ixgbe: Remove device ID 0x10d8
[deliverable/linux.git] / drivers / net / ixgbe / ixgbe_phy.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
3efac5a0 4 Copyright(c) 1999 - 2009 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe_common.h"
33#include "ixgbe_phy.h"
34
11afc1b1
PW
35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45static bool ixgbe_get_i2c_data(u32 *i2cctl);
46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
9a799d71
AK
47static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
9a799d71
AK
49
50/**
c44ade9e 51 * ixgbe_identify_phy_generic - Get physical layer module
9a799d71
AK
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
c44ade9e 56s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
57{
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60
c44ade9e
JB
61 if (hw->phy.type == ixgbe_phy_unknown) {
62 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
6b73e10d 63 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
c44ade9e
JB
64 ixgbe_get_phy_id(hw);
65 hw->phy.type =
66 ixgbe_get_phy_type_from_id(hw->phy.id);
67 status = 0;
68 break;
69 }
9a799d71 70 }
c44ade9e
JB
71 } else {
72 status = 0;
9a799d71 73 }
c44ade9e 74
9a799d71
AK
75 return status;
76}
77
9a799d71
AK
78/**
79 * ixgbe_get_phy_id - Get the phy type
80 * @hw: pointer to hardware structure
81 *
82 **/
83static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
84{
85 u32 status;
86 u16 phy_id_high = 0;
87 u16 phy_id_low = 0;
88
6b73e10d 89 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
c44ade9e 90 &phy_id_high);
9a799d71
AK
91
92 if (status == 0) {
93 hw->phy.id = (u32)(phy_id_high << 16);
6b73e10d 94 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
c44ade9e 95 &phy_id_low);
9a799d71
AK
96 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
97 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
98 }
9a799d71
AK
99 return status;
100}
101
102/**
103 * ixgbe_get_phy_type_from_id - Get the phy type
104 * @hw: pointer to hardware structure
105 *
106 **/
107static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
108{
109 enum ixgbe_phy_type phy_type;
110
111 switch (phy_id) {
0befdb3e
JB
112 case TN1010_PHY_ID:
113 phy_type = ixgbe_phy_tn;
114 break;
9a799d71
AK
115 case QT2022_PHY_ID:
116 phy_type = ixgbe_phy_qt;
117 break;
c4900be0
DS
118 case ATH_PHY_ID:
119 phy_type = ixgbe_phy_nl;
120 break;
9a799d71
AK
121 default:
122 phy_type = ixgbe_phy_unknown;
123 break;
124 }
125
126 return phy_type;
127}
128
129/**
c44ade9e 130 * ixgbe_reset_phy_generic - Performs a PHY reset
9a799d71
AK
131 * @hw: pointer to hardware structure
132 **/
c44ade9e 133s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
134{
135 /*
136 * Perform soft PHY reset to the PHY_XS.
137 * This will cause a soft reset to the PHY
138 */
6b73e10d
BH
139 return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
140 MDIO_CTRL1_RESET);
9a799d71
AK
141}
142
143/**
c44ade9e 144 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
9a799d71
AK
145 * @hw: pointer to hardware structure
146 * @reg_addr: 32 bit address of PHY register to read
147 * @phy_data: Pointer to read data from PHY register
148 **/
c44ade9e
JB
149s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
150 u32 device_type, u16 *phy_data)
9a799d71
AK
151{
152 u32 command;
153 u32 i;
9a799d71
AK
154 u32 data;
155 s32 status = 0;
156 u16 gssr;
157
158 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
159 gssr = IXGBE_GSSR_PHY1_SM;
160 else
161 gssr = IXGBE_GSSR_PHY0_SM;
162
163 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
164 status = IXGBE_ERR_SWFW_SYNC;
165
166 if (status == 0) {
167 /* Setup and write the address cycle command */
168 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 169 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 170 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 171 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
172
173 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
174
175 /*
176 * Check every 10 usec to see if the address cycle completed.
