dcb: Add missing error check in dcb_ieee_set()
[deliverable/linux.git] / drivers / net / ks8851_mll.c
CommitLineData
a55c0a0e
CD
1/**
2 * drivers/net/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/**
20 * Supports:
21 * KS8851 16bit MLL chip from Micrel Inc.
22 */
23
0dc7d2b3
JP
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
a6b7a407 26#include <linux/interrupt.h>
a55c0a0e
CD
27#include <linux/module.h>
28#include <linux/kernel.h>
29#include <linux/netdevice.h>
30#include <linux/etherdevice.h>
31#include <linux/ethtool.h>
32#include <linux/cache.h>
33#include <linux/crc32.h>
34#include <linux/mii.h>
35#include <linux/platform_device.h>
36#include <linux/delay.h>
5a0e3ad6 37#include <linux/slab.h>
a55c0a0e
CD
38
39#define DRV_NAME "ks8851_mll"
40
41static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
42#define MAX_RECV_FRAMES 32
43#define MAX_BUF_SIZE 2048
44#define TX_BUF_SIZE 2000
45#define RX_BUF_SIZE 2000
46
47#define KS_CCR 0x08
48#define CCR_EEPROM (1 << 9)
49#define CCR_SPI (1 << 8)
50#define CCR_8BIT (1 << 7)
51#define CCR_16BIT (1 << 6)
52#define CCR_32BIT (1 << 5)
53#define CCR_SHARED (1 << 4)
54#define CCR_32PIN (1 << 0)
55
56/* MAC address registers */
57#define KS_MARL 0x10
58#define KS_MARM 0x12
59#define KS_MARH 0x14
60
61#define KS_OBCR 0x20
62#define OBCR_ODS_16MA (1 << 6)
63
64#define KS_EEPCR 0x22
65#define EEPCR_EESA (1 << 4)
66#define EEPCR_EESB (1 << 3)
67#define EEPCR_EEDO (1 << 2)
68#define EEPCR_EESCK (1 << 1)
69#define EEPCR_EECS (1 << 0)
70
71#define KS_MBIR 0x24
72#define MBIR_TXMBF (1 << 12)
73#define MBIR_TXMBFA (1 << 11)
74#define MBIR_RXMBF (1 << 4)
75#define MBIR_RXMBFA (1 << 3)
76
77#define KS_GRR 0x26
78#define GRR_QMU (1 << 1)
79#define GRR_GSR (1 << 0)
80
81#define KS_WFCR 0x2A
82#define WFCR_MPRXE (1 << 7)
83#define WFCR_WF3E (1 << 3)
84#define WFCR_WF2E (1 << 2)
85#define WFCR_WF1E (1 << 1)
86#define WFCR_WF0E (1 << 0)
87
88#define KS_WF0CRC0 0x30
89#define KS_WF0CRC1 0x32
90#define KS_WF0BM0 0x34
91#define KS_WF0BM1 0x36
92#define KS_WF0BM2 0x38
93#define KS_WF0BM3 0x3A
94
95#define KS_WF1CRC0 0x40
96#define KS_WF1CRC1 0x42
97#define KS_WF1BM0 0x44
98#define KS_WF1BM1 0x46
99#define KS_WF1BM2 0x48
100#define KS_WF1BM3 0x4A
101
102#define KS_WF2CRC0 0x50
103#define KS_WF2CRC1 0x52
104#define KS_WF2BM0 0x54
105#define KS_WF2BM1 0x56
106#define KS_WF2BM2 0x58
107#define KS_WF2BM3 0x5A
108
109#define KS_WF3CRC0 0x60
110#define KS_WF3CRC1 0x62
111#define KS_WF3BM0 0x64
112#define KS_WF3BM1 0x66
113#define KS_WF3BM2 0x68
114#define KS_WF3BM3 0x6A
115
116#define KS_TXCR 0x70
117#define TXCR_TCGICMP (1 << 8)
118#define TXCR_TCGUDP (1 << 7)
119#define TXCR_TCGTCP (1 << 6)
120#define TXCR_TCGIP (1 << 5)
121#define TXCR_FTXQ (1 << 4)
122#define TXCR_TXFCE (1 << 3)
123#define TXCR_TXPE (1 << 2)
124#define TXCR_TXCRC (1 << 1)
125#define TXCR_TXE (1 << 0)
126
127#define KS_TXSR 0x72
128#define TXSR_TXLC (1 << 13)
129#define TXSR_TXMC (1 << 12)
130#define TXSR_TXFID_MASK (0x3f << 0)
131#define TXSR_TXFID_SHIFT (0)
132#define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
133
134
135#define KS_RXCR1 0x74
