drivers/net: use vzalloc()
[deliverable/linux.git] / drivers / net / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
2c20ebba 4 Copyright(c) 2009 - 2010 Intel Corporation.
d4e0fe01
AD
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
d4e0fe01
AD
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
d4e0fe01
AD
44
45#include "igbvf.h"
46
2c20ebba 47#define DRV_VERSION "1.0.8-k0"
d4e0fe01
AD
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
2c20ebba
GR
52static const char igbvf_copyright[] =
53 "Copyright (c) 2009 - 2010 Intel Corporation.";
d4e0fe01
AD
54
55static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
56static void igbvf_reset(struct igbvf_adapter *);
57static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
58static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
59
60static struct igbvf_info igbvf_vf_info = {
61 .mac = e1000_vfadapt,
0364d6fd 62 .flags = 0,
d4e0fe01
AD
63 .pba = 10,
64 .init_ops = e1000_init_function_pointers_vf,
65};
66
67static const struct igbvf_info *igbvf_info_tbl[] = {
68 [board_vf] = &igbvf_vf_info,
69};
70
71/**
72 * igbvf_desc_unused - calculate if we have unused descriptors
73 **/
74static int igbvf_desc_unused(struct igbvf_ring *ring)
75{
76 if (ring->next_to_clean > ring->next_to_use)
77 return ring->next_to_clean - ring->next_to_use - 1;
78
79 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
80}
81
82/**
83 * igbvf_receive_skb - helper function to handle Rx indications
84 * @adapter: board private structure
85 * @status: descriptor status field as written by hardware
86 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
87 * @skb: pointer to sk_buff to be indicated to stack
88 **/
89static void igbvf_receive_skb(struct igbvf_adapter *adapter,
90 struct net_device *netdev,
91 struct sk_buff *skb,
92 u32 status, u16 vlan)
93{
94 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
95 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
96 le16_to_cpu(vlan) &
97 E1000_RXD_SPC_VLAN_MASK);
98 else
99 netif_receive_skb(skb);
d4e0fe01
AD
100}
101
102static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
103 u32 status_err, struct sk_buff *skb)
104{
bc8acf2c 105 skb_checksum_none_assert(skb);
d4e0fe01
AD
106
107 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
108 if ((status_err & E1000_RXD_STAT_IXSM) ||
109 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 110 return;
0364d6fd 111
d4e0fe01
AD
112 /* TCP/UDP checksum error bit is set */
113 if (status_err &
114 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
115 /* let the stack verify checksum errors */
116 adapter->hw_csum_err++;
117 return;
118 }
0364d6fd 119
d4e0fe01
AD
120 /* It must be a TCP or UDP packet with a valid checksum */
121 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
122 skb->ip_summed = CHECKSUM_UNNECESSARY;
123
124 adapter->hw_csum_good++;
125}
126
127/**
128 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
129 * @rx_ring: address of ring structure to repopulate
130 * @cleaned_count: number of buffers to repopulate
131 **/
132static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
133 int cleaned_count)
134{
135 struct igbvf_adapter *adapter = rx_ring->adapter;
136 struct net_device *netdev = adapter->netdev;
137 struct pci_dev *pdev = adapter->pdev;
138 union e1000_adv_rx_desc *rx_desc;
139 struct igbvf_buffer *buffer_info;
140 struct sk_buff *skb;
141 unsigned int i;
142 int bufsz;
143
144 i = rx_ring->next_to_use;
145 buffer_info = &rx_ring->buffer_info[i];
146
147 if (adapter->rx_ps_hdr_size)
148 bufsz = adapter->rx_ps_hdr_size;
149 else
150 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
151
152 while (cleaned_count--) {
153 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
154
155 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
156 if (!buffer_info->page) {
157 buffer_info->page = alloc_page(GFP_ATOMIC);
158 if (!buffer_info->page) {
159 adapter->alloc_rx_buff_failed++;
160 goto no_buffers;
161 }
162 buffer_info->page_offset = 0;
163 } else {
164 buffer_info->page_offset ^= PAGE_SIZE / 2;
165 }
166 buffer_info->page_dma =
123e9f1a 167 dma_map_page(&pdev->dev, buffer_info->page,
d4e0fe01
AD
168 buffer_info->page_offset,
169 PAGE_SIZE / 2,
123e9f1a 170 DMA_FROM_DEVICE);
d4e0fe01
AD
171 }
172
173 if (!buffer_info->skb) {
89d71a66 174 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
175 if (!skb) {
176 adapter->alloc_rx_buff_failed++;
177 goto no_buffers;
178 }
179
d4e0fe01 180 buffer_info->skb = skb;
123e9f1a 181 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
d4e0fe01 182 bufsz,
123e9f1a 183 DMA_FROM_DEVICE);
d4e0fe01
AD
184 }
185 /* Refresh the desc even if buffer_addrs didn't change because
186 * each write-back erases this info. */
187 if (adapter->rx_ps_hdr_size) {
188 rx_desc->read.pkt_addr =
189 cpu_to_le64(buffer_info->page_dma);
190 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
191 } else {
192 rx_desc->read.pkt_addr =
193 cpu_to_le64(buffer_info->dma);
194 rx_desc->read.hdr_addr = 0;
195 }
196
197 i++;
198 if (i == rx_ring->count)
199 i = 0;
200 buffer_info = &rx_ring->buffer_info[i];
201 }
202
203no_buffers:
204 if (rx_ring->next_to_use != i) {
205 rx_ring->next_to_use = i;
206 if (i == 0)
207 i = (rx_ring->count - 1);
208 else
209 i--;
210
211 /* Force memory writes to complete before letting h/w
212 * know there are new descriptors to fetch. (Only
213 * applicable for weak-ordered memory model archs,
214 * such as IA-64). */
215 wmb();
216 writel(i, adapter->hw.hw_addr + rx_ring->tail);
217 }
218}
219
220/**
221 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
222 * @adapter: board private structure
223 *
224 * the return value indicates whether actual cleaning was done, there
225 * is no guarantee that everything was cleaned
226 **/
227static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
228 int *work_done, int work_to_do)
229{
230 struct igbvf_ring *rx_ring = adapter->rx_ring;
231 struct net_device *netdev = adapter->netdev;
232 struct pci_dev *pdev = adapter->pdev;
233 union e1000_adv_rx_desc *rx_desc, *next_rxd;
234 struct igbvf_buffer *buffer_info, *next_buffer;
235 struct sk_buff *skb;
236 bool cleaned = false;
237 int cleaned_count = 0;
238 unsigned int total_bytes = 0, total_packets = 0;
239 unsigned int i;
240 u32 length, hlen, staterr;
241
242 i = rx_ring->next_to_clean;
243 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
244 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
245
246 while (staterr & E1000_RXD_STAT_DD) {
247 if (*work_done >= work_to_do)
248 break;
249 (*work_done)++;
2d0bb1c1 250 rmb(); /* read descriptor and rx_buffer_info after status DD */
d4e0fe01
AD
251
252 buffer_info = &rx_ring->buffer_info[i];
253
254 /* HW will not DMA in data larger than the given buffer, even
255 * if it parses the (NFS, of course) header to be larger. In
256 * that case, it fills the header buffer and spills the rest
257 * into the page.
258 */
259 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
260 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
261 if (hlen > adapter->rx_ps_hdr_size)
262 hlen = adapter->rx_ps_hdr_size;
263
264 length = le16_to_cpu(rx_desc->wb.upper.length);
265 cleaned = true;
266 cleaned_count++;
267
268 skb = buffer_info->skb;
269 prefetch(skb->data - NET_IP_ALIGN);
270 buffer_info->skb = NULL;
271 if (!adapter->rx_ps_hdr_size) {
123e9f1a 272 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 273 adapter->rx_buffer_len,
123e9f1a 274 DMA_FROM_DEVICE);
d4e0fe01
AD
275 buffer_info->dma = 0;
276 skb_put(skb, length);
277 goto send_up;
278 }
279
280 if (!skb_shinfo(skb)->nr_frags) {
123e9f1a 281 dma_unmap_single(&pdev->dev, buffer_info->dma,
92d947b7 282 adapter->rx_ps_hdr_size,
123e9f1a 283 DMA_FROM_DEVICE);
d4e0fe01
AD
284 skb_put(skb, hlen);
285 }
286
287 if (length) {
123e9f1a 288 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
d4e0fe01 289 PAGE_SIZE / 2,
123e9f1a 290 DMA_FROM_DEVICE);
d4e0fe01
AD
291 buffer_info->page_dma = 0;
292
ec857fd4 293 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
d4e0fe01
AD
294 buffer_info->page,
295 buffer_info->page_offset,
296 length);
297
298 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
299 (page_count(buffer_info->page) != 1))
300 buffer_info->page = NULL;
301 else
302 get_page(buffer_info->page);
303
304 skb->len += length;
305 skb->data_len += length;
306 skb->truesize += length;
307 }
308send_up:
309 i++;
310 if (i == rx_ring->count)
311 i = 0;
312 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
313 prefetch(next_rxd);
314 next_buffer = &rx_ring->buffer_info[i];
315
316 if (!(staterr & E1000_RXD_STAT_EOP)) {
317 buffer_info->skb = next_buffer->skb;
318 buffer_info->dma = next_buffer->dma;
319 next_buffer->skb = skb;
320 next_buffer->dma = 0;
321 goto next_desc;
322 }
323
324 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
325 dev_kfree_skb_irq(skb);
326 goto next_desc;
327 }
328
329 total_bytes += skb->len;
330 total_packets++;
331
332 igbvf_rx_checksum_adv(adapter, staterr, skb);
333
334 skb->protocol = eth_type_trans(skb, netdev);
335
336 igbvf_receive_skb(adapter, netdev, skb, staterr,
337 rx_desc->wb.upper.vlan);
338
d4e0fe01
AD
339next_desc:
340 rx_desc->wb.upper.status_error = 0;
341
342 /* return some buffers to hardware, one at a time is too slow */
343 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
344 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
345 cleaned_count = 0;
346 }
347
348 /* use prefetched values */
349 rx_desc = next_rxd;
350 buffer_info = next_buffer;
351
352 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
353 }
354
355 rx_ring->next_to_clean = i;
356 cleaned_count = igbvf_desc_unused(rx_ring);
357
358 if (cleaned_count)
359 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
360
361 adapter->total_rx_packets += total_packets;
362 adapter->total_rx_bytes += total_bytes;
363 adapter->net_stats.rx_bytes += total_bytes;
364 adapter->net_stats.rx_packets += total_packets;
365 return cleaned;
366}
367
368static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
369 struct igbvf_buffer *buffer_info)
370{
a7d5ca40
AD
371 if (buffer_info->dma) {
372 if (buffer_info->mapped_as_page)
123e9f1a 373 dma_unmap_page(&adapter->pdev->dev,
a7d5ca40
AD
374 buffer_info->dma,
375 buffer_info->length,
123e9f1a 376 DMA_TO_DEVICE);
a7d5ca40 377 else
123e9f1a 378 dma_unmap_single(&adapter->pdev->dev,
a7d5ca40
AD
379 buffer_info->dma,
380 buffer_info->length,
123e9f1a 381 DMA_TO_DEVICE);