177 * The MDI Command bit will clear when the operation is
178 * complete
179 */
c44ade9e 180 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
181 udelay(10);
182
183 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
184
185 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
186 break;
187 }
188
189 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
190 hw_dbg(hw, "PHY address command did not complete.\n");
191 status = IXGBE_ERR_PHY;
192 }
193
194 if (status == 0) {
195 /*
196 * Address cycle complete, setup and write the read
197 * command
198 */
199 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 200 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
201 (hw->phy.mdio.prtad <<
202 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 203 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
204
205 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
206
207 /*
208 * Check every 10 usec to see if the address cycle
209 * completed. The MDI Command bit will clear when the
210 * operation is complete
211 */
c44ade9e 212 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
213 udelay(10);
214
215 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
216
217 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
218 break;
219 }
220
221 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
c44ade9e 222 hw_dbg(hw, "PHY read command didn't complete\n");
9a799d71
AK
223 status = IXGBE_ERR_PHY;
224 } else {
225 /*
226 * Read operation is complete. Get the data
227 * from MSRWD
228 */
229 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
230 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
231 *phy_data = (u16)(data);
232 }
233 }
234
235 ixgbe_release_swfw_sync(hw, gssr);
236 }
c44ade9e 237
9a799d71
AK
238 return status;
239}
240
241/**
c44ade9e 242 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
9a799d71
AK
243 * @hw: pointer to hardware structure
244 * @reg_addr: 32 bit PHY register to write
245 * @device_type: 5 bit device type
246 * @phy_data: Data to write to the PHY register
247 **/
c44ade9e
JB
248s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
249 u32 device_type, u16 phy_data)
9a799d71
AK
250{
251 u32 command;
252 u32 i;
9a799d71
AK
253 s32 status = 0;
254 u16 gssr;
255
256 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
257 gssr = IXGBE_GSSR_PHY1_SM;
258 else
259 gssr = IXGBE_GSSR_PHY0_SM;
260
261 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
262 status = IXGBE_ERR_SWFW_SYNC;
263
264 if (status == 0) {
265 /* Put the data in the MDI single read and write data register*/
266 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
267
268 /* Setup and write the address cycle command */
269 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 270 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 271 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 272 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
273
274 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
275
276 /*
277 * Check every 10 usec to see if the address cycle completed.
278 * The MDI Command bit will clear when the operation is
279 * complete
280 */
c44ade9e 281 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
282 udelay(10);
283
284 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
285
c44ade9e 286 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 287 break;
9a799d71
AK
288 }
289
c44ade9e
JB
290 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
291 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 292 status = IXGBE_ERR_PHY;
c44ade9e 293 }
9a799d71
AK
294
295 if (status == 0) {
296 /*
297 * Address cycle complete, setup and write the write
298 * command
299 */
300 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 301 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
302 (hw->phy.mdio.prtad <<
303 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 304 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
305
306 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
307
308 /*
309 * Check every 10 usec to see if the address cycle
310 * completed. The MDI Command bit will clear when the
311 * operation is complete
312 */
c44ade9e 313 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
314 udelay(10);
315
316 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
317
c44ade9e 318 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 319 break;
9a799d71
AK
320 }
321
c44ade9e
JB
322 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
323 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 324 status = IXGBE_ERR_PHY;
c44ade9e 325 }
9a799d71
AK
326 }
327
328 ixgbe_release_swfw_sync(hw, gssr);
329 }
330
331 return status;
332}
333
334/**
c44ade9e 335 * ixgbe_setup_phy_link_generic - Set and restart autoneg
9a799d71
AK
336 * @hw: pointer to hardware structure
337 *
338 * Restart autonegotiation and PHY and waits for completion.
339 **/
c44ade9e 340s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
9a799d71
AK
341{
342 s32 status = IXGBE_NOT_IMPLEMENTED;
343 u32 time_out;
344 u32 max_time_out = 10;
6b73e10d 345 u16 autoneg_reg;
9a799d71
AK
346
347 /*
348 * Set advertisement settings in PHY based on autoneg_advertised
349 * settings. If autoneg_advertised = 0, then advertise default values
c44ade9e 350 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
9a799d71
AK
351 * for a 1G.
352 */
6b73e10d 353 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
9a799d71
AK
354
355 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
6b73e10d 356 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 357 else
6b73e10d 358 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 359
6b73e10d 360 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
361
362 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 363 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
9a799d71 364
6b73e10d 365 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
9a799d71 366
6b73e10d 367 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
368
369 /* Wait for autonegotiation to finish */
370 for (time_out = 0; time_out < max_time_out; time_out++) {
371 udelay(10);
372 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 373 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
c44ade9e 374 &autoneg_reg);
9a799d71 375
6b73e10d
BH
376 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
377 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
9a799d71
AK
378 status = 0;
379 break;
380 }
381 }
382
383 if (time_out == max_time_out)
384 status = IXGBE_ERR_LINK_SETUP;
385
386 return status;
387}
388
389/**
c44ade9e 390 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
9a799d71
AK
391 * @hw: pointer to hardware structure
392 * @speed: new link speed
393 * @autoneg: true if autonegotiation enabled
394 **/
c44ade9e
JB
395s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
396 ixgbe_link_speed speed,
397 bool autoneg,
398 bool autoneg_wait_to_complete)
9a799d71 399{
c44ade9e 400
9a799d71
AK
401 /*
402 * Clear autoneg_advertised and set new values based on input link
403 * speed.
