igb: replace the VF clear_to_send with a flags value
[deliverable/linux.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
c8ea5ea9 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76};
77
78MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80void igb_reset(struct igb_adapter *);
81static int igb_setup_all_tx_resources(struct igb_adapter *);
82static int igb_setup_all_rx_resources(struct igb_adapter *);
83static void igb_free_all_tx_resources(struct igb_adapter *);
84static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 85static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
86void igb_update_stats(struct igb_adapter *);
87static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88static void __devexit igb_remove(struct pci_dev *pdev);
89static int igb_sw_init(struct igb_adapter *);
90static int igb_open(struct net_device *);
91static int igb_close(struct net_device *);
92static void igb_configure_tx(struct igb_adapter *);
93static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
94static void igb_clean_all_tx_rings(struct igb_adapter *);
95static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
96static void igb_clean_tx_ring(struct igb_ring *);
97static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 98static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
99static void igb_update_phy_info(unsigned long);
100static void igb_watchdog(unsigned long);
101static void igb_watchdog_task(struct work_struct *);
b1a436c3 102static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
103static struct net_device_stats *igb_get_stats(struct net_device *);
104static int igb_change_mtu(struct net_device *, int);
105static int igb_set_mac(struct net_device *, void *);
68d480c4 106static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
107static irqreturn_t igb_intr(int irq, void *);
108static irqreturn_t igb_intr_msi(int irq, void *);
109static irqreturn_t igb_msix_other(int irq, void *);
047e0030 110static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 111#ifdef CONFIG_IGB_DCA
047e0030 112static void igb_update_dca(struct igb_q_vector *);
fe4506b6 113static void igb_setup_dca(struct igb_adapter *);
421e02f0 114#endif /* CONFIG_IGB_DCA */
047e0030 115static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 116static int igb_poll(struct napi_struct *, int);
047e0030 117static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
118static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119static void igb_tx_timeout(struct net_device *);
120static void igb_reset_task(struct work_struct *);
121static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122static void igb_vlan_rx_add_vid(struct net_device *, u16);
123static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124static void igb_restore_vlan(struct igb_adapter *);
26ad9178 125static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
126static void igb_ping_all_vfs(struct igb_adapter *);
127static void igb_msg_task(struct igb_adapter *);
4ae196df 128static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 129static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 130static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243 131
c8159b2d
ED
132static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
133{
134 u32 reg_data;
135
136 reg_data = rd32(E1000_VMOLR(vfn));
137 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
c8159b2d
ED
138 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
139 E1000_VMOLR_AUPE | /* Accept untagged packets */
140 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
141 wr32(E1000_VMOLR(vfn), reg_data);
142}
143
144static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
145 int vfn)
146{
147 struct e1000_hw *hw = &adapter->hw;
148 u32 vmolr;
149
ae641bdc
AD
150 /* if it isn't the PF check to see if VFs are enabled and
151 * increase the size to support vlan tags */
152 if (vfn < adapter->vfs_allocated_count &&
153 adapter->vf_data[vfn].vlans_enabled)
154 size += VLAN_TAG_SIZE;
155
c8159b2d
ED
156 vmolr = rd32(E1000_VMOLR(vfn));
157 vmolr &= ~E1000_VMOLR_RLPML_MASK;
158 vmolr |= size | E1000_VMOLR_LPE;
159 wr32(E1000_VMOLR(vfn), vmolr);
160
161 return 0;
162}
163
9d5c8243 164#ifdef CONFIG_PM
3fe7c4c9 165static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
166static int igb_resume(struct pci_dev *);
167#endif
168static void igb_shutdown(struct pci_dev *);
421e02f0 169#ifdef CONFIG_IGB_DCA
fe4506b6
JC
170static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
171static struct notifier_block dca_notifier = {
172 .notifier_call = igb_notify_dca,
173 .next = NULL,
174 .priority = 0
175};
176#endif
9d5c8243
AK
177#ifdef CONFIG_NET_POLL_CONTROLLER
178/* for netdump / net console */
179static void igb_netpoll(struct net_device *);
180#endif
37680117 181#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
182static unsigned int max_vfs = 0;
183module_param(max_vfs, uint, 0);
184MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
185 "per physical function");
186#endif /* CONFIG_PCI_IOV */
187
9d5c8243
AK
188static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
189 pci_channel_state_t);
190static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
191static void igb_io_resume(struct pci_dev *);
192
193static struct pci_error_handlers igb_err_handler = {
194 .error_detected = igb_io_error_detected,
195 .slot_reset = igb_io_slot_reset,
196 .resume = igb_io_resume,
197};
198
199
200static struct pci_driver igb_driver = {
201 .name = igb_driver_name,
202 .id_table = igb_pci_tbl,
203 .probe = igb_probe,
204 .remove = __devexit_p(igb_remove),
205#ifdef CONFIG_PM
206 /* Power Managment Hooks */
207 .suspend = igb_suspend,
208 .resume = igb_resume,
209#endif
210 .shutdown = igb_shutdown,
211 .err_handler = &igb_err_handler
212};
213
7dfc16fa
AD
214static int global_quad_port_a; /* global quad port a indication */
215
9d5c8243
AK
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
38c845c7
PO
221/**
222 * igb_read_clock - read raw cycle counter (to be used by time counter)
223 */
224static cycle_t igb_read_clock(const struct cyclecounter *tc)
225{
226 struct igb_adapter *adapter =
227 container_of(tc, struct igb_adapter, cycles);
228 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
229 u64 stamp = 0;
230 int shift = 0;
38c845c7 231
c5b9bd5e
AD
232 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
233 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
234 return stamp;
235}
236
9d5c8243
AK
237#ifdef DEBUG
238/**
239 * igb_get_hw_dev_name - return device name string
240 * used by hardware layer to print debugging information
241 **/
242char *igb_get_hw_dev_name(struct e1000_hw *hw)
243{
244 struct igb_adapter *adapter = hw->back;
245 return adapter->netdev->name;
246}
38c845c7
PO
247
248/**
249 * igb_get_time_str - format current NIC and system time as string
250 */
251static char *igb_get_time_str(struct igb_adapter *adapter,
252 char buffer[160])
253{
254 cycle_t hw = adapter->cycles.read(&adapter->cycles);
255 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
256 struct timespec sys;
257 struct timespec delta;
258 getnstimeofday(&sys);
259
260 delta = timespec_sub(nic, sys);
261
262 sprintf(buffer,
33af6bcc
PO
263 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
264 hw,
38c845c7
PO
265 (long)nic.tv_sec, nic.tv_nsec,
266 (long)sys.tv_sec, sys.tv_nsec,
267 (long)delta.tv_sec, delta.tv_nsec);
268
269 return buffer;
270}
9d5c8243
AK
271#endif
272
273/**
274 * igb_init_module - Driver Registration Routine
275 *
276 * igb_init_module is the first routine called when the driver is
277 * loaded. All it does is register with the PCI subsystem.
278 **/
279static int __init igb_init_module(void)
280{
281 int ret;
282 printk(KERN_INFO "%s - version %s\n",
283 igb_driver_string, igb_driver_version);
284
285 printk(KERN_INFO "%s\n", igb_copyright);
286
7dfc16fa
AD
287 global_quad_port_a = 0;
288
421e02f0 289#ifdef CONFIG_IGB_DCA
fe4506b6
JC
290 dca_register_notify(&dca_notifier);
291#endif
bbd98fe4
AD
292
293 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
294 return ret;
295}
296
297module_init(igb_init_module);
298
299/**
300 * igb_exit_module - Driver Exit Cleanup Routine
301 *
302 * igb_exit_module is called just before the driver is removed
303 * from memory.
304 **/
305static void __exit igb_exit_module(void)
306{
421e02f0 307#ifdef CONFIG_IGB_DCA
fe4506b6
JC
308 dca_unregister_notify(&dca_notifier);
309#endif
9d5c8243
AK
310 pci_unregister_driver(&igb_driver);
311}
312
313module_exit(igb_exit_module);
314
26bc19ec
AD
315#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
316/**
317 * igb_cache_ring_register - Descriptor ring to register mapping
318 * @adapter: board private structure to initialize
319 *
320 * Once we know the feature-set enabled for the device, we'll cache
321 * the register offset the descriptor ring is assigned to.
322 **/
323static void igb_cache_ring_register(struct igb_adapter *adapter)
324{
325 int i;
047e0030 326 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
327
328 switch (adapter->hw.mac.type) {
329 case e1000_82576:
330 /* The queues are allocated for virtualization such that VF 0
331 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
332 * In order to avoid collision we start at the first free queue
333 * and continue consuming queues in the same sequence
334 */
335 for (i = 0; i < adapter->num_rx_queues; i++)
1bfaf07b
AD
336 adapter->rx_ring[i].reg_idx = rbase_offset +
337 Q_IDX_82576(i);
26bc19ec 338 for (i = 0; i < adapter->num_tx_queues; i++)
1bfaf07b
AD
339 adapter->tx_ring[i].reg_idx = rbase_offset +
340 Q_IDX_82576(i);
26bc19ec
AD
341 break;
342 case e1000_82575:
343 default:
344 for (i = 0; i < adapter->num_rx_queues; i++)
345 adapter->rx_ring[i].reg_idx = i;
346 for (i = 0; i < adapter->num_tx_queues; i++)
347 adapter->tx_ring[i].reg_idx = i;
348 break;
349 }
350}
351
047e0030
AD
352static void igb_free_queues(struct igb_adapter *adapter)
353{
354 kfree(adapter->tx_ring);
355 kfree(adapter->rx_ring);
356
357 adapter->tx_ring = NULL;
358 adapter->rx_ring = NULL;
359
360 adapter->num_rx_queues = 0;
361 adapter->num_tx_queues = 0;
362}
363
9d5c8243
AK
364/**
365 * igb_alloc_queues - Allocate memory for all rings
366 * @adapter: board private structure to initialize
367 *
368 * We allocate one ring per queue at run-time since we don't know the
369 * number of queues at compile-time.
370 **/
371static int igb_alloc_queues(struct igb_adapter *adapter)
372{
373 int i;
374
375 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
376 sizeof(struct igb_ring), GFP_KERNEL);
377 if (!adapter->tx_ring)
047e0030 378 goto err;
9d5c8243
AK
379
380 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
381 sizeof(struct igb_ring), GFP_KERNEL);
047e0030
AD
382 if (!adapter->rx_ring)
383 goto err;
6eb5a7f1 384
661086df
PWJ
385 for (i = 0; i < adapter->num_tx_queues; i++) {
386 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 387 ring->count = adapter->tx_ring_count;
661086df 388 ring->queue_index = i;
80785298 389 ring->pdev = adapter->pdev;
e694e964 390 ring->netdev = adapter->netdev;
85ad76b2
AD
391 /* For 82575, context index must be unique per ring. */
392 if (adapter->hw.mac.type == e1000_82575)
393 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
661086df 394 }
85ad76b2 395
9d5c8243
AK
396 for (i = 0; i < adapter->num_rx_queues; i++) {
397 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 398 ring->count = adapter->rx_ring_count;
844290e5 399 ring->queue_index = i;
80785298 400 ring->pdev = adapter->pdev;
e694e964 401 ring->netdev = adapter->netdev;
4c844851 402 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
403 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
404 /* set flag indicating ring supports SCTP checksum offload */
405 if (adapter->hw.mac.type >= e1000_82576)
406 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
9d5c8243 407 }
26bc19ec
AD
408
409 igb_cache_ring_register(adapter);
9d5c8243 410
047e0030 411 return 0;
a88f10ec 412
047e0030
AD
413err:
414 igb_free_queues(adapter);
d1a8c9e1 415
047e0030 416 return -ENOMEM;
a88f10ec
AD
417}
418
9d5c8243 419#define IGB_N0_QUEUE -1
047e0030 420static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
421{
422 u32 msixbm = 0;
047e0030 423 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 424 struct e1000_hw *hw = &adapter->hw;
2d064c06 425 u32 ivar, index;
047e0030
AD
426 int rx_queue = IGB_N0_QUEUE;
427 int tx_queue = IGB_N0_QUEUE;
428
429 if (q_vector->rx_ring)
430 rx_queue = q_vector->rx_ring->reg_idx;
431 if (q_vector->tx_ring)
432 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
433
434 switch (hw->mac.type) {
435 case e1000_82575:
9d5c8243
AK
436 /* The 82575 assigns vectors using a bitmask, which matches the
437 bitmask for the EICR/EIMS/EIMC registers. To assign one
438 or more queues to a vector, we write the appropriate bits
439 into the MSIXBM register for that vector. */
047e0030 440 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 441 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 442 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 443 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
9d5c8243 444 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 445 q_vector->eims_value = msixbm;
2d064c06
AD
446 break;
447 case e1000_82576:
26bc19ec 448 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
449 Each queue has a single entry in the table to which we write
450 a vector number along with a "valid" bit. Sadly, the layout
451 of the table is somewhat counterintuitive. */
452 if (rx_queue > IGB_N0_QUEUE) {
047e0030 453 index = (rx_queue & 0x7);
2d064c06 454 ivar = array_rd32(E1000_IVAR0, index);
047e0030 455 if (rx_queue < 8) {
26bc19ec
AD
456 /* vector goes into low byte of register */
457 ivar = ivar & 0xFFFFFF00;
458 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
459 } else {
460 /* vector goes into third byte of register */
461 ivar = ivar & 0xFF00FFFF;
462 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 463 }
2d064c06
AD
464 array_wr32(E1000_IVAR0, index, ivar);
465 }
466 if (tx_queue > IGB_N0_QUEUE) {
047e0030 467 index = (tx_queue & 0x7);
2d064c06 468 ivar = array_rd32(E1000_IVAR0, index);
047e0030 469 if (tx_queue < 8) {
26bc19ec
AD
470 /* vector goes into second byte of register */
471 ivar = ivar & 0xFFFF00FF;
472 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
473 } else {
474 /* vector goes into high byte of register */
475 ivar = ivar & 0x00FFFFFF;
476 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 477 }
2d064c06
AD
478 array_wr32(E1000_IVAR0, index, ivar);
479 }
047e0030 480 q_vector->eims_value = 1 << msix_vector;
2d064c06
AD
481 break;
482 default:
483 BUG();
484 break;
485 }
9d5c8243
AK
486}
487
488/**
489 * igb_configure_msix - Configure MSI-X hardware
490 *
491 * igb_configure_msix sets up the hardware to properly
492 * generate MSI-X interrupts.
493 **/
494static void igb_configure_msix(struct igb_adapter *adapter)
495{
496 u32 tmp;
497 int i, vector = 0;
498 struct e1000_hw *hw = &adapter->hw;
499
500 adapter->eims_enable_mask = 0;
9d5c8243
AK
501
502 /* set vector for other causes, i.e. link changes */
2d064c06
AD
503 switch (hw->mac.type) {
504 case e1000_82575:
9d5c8243
AK
505 tmp = rd32(E1000_CTRL_EXT);
506 /* enable MSI-X PBA support*/
507 tmp |= E1000_CTRL_EXT_PBA_CLR;
508
509 /* Auto-Mask interrupts upon ICR read. */
510 tmp |= E1000_CTRL_EXT_EIAME;
511 tmp |= E1000_CTRL_EXT_IRCA;
512
513 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
514
515 /* enable msix_other interrupt */
516 array_wr32(E1000_MSIXBM(0), vector++,
517 E1000_EIMS_OTHER);
844290e5 518 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 519
2d064c06
AD
520 break;
521
522 case e1000_82576:
047e0030
AD
523 /* Turn on MSI-X capability first, or our settings
524 * won't stick. And it will take days to debug. */
525 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
526 E1000_GPIE_PBA | E1000_GPIE_EIAME |
527 E1000_GPIE_NSICR);
528
529 /* enable msix_other interrupt */
530 adapter->eims_other = 1 << vector;
2d064c06 531 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 532
047e0030 533 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
534 break;
535 default:
536 /* do nothing, since nothing else supports MSI-X */
537 break;
538 } /* switch (hw->mac.type) */
047e0030
AD
539
540 adapter->eims_enable_mask |= adapter->eims_other;
541
542 for (i = 0; i < adapter->num_q_vectors; i++) {
543 struct igb_q_vector *q_vector = adapter->q_vector[i];
544 igb_assign_vector(q_vector, vector++);
545 adapter->eims_enable_mask |= q_vector->eims_value;
546 }
547
9d5c8243
AK
548 wrfl();
549}
550
551/**
552 * igb_request_msix - Initialize MSI-X interrupts
553 *
554 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
555 * kernel.
556 **/
557static int igb_request_msix(struct igb_adapter *adapter)
558{
559 struct net_device *netdev = adapter->netdev;
047e0030 560 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
561 int i, err = 0, vector = 0;
562
047e0030
AD
563 err = request_irq(adapter->msix_entries[vector].vector,
564 &igb_msix_other, 0, netdev->name, adapter);
565 if (err)
566 goto out;
567 vector++;
568
569 for (i = 0; i < adapter->num_q_vectors; i++) {
570 struct igb_q_vector *q_vector = adapter->q_vector[i];
571
572 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
573
574 if (q_vector->rx_ring && q_vector->tx_ring)
575 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
576 q_vector->rx_ring->queue_index);
577 else if (q_vector->tx_ring)
578 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
579 q_vector->tx_ring->queue_index);
580 else if (q_vector->rx_ring)
581 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
582 q_vector->rx_ring->queue_index);
9d5c8243 583 else
047e0030
AD
584 sprintf(q_vector->name, "%s-unused", netdev->name);
585
9d5c8243 586 err = request_irq(adapter->msix_entries[vector].vector,
047e0030
AD
587 &igb_msix_ring, 0, q_vector->name,
588 q_vector);
9d5c8243
AK
589 if (err)
590 goto out;
9d5c8243
AK
591 vector++;
592 }
593
9d5c8243
AK
594 igb_configure_msix(adapter);
595 return 0;
596out:
597 return err;
598}
599
600static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
601{
602 if (adapter->msix_entries) {
603 pci_disable_msix(adapter->pdev);
604 kfree(adapter->msix_entries);
605 adapter->msix_entries = NULL;
047e0030 606 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 607 pci_disable_msi(adapter->pdev);
047e0030 608 }
9d5c8243
AK
609}
610
047e0030
AD
611/**
612 * igb_free_q_vectors - Free memory allocated for interrupt vectors
613 * @adapter: board private structure to initialize
614 *
615 * This function frees the memory allocated to the q_vectors. In addition if
616 * NAPI is enabled it will delete any references to the NAPI struct prior
617 * to freeing the q_vector.
618 **/
619static void igb_free_q_vectors(struct igb_adapter *adapter)
620{
621 int v_idx;
622
623 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
624 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
625 adapter->q_vector[v_idx] = NULL;
626 netif_napi_del(&q_vector->napi);
627 kfree(q_vector);
628 }
629 adapter->num_q_vectors = 0;
630}
631
632/**
633 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
634 *
635 * This function resets the device so that it has 0 rx queues, tx queues, and
636 * MSI-X interrupts allocated.
637 */
638static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
639{
640 igb_free_queues(adapter);
641 igb_free_q_vectors(adapter);
642 igb_reset_interrupt_capability(adapter);
643}
9d5c8243
AK
644
645/**
646 * igb_set_interrupt_capability - set MSI or MSI-X if supported
647 *
648 * Attempt to configure interrupts using the best available
649 * capabilities of the hardware and kernel.
650 **/
651static void igb_set_interrupt_capability(struct igb_adapter *adapter)
652{
653 int err;
654 int numvecs, i;
655
83b7180d 656 /* Number of supported queues. */
83b7180d
AD
657 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
658 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
659
047e0030
AD
660 /* start with one vector for every rx queue */
661 numvecs = adapter->num_rx_queues;
662
663 /* if tx handler is seperate add 1 for every tx queue */
664 numvecs += adapter->num_tx_queues;
665
666 /* store the number of vectors reserved for queues */
667 adapter->num_q_vectors = numvecs;
668
669 /* add 1 vector for link status interrupts */
670 numvecs++;
9d5c8243
AK
671 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
672 GFP_KERNEL);
673 if (!adapter->msix_entries)
674 goto msi_only;
675
676 for (i = 0; i < numvecs; i++)
677 adapter->msix_entries[i].entry = i;
678
679 err = pci_enable_msix(adapter->pdev,
680 adapter->msix_entries,
681 numvecs);
682 if (err == 0)
34a20e89 683 goto out;
9d5c8243
AK
684
685 igb_reset_interrupt_capability(adapter);
686
687 /* If we can't do MSI-X, try MSI */
688msi_only:
2a3abf6d
AD
689#ifdef CONFIG_PCI_IOV
690 /* disable SR-IOV for non MSI-X configurations */
691 if (adapter->vf_data) {
692 struct e1000_hw *hw = &adapter->hw;
693 /* disable iov and allow time for transactions to clear */
694 pci_disable_sriov(adapter->pdev);
695 msleep(500);
696
697 kfree(adapter->vf_data);
698 adapter->vf_data = NULL;
699 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
700 msleep(100);
701 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
702 }
703#endif
4fc82adf
AD
704 adapter->vfs_allocated_count = 0;
705 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 706 adapter->num_rx_queues = 1;
661086df 707 adapter->num_tx_queues = 1;
047e0030 708 adapter->num_q_vectors = 1;
9d5c8243 709 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 710 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 711out:
661086df 712 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 713 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
714 return;
715}
716
047e0030
AD
717/**
718 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
719 * @adapter: board private structure to initialize
720 *
721 * We allocate one q_vector per queue interrupt. If allocation fails we
722 * return -ENOMEM.
723 **/
724static int igb_alloc_q_vectors(struct igb_adapter *adapter)
725{
726 struct igb_q_vector *q_vector;
727 struct e1000_hw *hw = &adapter->hw;
728 int v_idx;
729
730 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
731 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
732 if (!q_vector)
733 goto err_out;
734 q_vector->adapter = adapter;
735 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
736 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
737 q_vector->itr_val = IGB_START_ITR;
738 q_vector->set_itr = 1;
739 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
740 adapter->q_vector[v_idx] = q_vector;
741 }
742 return 0;
743
744err_out:
745 while (v_idx) {
746 v_idx--;
747 q_vector = adapter->q_vector[v_idx];
748 netif_napi_del(&q_vector->napi);
749 kfree(q_vector);
750 adapter->q_vector[v_idx] = NULL;
751 }
752 return -ENOMEM;
753}
754
755static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
756 int ring_idx, int v_idx)
757{
758 struct igb_q_vector *q_vector;
759
760 q_vector = adapter->q_vector[v_idx];
761 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
762 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
763 q_vector->itr_val = adapter->rx_itr_setting;
764 if (q_vector->itr_val && q_vector->itr_val <= 3)
765 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
766}
767
768static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
769 int ring_idx, int v_idx)
770{
771 struct igb_q_vector *q_vector;
772
773 q_vector = adapter->q_vector[v_idx];
774 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
775 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
776 q_vector->itr_val = adapter->tx_itr_setting;
777 if (q_vector->itr_val && q_vector->itr_val <= 3)
778 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
779}
780
781/**
782 * igb_map_ring_to_vector - maps allocated queues to vectors
783 *
784 * This function maps the recently allocated queues to vectors.