136#define RXCR1_FRXQ (1 << 15)
137#define RXCR1_RXUDPFCC (1 << 14)
138#define RXCR1_RXTCPFCC (1 << 13)
139#define RXCR1_RXIPFCC (1 << 12)
140#define RXCR1_RXPAFMA (1 << 11)
141#define RXCR1_RXFCE (1 << 10)
142#define RXCR1_RXEFE (1 << 9)
143#define RXCR1_RXMAFMA (1 << 8)
144#define RXCR1_RXBE (1 << 7)
145#define RXCR1_RXME (1 << 6)
146#define RXCR1_RXUE (1 << 5)
147#define RXCR1_RXAE (1 << 4)
148#define RXCR1_RXINVF (1 << 1)
149#define RXCR1_RXE (1 << 0)
150#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
151 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
152
153#define KS_RXCR2 0x76
154#define RXCR2_SRDBL_MASK (0x7 << 5)
155#define RXCR2_SRDBL_SHIFT (5)
156#define RXCR2_SRDBL_4B (0x0 << 5)
157#define RXCR2_SRDBL_8B (0x1 << 5)
158#define RXCR2_SRDBL_16B (0x2 << 5)
159#define RXCR2_SRDBL_32B (0x3 << 5)
160/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
161#define RXCR2_IUFFP (1 << 4)
162#define RXCR2_RXIUFCEZ (1 << 3)
163#define RXCR2_UDPLFE (1 << 2)
164#define RXCR2_RXICMPFCC (1 << 1)
165#define RXCR2_RXSAF (1 << 0)
166
167#define KS_TXMIR 0x78
168
169#define KS_RXFHSR 0x7C
170#define RXFSHR_RXFV (1 << 15)
171#define RXFSHR_RXICMPFCS (1 << 13)
172#define RXFSHR_RXIPFCS (1 << 12)
173#define RXFSHR_RXTCPFCS (1 << 11)
174#define RXFSHR_RXUDPFCS (1 << 10)
175#define RXFSHR_RXBF (1 << 7)
176#define RXFSHR_RXMF (1 << 6)
177#define RXFSHR_RXUF (1 << 5)
178#define RXFSHR_RXMR (1 << 4)
179#define RXFSHR_RXFT (1 << 3)
180#define RXFSHR_RXFTL (1 << 2)
181#define RXFSHR_RXRF (1 << 1)
182#define RXFSHR_RXCE (1 << 0)
183#define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
184 RXFSHR_RXFTL | RXFSHR_RXMR |\
185 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
186 RXFSHR_RXTCPFCS)
187#define KS_RXFHBCR 0x7E
188#define RXFHBCR_CNT_MASK 0x0FFF
189
190#define KS_TXQCR 0x80
191#define TXQCR_AETFE (1 << 2)
192#define TXQCR_TXQMAM (1 << 1)
193#define TXQCR_METFE (1 << 0)
194
195#define KS_RXQCR 0x82
196#define RXQCR_RXDTTS (1 << 12)
197#define RXQCR_RXDBCTS (1 << 11)
198#define RXQCR_RXFCTS (1 << 10)
199#define RXQCR_RXIPHTOE (1 << 9)
200#define RXQCR_RXDTTE (1 << 7)
201#define RXQCR_RXDBCTE (1 << 6)
202#define RXQCR_RXFCTE (1 << 5)
203#define RXQCR_ADRFE (1 << 4)
204#define RXQCR_SDA (1 << 3)
205#define RXQCR_RRXEF (1 << 0)
206#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
207
208#define KS_TXFDPR 0x84
209#define TXFDPR_TXFPAI (1 << 14)
210#define TXFDPR_TXFP_MASK (0x7ff << 0)
211#define TXFDPR_TXFP_SHIFT (0)
212
213#define KS_RXFDPR 0x86
214#define RXFDPR_RXFPAI (1 << 14)
215
216#define KS_RXDTTR 0x8C
217#define KS_RXDBCTR 0x8E
218
219#define KS_IER 0x90
220#define KS_ISR 0x92
221#define IRQ_LCI (1 << 15)
222#define IRQ_TXI (1 << 14)
223#define IRQ_RXI (1 << 13)
224#define IRQ_RXOI (1 << 11)
225#define IRQ_TXPSI (1 << 9)
226#define IRQ_RXPSI (1 << 8)
227#define IRQ_TXSAI (1 << 6)
228#define IRQ_RXWFDI (1 << 5)
229#define IRQ_RXMPDI (1 << 4)
230#define IRQ_LDI (1 << 3)
231#define IRQ_EDI (1 << 2)
232#define IRQ_SPIBEI (1 << 1)
233#define IRQ_DEDI (1 << 0)
234
235#define KS_RXFCTR 0x9C
236#define RXFCTR_THRESHOLD_MASK 0x00FF
237