404 */
405 hw->phy.autoneg_advertised = 0;
406
407 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
408 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
c44ade9e 409
9a799d71
AK
410 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
411 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
412
413 /* Setup link based on the new speed settings */
c44ade9e 414 hw->phy.ops.setup_link(hw);
9a799d71
AK
415
416 return 0;
417}
c44ade9e 418
c4900be0
DS
419/**
420 * ixgbe_reset_phy_nl - Performs a PHY reset
421 * @hw: pointer to hardware structure
422 **/
423s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
424{
425 u16 phy_offset, control, eword, edata, block_crc;
426 bool end_data = false;
427 u16 list_offset, data_offset;
428 u16 phy_data = 0;
429 s32 ret_val = 0;
430 u32 i;
431
6b73e10d 432 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
c4900be0
DS
433
434 /* reset the PHY and poll for completion */
6b73e10d
BH
435 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
436 (phy_data | MDIO_CTRL1_RESET));
c4900be0
DS
437
438 for (i = 0; i < 100; i++) {
6b73e10d
BH
439 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
440 &phy_data);
441 if ((phy_data & MDIO_CTRL1_RESET) == 0)
c4900be0
DS
442 break;
443 msleep(10);
444 }
445
6b73e10d 446 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
c4900be0
DS
447 hw_dbg(hw, "PHY reset did not complete.\n");
448 ret_val = IXGBE_ERR_PHY;
449 goto out;
450 }
451
452 /* Get init offsets */
453 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
454 &data_offset);
455 if (ret_val != 0)
456 goto out;
457
458 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
459 data_offset++;
460 while (!end_data) {
461 /*
462 * Read control word from PHY init contents offset
463 */
464 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
465 control = (eword & IXGBE_CONTROL_MASK_NL) >>
466 IXGBE_CONTROL_SHIFT_NL;
467 edata = eword & IXGBE_DATA_MASK_NL;
468 switch (control) {
469 case IXGBE_DELAY_NL:
470 data_offset++;
471 hw_dbg(hw, "DELAY: %d MS\n", edata);
472 msleep(edata);
473 break;
474 case IXGBE_DATA_NL:
475 hw_dbg(hw, "DATA: \n");
476 data_offset++;
477 hw->eeprom.ops.read(hw, data_offset++,
478 &phy_offset);
479 for (i = 0; i < edata; i++) {
480 hw->eeprom.ops.read(hw, data_offset, &eword);
481 hw->phy.ops.write_reg(hw, phy_offset,
6b73e10d 482 MDIO_MMD_PMAPMD, eword);
c4900be0
DS
483 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
484 phy_offset);
485 data_offset++;
486 phy_offset++;
487 }
488 break;
489 case IXGBE_CONTROL_NL:
490 data_offset++;
491 hw_dbg(hw, "CONTROL: \n");
492 if (edata == IXGBE_CONTROL_EOL_NL) {
493 hw_dbg(hw, "EOL\n");
494 end_data = true;
495 } else if (edata == IXGBE_CONTROL_SOL_NL) {
496 hw_dbg(hw, "SOL\n");
497 } else {
498 hw_dbg(hw, "Bad control value\n");
499 ret_val = IXGBE_ERR_PHY;
500 goto out;
501 }
502 break;
503 default:
504 hw_dbg(hw, "Bad control type\n");
505 ret_val = IXGBE_ERR_PHY;
506 goto out;
507 }
508 }
509
510out:
511 return ret_val;
512}
513
514/**
515 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
516 * the PHY type.