785 **/
786static int igb_map_ring_to_vector(struct igb_adapter *adapter)
787{
788 int i;
789 int v_idx = 0;
790
791 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
792 (adapter->num_q_vectors < adapter->num_tx_queues))
793 return -ENOMEM;
794
795 if (adapter->num_q_vectors >=
796 (adapter->num_rx_queues + adapter->num_tx_queues)) {
797 for (i = 0; i < adapter->num_rx_queues; i++)
798 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
799 for (i = 0; i < adapter->num_tx_queues; i++)
800 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
801 } else {
802 for (i = 0; i < adapter->num_rx_queues; i++) {
803 if (i < adapter->num_tx_queues)
804 igb_map_tx_ring_to_vector(adapter, i, v_idx);
805 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
806 }
807 for (; i < adapter->num_tx_queues; i++)
808 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
809 }
810 return 0;
811}
812
813/**
814 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
815 *
816 * This function initializes the interrupts and allocates all of the queues.
817 **/
818static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
819{
820 struct pci_dev *pdev = adapter->pdev;
821 int err;
822
823 igb_set_interrupt_capability(adapter);
824
825 err = igb_alloc_q_vectors(adapter);
826 if (err) {
827 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
828 goto err_alloc_q_vectors;
829 }
830
831 err = igb_alloc_queues(adapter);
832 if (err) {
833 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
834 goto err_alloc_queues;
835 }
836
837 err = igb_map_ring_to_vector(adapter);
838 if (err) {
839 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
840 goto err_map_queues;
841 }
842
843
844 return 0;
845err_map_queues:
846 igb_free_queues(adapter);
847err_alloc_queues:
848 igb_free_q_vectors(adapter);
849err_alloc_q_vectors:
850 igb_reset_interrupt_capability(adapter);
851 return err;
852}
853
9d5c8243
AK
854/**
855 * igb_request_irq - initialize interrupts
856 *
857 * Attempts to configure interrupts using the best available
858 * capabilities of the hardware and kernel.
859 **/
860static int igb_request_irq(struct igb_adapter *adapter)
861{
862 struct net_device *netdev = adapter->netdev;
047e0030 863 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
864 struct e1000_hw *hw = &adapter->hw;
865 int err = 0;
866
867 if (adapter->msix_entries) {
868 err = igb_request_msix(adapter);
844290e5 869 if (!err)
9d5c8243 870 goto request_done;
9d5c8243 871 /* fall back to MSI */
047e0030 872 igb_clear_interrupt_scheme(adapter);
9d5c8243 873 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 874 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
875 igb_free_all_tx_resources(adapter);
876 igb_free_all_rx_resources(adapter);
047e0030 877 adapter->num_tx_queues = 1;
9d5c8243 878 adapter->num_rx_queues = 1;
047e0030
AD
879 adapter->num_q_vectors = 1;
880 err = igb_alloc_q_vectors(adapter);
881 if (err) {
882 dev_err(&pdev->dev,
883 "Unable to allocate memory for vectors\n");
884 goto request_done;
885 }
886 err = igb_alloc_queues(adapter);
887 if (err) {
888 dev_err(&pdev->dev,
889 "Unable to allocate memory for queues\n");
890 igb_free_q_vectors(adapter);
891 goto request_done;
892 }
893 igb_setup_all_tx_resources(adapter);
894 igb_setup_all_rx_resources(adapter);
844290e5 895 } else {
2d064c06
AD
896 switch (hw->mac.type) {
897 case e1000_82575:
898 wr32(E1000_MSIXBM(0),
047e0030
AD
899 (E1000_EICR_RX_QUEUE0 |
900 E1000_EICR_TX_QUEUE0 |
901 E1000_EIMS_OTHER));
2d064c06
AD
902 break;
903 case e1000_82576:
904 wr32(E1000_IVAR0, E1000_IVAR_VALID);
905 break;
906 default:
907 break;
908 }
9d5c8243 909 }
844290e5 910
7dfc16fa 911 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 912 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
047e0030 913 netdev->name, adapter);
9d5c8243
AK
914 if (!err)
915 goto request_done;
047e0030 916
9d5c8243
AK
917 /* fall back to legacy interrupts */
918 igb_reset_interrupt_capability(adapter);
7dfc16fa 919 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
920 }
921
922 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
047e0030 923 netdev->name, adapter);
9d5c8243 924
6cb5e577 925 if (err)
9d5c8243
AK
926 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
927 err);
9d5c8243
AK
928
929request_done:
930 return err;
931}
932
933static void igb_free_irq(struct igb_adapter *adapter)
934{
9d5c8243
AK
935 if (adapter->msix_entries) {
936 int vector = 0, i;
937
047e0030 938 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 939
047e0030
AD
940 for (i = 0; i < adapter->num_q_vectors; i++) {
941 struct igb_q_vector *q_vector = adapter->q_vector[i];
942 free_irq(adapter->msix_entries[vector++].vector,
943 q_vector);
944 }
945 } else {
946 free_irq(adapter->pdev->irq, adapter);
9d5c8243 947 }
9d5c8243
AK
948}
949
950/**
951 * igb_irq_disable - Mask off interrupt generation on the NIC
952 * @adapter: board private structure
953 **/
954static void igb_irq_disable(struct igb_adapter *adapter)
955{
956 struct e1000_hw *hw = &adapter->hw;
957
958 if (adapter->msix_entries) {
2dfd1212
AD
959 u32 regval = rd32(E1000_EIAM);
960 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
961 wr32(E1000_EIMC, adapter->eims_enable_mask);
962 regval = rd32(E1000_EIAC);
963 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 964 }
844290e5
PW
965
966 wr32(E1000_IAM, 0);
9d5c8243
AK
967 wr32(E1000_IMC, ~0);
968 wrfl();
969 synchronize_irq(adapter->pdev->irq);
970}
971
972/**
973 * igb_irq_enable - Enable default interrupt generation settings
974 * @adapter: board private structure
975 **/
976static void igb_irq_enable(struct igb_adapter *adapter)
977{
978 struct e1000_hw *hw = &adapter->hw;
979
980 if (adapter->msix_entries) {
2dfd1212
AD
981 u32 regval = rd32(E1000_EIAC);
982 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
983 regval = rd32(E1000_EIAM);
984 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 985 wr32(E1000_EIMS, adapter->eims_enable_mask);
4ae196df
AD
986 if (adapter->vfs_allocated_count)
987 wr32(E1000_MBVFIMR, 0xFF);
988 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
989 E1000_IMS_DOUTSYNC));
844290e5
PW
990 } else {
991 wr32(E1000_IMS, IMS_ENABLE_MASK);
992 wr32(E1000_IAM, IMS_ENABLE_MASK);
993 }
9d5c8243
AK
994}
995
996static void igb_update_mng_vlan(struct igb_adapter *adapter)
997{
998 struct net_device *netdev = adapter->netdev;
999 u16 vid = adapter->hw.mng_cookie.vlan_id;
1000 u16 old_vid = adapter->mng_vlan_id;
1001 if (adapter->vlgrp) {
1002 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1003 if (adapter->hw.mng_cookie.status &
1004 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1005 igb_vlan_rx_add_vid(netdev, vid);
1006 adapter->mng_vlan_id = vid;
1007 } else
1008 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1009
1010 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1011 (vid != old_vid) &&
1012 !vlan_group_get_device(adapter->vlgrp, old_vid))
1013 igb_vlan_rx_kill_vid(netdev, old_vid);
1014 } else
1015 adapter->mng_vlan_id = vid;
1016 }
1017}
1018
1019/**
1020 * igb_release_hw_control - release control of the h/w to f/w
1021 * @adapter: address of board private structure
1022 *
1023 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1024 * For ASF and Pass Through versions of f/w this means that the
1025 * driver is no longer loaded.
1026 *
1027 **/
1028static void igb_release_hw_control(struct igb_adapter *adapter)
1029{
1030 struct e1000_hw *hw = &adapter->hw;
1031 u32 ctrl_ext;
1032
1033 /* Let firmware take over control of h/w */
1034 ctrl_ext = rd32(E1000_CTRL_EXT);
1035 wr32(E1000_CTRL_EXT,
1036 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1037}
1038
1039
1040/**
1041 * igb_get_hw_control - get control of the h/w from f/w
1042 * @adapter: address of board private structure
1043 *
1044 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1045 * For ASF and Pass Through versions of f/w this means that
1046 * the driver is loaded.
1047 *
1048 **/
1049static void igb_get_hw_control(struct igb_adapter *adapter)
1050{
1051 struct e1000_hw *hw = &adapter->hw;
1052 u32 ctrl_ext;
1053
1054 /* Let firmware know the driver has taken over */
1055 ctrl_ext = rd32(E1000_CTRL_EXT);
1056 wr32(E1000_CTRL_EXT,
1057 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1058}
1059
9d5c8243
AK
1060/**
1061 * igb_configure - configure the hardware for RX and TX
1062 * @adapter: private board structure
1063 **/
1064static void igb_configure(struct igb_adapter *adapter)
1065{
1066 struct net_device *netdev = adapter->netdev;
1067 int i;
1068
1069 igb_get_hw_control(adapter);
ff41f8dc 1070 igb_set_rx_mode(netdev);
9d5c8243
AK
1071
1072 igb_restore_vlan(adapter);
9d5c8243 1073
85b430b4 1074 igb_setup_tctl(adapter);
06cf2666 1075 igb_setup_mrqc(adapter);
9d5c8243 1076 igb_setup_rctl(adapter);
85b430b4
AD
1077
1078 igb_configure_tx(adapter);
9d5c8243 1079 igb_configure_rx(adapter);
662d7205
AD
1080
1081 igb_rx_fifo_flush_82575(&adapter->hw);
1082
c493ea45 1083 /* call igb_desc_unused which always leaves
9d5c8243
AK
1084 * at least 1 descriptor unused to make sure
1085 * next_to_use != next_to_clean */
1086 for (i = 0; i < adapter->num_rx_queues; i++) {
1087 struct igb_ring *ring = &adapter->rx_ring[i];
c493ea45 1088 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
1089 }
1090
1091
1092 adapter->tx_queue_len = netdev->tx_queue_len;
1093}
1094
1095
1096/**
1097 * igb_up - Open the interface and prepare it to handle traffic
1098 * @adapter: board private structure
1099 **/
1100
1101int igb_up(struct igb_adapter *adapter)
1102{
1103 struct e1000_hw *hw = &adapter->hw;
1104 int i;
1105
1106 /* hardware has been reset, we need to reload some things */
1107 igb_configure(adapter);
1108
1109 clear_bit(__IGB_DOWN, &adapter->state);
1110
047e0030
AD
1111 for (i = 0; i < adapter->num_q_vectors; i++) {
1112 struct igb_q_vector *q_vector = adapter->q_vector[i];
1113 napi_enable(&q_vector->napi);
1114 }
844290e5 1115 if (adapter->msix_entries)
9d5c8243 1116 igb_configure_msix(adapter);
9d5c8243 1117
e1739522
AD
1118 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1119
9d5c8243
AK
1120 /* Clear any pending interrupts. */
1121 rd32(E1000_ICR);
1122 igb_irq_enable(adapter);
1123
d4960307
AD
1124 /* notify VFs that reset has been completed */
1125 if (adapter->vfs_allocated_count) {
1126 u32 reg_data = rd32(E1000_CTRL_EXT);
1127 reg_data |= E1000_CTRL_EXT_PFRSTD;
1128 wr32(E1000_CTRL_EXT, reg_data);
1129 }
1130
4cb9be7a
JB
1131 netif_tx_start_all_queues(adapter->netdev);
1132
9d5c8243
AK
1133 /* Fire a link change interrupt to start the watchdog. */
1134 wr32(E1000_ICS, E1000_ICS_LSC);
1135 return 0;
1136}
1137
1138void igb_down(struct igb_adapter *adapter)
1139{
1140 struct e1000_hw *hw = &adapter->hw;
1141 struct net_device *netdev = adapter->netdev;
1142 u32 tctl, rctl;
1143 int i;
1144
1145 /* signal that we're down so the interrupt handler does not
1146 * reschedule our watchdog timer */
1147 set_bit(__IGB_DOWN, &adapter->state);
1148
1149 /* disable receives in the hardware */
1150 rctl = rd32(E1000_RCTL);
1151 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1152 /* flush and sleep below */
1153
fd2ea0a7 1154 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1155
1156 /* disable transmits in the hardware */
1157 tctl = rd32(E1000_TCTL);
1158 tctl &= ~E1000_TCTL_EN;
1159 wr32(E1000_TCTL, tctl);
1160 /* flush both disables and wait for them to finish */
1161 wrfl();
1162 msleep(10);
1163
047e0030
AD
1164 for (i = 0; i < adapter->num_q_vectors; i++) {
1165 struct igb_q_vector *q_vector = adapter->q_vector[i];
1166 napi_disable(&q_vector->napi);
1167 }
9d5c8243 1168
9d5c8243
AK
1169 igb_irq_disable(adapter);
1170
1171 del_timer_sync(&adapter->watchdog_timer);
1172 del_timer_sync(&adapter->phy_info_timer);
1173
1174 netdev->tx_queue_len = adapter->tx_queue_len;
1175 netif_carrier_off(netdev);
04fe6358
AD
1176
1177 /* record the stats before reset*/
1178 igb_update_stats(adapter);
1179
9d5c8243
AK
1180 adapter->link_speed = 0;
1181 adapter->link_duplex = 0;
1182
3023682e
JK
1183 if (!pci_channel_offline(adapter->pdev))
1184 igb_reset(adapter);
9d5c8243
AK
1185 igb_clean_all_tx_rings(adapter);
1186 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1187#ifdef CONFIG_IGB_DCA
1188
1189 /* since we reset the hardware DCA settings were cleared */
1190 igb_setup_dca(adapter);
1191#endif
9d5c8243
AK
1192}
1193
1194void igb_reinit_locked(struct igb_adapter *adapter)
1195{
1196 WARN_ON(in_interrupt());
1197 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1198 msleep(1);
1199 igb_down(adapter);
1200 igb_up(adapter);
1201 clear_bit(__IGB_RESETTING, &adapter->state);
1202}
1203
1204void igb_reset(struct igb_adapter *adapter)
1205{
1206 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1207 struct e1000_mac_info *mac = &hw->mac;
1208 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1209 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1210 u16 hwm;
1211
1212 /* Repartition Pba for greater than 9k mtu
1213 * To take effect CTRL.RST is required.
1214 */
fa4dfae0
AD
1215 switch (mac->type) {
1216 case e1000_82576:
d249be54
AD
1217 pba = rd32(E1000_RXPBS);
1218 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1219 break;
1220 case e1000_82575:
1221 default:
1222 pba = E1000_PBA_34K;
1223 break;
2d064c06 1224 }
9d5c8243 1225
2d064c06
AD
1226 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1227 (mac->type < e1000_82576)) {
9d5c8243
AK
1228 /* adjust PBA for jumbo frames */
1229 wr32(E1000_PBA, pba);
1230
1231 /* To maintain wire speed transmits, the Tx FIFO should be
1232 * large enough to accommodate two full transmit packets,
1233 * rounded up to the next 1KB and expressed in KB. Likewise,
1234 * the Rx FIFO should be large enough to accommodate at least
1235 * one full receive packet and is similarly rounded up and
1236 * expressed in KB. */
1237 pba = rd32(E1000_PBA);
1238 /* upper 16 bits has Tx packet buffer allocation size in KB */
1239 tx_space = pba >> 16;
1240 /* lower 16 bits has Rx packet buffer allocation size in KB */
1241 pba &= 0xffff;
1242 /* the tx fifo also stores 16 bytes of information about the tx
1243 * but don't include ethernet FCS because hardware appends it */
1244 min_tx_space = (adapter->max_frame_size +
85e8d004 1245 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1246 ETH_FCS_LEN) * 2;
1247 min_tx_space = ALIGN(min_tx_space, 1024);
1248 min_tx_space >>= 10;
1249 /* software strips receive CRC, so leave room for it */
1250 min_rx_space = adapter->max_frame_size;
1251 min_rx_space = ALIGN(min_rx_space, 1024);
1252 min_rx_space >>= 10;
1253
1254 /* If current Tx allocation is less than the min Tx FIFO size,
1255 * and the min Tx FIFO size is less than the current Rx FIFO
1256 * allocation, take space away from current Rx allocation */
1257 if (tx_space < min_tx_space &&
1258 ((min_tx_space - tx_space) < pba)) {
1259 pba = pba - (min_tx_space - tx_space);
1260
1261 /* if short on rx space, rx wins and must trump tx
1262 * adjustment */
1263 if (pba < min_rx_space)
1264 pba = min_rx_space;
1265 }
2d064c06 1266 wr32(E1000_PBA, pba);
9d5c8243 1267 }
9d5c8243
AK
1268
1269 /* flow control settings */
1270 /* The high water mark must be low enough to fit one full frame
1271 * (or the size used for early receive) above it in the Rx FIFO.
1272 * Set it to the lower of:
1273 * - 90% of the Rx FIFO size, or
1274 * - the full Rx FIFO size minus one full frame */
1275 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1276 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1277
2d064c06
AD
1278 if (mac->type < e1000_82576) {
1279 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1280 fc->low_water = fc->high_water - 8;
1281 } else {
1282 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1283 fc->low_water = fc->high_water - 16;
1284 }
9d5c8243
AK
1285 fc->pause_time = 0xFFFF;
1286 fc->send_xon = 1;
0cce119a 1287 fc->current_mode = fc->requested_mode;
9d5c8243 1288
4ae196df
AD
1289 /* disable receive for all VFs and wait one second */
1290 if (adapter->vfs_allocated_count) {
1291 int i;
1292 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1293 adapter->vf_data[i].flags = 0;
4ae196df
AD
1294
1295 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1296 igb_ping_all_vfs(adapter);
4ae196df
AD
1297
1298 /* disable transmits and receives */
1299 wr32(E1000_VFRE, 0);
1300 wr32(E1000_VFTE, 0);
1301 }
1302
9d5c8243
AK
1303 /* Allow time for pending master requests to run */
1304 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1305 wr32(E1000_WUC, 0);
1306
1307 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1308 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1309
1310 igb_update_mng_vlan(adapter);
1311
1312 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1313 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1314
1315 igb_reset_adaptive(&adapter->hw);
f5f4cf08 1316 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
1317}
1318
2e5c6922
SH
1319static const struct net_device_ops igb_netdev_ops = {
1320 .ndo_open = igb_open,
1321 .ndo_stop = igb_close,
00829823 1322 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1323 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1324 .ndo_set_rx_mode = igb_set_rx_mode,
1325 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1326 .ndo_set_mac_address = igb_set_mac,
1327 .ndo_change_mtu = igb_change_mtu,
1328 .ndo_do_ioctl = igb_ioctl,
1329 .ndo_tx_timeout = igb_tx_timeout,
1330 .ndo_validate_addr = eth_validate_addr,
1331 .ndo_vlan_rx_register = igb_vlan_rx_register,
1332 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1333 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1334#ifdef CONFIG_NET_POLL_CONTROLLER
1335 .ndo_poll_controller = igb_netpoll,
1336#endif
1337};
1338
9d5c8243
AK
1339/**
1340 * igb_probe - Device Initialization Routine
1341 * @pdev: PCI device information struct
1342 * @ent: entry in igb_pci_tbl
1343 *
1344 * Returns 0 on success, negative on failure
1345 *
1346 * igb_probe initializes an adapter identified by a pci_dev structure.
1347 * The OS initialization, configuring of the adapter private structure,
1348 * and a hardware reset occur.