238#define KS_RXFC 0x9D
239#define RXFCTR_RXFC_MASK (0xff << 8)
240#define RXFCTR_RXFC_SHIFT (8)
241#define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
242#define RXFCTR_RXFCT_MASK (0xff << 0)
243#define RXFCTR_RXFCT_SHIFT (0)
244
245#define KS_TXNTFSR 0x9E
246
247#define KS_MAHTR0 0xA0
248#define KS_MAHTR1 0xA2
249#define KS_MAHTR2 0xA4
250#define KS_MAHTR3 0xA6
251
252#define KS_FCLWR 0xB0
253#define KS_FCHWR 0xB2
254#define KS_FCOWR 0xB4
255
256#define KS_CIDER 0xC0
257#define CIDER_ID 0x8870
258#define CIDER_REV_MASK (0x7 << 1)
259#define CIDER_REV_SHIFT (1)
260#define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
261
262#define KS_CGCR 0xC6
263#define KS_IACR 0xC8
264#define IACR_RDEN (1 << 12)
265#define IACR_TSEL_MASK (0x3 << 10)
266#define IACR_TSEL_SHIFT (10)
267#define IACR_TSEL_MIB (0x3 << 10)
268#define IACR_ADDR_MASK (0x1f << 0)
269#define IACR_ADDR_SHIFT (0)
270
271#define KS_IADLR 0xD0
272#define KS_IAHDR 0xD2
273
274#define KS_PMECR 0xD4
275#define PMECR_PME_DELAY (1 << 14)
276#define PMECR_PME_POL (1 << 12)
277#define PMECR_WOL_WAKEUP (1 << 11)
278#define PMECR_WOL_MAGICPKT (1 << 10)
279#define PMECR_WOL_LINKUP (1 << 9)
280#define PMECR_WOL_ENERGY (1 << 8)
281#define PMECR_AUTO_WAKE_EN (1 << 7)
282#define PMECR_WAKEUP_NORMAL (1 << 6)
283#define PMECR_WKEVT_MASK (0xf << 2)
284#define PMECR_WKEVT_SHIFT (2)
285#define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
286#define PMECR_WKEVT_ENERGY (0x1 << 2)
287#define PMECR_WKEVT_LINK (0x2 << 2)
288#define PMECR_WKEVT_MAGICPKT (0x4 << 2)
289#define PMECR_WKEVT_FRAME (0x8 << 2)
290#define PMECR_PM_MASK (0x3 << 0)
291#define PMECR_PM_SHIFT (0)
292#define PMECR_PM_NORMAL (0x0 << 0)
293#define PMECR_PM_ENERGY (0x1 << 0)
294#define PMECR_PM_SOFTDOWN (0x2 << 0)
295#define PMECR_PM_POWERSAVE (0x3 << 0)
296
297/* Standard MII PHY data */
298#define KS_P1MBCR 0xE4
299#define P1MBCR_FORCE_FDX (1 << 8)
300
301#define KS_P1MBSR 0xE6
302#define P1MBSR_AN_COMPLETE (1 << 5)
303#define P1MBSR_AN_CAPABLE (1 << 3)
304#define P1MBSR_LINK_UP (1 << 2)
305
306#define KS_PHY1ILR 0xE8
307#define KS_PHY1IHR 0xEA
308#define KS_P1ANAR 0xEC
309#define KS_P1ANLPR 0xEE
310
311#define KS_P1SCLMD 0xF4
312#define P1SCLMD_LEDOFF (1 << 15)
313#define P1SCLMD_TXIDS (1 << 14)
314#define P1SCLMD_RESTARTAN (1 << 13)
315#define P1SCLMD_DISAUTOMDIX (1 << 10)
316#define P1SCLMD_FORCEMDIX (1 << 9)
317#define P1SCLMD_AUTONEGEN (1 << 7)
318#define P1SCLMD_FORCE100 (1 << 6)
319#define P1SCLMD_FORCEFDX (1 << 5)
320#define P1SCLMD_ADV_FLOW (1 << 4)
321#define P1SCLMD_ADV_100BT_FDX (1 << 3)
322#define P1SCLMD_ADV_100BT_HDX (1 << 2)
323#define P1SCLMD_ADV_10BT_FDX (1 << 1)
324#define P1SCLMD_ADV_10BT_HDX (1 << 0)
325
326#define KS_P1CR 0xF6
327#define P1CR_HP_MDIX (1 << 15)
328#define P1CR_REV_POL (1 << 13)
329#define P1CR_OP_100M (1 << 10)
330#define P1CR_OP_FDX (1 << 9)
331#define P1CR_OP_MDI (1 << 7)
332#define P1CR_AN_DONE (1 << 6)
333#define P1CR_LINK_GOOD (1 << 5)
334#define P1CR_PNTR_FLOW (1 << 4)
335#define P1CR_PNTR_100BT_FDX (1 << 3)
336#define P1CR_PNTR_100BT_HDX (1 << 2)
337#define P1CR_PNTR_10BT_FDX (1 << 1)
