Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / irda / sa1100_ir.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/net/irda/sa1100_ir.c
3 *
4 * Copyright (C) 2000-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Infra-red driver for the StrongARM SA1100 embedded microprocessor
11 *
12 * Note that we don't have to worry about the SA1111's DMA bugs in here,
13 * so we use the straight forward dma_map_* functions with a null pointer.
14 *
15 * This driver takes one kernel command line parameter, sa1100ir=, with
16 * the following options:
17 * max_rate:baudrate - set the maximum baud rate
18 * power_leve:level - set the transmitter power level
19 * tx_lpm:0|1 - set transmit low power mode
20 */
21#include <linux/config.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/netdevice.h>
28#include <linux/slab.h>
29#include <linux/rtnetlink.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
d052d1be 32#include <linux/platform_device.h>
1da177e4
LT
33#include <linux/dma-mapping.h>
34
35#include <net/irda/irda.h>
36#include <net/irda/wrapper.h>
37#include <net/irda/irda_device.h>
38
39#include <asm/irq.h>
40#include <asm/dma.h>
41#include <asm/hardware.h>
42#include <asm/mach/irda.h>
43
44static int power_level = 3;
45static int tx_lpm;
46static int max_rate = 4000000;
47
48struct sa1100_irda {
49 unsigned char hscr0;
50 unsigned char utcr4;
51 unsigned char power;
52 unsigned char open;
53
54 int speed;
55 int newspeed;
56
57 struct sk_buff *txskb;
58 struct sk_buff *rxskb;
59 dma_addr_t txbuf_dma;
60 dma_addr_t rxbuf_dma;
61 dma_regs_t *txdma;
62 dma_regs_t *rxdma;
63
64 struct net_device_stats stats;
65 struct device *dev;
66 struct irda_platform_data *pdata;
67 struct irlap_cb *irlap;
68 struct qos_info qos;
69
70 iobuff_t tx_buff;
71 iobuff_t rx_buff;
72};
73
74#define IS_FIR(si) ((si)->speed >= 4000000)
75
76#define HPSIR_MAX_RXLEN 2047
77
78/*
79 * Allocate and map the receive buffer, unless it is already allocated.
80 */
81static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
82{
83 if (si->rxskb)
84 return 0;
85
86 si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
87
88 if (!si->rxskb) {
89 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
90 return -ENOMEM;
91 }
92
93 /*
94 * Align any IP headers that may be contained
95 * within the frame.
96 */
97 skb_reserve(si->rxskb, 1);
98
99 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
100 HPSIR_MAX_RXLEN,
101 DMA_FROM_DEVICE);
102 return 0;
103}
104
105/*
106 * We want to get here as soon as possible, and get the receiver setup.
107 * We use the existing buffer.
108 */
109static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
110{
111 if (!si->rxskb) {
112 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
113 return;
114 }
115
116 /*
117 * First empty receive FIFO
118 */
119 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
120
121 /*
122 * Enable the DMA, receiver and receive interrupt.
123 */
124 sa1100_clear_dma(si->rxdma);
125 sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
126 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
127}
128
129/*
130 * Set the IrDA communications speed.
131 */
132static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
133{
134 unsigned long flags;
135 int brd, ret = -EINVAL;
136
137 switch (speed) {
138 case 9600: case 19200: case 38400:
139 case 57600: case 115200:
140 brd = 3686400 / (16 * speed) - 1;
141
142 /*
143 * Stop the receive DMA.