1349 **/
1350static int __devinit igb_probe(struct pci_dev *pdev,
1351 const struct pci_device_id *ent)
1352{
1353 struct net_device *netdev;
1354 struct igb_adapter *adapter;
1355 struct e1000_hw *hw;
1356 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1357 unsigned long mmio_start, mmio_len;
2d6a5e95 1358 int err, pci_using_dac;
682337fe 1359 u16 eeprom_data = 0;
9d5c8243
AK
1360 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1361 u32 part_num;
1362
aed5dec3 1363 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1364 if (err)
1365 return err;
1366
1367 pci_using_dac = 0;
6a35528a 1368 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1369 if (!err) {
6a35528a 1370 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1371 if (!err)
1372 pci_using_dac = 1;
1373 } else {
284901a9 1374 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1375 if (err) {
284901a9 1376 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1377 if (err) {
1378 dev_err(&pdev->dev, "No usable DMA "
1379 "configuration, aborting\n");
1380 goto err_dma;
1381 }
1382 }
1383 }
1384
aed5dec3
AD
1385 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1386 IORESOURCE_MEM),
1387 igb_driver_name);
9d5c8243
AK
1388 if (err)
1389 goto err_pci_reg;
1390
19d5afd4 1391 pci_enable_pcie_error_reporting(pdev);
40a914fa 1392
9d5c8243 1393 pci_set_master(pdev);
c682fc23 1394 pci_save_state(pdev);
9d5c8243
AK
1395
1396 err = -ENOMEM;
1bfaf07b
AD
1397 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1398 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1399 if (!netdev)
1400 goto err_alloc_etherdev;
1401
1402 SET_NETDEV_DEV(netdev, &pdev->dev);
1403
1404 pci_set_drvdata(pdev, netdev);
1405 adapter = netdev_priv(netdev);
1406 adapter->netdev = netdev;
1407 adapter->pdev = pdev;
1408 hw = &adapter->hw;
1409 hw->back = adapter;
1410 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1411
1412 mmio_start = pci_resource_start(pdev, 0);
1413 mmio_len = pci_resource_len(pdev, 0);
1414
1415 err = -EIO;
28b0759c
AD
1416 hw->hw_addr = ioremap(mmio_start, mmio_len);
1417 if (!hw->hw_addr)
9d5c8243
AK
1418 goto err_ioremap;
1419
2e5c6922 1420 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1421 igb_set_ethtool_ops(netdev);
9d5c8243 1422 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1423
1424 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1425
1426 netdev->mem_start = mmio_start;
1427 netdev->mem_end = mmio_start + mmio_len;
1428
9d5c8243
AK
1429 /* PCI config space info */
1430 hw->vendor_id = pdev->vendor;
1431 hw->device_id = pdev->device;
1432 hw->revision_id = pdev->revision;
1433 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1434 hw->subsystem_device_id = pdev->subsystem_device;
1435
1436 /* setup the private structure */
1437 hw->back = adapter;
1438 /* Copy the default MAC, PHY and NVM function pointers */
1439 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1440 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1441 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1442 /* Initialize skew-specific constants */
1443 err = ei->get_invariants(hw);
1444 if (err)
450c87c8 1445 goto err_sw_init;
9d5c8243 1446
2a3abf6d
AD
1447#ifdef CONFIG_PCI_IOV
1448 /* since iov functionality isn't critical to base device function we
1449 * can accept failure. If it fails we don't allow iov to be enabled */
1450 if (hw->mac.type == e1000_82576) {
1451 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1452 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1453 int i;
1454 unsigned char mac_addr[ETH_ALEN];
1455
9ca046d5 1456 if (num_vfs) {
2a3abf6d
AD
1457 adapter->vf_data = kcalloc(num_vfs,
1458 sizeof(struct vf_data_storage),
1459 GFP_KERNEL);
9ca046d5
AD
1460 if (!adapter->vf_data) {
1461 dev_err(&pdev->dev,
1462 "Could not allocate VF private data - "
1463 "IOV enable failed\n");
2a3abf6d 1464 } else {
9ca046d5
AD
1465 err = pci_enable_sriov(pdev, num_vfs);
1466 if (!err) {
1467 adapter->vfs_allocated_count = num_vfs;
1468 dev_info(&pdev->dev,
1469 "%d vfs allocated\n",
1470 num_vfs);
1471 for (i = 0;
1472 i < adapter->vfs_allocated_count;
1473 i++) {
1474 random_ether_addr(mac_addr);
1475 igb_set_vf_mac(adapter, i,
1476 mac_addr);
1477 }
1478 } else {
1479 kfree(adapter->vf_data);
1480 adapter->vf_data = NULL;
1481 }
2a3abf6d
AD
1482 }
1483 }
1484 }
1485
1486#endif
450c87c8 1487 /* setup the private structure */
9d5c8243
AK
1488 err = igb_sw_init(adapter);
1489 if (err)
1490 goto err_sw_init;
1491
1492 igb_get_bus_info_pcie(hw);
1493
1494 hw->phy.autoneg_wait_to_complete = false;
1495 hw->mac.adaptive_ifs = true;
1496
1497 /* Copper options */
1498 if (hw->phy.media_type == e1000_media_type_copper) {
1499 hw->phy.mdix = AUTO_ALL_MODES;
1500 hw->phy.disable_polarity_correction = false;
1501 hw->phy.ms_type = e1000_ms_hw_default;
1502 }
1503
1504 if (igb_check_reset_block(hw))
1505 dev_info(&pdev->dev,
1506 "PHY reset is blocked due to SOL/IDER session.\n");
1507
1508 netdev->features = NETIF_F_SG |
7d8eb29e 1509 NETIF_F_IP_CSUM |
9d5c8243
AK
1510 NETIF_F_HW_VLAN_TX |
1511 NETIF_F_HW_VLAN_RX |
1512 NETIF_F_HW_VLAN_FILTER;
1513
7d8eb29e 1514 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1515 netdev->features |= NETIF_F_TSO;
9d5c8243 1516 netdev->features |= NETIF_F_TSO6;
48f29ffc 1517
5c0999b7 1518 netdev->features |= NETIF_F_GRO;
d3352520 1519
48f29ffc
JK
1520 netdev->vlan_features |= NETIF_F_TSO;
1521 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1522 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1523 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1524 netdev->vlan_features |= NETIF_F_SG;
1525
9d5c8243
AK
1526 if (pci_using_dac)
1527 netdev->features |= NETIF_F_HIGHDMA;
1528
b9473560
JB
1529 if (adapter->hw.mac.type == e1000_82576)
1530 netdev->features |= NETIF_F_SCTP_CSUM;
1531
9d5c8243
AK
1532 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1533
1534 /* before reading the NVM, reset the controller to put the device in a
1535 * known good starting state */
1536 hw->mac.ops.reset_hw(hw);
1537
1538 /* make sure the NVM is good */
1539 if (igb_validate_nvm_checksum(hw) < 0) {
1540 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1541 err = -EIO;
1542 goto err_eeprom;
1543 }
1544
1545 /* copy the MAC address out of the NVM */
1546 if (hw->mac.ops.read_mac_addr(hw))
1547 dev_err(&pdev->dev, "NVM Read Error\n");
1548
1549 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1550 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1551
1552 if (!is_valid_ether_addr(netdev->perm_addr)) {
1553 dev_err(&pdev->dev, "Invalid MAC Address\n");
1554 err = -EIO;
1555 goto err_eeprom;
1556 }
1557
0e340485
AD
1558 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1559 (unsigned long) adapter);
1560 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1561 (unsigned long) adapter);
9d5c8243
AK
1562
1563 INIT_WORK(&adapter->reset_task, igb_reset_task);
1564 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1565
450c87c8 1566 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1567 adapter->fc_autoneg = true;
1568 hw->mac.autoneg = true;
1569 hw->phy.autoneg_advertised = 0x2f;
1570
0cce119a
AD
1571 hw->fc.requested_mode = e1000_fc_default;
1572 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1573
9d5c8243
AK
1574 igb_validate_mdi_setting(hw);
1575
9d5c8243
AK
1576 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1577 * enable the ACPI Magic Packet filter
1578 */
1579
a2cf8b6c 1580 if (hw->bus.func == 0)
312c75ae 1581 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1582 else if (hw->bus.func == 1)
1583 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1584
1585 if (eeprom_data & eeprom_apme_mask)
1586 adapter->eeprom_wol |= E1000_WUFC_MAG;
1587
1588 /* now that we have the eeprom settings, apply the special cases where
1589 * the eeprom may be wrong or the board simply won't support wake on
1590 * lan on a particular port */
1591 switch (pdev->device) {
1592 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1593 adapter->eeprom_wol = 0;
1594 break;
1595 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1596 case E1000_DEV_ID_82576_FIBER:
1597 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1598 /* Wake events only supported on port A for dual fiber
1599 * regardless of eeprom setting */
1600 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1601 adapter->eeprom_wol = 0;
1602 break;
c8ea5ea9
AD
1603 case E1000_DEV_ID_82576_QUAD_COPPER:
1604 /* if quad port adapter, disable WoL on all but port A */
1605 if (global_quad_port_a != 0)
1606 adapter->eeprom_wol = 0;
1607 else
1608 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1609 /* Reset for multiple quad port adapters */
1610 if (++global_quad_port_a == 4)
1611 global_quad_port_a = 0;
1612 break;
9d5c8243
AK
1613 }
1614
1615 /* initialize the wol settings based on the eeprom settings */
1616 adapter->wol = adapter->eeprom_wol;
e1b86d84 1617 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1618
1619 /* reset the hardware with the new settings */
1620 igb_reset(adapter);
1621
1622 /* let the f/w know that the h/w is now under the control of the
1623 * driver. */
1624 igb_get_hw_control(adapter);
1625
9d5c8243
AK
1626 strcpy(netdev->name, "eth%d");
1627 err = register_netdev(netdev);
1628 if (err)
1629 goto err_register;
1630
b168dfc5
JB
1631 /* carrier off reporting is important to ethtool even BEFORE open */
1632 netif_carrier_off(netdev);
1633
421e02f0 1634#ifdef CONFIG_IGB_DCA
bbd98fe4 1635 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1636 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1637 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1638 igb_setup_dca(adapter);
1639 }
fe4506b6 1640
38c845c7 1641#endif
38c845c7 1642
c5b9bd5e
AD
1643 switch (hw->mac.type) {
1644 case e1000_82576:
1645 /*
1646 * Initialize hardware timer: we keep it running just in case
1647 * that some program needs it later on.
1648 */
1649 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1650 adapter->cycles.read = igb_read_clock;
1651 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1652 adapter->cycles.mult = 1;
1653 /**
1654 * Scale the NIC clock cycle by a large factor so that
1655 * relatively small clock corrections can be added or
1656 * substracted at each clock tick. The drawbacks of a large
1657 * factor are a) that the clock register overflows more quickly
1658 * (not such a big deal) and b) that the increment per tick has
1659 * to fit into 24 bits. As a result we need to use a shift of
1660 * 19 so we can fit a value of 16 into the TIMINCA register.
1661 */
1662 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1663 wr32(E1000_TIMINCA,
1664 (1 << E1000_TIMINCA_16NS_SHIFT) |
1665 (16 << IGB_82576_TSYNC_SHIFT));
1666
1667 /* Set registers so that rollover occurs soon to test this. */
1668 wr32(E1000_SYSTIML, 0x00000000);
1669 wr32(E1000_SYSTIMH, 0xFF800000);
1670 wrfl();
1671
1672 timecounter_init(&adapter->clock,
1673 &adapter->cycles,
1674 ktime_to_ns(ktime_get_real()));
1675 /*
1676 * Synchronize our NIC clock against system wall clock. NIC
1677 * time stamp reading requires ~3us per sample, each sample
1678 * was pretty stable even under load => only require 10
1679 * samples for each offset comparison.
1680 */
1681 memset(&adapter->compare, 0, sizeof(adapter->compare));
1682 adapter->compare.source = &adapter->clock;
1683 adapter->compare.target = ktime_get_real;
1684 adapter->compare.num_samples = 10;
1685 timecompare_update(&adapter->compare, 0);
1686 break;
1687 case e1000_82575:
1688 /* 82575 does not support timesync */
1689 default:
1690 break;
38c845c7 1691 }
38c845c7 1692
9d5c8243
AK
1693 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1694 /* print bus type/speed/width info */
7c510e4b 1695 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1696 netdev->name,
1697 ((hw->bus.speed == e1000_bus_speed_2500)
1698 ? "2.5Gb/s" : "unknown"),
59c3de89
AD
1699 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1700 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1701 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1702 "unknown"),
7c510e4b 1703 netdev->dev_addr);
9d5c8243
AK
1704
1705 igb_read_part_num(hw, &part_num);
1706 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1707 (part_num >> 8), (part_num & 0xff));
1708
1709 dev_info(&pdev->dev,
1710 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1711 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1712 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1713 adapter->num_rx_queues, adapter->num_tx_queues);
1714
9d5c8243
AK
1715 return 0;
1716
1717err_register:
1718 igb_release_hw_control(adapter);
1719err_eeprom:
1720 if (!igb_check_reset_block(hw))
f5f4cf08 1721 igb_reset_phy(hw);
9d5c8243
AK
1722
1723 if (hw->flash_address)
1724 iounmap(hw->flash_address);
9d5c8243 1725err_sw_init:
047e0030 1726 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
1727 iounmap(hw->hw_addr);
1728err_ioremap:
1729 free_netdev(netdev);
1730err_alloc_etherdev:
aed5dec3
AD
1731 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1732 IORESOURCE_MEM));
9d5c8243
AK
1733err_pci_reg:
1734err_dma:
1735 pci_disable_device(pdev);
1736 return err;
1737}
1738
1739/**
1740 * igb_remove - Device Removal Routine
1741 * @pdev: PCI device information struct
1742 *
1743 * igb_remove is called by the PCI subsystem to alert the driver
1744 * that it should release a PCI device. The could be caused by a
1745 * Hot-Plug event, or because the driver is going to be removed from
1746 * memory.
1747 **/
1748static void __devexit igb_remove(struct pci_dev *pdev)
1749{
1750 struct net_device *netdev = pci_get_drvdata(pdev);
1751 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1752 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1753
1754 /* flush_scheduled work may reschedule our watchdog task, so
1755 * explicitly disable watchdog tasks from being rescheduled */
1756 set_bit(__IGB_DOWN, &adapter->state);
1757 del_timer_sync(&adapter->watchdog_timer);
1758 del_timer_sync(&adapter->phy_info_timer);
1759
1760 flush_scheduled_work();
1761
421e02f0 1762#ifdef CONFIG_IGB_DCA
7dfc16fa 1763 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1764 dev_info(&pdev->dev, "DCA disabled\n");
1765 dca_remove_requester(&pdev->dev);
7dfc16fa 1766 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1767 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1768 }
1769#endif
1770
9d5c8243
AK
1771 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1772 * would have already happened in close and is redundant. */
1773 igb_release_hw_control(adapter);
1774
1775 unregister_netdev(netdev);
1776
f5f4cf08
AD
1777 if (!igb_check_reset_block(&adapter->hw))
1778 igb_reset_phy(&adapter->hw);
9d5c8243 1779
047e0030 1780 igb_clear_interrupt_scheme(adapter);
9d5c8243 1781
37680117
AD
1782#ifdef CONFIG_PCI_IOV
1783 /* reclaim resources allocated to VFs */
1784 if (adapter->vf_data) {
1785 /* disable iov and allow time for transactions to clear */
1786 pci_disable_sriov(pdev);
1787 msleep(500);
1788
1789 kfree(adapter->vf_data);
1790 adapter->vf_data = NULL;
1791 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1792 msleep(100);
1793 dev_info(&pdev->dev, "IOV Disabled\n");
1794 }
1795#endif
28b0759c
AD
1796 iounmap(hw->hw_addr);
1797 if (hw->flash_address)
1798 iounmap(hw->flash_address);
aed5dec3
AD
1799 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1800 IORESOURCE_MEM));
9d5c8243
AK
1801
1802 free_netdev(netdev);
1803
19d5afd4 1804 pci_disable_pcie_error_reporting(pdev);
40a914fa 1805
9d5c8243
AK
1806 pci_disable_device(pdev);
1807}
1808
1809/**
1810 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1811 * @adapter: board private structure to initialize
1812 *
1813 * igb_sw_init initializes the Adapter private data structure.
1814 * Fields are initialized based on PCI device information and
1815 * OS network device settings (MTU size).
1816 **/
1817static int __devinit igb_sw_init(struct igb_adapter *adapter)
1818{
1819 struct e1000_hw *hw = &adapter->hw;
1820 struct net_device *netdev = adapter->netdev;
1821 struct pci_dev *pdev = adapter->pdev;
1822
1823 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1824
68fd9910
AD
1825 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1826 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
1827 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1828 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1829
9d5c8243
AK
1830 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1831 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1832
661086df
PWJ
1833 /* This call may decrease the number of queues depending on
1834 * interrupt mode. */
047e0030 1835 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
1836 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1837 return -ENOMEM;
1838 }
1839
1840 /* Explicitly disable IRQ since the NIC can be in any state. */
1841 igb_irq_disable(adapter);
1842
1843 set_bit(__IGB_DOWN, &adapter->state);
1844 return 0;
1845}
1846
1847/**
1848 * igb_open - Called when a network interface is made active
1849 * @netdev: network interface device structure
1850 *
1851 * Returns 0 on success, negative value on failure
1852 *
1853 * The open entry point is called when a network interface is made
1854 * active by the system (IFF_UP). At this point all resources needed
1855 * for transmit and receive operations are allocated, the interrupt
1856 * handler is registered with the OS, the watchdog timer is started,
1857 * and the stack is notified that the interface is ready.
1858 **/
1859static int igb_open(struct net_device *netdev)
1860{
1861 struct igb_adapter *adapter = netdev_priv(netdev);
1862 struct e1000_hw *hw = &adapter->hw;
1863 int err;
1864 int i;
1865
1866 /* disallow open during test */
1867 if (test_bit(__IGB_TESTING, &adapter->state))
1868 return -EBUSY;
1869
b168dfc5
JB
1870 netif_carrier_off(netdev);
1871
9d5c8243
AK
1872 /* allocate transmit descriptors */
1873 err = igb_setup_all_tx_resources(adapter);
1874 if (err)
1875 goto err_setup_tx;
1876
1877 /* allocate receive descriptors */
1878 err = igb_setup_all_rx_resources(adapter);
1879 if (err)
1880 goto err_setup_rx;
1881
1882 /* e1000_power_up_phy(adapter); */
1883
1884 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1885 if ((adapter->hw.mng_cookie.status &
1886 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1887 igb_update_mng_vlan(adapter);
1888
1889 /* before we allocate an interrupt, we must be ready to handle it.
1890 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1891 * as soon as we call pci_request_irq, so we have to setup our
1892 * clean_rx handler before we do so. */
1893 igb_configure(adapter);
1894
e1739522
AD
1895 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1896
9d5c8243
AK
1897 err = igb_request_irq(adapter);
1898 if (err)
1899 goto err_req_irq;
1900
1901 /* From here on the code is the same as igb_up() */
1902 clear_bit(__IGB_DOWN, &adapter->state);
1903
047e0030
AD
1904 for (i = 0; i < adapter->num_q_vectors; i++) {
1905 struct igb_q_vector *q_vector = adapter->q_vector[i];
1906 napi_enable(&q_vector->napi);
1907 }
9d5c8243
AK
1908
1909 /* Clear any pending interrupts. */
1910 rd32(E1000_ICR);
844290e5
PW
1911
1912 igb_irq_enable(adapter);
1913
d4960307
AD
1914 /* notify VFs that reset has been completed */
1915 if (adapter->vfs_allocated_count) {
1916 u32 reg_data = rd32(E1000_CTRL_EXT);
1917 reg_data |= E1000_CTRL_EXT_PFRSTD;
1918 wr32(E1000_CTRL_EXT, reg_data);
1919 }
1920
d55b53ff
JK
1921 netif_tx_start_all_queues(netdev);
1922
9d5c8243
AK
1923 /* Fire a link status change interrupt to start the watchdog. */
1924 wr32(E1000_ICS, E1000_ICS_LSC);
1925
1926 return 0;
1927
1928err_req_irq:
1929 igb_release_hw_control(adapter);
1930 /* e1000_power_down_phy(adapter); */
1931 igb_free_all_rx_resources(adapter);
1932err_setup_rx:
1933 igb_free_all_tx_resources(adapter);
1934err_setup_tx:
1935 igb_reset(adapter);
1936
1937 return err;
1938}
1939
1940/**
1941 * igb_close - Disables a network interface
1942 * @netdev: network interface device structure
1943 *
1944 * Returns 0, this is not allowed to fail
1945 *
1946 * The close entry point is called when an interface is de-activated
1947 * by the OS. The hardware is still under the driver's control, but
1948 * needs to be disabled. A global MAC reset is issued to stop the
1949 * hardware, and all transmit and receive resources are freed.
1950 **/
1951static int igb_close(struct net_device *netdev)
1952{
1953 struct igb_adapter *adapter = netdev_priv(netdev);
1954
1955 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1956 igb_down(adapter);
1957
1958 igb_free_irq(adapter);
1959
1960 igb_free_all_tx_resources(adapter);
1961 igb_free_all_rx_resources(adapter);
1962
1963 /* kill manageability vlan ID if supported, but not if a vlan with
1964 * the same ID is registered on the host OS (let 8021q kill it) */
1965 if ((adapter->hw.mng_cookie.status &
1966 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1967 !(adapter->vlgrp &&
1968 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1969 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1970
1971 return 0;
1972}
1973
1974/**
1975 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
1976 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1977 *
1978 * Return 0 on success, negative on failure
1979 **/
80785298 1980int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 1981{
80785298 1982 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
1983 int size;
1984
1985 size = sizeof(struct igb_buffer) * tx_ring->count;
1986 tx_ring->buffer_info = vmalloc(size);
1987 if (!tx_ring->buffer_info)
1988 goto err;
1989 memset(tx_ring->buffer_info, 0, size);
1990
1991 /* round up to nearest 4K */
85e8d004 1992 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1993 tx_ring->size = ALIGN(tx_ring->size, 4096);
1994
1995 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1996 &tx_ring->dma);
1997
1998 if (!tx_ring->desc)
1999 goto err;
2000
9d5c8243
AK
2001 tx_ring->next_to_use = 0;
2002 tx_ring->next_to_clean = 0;
9d5c8243
AK
2003 return 0;
2004
2005err:
2006 vfree(tx_ring->buffer_info);
047e0030 2007 dev_err(&pdev->dev,
9d5c8243
AK
2008 "Unable to allocate memory for the transmit descriptor ring\n");
2009 return -ENOMEM;
2010}
2011
2012/**
2013 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2014 * (Descriptors) for all queues
2015 * @adapter: board private structure
2016 *
2017 * Return 0 on success, negative on failure
2018 **/
2019static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2020{
2021 int i, err = 0;
661086df 2022 int r_idx;
9d5c8243
AK
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++) {
80785298 2025 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2026 if (err) {
2027 dev_err(&adapter->pdev->dev,
2028 "Allocation for Tx Queue %u failed\n", i);
2029 for (i--; i >= 0; i--)
3b644cf6 2030 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2031 break;
2032 }
2033 }
2034
661086df
PWJ
2035 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2036 r_idx = i % adapter->num_tx_queues;
2037 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 2038 }
9d5c8243
AK
2039 return err;
2040}
2041
2042/**
85b430b4
AD
2043 * igb_setup_tctl - configure the transmit control registers
2044 * @adapter: Board private structure
9d5c8243 2045 **/
d7ee5b3a 2046void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2047{
9d5c8243
AK
2048 struct e1000_hw *hw = &adapter->hw;
2049 u32 tctl;
9d5c8243 2050
85b430b4
AD
2051 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2052 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2053
2054 /* Program the Transmit Control Register */
9d5c8243
AK
2055 tctl = rd32(E1000_TCTL);
2056 tctl &= ~E1000_TCTL_CT;
2057 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2058 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2059
2060 igb_config_collision_dist(hw);
2061
9d5c8243
AK
2062 /* Enable transmits */
2063 tctl |= E1000_TCTL_EN;
2064
2065 wr32(E1000_TCTL, tctl);
2066}
2067
85b430b4
AD
2068/**
2069 * igb_configure_tx_ring - Configure transmit ring after Reset
2070 * @adapter: board private structure
2071 * @ring: tx ring to configure
2072 *
2073 * Configure a transmit ring after a reset.
2074 **/
d7ee5b3a
AD
2075void igb_configure_tx_ring(struct igb_adapter *adapter,
2076 struct igb_ring *ring)
85b430b4
AD
2077{
2078 struct e1000_hw *hw = &adapter->hw;
2079 u32 txdctl;
2080 u64 tdba = ring->dma;
2081 int reg_idx = ring->reg_idx;
2082
2083 /* disable the queue */
2084 txdctl = rd32(E1000_TXDCTL(reg_idx));
2085 wr32(E1000_TXDCTL(reg_idx),
2086 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2087 wrfl();
2088 mdelay(10);
2089
2090 wr32(E1000_TDLEN(reg_idx),
2091 ring->count * sizeof(union e1000_adv_tx_desc));
2092 wr32(E1000_TDBAL(reg_idx),
2093 tdba & 0x00000000ffffffffULL);
2094 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2095
fce99e34
AD
2096 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2097 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2098 writel(0, ring->head);
2099 writel(0, ring->tail);
85b430b4
AD
2100
2101 txdctl |= IGB_TX_PTHRESH;
2102 txdctl |= IGB_TX_HTHRESH << 8;
2103 txdctl |= IGB_TX_WTHRESH << 16;
2104
2105 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2106 wr32(E1000_TXDCTL(reg_idx), txdctl);
2107}
2108
2109/**
2110 * igb_configure_tx - Configure transmit Unit after Reset
2111 * @adapter: board private structure
2112 *
2113 * Configure the Tx unit of the MAC after a reset.