338#define P1CR_PNTR_10BT_HDX (1 << 0)
339
340/* TX Frame control */
341
342#define TXFR_TXIC (1 << 15)
343#define TXFR_TXFID_MASK (0x3f << 0)
344#define TXFR_TXFID_SHIFT (0)
345
346#define KS_P1SR 0xF8
347#define P1SR_HP_MDIX (1 << 15)
348#define P1SR_REV_POL (1 << 13)
349#define P1SR_OP_100M (1 << 10)
350#define P1SR_OP_FDX (1 << 9)
351#define P1SR_OP_MDI (1 << 7)
352#define P1SR_AN_DONE (1 << 6)
353#define P1SR_LINK_GOOD (1 << 5)
354#define P1SR_PNTR_FLOW (1 << 4)
355#define P1SR_PNTR_100BT_FDX (1 << 3)
356#define P1SR_PNTR_100BT_HDX (1 << 2)
357#define P1SR_PNTR_10BT_FDX (1 << 1)
358#define P1SR_PNTR_10BT_HDX (1 << 0)
359
360#define ENUM_BUS_NONE 0
361#define ENUM_BUS_8BIT 1
362#define ENUM_BUS_16BIT 2
363#define ENUM_BUS_32BIT 3
364
365#define MAX_MCAST_LST 32
366#define HW_MCAST_SIZE 8
a55c0a0e
CD
367
368/**
369 * union ks_tx_hdr - tx header data
370 * @txb: The header as bytes
371 * @txw: The header as 16bit, little-endian words
372 *
373 * A dual representation of the tx header data to allow
374 * access to individual bytes, and to allow 16bit accesses
375 * with 16bit alignment.
376 */
377union ks_tx_hdr {
378 u8 txb[4];
379 __le16 txw[2];
380};
381
382/**
383 * struct ks_net - KS8851 driver private data
384 * @net_device : The network device we're bound to
385 * @hw_addr : start address of data register.
386 * @hw_addr_cmd : start address of command register.
387 * @txh : temporaly buffer to save status/length.
388 * @lock : Lock to ensure that the device is not accessed when busy.
389 * @pdev : Pointer to platform device.
390 * @mii : The MII state information for the mii calls.
391 * @frame_head_info : frame header information for multi-pkt rx.
392 * @statelock : Lock on this structure for tx list.
393 * @msg_enable : The message flags controlling driver output (see ethtool).
394 * @frame_cnt : number of frames received.
395 * @bus_width : i/o bus width.
396 * @irq : irq number assigned to this device.
397 * @rc_rxqcr : Cached copy of KS_RXQCR.
398 * @rc_txcr : Cached copy of KS_TXCR.
399 * @rc_ier : Cached copy of KS_IER.
400 * @sharedbus : Multipex(addr and data bus) mode indicator.
401 * @cmd_reg_cache : command register cached.
402 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
403 * @promiscuous : promiscuous mode indicator.
404 * @all_mcast : mutlicast indicator.
405 * @mcast_lst_size : size of multicast list.
406 * @mcast_lst : multicast list.
407 * @mcast_bits : multicast enabed.
408 * @mac_addr : MAC address assigned to this device.
409 * @fid : frame id.
410 * @extra_byte : number of extra byte prepended rx pkt.
411 * @enabled : indicator this device works.
412 *
413 * The @lock ensures that the chip is protected when certain operations are
414 * in progress. When the read or write packet transfer is in progress, most
415 * of the chip registers are not accessible until the transfer is finished and
416 * the DMA has been de-asserted.
417 *
418 * The @statelock is used to protect information in the structure which may
419 * need to be accessed via several sources, such as the network driver layer
420 * or one of the work queues.