144 */
145 if (IS_FIR(si))
146 sa1100_stop_dma(si->rxdma);
147
148 local_irq_save(flags);
149
150 Ser2UTCR3 = 0;
151 Ser2HSCR0 = HSCR0_UART;
152
153 Ser2UTCR1 = brd >> 8;
154 Ser2UTCR2 = brd;
155
156 /*
157 * Clear status register
158 */
159 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
160 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
161
162 if (si->pdata->set_speed)
163 si->pdata->set_speed(si->dev, speed);
164
165 si->speed = speed;
166
167 local_irq_restore(flags);
168 ret = 0;
169 break;
170
171 case 4000000:
172 local_irq_save(flags);
173
174 si->hscr0 = 0;
175
176 Ser2HSSR0 = 0xff;
177 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
178 Ser2UTCR3 = 0;
179
180 si->speed = speed;
181
182 if (si->pdata->set_speed)
183 si->pdata->set_speed(si->dev, speed);
184
185 sa1100_irda_rx_alloc(si);
186 sa1100_irda_rx_dma_start(si);
187
188 local_irq_restore(flags);
189
190 break;
191
192 default:
193 break;
194 }
195
196 return ret;
197}
198
199/*
200 * Control the power state of the IrDA transmitter.
201 * State:
202 * 0 - off
203 * 1 - short range, lowest power
204 * 2 - medium range, medium power
205 * 3 - maximum range, high power
206 *
207 * Currently, only assabet is known to support this.
208 */
209static int
210__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
211{
212 int ret = 0;
213 if (si->pdata->set_power)
214 ret = si->pdata->set_power(si->dev, state);
215 return ret;
216}
217
218static inline int
219sa1100_set_power(struct sa1100_irda *si, unsigned int state)
220{
221 int ret;
222
223 ret = __sa1100_irda_set_power(si, state);
224 if (ret == 0)
225 si->power = state;
226
227 return ret;
228}
229
230static int sa1100_irda_startup(struct sa1100_irda *si)
231{
232 int ret;
233
234 /*
235 * Ensure that the ports for this device are setup correctly.
236 */
237 if (si->pdata->startup)
238 si->pdata->startup(si->dev);
239
240 /*
241 * Configure PPC for IRDA - we want to drive TXD2 low.
242 * We also want to drive this pin low during sleep.
243 */
244 PPSR &= ~PPC_TXD2;
245 PSDR &= ~PPC_TXD2;
246 PPDR |= PPC_TXD2;
247
248 /*
249 * Enable HP-SIR modulation, and ensure that the port is disabled.
250 */
251 Ser2UTCR3 = 0;
252 Ser2HSCR0 = HSCR0_UART;
253 Ser2UTCR4 = si->utcr4;
254 Ser2UTCR0 = UTCR0_8BitData;
255 Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
256
257 /*
258 * Clear status register
259 */
260 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
261
262 ret = sa1100_irda_set_speed(si, si->speed = 9600);
263 if (ret) {
264 Ser2UTCR3 = 0;
265 Ser2HSCR0 = 0;
266
267 if (si->pdata->shutdown)
268 si->pdata->shutdown(si->dev);
269 }
270
271 return ret;
272}
273
274static void sa1100_irda_shutdown(struct sa1100_irda *si)
275{
276 /*
277 * Stop all DMA activity.
278 */
279 sa1100_stop_dma(si->rxdma);
280 sa1100_stop_dma(si->txdma);
281
282 /* Disable the port. */
283 Ser2UTCR3 = 0;
284 Ser2HSCR0 = 0;
285
286 if (si->pdata->shutdown)
287 si->pdata->shutdown(si->dev);
288}
289
290#ifdef CONFIG_PM
291/*
292 * Suspend the IrDA interface.
293 */
3ae5eaec 294static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1da177e4 295{
3ae5eaec 296 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
297 struct sa1100_irda *si;
298
9480e307 299 if (!dev)
1da177e4
LT
300 return 0;
301
302 si = dev->priv;
303 if (si->open) {
304 /*
305 * Stop the transmit queue
306 */
307 netif_device_detach(dev);
308 disable_irq(dev->irq);
309 sa1100_irda_shutdown(si);
310 __sa1100_irda_set_power(si, 0);
311 }
312
313 return 0;
314}
315
316/*
317 * Resume the IrDA interface.