a7d5ca40
AD
382 buffer_info->dma = 0;
383 }
d4e0fe01 384 if (buffer_info->skb) {
d4e0fe01
AD
385 dev_kfree_skb_any(buffer_info->skb);
386 buffer_info->skb = NULL;
387 }
388 buffer_info->time_stamp = 0;
389}
390
391static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
392{
393 struct igbvf_ring *tx_ring = adapter->tx_ring;
394 unsigned int i = tx_ring->next_to_clean;
395 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
396 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
397
398 /* detected Tx unit hang */
399 dev_err(&adapter->pdev->dev,
400 "Detected Tx Unit Hang:\n"
401 " TDH <%x>\n"
402 " TDT <%x>\n"
403 " next_to_use <%x>\n"
404 " next_to_clean <%x>\n"
405 "buffer_info[next_to_clean]:\n"
406 " time_stamp <%lx>\n"
407 " next_to_watch <%x>\n"
408 " jiffies <%lx>\n"
409 " next_to_watch.status <%x>\n",
410 readl(adapter->hw.hw_addr + tx_ring->head),
411 readl(adapter->hw.hw_addr + tx_ring->tail),
412 tx_ring->next_to_use,
413 tx_ring->next_to_clean,
414 tx_ring->buffer_info[eop].time_stamp,
415 eop,
416 jiffies,
417 eop_desc->wb.status);
418}
419
420/**
421 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
422 * @adapter: board private structure
423 *
424 * Return 0 on success, negative on failure
425 **/
426int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
427 struct igbvf_ring *tx_ring)
428{
429 struct pci_dev *pdev = adapter->pdev;
430 int size;
431
432 size = sizeof(struct igbvf_buffer) * tx_ring->count;
89bf67f1 433 tx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
434 if (!tx_ring->buffer_info)
435 goto err;
d4e0fe01
AD
436
437 /* round up to nearest 4K */
438 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
439 tx_ring->size = ALIGN(tx_ring->size, 4096);
440
123e9f1a
NN
441 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
442 &tx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
443
444 if (!tx_ring->desc)
445 goto err;
446
447 tx_ring->adapter = adapter;
448 tx_ring->next_to_use = 0;
449 tx_ring->next_to_clean = 0;
450
451 return 0;
452err:
453 vfree(tx_ring->buffer_info);
454 dev_err(&adapter->pdev->dev,
455 "Unable to allocate memory for the transmit descriptor ring\n");
456 return -ENOMEM;
457}
458
459/**
460 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
461 * @adapter: board private structure
462 *
463 * Returns 0 on success, negative on failure
464 **/
465int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
466 struct igbvf_ring *rx_ring)
467{
468 struct pci_dev *pdev = adapter->pdev;
469 int size, desc_len;
470
471 size = sizeof(struct igbvf_buffer) * rx_ring->count;
89bf67f1 472 rx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
473 if (!rx_ring->buffer_info)
474 goto err;
d4e0fe01
AD
475
476 desc_len = sizeof(union e1000_adv_rx_desc);
477
478 /* Round up to nearest 4K */
479 rx_ring->size = rx_ring->count * desc_len;
480 rx_ring->size = ALIGN(rx_ring->size, 4096);
481
123e9f1a
NN
482 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
483 &rx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
484
485 if (!rx_ring->desc)
486 goto err;
487
488 rx_ring->next_to_clean = 0;
489 rx_ring->next_to_use = 0;
490
491 rx_ring->adapter = adapter;
492
493 return 0;
494
495err:
496 vfree(rx_ring->buffer_info);
497 rx_ring->buffer_info = NULL;
498 dev_err(&adapter->pdev->dev,
499 "Unable to allocate memory for the receive descriptor ring\n");
500 return -ENOMEM;
501}
502
503/**
504 * igbvf_clean_tx_ring - Free Tx Buffers
505 * @tx_ring: ring to be cleaned
506 **/
507static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
508{
509 struct igbvf_adapter *adapter = tx_ring->adapter;
510 struct igbvf_buffer *buffer_info;
511 unsigned long size;
512 unsigned int i;
513
514 if (!tx_ring->buffer_info)
515 return;
516
517 /* Free all the Tx ring sk_buffs */
518 for (i = 0; i < tx_ring->count; i++) {
519 buffer_info = &tx_ring->buffer_info[i];
520 igbvf_put_txbuf(adapter, buffer_info);
521 }
522
523 size = sizeof(struct igbvf_buffer) * tx_ring->count;
524 memset(tx_ring->buffer_info, 0, size);
525
526 /* Zero out the descriptor ring */
527 memset(tx_ring->desc, 0, tx_ring->size);
528
529 tx_ring->next_to_use = 0;
530 tx_ring->next_to_clean = 0;
531
532 writel(0, adapter->hw.hw_addr + tx_ring->head);
533 writel(0, adapter->hw.hw_addr + tx_ring->tail);
534}
535
536/**
537 * igbvf_free_tx_resources - Free Tx Resources per Queue
538 * @tx_ring: ring to free resources from
539 *
540 * Free all transmit software resources
541 **/
542void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
543{
544 struct pci_dev *pdev = tx_ring->adapter->pdev;
545
546 igbvf_clean_tx_ring(tx_ring);
547
548 vfree(tx_ring->buffer_info);
549 tx_ring->buffer_info = NULL;
550
123e9f1a
NN
551 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
552 tx_ring->dma);
d4e0fe01
AD
553
554 tx_ring->desc = NULL;
555}
556
557/**
558 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
559 * @adapter: board private structure
560 **/
561static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
562{
563 struct igbvf_adapter *adapter = rx_ring->adapter;
564 struct igbvf_buffer *buffer_info;
565 struct pci_dev *pdev = adapter->pdev;
566 unsigned long size;
567 unsigned int i;
568
569 if (!rx_ring->buffer_info)
570 return;
571
572 /* Free all the Rx ring sk_buffs */
573 for (i = 0; i < rx_ring->count; i++) {
574 buffer_info = &rx_ring->buffer_info[i];
575 if (buffer_info->dma) {
576 if (adapter->rx_ps_hdr_size){
123e9f1a 577 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 578 adapter->rx_ps_hdr_size,
123e9f1a 579 DMA_FROM_DEVICE);
d4e0fe01 580 } else {
123e9f1a 581 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 582 adapter->rx_buffer_len,
123e9f1a 583 DMA_FROM_DEVICE);
d4e0fe01
AD
584 }
585 buffer_info->dma = 0;
586 }
587
588 if (buffer_info->skb) {
589 dev_kfree_skb(buffer_info->skb);
590 buffer_info->skb = NULL;
591 }
592
593 if (buffer_info->page) {
594 if (buffer_info->page_dma)
123e9f1a
NN
595 dma_unmap_page(&pdev->dev,
596 buffer_info->page_dma,
d4e0fe01 597 PAGE_SIZE / 2,
123e9f1a 598 DMA_FROM_DEVICE);
d4e0fe01
AD
599 put_page(buffer_info->page);
600 buffer_info->page = NULL;
601 buffer_info->page_dma = 0;
602 buffer_info->page_offset = 0;
603 }
604 }
605
606 size = sizeof(struct igbvf_buffer) * rx_ring->count;
607 memset(rx_ring->buffer_info, 0, size);
608
609 /* Zero out the descriptor ring */
610 memset(rx_ring->desc, 0, rx_ring->size);
611
612 rx_ring->next_to_clean = 0;
613 rx_ring->next_to_use = 0;
614
615 writel(0, adapter->hw.hw_addr + rx_ring->head);
616 writel(0, adapter->hw.hw_addr + rx_ring->tail);
617}
618
619/**
620 * igbvf_free_rx_resources - Free Rx Resources
621 * @rx_ring: ring to clean the resources from
622 *
623 * Free all receive software resources
624 **/
625
626void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
627{
628 struct pci_dev *pdev = rx_ring->adapter->pdev;
629
630 igbvf_clean_rx_ring(rx_ring);
631
632 vfree(rx_ring->buffer_info);
633 rx_ring->buffer_info = NULL;
634
635 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
636 rx_ring->dma);
637 rx_ring->desc = NULL;
638}
639
640/**
641 * igbvf_update_itr - update the dynamic ITR value based on statistics
642 * @adapter: pointer to adapter
643 * @itr_setting: current adapter->itr
644 * @packets: the number of packets during this measurement interval
645 * @bytes: the number of bytes during this measurement interval
646 *
647 * Stores a new ITR value based on packets and byte
648 * counts during the last interrupt. The advantage of per interrupt
649 * computation is faster updates and more accurate ITR for the current
650 * traffic pattern. Constants in this function were computed
651 * based on theoretical maximum wire speed and thresholds were set based
652 * on testing data as well as attempting to minimize response time
653 * while increasing bulk throughput. This functionality is controlled
654 * by the InterruptThrottleRate module parameter.
655 **/
656static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
657 u16 itr_setting, int packets,
658 int bytes)
659{
660 unsigned int retval = itr_setting;
661
662 if (packets == 0)
663 goto update_itr_done;
664
665 switch (itr_setting) {
666 case lowest_latency:
667 /* handle TSO and jumbo frames */
668 if (bytes/packets > 8000)
669 retval = bulk_latency;
670 else if ((packets < 5) && (bytes > 512))
671 retval = low_latency;
672 break;
673 case low_latency: /* 50 usec aka 20000 ints/s */
674 if (bytes > 10000) {
675 /* this if handles the TSO accounting */
676 if (bytes/packets > 8000)
677 retval = bulk_latency;
678 else if ((packets < 10) || ((bytes/packets) > 1200))
679 retval = bulk_latency;
680 else if ((packets > 35))
681 retval = lowest_latency;
682 } else if (bytes/packets > 2000) {
683 retval = bulk_latency;
684 } else if (packets <= 2 && bytes < 512) {
685 retval = lowest_latency;
686 }
687 break;
688 case bulk_latency: /* 250 usec aka 4000 ints/s */
689 if (bytes > 25000) {
690 if (packets > 35)
691 retval = low_latency;
692 } else if (bytes < 6000) {
693 retval = low_latency;
694 }
695 break;
696 }
697
698update_itr_done:
699 return retval;
700}
701
702static void igbvf_set_itr(struct igbvf_adapter *adapter)
703{
704 struct e1000_hw *hw = &adapter->hw;
705 u16 current_itr;
706 u32 new_itr = adapter->itr;
707
708 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
709 adapter->total_tx_packets,
710 adapter->total_tx_bytes);
711 /* conservative mode (itr 3) eliminates the lowest_latency setting */
712 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
713 adapter->tx_itr = low_latency;
714
715 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
716 adapter->total_rx_packets,
717 adapter->total_rx_bytes);
718 /* conservative mode (itr 3) eliminates the lowest_latency setting */
719 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
720 adapter->rx_itr = low_latency;
721
722 current_itr = max(adapter->rx_itr, adapter->tx_itr);
723
724 switch (current_itr) {
725 /* counts and packets in update_itr are dependent on these numbers */
726 case lowest_latency:
727 new_itr = 70000;
728 break;
729 case low_latency:
730 new_itr = 20000; /* aka hwitr = ~200 */
731 break;
732 case bulk_latency:
733 new_itr = 4000;
734 break;
735 default:
736 break;
737 }
738
739 if (new_itr != adapter->itr) {
740 /*
741 * this attempts to bias the interrupt rate towards Bulk
742 * by adding intermediate steps when interrupt rate is
743 * increasing
744 */
745 new_itr = new_itr > adapter->itr ?