421 *
422 */
423
424/* Receive multiplex framer header info */
425struct type_frame_head {
426 u16 sts; /* Frame status */
427 u16 len; /* Byte count */
428};
429
430struct ks_net {
431 struct net_device *netdev;
432 void __iomem *hw_addr;
433 void __iomem *hw_addr_cmd;
434 union ks_tx_hdr txh ____cacheline_aligned;
435 struct mutex lock; /* spinlock to be interrupt safe */
436 struct platform_device *pdev;
437 struct mii_if_info mii;
438 struct type_frame_head *frame_head_info;
439 spinlock_t statelock;
440 u32 msg_enable;
441 u32 frame_cnt;
442 int bus_width;
443 int irq;
444
445 u16 rc_rxqcr;
446 u16 rc_txcr;
447 u16 rc_ier;
448 u16 sharedbus;
449 u16 cmd_reg_cache;
450 u16 cmd_reg_cache_int;
451 u16 promiscuous;
452 u16 all_mcast;
453 u16 mcast_lst_size;
22bedad3 454 u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
a55c0a0e
CD
455 u8 mcast_bits[HW_MCAST_SIZE];
456 u8 mac_addr[6];
457 u8 fid;
458 u8 extra_byte;
459 u8 enabled;
460};
461
462static int msg_enable;
463
a55c0a0e
CD
464#define BE3 0x8000 /* Byte Enable 3 */
465#define BE2 0x4000 /* Byte Enable 2 */
466#define BE1 0x2000 /* Byte Enable 1 */
467#define BE0 0x1000 /* Byte Enable 0 */
468
469/**
470 * register read/write calls.
471 *
472 * All these calls issue transactions to access the chip's registers. They
473 * all require that the necessary lock is held to prevent accesses when the
25985edc 474 * chip is busy transferring packet data (RX/TX FIFO accesses).
a55c0a0e
CD
475 */
476
477/**
478 * ks_rdreg8 - read 8 bit register from device
479 * @ks : The chip information
480 * @offset: The register address
481 *
482 * Read a 8bit register from the chip, returning the result
483 */
484static u8 ks_rdreg8(struct ks_net *ks, int offset)
485{
486 u16 data;
487 u8 shift_bit = offset & 0x03;
488 u8 shift_data = (offset & 1) << 3;
489 ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
490 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
491 data = ioread16(ks->hw_addr);
492 return (u8)(data >> shift_data);
493}
494
495/**
496 * ks_rdreg16 - read 16 bit register from device
497 * @ks : The chip information
498 * @offset: The register address
499 *
500 * Read a 16bit register from the chip, returning the result
501 */
502
503static u16 ks_rdreg16(struct ks_net *ks, int offset)
504{
505 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
506 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
507 return ioread16(ks->hw_addr);
508}
509
510/**
511 * ks_wrreg8 - write 8bit register value to chip
512 * @ks: The chip information
513 * @offset: The register address
514 * @value: The value to write
515 *
516 */
517static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
518{
519 u8 shift_bit = (offset & 0x03);
520 u16 value_write = (u16)(value << ((offset & 1) << 3));
521 ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
522 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
523 iowrite16(value_write, ks->hw_addr);
524}
525
526/**
527 * ks_wrreg16 - write 16bit register value to chip
528 * @ks: The chip information
529 * @offset: The register address
530 * @value: The value to write
531 *
532 */
533
534static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
535{
536 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
537 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
538 iowrite16(value, ks->hw_addr);
539}
540
541/**
542 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
543 * @ks: The chip state
544 * @wptr: buffer address to save data
545 * @len: length in byte to read
546 *
547 */
548static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
549{
550 len >>= 1;
551 while (len--)
552 *wptr++ = (u16)ioread16(ks->hw_addr);
553}
554
555/**
556 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
557 * @ks: The chip information
558 * @wptr: buffer address
559 * @len: length in byte to write
560 *
561 */
562static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
563{
564 len >>= 1;
565 while (len--)
566 iowrite16(*wptr++, ks->hw_addr);
567}
568
4a91ca4e
DC
569static void ks_disable_int(struct ks_net *ks)
570{
571 ks_wrreg16(ks, KS_IER, 0x0000);
572} /* ks_disable_int */
573
574static void ks_enable_int(struct ks_net *ks)
575{
576 ks_wrreg16(ks, KS_IER, ks->rc_ier);
577} /* ks_enable_int */
578
a55c0a0e
CD
579/**
580 * ks_tx_fifo_space - return the available hardware buffer size.
581 * @ks: The chip information
582 *
583 */
584static inline u16 ks_tx_fifo_space(struct ks_net *ks)
585{
586 return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
587}
588
589/**
590 * ks_save_cmd_reg - save the command register from the cache.
591 * @ks: The chip information
592 *
593 */
594static inline void ks_save_cmd_reg(struct ks_net *ks)
595{
596 /*ks8851 MLL has a bug to read back the command register.
597 * So rely on software to save the content of command register.
598 */
599 ks->cmd_reg_cache_int = ks->cmd_reg_cache;
600}
601
602/**
603 * ks_restore_cmd_reg - restore the command register from the cache and
604 * write to hardware register.