318 */
3ae5eaec 319static int sa1100_irda_resume(struct platform_device *pdev)
1da177e4 320{
3ae5eaec 321 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
322 struct sa1100_irda *si;
323
9480e307 324 if (!dev)
1da177e4
LT
325 return 0;
326
327 si = dev->priv;
328 if (si->open) {
329 /*
330 * If we missed a speed change, initialise at the new speed
331 * directly. It is debatable whether this is actually
332 * required, but in the interests of continuing from where
333 * we left off it is desireable. The converse argument is
334 * that we should re-negotiate at 9600 baud again.
335 */
336 if (si->newspeed) {
337 si->speed = si->newspeed;
338 si->newspeed = 0;
339 }
340
341 sa1100_irda_startup(si);
342 __sa1100_irda_set_power(si, si->power);
343 enable_irq(dev->irq);
344
345 /*
346 * This automatically wakes up the queue
347 */
348 netif_device_attach(dev);
349 }
350
351 return 0;
352}
353#else
354#define sa1100_irda_suspend NULL
355#define sa1100_irda_resume NULL
356#endif
357
358/*
359 * HP-SIR format interrupt service routines.
360 */
361static void sa1100_irda_hpsir_irq(struct net_device *dev)
362{
363 struct sa1100_irda *si = dev->priv;
364 int status;
365
366 status = Ser2UTSR0;
367
368 /*
369 * Deal with any receive errors first. The bytes in error may be
370 * the only bytes in the receive FIFO, so we do this first.
371 */
372 while (status & UTSR0_EIF) {
373 int stat, data;
374
375 stat = Ser2UTSR1;
376 data = Ser2UTDR;
377
378 if (stat & (UTSR1_FRE | UTSR1_ROR)) {
379 si->stats.rx_errors++;
380 if (stat & UTSR1_FRE)
381 si->stats.rx_frame_errors++;
382 if (stat & UTSR1_ROR)
383 si->stats.rx_fifo_errors++;
384 } else
385 async_unwrap_char(dev, &si->stats, &si->rx_buff, data);
386
387 status = Ser2UTSR0;
388 }
389
390 /*
391 * We must clear certain bits.
392 */
393 Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
394
395 if (status & UTSR0_RFS) {
396 /*
397 * There are at least 4 bytes in the FIFO. Read 3 bytes
398 * and leave the rest to the block below.
399 */
400 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
401 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
402 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
403 }
404
405 if (status & (UTSR0_RFS | UTSR0_RID)) {
406 /*
407 * Fifo contains more than 1 character.
408 */
409 do {
410 async_unwrap_char(dev, &si->stats, &si->rx_buff,
411 Ser2UTDR);
412 } while (Ser2UTSR1 & UTSR1_RNE);
413
414 dev->last_rx = jiffies;
415 }
416
417 if (status & UTSR0_TFS && si->tx_buff.len) {
418 /*
419 * Transmitter FIFO is not full
420 */
421 do {
422 Ser2UTDR = *si->tx_buff.data++;
423 si->tx_buff.len -= 1;
424 } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
425
426 if (si->tx_buff.len == 0) {
427 si->stats.tx_packets++;
428 si->stats.tx_bytes += si->tx_buff.data -
429 si->tx_buff.head;
430
431 /*
432 * We need to ensure that the transmitter has
433 * finished.
434 */
435 do
436 rmb();
437 while (Ser2UTSR1 & UTSR1_TBY);
438
439 /*
440 * Ok, we've finished transmitting. Now enable
441 * the receiver. Sometimes we get a receive IRQ
442 * immediately after a transmit...
443 */
444 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
445 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
446
447 if (si->newspeed) {
448 sa1100_irda_set_speed(si, si->newspeed);
449 si->newspeed = 0;
450 }
451
452 /* I'm hungry! */
453 netif_wake_queue(dev);
454 }
455 }
456}
457
458static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
459{
460 struct sk_buff *skb = si->rxskb;
461 dma_addr_t dma_addr;
462 unsigned int len, stat, data;
463
464 if (!skb) {
465 printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
466 return;
467 }
468
469 /*
470 * Get the current data position.
