(netdev)) {
6531 if (igb_up(adapter)) {
6532 dev_err(&pdev->dev, "igb_up failed after reset\n");
6533 return;
6534 }
6535 }
6536
6537 netif_device_attach(netdev);
6538
6539 /* let the f/w know that the h/w is now under the control of the
6540 * driver. */
6541 igb_get_hw_control(adapter);
9d5c8243
AK
6542}
6543
26ad9178
AD
6544static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6545 u8 qsel)
6546{
6547 u32 rar_low, rar_high;
6548 struct e1000_hw *hw = &adapter->hw;
6549
6550 /* HW expects these in little endian so we reverse the byte order
6551 * from network order (big endian) to little endian
6552 */
6553 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6554 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6555 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6556
6557 /* Indicate to hardware the Address is Valid. */
6558 rar_high |= E1000_RAH_AV;
6559
6560 if (hw->mac.type == e1000_82575)
6561 rar_high |= E1000_RAH_POOL_1 * qsel;
6562 else
6563 rar_high |= E1000_RAH_POOL_1 << qsel;
6564
6565 wr32(E1000_RAL(index), rar_low);
6566 wrfl();
6567 wr32(E1000_RAH(index), rar_high);
6568 wrfl();
6569}
6570
4ae196df
AD
6571static int igb_set_vf_mac(struct igb_adapter *adapter,
6572 int vf, unsigned char *mac_addr)
6573{
6574 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6575 /* VF MAC addresses start at end of receive addresses and moves
6576 * torwards the first, as a result a collision should not be possible */
6577 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6578
37680117 6579 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6580
26ad9178 6581 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6582
6583 return 0;
6584}
6585
8151d294
WM
6586static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6587{
6588 struct igb_adapter *adapter = netdev_priv(netdev);
6589 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6590 return -EINVAL;
6591 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6592 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6593 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6594 " change effective.");
6595 if (test_bit(__IGB_DOWN, &adapter->state)) {
6596 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6597 " but the PF device is not up.\n");
6598 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6599 " attempting to use the VF device.\n");
6600 }
6601 return igb_set_vf_mac(adapter, vf, mac);
6602}
6603
17dc566c
LL
6604static int igb_link_mbps(int internal_link_speed)
6605{
6606 switch (internal_link_speed) {
6607 case SPEED_100:
6608 return 100;
6609 case SPEED_1000:
6610 return 1000;
6611 default:
6612 return 0;
6613 }
6614}
6615
6616static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6617 int link_speed)
6618{
6619 int rf_dec, rf_int;
6620 u32 bcnrc_val;
6621
6622 if (tx_rate != 0) {
6623 /* Calculate the rate factor values to set */
6624 rf_int = link_speed / tx_rate;
6625 rf_dec = (link_speed - (rf_int * tx_rate));
6626 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6627
6628 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6629 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6630 E1000_RTTBCNRC_RF_INT_MASK);
6631 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6632 } else {
6633 bcnrc_val = 0;
6634 }
6635
6636 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6637 wr32(E1000_RTTBCNRC, bcnrc_val);
6638}
6639
6640static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6641{
6642 int actual_link_speed, i;
6643 bool reset_rate = false;
6644
6645 /* VF TX rate limit was not set or not supported */
6646 if ((adapter->vf_rate_link_speed == 0) ||
6647 (adapter->hw.mac.type != e1000_82576))
6648 return;
6649
6650 actual_link_speed = igb_link_mbps(adapter->link_speed);
6651 if (actual_link_speed != adapter->vf_rate_link_speed) {
6652 reset_rate = true;
6653 adapter->vf_rate_link_speed = 0;
6654 dev_info(&adapter->pdev->dev,
6655 "Link speed has been changed. VF Transmit "
6656 "rate is disabled\n");
6657 }
6658
6659 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6660 if (reset_rate)
6661 adapter->vf_data[i].tx_rate = 0;
6662
6663 igb_set_vf_rate_limit(&adapter->hw, i,
6664 adapter->vf_data[i].tx_rate,
6665 actual_link_speed);
6666 }
6667}
6668
8151d294
WM
6669static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6670{
17dc566c
LL
6671 struct igb_adapter *adapter = netdev_priv(netdev);
6672 struct e1000_hw *hw = &adapter->hw;
6673 int actual_link_speed;
6674
6675 if (hw->mac.type != e1000_82576)
6676 return -EOPNOTSUPP;
6677
6678 actual_link_speed = igb_link_mbps(adapter->link_speed);
6679 if ((vf >= adapter->vfs_allocated_count) ||
6680 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6681 (tx_rate < 0) || (tx_rate > actual_link_speed))
6682 return -EINVAL;
6683
6684 adapter->vf_rate_link_speed = actual_link_speed;
6685 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6686 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6687
6688 return 0;
8151d294
WM
6689}
6690
6691static int igb_ndo_get_vf_config(struct net_device *netdev,
6692 int vf, struct ifla_vf_info *ivi)
6693{
6694 struct igb_adapter *adapter = netdev_priv(netdev);
6695 if (vf >= adapter->vfs_allocated_count)
6696 return -EINVAL;
6697 ivi->vf = vf;
6698 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6699 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6700 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6701 ivi->qos = adapter->vf_data[vf].pf_qos;
6702 return 0;
6703}
6704
4ae196df
AD
6705static void igb_vmm_control(struct igb_adapter *adapter)
6706{
6707 struct e1000_hw *hw = &adapter->hw;
10d8e907 6708 u32 reg;
4ae196df 6709
52a1dd4d
AD
6710 switch (hw->mac.type) {
6711 case e1000_82575:
6712 default:
6713 /* replication is not supported for 82575 */
4ae196df 6714 return;
52a1dd4d
AD
6715 case e1000_82576:
6716 /* notify HW that the MAC is adding vlan tags */
6717 reg = rd32(E1000_DTXCTL);
6718 reg |= E1000_DTXCTL_VLAN_ADDED;
6719 wr32(E1000_DTXCTL, reg);
6720 case e1000_82580:
6721 /* enable replication vlan tag stripping */
6722 reg = rd32(E1000_RPLOLR);
6723 reg |= E1000_RPLOLR_STRVLAN;
6724 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6725 case e1000_i350:
6726 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6727 break;
6728 }
10d8e907 6729
d4960307
AD
6730 if (adapter->vfs_allocated_count) {
6731 igb_vmdq_set_loopback_pf(hw, true);
6732 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6733 igb_vmdq_set_anti_spoofing_pf(hw, true,
6734 adapter->vfs_allocated_count);
d4960307
AD
6735 } else {
6736 igb_vmdq_set_loopback_pf(hw, false);
6737 igb_vmdq_set_replication_pf(hw, false);
6738 }
4ae196df
AD
6739}
6740
9d5c8243 6741/* igb_main.c */
This page took 0.975782 seconds and 5 git commands to generate.