2114 **/
2115static void igb_configure_tx(struct igb_adapter *adapter)
2116{
2117 int i;
2118
2119 for (i = 0; i < adapter->num_tx_queues; i++)
2120 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
85b430b4
AD
2121}
2122
9d5c8243
AK
2123/**
2124 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2125 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2126 *
2127 * Returns 0 on success, negative on failure
2128 **/
80785298 2129int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2130{
80785298 2131 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
2132 int size, desc_len;
2133
2134 size = sizeof(struct igb_buffer) * rx_ring->count;
2135 rx_ring->buffer_info = vmalloc(size);
2136 if (!rx_ring->buffer_info)
2137 goto err;
2138 memset(rx_ring->buffer_info, 0, size);
2139
2140 desc_len = sizeof(union e1000_adv_rx_desc);
2141
2142 /* Round up to nearest 4K */
2143 rx_ring->size = rx_ring->count * desc_len;
2144 rx_ring->size = ALIGN(rx_ring->size, 4096);
2145
2146 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2147 &rx_ring->dma);
2148
2149 if (!rx_ring->desc)
2150 goto err;
2151
2152 rx_ring->next_to_clean = 0;
2153 rx_ring->next_to_use = 0;
9d5c8243 2154
9d5c8243
AK
2155 return 0;
2156
2157err:
2158 vfree(rx_ring->buffer_info);
80785298 2159 dev_err(&pdev->dev, "Unable to allocate memory for "
9d5c8243
AK
2160 "the receive descriptor ring\n");
2161 return -ENOMEM;
2162}
2163
2164/**
2165 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2166 * (Descriptors) for all queues
2167 * @adapter: board private structure
2168 *
2169 * Return 0 on success, negative on failure
2170 **/
2171static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2172{
2173 int i, err = 0;
2174
2175 for (i = 0; i < adapter->num_rx_queues; i++) {
80785298 2176 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2177 if (err) {
2178 dev_err(&adapter->pdev->dev,
2179 "Allocation for Rx Queue %u failed\n", i);
2180 for (i--; i >= 0; i--)
3b644cf6 2181 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2182 break;
2183 }
2184 }
2185
2186 return err;
2187}
2188
06cf2666
AD
2189/**
2190 * igb_setup_mrqc - configure the multiple receive queue control registers
2191 * @adapter: Board private structure
2192 **/
2193static void igb_setup_mrqc(struct igb_adapter *adapter)
2194{
2195 struct e1000_hw *hw = &adapter->hw;
2196 u32 mrqc, rxcsum;
2197 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2198 union e1000_reta {
2199 u32 dword;
2200 u8 bytes[4];
2201 } reta;
2202 static const u8 rsshash[40] = {
2203 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2204 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2205 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2206 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2207
2208 /* Fill out hash function seeds */
2209 for (j = 0; j < 10; j++) {
2210 u32 rsskey = rsshash[(j * 4)];
2211 rsskey |= rsshash[(j * 4) + 1] << 8;
2212 rsskey |= rsshash[(j * 4) + 2] << 16;
2213 rsskey |= rsshash[(j * 4) + 3] << 24;
2214 array_wr32(E1000_RSSRK(0), j, rsskey);
2215 }
2216
2217 num_rx_queues = adapter->num_rx_queues;
2218
2219 if (adapter->vfs_allocated_count) {
2220 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2221 switch (hw->mac.type) {
2222 case e1000_82576:
2223 shift = 3;
2224 num_rx_queues = 2;
2225 break;
2226 case e1000_82575:
2227 shift = 2;
2228 shift2 = 6;
2229 default:
2230 break;
2231 }
2232 } else {
2233 if (hw->mac.type == e1000_82575)
2234 shift = 6;
2235 }
2236
2237 for (j = 0; j < (32 * 4); j++) {
2238 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2239 if (shift2)
2240 reta.bytes[j & 3] |= num_rx_queues << shift2;
2241 if ((j & 3) == 3)
2242 wr32(E1000_RETA(j >> 2), reta.dword);
2243 }
2244
2245 /*
2246 * Disable raw packet checksumming so that RSS hash is placed in
2247 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2248 * offloads as they are enabled by default
2249 */
2250 rxcsum = rd32(E1000_RXCSUM);
2251 rxcsum |= E1000_RXCSUM_PCSD;
2252
2253 if (adapter->hw.mac.type >= e1000_82576)
2254 /* Enable Receive Checksum Offload for SCTP */
2255 rxcsum |= E1000_RXCSUM_CRCOFL;
2256
2257 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2258 wr32(E1000_RXCSUM, rxcsum);
2259
2260 /* If VMDq is enabled then we set the appropriate mode for that, else
2261 * we default to RSS so that an RSS hash is calculated per packet even
2262 * if we are only using one queue */
2263 if (adapter->vfs_allocated_count) {
2264 if (hw->mac.type > e1000_82575) {
2265 /* Set the default pool for the PF's first queue */
2266 u32 vtctl = rd32(E1000_VT_CTL);
2267 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2268 E1000_VT_CTL_DISABLE_DEF_POOL);
2269 vtctl |= adapter->vfs_allocated_count <<
2270 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2271 wr32(E1000_VT_CTL, vtctl);
2272 }
2273 if (adapter->num_rx_queues > 1)
2274 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2275 else
2276 mrqc = E1000_MRQC_ENABLE_VMDQ;
2277 } else {
2278 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2279 }
2280 igb_vmm_control(adapter);
2281
2282 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2283 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2284 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2285 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2286 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2287 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2288 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2289 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2290
2291 wr32(E1000_MRQC, mrqc);
2292}
2293
9d5c8243
AK
2294/**
2295 * igb_setup_rctl - configure the receive control registers
2296 * @adapter: Board private structure
2297 **/
d7ee5b3a 2298void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2299{
2300 struct e1000_hw *hw = &adapter->hw;
2301 u32 rctl;
9d5c8243
AK
2302
2303 rctl = rd32(E1000_RCTL);
2304
2305 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2306 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2307
69d728ba 2308 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2309 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2310
87cb7e8c
AK
2311 /*
2312 * enable stripping of CRC. It's unlikely this will break BMC
2313 * redirection as it did with e1000. Newer features require
2314 * that the HW strips the CRC.
73cd78f1 2315 */
87cb7e8c 2316 rctl |= E1000_RCTL_SECRC;
9d5c8243 2317
9b07f3d3 2318 /*
ec54d7d6 2319 * disable store bad packets and clear size bits.
9b07f3d3 2320 */
ec54d7d6 2321 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2322
6ec43fe6
AD
2323 /* enable LPE to prevent packets larger than max_frame_size */
2324 rctl |= E1000_RCTL_LPE;
9d5c8243 2325
952f72a8
AD
2326 /* disable queue 0 to prevent tail write w/o re-config */
2327 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2328
e1739522
AD
2329 /* Attention!!! For SR-IOV PF driver operations you must enable
2330 * queue drop for all VF and PF queues to prevent head of line blocking
2331 * if an un-trusted VF does not provide descriptors to hardware.
2332 */
2333 if (adapter->vfs_allocated_count) {
2334 u32 vmolr;
2335
e1739522
AD
2336 /* set all queue drop enable bits */
2337 wr32(E1000_QDE, ALL_QUEUES);
e1739522 2338
77a22941 2339 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
e1739522
AD
2340 if (rctl & E1000_RCTL_LPE)
2341 vmolr |= E1000_VMOLR_LPE;
77a22941 2342 if (adapter->num_rx_queues > 1)
e1739522 2343 vmolr |= E1000_VMOLR_RSSE;
77a22941 2344 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
e1739522
AD
2345 }
2346
9d5c8243
AK
2347 wr32(E1000_RCTL, rctl);
2348}
2349
e1739522
AD
2350/**
2351 * igb_rlpml_set - set maximum receive packet size
2352 * @adapter: board private structure
2353 *
2354 * Configure maximum receivable packet size.
2355 **/
2356static void igb_rlpml_set(struct igb_adapter *adapter)
2357{
2358 u32 max_frame_size = adapter->max_frame_size;
2359 struct e1000_hw *hw = &adapter->hw;
2360 u16 pf_id = adapter->vfs_allocated_count;
2361
2362 if (adapter->vlgrp)
2363 max_frame_size += VLAN_TAG_SIZE;
2364
2365 /* if vfs are enabled we set RLPML to the largest possible request
2366 * size and set the VMOLR RLPML to the size we need */
2367 if (pf_id) {
2368 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2369 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2370 }
2371
2372 wr32(E1000_RLPML, max_frame_size);
2373}
2374
85b430b4
AD
2375/**
2376 * igb_configure_rx_ring - Configure a receive ring after Reset
2377 * @adapter: board private structure
2378 * @ring: receive ring to be configured
2379 *
2380 * Configure the Rx unit of the MAC after a reset.
2381 **/
d7ee5b3a
AD
2382void igb_configure_rx_ring(struct igb_adapter *adapter,
2383 struct igb_ring *ring)
85b430b4
AD
2384{
2385 struct e1000_hw *hw = &adapter->hw;
2386 u64 rdba = ring->dma;
2387 int reg_idx = ring->reg_idx;
952f72a8 2388 u32 srrctl, rxdctl;
85b430b4
AD
2389
2390 /* disable the queue */
2391 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2392 wr32(E1000_RXDCTL(reg_idx),
2393 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2394
2395 /* Set DMA base address registers */
2396 wr32(E1000_RDBAL(reg_idx),
2397 rdba & 0x00000000ffffffffULL);
2398 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2399 wr32(E1000_RDLEN(reg_idx),
2400 ring->count * sizeof(union e1000_adv_rx_desc));
2401
2402 /* initialize head and tail */
fce99e34
AD
2403 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2404 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2405 writel(0, ring->head);
2406 writel(0, ring->tail);
85b430b4 2407
952f72a8 2408 /* set descriptor configuration */
4c844851
AD
2409 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2410 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2411 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2412#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2413 srrctl |= IGB_RXBUFFER_16384 >>
2414 E1000_SRRCTL_BSIZEPKT_SHIFT;
2415#else
2416 srrctl |= (PAGE_SIZE / 2) >>
2417 E1000_SRRCTL_BSIZEPKT_SHIFT;
2418#endif
2419 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2420 } else {
4c844851 2421 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2422 E1000_SRRCTL_BSIZEPKT_SHIFT;
2423 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2424 }
2425
2426 wr32(E1000_SRRCTL(reg_idx), srrctl);
2427
85b430b4
AD
2428 /* enable receive descriptor fetching */
2429 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2430 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2431 rxdctl &= 0xFFF00000;
2432 rxdctl |= IGB_RX_PTHRESH;
2433 rxdctl |= IGB_RX_HTHRESH << 8;
2434 rxdctl |= IGB_RX_WTHRESH << 16;
2435 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2436}
2437
9d5c8243
AK
2438/**
2439 * igb_configure_rx - Configure receive Unit after Reset
2440 * @adapter: board private structure
2441 *
2442 * Configure the Rx unit of the MAC after a reset.
2443 **/
2444static void igb_configure_rx(struct igb_adapter *adapter)
2445{
9107584e 2446 int i;
9d5c8243 2447
68d480c4
AD
2448 /* set UTA to appropriate mode */
2449 igb_set_uta(adapter);
2450
26ad9178
AD
2451 /* set the correct pool for the PF default MAC address in entry 0 */
2452 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2453 adapter->vfs_allocated_count);
2454
06cf2666
AD
2455 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2456 * the Base and Length of the Rx Descriptor Ring */
2457 for (i = 0; i < adapter->num_rx_queues; i++)
2458 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
9d5c8243
AK
2459}
2460
2461/**
2462 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2463 * @tx_ring: Tx descriptor ring for a specific queue
2464 *
2465 * Free all transmit software resources
2466 **/
68fd9910 2467void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2468{
3b644cf6 2469 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2470
2471 vfree(tx_ring->buffer_info);
2472 tx_ring->buffer_info = NULL;
2473
80785298
AD
2474 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2475 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2476
2477 tx_ring->desc = NULL;
2478}
2479
2480/**
2481 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2482 * @adapter: board private structure
2483 *
2484 * Free all transmit software resources
2485 **/
2486static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2487{
2488 int i;
2489
2490 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2491 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2492}
2493
b1a436c3
AD
2494void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2495 struct igb_buffer *buffer_info)
9d5c8243 2496{
65689fef 2497 buffer_info->dma = 0;
9d5c8243 2498 if (buffer_info->skb) {
80785298
AD
2499 skb_dma_unmap(&tx_ring->pdev->dev,
2500 buffer_info->skb,
65689fef 2501 DMA_TO_DEVICE);
9d5c8243
AK
2502 dev_kfree_skb_any(buffer_info->skb);
2503 buffer_info->skb = NULL;
2504 }
2505 buffer_info->time_stamp = 0;
2506 /* buffer_info must be completely set up in the transmit path */
2507}
2508
2509/**
2510 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2511 * @tx_ring: ring to be cleaned
2512 **/
3b644cf6 2513static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
2514{
2515 struct igb_buffer *buffer_info;
2516 unsigned long size;
2517 unsigned int i;
2518
2519 if (!tx_ring->buffer_info)
2520 return;
2521 /* Free all the Tx ring sk_buffs */
2522
2523 for (i = 0; i < tx_ring->count; i++) {
2524 buffer_info = &tx_ring->buffer_info[i];
80785298 2525 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
2526 }
2527
2528 size = sizeof(struct igb_buffer) * tx_ring->count;
2529 memset(tx_ring->buffer_info, 0, size);
2530
2531 /* Zero out the descriptor ring */
2532
2533 memset(tx_ring->desc, 0, tx_ring->size);
2534
2535 tx_ring->next_to_use = 0;
2536 tx_ring->next_to_clean = 0;
2537
fce99e34
AD
2538 writel(0, tx_ring->head);
2539 writel(0, tx_ring->tail);
9d5c8243
AK
2540}
2541
2542/**
2543 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2544 * @adapter: board private structure
2545 **/
2546static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2547{
2548 int i;
2549
2550 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2551 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2552}
2553
2554/**
2555 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2556 * @rx_ring: ring to clean the resources from
2557 *
2558 * Free all receive software resources
2559 **/
68fd9910 2560void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2561{
3b644cf6 2562 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2563
2564 vfree(rx_ring->buffer_info);
2565 rx_ring->buffer_info = NULL;
2566
80785298
AD
2567 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2568 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
2569
2570 rx_ring->desc = NULL;
2571}
2572
2573/**
2574 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2575 * @adapter: board private structure
2576 *
2577 * Free all receive software resources
2578 **/
2579static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2580{
2581 int i;
2582
2583 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2584 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2585}
2586
2587/**
2588 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2589 * @rx_ring: ring to free buffers from
2590 **/
3b644cf6 2591static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
2592{
2593 struct igb_buffer *buffer_info;
9d5c8243
AK
2594 unsigned long size;
2595 unsigned int i;
2596
2597 if (!rx_ring->buffer_info)
2598 return;
2599 /* Free all the Rx ring sk_buffs */
2600 for (i = 0; i < rx_ring->count; i++) {
2601 buffer_info = &rx_ring->buffer_info[i];
2602 if (buffer_info->dma) {
80785298
AD
2603 pci_unmap_single(rx_ring->pdev,
2604 buffer_info->dma,
4c844851 2605 rx_ring->rx_buffer_len,
6ec43fe6 2606 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2607 buffer_info->dma = 0;
2608 }
2609
2610 if (buffer_info->skb) {
2611 dev_kfree_skb(buffer_info->skb);
2612 buffer_info->skb = NULL;
2613 }
6ec43fe6 2614 if (buffer_info->page_dma) {
80785298
AD
2615 pci_unmap_page(rx_ring->pdev,
2616 buffer_info->page_dma,
6ec43fe6
AD
2617 PAGE_SIZE / 2,
2618 PCI_DMA_FROMDEVICE);
2619 buffer_info->page_dma = 0;
2620 }
9d5c8243 2621 if (buffer_info->page) {
9d5c8243
AK
2622 put_page(buffer_info->page);
2623 buffer_info->page = NULL;
bf36c1a0 2624 buffer_info->page_offset = 0;
9d5c8243
AK
2625 }
2626 }
2627
9d5c8243
AK
2628 size = sizeof(struct igb_buffer) * rx_ring->count;
2629 memset(rx_ring->buffer_info, 0, size);
2630
2631 /* Zero out the descriptor ring */
2632 memset(rx_ring->desc, 0, rx_ring->size);
2633
2634 rx_ring->next_to_clean = 0;
2635 rx_ring->next_to_use = 0;
2636
fce99e34
AD
2637 writel(0, rx_ring->head);
2638 writel(0, rx_ring->tail);
9d5c8243
AK
2639}
2640
2641/**
2642 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2643 * @adapter: board private structure
2644 **/
2645static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2646{
2647 int i;
2648
2649 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2650 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2651}
2652
2653/**
2654 * igb_set_mac - Change the Ethernet Address of the NIC
2655 * @netdev: network interface device structure
2656 * @p: pointer to an address structure
2657 *
2658 * Returns 0 on success, negative on failure
2659 **/
2660static int igb_set_mac(struct net_device *netdev, void *p)
2661{
2662 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2663 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2664 struct sockaddr *addr = p;
2665
2666 if (!is_valid_ether_addr(addr->sa_data))
2667 return -EADDRNOTAVAIL;
2668
2669 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2670 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2671
26ad9178
AD
2672 /* set the correct pool for the new PF MAC address in entry 0 */
2673 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2674 adapter->vfs_allocated_count);
e1739522 2675
9d5c8243
AK
2676 return 0;
2677}
2678
2679/**
68d480c4 2680 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
2681 * @netdev: network interface device structure
2682 *
68d480c4
AD
2683 * Writes multicast address list to the MTA hash table.
2684 * Returns: -ENOMEM on failure
2685 * 0 on no addresses written
2686 * X on writing X addresses to MTA
9d5c8243 2687 **/
68d480c4 2688static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
2689{
2690 struct igb_adapter *adapter = netdev_priv(netdev);
2691 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 2692 struct dev_mc_list *mc_ptr = netdev->mc_list;
68d480c4
AD
2693 u8 *mta_list;
2694 u32 vmolr = 0;
9d5c8243
AK
2695 int i;
2696
68d480c4
AD
2697 if (!netdev->mc_count) {
2698 /* nothing to program, so clear mc list */
2699 igb_update_mc_addr_list(hw, NULL, 0);
2700 igb_restore_vf_multicasts(adapter);
2701 return 0;
2702 }
9d5c8243 2703
68d480c4
AD
2704 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2705 if (!mta_list)
2706 return -ENOMEM;
ff41f8dc 2707
68d480c4
AD
2708 /* set vmolr receive overflow multicast bit */
2709 vmolr |= E1000_VMOLR_ROMPE;
2710
2711 /* The shared function expects a packed array of only addresses. */
2712 mc_ptr = netdev->mc_list;
2713
2714 for (i = 0; i < netdev->mc_count; i++) {
2715 if (!mc_ptr)
2716 break;
2717 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2718 mc_ptr = mc_ptr->next;
746b9f02 2719 }
68d480c4
AD
2720 igb_update_mc_addr_list(hw, mta_list, i);
2721 kfree(mta_list);
2722
2723 return netdev->mc_count;
2724}
2725
2726/**
2727 * igb_write_uc_addr_list - write unicast addresses to RAR table
2728 * @netdev: network interface device structure
2729 *
2730 * Writes unicast address list to the RAR table.
2731 * Returns: -ENOMEM on failure/insufficient address space
2732 * 0 on no addresses written
2733 * X on writing X addresses to the RAR table
2734 **/
2735static int igb_write_uc_addr_list(struct net_device *netdev)
2736{
2737 struct igb_adapter *adapter = netdev_priv(netdev);
2738 struct e1000_hw *hw = &adapter->hw;
2739 unsigned int vfn = adapter->vfs_allocated_count;
2740 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2741 int count = 0;
2742
2743 /* return ENOMEM indicating insufficient memory for addresses */
2744 if (netdev->uc.count > rar_entries)
2745 return -ENOMEM;
9d5c8243 2746
ff41f8dc
AD
2747 if (netdev->uc.count && rar_entries) {
2748 struct netdev_hw_addr *ha;
2749 list_for_each_entry(ha, &netdev->uc.list, list) {
2750 if (!rar_entries)
2751 break;
26ad9178
AD
2752 igb_rar_set_qsel(adapter, ha->addr,
2753 rar_entries--,
68d480c4
AD
2754 vfn);
2755 count++;
ff41f8dc
AD
2756 }
2757 }
2758 /* write the addresses in reverse order to avoid write combining */
2759 for (; rar_entries > 0 ; rar_entries--) {
2760 wr32(E1000_RAH(rar_entries), 0);
2761 wr32(E1000_RAL(rar_entries), 0);
2762 }
2763 wrfl();
2764
68d480c4
AD
2765 return count;
2766}
2767
2768/**
2769 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2770 * @netdev: network interface device structure
2771 *
2772 * The set_rx_mode entry point is called whenever the unicast or multicast
2773 * address lists or the network interface flags are updated. This routine is
2774 * responsible for configuring the hardware for proper unicast, multicast,
2775 * promiscuous mode, and all-multi behavior.
2776 **/
2777static void igb_set_rx_mode(struct net_device *netdev)
2778{
2779 struct igb_adapter *adapter = netdev_priv(netdev);
2780 struct e1000_hw *hw = &adapter->hw;
2781 unsigned int vfn = adapter->vfs_allocated_count;
2782 u32 rctl, vmolr = 0;
2783 int count;
2784
2785 /* Check for Promiscuous and All Multicast modes */
2786 rctl = rd32(E1000_RCTL);
2787
2788 /* clear the effected bits */
2789 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2790
2791 if (netdev->flags & IFF_PROMISC) {
2792 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2793 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2794 } else {
2795 if (netdev->flags & IFF_ALLMULTI) {
2796 rctl |= E1000_RCTL_MPE;
2797 vmolr |= E1000_VMOLR_MPME;
2798 } else {
2799 /*
2800 * Write addresses to the MTA, if the attempt fails
2801 * then we should just turn on promiscous mode so
2802 * that we can at least receive multicast traffic
2803 */
2804 count = igb_write_mc_addr_list(netdev);
2805 if (count < 0) {
2806 rctl |= E1000_RCTL_MPE;
2807 vmolr |= E1000_VMOLR_MPME;
2808 } else if (count) {
2809 vmolr |= E1000_VMOLR_ROMPE;
2810 }
2811 }
2812 /*
2813 * Write addresses to available RAR registers, if there is not
2814 * sufficient space to store all the addresses then enable
2815 * unicast promiscous mode
2816 */
2817 count = igb_write_uc_addr_list(netdev);
2818 if (count < 0) {
2819 rctl |= E1000_RCTL_UPE;
2820 vmolr |= E1000_VMOLR_ROPE;
2821 }
2822 rctl |= E1000_RCTL_VFE;
28fc06f5 2823 }
68d480c4 2824 wr32(E1000_RCTL, rctl);
28fc06f5 2825
68d480c4
AD
2826 /*
2827 * In order to support SR-IOV and eventually VMDq it is necessary to set
2828 * the VMOLR to enable the appropriate modes. Without this workaround
2829 * we will have issues with VLAN tag stripping not being done for frames
2830 * that are only arriving because we are the default pool
2831 */
2832 if (hw->mac.type < e1000_82576)
28fc06f5 2833 return;
9d5c8243 2834
68d480c4
AD
2835 vmolr |= rd32(E1000_VMOLR(vfn)) &
2836 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2837 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 2838 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
2839}
2840
2841/* Need to wait a few seconds after link up to get diagnostic information from
2842 * the phy */
2843static void igb_update_phy_info(unsigned long data)
2844{
2845 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2846 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2847}
2848
4d6b725e
AD
2849/**
2850 * igb_has_link - check shared code for link and determine up/down
2851 * @adapter: pointer to driver private info
2852 **/
2853static bool igb_has_link(struct igb_adapter *adapter)
2854{
2855 struct e1000_hw *hw = &adapter->hw;
2856 bool link_active = false;
2857 s32 ret_val = 0;
2858
2859 /* get_link_status is set on LSC (link status) interrupt or
2860 * rx sequence error interrupt. get_link_status will stay
2861 * false until the e1000_check_for_link establishes link
2862 * for copper adapters ONLY
2863 */
2864 switch (hw->phy.media_type) {
2865 case e1000_media_type_copper:
2866 if (hw->mac.get_link_status) {
2867 ret_val = hw->mac.ops.check_for_link(hw);
2868 link_active = !hw->mac.get_link_status;
2869 } else {
2870 link_active = true;
2871 }
2872 break;
4d6b725e
AD
2873 case e1000_media_type_internal_serdes:
2874 ret_val = hw->mac.ops.check_for_link(hw);
2875 link_active = hw->mac.serdes_has_link;
2876 break;
2877 default:
2878 case e1000_media_type_unknown:
2879 break;
2880 }
2881
2882 return link_active;
2883}
2884
9d5c8243
AK
2885/**
2886 * igb_watchdog - Timer Call-back
2887 * @data: pointer to adapter cast into an unsigned long
2888 **/
2889static void igb_watchdog(unsigned long data)
2890{
2891 struct igb_adapter *adapter = (struct igb_adapter *)data;
2892 /* Do the rest outside of interrupt context */
2893 schedule_work(&adapter->watchdog_task);
2894}
2895
2896static void igb_watchdog_task(struct work_struct *work)
2897{
2898 struct igb_adapter *adapter = container_of(work,
2899 struct igb_adapter, watchdog_task);
2900 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2901 struct net_device *netdev = adapter->netdev;
2902 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2903 u32 link;
7a6ea550 2904 int i;
9d5c8243 2905
4d6b725e
AD
2906 link = igb_has_link(adapter);
2907 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2908 goto link_up;
2909
9d5c8243
AK
2910 if (link) {
2911 if (!netif_carrier_ok(netdev)) {
2912 u32 ctrl;
2913 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2914 &adapter->link_speed,
2915 &adapter->link_duplex);
2916
2917 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2918 /* Links status message must follow this format */
2919 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2920 "Flow Control: %s\n",
527d47c1 2921 netdev->name,
9d5c8243
AK
2922 adapter->link_speed,
2923 adapter->link_duplex == FULL_DUPLEX ?