517 * @hw: pointer to hardware structure
518 *
519 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
520 **/
521s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
522{
523 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
524 u32 vendor_oui = 0;
553b4497 525 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
c4900be0
DS
526 u8 identifier = 0;
527 u8 comp_codes_1g = 0;
528 u8 comp_codes_10g = 0;
11afc1b1 529 u8 oui_bytes[3] = {0, 0, 0};
537d58a0 530 u8 cable_tech = 0;
11afc1b1 531 u16 enforce_sfp = 0;
c4900be0
DS
532
533 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
534 &identifier);
535
536 if (status == IXGBE_ERR_SFP_NOT_PRESENT) {
537 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
538 goto out;
539 }
540
541 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
542 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
543 &comp_codes_1g);
544 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
545 &comp_codes_10g);
537d58a0
PWJ
546 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
547 &cable_tech);
c4900be0
DS
548
549 /* ID Module
550 * =========
11afc1b1
PW
551 * 0 SFP_DA_CU
552 * 1 SFP_SR
553 * 2 SFP_LR
554 * 3 SFP_DA_CORE0 - 82599-specific
555 * 4 SFP_DA_CORE1 - 82599-specific
556 * 5 SFP_SR/LR_CORE0 - 82599-specific
557 * 6 SFP_SR/LR_CORE1 - 82599-specific
c4900be0 558 */
11afc1b1 559 if (hw->mac.type == ixgbe_mac_82598EB) {
537d58a0 560 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
11afc1b1
PW
561 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
562 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
563 hw->phy.sfp_type = ixgbe_sfp_type_sr;
564 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
565 hw->phy.sfp_type = ixgbe_sfp_type_lr;
566 else
567 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
568 } else if (hw->mac.type == ixgbe_mac_82599EB) {
537d58a0 569 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
11afc1b1
PW
570 if (hw->bus.lan_id == 0)
571 hw->phy.sfp_type =
572 ixgbe_sfp_type_da_cu_core0;
573 else
574 hw->phy.sfp_type =
575 ixgbe_sfp_type_da_cu_core1;
576 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
577 if (hw->bus.lan_id == 0)
578 hw->phy.sfp_type =
579 ixgbe_sfp_type_srlr_core0;
580 else
581 hw->phy.sfp_type =
582 ixgbe_sfp_type_srlr_core1;
583 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
584 if (hw->bus.lan_id == 0)
585 hw->phy.sfp_type =
586 ixgbe_sfp_type_srlr_core0;
587 else
588 hw->phy.sfp_type =
589 ixgbe_sfp_type_srlr_core1;
590 else
591 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
592 }
c4900be0 593
553b4497
PW
594 if (hw->phy.sfp_type != stored_sfp_type)
595 hw->phy.sfp_setup_needed = true;
596
597 /* Determine if the SFP+ PHY is dual speed or not. */
598 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
599 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
600 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
601 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
602 hw->phy.multispeed_fiber = true;
603
c4900be0 604 /* Determine PHY vendor */
04193058 605 if (hw->phy.type != ixgbe_phy_nl) {
c4900be0
DS
606 hw->phy.id = identifier;
607 hw->phy.ops.read_i2c_eeprom(hw,
608 IXGBE_SFF_VENDOR_OUI_BYTE0,
609 &oui_bytes[0]);
610 hw->phy.ops.read_i2c_eeprom(hw,
611 IXGBE_SFF_VENDOR_OUI_BYTE1,
612 &oui_bytes[1]);
613 hw->phy.ops.read_i2c_eeprom(hw,
614 IXGBE_SFF_VENDOR_OUI_BYTE2,
615 &oui_bytes[2]);
616
617 vendor_oui =
618 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
619 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
620 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
621
622 switch (vendor_oui) {
623 case IXGBE_SFF_VENDOR_OUI_TYCO:
537d58a0 624 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
c4900be0
DS
625 hw->phy.type = ixgbe_phy_tw_tyco;
626 break;
627 case IXGBE_SFF_VENDOR_OUI_FTL:
628 hw->phy.type = ixgbe_phy_sfp_ftl;
629 break;
630 case IXGBE_SFF_VENDOR_OUI_AVAGO:
631 hw->phy.type = ixgbe_phy_sfp_avago;
632 break;
11afc1b1
PW
633 case IXGBE_SFF_VENDOR_OUI_INTEL:
634 hw->phy.type = ixgbe_phy_sfp_intel;
635 break;
c4900be0 636 default:
537d58a0 637 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
c4900be0
DS
638 hw->phy.type = ixgbe_phy_tw_unknown;
639 else
640 hw->phy.type = ixgbe_phy_sfp_unknown;
641 break;
642 }
643 }
fa466e91 644
537d58a0
PWJ
645 /* All passive DA cables are supported */
646 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
fa466e91
WJP
647 status = 0;
648 goto out;
649 }
650
651 /* 1G SFP modules are not supported */
652 if (comp_codes_10g == 0) {
653 hw->phy.type = ixgbe_phy_sfp_unsupported;
654 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
655 goto out;
656 }
657
658 /* Anything else 82598-based is supported */
659 if (hw->mac.type == ixgbe_mac_82598EB) {
11afc1b1
PW
660 status = 0;
661 goto out;
662 }
663
04193058
PWJ
664 /* This is guaranteed to be 82599, no need to check for NULL */
665 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
666 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
11afc1b1
PW
667 /* Make sure we're a supported PHY type */
668 if (hw->phy.type == ixgbe_phy_sfp_intel) {
669 status = 0;
670 } else {
671 hw_dbg(hw, "SFP+ module not supported\n");
fa466e91 672 hw->phy.type = ixgbe_phy_sfp_unsupported;
11afc1b1
PW
673 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
674 }
675 } else {
676 status = 0;
677 }
c4900be0
DS
678 }
679
680out:
681 return status;
682}
683
684/**
685 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
686 * if it supports a given SFP+ module type, if so it returns the offsets to the
687 * phy init sequence block.