746 min(adapter->itr + (new_itr >> 2), new_itr) :
747 new_itr;
748 adapter->itr = new_itr;
749 adapter->rx_ring->itr_val = 1952;
750
751 if (adapter->msix_entries)
752 adapter->rx_ring->set_itr = 1;
753 else
754 ew32(ITR, 1952);
755 }
756}
757
758/**
759 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
760 * @adapter: board private structure
761 * returns true if ring is completely cleaned
762 **/
763static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
764{
765 struct igbvf_adapter *adapter = tx_ring->adapter;
766 struct e1000_hw *hw = &adapter->hw;
767 struct net_device *netdev = adapter->netdev;
768 struct igbvf_buffer *buffer_info;
769 struct sk_buff *skb;
770 union e1000_adv_tx_desc *tx_desc, *eop_desc;
771 unsigned int total_bytes = 0, total_packets = 0;
772 unsigned int i, eop, count = 0;
773 bool cleaned = false;
774
775 i = tx_ring->next_to_clean;
776 eop = tx_ring->buffer_info[i].next_to_watch;
777 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
778
779 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
780 (count < tx_ring->count)) {
2d0bb1c1 781 rmb(); /* read buffer_info after eop_desc status */
d4e0fe01
AD
782 for (cleaned = false; !cleaned; count++) {
783 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
784 buffer_info = &tx_ring->buffer_info[i];
785 cleaned = (i == eop);
786 skb = buffer_info->skb;
787
788 if (skb) {
789 unsigned int segs, bytecount;
790
791 /* gso_segs is currently only valid for tcp */
792 segs = skb_shinfo(skb)->gso_segs ?: 1;
793 /* multiply data chunks by size of headers */
794 bytecount = ((segs - 1) * skb_headlen(skb)) +
795 skb->len;
796 total_packets += segs;
797 total_bytes += bytecount;
798 }
799
800 igbvf_put_txbuf(adapter, buffer_info);
801 tx_desc->wb.status = 0;
802
803 i++;
804 if (i == tx_ring->count)
805 i = 0;
806 }
807 eop = tx_ring->buffer_info[i].next_to_watch;
808 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
809 }
810
811 tx_ring->next_to_clean = i;
812
813 if (unlikely(count &&
814 netif_carrier_ok(netdev) &&
815 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
816 /* Make sure that anybody stopping the queue after this
817 * sees the new next_to_clean.
818 */
819 smp_mb();
820 if (netif_queue_stopped(netdev) &&
821 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
822 netif_wake_queue(netdev);
823 ++adapter->restart_queue;
824 }
825 }
826
827 if (adapter->detect_tx_hung) {
828 /* Detect a transmit hang in hardware, this serializes the
829 * check with the clearing of time_stamp and movement of i */
830 adapter->detect_tx_hung = false;
831 if (tx_ring->buffer_info[i].time_stamp &&
832 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
833 (adapter->tx_timeout_factor * HZ)) &&
834 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
d4e0fe01
AD
835
836 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
837 /* detected Tx unit hang */
838 igbvf_print_tx_hang(adapter);
839
840 netif_stop_queue(netdev);
841 }
842 }
843 adapter->net_stats.tx_bytes += total_bytes;
844 adapter->net_stats.tx_packets += total_packets;
807540ba 845 return count < tx_ring->count;
d4e0fe01
AD
846}
847
848static irqreturn_t igbvf_msix_other(int irq, void *data)
849{
850 struct net_device *netdev = data;
851 struct igbvf_adapter *adapter = netdev_priv(netdev);
852 struct e1000_hw *hw = &adapter->hw;
853
854 adapter->int_counter1++;
855
856 netif_carrier_off(netdev);
857 hw->mac.get_link_status = 1;
858 if (!test_bit(__IGBVF_DOWN, &adapter->state))
859 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861 ew32(EIMS, adapter->eims_other);
862
863 return IRQ_HANDLED;
864}
865
866static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867{
868 struct net_device *netdev = data;
869 struct igbvf_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
871 struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873
874 adapter->total_tx_bytes = 0;
875 adapter->total_tx_packets = 0;
876
877 /* auto mask will automatically reenable the interrupt when we write
878 * EICS */
879 if (!igbvf_clean_tx_irq(tx_ring))
880 /* Ring was not completely cleaned, so fire another interrupt */
881 ew32(EICS, tx_ring->eims_value);
882 else
883 ew32(EIMS, tx_ring->eims_value);
884
885 return IRQ_HANDLED;
886}
887
888static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
889{
890 struct net_device *netdev = data;
891 struct igbvf_adapter *adapter = netdev_priv(netdev);
892
893 adapter->int_counter0++;
894
895 /* Write the ITR value calculated at the end of the
896 * previous interrupt.
897 */
898 if (adapter->rx_ring->set_itr) {
899 writel(adapter->rx_ring->itr_val,
900 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
901 adapter->rx_ring->set_itr = 0;
902 }
903
904 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
905 adapter->total_rx_bytes = 0;
906 adapter->total_rx_packets = 0;
907 __napi_schedule(&adapter->rx_ring->napi);
908 }
909
910 return IRQ_HANDLED;
911}
912
913#define IGBVF_NO_QUEUE -1
914
915static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
916 int tx_queue, int msix_vector)
917{
918 struct e1000_hw *hw = &adapter->hw;
919 u32 ivar, index;
920
921 /* 82576 uses a table-based method for assigning vectors.
922 Each queue has a single entry in the table to which we write
923 a vector number along with a "valid" bit. Sadly, the layout
924 of the table is somewhat counterintuitive. */
925 if (rx_queue > IGBVF_NO_QUEUE) {
926 index = (rx_queue >> 1);
927 ivar = array_er32(IVAR0, index);
928 if (rx_queue & 0x1) {
929 /* vector goes into third byte of register */
930 ivar = ivar & 0xFF00FFFF;
931 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
932 } else {
933 /* vector goes into low byte of register */
934 ivar = ivar & 0xFFFFFF00;
935 ivar |= msix_vector | E1000_IVAR_VALID;
936 }
937 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
938 array_ew32(IVAR0, index, ivar);
939 }
940 if (tx_queue > IGBVF_NO_QUEUE) {
941 index = (tx_queue >> 1);
942 ivar = array_er32(IVAR0, index);
943 if (tx_queue & 0x1) {
944 /* vector goes into high byte of register */
945 ivar = ivar & 0x00FFFFFF;
946 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
947 } else {
948 /* vector goes into second byte of register */
949 ivar = ivar & 0xFFFF00FF;
950 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
951 }
952 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
953 array_ew32(IVAR0, index, ivar);
954 }
955}
956
957/**
958 * igbvf_configure_msix - Configure MSI-X hardware
959 *
960 * igbvf_configure_msix sets up the hardware to properly
961 * generate MSI-X interrupts.
962 **/
963static void igbvf_configure_msix(struct igbvf_adapter *adapter)
964{
965 u32 tmp;
966 struct e1000_hw *hw = &adapter->hw;
967 struct igbvf_ring *tx_ring = adapter->tx_ring;
968 struct igbvf_ring *rx_ring = adapter->rx_ring;
969 int vector = 0;
970
971 adapter->eims_enable_mask = 0;
972
973 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
974 adapter->eims_enable_mask |= tx_ring->eims_value;
975 if (tx_ring->itr_val)
976 writel(tx_ring->itr_val,
977 hw->hw_addr + tx_ring->itr_register);
978 else
979 writel(1952, hw->hw_addr + tx_ring->itr_register);
980
981 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
982 adapter->eims_enable_mask |= rx_ring->eims_value;
983 if (rx_ring->itr_val)
984 writel(rx_ring->itr_val,
985 hw->hw_addr + rx_ring->itr_register);
986 else
987 writel(1952, hw->hw_addr + rx_ring->itr_register);
988
989 /* set vector for other causes, i.e. link changes */
990
991 tmp = (vector++ | E1000_IVAR_VALID);
992
993 ew32(IVAR_MISC, tmp);
994
995 adapter->eims_enable_mask = (1 << (vector)) - 1;
996 adapter->eims_other = 1 << (vector - 1);
997 e1e_flush();
998}
999
2d165771 1000static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1001{
1002 if (adapter->msix_entries) {
1003 pci_disable_msix(adapter->pdev);
1004 kfree(adapter->msix_entries);
1005 adapter->msix_entries = NULL;
1006 }
1007}
1008
1009/**
1010 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1011 *
1012 * Attempt to configure interrupts using the best available
1013 * capabilities of the hardware and kernel.
1014 **/
2d165771 1015static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1016{
1017 int err = -ENOMEM;
1018 int i;
1019
1020 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022 GFP_KERNEL);
1023 if (adapter->msix_entries) {
1024 for (i = 0; i < 3; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix(adapter->pdev,
1028 adapter->msix_entries, 3);
1029 }
1030
1031 if (err) {
1032 /* MSI-X failed */
1033 dev_err(&adapter->pdev->dev,
1034 "Failed to initialize MSI-X interrupts.\n");
1035 igbvf_reset_interrupt_capability(adapter);
1036 }
1037}
1038
1039/**
1040 * igbvf_request_msix - Initialize MSI-X interrupts
1041 *
1042 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1043 * kernel.
1044 **/
1045static int igbvf_request_msix(struct igbvf_adapter *adapter)
1046{
1047 struct net_device *netdev = adapter->netdev;
1048 int err = 0, vector = 0;
1049
1050 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1051 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1052 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1053 } else {
1054 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1055 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1056 }
1057
1058 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1059 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
d4e0fe01
AD
1060 netdev);
1061 if (err)
1062 goto out;
1063
1064 adapter->tx_ring->itr_register = E1000_EITR(vector);
1065 adapter->tx_ring->itr_val = 1952;
1066 vector++;
1067
1068 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1069 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
d4e0fe01
AD
1070 netdev);
1071 if (err)
1072 goto out;
1073
1074 adapter->rx_ring->itr_register = E1000_EITR(vector);
1075 adapter->rx_ring->itr_val = 1952;
1076 vector++;
1077
1078 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1079 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1080 if (err)
1081 goto out;
1082
1083 igbvf_configure_msix(adapter);
1084 return 0;
1085out:
1086 return err;
1087}
1088
1089/**
1090 * igbvf_alloc_queues - Allocate memory for all rings
1091 * @adapter: board private structure to initialize
1092 **/
1093static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1094{
1095 struct net_device *netdev = adapter->netdev;
1096
1097 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1098 if (!adapter->tx_ring)
1099 return -ENOMEM;
1100
1101 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1102 if (!adapter->rx_ring) {
1103 kfree(adapter->tx_ring);
1104 return -ENOMEM;
1105 }
1106
1107 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1108
1109 return 0;
1110}
1111
1112/**
1113 * igbvf_request_irq - initialize interrupts
1114 *
1115 * Attempts to configure interrupts using the best available
1116 * capabilities of the hardware and kernel.