471 */
472 dma_addr = sa1100_get_dma_pos(si->rxdma);
473 len = dma_addr - si->rxbuf_dma;
474 if (len > HPSIR_MAX_RXLEN)
475 len = HPSIR_MAX_RXLEN;
476 dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
477
478 do {
479 /*
480 * Read Status, and then Data.
481 */
482 stat = Ser2HSSR1;
483 rmb();
484 data = Ser2HSDR;
485
486 if (stat & (HSSR1_CRE | HSSR1_ROR)) {
487 si->stats.rx_errors++;
488 if (stat & HSSR1_CRE)
489 si->stats.rx_crc_errors++;
490 if (stat & HSSR1_ROR)
491 si->stats.rx_frame_errors++;
492 } else
493 skb->data[len++] = data;
494
495 /*
496 * If we hit the end of frame, there's
497 * no point in continuing.
498 */
499 if (stat & HSSR1_EOF)
500 break;
501 } while (Ser2HSSR0 & HSSR0_EIF);
502
503 if (stat & HSSR1_EOF) {
504 si->rxskb = NULL;
505
506 skb_put(skb, len);
507 skb->dev = dev;
508 skb->mac.raw = skb->data;
509 skb->protocol = htons(ETH_P_IRDA);
510 si->stats.rx_packets++;
511 si->stats.rx_bytes += len;
512
513 /*
514 * Before we pass the buffer up, allocate a new one.
515 */
516 sa1100_irda_rx_alloc(si);
517
518 netif_rx(skb);
519 dev->last_rx = jiffies;
520 } else {
521 /*
522 * Remap the buffer.
523 */
524 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
525 HPSIR_MAX_RXLEN,
526 DMA_FROM_DEVICE);
527 }
528}
529
530/*
531 * FIR format interrupt service routine. We only have to
532 * handle RX events; transmit events go via the TX DMA handler.
533 *
534 * No matter what, we disable RX, process, and the restart RX.
535 */
536static void sa1100_irda_fir_irq(struct net_device *dev)
537{
538 struct sa1100_irda *si = dev->priv;
539
540 /*
541 * Stop RX DMA
542 */
543 sa1100_stop_dma(si->rxdma);
544
545 /*
546 * Framing error - we throw away the packet completely.
547 * Clearing RXE flushes the error conditions and data
548 * from the fifo.
549 */
550 if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
551 si->stats.rx_errors++;
552
553 if (Ser2HSSR0 & HSSR0_FRE)
554 si->stats.rx_frame_errors++;
555
556 /*
557 * Clear out the DMA...
558 */
559 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
560
561 /*
562 * Clear selected status bits now, so we
563 * don't miss them next time around.
564 */
565 Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
566 }
567
568 /*
569 * Deal with any receive errors. The any of the lowest
570 * 8 bytes in the FIFO may contain an error. We must read
571 * them one by one. The "error" could even be the end of
572 * packet!
573 */
574 if (Ser2HSSR0 & HSSR0_EIF)
575 sa1100_irda_fir_error(si, dev);
576
577 /*
578 * No matter what happens, we must restart reception.
579 */
580 sa1100_irda_rx_dma_start(si);
581}
582
583static irqreturn_t sa1100_irda_irq(int irq, void *dev_id, struct pt_regs *regs)
584{
585 struct net_device *dev = dev_id;
586 if (IS_FIR(((struct sa1100_irda *)dev->priv)))
587 sa1100_irda_fir_irq(dev);
588 else
589 sa1100_irda_hpsir_irq(dev);
590 return IRQ_HANDLED;
591}
592
593/*
594 * TX DMA completion handler.
595 */
596static void sa1100_irda_txdma_irq(void *id)
597{
598 struct net_device *dev = id;
599 struct sa1100_irda *si = dev->priv;
600 struct sk_buff *skb = si->txskb;
601
602 si->txskb = NULL;
603
604 /*
605 * Wait for the transmission to complete. Unfortunately,
606 * the hardware doesn't give us an interrupt to indicate
607 * "end of frame".
608 */
609 do
610 rmb();
611 while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
612
613 /*
614 * Clear the transmit underrun bit.