605 * @ks: The chip information
606 *
607 */
608static inline void ks_restore_cmd_reg(struct ks_net *ks)
609{
610 ks->cmd_reg_cache = ks->cmd_reg_cache_int;
611 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
612}
613
614/**
615 * ks_set_powermode - set power mode of the device
616 * @ks: The chip information
617 * @pwrmode: The power mode value to write to KS_PMECR.
618 *
619 * Change the power mode of the chip.
620 */
621static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
622{
623 unsigned pmecr;
624
0dc7d2b3 625 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
a55c0a0e
CD
626
627 ks_rdreg16(ks, KS_GRR);
628 pmecr = ks_rdreg16(ks, KS_PMECR);
629 pmecr &= ~PMECR_PM_MASK;
630 pmecr |= pwrmode;
631
632 ks_wrreg16(ks, KS_PMECR, pmecr);
633}
634
635/**
636 * ks_read_config - read chip configuration of bus width.
637 * @ks: The chip information
638 *
639 */
640static void ks_read_config(struct ks_net *ks)
641{
642 u16 reg_data = 0;
643
644 /* Regardless of bus width, 8 bit read should always work.*/
645 reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
646 reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
647
648 /* addr/data bus are multiplexed */
649 ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
650
651 /* There are garbage data when reading data from QMU,
652 depending on bus-width.
653 */
654
655 if (reg_data & CCR_8BIT) {
656 ks->bus_width = ENUM_BUS_8BIT;
657 ks->extra_byte = 1;
658 } else if (reg_data & CCR_16BIT) {
659 ks->bus_width = ENUM_BUS_16BIT;
660 ks->extra_byte = 2;
661 } else {
662 ks->bus_width = ENUM_BUS_32BIT;
663 ks->extra_byte = 4;
664 }
665}
666
667/**
668 * ks_soft_reset - issue one of the soft reset to the device
669 * @ks: The device state.
670 * @op: The bit(s) to set in the GRR
671 *
672 * Issue the relevant soft-reset command to the device's GRR register
673 * specified by @op.
674 *
675 * Note, the delays are in there as a caution to ensure that the reset
676 * has time to take effect and then complete. Since the datasheet does
677 * not currently specify the exact sequence, we have chosen something
678 * that seems to work with our device.
679 */
680static void ks_soft_reset(struct ks_net *ks, unsigned op)
681{
682 /* Disable interrupt first */
683 ks_wrreg16(ks, KS_IER, 0x0000);
684 ks_wrreg16(ks, KS_GRR, op);
685 mdelay(10); /* wait a short time to effect reset */
686 ks_wrreg16(ks, KS_GRR, 0);
687 mdelay(1); /* wait for condition to clear */
688}
689
690
4a91ca4e
DC
691void ks_enable_qmu(struct ks_net *ks)
692{
693 u16 w;
694
695 w = ks_rdreg16(ks, KS_TXCR);
696 /* Enables QMU Transmit (TXCR). */
697 ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
698
699 /*
700 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
701 * Enable
702 */
703
704 w = ks_rdreg16(ks, KS_RXQCR);
705 ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
706
707 /* Enables QMU Receive (RXCR1). */
708 w = ks_rdreg16(ks, KS_RXCR1);
709 ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
710 ks->enabled = true;
711} /* ks_enable_qmu */
712
713static void ks_disable_qmu(struct ks_net *ks)
714{
715 u16 w;
716
717 w = ks_rdreg16(ks, KS_TXCR);
718
719 /* Disables QMU Transmit (TXCR). */
720 w &= ~TXCR_TXE;
721 ks_wrreg16(ks, KS_TXCR, w);
722
723 /* Disables QMU Receive (RXCR1). */
724 w = ks_rdreg16(ks, KS_RXCR1);
725 w &= ~RXCR1_RXE ;
726 ks_wrreg16(ks, KS_RXCR1, w);
727
728 ks->enabled = false;
729
730} /* ks_disable_qmu */
731
a55c0a0e
CD
732/**
733 * ks_read_qmu - read 1 pkt data from the QMU.
734 * @ks: The chip information
735 * @buf: buffer address to save 1 pkt
736 * @len: Pkt length
737 * Here is the sequence to read 1 pkt:
738 * 1. set sudo DMA mode
739 * 2. read prepend data
740 * 3. read pkt data
741 * 4. reset sudo DMA Mode
742 */
743static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
744{
745 u32 r = ks->extra_byte & 0x1 ;
746 u32 w = ks->extra_byte - r;
747
748 /* 1. set sudo DMA mode */
749 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
750 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
751
752 /* 2. read prepend data */
753 /**
754 * read 4 + extra bytes and discard them.