1117 **/
1118static int igbvf_request_irq(struct igbvf_adapter *adapter)
1119{
1120 int err = -1;
1121
1122 /* igbvf supports msi-x only */
1123 if (adapter->msix_entries)
1124 err = igbvf_request_msix(adapter);
1125
1126 if (!err)
1127 return err;
1128
1129 dev_err(&adapter->pdev->dev,
1130 "Unable to allocate interrupt, Error: %d\n", err);
1131
1132 return err;
1133}
1134
1135static void igbvf_free_irq(struct igbvf_adapter *adapter)
1136{
1137 struct net_device *netdev = adapter->netdev;
1138 int vector;
1139
1140 if (adapter->msix_entries) {
1141 for (vector = 0; vector < 3; vector++)
1142 free_irq(adapter->msix_entries[vector].vector, netdev);
1143 }
1144}
1145
1146/**
1147 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1148 **/
1149static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1150{
1151 struct e1000_hw *hw = &adapter->hw;
1152
1153 ew32(EIMC, ~0);
1154
1155 if (adapter->msix_entries)
1156 ew32(EIAC, 0);
1157}
1158
1159/**
1160 * igbvf_irq_enable - Enable default interrupt generation settings
1161 **/
1162static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1163{
1164 struct e1000_hw *hw = &adapter->hw;
1165
1166 ew32(EIAC, adapter->eims_enable_mask);
1167 ew32(EIAM, adapter->eims_enable_mask);
1168 ew32(EIMS, adapter->eims_enable_mask);
1169}
1170
1171/**
1172 * igbvf_poll - NAPI Rx polling callback
1173 * @napi: struct associated with this polling callback
1174 * @budget: amount of packets driver is allowed to process this poll
1175 **/
1176static int igbvf_poll(struct napi_struct *napi, int budget)
1177{
1178 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1179 struct igbvf_adapter *adapter = rx_ring->adapter;
1180 struct e1000_hw *hw = &adapter->hw;
1181 int work_done = 0;
1182
1183 igbvf_clean_rx_irq(adapter, &work_done, budget);
1184
1185 /* If not enough Rx work done, exit the polling mode */
1186 if (work_done < budget) {
1187 napi_complete(napi);
1188
1189 if (adapter->itr_setting & 3)
1190 igbvf_set_itr(adapter);
1191
1192 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1193 ew32(EIMS, adapter->rx_ring->eims_value);
1194 }
1195
1196 return work_done;
1197}
1198
1199/**
1200 * igbvf_set_rlpml - set receive large packet maximum length
1201 * @adapter: board private structure
1202 *
1203 * Configure the maximum size of packets that will be received
1204 */
1205static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1206{
1207 int max_frame_size = adapter->max_frame_size;
1208 struct e1000_hw *hw = &adapter->hw;
1209
1210 if (adapter->vlgrp)
1211 max_frame_size += VLAN_TAG_SIZE;
1212
1213 e1000_rlpml_set_vf(hw, max_frame_size);
1214}
1215
1216static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1217{
1218 struct igbvf_adapter *adapter = netdev_priv(netdev);
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 if (hw->mac.ops.set_vfta(hw, vid, true))
1222 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1223}
1224
1225static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1226{
1227 struct igbvf_adapter *adapter = netdev_priv(netdev);
1228 struct e1000_hw *hw = &adapter->hw;
1229
1230 igbvf_irq_disable(adapter);
1231 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1232
1233 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1234 igbvf_irq_enable(adapter);
1235
1236 if (hw->mac.ops.set_vfta(hw, vid, false))
1237 dev_err(&adapter->pdev->dev,
1238 "Failed to remove vlan id %d\n", vid);
1239}
1240
1241static void igbvf_vlan_rx_register(struct net_device *netdev,
1242 struct vlan_group *grp)
1243{
1244 struct igbvf_adapter *adapter = netdev_priv(netdev);
1245
1246 adapter->vlgrp = grp;
1247}
1248
1249static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1250{
1251 u16 vid;
1252
1253 if (!adapter->vlgrp)
1254 return;
1255
b738127d 1256 for (vid = 0; vid < VLAN_N_VID; vid++) {
d4e0fe01
AD
1257 if (!vlan_group_get_device(adapter->vlgrp, vid))
1258 continue;
1259 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1260 }
1261
1262 igbvf_set_rlpml(adapter);
1263}
1264
1265/**
1266 * igbvf_configure_tx - Configure Transmit Unit after Reset
1267 * @adapter: board private structure
1268 *
1269 * Configure the Tx unit of the MAC after a reset.
1270 **/
1271static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1272{
1273 struct e1000_hw *hw = &adapter->hw;
1274 struct igbvf_ring *tx_ring = adapter->tx_ring;
1275 u64 tdba;
1276 u32 txdctl, dca_txctrl;
1277
1278 /* disable transmits */
1279 txdctl = er32(TXDCTL(0));
1280 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1281 msleep(10);
1282
1283 /* Setup the HW Tx Head and Tail descriptor pointers */
1284 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1285 tdba = tx_ring->dma;
8e20ce94 1286 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1287 ew32(TDBAH(0), (tdba >> 32));
1288 ew32(TDH(0), 0);
1289 ew32(TDT(0), 0);
1290 tx_ring->head = E1000_TDH(0);
1291 tx_ring->tail = E1000_TDT(0);
1292
1293 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1294 * MUST be delivered in order or it will completely screw up
1295 * our bookeeping.
1296 */
1297 dca_txctrl = er32(DCA_TXCTRL(0));
1298 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1299 ew32(DCA_TXCTRL(0), dca_txctrl);
1300
1301 /* enable transmits */
1302 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1303 ew32(TXDCTL(0), txdctl);
1304
1305 /* Setup Transmit Descriptor Settings for eop descriptor */
1306 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1307
1308 /* enable Report Status bit */
1309 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
d4e0fe01
AD
1310}
1311
1312/**
1313 * igbvf_setup_srrctl - configure the receive control registers
1314 * @adapter: Board private structure
1315 **/
1316static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1317{
1318 struct e1000_hw *hw = &adapter->hw;
1319 u32 srrctl = 0;
1320
1321 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1322 E1000_SRRCTL_BSIZEHDR_MASK |
1323 E1000_SRRCTL_BSIZEPKT_MASK);
1324
1325 /* Enable queue drop to avoid head of line blocking */
1326 srrctl |= E1000_SRRCTL_DROP_EN;
1327
1328 /* Setup buffer sizes */
1329 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1330 E1000_SRRCTL_BSIZEPKT_SHIFT;
1331
1332 if (adapter->rx_buffer_len < 2048) {
1333 adapter->rx_ps_hdr_size = 0;
1334 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1335 } else {
1336 adapter->rx_ps_hdr_size = 128;
1337 srrctl |= adapter->rx_ps_hdr_size <<
1338 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1339 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1340 }
1341
1342 ew32(SRRCTL(0), srrctl);
1343}
1344
1345/**
1346 * igbvf_configure_rx - Configure Receive Unit after Reset
1347 * @adapter: board private structure
1348 *
1349 * Configure the Rx unit of the MAC after a reset.
1350 **/
1351static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1352{
1353 struct e1000_hw *hw = &adapter->hw;
1354 struct igbvf_ring *rx_ring = adapter->rx_ring;
1355 u64 rdba;
1356 u32 rdlen, rxdctl;
1357
1358 /* disable receives */
1359 rxdctl = er32(RXDCTL(0));
1360 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1361 msleep(10);
1362
1363 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1364
1365 /*
1366 * Setup the HW Rx Head and Tail Descriptor Pointers and
1367 * the Base and Length of the Rx Descriptor Ring
1368 */
1369 rdba = rx_ring->dma;
8e20ce94 1370 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1371 ew32(RDBAH(0), (rdba >> 32));
1372 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1373 rx_ring->head = E1000_RDH(0);
1374 rx_ring->tail = E1000_RDT(0);
1375 ew32(RDH(0), 0);
1376 ew32(RDT(0), 0);
1377
1378 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1379 rxdctl &= 0xFFF00000;
1380 rxdctl |= IGBVF_RX_PTHRESH;
1381 rxdctl |= IGBVF_RX_HTHRESH << 8;
1382 rxdctl |= IGBVF_RX_WTHRESH << 16;
1383
1384 igbvf_set_rlpml(adapter);
1385
1386 /* enable receives */
1387 ew32(RXDCTL(0), rxdctl);
1388}
1389
1390/**
1391 * igbvf_set_multi - Multicast and Promiscuous mode set
1392 * @netdev: network interface device structure
1393 *
1394 * The set_multi entry point is called whenever the multicast address
1395 * list or the network interface flags are updated. This routine is
1396 * responsible for configuring the hardware for proper multicast,
1397 * promiscuous mode, and all-multi behavior.
1398 **/
1399static void igbvf_set_multi(struct net_device *netdev)
1400{
1401 struct igbvf_adapter *adapter = netdev_priv(netdev);
1402 struct e1000_hw *hw = &adapter->hw;
22bedad3 1403 struct netdev_hw_addr *ha;
d4e0fe01
AD
1404 u8 *mta_list = NULL;
1405 int i;
1406
4cd24eaf
JP
1407 if (!netdev_mc_empty(netdev)) {
1408 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
d4e0fe01
AD
1409 if (!mta_list) {
1410 dev_err(&adapter->pdev->dev,
1411 "failed to allocate multicast filter list\n");
1412 return;
1413 }
1414 }
1415
1416 /* prepare a packed array of only addresses. */
48e2f183 1417 i = 0;
22bedad3
JP
1418 netdev_for_each_mc_addr(ha, netdev)
1419 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
d4e0fe01
AD
1420
1421 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1422 kfree(mta_list);
1423}
1424
1425/**
1426 * igbvf_configure - configure the hardware for Rx and Tx
1427 * @adapter: private board structure
1428 **/
1429static void igbvf_configure(struct igbvf_adapter *adapter)
1430{
1431 igbvf_set_multi(adapter->netdev);
1432
1433 igbvf_restore_vlan(adapter);
1434
1435 igbvf_configure_tx(adapter);
1436 igbvf_setup_srrctl(adapter);
1437 igbvf_configure_rx(adapter);
1438 igbvf_alloc_rx_buffers(adapter->rx_ring,
1439 igbvf_desc_unused(adapter->rx_ring));
1440}
1441
1442/* igbvf_reset - bring the hardware into a known good state
1443 *
1444 * This function boots the hardware and enables some settings that
1445 * require a configuration cycle of the hardware - those cannot be
1446 * set/changed during runtime. After reset the device needs to be
1447 * properly configured for Rx, Tx etc.