2924 "Full Duplex" : "Half Duplex",
2925 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2926 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2927 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2928 E1000_CTRL_TFCE) ? "TX" : "None")));
2929
2930 /* tweak tx_queue_len according to speed/duplex and
2931 * adjust the timeout factor */
2932 netdev->tx_queue_len = adapter->tx_queue_len;
2933 adapter->tx_timeout_factor = 1;
2934 switch (adapter->link_speed) {
2935 case SPEED_10:
2936 netdev->tx_queue_len = 10;
2937 adapter->tx_timeout_factor = 14;
2938 break;
2939 case SPEED_100:
2940 netdev->tx_queue_len = 100;
2941 /* maybe add some timeout factor ? */
2942 break;
2943 }
2944
2945 netif_carrier_on(netdev);
9d5c8243 2946
4ae196df
AD
2947 igb_ping_all_vfs(adapter);
2948
4b1a9877 2949 /* link state has changed, schedule phy info update */
9d5c8243
AK
2950 if (!test_bit(__IGB_DOWN, &adapter->state))
2951 mod_timer(&adapter->phy_info_timer,
2952 round_jiffies(jiffies + 2 * HZ));
2953 }
2954 } else {
2955 if (netif_carrier_ok(netdev)) {
2956 adapter->link_speed = 0;
2957 adapter->link_duplex = 0;
527d47c1
AD
2958 /* Links status message must follow this format */
2959 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2960 netdev->name);
9d5c8243 2961 netif_carrier_off(netdev);
4b1a9877 2962
4ae196df
AD
2963 igb_ping_all_vfs(adapter);
2964
4b1a9877 2965 /* link state has changed, schedule phy info update */
9d5c8243
AK
2966 if (!test_bit(__IGB_DOWN, &adapter->state))
2967 mod_timer(&adapter->phy_info_timer,
2968 round_jiffies(jiffies + 2 * HZ));
2969 }
2970 }
2971
2972link_up:
2973 igb_update_stats(adapter);
2974
4b1a9877 2975 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2976 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2977 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2978 adapter->colc_old = adapter->stats.colc;
2979
2980 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2981 adapter->gorc_old = adapter->stats.gorc;
2982 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2983 adapter->gotc_old = adapter->stats.gotc;
2984
2985 igb_update_adaptive(&adapter->hw);
2986
2987 if (!netif_carrier_ok(netdev)) {
c493ea45 2988 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
9d5c8243
AK
2989 /* We've lost link, so the controller stops DMA,
2990 * but we've got queued Tx work that's never going
2991 * to get done, so reset controller to flush Tx.
2992 * (Do the reset outside of interrupt context). */
2993 adapter->tx_timeout_count++;
2994 schedule_work(&adapter->reset_task);
c2d5ab49
JB
2995 /* return immediately since reset is imminent */
2996 return;
9d5c8243
AK
2997 }
2998 }
2999
3000 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3001 if (adapter->msix_entries) {
047e0030
AD
3002 u32 eics = 0;
3003 for (i = 0; i < adapter->num_q_vectors; i++) {
3004 struct igb_q_vector *q_vector = adapter->q_vector[i];
3005 eics |= q_vector->eims_value;
3006 }
7a6ea550
AD
3007 wr32(E1000_EICS, eics);
3008 } else {
3009 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3010 }
9d5c8243
AK
3011
3012 /* Force detection of hung controller every watchdog period */
3013 tx_ring->detect_tx_hung = true;
3014
3015 /* Reset the timer */
3016 if (!test_bit(__IGB_DOWN, &adapter->state))
3017 mod_timer(&adapter->watchdog_timer,
3018 round_jiffies(jiffies + 2 * HZ));
3019}
3020
3021enum latency_range {
3022 lowest_latency = 0,
3023 low_latency = 1,
3024 bulk_latency = 2,
3025 latency_invalid = 255
3026};
3027
6eb5a7f1
AD
3028/**
3029 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3030 *
3031 * Stores a new ITR value based on strictly on packet size. This
3032 * algorithm is less sophisticated than that used in igb_update_itr,
3033 * due to the difficulty of synchronizing statistics across multiple
3034 * receive rings. The divisors and thresholds used by this fuction
3035 * were determined based on theoretical maximum wire speed and testing
3036 * data, in order to minimize response time while increasing bulk
3037 * throughput.
3038 * This functionality is controlled by the InterruptThrottleRate module
3039 * parameter (see igb_param.c)
3040 * NOTE: This function is called only when operating in a multiqueue
3041 * receive environment.
047e0030 3042 * @q_vector: pointer to q_vector
6eb5a7f1 3043 **/
047e0030 3044static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3045{
047e0030 3046 int new_val = q_vector->itr_val;
6eb5a7f1 3047 int avg_wire_size = 0;
047e0030 3048 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3049
6eb5a7f1
AD
3050 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3051 * ints/sec - ITR timer value of 120 ticks.
3052 */
3053 if (adapter->link_speed != SPEED_1000) {
047e0030 3054 new_val = 976;
6eb5a7f1 3055 goto set_itr_val;
9d5c8243 3056 }
047e0030
AD
3057
3058 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3059 struct igb_ring *ring = q_vector->rx_ring;
3060 avg_wire_size = ring->total_bytes / ring->total_packets;
3061 }
3062
3063 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3064 struct igb_ring *ring = q_vector->tx_ring;
3065 avg_wire_size = max_t(u32, avg_wire_size,
3066 (ring->total_bytes /
3067 ring->total_packets));
3068 }
3069
3070 /* if avg_wire_size isn't set no work was done */
3071 if (!avg_wire_size)
3072 goto clear_counts;
9d5c8243 3073
6eb5a7f1
AD
3074 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3075 avg_wire_size += 24;
3076
3077 /* Don't starve jumbo frames */
3078 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3079
6eb5a7f1
AD
3080 /* Give a little boost to mid-size frames */
3081 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3082 new_val = avg_wire_size / 3;
3083 else
3084 new_val = avg_wire_size / 2;
9d5c8243 3085
6eb5a7f1 3086set_itr_val:
047e0030
AD
3087 if (new_val != q_vector->itr_val) {
3088 q_vector->itr_val = new_val;
3089 q_vector->set_itr = 1;
9d5c8243 3090 }
6eb5a7f1 3091clear_counts:
047e0030
AD
3092 if (q_vector->rx_ring) {
3093 q_vector->rx_ring->total_bytes = 0;
3094 q_vector->rx_ring->total_packets = 0;
3095 }
3096 if (q_vector->tx_ring) {
3097 q_vector->tx_ring->total_bytes = 0;
3098 q_vector->tx_ring->total_packets = 0;
3099 }
9d5c8243
AK
3100}
3101
3102/**
3103 * igb_update_itr - update the dynamic ITR value based on statistics
3104 * Stores a new ITR value based on packets and byte
3105 * counts during the last interrupt. The advantage of per interrupt
3106 * computation is faster updates and more accurate ITR for the current
3107 * traffic pattern. Constants in this function were computed
3108 * based on theoretical maximum wire speed and thresholds were set based
3109 * on testing data as well as attempting to minimize response time
3110 * while increasing bulk throughput.
3111 * this functionality is controlled by the InterruptThrottleRate module
3112 * parameter (see igb_param.c)
3113 * NOTE: These calculations are only valid when operating in a single-
3114 * queue environment.
3115 * @adapter: pointer to adapter
047e0030 3116 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3117 * @packets: the number of packets during this measurement interval
3118 * @bytes: the number of bytes during this measurement interval
3119 **/
3120static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3121 int packets, int bytes)
3122{
3123 unsigned int retval = itr_setting;
3124
3125 if (packets == 0)
3126 goto update_itr_done;
3127
3128 switch (itr_setting) {
3129 case lowest_latency:
3130 /* handle TSO and jumbo frames */
3131 if (bytes/packets > 8000)
3132 retval = bulk_latency;
3133 else if ((packets < 5) && (bytes > 512))
3134 retval = low_latency;
3135 break;
3136 case low_latency: /* 50 usec aka 20000 ints/s */
3137 if (bytes > 10000) {
3138 /* this if handles the TSO accounting */
3139 if (bytes/packets > 8000) {
3140 retval = bulk_latency;
3141 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3142 retval = bulk_latency;
3143 } else if ((packets > 35)) {
3144 retval = lowest_latency;
3145 }
3146 } else if (bytes/packets > 2000) {
3147 retval = bulk_latency;
3148 } else if (packets <= 2 && bytes < 512) {
3149 retval = lowest_latency;
3150 }
3151 break;
3152 case bulk_latency: /* 250 usec aka 4000 ints/s */
3153 if (bytes > 25000) {
3154 if (packets > 35)
3155 retval = low_latency;
1e5c3d21 3156 } else if (bytes < 1500) {
9d5c8243
AK
3157 retval = low_latency;
3158 }
3159 break;
3160 }
3161
3162update_itr_done:
3163 return retval;
3164}
3165
6eb5a7f1 3166static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3167{
047e0030 3168 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3169 u16 current_itr;
047e0030 3170 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3171
3172 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3173 if (adapter->link_speed != SPEED_1000) {
3174 current_itr = 0;
3175 new_itr = 4000;
3176 goto set_itr_now;
3177 }
3178
3179 adapter->rx_itr = igb_update_itr(adapter,
3180 adapter->rx_itr,
3181 adapter->rx_ring->total_packets,
3182 adapter->rx_ring->total_bytes);
9d5c8243 3183
047e0030
AD
3184 adapter->tx_itr = igb_update_itr(adapter,
3185 adapter->tx_itr,
3186 adapter->tx_ring->total_packets,
3187 adapter->tx_ring->total_bytes);
3188 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3189
6eb5a7f1 3190 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3191 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3192 current_itr = low_latency;
3193
9d5c8243
AK
3194 switch (current_itr) {
3195 /* counts and packets in update_itr are dependent on these numbers */
3196 case lowest_latency:
78b1f607 3197 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3198 break;
3199 case low_latency:
78b1f607 3200 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3201 break;
3202 case bulk_latency:
78b1f607 3203 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3204 break;
3205 default:
3206 break;
3207 }
3208
3209set_itr_now:
6eb5a7f1
AD
3210 adapter->rx_ring->total_bytes = 0;
3211 adapter->rx_ring->total_packets = 0;
047e0030
AD
3212 adapter->tx_ring->total_bytes = 0;
3213 adapter->tx_ring->total_packets = 0;
6eb5a7f1 3214
047e0030 3215 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3216 /* this attempts to bias the interrupt rate towards Bulk
3217 * by adding intermediate steps when interrupt rate is
3218 * increasing */
047e0030
AD
3219 new_itr = new_itr > q_vector->itr_val ?
3220 max((new_itr * q_vector->itr_val) /
3221 (new_itr + (q_vector->itr_val >> 2)),
3222 new_itr) :
9d5c8243
AK
3223 new_itr;
3224 /* Don't write the value here; it resets the adapter's
3225 * internal timer, and causes us to delay far longer than
3226 * we should between interrupts. Instead, we write the ITR
3227 * value at the beginning of the next interrupt so the timing
3228 * ends up being correct.
3229 */
047e0030
AD
3230 q_vector->itr_val = new_itr;
3231 q_vector->set_itr = 1;
9d5c8243
AK
3232 }
3233
3234 return;
3235}
3236
9d5c8243
AK
3237#define IGB_TX_FLAGS_CSUM 0x00000001
3238#define IGB_TX_FLAGS_VLAN 0x00000002
3239#define IGB_TX_FLAGS_TSO 0x00000004
3240#define IGB_TX_FLAGS_IPV4 0x00000008
33af6bcc 3241#define IGB_TX_FLAGS_TSTAMP 0x00000010
9d5c8243
AK
3242#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3243#define IGB_TX_FLAGS_VLAN_SHIFT 16
3244
85ad76b2 3245static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3246 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3247{
3248 struct e1000_adv_tx_context_desc *context_desc;
3249 unsigned int i;
3250 int err;
3251 struct igb_buffer *buffer_info;
3252 u32 info = 0, tu_cmd = 0;
3253 u32 mss_l4len_idx, l4len;
3254 *hdr_len = 0;
3255
3256 if (skb_header_cloned(skb)) {
3257 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3258 if (err)
3259 return err;
3260 }
3261
3262 l4len = tcp_hdrlen(skb);
3263 *hdr_len += l4len;
3264
3265 if (skb->protocol == htons(ETH_P_IP)) {
3266 struct iphdr *iph = ip_hdr(skb);
3267 iph->tot_len = 0;
3268 iph->check = 0;
3269 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3270 iph->daddr, 0,
3271 IPPROTO_TCP,
3272 0);
3273 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3274 ipv6_hdr(skb)->payload_len = 0;
3275 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3276 &ipv6_hdr(skb)->daddr,
3277 0, IPPROTO_TCP, 0);
3278 }
3279
3280 i = tx_ring->next_to_use;
3281
3282 buffer_info = &tx_ring->buffer_info[i];
3283 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3284 /* VLAN MACLEN IPLEN */
3285 if (tx_flags & IGB_TX_FLAGS_VLAN)
3286 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3287 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3288 *hdr_len += skb_network_offset(skb);
3289 info |= skb_network_header_len(skb);
3290 *hdr_len += skb_network_header_len(skb);
3291 context_desc->vlan_macip_lens = cpu_to_le32(info);
3292
3293 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3294 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3295
3296 if (skb->protocol == htons(ETH_P_IP))
3297 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3298 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3299
3300 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3301
3302 /* MSS L4LEN IDX */
3303 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3304 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3305
73cd78f1 3306 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3307 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3308 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3309
3310 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3311 context_desc->seqnum_seed = 0;
3312
3313 buffer_info->time_stamp = jiffies;
0e014cb1 3314 buffer_info->next_to_watch = i;
9d5c8243
AK
3315 buffer_info->dma = 0;
3316 i++;
3317 if (i == tx_ring->count)
3318 i = 0;
3319
3320 tx_ring->next_to_use = i;
3321
3322 return true;
3323}
3324
85ad76b2
AD
3325static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3326 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3327{
3328 struct e1000_adv_tx_context_desc *context_desc;
80785298 3329 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3330 struct igb_buffer *buffer_info;
3331 u32 info = 0, tu_cmd = 0;
80785298 3332 unsigned int i;
9d5c8243
AK
3333
3334 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3335 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3336 i = tx_ring->next_to_use;
3337 buffer_info = &tx_ring->buffer_info[i];
3338 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3339
3340 if (tx_flags & IGB_TX_FLAGS_VLAN)
3341 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3342 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3343 if (skb->ip_summed == CHECKSUM_PARTIAL)
3344 info |= skb_network_header_len(skb);
3345
3346 context_desc->vlan_macip_lens = cpu_to_le32(info);
3347
3348 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3349
3350 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3351 __be16 protocol;
3352
3353 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3354 const struct vlan_ethhdr *vhdr =
3355 (const struct vlan_ethhdr*)skb->data;
3356
3357 protocol = vhdr->h_vlan_encapsulated_proto;
3358 } else {
3359 protocol = skb->protocol;
3360 }
3361
3362 switch (protocol) {
09640e63 3363 case cpu_to_be16(ETH_P_IP):
9d5c8243 3364 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3365 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3366 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3367 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3368 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3369 break;
09640e63 3370 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3371 /* XXX what about other V6 headers?? */
3372 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3373 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3374 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3375 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3376 break;
3377 default:
3378 if (unlikely(net_ratelimit()))
80785298 3379 dev_warn(&pdev->dev,
44b0cda3
MW
3380 "partial checksum but proto=%x!\n",
3381 skb->protocol);
3382 break;
3383 }
9d5c8243
AK
3384 }
3385
3386 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3387 context_desc->seqnum_seed = 0;
85ad76b2 3388 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3389 context_desc->mss_l4len_idx =
85ad76b2 3390 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3391
3392 buffer_info->time_stamp = jiffies;
0e014cb1 3393 buffer_info->next_to_watch = i;
9d5c8243
AK
3394 buffer_info->dma = 0;
3395
3396 i++;
3397 if (i == tx_ring->count)
3398 i = 0;
3399 tx_ring->next_to_use = i;
3400
3401 return true;
3402 }
9d5c8243
AK
3403 return false;
3404}
3405
3406#define IGB_MAX_TXD_PWR 16
3407#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3408
80785298 3409static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3410 unsigned int first)
9d5c8243
AK
3411{
3412 struct igb_buffer *buffer_info;
80785298 3413 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3414 unsigned int len = skb_headlen(skb);
3415 unsigned int count = 0, i;
3416 unsigned int f;
65689fef 3417 dma_addr_t *map;
9d5c8243
AK
3418
3419 i = tx_ring->next_to_use;
3420
80785298
AD
3421 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3422 dev_err(&pdev->dev, "TX DMA map failed\n");
65689fef
AD
3423 return 0;
3424 }
3425
3426 map = skb_shinfo(skb)->dma_maps;
3427
9d5c8243
AK
3428 buffer_info = &tx_ring->buffer_info[i];
3429 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3430 buffer_info->length = len;
3431 /* set time_stamp *before* dma to help avoid a possible race */
3432 buffer_info->time_stamp = jiffies;
0e014cb1 3433 buffer_info->next_to_watch = i;
042a53a9 3434 buffer_info->dma = skb_shinfo(skb)->dma_head;
9d5c8243
AK
3435
3436 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3437 struct skb_frag_struct *frag;
3438
65689fef
AD
3439 i++;
3440 if (i == tx_ring->count)
3441 i = 0;
3442
9d5c8243
AK
3443 frag = &skb_shinfo(skb)->frags[f];
3444 len = frag->size;
3445
3446 buffer_info = &tx_ring->buffer_info[i];
3447 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3448 buffer_info->length = len;
3449 buffer_info->time_stamp = jiffies;
0e014cb1 3450 buffer_info->next_to_watch = i;
65689fef 3451 buffer_info->dma = map[count];
9d5c8243 3452 count++;
9d5c8243
AK
3453 }
3454
9d5c8243 3455 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3456 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3457
042a53a9 3458 return count + 1;
9d5c8243
AK
3459}
3460
85ad76b2 3461static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3462 int tx_flags, int count, u32 paylen,
3463 u8 hdr_len)
3464{
3465 union e1000_adv_tx_desc *tx_desc = NULL;
3466 struct igb_buffer *buffer_info;
3467 u32 olinfo_status = 0, cmd_type_len;
3468 unsigned int i;
3469
3470 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3471 E1000_ADVTXD_DCMD_DEXT);
3472
3473 if (tx_flags & IGB_TX_FLAGS_VLAN)
3474 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3475
33af6bcc
PO
3476 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3477 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3478
9d5c8243
AK
3479 if (tx_flags & IGB_TX_FLAGS_TSO) {
3480 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3481
3482 /* insert tcp checksum */
3483 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3484
3485 /* insert ip checksum */
3486 if (tx_flags & IGB_TX_FLAGS_IPV4)
3487 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3488
3489 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3490 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3491 }
3492
85ad76b2
AD
3493 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3494 (tx_flags & (IGB_TX_FLAGS_CSUM |
3495 IGB_TX_FLAGS_TSO |
7dfc16fa 3496 IGB_TX_FLAGS_VLAN)))
85ad76b2 3497 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
3498
3499 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3500
3501 i = tx_ring->next_to_use;
3502 while (count--) {
3503 buffer_info = &tx_ring->buffer_info[i];
3504 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3505 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3506 tx_desc->read.cmd_type_len =
3507 cpu_to_le32(cmd_type_len | buffer_info->length);
3508 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3509 i++;
3510 if (i == tx_ring->count)
3511 i = 0;
3512 }
3513
85ad76b2 3514 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
3515 /* Force memory writes to complete before letting h/w
3516 * know there are new descriptors to fetch. (Only
3517 * applicable for weak-ordered memory model archs,
3518 * such as IA-64). */
3519 wmb();
3520
3521 tx_ring->next_to_use = i;
fce99e34 3522 writel(i, tx_ring->tail);
9d5c8243
AK
3523 /* we need this if more than one processor can write to our tail
3524 * at a time, it syncronizes IO on IA64/Altix systems */
3525 mmiowb();
3526}
3527
e694e964 3528static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3529{
e694e964
AD
3530 struct net_device *netdev = tx_ring->netdev;
3531
661086df 3532 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3533
9d5c8243
AK
3534 /* Herbert's original patch had:
3535 * smp_mb__after_netif_stop_queue();
3536 * but since that doesn't exist yet, just open code it. */
3537 smp_mb();
3538
3539 /* We need to check again in a case another CPU has just
3540 * made room available. */
c493ea45 3541 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3542 return -EBUSY;
3543
3544 /* A reprieve! */
661086df 3545 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 3546 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
3547 return 0;
3548}
3549
e694e964 3550static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3551{
c493ea45 3552 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 3553 return 0;
e694e964 3554 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
3555}
3556
b1a436c3
AD
3557netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3558 struct igb_ring *tx_ring)
9d5c8243 3559{
e694e964 3560 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
0e014cb1 3561 unsigned int first;
9d5c8243 3562 unsigned int tx_flags = 0;
9d5c8243 3563 u8 hdr_len = 0;
65689fef 3564 int count = 0;
9d5c8243 3565 int tso = 0;
c5b9bd5e 3566 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 3567
9d5c8243
AK
3568 /* need: 1 descriptor per page,
3569 * + 2 desc gap to keep tail from touching head,
3570 * + 1 desc for skb->data,
3571 * + 1 desc for context descriptor,
3572 * otherwise try next time */
e694e964 3573 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 3574 /* this is a hard error */
9d5c8243
AK
3575 return NETDEV_TX_BUSY;
3576 }
33af6bcc 3577
33af6bcc
PO
3578 if (unlikely(shtx->hardware)) {
3579 shtx->in_progress = 1;
3580 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3581 }
9d5c8243
AK
3582
3583 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3584 tx_flags |= IGB_TX_FLAGS_VLAN;
3585 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3586 }
3587
661086df
PWJ
3588 if (skb->protocol == htons(ETH_P_IP))
3589 tx_flags |= IGB_TX_FLAGS_IPV4;
3590
0e014cb1 3591 first = tx_ring->next_to_use;
85ad76b2
AD
3592 if (skb_is_gso(skb)) {
3593 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3594 if (tso < 0) {
3595 dev_kfree_skb_any(skb);
3596 return NETDEV_TX_OK;
3597 }
9d5c8243
AK
3598 }
3599
3600 if (tso)
3601 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 3602 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
3603 (skb->ip_summed == CHECKSUM_PARTIAL))
3604 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3605
65689fef
AD
3606 /*
3607 * count reflects descriptors mapped, if 0 then mapping error
3608 * has occured and we need to rewind the descriptor queue
3609 */
80785298 3610 count = igb_tx_map_adv(tx_ring, skb, first);
65689fef 3611
85ad76b2 3612 if (!count) {
65689fef
AD
3613 dev_kfree_skb_any(skb);
3614 tx_ring->buffer_info[first].time_stamp = 0;
3615 tx_ring->next_to_use = first;
85ad76b2 3616 return NETDEV_TX_OK;
65689fef 3617 }
9d5c8243 3618
85ad76b2
AD
3619 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3620
3621 /* Make sure there is space in the ring for the next send. */
e694e964 3622 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 3623
9d5c8243
AK
3624 return NETDEV_TX_OK;
3625}
3626
3b29a56d
SH
3627static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3628 struct net_device *netdev)
9d5c8243
AK
3629{
3630 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 3631 struct igb_ring *tx_ring;
661086df 3632 int r_idx = 0;
b1a436c3
AD
3633
3634 if (test_bit(__IGB_DOWN, &adapter->state)) {
3635 dev_kfree_skb_any(skb);
3636 return NETDEV_TX_OK;
3637 }
3638
3639 if (skb->len <= 0) {
3640 dev_kfree_skb_any(skb);
3641 return NETDEV_TX_OK;
3642 }
3643
1bfaf07b 3644 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3645 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3646
3647 /* This goes back to the question of how to logically map a tx queue
3648 * to a flow. Right now, performance is impacted slightly negatively
3649 * if using multiple tx queues. If the stack breaks away from a
3650 * single qdisc implementation, we can look at this again. */
e694e964 3651 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
3652}
3653
3654/**
3655 * igb_tx_timeout - Respond to a Tx Hang
3656 * @netdev: network interface device structure
3657 **/
3658static void igb_tx_timeout(struct net_device *netdev)
3659{
3660 struct igb_adapter *adapter = netdev_priv(netdev);
3661 struct e1000_hw *hw = &adapter->hw;
3662
3663 /* Do the reset outside of interrupt context */
3664 adapter->tx_timeout_count++;
3665 schedule_work(&adapter->reset_task);
265de409
AD
3666 wr32(E1000_EICS,
3667 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3668}
3669
3670static void igb_reset_task(struct work_struct *work)
3671{
3672 struct igb_adapter *adapter;
3673 adapter = container_of(work, struct igb_adapter, reset_task);
3674
3675 igb_reinit_locked(adapter);
3676}
3677
3678/**
3679 * igb_get_stats - Get System Network Statistics
3680 * @netdev: network interface device structure
3681 *
3682 * Returns the address of the device statistics structure.