755 * extra bytes for dummy, 2 for status, 2 for len
756 */
757
758 /* use likely(r) for 8 bit access for performance */
759 if (unlikely(r))
760 ioread8(ks->hw_addr);
761 ks_inblk(ks, buf, w + 2 + 2);
762
763 /* 3. read pkt data */
764 ks_inblk(ks, buf, ALIGN(len, 4));
765
766 /* 4. reset sudo DMA Mode */
767 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
768}
769
770/**
771 * ks_rcv - read multiple pkts data from the QMU.
772 * @ks: The chip information
773 * @netdev: The network device being opened.
774 *
775 * Read all of header information before reading pkt content.
776 * It is not allowed only port of pkts in QMU after issuing
777 * interrupt ack.
778 */
779static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
780{
781 u32 i;
782 struct type_frame_head *frame_hdr = ks->frame_head_info;
783 struct sk_buff *skb;
784
785 ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
786
787 /* read all header information */
788 for (i = 0; i < ks->frame_cnt; i++) {
789 /* Checking Received packet status */
790 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
791 /* Get packet len from hardware */
792 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
793 frame_hdr++;
794 }
795
796 frame_hdr = ks->frame_head_info;
797 while (ks->frame_cnt--) {
798 skb = dev_alloc_skb(frame_hdr->len + 16);
799 if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
800 (frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
801 skb_reserve(skb, 2);
802 /* read data block including CRC 4 bytes */
4a91ca4e 803 ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
a55c0a0e 804 skb_put(skb, frame_hdr->len);
a55c0a0e
CD
805 skb->protocol = eth_type_trans(skb, netdev);
806 netif_rx(skb);
807 } else {
0dc7d2b3 808 pr_err("%s: err:skb alloc\n", __func__);
a55c0a0e
CD
809 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
810 if (skb)
811 dev_kfree_skb_irq(skb);
812 }
813 frame_hdr++;
814 }
815}
816
817/**
818 * ks_update_link_status - link status update.
819 * @netdev: The network device being opened.
820 * @ks: The chip information
821 *
822 */
823
824static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
825{
826 /* check the status of the link */
827 u32 link_up_status;
828 if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
829 netif_carrier_on(netdev);
830 link_up_status = true;
831 } else {
832 netif_carrier_off(netdev);
833 link_up_status = false;
834 }
0dc7d2b3
JP
835 netif_dbg(ks, link, ks->netdev,
836 "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
a55c0a0e
CD
837}
838
839/**
840 * ks_irq - device interrupt handler
841 * @irq: Interrupt number passed from the IRQ hnalder.
842 * @pw: The private word passed to register_irq(), our struct ks_net.
843 *
844 * This is the handler invoked to find out what happened
845 *
846 * Read the interrupt status, work out what needs to be done and then clear
847 * any of the interrupts that are not needed.
848 */
849
850static irqreturn_t ks_irq(int irq, void *pw)
851{
aeedba8b
CD
852 struct net_device *netdev = pw;
853 struct ks_net *ks = netdev_priv(netdev);
a55c0a0e
CD
854 u16 status;
855
856 /*this should be the first in IRQ handler */
857 ks_save_cmd_reg(ks);
858
859 status = ks_rdreg16(ks, KS_ISR);
860 if (unlikely(!status)) {
861 ks_restore_cmd_reg(ks);
862 return IRQ_NONE;
863 }
864
865 ks_wrreg16(ks, KS_ISR, status);
866
867 if (likely(status & IRQ_RXI))
868 ks_rcv(ks, netdev);
869
870 if (unlikely(status & IRQ_LCI))
871 ks_update_link_status(netdev, ks);
872
873 if (unlikely(status & IRQ_TXI))
874 netif_wake_queue(netdev);
875
876 if (unlikely(status & IRQ_LDI)) {
877
878 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
879 pmecr &= ~PMECR_WKEVT_MASK;
880 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
881 }
882
883 /* this should be the last in IRQ handler*/
884 ks_restore_cmd_reg(ks);
885 return IRQ_HANDLED;
886}
887
888
889/**
890 * ks_net_open - open network device
891 * @netdev: The network device being opened.
892 *
893 * Called when the network device is marked active, such as a user executing
894 * 'ifconfig up' on the device.
895 */
896static int ks_net_open(struct net_device *netdev)
897{
898 struct ks_net *ks = netdev_priv(netdev);
899 int err;
900
901#define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
902 /* lock the card, even if we may not actually do anything
903 * else at the moment.