1448 */
2d165771 1449static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1450{
1451 struct e1000_mac_info *mac = &adapter->hw.mac;
1452 struct net_device *netdev = adapter->netdev;
1453 struct e1000_hw *hw = &adapter->hw;
1454
1455 /* Allow time for pending master requests to run */
1456 if (mac->ops.reset_hw(hw))
1457 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1458
1459 mac->ops.init_hw(hw);
1460
1461 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1462 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1463 netdev->addr_len);
1464 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1465 netdev->addr_len);
1466 }
72279093
AD
1467
1468 adapter->last_reset = jiffies;
d4e0fe01
AD
1469}
1470
1471int igbvf_up(struct igbvf_adapter *adapter)
1472{
1473 struct e1000_hw *hw = &adapter->hw;
1474
1475 /* hardware has been reset, we need to reload some things */
1476 igbvf_configure(adapter);
1477
1478 clear_bit(__IGBVF_DOWN, &adapter->state);
1479
1480 napi_enable(&adapter->rx_ring->napi);
1481 if (adapter->msix_entries)
1482 igbvf_configure_msix(adapter);
1483
1484 /* Clear any pending interrupts. */
1485 er32(EICR);
1486 igbvf_irq_enable(adapter);
1487
1488 /* start the watchdog */
1489 hw->mac.get_link_status = 1;
1490 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1491
1492
1493 return 0;
1494}
1495
1496void igbvf_down(struct igbvf_adapter *adapter)
1497{
1498 struct net_device *netdev = adapter->netdev;
1499 struct e1000_hw *hw = &adapter->hw;
1500 u32 rxdctl, txdctl;
1501
1502 /*
1503 * signal that we're down so the interrupt handler does not
1504 * reschedule our watchdog timer
1505 */
1506 set_bit(__IGBVF_DOWN, &adapter->state);
1507
1508 /* disable receives in the hardware */
1509 rxdctl = er32(RXDCTL(0));
1510 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1511
1512 netif_stop_queue(netdev);
1513
1514 /* disable transmits in the hardware */
1515 txdctl = er32(TXDCTL(0));
1516 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1517
1518 /* flush both disables and wait for them to finish */
1519 e1e_flush();
1520 msleep(10);
1521
1522 napi_disable(&adapter->rx_ring->napi);
1523
1524 igbvf_irq_disable(adapter);
1525
1526 del_timer_sync(&adapter->watchdog_timer);
1527
d4e0fe01
AD
1528 netif_carrier_off(netdev);
1529
1530 /* record the stats before reset*/
1531 igbvf_update_stats(adapter);
1532
1533 adapter->link_speed = 0;
1534 adapter->link_duplex = 0;
1535
1536 igbvf_reset(adapter);
1537 igbvf_clean_tx_ring(adapter->tx_ring);
1538 igbvf_clean_rx_ring(adapter->rx_ring);
1539}
1540
1541void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1542{
1543 might_sleep();
1544 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1545 msleep(1);
1546 igbvf_down(adapter);
1547 igbvf_up(adapter);
1548 clear_bit(__IGBVF_RESETTING, &adapter->state);
1549}
1550
1551/**
1552 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1553 * @adapter: board private structure to initialize
1554 *
1555 * igbvf_sw_init initializes the Adapter private data structure.
1556 * Fields are initialized based on PCI device information and
1557 * OS network device settings (MTU size).
1558 **/
1559static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1560{
1561 struct net_device *netdev = adapter->netdev;
1562 s32 rc;
1563
1564 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1565 adapter->rx_ps_hdr_size = 0;
1566 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1567 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1568
1569 adapter->tx_int_delay = 8;
1570 adapter->tx_abs_int_delay = 32;
1571 adapter->rx_int_delay = 0;
1572 adapter->rx_abs_int_delay = 8;
1573 adapter->itr_setting = 3;
1574 adapter->itr = 20000;
1575
1576 /* Set various function pointers */
1577 adapter->ei->init_ops(&adapter->hw);
1578
1579 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1580 if (rc)
1581 return rc;
1582
1583 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1584 if (rc)
1585 return rc;
1586
1587 igbvf_set_interrupt_capability(adapter);
1588
1589 if (igbvf_alloc_queues(adapter))
1590 return -ENOMEM;
1591
1592 spin_lock_init(&adapter->tx_queue_lock);
1593
1594 /* Explicitly disable IRQ since the NIC can be in any state. */
1595 igbvf_irq_disable(adapter);
1596
1597 spin_lock_init(&adapter->stats_lock);
1598
1599 set_bit(__IGBVF_DOWN, &adapter->state);
1600 return 0;
1601}
1602
1603static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1604{
1605 struct e1000_hw *hw = &adapter->hw;
1606
1607 adapter->stats.last_gprc = er32(VFGPRC);
1608 adapter->stats.last_gorc = er32(VFGORC);
1609 adapter->stats.last_gptc = er32(VFGPTC);
1610 adapter->stats.last_gotc = er32(VFGOTC);
1611 adapter->stats.last_mprc = er32(VFMPRC);
1612 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1613 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1614 adapter->stats.last_gorlbc = er32(VFGORLBC);
1615 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1616
1617 adapter->stats.base_gprc = er32(VFGPRC);
1618 adapter->stats.base_gorc = er32(VFGORC);
1619 adapter->stats.base_gptc = er32(VFGPTC);
1620 adapter->stats.base_gotc = er32(VFGOTC);
1621 adapter->stats.base_mprc = er32(VFMPRC);
1622 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1623 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1624 adapter->stats.base_gorlbc = er32(VFGORLBC);
1625 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1626}
1627
1628/**
1629 * igbvf_open - Called when a network interface is made active
1630 * @netdev: network interface device structure
1631 *
1632 * Returns 0 on success, negative value on failure
1633 *
1634 * The open entry point is called when a network interface is made
1635 * active by the system (IFF_UP). At this point all resources needed
1636 * for transmit and receive operations are allocated, the interrupt
1637 * handler is registered with the OS, the watchdog timer is started,
1638 * and the stack is notified that the interface is ready.
1639 **/
1640static int igbvf_open(struct net_device *netdev)
1641{
1642 struct igbvf_adapter *adapter = netdev_priv(netdev);
1643 struct e1000_hw *hw = &adapter->hw;
1644 int err;
1645
1646 /* disallow open during test */
1647 if (test_bit(__IGBVF_TESTING, &adapter->state))
1648 return -EBUSY;
1649
1650 /* allocate transmit descriptors */
1651 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1652 if (err)
1653 goto err_setup_tx;
1654
1655 /* allocate receive descriptors */
1656 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1657 if (err)
1658 goto err_setup_rx;
1659
1660 /*
1661 * before we allocate an interrupt, we must be ready to handle it.
1662 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1663 * as soon as we call pci_request_irq, so we have to setup our
1664 * clean_rx handler before we do so.
1665 */
1666 igbvf_configure(adapter);
1667
1668 err = igbvf_request_irq(adapter);
1669 if (err)
1670 goto err_req_irq;
1671
1672 /* From here on the code is the same as igbvf_up() */
1673 clear_bit(__IGBVF_DOWN, &adapter->state);
1674
1675 napi_enable(&adapter->rx_ring->napi);
1676
1677 /* clear any pending interrupts */
1678 er32(EICR);
1679
1680 igbvf_irq_enable(adapter);
1681
1682 /* start the watchdog */
1683 hw->mac.get_link_status = 1;
1684 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1685
1686 return 0;
1687
1688err_req_irq:
1689 igbvf_free_rx_resources(adapter->rx_ring);
1690err_setup_rx:
1691 igbvf_free_tx_resources(adapter->tx_ring);
1692err_setup_tx:
1693 igbvf_reset(adapter);
1694
1695 return err;
1696}
1697
1698/**
1699 * igbvf_close - Disables a network interface
1700 * @netdev: network interface device structure
1701 *
1702 * Returns 0, this is not allowed to fail
1703 *
1704 * The close entry point is called when an interface is de-activated
1705 * by the OS. The hardware is still under the drivers control, but
1706 * needs to be disabled. A global MAC reset is issued to stop the
1707 * hardware, and all transmit and receive resources are freed.
1708 **/
1709static int igbvf_close(struct net_device *netdev)
1710{
1711 struct igbvf_adapter *adapter = netdev_priv(netdev);
1712
1713 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1714 igbvf_down(adapter);
1715
1716 igbvf_free_irq(adapter);
1717
1718 igbvf_free_tx_resources(adapter->tx_ring);
1719 igbvf_free_rx_resources(adapter->rx_ring);
1720
1721 return 0;
1722}
1723/**
1724 * igbvf_set_mac - Change the Ethernet Address of the NIC
1725 * @netdev: network interface device structure
1726 * @p: pointer to an address structure
1727 *
1728 * Returns 0 on success, negative on failure
1729 **/
1730static int igbvf_set_mac(struct net_device *netdev, void *p)
1731{
1732 struct igbvf_adapter *adapter = netdev_priv(netdev);
1733 struct e1000_hw *hw = &adapter->hw;
1734 struct sockaddr *addr = p;
1735
1736 if (!is_valid_ether_addr(addr->sa_data))
1737 return -EADDRNOTAVAIL;
1738
1739 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1740
1741 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1742
1743 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1744 return -EADDRNOTAVAIL;
1745
1746 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1747
1748 return 0;
1749}
1750
1751#define UPDATE_VF_COUNTER(reg, name) \
1752 { \
1753 u32 current_counter = er32(reg); \
1754 if (current_counter < adapter->stats.last_##name) \
1755 adapter->stats.name += 0x100000000LL; \
1756 adapter->stats.last_##name = current_counter; \
1757 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1758 adapter->stats.name |= current_counter; \
1759 }
1760
1761/**
1762 * igbvf_update_stats - Update the board statistics counters
1763 * @adapter: board private structure
1764**/
1765void igbvf_update_stats(struct igbvf_adapter *adapter)
1766{
1767 struct e1000_hw *hw = &adapter->hw;
1768 struct pci_dev *pdev = adapter->pdev;
1769
1770 /*
1771 * Prevent stats update while adapter is being reset, link is down
1772 * or if the pci connection is down.
1773 */
1774 if (adapter->link_speed == 0)
1775 return;
1776
1777 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1778 return;
1779
1780 if (pci_channel_offline(pdev))
1781 return;
1782
1783 UPDATE_VF_COUNTER(VFGPRC, gprc);
1784 UPDATE_VF_COUNTER(VFGORC, gorc);
1785 UPDATE_VF_COUNTER(VFGPTC, gptc);
1786 UPDATE_VF_COUNTER(VFGOTC, gotc);
1787 UPDATE_VF_COUNTER(VFMPRC, mprc);
1788 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1789 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1790 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1791 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1792
1793 /* Fill out the OS statistics structure */
1794 adapter->net_stats.multicast = adapter->stats.mprc;
1795}
1796
1797static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1798{
1799 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1800 adapter->link_speed,
1801 ((adapter->link_duplex == FULL_DUPLEX) ?