3683 * The statistics are actually updated from the timer callback.
3684 **/
73cd78f1 3685static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 3686{
9d5c8243 3687 /* only return the current stats */
8d24e933 3688 return &netdev->stats;
9d5c8243
AK
3689}
3690
3691/**
3692 * igb_change_mtu - Change the Maximum Transfer Unit
3693 * @netdev: network interface device structure
3694 * @new_mtu: new value for maximum frame size
3695 *
3696 * Returns 0 on success, negative on failure
3697 **/
3698static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3699{
3700 struct igb_adapter *adapter = netdev_priv(netdev);
3701 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 3702 u32 rx_buffer_len, i;
9d5c8243
AK
3703
3704 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3705 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3706 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3707 return -EINVAL;
3708 }
3709
9d5c8243
AK
3710 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3711 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3712 return -EINVAL;
3713 }
3714
3715 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3716 msleep(1);
73cd78f1 3717
9d5c8243
AK
3718 /* igb_down has a dependency on max_frame_size */
3719 adapter->max_frame_size = max_frame;
9d5c8243
AK
3720 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3721 * means we reserve 2 more, this pushes us to allocate from the next
3722 * larger slab size.
3723 * i.e. RXBUFFER_2048 --> size-4096 slab
3724 */
3725
7d95b717 3726 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 3727 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 3728 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 3729 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 3730 else
4c844851
AD
3731 rx_buffer_len = IGB_RXBUFFER_128;
3732
3733 if (netif_running(netdev))
3734 igb_down(adapter);
9d5c8243
AK
3735
3736 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3737 netdev->mtu, new_mtu);
3738 netdev->mtu = new_mtu;
3739
4c844851
AD
3740 for (i = 0; i < adapter->num_rx_queues; i++)
3741 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3742
9d5c8243
AK
3743 if (netif_running(netdev))
3744 igb_up(adapter);
3745 else
3746 igb_reset(adapter);
3747
3748 clear_bit(__IGB_RESETTING, &adapter->state);
3749
3750 return 0;
3751}
3752
3753/**
3754 * igb_update_stats - Update the board statistics counters
3755 * @adapter: board private structure
3756 **/
3757
3758void igb_update_stats(struct igb_adapter *adapter)
3759{
8d24e933 3760 struct net_device *netdev = adapter->netdev;
9d5c8243
AK
3761 struct e1000_hw *hw = &adapter->hw;
3762 struct pci_dev *pdev = adapter->pdev;
3763 u16 phy_tmp;
3764
3765#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3766
3767 /*
3768 * Prevent stats update while adapter is being reset, or if the pci
3769 * connection is down.
3770 */
3771 if (adapter->link_speed == 0)
3772 return;
3773 if (pci_channel_offline(pdev))
3774 return;
3775
3776 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3777 adapter->stats.gprc += rd32(E1000_GPRC);
3778 adapter->stats.gorc += rd32(E1000_GORCL);
3779 rd32(E1000_GORCH); /* clear GORCL */
3780 adapter->stats.bprc += rd32(E1000_BPRC);
3781 adapter->stats.mprc += rd32(E1000_MPRC);
3782 adapter->stats.roc += rd32(E1000_ROC);
3783
3784 adapter->stats.prc64 += rd32(E1000_PRC64);
3785 adapter->stats.prc127 += rd32(E1000_PRC127);
3786 adapter->stats.prc255 += rd32(E1000_PRC255);
3787 adapter->stats.prc511 += rd32(E1000_PRC511);
3788 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3789 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3790 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3791 adapter->stats.sec += rd32(E1000_SEC);
3792
3793 adapter->stats.mpc += rd32(E1000_MPC);
3794 adapter->stats.scc += rd32(E1000_SCC);
3795 adapter->stats.ecol += rd32(E1000_ECOL);
3796 adapter->stats.mcc += rd32(E1000_MCC);
3797 adapter->stats.latecol += rd32(E1000_LATECOL);
3798 adapter->stats.dc += rd32(E1000_DC);
3799 adapter->stats.rlec += rd32(E1000_RLEC);
3800 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3801 adapter->stats.xontxc += rd32(E1000_XONTXC);
3802 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3803 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3804 adapter->stats.fcruc += rd32(E1000_FCRUC);
3805 adapter->stats.gptc += rd32(E1000_GPTC);
3806 adapter->stats.gotc += rd32(E1000_GOTCL);
3807 rd32(E1000_GOTCH); /* clear GOTCL */
3808 adapter->stats.rnbc += rd32(E1000_RNBC);
3809 adapter->stats.ruc += rd32(E1000_RUC);
3810 adapter->stats.rfc += rd32(E1000_RFC);
3811 adapter->stats.rjc += rd32(E1000_RJC);
3812 adapter->stats.tor += rd32(E1000_TORH);
3813 adapter->stats.tot += rd32(E1000_TOTH);
3814 adapter->stats.tpr += rd32(E1000_TPR);
3815
3816 adapter->stats.ptc64 += rd32(E1000_PTC64);
3817 adapter->stats.ptc127 += rd32(E1000_PTC127);
3818 adapter->stats.ptc255 += rd32(E1000_PTC255);
3819 adapter->stats.ptc511 += rd32(E1000_PTC511);
3820 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3821 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3822
3823 adapter->stats.mptc += rd32(E1000_MPTC);
3824 adapter->stats.bptc += rd32(E1000_BPTC);
3825
3826 /* used for adaptive IFS */
3827
3828 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3829 adapter->stats.tpt += hw->mac.tx_packet_delta;
3830 hw->mac.collision_delta = rd32(E1000_COLC);
3831 adapter->stats.colc += hw->mac.collision_delta;
3832
3833 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3834 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3835 adapter->stats.tncrs += rd32(E1000_TNCRS);
3836 adapter->stats.tsctc += rd32(E1000_TSCTC);
3837 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3838
3839 adapter->stats.iac += rd32(E1000_IAC);
3840 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3841 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3842 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3843 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3844 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3845 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3846 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3847 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3848
3849 /* Fill out the OS statistics structure */
8d24e933
AK
3850 netdev->stats.multicast = adapter->stats.mprc;
3851 netdev->stats.collisions = adapter->stats.colc;
9d5c8243
AK
3852
3853 /* Rx Errors */
3854
8c0ab70a
JDB
3855 if (hw->mac.type != e1000_82575) {
3856 u32 rqdpc_tmp;
3ea73afa 3857 u64 rqdpc_total = 0;
8c0ab70a
JDB
3858 int i;
3859 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3860 * Queue Drop Packet Count) stats only gets incremented, if
3861 * the DROP_EN but it set (in the SRRCTL register for that
3862 * queue). If DROP_EN bit is NOT set, then the some what
3863 * equivalent count is stored in RNBC (not per queue basis).
3864 * Also note the drop count is due to lack of available
3865 * descriptors.
3866 */
3867 for (i = 0; i < adapter->num_rx_queues; i++) {
3868 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3869 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3ea73afa 3870 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
8c0ab70a 3871 }
8d24e933 3872 netdev->stats.rx_fifo_errors = rqdpc_total;
8c0ab70a
JDB
3873 }
3874
3ea73afa
JDB
3875 /* Note RNBC (Receive No Buffers Count) is an not an exact
3876 * drop count as the hardware FIFO might save the day. Thats
3877 * one of the reason for saving it in rx_fifo_errors, as its
3878 * potentially not a true drop.
3879 */
8d24e933 3880 netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3ea73afa 3881
9d5c8243 3882 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 3883 * our own version based on RUC and ROC */
8d24e933 3884 netdev->stats.rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
3885 adapter->stats.crcerrs + adapter->stats.algnerrc +
3886 adapter->stats.ruc + adapter->stats.roc +
3887 adapter->stats.cexterr;
8d24e933 3888 netdev->stats.rx_length_errors = adapter->stats.ruc +
9d5c8243 3889 adapter->stats.roc;
8d24e933
AK
3890 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3891 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3892 netdev->stats.rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
3893
3894 /* Tx Errors */
8d24e933 3895 netdev->stats.tx_errors = adapter->stats.ecol +
9d5c8243 3896 adapter->stats.latecol;
8d24e933
AK
3897 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3898 netdev->stats.tx_window_errors = adapter->stats.latecol;
3899 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
3900
3901 /* Tx Dropped needs to be maintained elsewhere */
3902
3903 /* Phy Stats */
3904 if (hw->phy.media_type == e1000_media_type_copper) {
3905 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3906 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3907 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3908 adapter->phy_stats.idle_errors += phy_tmp;
3909 }
3910 }
3911
3912 /* Management Stats */
3913 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3914 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3915 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3916}
3917
9d5c8243
AK
3918static irqreturn_t igb_msix_other(int irq, void *data)
3919{
047e0030 3920 struct igb_adapter *adapter = data;
9d5c8243 3921 struct e1000_hw *hw = &adapter->hw;
844290e5 3922 u32 icr = rd32(E1000_ICR);
844290e5 3923 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 3924
047e0030 3925 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
3926 /* HW is reporting DMA is out of sync */
3927 adapter->stats.doosync++;
3928 }
eebbbdba 3929
4ae196df
AD
3930 /* Check for a mailbox event */
3931 if (icr & E1000_ICR_VMMB)
3932 igb_msg_task(adapter);
3933
3934 if (icr & E1000_ICR_LSC) {
3935 hw->mac.get_link_status = 1;
3936 /* guard against interrupt when we're going down */
3937 if (!test_bit(__IGB_DOWN, &adapter->state))
3938 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3939 }
3940
3941 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
844290e5 3942 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3943
3944 return IRQ_HANDLED;
3945}
3946
047e0030 3947static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 3948{
047e0030 3949 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 3950
047e0030
AD
3951 if (!q_vector->set_itr)
3952 return;
73cd78f1 3953
047e0030
AD
3954 if (!itr_val)
3955 itr_val = 0x4;
661086df 3956
047e0030
AD
3957 if (q_vector->itr_shift)
3958 itr_val |= itr_val << q_vector->itr_shift;
661086df 3959 else
047e0030 3960 itr_val |= 0x8000000;
661086df 3961
047e0030
AD
3962 writel(itr_val, q_vector->itr_register);
3963 q_vector->set_itr = 0;
6eb5a7f1
AD
3964}
3965
047e0030 3966static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 3967{
047e0030 3968 struct igb_q_vector *q_vector = data;
9d5c8243 3969
047e0030
AD
3970 /* Write the ITR value calculated from the previous interrupt. */
3971 igb_write_itr(q_vector);
9d5c8243 3972
047e0030 3973 napi_schedule(&q_vector->napi);
844290e5 3974
047e0030 3975 return IRQ_HANDLED;
fe4506b6
JC
3976}
3977
421e02f0 3978#ifdef CONFIG_IGB_DCA
047e0030 3979static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 3980{
047e0030 3981 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
3982 struct e1000_hw *hw = &adapter->hw;
3983 int cpu = get_cpu();
fe4506b6 3984
047e0030
AD
3985 if (q_vector->cpu == cpu)
3986 goto out_no_update;
3987
3988 if (q_vector->tx_ring) {
3989 int q = q_vector->tx_ring->reg_idx;
3990 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3991 if (hw->mac.type == e1000_82575) {
3992 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3993 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3994 } else {
047e0030
AD
3995 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3996 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3997 E1000_DCA_TXCTRL_CPUID_SHIFT;
3998 }
3999 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4000 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4001 }
4002 if (q_vector->rx_ring) {
4003 int q = q_vector->rx_ring->reg_idx;
4004 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4005 if (hw->mac.type == e1000_82575) {
2d064c06 4006 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4007 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4008 } else {
4009 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4010 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4011 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4012 }
fe4506b6
JC
4013 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4014 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4015 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4016 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4017 }
047e0030
AD
4018 q_vector->cpu = cpu;
4019out_no_update:
fe4506b6
JC
4020 put_cpu();
4021}
4022
4023static void igb_setup_dca(struct igb_adapter *adapter)
4024{
7e0e99ef 4025 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4026 int i;
4027
7dfc16fa 4028 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4029 return;
4030
7e0e99ef
AD
4031 /* Always use CB2 mode, difference is masked in the CB driver. */
4032 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4033
047e0030
AD
4034 for (i = 0; i < adapter->num_q_vectors; i++) {
4035 struct igb_q_vector *q_vector = adapter->q_vector[i];
4036 q_vector->cpu = -1;
4037 igb_update_dca(q_vector);
fe4506b6
JC
4038 }
4039}
4040
4041static int __igb_notify_dca(struct device *dev, void *data)
4042{
4043 struct net_device *netdev = dev_get_drvdata(dev);
4044 struct igb_adapter *adapter = netdev_priv(netdev);
4045 struct e1000_hw *hw = &adapter->hw;
4046 unsigned long event = *(unsigned long *)data;
4047
4048 switch (event) {
4049 case DCA_PROVIDER_ADD:
4050 /* if already enabled, don't do it again */
7dfc16fa 4051 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4052 break;
fe4506b6
JC
4053 /* Always use CB2 mode, difference is masked
4054 * in the CB driver. */
cbd347ad 4055 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6 4056 if (dca_add_requester(dev) == 0) {
bbd98fe4 4057 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
4058 dev_info(&adapter->pdev->dev, "DCA enabled\n");
4059 igb_setup_dca(adapter);
4060 break;
4061 }
4062 /* Fall Through since DCA is disabled. */
4063 case DCA_PROVIDER_REMOVE:
7dfc16fa 4064 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4065 /* without this a class_device is left
047e0030 4066 * hanging around in the sysfs model */
fe4506b6
JC
4067 dca_remove_requester(dev);
4068 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 4069 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4070 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4071 }
4072 break;
4073 }
bbd98fe4 4074
fe4506b6 4075 return 0;
9d5c8243
AK
4076}
4077
fe4506b6
JC
4078static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4079 void *p)
4080{
4081 int ret_val;
4082
4083 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4084 __igb_notify_dca);
4085
4086 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4087}
421e02f0 4088#endif /* CONFIG_IGB_DCA */
9d5c8243 4089
4ae196df
AD
4090static void igb_ping_all_vfs(struct igb_adapter *adapter)
4091{
4092 struct e1000_hw *hw = &adapter->hw;
4093 u32 ping;
4094 int i;
4095
4096 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4097 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4098 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4099 ping |= E1000_VT_MSGTYPE_CTS;
4100 igb_write_mbx(hw, &ping, 1, i);
4101 }
4102}
4103
4104static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4105 u32 *msgbuf, u32 vf)
4106{
4107 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4108 u16 *hash_list = (u16 *)&msgbuf[1];
4109 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4110 int i;
4111
4112 /* only up to 30 hash values supported */
4113 if (n > 30)
4114 n = 30;
4115
4116 /* salt away the number of multi cast addresses assigned
4117 * to this VF for later use to restore when the PF multi cast
4118 * list changes
4119 */
4120 vf_data->num_vf_mc_hashes = n;
4121
4122 /* VFs are limited to using the MTA hash table for their multicast
4123 * addresses */
4124 for (i = 0; i < n; i++)
a419aef8 4125 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4126
4127 /* Flush and reset the mta with the new values */
ff41f8dc 4128 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4129
4130 return 0;
4131}
4132
4133static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4134{
4135 struct e1000_hw *hw = &adapter->hw;
4136 struct vf_data_storage *vf_data;
4137 int i, j;
4138
4139 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4140 vf_data = &adapter->vf_data[i];
75f4f382 4141 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4ae196df
AD
4142 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4143 }
4144}
4145
4146static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4147{
4148 struct e1000_hw *hw = &adapter->hw;
4149 u32 pool_mask, reg, vid;
4150 int i;
4151
4152 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4153
4154 /* Find the vlan filter for this id */
4155 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4156 reg = rd32(E1000_VLVF(i));
4157
4158 /* remove the vf from the pool */
4159 reg &= ~pool_mask;
4160
4161 /* if pool is empty then remove entry from vfta */
4162 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4163 (reg & E1000_VLVF_VLANID_ENABLE)) {
4164 reg = 0;
4165 vid = reg & E1000_VLVF_VLANID_MASK;
4166 igb_vfta_set(hw, vid, false);
4167 }
4168
4169 wr32(E1000_VLVF(i), reg);
4170 }
ae641bdc
AD
4171
4172 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4173}
4174
4175static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4176{
4177 struct e1000_hw *hw = &adapter->hw;
4178 u32 reg, i;
4179
4180 /* It is an error to call this function when VFs are not enabled */
4181 if (!adapter->vfs_allocated_count)
4182 return -1;
4183
4184 /* Find the vlan filter for this id */
4185 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4186 reg = rd32(E1000_VLVF(i));
4187 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4188 vid == (reg & E1000_VLVF_VLANID_MASK))
4189 break;
4190 }
4191
4192 if (add) {
4193 if (i == E1000_VLVF_ARRAY_SIZE) {
4194 /* Did not find a matching VLAN ID entry that was
4195 * enabled. Search for a free filter entry, i.e.
4196 * one without the enable bit set
4197 */
4198 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4199 reg = rd32(E1000_VLVF(i));
4200 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4201 break;
4202 }
4203 }
4204 if (i < E1000_VLVF_ARRAY_SIZE) {
4205 /* Found an enabled/available entry */
4206 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4207
4208 /* if !enabled we need to set this up in vfta */
4209 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
cad6d05f
AD
4210 /* add VID to filter table, if bit already set
4211 * PF must have added it outside of table */
4212 if (igb_vfta_set(hw, vid, true))
4213 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4214 adapter->vfs_allocated_count);
4ae196df
AD
4215 reg |= E1000_VLVF_VLANID_ENABLE;
4216 }
cad6d05f
AD
4217 reg &= ~E1000_VLVF_VLANID_MASK;
4218 reg |= vid;
4ae196df
AD
4219
4220 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4221
4222 /* do not modify RLPML for PF devices */
4223 if (vf >= adapter->vfs_allocated_count)
4224 return 0;
4225
4226 if (!adapter->vf_data[vf].vlans_enabled) {
4227 u32 size;
4228 reg = rd32(E1000_VMOLR(vf));
4229 size = reg & E1000_VMOLR_RLPML_MASK;
4230 size += 4;
4231 reg &= ~E1000_VMOLR_RLPML_MASK;
4232 reg |= size;
4233 wr32(E1000_VMOLR(vf), reg);
4234 }
4235 adapter->vf_data[vf].vlans_enabled++;
4236
4ae196df
AD
4237 return 0;
4238 }
4239 } else {
4240 if (i < E1000_VLVF_ARRAY_SIZE) {
4241 /* remove vf from the pool */
4242 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4243 /* if pool is empty then remove entry from vfta */
4244 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4245 reg = 0;
4246 igb_vfta_set(hw, vid, false);
4247 }
4248 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4249
4250 /* do not modify RLPML for PF devices */
4251 if (vf >= adapter->vfs_allocated_count)
4252 return 0;
4253
4254 adapter->vf_data[vf].vlans_enabled--;
4255 if (!adapter->vf_data[vf].vlans_enabled) {
4256 u32 size;
4257 reg = rd32(E1000_VMOLR(vf));
4258 size = reg & E1000_VMOLR_RLPML_MASK;
4259 size -= 4;
4260 reg &= ~E1000_VMOLR_RLPML_MASK;
4261 reg |= size;
4262 wr32(E1000_VMOLR(vf), reg);
4263 }
4ae196df
AD
4264 return 0;
4265 }
4266 }
4267 return -1;
4268}
4269
4270static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4271{
4272 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4273 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4274
4275 return igb_vlvf_set(adapter, vid, add, vf);
4276}
4277
f2ca0dbe 4278static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4279{
f2ca0dbe
AD
4280 /* clear all flags */
4281 adapter->vf_data[vf].flags = 0;
4282 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4283
4284 /* reset offloads to defaults */
f2ca0dbe 4285 igb_set_vmolr(&adapter->hw, vf);
4ae196df
AD
4286
4287 /* reset vlans for device */
4288 igb_clear_vf_vfta(adapter, vf);
4289
4290 /* reset multicast table array for vf */
4291 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4292
4293 /* Flush and reset the mta with the new values */
ff41f8dc 4294 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4295}
4296
f2ca0dbe
AD
4297static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4298{
4299 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4300
4301 /* generate a new mac address as we were hotplug removed/added */
4302 random_ether_addr(vf_mac);
4303
4304 /* process remaining reset events */
4305 igb_vf_reset(adapter, vf);
4306}
4307
4308static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4309{
4310 struct e1000_hw *hw = &adapter->hw;
4311 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4312 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4313 u32 reg, msgbuf[3];
4314 u8 *addr = (u8 *)(&msgbuf[1]);
4315
4316 /* process all the same items cleared in a function level reset */
f2ca0dbe 4317 igb_vf_reset(adapter, vf);
4ae196df
AD
4318
4319 /* set vf mac address */
26ad9178 4320 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4321
4322 /* enable transmit and receive for vf */
4323 reg = rd32(E1000_VFTE);
4324 wr32(E1000_VFTE, reg | (1 << vf));
4325 reg = rd32(E1000_VFRE);
4326 wr32(E1000_VFRE, reg | (1 << vf));
4327
f2ca0dbe 4328 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4329
4330 /* reply to reset with ack and vf mac address */
4331 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4332 memcpy(addr, vf_mac, 6);
4333 igb_write_mbx(hw, msgbuf, 3, vf);
4334}
4335
4336static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4337{
f2ca0dbe
AD
4338 unsigned char *addr = (char *)&msg[1];
4339 int err = -1;
4ae196df 4340
f2ca0dbe
AD
4341 if (is_valid_ether_addr(addr))
4342 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4343
f2ca0dbe 4344 return err;
4ae196df
AD
4345}
4346
4347static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4348{
4349 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4350 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4351 u32 msg = E1000_VT_MSGTYPE_NACK;
4352
4353 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4354 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4355 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4356 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4357 vf_data->last_nack = jiffies;
4ae196df
AD
4358 }
4359}
4360
f2ca0dbe 4361static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 4362{
f2ca0dbe
AD
4363 struct pci_dev *pdev = adapter->pdev;
4364 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 4365 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4366 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4367 s32 retval;
4368
f2ca0dbe 4369 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df
AD
4370
4371 if (retval)
f2ca0dbe 4372 dev_err(&pdev->dev, "Error receiving message from VF\n");
4ae196df
AD
4373
4374 /* this is a message we already processed, do nothing */
4375 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 4376 return;
4ae196df
AD
4377
4378 /*
4379 * until the vf completes a reset it should not be
4380 * allowed to start any configuration.