615 */
616 Ser2HSSR0 = HSSR0_TUR;
617
618 /*
619 * Do we need to change speed? Note that we're lazy
620 * here - we don't free the old rxskb. We don't need
621 * to allocate a buffer either.
622 */
623 if (si->newspeed) {
624 sa1100_irda_set_speed(si, si->newspeed);
625 si->newspeed = 0;
626 }
627
628 /*
629 * Start reception. This disables the transmitter for
630 * us. This will be using the existing RX buffer.
631 */
632 sa1100_irda_rx_dma_start(si);
633
634 /*
635 * Account and free the packet.
636 */
637 if (skb) {
638 dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
639 si->stats.tx_packets ++;
640 si->stats.tx_bytes += skb->len;
641 dev_kfree_skb_irq(skb);
642 }
643
644 /*
645 * Make sure that the TX queue is available for sending
646 * (for retries). TX has priority over RX at all times.
647 */
648 netif_wake_queue(dev);
649}
650
651static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
652{
653 struct sa1100_irda *si = dev->priv;
654 int speed = irda_get_next_speed(skb);
655
656 /*
657 * Does this packet contain a request to change the interface
658 * speed? If so, remember it until we complete the transmission
659 * of this frame.
660 */
661 if (speed != si->speed && speed != -1)
662 si->newspeed = speed;
663
664 /*
665 * If this is an empty frame, we can bypass a lot.
666 */
667 if (skb->len == 0) {
668 if (si->newspeed) {
669 si->newspeed = 0;
670 sa1100_irda_set_speed(si, speed);
671 }
672 dev_kfree_skb(skb);
673 return 0;
674 }
675
676 if (!IS_FIR(si)) {
677 netif_stop_queue(dev);
678
679 si->tx_buff.data = si->tx_buff.head;
680 si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
681 si->tx_buff.truesize);
682
683 /*
684 * Set the transmit interrupt enable. This will fire
685 * off an interrupt immediately. Note that we disable
686 * the receiver so we won't get spurious characteres
687 * received.
688 */
689 Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
690
691 dev_kfree_skb(skb);
692 } else {
693 int mtt = irda_get_mtt(skb);
694
695 /*
696 * We must not be transmitting...
697 */
5d9428de 698 BUG_ON(si->txskb);
1da177e4
LT
699
700 netif_stop_queue(dev);
701
702 si->txskb = skb;
703 si->txbuf_dma = dma_map_single(si->dev, skb->data,
704 skb->len, DMA_TO_DEVICE);
705
706 sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
707
708 /*
709 * If we have a mean turn-around time, impose the specified
710 * specified delay. We could shorten this by timing from
711 * the point we received the packet.
712 */
713 if (mtt)
714 udelay(mtt);
715
716 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
717 }
718
719 dev->trans_start = jiffies;
720
721 return 0;
722}
723
724static int
725sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
726{
727 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
728 struct sa1100_irda *si = dev->priv;
729 int ret = -EOPNOTSUPP;
730
731 switch (cmd) {
732 case SIOCSBANDWIDTH:
733 if (capable(CAP_NET_ADMIN)) {
734 /*
735 * We are unable to set the speed if the
736 * device is not running.
737 */
738 if (si->open) {
739 ret = sa1100_irda_set_speed(si,
740 rq->ifr_baudrate);
741 } else {
742 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
743 ret = 0;
744 }
745 }
746 break;
747
748 case SIOCSMEDIABUSY:
749 ret = -EPERM;
750 if (capable(CAP_NET_ADMIN)) {
751 irda_device_set_media_busy(dev, TRUE);
752 ret = 0;
753 }
754 break;
755
756 case SIOCGRECEIVING:
757 rq->ifr_receiving = IS_FIR(si) ? 0
758 : si->rx_buff.state != OUTSIDE_FRAME;
759 break;
760
761 default:
762 break;
763 }
764
765 return ret;
766}
767
768static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
769{
770 struct sa1100_irda *si = dev->priv;
771 return &si->stats;
772}
773
774static int sa1100_irda_start(struct net_device *dev)
775{
776 struct sa1100_irda *si = dev->priv;
777 int err;
778
779 si->speed = 9600;
780
781 err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
782 if (err)
783 goto err_irq;
784
785 err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
786 NULL, NULL, &si->rxdma);
787 if (err)
788 goto err_rx_dma;
789
790 err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
791 sa1100_irda_txdma_irq, dev, &si->txdma);
792 if (err)
793 goto err_tx_dma;
794
795 /*
796 * The interrupt must remain disabled for now.