688 * @hw: pointer to hardware structure
689 * @list_offset: offset to the SFP ID list
690 * @data_offset: offset to the SFP data block
691 **/
692s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
693 u16 *list_offset,
694 u16 *data_offset)
695{
696 u16 sfp_id;
697
698 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
699 return IXGBE_ERR_SFP_NOT_SUPPORTED;
700
701 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
702 return IXGBE_ERR_SFP_NOT_PRESENT;
703
704 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
705 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
706 return IXGBE_ERR_SFP_NOT_SUPPORTED;
707
708 /* Read offset to PHY init contents */
709 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
710
711 if ((!*list_offset) || (*list_offset == 0xFFFF))
11afc1b1 712 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
c4900be0
DS
713
714 /* Shift offset to first ID word */
715 (*list_offset)++;
716
717 /*
718 * Find the matching SFP ID in the EEPROM
719 * and program the init sequence
720 */
721 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
722
723 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
724 if (sfp_id == hw->phy.sfp_type) {
725 (*list_offset)++;
726 hw->eeprom.ops.read(hw, *list_offset, data_offset);
727 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
728 hw_dbg(hw, "SFP+ module not supported\n");
729 return IXGBE_ERR_SFP_NOT_SUPPORTED;
730 } else {
731 break;
732 }
733 } else {
734 (*list_offset) += 2;
735 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
736 return IXGBE_ERR_PHY;
737 }
738 }
739
740 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
741 hw_dbg(hw, "No matching SFP+ module found\n");
742 return IXGBE_ERR_SFP_NOT_SUPPORTED;
743 }
744
745 return 0;
746}
747
11afc1b1
PW
748/**
749 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
750 * @hw: pointer to hardware structure
751 * @byte_offset: EEPROM byte offset to read
752 * @eeprom_data: value read
753 *
754 * Performs byte read operation to SFP module's EEPROM over I2C interface.
755 **/
756s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
757 u8 *eeprom_data)
758{
759 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
760 IXGBE_I2C_EEPROM_DEV_ADDR,
761 eeprom_data);
762}
763
764/**
765 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
766 * @hw: pointer to hardware structure
767 * @byte_offset: EEPROM byte offset to write
768 * @eeprom_data: value to write
769 *
770 * Performs byte write operation to SFP module's EEPROM over I2C interface.
771 **/
772s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
773 u8 eeprom_data)
774{
775 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
776 IXGBE_I2C_EEPROM_DEV_ADDR,
777 eeprom_data);
778}
779
780/**
781 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
782 * @hw: pointer to hardware structure
783 * @byte_offset: byte offset to read
784 * @data: value read
785 *
786 * Performs byte read operation to SFP module's EEPROM over I2C interface at
787 * a specified deivce address.