4381 */
4382
4383 if (msgbuf[0] == E1000_VF_RESET) {
4384 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 4385 return;
4ae196df
AD
4386 }
4387
f2ca0dbe
AD
4388 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4389 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4390 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4391 igb_write_mbx(hw, msgbuf, 1, vf);
4392 vf_data->last_nack = jiffies;
4393 }
4394 return;
4ae196df
AD
4395 }
4396
4397 switch ((msgbuf[0] & 0xFFFF)) {
4398 case E1000_VF_SET_MAC_ADDR:
4399 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4400 break;
4401 case E1000_VF_SET_MULTICAST:
4402 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4403 break;
4404 case E1000_VF_SET_LPE:
4405 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4406 break;
4407 case E1000_VF_SET_VLAN:
4408 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4409 break;
4410 default:
4411 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4412 retval = -1;
4413 break;
4414 }
4415
4416 /* notify the VF of the results of what it sent us */
4417 if (retval)
4418 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4419 else
4420 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4421
4422 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4423
4424 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 4425}
4ae196df 4426
f2ca0dbe
AD
4427static void igb_msg_task(struct igb_adapter *adapter)
4428{
4429 struct e1000_hw *hw = &adapter->hw;
4430 u32 vf;
4431
4432 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4433 /* process any reset requests */
4434 if (!igb_check_for_rst(hw, vf))
4435 igb_vf_reset_event(adapter, vf);
4436
4437 /* process any messages pending */
4438 if (!igb_check_for_msg(hw, vf))
4439 igb_rcv_msg_from_vf(adapter, vf);
4440
4441 /* process any acks */
4442 if (!igb_check_for_ack(hw, vf))
4443 igb_rcv_ack_from_vf(adapter, vf);
4444 }
4ae196df
AD
4445}
4446
68d480c4
AD
4447/**
4448 * igb_set_uta - Set unicast filter table address
4449 * @adapter: board private structure
4450 *
4451 * The unicast table address is a register array of 32-bit registers.
4452 * The table is meant to be used in a way similar to how the MTA is used
4453 * however due to certain limitations in the hardware it is necessary to
4454 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4455 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4456 **/
4457static void igb_set_uta(struct igb_adapter *adapter)
4458{
4459 struct e1000_hw *hw = &adapter->hw;
4460 int i;
4461
4462 /* The UTA table only exists on 82576 hardware and newer */
4463 if (hw->mac.type < e1000_82576)
4464 return;
4465
4466 /* we only need to do this if VMDq is enabled */
4467 if (!adapter->vfs_allocated_count)
4468 return;
4469
4470 for (i = 0; i < hw->mac.uta_reg_count; i++)
4471 array_wr32(E1000_UTA, i, ~0);
4472}
4473
9d5c8243
AK
4474/**
4475 * igb_intr_msi - Interrupt Handler
4476 * @irq: interrupt number
4477 * @data: pointer to a network interface device structure
4478 **/
4479static irqreturn_t igb_intr_msi(int irq, void *data)
4480{
047e0030
AD
4481 struct igb_adapter *adapter = data;
4482 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4483 struct e1000_hw *hw = &adapter->hw;
4484 /* read ICR disables interrupts using IAM */
4485 u32 icr = rd32(E1000_ICR);
4486
047e0030 4487 igb_write_itr(q_vector);
9d5c8243 4488
047e0030 4489 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4490 /* HW is reporting DMA is out of sync */
4491 adapter->stats.doosync++;
4492 }
4493
9d5c8243
AK
4494 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4495 hw->mac.get_link_status = 1;
4496 if (!test_bit(__IGB_DOWN, &adapter->state))
4497 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4498 }
4499
047e0030 4500 napi_schedule(&q_vector->napi);
9d5c8243
AK
4501
4502 return IRQ_HANDLED;
4503}
4504
4505/**
4a3c6433 4506 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4507 * @irq: interrupt number
4508 * @data: pointer to a network interface device structure
4509 **/
4510static irqreturn_t igb_intr(int irq, void *data)
4511{
047e0030
AD
4512 struct igb_adapter *adapter = data;
4513 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4514 struct e1000_hw *hw = &adapter->hw;
4515 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4516 * need for the IMC write */
4517 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4518 if (!icr)
4519 return IRQ_NONE; /* Not our interrupt */
4520
047e0030 4521 igb_write_itr(q_vector);
9d5c8243
AK
4522
4523 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4524 * not set, then the adapter didn't send an interrupt */
4525 if (!(icr & E1000_ICR_INT_ASSERTED))
4526 return IRQ_NONE;
4527
047e0030 4528 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4529 /* HW is reporting DMA is out of sync */
4530 adapter->stats.doosync++;
4531 }
4532
9d5c8243
AK
4533 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4534 hw->mac.get_link_status = 1;
4535 /* guard against interrupt when we're going down */
4536 if (!test_bit(__IGB_DOWN, &adapter->state))
4537 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4538 }
4539
047e0030 4540 napi_schedule(&q_vector->napi);
9d5c8243
AK
4541
4542 return IRQ_HANDLED;
4543}
4544
047e0030 4545static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 4546{
047e0030 4547 struct igb_adapter *adapter = q_vector->adapter;
46544258 4548 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4549
4fc82adf
AD
4550 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4551 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 4552 if (!adapter->msix_entries)
6eb5a7f1 4553 igb_set_itr(adapter);
46544258 4554 else
047e0030 4555 igb_update_ring_itr(q_vector);
9d5c8243
AK
4556 }
4557
46544258
AD
4558 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4559 if (adapter->msix_entries)
047e0030 4560 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
4561 else
4562 igb_irq_enable(adapter);
4563 }
9d5c8243
AK
4564}
4565
46544258
AD
4566/**
4567 * igb_poll - NAPI Rx polling callback
4568 * @napi: napi polling structure
4569 * @budget: count of how many packets we should handle
4570 **/
4571static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 4572{
047e0030
AD
4573 struct igb_q_vector *q_vector = container_of(napi,
4574 struct igb_q_vector,
4575 napi);
4576 int tx_clean_complete = 1, work_done = 0;
9d5c8243 4577
421e02f0 4578#ifdef CONFIG_IGB_DCA
047e0030
AD
4579 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4580 igb_update_dca(q_vector);
fe4506b6 4581#endif
047e0030
AD
4582 if (q_vector->tx_ring)
4583 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 4584
047e0030
AD
4585 if (q_vector->rx_ring)
4586 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4587
4588 if (!tx_clean_complete)
4589 work_done = budget;
46544258 4590
9d5c8243 4591 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4592 if (work_done < budget) {
288379f0 4593 napi_complete(napi);
047e0030 4594 igb_ring_irq_enable(q_vector);
9d5c8243
AK
4595 }
4596
46544258 4597 return work_done;
9d5c8243 4598}
6d8126f9 4599
33af6bcc 4600/**
c5b9bd5e 4601 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 4602 * @adapter: board private structure
c5b9bd5e
AD
4603 * @shhwtstamps: timestamp structure to update
4604 * @regval: unsigned 64bit system time value.
4605 *
4606 * We need to convert the system time value stored in the RX/TXSTMP registers
4607 * into a hwtstamp which can be used by the upper level timestamping functions
4608 */
4609static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4610 struct skb_shared_hwtstamps *shhwtstamps,
4611 u64 regval)
4612{
4613 u64 ns;
4614
4615 ns = timecounter_cyc2time(&adapter->clock, regval);
4616 timecompare_update(&adapter->compare, ns);
4617 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4618 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4619 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4620}
4621
4622/**
4623 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4624 * @q_vector: pointer to q_vector containing needed info
33af6bcc
PO
4625 * @skb: packet that was just sent
4626 *
4627 * If we were asked to do hardware stamping and such a time stamp is
4628 * available, then it must have been for this skb here because we only
4629 * allow only one such packet into the queue.
4630 */
c5b9bd5e 4631static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
33af6bcc 4632{
c5b9bd5e 4633 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc
PO
4634 union skb_shared_tx *shtx = skb_tx(skb);
4635 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
4636 struct skb_shared_hwtstamps shhwtstamps;
4637 u64 regval;
33af6bcc 4638
c5b9bd5e
AD
4639 /* if skb does not support hw timestamp or TX stamp not valid exit */
4640 if (likely(!shtx->hardware) ||
4641 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4642 return;
4643
4644 regval = rd32(E1000_TXSTMPL);
4645 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4646
4647 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4648 skb_tstamp_tx(skb, &shhwtstamps);
33af6bcc
PO
4649}
4650
9d5c8243
AK
4651/**
4652 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 4653 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
4654 * returns true if ring is completely cleaned
4655 **/
047e0030 4656static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 4657{
047e0030
AD
4658 struct igb_adapter *adapter = q_vector->adapter;
4659 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 4660 struct net_device *netdev = tx_ring->netdev;
0e014cb1 4661 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4662 struct igb_buffer *buffer_info;
4663 struct sk_buff *skb;
0e014cb1 4664 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4665 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4666 unsigned int i, eop, count = 0;
4667 bool cleaned = false;
9d5c8243 4668
9d5c8243 4669 i = tx_ring->next_to_clean;
0e014cb1
AD
4670 eop = tx_ring->buffer_info[i].next_to_watch;
4671 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4672
4673 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4674 (count < tx_ring->count)) {
4675 for (cleaned = false; !cleaned; count++) {
4676 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4677 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4678 cleaned = (i == eop);
9d5c8243
AK
4679 skb = buffer_info->skb;
4680
4681 if (skb) {
4682 unsigned int segs, bytecount;
4683 /* gso_segs is currently only valid for tcp */
4684 segs = skb_shinfo(skb)->gso_segs ?: 1;
4685 /* multiply data chunks by size of headers */
4686 bytecount = ((segs - 1) * skb_headlen(skb)) +
4687 skb->len;
4688 total_packets += segs;
4689 total_bytes += bytecount;
33af6bcc 4690
c5b9bd5e 4691 igb_tx_hwtstamp(q_vector, skb);
9d5c8243
AK
4692 }
4693
80785298 4694 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 4695 tx_desc->wb.status = 0;
9d5c8243
AK
4696
4697 i++;
4698 if (i == tx_ring->count)
4699 i = 0;
9d5c8243 4700 }
0e014cb1
AD
4701 eop = tx_ring->buffer_info[i].next_to_watch;
4702 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4703 }
4704
9d5c8243
AK
4705 tx_ring->next_to_clean = i;
4706
fc7d345d 4707 if (unlikely(count &&
9d5c8243 4708 netif_carrier_ok(netdev) &&
c493ea45 4709 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
4710 /* Make sure that anybody stopping the queue after this
4711 * sees the new next_to_clean.
4712 */
4713 smp_mb();
661086df
PWJ
4714 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4715 !(test_bit(__IGB_DOWN, &adapter->state))) {
4716 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4717 tx_ring->tx_stats.restart_queue++;
661086df 4718 }
9d5c8243
AK
4719 }
4720
4721 if (tx_ring->detect_tx_hung) {
4722 /* Detect a transmit hang in hardware, this serializes the
4723 * check with the clearing of time_stamp and movement of i */
4724 tx_ring->detect_tx_hung = false;
4725 if (tx_ring->buffer_info[i].time_stamp &&
4726 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4727 (adapter->tx_timeout_factor * HZ))
4728 && !(rd32(E1000_STATUS) &
4729 E1000_STATUS_TXOFF)) {
4730
9d5c8243 4731 /* detected Tx unit hang */
80785298 4732 dev_err(&tx_ring->pdev->dev,
9d5c8243 4733 "Detected Tx Unit Hang\n"
2d064c06 4734 " Tx Queue <%d>\n"
9d5c8243
AK
4735 " TDH <%x>\n"
4736 " TDT <%x>\n"
4737 " next_to_use <%x>\n"
4738 " next_to_clean <%x>\n"
9d5c8243
AK
4739 "buffer_info[next_to_clean]\n"
4740 " time_stamp <%lx>\n"
0e014cb1 4741 " next_to_watch <%x>\n"
9d5c8243
AK
4742 " jiffies <%lx>\n"
4743 " desc.status <%x>\n",
2d064c06 4744 tx_ring->queue_index,
fce99e34
AD
4745 readl(tx_ring->head),
4746 readl(tx_ring->tail),
9d5c8243
AK
4747 tx_ring->next_to_use,
4748 tx_ring->next_to_clean,
9d5c8243 4749 tx_ring->buffer_info[i].time_stamp,
0e014cb1 4750 eop,
9d5c8243 4751 jiffies,
0e014cb1 4752 eop_desc->wb.status);
661086df 4753 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4754 }
4755 }
4756 tx_ring->total_bytes += total_bytes;
4757 tx_ring->total_packets += total_packets;
e21ed353
AD
4758 tx_ring->tx_stats.bytes += total_bytes;
4759 tx_ring->tx_stats.packets += total_packets;
8d24e933
AK
4760 netdev->stats.tx_bytes += total_bytes;
4761 netdev->stats.tx_packets += total_packets;
0e014cb1 4762 return (count < tx_ring->count);
9d5c8243
AK
4763}
4764
9d5c8243
AK
4765/**
4766 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
4767 * @q_vector: structure containing interrupt and ring information
4768 * @skb: packet to send up
4769 * @vlan_tag: vlan tag for packet
9d5c8243 4770 **/
047e0030
AD
4771static void igb_receive_skb(struct igb_q_vector *q_vector,
4772 struct sk_buff *skb,
4773 u16 vlan_tag)
4774{
4775 struct igb_adapter *adapter = q_vector->adapter;
4776
4777 if (vlan_tag)
4778 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4779 vlan_tag, skb);
182ff8df 4780 else
047e0030 4781 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
4782}
4783
04a5fcaa 4784static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
4785 u32 status_err, struct sk_buff *skb)
4786{
4787 skb->ip_summed = CHECKSUM_NONE;
4788
4789 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
4790 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4791 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 4792 return;
85ad76b2 4793
9d5c8243
AK
4794 /* TCP/UDP checksum error bit is set */
4795 if (status_err &
4796 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
4797 /*
4798 * work around errata with sctp packets where the TCPE aka
4799 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4800 * packets, (aka let the stack check the crc32c)
4801 */
85ad76b2
AD
4802 if ((skb->len == 60) &&
4803 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 4804 ring->rx_stats.csum_err++;
85ad76b2 4805
9d5c8243 4806 /* let the stack verify checksum errors */
9d5c8243
AK
4807 return;
4808 }
4809 /* It must be a TCP or UDP packet with a valid checksum */
4810 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4811 skb->ip_summed = CHECKSUM_UNNECESSARY;
4812
85ad76b2 4813 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
4814}
4815
c5b9bd5e
AD
4816static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4817 struct sk_buff *skb)
4818{
4819 struct igb_adapter *adapter = q_vector->adapter;
4820 struct e1000_hw *hw = &adapter->hw;
4821 u64 regval;
4822
4823 /*
4824 * If this bit is set, then the RX registers contain the time stamp. No
4825 * other packet will be time stamped until we read these registers, so
4826 * read the registers to make them available again. Because only one
4827 * packet can be time stamped at a time, we know that the register
4828 * values must belong to this one here and therefore we don't need to
4829 * compare any of the additional attributes stored for it.
4830 *
4831 * If nothing went wrong, then it should have a skb_shared_tx that we
4832 * can turn into a skb_shared_hwtstamps.
4833 */
4834 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4835 return;
4836 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4837 return;
4838
4839 regval = rd32(E1000_RXSTMPL);
4840 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4841
4842 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4843}
4c844851 4844static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
4845 union e1000_adv_rx_desc *rx_desc)
4846{
4847 /* HW will not DMA in data larger than the given buffer, even if it
4848 * parses the (NFS, of course) header to be larger. In that case, it
4849 * fills the header buffer and spills the rest into the page.
4850 */
4851 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4852 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
4853 if (hlen > rx_ring->rx_buffer_len)
4854 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
4855 return hlen;
4856}
4857
047e0030
AD
4858static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4859 int *work_done, int budget)
9d5c8243 4860{
047e0030 4861 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 4862 struct net_device *netdev = rx_ring->netdev;
80785298 4863 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
4864 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4865 struct igb_buffer *buffer_info , *next_buffer;
4866 struct sk_buff *skb;
9d5c8243
AK
4867 bool cleaned = false;
4868 int cleaned_count = 0;
4869 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 4870 unsigned int i;
2d94d8ab
AD
4871 u32 staterr;
4872 u16 length;
047e0030 4873 u16 vlan_tag;
9d5c8243
AK
4874
4875 i = rx_ring->next_to_clean;
69d3ca53 4876 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4877 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4878 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4879
4880 while (staterr & E1000_RXD_STAT_DD) {
4881 if (*work_done >= budget)
4882 break;
4883 (*work_done)++;
9d5c8243 4884
69d3ca53
AD
4885 skb = buffer_info->skb;
4886 prefetch(skb->data - NET_IP_ALIGN);
4887 buffer_info->skb = NULL;
4888
4889 i++;
4890 if (i == rx_ring->count)
4891 i = 0;
4892 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4893 prefetch(next_rxd);
4894 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4895
4896 length = le16_to_cpu(rx_desc->wb.upper.length);
4897 cleaned = true;
4898 cleaned_count++;
4899
2d94d8ab 4900 if (buffer_info->dma) {
bf36c1a0 4901 pci_unmap_single(pdev, buffer_info->dma,
4c844851 4902 rx_ring->rx_buffer_len,
bf36c1a0 4903 PCI_DMA_FROMDEVICE);
91615f76 4904 buffer_info->dma = 0;
4c844851 4905 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
4906 skb_put(skb, length);
4907 goto send_up;
4908 }
4c844851 4909 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
4910 }
4911
4912 if (length) {
9d5c8243 4913 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4914 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4915 buffer_info->page_dma = 0;
bf36c1a0
AD
4916
4917 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4918 buffer_info->page,
4919 buffer_info->page_offset,
4920 length);
4921
6ec43fe6 4922 if (page_count(buffer_info->page) != 1)
bf36c1a0
AD
4923 buffer_info->page = NULL;
4924 else
4925 get_page(buffer_info->page);
9d5c8243
AK
4926
4927 skb->len += length;
4928 skb->data_len += length;
9d5c8243 4929
bf36c1a0 4930 skb->truesize += length;
9d5c8243 4931 }
9d5c8243 4932
bf36c1a0 4933 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4934 buffer_info->skb = next_buffer->skb;
4935 buffer_info->dma = next_buffer->dma;
4936 next_buffer->skb = skb;
4937 next_buffer->dma = 0;
bf36c1a0
AD
4938 goto next_desc;
4939 }
69d3ca53 4940send_up:
9d5c8243
AK
4941 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4942 dev_kfree_skb_irq(skb);
4943 goto next_desc;
4944 }
9d5c8243 4945
c5b9bd5e 4946 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
4947 total_bytes += skb->len;
4948 total_packets++;
4949
85ad76b2 4950 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
4951
4952 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
4953 skb_record_rx_queue(skb, rx_ring->queue_index);
4954
4955 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
4956 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 4957
047e0030 4958 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 4959
9d5c8243
AK
4960next_desc:
4961 rx_desc->wb.upper.status_error = 0;
4962
4963 /* return some buffers to hardware, one at a time is too slow */
4964 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4965 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4966 cleaned_count = 0;
4967 }
4968
4969 /* use prefetched values */
4970 rx_desc = next_rxd;
4971 buffer_info = next_buffer;
9d5c8243
AK
4972 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4973 }
bf36c1a0 4974
9d5c8243 4975 rx_ring->next_to_clean = i;
c493ea45 4976 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
4977
4978 if (cleaned_count)
3b644cf6 4979 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4980
4981 rx_ring->total_packets += total_packets;
4982 rx_ring->total_bytes += total_bytes;
4983 rx_ring->rx_stats.packets += total_packets;
4984 rx_ring->rx_stats.bytes += total_bytes;
8d24e933
AK
4985 netdev->stats.rx_bytes += total_bytes;
4986 netdev->stats.rx_packets += total_packets;
9d5c8243
AK
4987 return cleaned;
4988}
4989
9d5c8243
AK
4990/**
4991 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4992 * @adapter: address of board private structure
4993 **/
d7ee5b3a 4994void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 4995{
e694e964 4996 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
4997 union e1000_adv_rx_desc *rx_desc;
4998 struct igb_buffer *buffer_info;
4999 struct sk_buff *skb;
5000 unsigned int i;
db761762 5001 int bufsz;
9d5c8243
AK
5002
5003 i = rx_ring->next_to_use;
5004 buffer_info = &rx_ring->buffer_info[i];
5005
4c844851 5006 bufsz = rx_ring->rx_buffer_len;
db761762 5007
9d5c8243
AK
5008 while (cleaned_count--) {
5009 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5010
6ec43fe6 5011 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5012 if (!buffer_info->page) {
bf36c1a0
AD
5013 buffer_info->page = alloc_page(GFP_ATOMIC);
5014 if (!buffer_info->page) {
04a5fcaa 5015 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5016 goto no_buffers;
5017 }
5018 buffer_info->page_offset = 0;
5019 } else {
5020 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5021 }
5022 buffer_info->page_dma =
80785298 5023 pci_map_page(rx_ring->pdev, buffer_info->page,
bf36c1a0
AD
5024 buffer_info->page_offset,
5025 PAGE_SIZE / 2,
9d5c8243
AK
5026 PCI_DMA_FROMDEVICE);
5027 }
5028
5029 if (!buffer_info->skb) {
89d71a66 5030 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5031 if (!skb) {
04a5fcaa 5032 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5033 goto no_buffers;
5034 }
5035
9d5c8243 5036 buffer_info->skb = skb;
80785298
AD
5037 buffer_info->dma = pci_map_single(rx_ring->pdev,
5038 skb->data,
9d5c8243
AK
5039 bufsz,
5040 PCI_DMA_FROMDEVICE);
9d5c8243
AK
5041 }
5042 /* Refresh the desc even if buffer_addrs didn't change because
5043 * each write-back erases this info. */
6ec43fe6 5044 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5045 rx_desc->read.pkt_addr =
5046 cpu_to_le64(buffer_info->page_dma);
5047 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5048 } else {
5049 rx_desc->read.pkt_addr =
5050 cpu_to_le64(buffer_info->dma);
5051 rx_desc->read.hdr_addr = 0;
5052 }
5053
5054 i++;
5055 if (i == rx_ring->count)
5056 i = 0;
5057 buffer_info = &rx_ring->buffer_info[i];
5058 }
5059
5060no_buffers:
5061 if (rx_ring->next_to_use != i) {
5062 rx_ring->next_to_use = i;
5063 if (i == 0)
5064 i = (rx_ring->count - 1);
5065 else
5066 i--;
5067
5068 /* Force memory writes to complete before letting h/w
5069 * know there are new descriptors to fetch. (Only
5070 * applicable for weak-ordered memory model archs,
5071 * such as IA-64). */
5072 wmb();
fce99e34 5073 writel(i, rx_ring->tail);
9d5c8243
AK
5074 }
5075}
5076
5077/**
5078 * igb_mii_ioctl -
5079 * @netdev:
5080 * @ifreq:
5081 * @cmd:
5082 **/
5083static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5084{
5085 struct igb_adapter *adapter = netdev_priv(netdev);
5086 struct mii_ioctl_data *data = if_mii(ifr);
5087
5088 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5089 return -EOPNOTSUPP;
5090
5091 switch (cmd) {
5092 case SIOCGMIIPHY:
5093 data->phy_id = adapter->hw.phy.addr;
5094 break;
5095 case SIOCGMIIREG:
f5f4cf08
AD
5096 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5097 &data->val_out))
9d5c8243
AK
5098 return -EIO;
5099 break;
5100 case SIOCSMIIREG:
5101 default:
5102 return -EOPNOTSUPP;
5103 }
5104 return 0;
5105}
5106
c6cb090b
PO
5107/**
5108 * igb_hwtstamp_ioctl - control hardware time stamping
5109 * @netdev:
5110 * @ifreq:
5111 * @cmd:
5112 *
33af6bcc
PO
5113 * Outgoing time stamping can be enabled and disabled. Play nice and
5114 * disable it when requested, although it shouldn't case any overhead
5115 * when no packet needs it. At most one packet in the queue may be
5116 * marked for time stamping, otherwise it would be impossible to tell
5117 * for sure to which packet the hardware time stamp belongs.