1802 "Full Duplex" : "Half Duplex"));
1803}
1804
1805static bool igbvf_has_link(struct igbvf_adapter *adapter)
1806{
1807 struct e1000_hw *hw = &adapter->hw;
1808 s32 ret_val = E1000_SUCCESS;
1809 bool link_active;
1810
72279093
AD
1811 /* If interface is down, stay link down */
1812 if (test_bit(__IGBVF_DOWN, &adapter->state))
1813 return false;
1814
d4e0fe01
AD
1815 ret_val = hw->mac.ops.check_for_link(hw);
1816 link_active = !hw->mac.get_link_status;
1817
1818 /* if check for link returns error we will need to reset */
72279093 1819 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1820 schedule_work(&adapter->reset_task);
1821
1822 return link_active;
1823}
1824
1825/**
1826 * igbvf_watchdog - Timer Call-back
1827 * @data: pointer to adapter cast into an unsigned long
1828 **/
1829static void igbvf_watchdog(unsigned long data)
1830{
1831 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1832
1833 /* Do the rest outside of interrupt context */
1834 schedule_work(&adapter->watchdog_task);
1835}
1836
1837static void igbvf_watchdog_task(struct work_struct *work)
1838{
1839 struct igbvf_adapter *adapter = container_of(work,
1840 struct igbvf_adapter,
1841 watchdog_task);
1842 struct net_device *netdev = adapter->netdev;
1843 struct e1000_mac_info *mac = &adapter->hw.mac;
1844 struct igbvf_ring *tx_ring = adapter->tx_ring;
1845 struct e1000_hw *hw = &adapter->hw;
1846 u32 link;
1847 int tx_pending = 0;
1848
1849 link = igbvf_has_link(adapter);
1850
1851 if (link) {
1852 if (!netif_carrier_ok(netdev)) {
d4e0fe01
AD
1853 mac->ops.get_link_up_info(&adapter->hw,
1854 &adapter->link_speed,
1855 &adapter->link_duplex);
1856 igbvf_print_link_info(adapter);
1857
a08af745 1858 /* adjust timeout factor according to speed/duplex */
d4e0fe01
AD
1859 adapter->tx_timeout_factor = 1;
1860 switch (adapter->link_speed) {
1861 case SPEED_10:
d4e0fe01
AD
1862 adapter->tx_timeout_factor = 16;
1863 break;
1864 case SPEED_100:
d4e0fe01
AD
1865 /* maybe add some timeout factor ? */
1866 break;
1867 }
1868
1869 netif_carrier_on(netdev);
1870 netif_wake_queue(netdev);
1871 }
1872 } else {
1873 if (netif_carrier_ok(netdev)) {
1874 adapter->link_speed = 0;
1875 adapter->link_duplex = 0;
1876 dev_info(&adapter->pdev->dev, "Link is Down\n");
1877 netif_carrier_off(netdev);
1878 netif_stop_queue(netdev);
1879 }
1880 }
1881
1882 if (netif_carrier_ok(netdev)) {
1883 igbvf_update_stats(adapter);
1884 } else {
1885 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1886 tx_ring->count);
1887 if (tx_pending) {
1888 /*
1889 * We've lost link, so the controller stops DMA,
1890 * but we've got queued Tx work that's never going
1891 * to get done, so reset controller to flush Tx.
1892 * (Do the reset outside of interrupt context).
1893 */
1894 adapter->tx_timeout_count++;
1895 schedule_work(&adapter->reset_task);
1896 }
1897 }
1898
1899 /* Cause software interrupt to ensure Rx ring is cleaned */
1900 ew32(EICS, adapter->rx_ring->eims_value);
1901
1902 /* Force detection of hung controller every watchdog period */
1903 adapter->detect_tx_hung = 1;
1904
1905 /* Reset the timer */
1906 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1907 mod_timer(&adapter->watchdog_timer,
1908 round_jiffies(jiffies + (2 * HZ)));
1909}
1910
1911#define IGBVF_TX_FLAGS_CSUM 0x00000001
1912#define IGBVF_TX_FLAGS_VLAN 0x00000002
1913#define IGBVF_TX_FLAGS_TSO 0x00000004
1914#define IGBVF_TX_FLAGS_IPV4 0x00000008
1915#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1916#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1917
1918static int igbvf_tso(struct igbvf_adapter *adapter,
1919 struct igbvf_ring *tx_ring,
1920 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1921{
1922 struct e1000_adv_tx_context_desc *context_desc;
1923 unsigned int i;
1924 int err;
1925 struct igbvf_buffer *buffer_info;
1926 u32 info = 0, tu_cmd = 0;
1927 u32 mss_l4len_idx, l4len;
1928 *hdr_len = 0;
1929
1930 if (skb_header_cloned(skb)) {
1931 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1932 if (err) {
1933 dev_err(&adapter->pdev->dev,
1934 "igbvf_tso returning an error\n");
1935 return err;
1936 }
1937 }
1938
1939 l4len = tcp_hdrlen(skb);
1940 *hdr_len += l4len;
1941
1942 if (skb->protocol == htons(ETH_P_IP)) {
1943 struct iphdr *iph = ip_hdr(skb);
1944 iph->tot_len = 0;
1945 iph->check = 0;
1946 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1947 iph->daddr, 0,
1948 IPPROTO_TCP,
1949 0);
8e1e8a47 1950 } else if (skb_is_gso_v6(skb)) {
d4e0fe01
AD
1951 ipv6_hdr(skb)->payload_len = 0;
1952 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1953 &ipv6_hdr(skb)->daddr,
1954 0, IPPROTO_TCP, 0);
1955 }
1956
1957 i = tx_ring->next_to_use;
1958
1959 buffer_info = &tx_ring->buffer_info[i];
1960 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1961 /* VLAN MACLEN IPLEN */
1962 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1963 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1964 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1965 *hdr_len += skb_network_offset(skb);
1966 info |= (skb_transport_header(skb) - skb_network_header(skb));
1967 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1968 context_desc->vlan_macip_lens = cpu_to_le32(info);
1969
1970 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1971 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1972
1973 if (skb->protocol == htons(ETH_P_IP))
1974 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1975 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1976
1977 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1978
1979 /* MSS L4LEN IDX */
1980 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1981 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1982
1983 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1984 context_desc->seqnum_seed = 0;
1985
1986 buffer_info->time_stamp = jiffies;
1987 buffer_info->next_to_watch = i;
1988 buffer_info->dma = 0;
1989 i++;
1990 if (i == tx_ring->count)
1991 i = 0;
1992
1993 tx_ring->next_to_use = i;
1994
1995 return true;
1996}
1997
1998static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1999 struct igbvf_ring *tx_ring,
2000 struct sk_buff *skb, u32 tx_flags)
2001{
2002 struct e1000_adv_tx_context_desc *context_desc;
2003 unsigned int i;
2004 struct igbvf_buffer *buffer_info;
2005 u32 info = 0, tu_cmd = 0;
2006
2007 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2008 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2009 i = tx_ring->next_to_use;
2010 buffer_info = &tx_ring->buffer_info[i];
2011 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2012
2013 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2014 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2015
2016 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2017 if (skb->ip_summed == CHECKSUM_PARTIAL)
2018 info |= (skb_transport_header(skb) -
2019 skb_network_header(skb));
2020
2021
2022 context_desc->vlan_macip_lens = cpu_to_le32(info);
2023
2024 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2025
2026 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2027 switch (skb->protocol) {
2028 case __constant_htons(ETH_P_IP):
2029 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2030 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2031 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2032 break;
2033 case __constant_htons(ETH_P_IPV6):
2034 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2035 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2036 break;
2037 default:
2038 break;
2039 }
2040 }
2041
2042 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2043 context_desc->seqnum_seed = 0;
2044 context_desc->mss_l4len_idx = 0;
2045
2046 buffer_info->time_stamp = jiffies;
2047 buffer_info->next_to_watch = i;
2048 buffer_info->dma = 0;
2049 i++;
2050 if (i == tx_ring->count)
2051 i = 0;
2052 tx_ring->next_to_use = i;
2053
2054 return true;
2055 }
2056
2057 return false;
2058}
2059
2060static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2061{
2062 struct igbvf_adapter *adapter = netdev_priv(netdev);
2063
2064 /* there is enough descriptors then we don't need to worry */
2065 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2066 return 0;
2067
2068 netif_stop_queue(netdev);
2069
2070 smp_mb();
2071
2072 /* We need to check again just in case room has been made available */
2073 if (igbvf_desc_unused(adapter->tx_ring) < size)
2074 return -EBUSY;
2075
2076 netif_wake_queue(netdev);
2077
2078 ++adapter->restart_queue;
2079 return 0;
2080}
2081
2082#define IGBVF_MAX_TXD_PWR 16
2083#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2084
2085static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2086 struct igbvf_ring *tx_ring,
2087 struct sk_buff *skb,
2088 unsigned int first)
2089{
2090 struct igbvf_buffer *buffer_info;
a7d5ca40 2091 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2092 unsigned int len = skb_headlen(skb);
2093 unsigned int count = 0, i;
2094 unsigned int f;
d4e0fe01
AD
2095
2096 i = tx_ring->next_to_use;
2097
d4e0fe01
AD
2098 buffer_info = &tx_ring->buffer_info[i];
2099 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2100 buffer_info->length = len;
2101 /* set time_stamp *before* dma to help avoid a possible race */
2102 buffer_info->time_stamp = jiffies;
2103 buffer_info->next_to_watch = i;
ac26d7d6 2104 buffer_info->mapped_as_page = false;
123e9f1a
NN
2105 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2106 DMA_TO_DEVICE);
2107 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40
AD
2108 goto dma_error;
2109
d4e0fe01
AD
2110
2111 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2112 struct skb_frag_struct *frag;
2113
8581145f 2114 count++;
d4e0fe01
AD
2115 i++;
2116 if (i == tx_ring->count)
2117 i = 0;
2118
2119 frag = &skb_shinfo(skb)->frags[f];
2120 len = frag->size;
2121
2122 buffer_info = &tx_ring->buffer_info[i];
2123 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2124 buffer_info->length = len;
2125 buffer_info->time_stamp = jiffies;
2126 buffer_info->next_to_watch = i;
a7d5ca40 2127 buffer_info->mapped_as_page = true;
123e9f1a 2128 buffer_info->dma = dma_map_page(&pdev->dev,
a7d5ca40
AD
2129 frag->page,
2130 frag->page_offset,
2131 len,
123e9f1a
NN
2132 DMA_TO_DEVICE);
2133 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40 2134 goto dma_error;
d4e0fe01
AD
2135 }
2136
2137 tx_ring->buffer_info[i].skb = skb;
2138 tx_ring->buffer_info[first].next_to_watch = i;
2139
a7d5ca40
AD
2140 return ++count;
2141
2142dma_error:
2143 dev_err(&pdev->dev, "TX DMA map failed\n");
2144
2145 /* clear timestamp and dma mappings for failed buffer_info mapping */
2146 buffer_info->dma = 0;
2147 buffer_info->time_stamp = 0;
2148 buffer_info->length = 0;
2149 buffer_info->next_to_watch = 0;
2150 buffer_info->mapped_as_page = false;
c1fa347f
RK
2151 if (count)
2152 count--;
a7d5ca40
AD
2153
2154 /* clear timestamp and dma mappings for remaining portion of packet */
c1fa347f
RK
2155 while (count--) {
2156 if (i==0)
a7d5ca40 2157 i += tx_ring->count;
c1fa347f 2158 i--;
a7d5ca40
AD
2159 buffer_info = &tx_ring->buffer_info[i];
2160 igbvf_put_txbuf(adapter, buffer_info);
2161 }
2162
2163 return 0;
d4e0fe01
AD
2164}
2165
2166static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2167 struct igbvf_ring *tx_ring,
2168 int tx_flags, int count, u32 paylen,
2169 u8 hdr_len)
2170{
2171 union e1000_adv_tx_desc *tx_desc = NULL;
2172 struct igbvf_buffer *buffer_info;
2173 u32 olinfo_status = 0, cmd_type_len;
2174 unsigned int i;
2175
2176 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2177 E1000_ADVTXD_DCMD_DEXT);
2178
2179 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2180 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2181
2182 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2183 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2184
2185 /* insert tcp checksum */
2186 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2187
2188 /* insert ip checksum */
2189 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2190 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2191
2192 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2193 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2194 }
2195
2196 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2197
2198 i = tx_ring->next_to_use;
2199 while (count--) {
2200 buffer_info = &tx_ring->buffer_info[i];
2201 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2202 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2203 tx_desc->read.cmd_type_len =
2204 cpu_to_le32(cmd_type_len | buffer_info->length);
2205 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2206 i++;
2207 if (i == tx_ring->count)
2208 i = 0;
2209 }
2210
2211 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2212 /* Force memory writes to complete before letting h/w
2213 * know there are new descriptors to fetch. (Only
2214 * applicable for weak-ordered memory model archs,
2215 * such as IA-64). */
2216 wmb();
2217
2218 tx_ring->next_to_use = i;
2219 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2220 /* we need this if more than one processor can write to our tail
2221 * at a time, it syncronizes IO on IA64/Altix systems */
2222 mmiowb();
2223}
2224
3b29a56d
SH
2225static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2226 struct net_device *netdev,
2227 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2228{
2229 struct igbvf_adapter *adapter = netdev_priv(netdev);
2230 unsigned int first, tx_flags = 0;
2231 u8 hdr_len = 0;
2232 int count = 0;
2233 int tso = 0;
2234
2235 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2236 dev_kfree_skb_any(skb);
2237 return NETDEV_TX_OK;
2238 }
2239
2240 if (skb->len <= 0) {
2241 dev_kfree_skb_any(skb);
2242 return NETDEV_TX_OK;
2243 }
2244
2245 /*
2246 * need: count + 4 desc gap to keep tail from touching
2247 * + 2 desc gap to keep tail from touching head,
2248 * + 1 desc for skb->data,
2249 * + 1 desc for context descriptor,
2250 * head, otherwise try next time
2251 */
2252 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2253 /* this is a hard error */
2254 return NETDEV_TX_BUSY;
2255 }
2256
2257 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2258 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2259 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2260 }
2261
2262 if (skb->protocol == htons(ETH_P_IP))
2263 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2264
2265 first = tx_ring->next_to_use;
2266
2267 tso = skb_is_gso(skb) ?