788 **/
789s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
790 u8 dev_addr, u8 *data)
791{
792 s32 status = 0;
793 u32 max_retry = 1;
794 u32 retry = 0;
795 bool nack = 1;
796
797 do {
798 ixgbe_i2c_start(hw);
799
800 /* Device Address and write indication */
801 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
802 if (status != 0)
803 goto fail;
804
805 status = ixgbe_get_i2c_ack(hw);
806 if (status != 0)
807 goto fail;
808
809 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
810 if (status != 0)
811 goto fail;
812
813 status = ixgbe_get_i2c_ack(hw);
814 if (status != 0)
815 goto fail;
816
817 ixgbe_i2c_start(hw);
818
819 /* Device Address and read indication */
820 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
821 if (status != 0)
822 goto fail;
823
824 status = ixgbe_get_i2c_ack(hw);
825 if (status != 0)
826 goto fail;
827
828 status = ixgbe_clock_in_i2c_byte(hw, data);
829 if (status != 0)
830 goto fail;
831
832 status = ixgbe_clock_out_i2c_bit(hw, nack);
833 if (status != 0)
834 goto fail;
835
836 ixgbe_i2c_stop(hw);
837 break;
838
839fail:
840 ixgbe_i2c_bus_clear(hw);
841 retry++;
842 if (retry < max_retry)
843 hw_dbg(hw, "I2C byte read error - Retrying.\n");
844 else
845 hw_dbg(hw, "I2C byte read error.\n");
846
847 } while (retry < max_retry);
848
849 return status;
850}
851
852/**
853 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
854 * @hw: pointer to hardware structure
855 * @byte_offset: byte offset to write
856 * @data: value to write
857 *
858 * Performs byte write operation to SFP module's EEPROM over I2C interface at
859 * a specified device address.
860 **/
861s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
862 u8 dev_addr, u8 data)
863{
864 s32 status = 0;
865 u32 max_retry = 1;
866 u32 retry = 0;
867
868 do {
869 ixgbe_i2c_start(hw);
870
871 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
872 if (status != 0)
873 goto fail;
874
875 status = ixgbe_get_i2c_ack(hw);
876 if (status != 0)
877 goto fail;
878
879 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
880 if (status != 0)
881 goto fail;
882
883 status = ixgbe_get_i2c_ack(hw);
884 if (status != 0)
885 goto fail;
886
887 status = ixgbe_clock_out_i2c_byte(hw, data);
888 if (status != 0)
889 goto fail;
890
891 status = ixgbe_get_i2c_ack(hw);
892 if (status != 0)
893 goto fail;
894
895 ixgbe_i2c_stop(hw);
896 break;
897
898fail:
899 ixgbe_i2c_bus_clear(hw);
900 retry++;
901 if (retry < max_retry)
902 hw_dbg(hw, "I2C byte write error - Retrying.\n");
903 else
904 hw_dbg(hw, "I2C byte write error.\n");
905 } while (retry < max_retry);
906
907 return status;
908}
909
910/**
911 * ixgbe_i2c_start - Sets I2C start condition
912 * @hw: pointer to hardware structure
913 *
914 * Sets I2C start condition (High -> Low on SDA while SCL is High)
915 **/
916static void ixgbe_i2c_start(struct ixgbe_hw *hw)
917{
918 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
919
920 /* Start condition must begin with data and clock high */
921 ixgbe_set_i2c_data(hw, &i2cctl, 1);
922 ixgbe_raise_i2c_clk(hw, &i2cctl);
923
924 /* Setup time for start condition (4.7us) */
925 udelay(IXGBE_I2C_T_SU_STA);
926
927 ixgbe_set_i2c_data(hw, &i2cctl, 0);
928
929 /* Hold time for start condition (4us) */
930 udelay(IXGBE_I2C_T_HD_STA);
931
932 ixgbe_lower_i2c_clk(hw, &i2cctl);
933
934 /* Minimum low period of clock is 4.7 us */
935 udelay(IXGBE_I2C_T_LOW);
936
937}
938
939/**
940 * ixgbe_i2c_stop - Sets I2C stop condition
941 * @hw: pointer to hardware structure
942 *
943 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
944 **/
945static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
946{
947 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
948
949 /* Stop condition must begin with data low and clock high */
950 ixgbe_set_i2c_data(hw, &i2cctl, 0);
951 ixgbe_raise_i2c_clk(hw, &i2cctl);
952
953 /* Setup time for stop condition (4us) */
954 udelay(IXGBE_I2C_T_SU_STO);
955