797 */
798 disable_irq(dev->irq);
799
800 /*
801 * Setup the serial port for the specified speed.
802 */
803 err = sa1100_irda_startup(si);
804 if (err)
805 goto err_startup;
806
807 /*
808 * Open a new IrLAP layer instance.
809 */
810 si->irlap = irlap_open(dev, &si->qos, "sa1100");
811 err = -ENOMEM;
812 if (!si->irlap)
813 goto err_irlap;
814
815 /*
816 * Now enable the interrupt and start the queue
817 */
818 si->open = 1;
819 sa1100_set_power(si, power_level); /* low power mode */
820 enable_irq(dev->irq);
821 netif_start_queue(dev);
822 return 0;
823
824err_irlap:
825 si->open = 0;
826 sa1100_irda_shutdown(si);
827err_startup:
828 sa1100_free_dma(si->txdma);
829err_tx_dma:
830 sa1100_free_dma(si->rxdma);
831err_rx_dma:
832 free_irq(dev->irq, dev);
833err_irq:
834 return err;
835}
836
837static int sa1100_irda_stop(struct net_device *dev)
838{
839 struct sa1100_irda *si = dev->priv;
840
841 disable_irq(dev->irq);
842 sa1100_irda_shutdown(si);
843
844 /*
845 * If we have been doing DMA receive, make sure we
846 * tidy that up cleanly.
847 */
848 if (si->rxskb) {
849 dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
850 DMA_FROM_DEVICE);
851 dev_kfree_skb(si->rxskb);
852 si->rxskb = NULL;
853 }
854
855 /* Stop IrLAP */
856 if (si->irlap) {
857 irlap_close(si->irlap);
858 si->irlap = NULL;
859 }
860
861 netif_stop_queue(dev);
862 si->open = 0;
863
864 /*
865 * Free resources
866 */
867 sa1100_free_dma(si->txdma);
868 sa1100_free_dma(si->rxdma);
869 free_irq(dev->irq, dev);
870
871 sa1100_set_power(si, 0);
872
873 return 0;
874}
875
876static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
877{
878 io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
879 if (io->head != NULL) {
880 io->truesize = size;
881 io->in_frame = FALSE;
882 io->state = OUTSIDE_FRAME;
883 io->data = io->head;
884 }
885 return io->head ? 0 : -ENOMEM;
886}
887
3ae5eaec 888static int sa1100_irda_probe(struct platform_device *pdev)
1da177e4 889{
1da177e4
LT
890 struct net_device *dev;
891 struct sa1100_irda *si;
892 unsigned int baudrate_mask;
893 int err;
894
895 if (!pdev->dev.platform_data)
896 return -EINVAL;
897
898 err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
899 if (err)
900 goto err_mem_1;
901 err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
902 if (err)
903 goto err_mem_2;
904 err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
905 if (err)
906 goto err_mem_3;
907
908 dev = alloc_irdadev(sizeof(struct sa1100_irda));
909 if (!dev)
910 goto err_mem_4;
911
912 si = dev->priv;
913 si->dev = &pdev->dev;
914 si->pdata = pdev->dev.platform_data;
915
916 /*
917 * Initialise the HP-SIR buffers
918 */
919 err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
920 if (err)
921 goto err_mem_5;
922 err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
923 if (err)
924 goto err_mem_5;
925
926 dev->hard_start_xmit = sa1100_irda_hard_xmit;
927 dev->open = sa1100_irda_start;
928 dev->stop = sa1100_irda_stop;
929 dev->do_ioctl = sa1100_irda_ioctl;
930 dev->get_stats = sa1100_irda_stats;
931 dev->irq = IRQ_Ser2ICP;
932
933 irda_init_max_qos_capabilies(&si->qos);
934
935 /*
936 * We support original IRDA up to 115k2. (we don't currently
937 * support 4Mbps). Min Turn Time set to 1ms or greater.