5118 *
5119 * Incoming time stamping has to be configured via the hardware
5120 * filters. Not all combinations are supported, in particular event
5121 * type has to be specified. Matching the kind of event packet is
5122 * not supported, with the exception of "all V2 events regardless of
5123 * level 2 or 4".
5124 *
c6cb090b
PO
5125 **/
5126static int igb_hwtstamp_ioctl(struct net_device *netdev,
5127 struct ifreq *ifr, int cmd)
5128{
33af6bcc
PO
5129 struct igb_adapter *adapter = netdev_priv(netdev);
5130 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5131 struct hwtstamp_config config;
c5b9bd5e
AD
5132 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5133 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5134 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5135 bool is_l4 = false;
5136 bool is_l2 = false;
33af6bcc 5137 u32 regval;
c6cb090b
PO
5138
5139 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5140 return -EFAULT;
5141
5142 /* reserved for future extensions */
5143 if (config.flags)
5144 return -EINVAL;
5145
33af6bcc
PO
5146 switch (config.tx_type) {
5147 case HWTSTAMP_TX_OFF:
c5b9bd5e 5148 tsync_tx_ctl = 0;
33af6bcc 5149 case HWTSTAMP_TX_ON:
33af6bcc
PO
5150 break;
5151 default:
5152 return -ERANGE;
5153 }
5154
5155 switch (config.rx_filter) {
5156 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5157 tsync_rx_ctl = 0;
33af6bcc
PO
5158 break;
5159 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5160 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5161 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5162 case HWTSTAMP_FILTER_ALL:
5163 /*
5164 * register TSYNCRXCFG must be set, therefore it is not
5165 * possible to time stamp both Sync and Delay_Req messages
5166 * => fall back to time stamping all packets
5167 */
c5b9bd5e 5168 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5169 config.rx_filter = HWTSTAMP_FILTER_ALL;
5170 break;
5171 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5172 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5173 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5174 is_l4 = true;
33af6bcc
PO
5175 break;
5176 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5177 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5178 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5179 is_l4 = true;
33af6bcc
PO
5180 break;
5181 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5182 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5184 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5185 is_l2 = true;
5186 is_l4 = true;
33af6bcc
PO
5187 config.rx_filter = HWTSTAMP_FILTER_SOME;
5188 break;
5189 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5190 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5191 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5192 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5193 is_l2 = true;
5194 is_l4 = true;
33af6bcc
PO
5195 config.rx_filter = HWTSTAMP_FILTER_SOME;
5196 break;
5197 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5198 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5199 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5200 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5201 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5202 is_l2 = true;
33af6bcc
PO
5203 break;
5204 default:
5205 return -ERANGE;
5206 }
5207
c5b9bd5e
AD
5208 if (hw->mac.type == e1000_82575) {
5209 if (tsync_rx_ctl | tsync_tx_ctl)
5210 return -EINVAL;
5211 return 0;
5212 }
5213
33af6bcc
PO
5214 /* enable/disable TX */
5215 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5216 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5217 regval |= tsync_tx_ctl;
33af6bcc
PO
5218 wr32(E1000_TSYNCTXCTL, regval);
5219
c5b9bd5e 5220 /* enable/disable RX */
33af6bcc 5221 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5222 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5223 regval |= tsync_rx_ctl;
33af6bcc 5224 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5225
c5b9bd5e
AD
5226 /* define which PTP packets are time stamped */
5227 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5228
c5b9bd5e
AD
5229 /* define ethertype filter for timestamped packets */
5230 if (is_l2)
5231 wr32(E1000_ETQF(3),
5232 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5233 E1000_ETQF_1588 | /* enable timestamping */
5234 ETH_P_1588)); /* 1588 eth protocol type */
5235 else
5236 wr32(E1000_ETQF(3), 0);
5237
5238#define PTP_PORT 319
5239 /* L4 Queue Filter[3]: filter by destination port and protocol */
5240 if (is_l4) {
5241 u32 ftqf = (IPPROTO_UDP /* UDP */
5242 | E1000_FTQF_VF_BP /* VF not compared */
5243 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5244 | E1000_FTQF_MASK); /* mask all inputs */
5245 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5246
5247 wr32(E1000_IMIR(3), htons(PTP_PORT));
5248 wr32(E1000_IMIREXT(3),
5249 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5250 if (hw->mac.type == e1000_82576) {
5251 /* enable source port check */
5252 wr32(E1000_SPQF(3), htons(PTP_PORT));
5253 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5254 }
5255 wr32(E1000_FTQF(3), ftqf);
5256 } else {
5257 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5258 }
33af6bcc
PO
5259 wrfl();
5260
5261 adapter->hwtstamp_config = config;
5262
5263 /* clear TX/RX time stamp registers, just to be sure */
5264 regval = rd32(E1000_TXSTMPH);
5265 regval = rd32(E1000_RXSTMPH);
c6cb090b 5266
33af6bcc
PO
5267 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5268 -EFAULT : 0;
c6cb090b
PO
5269}
5270
9d5c8243
AK
5271/**
5272 * igb_ioctl -
5273 * @netdev:
5274 * @ifreq:
5275 * @cmd:
5276 **/
5277static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5278{
5279 switch (cmd) {
5280 case SIOCGMIIPHY:
5281 case SIOCGMIIREG:
5282 case SIOCSMIIREG:
5283 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5284 case SIOCSHWTSTAMP:
5285 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5286 default:
5287 return -EOPNOTSUPP;
5288 }
5289}
5290
009bc06e
AD
5291s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5292{
5293 struct igb_adapter *adapter = hw->back;
5294 u16 cap_offset;
5295
5296 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5297 if (!cap_offset)
5298 return -E1000_ERR_CONFIG;
5299
5300 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5301
5302 return 0;
5303}
5304
5305s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5306{
5307 struct igb_adapter *adapter = hw->back;
5308 u16 cap_offset;
5309
5310 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5311 if (!cap_offset)
5312 return -E1000_ERR_CONFIG;
5313
5314 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5315
5316 return 0;
5317}
5318
9d5c8243
AK
5319static void igb_vlan_rx_register(struct net_device *netdev,
5320 struct vlan_group *grp)
5321{
5322 struct igb_adapter *adapter = netdev_priv(netdev);
5323 struct e1000_hw *hw = &adapter->hw;
5324 u32 ctrl, rctl;
5325
5326 igb_irq_disable(adapter);
5327 adapter->vlgrp = grp;
5328
5329 if (grp) {
5330 /* enable VLAN tag insert/strip */
5331 ctrl = rd32(E1000_CTRL);
5332 ctrl |= E1000_CTRL_VME;
5333 wr32(E1000_CTRL, ctrl);
5334
5335 /* enable VLAN receive filtering */
5336 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5337 rctl &= ~E1000_RCTL_CFIEN;
5338 wr32(E1000_RCTL, rctl);
5339 igb_update_mng_vlan(adapter);
9d5c8243
AK
5340 } else {
5341 /* disable VLAN tag insert/strip */
5342 ctrl = rd32(E1000_CTRL);
5343 ctrl &= ~E1000_CTRL_VME;
5344 wr32(E1000_CTRL, ctrl);
5345
9d5c8243
AK
5346 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5347 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5348 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5349 }
9d5c8243
AK
5350 }
5351
e1739522
AD
5352 igb_rlpml_set(adapter);
5353
9d5c8243
AK
5354 if (!test_bit(__IGB_DOWN, &adapter->state))
5355 igb_irq_enable(adapter);
5356}
5357
5358static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5359{
5360 struct igb_adapter *adapter = netdev_priv(netdev);
5361 struct e1000_hw *hw = &adapter->hw;
4ae196df 5362 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5363
28b0759c 5364 if ((hw->mng_cookie.status &
9d5c8243
AK
5365 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5366 (vid == adapter->mng_vlan_id))
5367 return;
4ae196df
AD
5368
5369 /* add vid to vlvf if sr-iov is enabled,
5370 * if that fails add directly to filter table */
5371 if (igb_vlvf_set(adapter, vid, true, pf_id))
5372 igb_vfta_set(hw, vid, true);
5373
9d5c8243
AK
5374}
5375
5376static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5377{
5378 struct igb_adapter *adapter = netdev_priv(netdev);
5379 struct e1000_hw *hw = &adapter->hw;
4ae196df 5380 int pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
5381
5382 igb_irq_disable(adapter);
5383 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5384
5385 if (!test_bit(__IGB_DOWN, &adapter->state))
5386 igb_irq_enable(adapter);
5387
5388 if ((adapter->hw.mng_cookie.status &
5389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5390 (vid == adapter->mng_vlan_id)) {
5391 /* release control to f/w */
5392 igb_release_hw_control(adapter);
5393 return;
5394 }
5395
4ae196df
AD
5396 /* remove vid from vlvf if sr-iov is enabled,
5397 * if not in vlvf remove from vfta */
5398 if (igb_vlvf_set(adapter, vid, false, pf_id))
5399 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5400}
5401
5402static void igb_restore_vlan(struct igb_adapter *adapter)
5403{
5404 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5405
5406 if (adapter->vlgrp) {
5407 u16 vid;
5408 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5409 if (!vlan_group_get_device(adapter->vlgrp, vid))
5410 continue;
5411 igb_vlan_rx_add_vid(adapter->netdev, vid);
5412 }
5413 }
5414}
5415
5416int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5417{
5418 struct e1000_mac_info *mac = &adapter->hw.mac;
5419
5420 mac->autoneg = 0;
5421
9d5c8243
AK
5422 switch (spddplx) {
5423 case SPEED_10 + DUPLEX_HALF:
5424 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5425 break;
5426 case SPEED_10 + DUPLEX_FULL:
5427 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5428 break;
5429 case SPEED_100 + DUPLEX_HALF:
5430 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5431 break;
5432 case SPEED_100 + DUPLEX_FULL:
5433 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5434 break;
5435 case SPEED_1000 + DUPLEX_FULL:
5436 mac->autoneg = 1;
5437 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5438 break;
5439 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5440 default:
5441 dev_err(&adapter->pdev->dev,
5442 "Unsupported Speed/Duplex configuration\n");
5443 return -EINVAL;
5444 }
5445 return 0;
5446}
5447
3fe7c4c9 5448static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5449{
5450 struct net_device *netdev = pci_get_drvdata(pdev);
5451 struct igb_adapter *adapter = netdev_priv(netdev);
5452 struct e1000_hw *hw = &adapter->hw;
2d064c06 5453 u32 ctrl, rctl, status;
9d5c8243
AK
5454 u32 wufc = adapter->wol;
5455#ifdef CONFIG_PM
5456 int retval = 0;
5457#endif
5458
5459 netif_device_detach(netdev);
5460
a88f10ec
AD
5461 if (netif_running(netdev))
5462 igb_close(netdev);
5463
047e0030 5464 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
5465
5466#ifdef CONFIG_PM
5467 retval = pci_save_state(pdev);
5468 if (retval)
5469 return retval;
5470#endif
5471
5472 status = rd32(E1000_STATUS);
5473 if (status & E1000_STATUS_LU)
5474 wufc &= ~E1000_WUFC_LNKC;
5475
5476 if (wufc) {
5477 igb_setup_rctl(adapter);
ff41f8dc 5478 igb_set_rx_mode(netdev);
9d5c8243
AK
5479
5480 /* turn on all-multi mode if wake on multicast is enabled */
5481 if (wufc & E1000_WUFC_MC) {
5482 rctl = rd32(E1000_RCTL);
5483 rctl |= E1000_RCTL_MPE;
5484 wr32(E1000_RCTL, rctl);
5485 }
5486
5487 ctrl = rd32(E1000_CTRL);
5488 /* advertise wake from D3Cold */
5489 #define E1000_CTRL_ADVD3WUC 0x00100000
5490 /* phy power management enable */
5491 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5492 ctrl |= E1000_CTRL_ADVD3WUC;
5493 wr32(E1000_CTRL, ctrl);
5494
9d5c8243
AK
5495 /* Allow time for pending master requests to run */
5496 igb_disable_pcie_master(&adapter->hw);
5497
5498 wr32(E1000_WUC, E1000_WUC_PME_EN);
5499 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5500 } else {
5501 wr32(E1000_WUC, 0);
5502 wr32(E1000_WUFC, 0);
9d5c8243
AK
5503 }
5504
3fe7c4c9
RW
5505 *enable_wake = wufc || adapter->en_mng_pt;
5506 if (!*enable_wake)
2fb02a26 5507 igb_shutdown_serdes_link_82575(hw);
9d5c8243
AK
5508
5509 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5510 * would have already happened in close and is redundant. */
5511 igb_release_hw_control(adapter);
5512
5513 pci_disable_device(pdev);
5514
9d5c8243
AK
5515 return 0;
5516}
5517
5518#ifdef CONFIG_PM
3fe7c4c9
RW
5519static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5520{
5521 int retval;
5522 bool wake;
5523
5524 retval = __igb_shutdown(pdev, &wake);
5525 if (retval)
5526 return retval;
5527
5528 if (wake) {
5529 pci_prepare_to_sleep(pdev);
5530 } else {
5531 pci_wake_from_d3(pdev, false);
5532 pci_set_power_state(pdev, PCI_D3hot);
5533 }
5534
5535 return 0;
5536}
5537
9d5c8243
AK
5538static int igb_resume(struct pci_dev *pdev)
5539{
5540 struct net_device *netdev = pci_get_drvdata(pdev);
5541 struct igb_adapter *adapter = netdev_priv(netdev);
5542 struct e1000_hw *hw = &adapter->hw;
5543 u32 err;
5544
5545 pci_set_power_state(pdev, PCI_D0);
5546 pci_restore_state(pdev);
42bfd33a 5547
aed5dec3 5548 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5549 if (err) {
5550 dev_err(&pdev->dev,
5551 "igb: Cannot enable PCI device from suspend\n");
5552 return err;
5553 }
5554 pci_set_master(pdev);
5555
5556 pci_enable_wake(pdev, PCI_D3hot, 0);
5557 pci_enable_wake(pdev, PCI_D3cold, 0);
5558
047e0030 5559 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
5560 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5561 return -ENOMEM;
9d5c8243
AK
5562 }
5563
5564 /* e1000_power_up_phy(adapter); */
5565
5566 igb_reset(adapter);
a8564f03
AD
5567
5568 /* let the f/w know that the h/w is now under the control of the
5569 * driver. */
5570 igb_get_hw_control(adapter);
5571
9d5c8243
AK
5572 wr32(E1000_WUS, ~0);
5573
a88f10ec
AD
5574 if (netif_running(netdev)) {
5575 err = igb_open(netdev);
5576 if (err)
5577 return err;
5578 }
9d5c8243
AK
5579
5580 netif_device_attach(netdev);
5581
9d5c8243
AK
5582 return 0;
5583}
5584#endif
5585
5586static void igb_shutdown(struct pci_dev *pdev)
5587{
3fe7c4c9
RW
5588 bool wake;
5589
5590 __igb_shutdown(pdev, &wake);
5591
5592 if (system_state == SYSTEM_POWER_OFF) {
5593 pci_wake_from_d3(pdev, wake);
5594 pci_set_power_state(pdev, PCI_D3hot);
5595 }
9d5c8243
AK
5596}
5597
5598#ifdef CONFIG_NET_POLL_CONTROLLER
5599/*
5600 * Polling 'interrupt' - used by things like netconsole to send skbs
5601 * without having to re-enable interrupts. It's not called while
5602 * the interrupt routine is executing.
5603 */
5604static void igb_netpoll(struct net_device *netdev)
5605{
5606 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5607 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5608 int i;
9d5c8243 5609
eebbbdba 5610 if (!adapter->msix_entries) {
047e0030 5611 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 5612 igb_irq_disable(adapter);
047e0030 5613 napi_schedule(&q_vector->napi);
eebbbdba
AD
5614 return;
5615 }
9d5c8243 5616
047e0030
AD
5617 for (i = 0; i < adapter->num_q_vectors; i++) {
5618 struct igb_q_vector *q_vector = adapter->q_vector[i];
5619 wr32(E1000_EIMC, q_vector->eims_value);
5620 napi_schedule(&q_vector->napi);
eebbbdba 5621 }
9d5c8243
AK
5622}
5623#endif /* CONFIG_NET_POLL_CONTROLLER */
5624
5625/**
5626 * igb_io_error_detected - called when PCI error is detected
5627 * @pdev: Pointer to PCI device
5628 * @state: The current pci connection state
5629 *
5630 * This function is called after a PCI bus error affecting
5631 * this device has been detected.
5632 */
5633static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5634 pci_channel_state_t state)
5635{
5636 struct net_device *netdev = pci_get_drvdata(pdev);
5637 struct igb_adapter *adapter = netdev_priv(netdev);
5638
5639 netif_device_detach(netdev);
5640
59ed6eec
AD
5641 if (state == pci_channel_io_perm_failure)
5642 return PCI_ERS_RESULT_DISCONNECT;
5643
9d5c8243
AK
5644 if (netif_running(netdev))
5645 igb_down(adapter);
5646 pci_disable_device(pdev);
5647
5648 /* Request a slot slot reset. */
5649 return PCI_ERS_RESULT_NEED_RESET;
5650}
5651
5652/**
5653 * igb_io_slot_reset - called after the pci bus has been reset.
5654 * @pdev: Pointer to PCI device
5655 *
5656 * Restart the card from scratch, as if from a cold-boot. Implementation
5657 * resembles the first-half of the igb_resume routine.
5658 */
5659static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5660{
5661 struct net_device *netdev = pci_get_drvdata(pdev);
5662 struct igb_adapter *adapter = netdev_priv(netdev);
5663 struct e1000_hw *hw = &adapter->hw;
40a914fa 5664 pci_ers_result_t result;
42bfd33a 5665 int err;
9d5c8243 5666
aed5dec3 5667 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5668 dev_err(&pdev->dev,
5669 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5670 result = PCI_ERS_RESULT_DISCONNECT;
5671 } else {
5672 pci_set_master(pdev);
5673 pci_restore_state(pdev);
9d5c8243 5674
40a914fa
AD
5675 pci_enable_wake(pdev, PCI_D3hot, 0);
5676 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5677
40a914fa
AD
5678 igb_reset(adapter);
5679 wr32(E1000_WUS, ~0);
5680 result = PCI_ERS_RESULT_RECOVERED;
5681 }
9d5c8243 5682
ea943d41
JK
5683 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5684 if (err) {
5685 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5686 "failed 0x%0x\n", err);
5687 /* non-fatal, continue */
5688 }
40a914fa
AD
5689
5690 return result;
9d5c8243
AK
5691}
5692
5693/**
5694 * igb_io_resume - called when traffic can start flowing again.
5695 * @pdev: Pointer to PCI device
5696 *
5697 * This callback is called when the error recovery driver tells us that
5698 * its OK to resume normal operation. Implementation resembles the
5699 * second-half of the igb_resume routine.
5700 */
5701static void igb_io_resume(struct pci_dev *pdev)
5702{
5703 struct net_device *netdev = pci_get_drvdata(pdev);
5704 struct igb_adapter *adapter = netdev_priv(netdev);
5705
9d5c8243
AK
5706 if (netif_running(netdev)) {
5707 if (igb_up(adapter)) {
5708 dev_err(&pdev->dev, "igb_up failed after reset\n");
5709 return;
5710 }
5711 }
5712
5713 netif_device_attach(netdev);
5714
5715 /* let the f/w know that the h/w is now under the control of the
5716 * driver. */
5717 igb_get_hw_control(adapter);
9d5c8243
AK
5718}
5719
26ad9178
AD
5720static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5721 u8 qsel)
5722{
5723 u32 rar_low, rar_high;
5724 struct e1000_hw *hw = &adapter->hw;
5725
5726 /* HW expects these in little endian so we reverse the byte order
5727 * from network order (big endian) to little endian
5728 */
5729 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5730 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5731 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5732
5733 /* Indicate to hardware the Address is Valid. */
5734 rar_high |= E1000_RAH_AV;
5735
5736 if (hw->mac.type == e1000_82575)
5737 rar_high |= E1000_RAH_POOL_1 * qsel;
5738 else
5739 rar_high |= E1000_RAH_POOL_1 << qsel;
5740
5741 wr32(E1000_RAL(index), rar_low);
5742 wrfl();
5743 wr32(E1000_RAH(index), rar_high);
5744 wrfl();
5745}
5746
4ae196df
AD
5747static int igb_set_vf_mac(struct igb_adapter *adapter,
5748 int vf, unsigned char *mac_addr)
5749{
5750 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
5751 /* VF MAC addresses start at end of receive addresses and moves
5752 * torwards the first, as a result a collision should not be possible */
5753 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 5754
37680117 5755 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 5756
26ad9178 5757 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
5758
5759 return 0;
5760}
5761
5762static void igb_vmm_control(struct igb_adapter *adapter)
5763{
5764 struct e1000_hw *hw = &adapter->hw;
10d8e907 5765 u32 reg;
4ae196df 5766
d4960307
AD
5767 /* replication is not supported for 82575 */
5768 if (hw->mac.type == e1000_82575)
4ae196df
AD
5769 return;
5770
10d8e907
AD
5771 /* enable replication vlan tag stripping */
5772 reg = rd32(E1000_RPLOLR);
5773 reg |= E1000_RPLOLR_STRVLAN;
5774 wr32(E1000_RPLOLR, reg);
5775
5776 /* notify HW that the MAC is adding vlan tags */
5777 reg = rd32(E1000_DTXCTL);
5778 reg |= E1000_DTXCTL_VLAN_ADDED;
5779 wr32(E1000_DTXCTL, reg);
5780
d4960307
AD
5781 if (adapter->vfs_allocated_count) {
5782 igb_vmdq_set_loopback_pf(hw, true);
5783 igb_vmdq_set_replication_pf(hw, true);
5784 } else {
5785 igb_vmdq_set_loopback_pf(hw, false);
5786 igb_vmdq_set_replication_pf(hw, false);
5787 }
4ae196df
AD
5788}
5789
9d5c8243 5790/* igb_main.c */
This page took 0.616443 seconds and 5 git commands to generate.