956 ixgbe_set_i2c_data(hw, &i2cctl, 1);
957
958 /* bus free time between stop and start (4.7us)*/
959 udelay(IXGBE_I2C_T_BUF);
960}
961
962/**
963 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
964 * @hw: pointer to hardware structure
965 * @data: data byte to clock in
966 *
967 * Clocks in one byte data via I2C data/clock
968 **/
969static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
970{
971 s32 status = 0;
972 s32 i;
973 bool bit = 0;
974
975 for (i = 7; i >= 0; i--) {
976 status = ixgbe_clock_in_i2c_bit(hw, &bit);
977 *data |= bit << i;
978
979 if (status != 0)
980 break;
981 }
982
983 return status;
984}
985
986/**
987 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
988 * @hw: pointer to hardware structure
989 * @data: data byte clocked out
990 *
991 * Clocks out one byte data via I2C data/clock
992 **/
993static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
994{
995 s32 status = 0;
996 s32 i;
997 u32 i2cctl;
998 bool bit = 0;
999
1000 for (i = 7; i >= 0; i--) {
1001 bit = (data >> i) & 0x1;
1002 status = ixgbe_clock_out_i2c_bit(hw, bit);
1003
1004 if (status != 0)
1005 break;
1006 }
1007
1008 /* Release SDA line (set high) */
1009 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1010 i2cctl |= IXGBE_I2C_DATA_OUT;
1011 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1012
1013 return status;
1014}
1015
1016/**
1017 * ixgbe_get_i2c_ack - Polls for I2C ACK
1018 * @hw: pointer to hardware structure
1019 *
1020 * Clocks in/out one bit via I2C data/clock
1021 **/
1022static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1023{
1024 s32 status;
1025 u32 i = 0;
1026 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1027 u32 timeout = 10;
1028 bool ack = 1;
1029
1030 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1031
1032 if (status != 0)
1033 goto out;
1034
1035 /* Minimum high period of clock is 4us */
1036 udelay(IXGBE_I2C_T_HIGH);
1037
1038 /* Poll for ACK. Note that ACK in I2C spec is
1039 * transition from 1 to 0 */
1040 for (i = 0; i < timeout; i++) {
1041 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1042 ack = ixgbe_get_i2c_data(&i2cctl);
1043
1044 udelay(1);
1045 if (ack == 0)
1046 break;
1047 }
1048
1049 if (ack == 1) {
1050 hw_dbg(hw, "I2C ack was not received.\n");
1051 status = IXGBE_ERR_I2C;
1052 }
1053
1054 ixgbe_lower_i2c_clk(hw, &i2cctl);
1055
1056 /* Minimum low period of clock is 4.7 us */
1057 udelay(IXGBE_I2C_T_LOW);
1058
1059out:
1060 return status;
1061}
1062
1063/**
1064 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1065 * @hw: pointer to hardware structure
1066 * @data: read data value
1067 *
1068 * Clocks in one bit via I2C data/clock
1069 **/
1070static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1071{
1072 s32 status;
1073 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1074
1075 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1076
1077 /* Minimum high period of clock is 4us */
1078 udelay(IXGBE_I2C_T_HIGH);
1079
1080 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1081 *data = ixgbe_get_i2c_data(&i2cctl);
1082
1083 ixgbe_lower_i2c_clk(hw, &i2cctl);
1084
1085 /* Minimum low period of clock is 4.7 us */
1086 udelay(IXGBE_I2C_T_LOW);
1087
1088 return status;
1089}
1090
1091/**
1092 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1093 * @hw: pointer to hardware structure
1094 * @data: data value to write
1095 *
1096 * Clocks out one bit via I2C data/clock
1097 **/
1098static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1099{
1100 s32 status;
1101 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1102
1103 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1104 if (status == 0) {
1105 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1106
1107 /* Minimum high period of clock is 4us */
1108 udelay(IXGBE_I2C_T_HIGH);
1109
1110 ixgbe_lower_i2c_clk(hw, &i2cctl);
1111
1112 /* Minimum low period of clock is 4.7 us.
1113 * This also takes care of the data hold time.