2268 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2269 if (unlikely(tso < 0)) {
2270 dev_kfree_skb_any(skb);
2271 return NETDEV_TX_OK;
2272 }
2273
2274 if (tso)
2275 tx_flags |= IGBVF_TX_FLAGS_TSO;
2276 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2277 (skb->ip_summed == CHECKSUM_PARTIAL))
2278 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2279
2280 /*
2281 * count reflects descriptors mapped, if 0 then mapping error
2282 * has occured and we need to rewind the descriptor queue
2283 */
2284 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2285
2286 if (count) {
2287 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2288 skb->len, hdr_len);
d4e0fe01
AD
2289 /* Make sure there is space in the ring for the next send. */
2290 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2291 } else {
2292 dev_kfree_skb_any(skb);
2293 tx_ring->buffer_info[first].time_stamp = 0;
2294 tx_ring->next_to_use = first;
2295 }
2296
2297 return NETDEV_TX_OK;
2298}
2299
3b29a56d
SH
2300static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2301 struct net_device *netdev)
d4e0fe01
AD
2302{
2303 struct igbvf_adapter *adapter = netdev_priv(netdev);
2304 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2305
2306 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2307 dev_kfree_skb_any(skb);
2308 return NETDEV_TX_OK;
2309 }
2310
2311 tx_ring = &adapter->tx_ring[0];
2312
3b29a56d 2313 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2314}
2315
2316/**
2317 * igbvf_tx_timeout - Respond to a Tx Hang
2318 * @netdev: network interface device structure
2319 **/
2320static void igbvf_tx_timeout(struct net_device *netdev)
2321{
2322 struct igbvf_adapter *adapter = netdev_priv(netdev);
2323
2324 /* Do the reset outside of interrupt context */
2325 adapter->tx_timeout_count++;
2326 schedule_work(&adapter->reset_task);
2327}
2328
2329static void igbvf_reset_task(struct work_struct *work)
2330{
2331 struct igbvf_adapter *adapter;
2332 adapter = container_of(work, struct igbvf_adapter, reset_task);
2333
2334 igbvf_reinit_locked(adapter);
2335}
2336
2337/**
2338 * igbvf_get_stats - Get System Network Statistics
2339 * @netdev: network interface device structure
2340 *
2341 * Returns the address of the device statistics structure.
2342 * The statistics are actually updated from the timer callback.
2343 **/
2344static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2345{
2346 struct igbvf_adapter *adapter = netdev_priv(netdev);
2347
2348 /* only return the current stats */
2349 return &adapter->net_stats;
2350}
2351
2352/**
2353 * igbvf_change_mtu - Change the Maximum Transfer Unit
2354 * @netdev: network interface device structure
2355 * @new_mtu: new value for maximum frame size
2356 *
2357 * Returns 0 on success, negative on failure
2358 **/
2359static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2360{
2361 struct igbvf_adapter *adapter = netdev_priv(netdev);
2362 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2363
2364 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2365 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2366 return -EINVAL;
2367 }
2368
d4e0fe01
AD
2369#define MAX_STD_JUMBO_FRAME_SIZE 9234
2370 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2371 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2372 return -EINVAL;
2373 }
2374
2375 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2376 msleep(1);
2377 /* igbvf_down has a dependency on max_frame_size */
2378 adapter->max_frame_size = max_frame;
2379 if (netif_running(netdev))
2380 igbvf_down(adapter);
2381
2382 /*
2383 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2384 * means we reserve 2 more, this pushes us to allocate from the next
2385 * larger slab size.
2386 * i.e. RXBUFFER_2048 --> size-4096 slab
2387 * However with the new *_jumbo_rx* routines, jumbo receives will use
2388 * fragmented skbs
2389 */
2390
2391 if (max_frame <= 1024)
2392 adapter->rx_buffer_len = 1024;
2393 else if (max_frame <= 2048)
2394 adapter->rx_buffer_len = 2048;
2395 else
2396#if (PAGE_SIZE / 2) > 16384
2397 adapter->rx_buffer_len = 16384;
2398#else
2399 adapter->rx_buffer_len = PAGE_SIZE / 2;
2400#endif
2401
2402
2403 /* adjust allocation if LPE protects us, and we aren't using SBP */
2404 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2405 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2406 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2407 ETH_FCS_LEN;
2408
2409 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2410 netdev->mtu, new_mtu);
2411 netdev->mtu = new_mtu;
2412
2413 if (netif_running(netdev))
2414 igbvf_up(adapter);
2415 else
2416 igbvf_reset(adapter);
2417
2418 clear_bit(__IGBVF_RESETTING, &adapter->state);
2419
2420 return 0;
2421}
2422
2423static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2424{
2425 switch (cmd) {
2426 default:
2427 return -EOPNOTSUPP;
2428 }
2429}
2430
2431static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2432{
2433 struct net_device *netdev = pci_get_drvdata(pdev);
2434 struct igbvf_adapter *adapter = netdev_priv(netdev);
2435#ifdef CONFIG_PM
2436 int retval = 0;
2437#endif
2438
2439 netif_device_detach(netdev);
2440
2441 if (netif_running(netdev)) {
2442 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2443 igbvf_down(adapter);
2444 igbvf_free_irq(adapter);
2445 }
2446
2447#ifdef CONFIG_PM
2448 retval = pci_save_state(pdev);
2449 if (retval)
2450 return retval;
2451#endif
2452
2453 pci_disable_device(pdev);
2454
2455 return 0;
2456}
2457
2458#ifdef CONFIG_PM
2459static int igbvf_resume(struct pci_dev *pdev)
2460{
2461 struct net_device *netdev = pci_get_drvdata(pdev);
2462 struct igbvf_adapter *adapter = netdev_priv(netdev);
2463 u32 err;
2464
2465 pci_restore_state(pdev);
2466 err = pci_enable_device_mem(pdev);
2467 if (err) {
2468 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2469 return err;
2470 }
2471
2472 pci_set_master(pdev);
2473
2474 if (netif_running(netdev)) {
2475 err = igbvf_request_irq(adapter);
2476 if (err)
2477 return err;
2478 }
2479
2480 igbvf_reset(adapter);
2481
2482 if (netif_running(netdev))
2483 igbvf_up(adapter);
2484
2485 netif_device_attach(netdev);
2486
2487 return 0;
2488}
2489#endif
2490
2491static void igbvf_shutdown(struct pci_dev *pdev)
2492{
2493 igbvf_suspend(pdev, PMSG_SUSPEND);
2494}
2495
2496#ifdef CONFIG_NET_POLL_CONTROLLER
2497/*
2498 * Polling 'interrupt' - used by things like netconsole to send skbs
2499 * without having to re-enable interrupts. It's not called while
2500 * the interrupt routine is executing.
2501 */
2502static void igbvf_netpoll(struct net_device *netdev)
2503{
2504 struct igbvf_adapter *adapter = netdev_priv(netdev);
2505
2506 disable_irq(adapter->pdev->irq);
2507
2508 igbvf_clean_tx_irq(adapter->tx_ring);
2509
2510 enable_irq(adapter->pdev->irq);
2511}
2512#endif
2513
2514/**
2515 * igbvf_io_error_detected - called when PCI error is detected
2516 * @pdev: Pointer to PCI device
2517 * @state: The current pci connection state
2518 *
2519 * This function is called after a PCI bus error affecting
2520 * this device has been detected.
2521 */
2522static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2523 pci_channel_state_t state)
2524{
2525 struct net_device *netdev = pci_get_drvdata(pdev);
2526 struct igbvf_adapter *adapter = netdev_priv(netdev);
2527
2528 netif_device_detach(netdev);
2529
c06c430d
DN
2530 if (state == pci_channel_io_perm_failure)
2531 return PCI_ERS_RESULT_DISCONNECT;
2532
d4e0fe01
AD
2533 if (netif_running(netdev))
2534 igbvf_down(adapter);
2535 pci_disable_device(pdev);
2536
2537 /* Request a slot slot reset. */
2538 return PCI_ERS_RESULT_NEED_RESET;
2539}
2540
2541/**
2542 * igbvf_io_slot_reset - called after the pci bus has been reset.
2543 * @pdev: Pointer to PCI device
2544 *
2545 * Restart the card from scratch, as if from a cold-boot. Implementation
2546 * resembles the first-half of the igbvf_resume routine.
2547 */
2548static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2549{
2550 struct net_device *netdev = pci_get_drvdata(pdev);
2551 struct igbvf_adapter *adapter = netdev_priv(netdev);
2552
2553 if (pci_enable_device_mem(pdev)) {
2554 dev_err(&pdev->dev,
2555 "Cannot re-enable PCI device after reset.\n");
2556 return PCI_ERS_RESULT_DISCONNECT;
2557 }
2558 pci_set_master(pdev);
2559
2560 igbvf_reset(adapter);
2561
2562 return PCI_ERS_RESULT_RECOVERED;
2563}
2564
2565/**
2566 * igbvf_io_resume - called when traffic can start flowing again.
2567 * @pdev: Pointer to PCI device
2568 *
2569 * This callback is called when the error recovery driver tells us that
2570 * its OK to resume normal operation. Implementation resembles the
2571 * second-half of the igbvf_resume routine.