938 */
939 baudrate_mask = IR_9600;
940
941 switch (max_rate) {
942 case 4000000: baudrate_mask |= IR_4000000 << 8;
943 case 115200: baudrate_mask |= IR_115200;
944 case 57600: baudrate_mask |= IR_57600;
945 case 38400: baudrate_mask |= IR_38400;
946 case 19200: baudrate_mask |= IR_19200;
947 }
948
949 si->qos.baud_rate.bits &= baudrate_mask;
950 si->qos.min_turn_time.bits = 7;
951
952 irda_qos_bits_to_value(&si->qos);
953
954 si->utcr4 = UTCR4_HPSIR;
955 if (tx_lpm)
956 si->utcr4 |= UTCR4_Z1_6us;
957
958 /*
959 * Initially enable HP-SIR modulation, and ensure that the port
960 * is disabled.
961 */
962 Ser2UTCR3 = 0;
963 Ser2UTCR4 = si->utcr4;
964 Ser2HSCR0 = HSCR0_UART;
965
966 err = register_netdev(dev);
967 if (err == 0)
3ae5eaec 968 platform_set_drvdata(pdev, dev);
1da177e4
LT
969
970 if (err) {
971 err_mem_5:
972 kfree(si->tx_buff.head);
973 kfree(si->rx_buff.head);
974 free_netdev(dev);
975 err_mem_4:
976 release_mem_region(__PREG(Ser2HSCR2), 0x04);
977 err_mem_3:
978 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
979 err_mem_2:
980 release_mem_region(__PREG(Ser2UTCR0), 0x24);
981 }
982 err_mem_1:
983 return err;
984}
985
3ae5eaec 986static int sa1100_irda_remove(struct platform_device *pdev)
1da177e4 987{
3ae5eaec 988 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
989
990 if (dev) {
991 struct sa1100_irda *si = dev->priv;
992 unregister_netdev(dev);
993 kfree(si->tx_buff.head);
994 kfree(si->rx_buff.head);
995 free_netdev(dev);
996 }
997
998 release_mem_region(__PREG(Ser2HSCR2), 0x04);
999 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1000 release_mem_region(__PREG(Ser2UTCR0), 0x24);
1001
1002 return 0;
1003}
1004
3ae5eaec 1005static struct platform_driver sa1100ir_driver = {
1da177e4
LT
1006 .probe = sa1100_irda_probe,
1007 .remove = sa1100_irda_remove,
1008 .suspend = sa1100_irda_suspend,
1009 .resume = sa1100_irda_resume,
3ae5eaec
RK
1010 .driver = {
1011 .name = "sa11x0-ir",
1012 },
1da177e4
LT
1013};
1014
1015static int __init sa1100_irda_init(void)
1016{
1017 /*
1018 * Limit power level a sensible range.
1019 */
1020 if (power_level < 1)
1021 power_level = 1;
1022 if (power_level > 3)
1023 power_level = 3;
1024
3ae5eaec 1025 return platform_driver_register(&sa1100ir_driver);
1da177e4
LT
1026}
1027
1028static void __exit sa1100_irda_exit(void)
1029{
3ae5eaec 1030 platform_driver_unregister(&sa1100ir_driver);
1da177e4
LT
1031}
1032
1033module_init(sa1100_irda_init);
1034module_exit(sa1100_irda_exit);
1035module_param(power_level, int, 0);
1036module_param(tx_lpm, int, 0);
1037module_param(max_rate, int, 0);
1038
1039MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1040MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1041MODULE_LICENSE("GPL");
1042MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1043MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1044MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
This page took 0.170199 seconds and 5 git commands to generate.