1114 */
1115 udelay(IXGBE_I2C_T_LOW);
1116 } else {
1117 status = IXGBE_ERR_I2C;
1118 hw_dbg(hw, "I2C data was not set to %X\n", data);
1119 }
1120
1121 return status;
1122}
1123/**
1124 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1125 * @hw: pointer to hardware structure
1126 * @i2cctl: Current value of I2CCTL register
1127 *
1128 * Raises the I2C clock line '0'->'1'
1129 **/
1130static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1131{
1132 s32 status = 0;
1133
1134 *i2cctl |= IXGBE_I2C_CLK_OUT;
1135
1136 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1137
1138 /* SCL rise time (1000ns) */
1139 udelay(IXGBE_I2C_T_RISE);
1140
1141 return status;
1142}
1143
1144/**
1145 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1146 * @hw: pointer to hardware structure
1147 * @i2cctl: Current value of I2CCTL register
1148 *
1149 * Lowers the I2C clock line '1'->'0'
1150 **/
1151static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1152{
1153
1154 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1155
1156 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1157
1158 /* SCL fall time (300ns) */
1159 udelay(IXGBE_I2C_T_FALL);
1160}
1161
1162/**
1163 * ixgbe_set_i2c_data - Sets the I2C data bit
1164 * @hw: pointer to hardware structure
1165 * @i2cctl: Current value of I2CCTL register
1166 * @data: I2C data value (0 or 1) to set
1167 *
1168 * Sets the I2C data bit
1169 **/
1170static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1171{
1172 s32 status = 0;
1173
1174 if (data)
1175 *i2cctl |= IXGBE_I2C_DATA_OUT;
1176 else
1177 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1178
1179 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1180
1181 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1182 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1183
1184 /* Verify data was set correctly */
1185 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1186 if (data != ixgbe_get_i2c_data(i2cctl)) {
1187 status = IXGBE_ERR_I2C;
1188 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1189 }
1190
1191 return status;
1192}
1193
1194/**
1195 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1196 * @hw: pointer to hardware structure
1197 * @i2cctl: Current value of I2CCTL register
1198 *
1199 * Returns the I2C data bit value
1200 **/
1201static bool ixgbe_get_i2c_data(u32 *i2cctl)
1202{
1203 bool data;
1204
1205 if (*i2cctl & IXGBE_I2C_DATA_IN)
1206 data = 1;
1207 else
1208 data = 0;
1209
1210 return data;
1211}
1212
1213/**
1214 * ixgbe_i2c_bus_clear - Clears the I2C bus
1215 * @hw: pointer to hardware structure
1216 *
1217 * Clears the I2C bus by sending nine clock pulses.
1218 * Used when data line is stuck low.
1219 **/
1220static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1221{
1222 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1223 u32 i;
1224
1225 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1226
1227 for (i = 0; i < 9; i++) {
1228 ixgbe_raise_i2c_clk(hw, &i2cctl);
1229
1230 /* Min high period of clock is 4us */
1231 udelay(IXGBE_I2C_T_HIGH);
1232
1233 ixgbe_lower_i2c_clk(hw, &i2cctl);
1234
1235 /* Min low period of clock is 4.7us*/
1236 udelay(IXGBE_I2C_T_LOW);
1237 }
1238
1239 /* Put the i2c bus back to default state */
1240 ixgbe_i2c_stop(hw);
1241}
1242
0befdb3e
JB
1243/**
1244 * ixgbe_check_phy_link_tnx - Determine link and speed status
1245 * @hw: pointer to hardware structure
1246 *
1247 * Reads the VS1 register to determine if link is up and the current speed for
1248 * the PHY.
1249 **/
1250s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1251 bool *link_up)
1252{
1253 s32 status = 0;
1254 u32 time_out;
1255 u32 max_time_out = 10;
1256 u16 phy_link = 0;
1257 u16 phy_speed = 0;
1258 u16 phy_data = 0;
1259
1260 /* Initialize speed and link to default case */
1261 *link_up = false;
1262 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1263
1264 /*
1265 * Check current speed and link status of the PHY register.
1266 * This is a vendor specific register and may have to
1267 * be changed for other copper PHYs.
1268 */
1269 for (time_out = 0; time_out < max_time_out; time_out++) {
1270 udelay(10);
1271 status = hw->phy.ops.read_reg(hw,
1272 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
6b73e10d 1273 MDIO_MMD_VEND1,
0befdb3e
JB
1274 &phy_data);
1275 phy_link = phy_data &
1276 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1277 phy_speed = phy_data &
1278 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1279 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1280 *link_up = true;
1281 if (phy_speed ==
1282 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1283 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1284 break;
1285 }
1286 }
1287
1288 return status;
1289}
1290
1291/**
1292 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1293 * @hw: pointer to hardware structure
1294 * @firmware_version: pointer to the PHY Firmware Version
1295 **/
1296s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1297 u16 *firmware_version)
1298{
1299 s32 status = 0;
1300
6b73e10d 1301 status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
0befdb3e
JB
1302 firmware_version);
1303
1304 return status;
1305}
1306
This page took 0.330803 seconds and 5 git commands to generate.