2572 */
2573static void igbvf_io_resume(struct pci_dev *pdev)
2574{
2575 struct net_device *netdev = pci_get_drvdata(pdev);
2576 struct igbvf_adapter *adapter = netdev_priv(netdev);
2577
2578 if (netif_running(netdev)) {
2579 if (igbvf_up(adapter)) {
2580 dev_err(&pdev->dev,
2581 "can't bring device back up after reset\n");
2582 return;
2583 }
2584 }
2585
2586 netif_device_attach(netdev);
2587}
2588
2589static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2590{
2591 struct e1000_hw *hw = &adapter->hw;
2592 struct net_device *netdev = adapter->netdev;
2593 struct pci_dev *pdev = adapter->pdev;
2594
2595 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
753cdc33 2596 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
d4e0fe01
AD
2597 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2598}
2599
2600static const struct net_device_ops igbvf_netdev_ops = {
2601 .ndo_open = igbvf_open,
2602 .ndo_stop = igbvf_close,
2603 .ndo_start_xmit = igbvf_xmit_frame,
2604 .ndo_get_stats = igbvf_get_stats,
2605 .ndo_set_multicast_list = igbvf_set_multi,
2606 .ndo_set_mac_address = igbvf_set_mac,
2607 .ndo_change_mtu = igbvf_change_mtu,
2608 .ndo_do_ioctl = igbvf_ioctl,
2609 .ndo_tx_timeout = igbvf_tx_timeout,
2610 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2611 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2612 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2613#ifdef CONFIG_NET_POLL_CONTROLLER
2614 .ndo_poll_controller = igbvf_netpoll,
2615#endif
2616};
2617
2618/**
2619 * igbvf_probe - Device Initialization Routine
2620 * @pdev: PCI device information struct
2621 * @ent: entry in igbvf_pci_tbl
2622 *
2623 * Returns 0 on success, negative on failure
2624 *
2625 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2626 * The OS initialization, configuring of the adapter private structure,
2627 * and a hardware reset occur.
2628 **/
2629static int __devinit igbvf_probe(struct pci_dev *pdev,
2630 const struct pci_device_id *ent)
2631{
2632 struct net_device *netdev;
2633 struct igbvf_adapter *adapter;
2634 struct e1000_hw *hw;
2635 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2636
2637 static int cards_found;
2638 int err, pci_using_dac;
2639
2640 err = pci_enable_device_mem(pdev);
2641 if (err)
2642 return err;
2643
2644 pci_using_dac = 0;
123e9f1a 2645 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01 2646 if (!err) {
123e9f1a 2647 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01
AD
2648 if (!err)
2649 pci_using_dac = 1;
2650 } else {
123e9f1a 2651 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
d4e0fe01 2652 if (err) {
123e9f1a
NN
2653 err = dma_set_coherent_mask(&pdev->dev,
2654 DMA_BIT_MASK(32));
d4e0fe01
AD
2655 if (err) {
2656 dev_err(&pdev->dev, "No usable DMA "
2657 "configuration, aborting\n");
2658 goto err_dma;
2659 }
2660 }
2661 }
2662
2663 err = pci_request_regions(pdev, igbvf_driver_name);
2664 if (err)
2665 goto err_pci_reg;
2666
2667 pci_set_master(pdev);
2668
2669 err = -ENOMEM;
2670 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2671 if (!netdev)
2672 goto err_alloc_etherdev;
2673
2674 SET_NETDEV_DEV(netdev, &pdev->dev);
2675
2676 pci_set_drvdata(pdev, netdev);
2677 adapter = netdev_priv(netdev);
2678 hw = &adapter->hw;
2679 adapter->netdev = netdev;
2680 adapter->pdev = pdev;
2681 adapter->ei = ei;
2682 adapter->pba = ei->pba;
2683 adapter->flags = ei->flags;
2684 adapter->hw.back = adapter;
2685 adapter->hw.mac.type = ei->mac;
2686 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2687
2688 /* PCI config space info */
2689
2690 hw->vendor_id = pdev->vendor;
2691 hw->device_id = pdev->device;
2692 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2693 hw->subsystem_device_id = pdev->subsystem_device;
2694
2695 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2696
2697 err = -EIO;
2698 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2699 pci_resource_len(pdev, 0));
2700
2701 if (!adapter->hw.hw_addr)
2702 goto err_ioremap;
2703
2704 if (ei->get_variants) {
2705 err = ei->get_variants(adapter);
2706 if (err)
2707 goto err_ioremap;
2708 }
2709
2710 /* setup adapter struct */
2711 err = igbvf_sw_init(adapter);
2712 if (err)
2713 goto err_sw_init;
2714
2715 /* construct the net_device struct */
2716 netdev->netdev_ops = &igbvf_netdev_ops;
2717
2718 igbvf_set_ethtool_ops(netdev);
2719 netdev->watchdog_timeo = 5 * HZ;
2720 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2721
2722 adapter->bd_number = cards_found++;
2723
2724 netdev->features = NETIF_F_SG |
2725 NETIF_F_IP_CSUM |
2726 NETIF_F_HW_VLAN_TX |
2727 NETIF_F_HW_VLAN_RX |
2728 NETIF_F_HW_VLAN_FILTER;
2729
2730 netdev->features |= NETIF_F_IPV6_CSUM;
2731 netdev->features |= NETIF_F_TSO;
2732 netdev->features |= NETIF_F_TSO6;
2733
2734 if (pci_using_dac)
2735 netdev->features |= NETIF_F_HIGHDMA;
2736
2737 netdev->vlan_features |= NETIF_F_TSO;
2738 netdev->vlan_features |= NETIF_F_TSO6;
2739 netdev->vlan_features |= NETIF_F_IP_CSUM;
2740 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2741 netdev->vlan_features |= NETIF_F_SG;
2742
2743 /*reset the controller to put the device in a known good state */
2744 err = hw->mac.ops.reset_hw(hw);
2745 if (err) {
2746 dev_info(&pdev->dev,
1242b6f3
WM
2747 "PF still in reset state, assigning new address."
2748 " Is the PF interface up?\n");
2c6952df 2749 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
d4e0fe01
AD
2750 } else {
2751 err = hw->mac.ops.read_mac_addr(hw);
2752 if (err) {
2753 dev_err(&pdev->dev, "Error reading MAC address\n");
2754 goto err_hw_init;
2755 }
2756 }
2757
2758 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2759 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2760
2761 if (!is_valid_ether_addr(netdev->perm_addr)) {
753cdc33
HS
2762 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2763 netdev->dev_addr);
d4e0fe01
AD
2764 err = -EIO;
2765 goto err_hw_init;
2766 }
2767
2768 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2769 (unsigned long) adapter);
2770
2771 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2772 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2773
2774 /* ring size defaults */
2775 adapter->rx_ring->count = 1024;
2776 adapter->tx_ring->count = 1024;
2777
2778 /* reset the hardware with the new settings */
2779 igbvf_reset(adapter);
2780
d4e0fe01
AD
2781 strcpy(netdev->name, "eth%d");
2782 err = register_netdev(netdev);
2783 if (err)
2784 goto err_hw_init;
2785
de7fe787
ET
2786 /* tell the stack to leave us alone until igbvf_open() is called */
2787 netif_carrier_off(netdev);
2788 netif_stop_queue(netdev);
2789
d4e0fe01
AD
2790 igbvf_print_device_info(adapter);
2791
2792 igbvf_initialize_last_counter_stats(adapter);
2793
2794 return 0;
2795
2796err_hw_init:
2797 kfree(adapter->tx_ring);
2798 kfree(adapter->rx_ring);
2799err_sw_init:
2800 igbvf_reset_interrupt_capability(adapter);
2801 iounmap(adapter->hw.hw_addr);
2802err_ioremap:
2803 free_netdev(netdev);
2804err_alloc_etherdev:
2805 pci_release_regions(pdev);
2806err_pci_reg:
2807err_dma:
2808 pci_disable_device(pdev);
2809 return err;
2810}
2811
2812/**
2813 * igbvf_remove - Device Removal Routine
2814 * @pdev: PCI device information struct
2815 *
2816 * igbvf_remove is called by the PCI subsystem to alert the driver
2817 * that it should release a PCI device. The could be caused by a
2818 * Hot-Plug event, or because the driver is going to be removed from
2819 * memory.
2820 **/
2821static void __devexit igbvf_remove(struct pci_dev *pdev)
2822{
2823 struct net_device *netdev = pci_get_drvdata(pdev);
2824 struct igbvf_adapter *adapter = netdev_priv(netdev);
2825 struct e1000_hw *hw = &adapter->hw;
2826
2827 /*
2828 * flush_scheduled work may reschedule our watchdog task, so
2829 * explicitly disable watchdog tasks from being rescheduled
2830 */
2831 set_bit(__IGBVF_DOWN, &adapter->state);
2832 del_timer_sync(&adapter->watchdog_timer);
2833
2834 flush_scheduled_work();
2835
2836 unregister_netdev(netdev);
2837
2838 igbvf_reset_interrupt_capability(adapter);
2839
2840 /*
2841 * it is important to delete the napi struct prior to freeing the
2842 * rx ring so that you do not end up with null pointer refs
2843 */
2844 netif_napi_del(&adapter->rx_ring->napi);
2845 kfree(adapter->tx_ring);
2846 kfree(adapter->rx_ring);
2847
2848 iounmap(hw->hw_addr);
2849 if (hw->flash_address)
2850 iounmap(hw->flash_address);
2851 pci_release_regions(pdev);
2852
2853 free_netdev(netdev);
2854
2855 pci_disable_device(pdev);
2856}
2857
2858/* PCI Error Recovery (ERS) */
2859static struct pci_error_handlers igbvf_err_handler = {
2860 .error_detected = igbvf_io_error_detected,
2861 .slot_reset = igbvf_io_slot_reset,
2862 .resume = igbvf_io_resume,
2863};
2864
a3aa1884 2865static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
d4e0fe01
AD
2866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2867 { } /* terminate list */
2868};
2869MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2870
2871/* PCI Device API Driver */
2872static struct pci_driver igbvf_driver = {
2873 .name = igbvf_driver_name,
2874 .id_table = igbvf_pci_tbl,
2875 .probe = igbvf_probe,
2876 .remove = __devexit_p(igbvf_remove),
2877#ifdef CONFIG_PM
2878 /* Power Management Hooks */
2879 .suspend = igbvf_suspend,
2880 .resume = igbvf_resume,
2881#endif
2882 .shutdown = igbvf_shutdown,
2883 .err_handler = &igbvf_err_handler
2884};
2885
2886/**
2887 * igbvf_init_module - Driver Registration Routine
2888 *
2889 * igbvf_init_module is the first routine called when the driver is
2890 * loaded. All it does is register with the PCI subsystem.
2891 **/
2892static int __init igbvf_init_module(void)
2893{
2894 int ret;
2895 printk(KERN_INFO "%s - version %s\n",
2896 igbvf_driver_string, igbvf_driver_version);
2897 printk(KERN_INFO "%s\n", igbvf_copyright);
2898
2899 ret = pci_register_driver(&igbvf_driver);
d4e0fe01
AD
2900
2901 return ret;
2902}
2903module_init(igbvf_init_module);
2904
2905/**
2906 * igbvf_exit_module - Driver Exit Cleanup Routine
2907 *
2908 * igbvf_exit_module is called just before the driver is removed
2909 * from memory.
2910 **/
2911static void __exit igbvf_exit_module(void)
2912{
2913 pci_unregister_driver(&igbvf_driver);
d4e0fe01
AD
2914}
2915module_exit(igbvf_exit_module);
2916
2917
2918MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2919MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2920MODULE_LICENSE("GPL");
2921MODULE_VERSION(DRV_VERSION);
2922
2923/* netdev.c */
This page took 0.322794 seconds and 5 git commands to generate.