904 */
905
0dc7d2b3 906 netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
a55c0a0e
CD
907
908 /* reset the HW */
4a91ca4e 909 err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
a55c0a0e
CD
910
911 if (err) {
0dc7d2b3 912 pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
a55c0a0e
CD
913 return err;
914 }
915
4a91ca4e
DC
916 /* wake up powermode to normal mode */
917 ks_set_powermode(ks, PMECR_PM_NORMAL);
918 mdelay(1); /* wait for normal mode to take effect */
919
920 ks_wrreg16(ks, KS_ISR, 0xffff);
921 ks_enable_int(ks);
922 ks_enable_qmu(ks);
923 netif_start_queue(ks->netdev);
924
0dc7d2b3 925 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
a55c0a0e
CD
926
927 return 0;
928}
929
930/**
931 * ks_net_stop - close network device
932 * @netdev: The device being closed.
933 *
934 * Called to close down a network device which has been active. Cancell any
935 * work, shutdown the RX and TX process and then place the chip into a low
936 * power state whilst it is not being used.
937 */
938static int ks_net_stop(struct net_device *netdev)
939{
940 struct ks_net *ks = netdev_priv(netdev);
941
0dc7d2b3 942 netif_info(ks, ifdown, netdev, "shutting down\n");
a55c0a0e
CD
943
944 netif_stop_queue(netdev);
945
a55c0a0e
CD
946 mutex_lock(&ks->lock);
947
948 /* turn off the IRQs and ack any outstanding */
949 ks_wrreg16(ks, KS_IER, 0x0000);
950 ks_wrreg16(ks, KS_ISR, 0xffff);
951
4a91ca4e
DC
952 /* shutdown RX/TX QMU */
953 ks_disable_qmu(ks);
a55c0a0e
CD
954
955 /* set powermode to soft power down to save power */
956 ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
957 free_irq(ks->irq, netdev);
958 mutex_unlock(&ks->lock);
959 return 0;
960}
961
962
963/**
964 * ks_write_qmu - write 1 pkt data to the QMU.
965 * @ks: The chip information
966 * @pdata: buffer address to save 1 pkt
967 * @len: Pkt length in byte
968 * Here is the sequence to write 1 pkt:
969 * 1. set sudo DMA mode
970 * 2. write status/length
971 * 3. write pkt data
972 * 4. reset sudo DMA Mode
973 * 5. reset sudo DMA mode
974 * 6. Wait until pkt is out
975 */
976static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
977{
a55c0a0e 978 /* start header at txb[0] to align txw entries */
4a91ca4e 979 ks->txh.txw[0] = 0;
a55c0a0e
CD
980 ks->txh.txw[1] = cpu_to_le16(len);
981
982 /* 1. set sudo-DMA mode */
983 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
984 /* 2. write status/lenth info */
985 ks_outblk(ks, ks->txh.txw, 4);
986 /* 3. write pkt data */
987 ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
988 /* 4. reset sudo-DMA mode */
989 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
990 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
991 ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
992 /* 6. wait until TXQCR_METFE is auto-cleared */
993 while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
994 ;
995}
996
a55c0a0e
CD
997/**
998 * ks_start_xmit - transmit packet
999 * @skb : The buffer to transmit
1000 * @netdev : The device used to transmit the packet.
1001 *
1002 * Called by the network layer to transmit the @skb.
1003 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1004 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1005 */
1006static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1007{
1008 int retv = NETDEV_TX_OK;
1009 struct ks_net *ks = netdev_priv(netdev);
1010
1011 disable_irq(netdev->irq);
1012 ks_disable_int(ks);
1013 spin_lock(&ks->statelock);
1014
1015 /* Extra space are required:
1016 * 4 byte for alignment, 4 for status/length, 4 for CRC
1017 */
1018
1019 if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1020 ks_write_qmu(ks, skb->data, skb->len);
1021 dev_kfree_skb(skb);
1022 } else
1023 retv = NETDEV_TX_BUSY;
1024 spin_unlock(&ks->statelock);
1025 ks_enable_int(ks);
1026 enable_irq(netdev->irq);
1027 return retv;
1028}
1029
1030/**
1031 * ks_start_rx - ready to serve pkts
1032 * @ks : The chip information
1033 *
1034 */
1035static void ks_start_rx(struct ks_net *ks)
1036{
1037 u16 cntl;
1038
1039 /* Enables QMU Receive (RXCR1). */
1040 cntl = ks_rdreg16(ks, KS_RXCR1);
1041 cntl |= RXCR1_RXE ;
1042 ks_wrreg16(ks, KS_RXCR1, cntl);
1043} /* ks_start_rx */
1044
1045/**
1046 * ks_stop_rx - stop to serve pkts
1047 * @ks : The chip information
1048 *
1049 */
1050static void ks_stop_rx(struct ks_net *ks)
1051{
1052 u16 cntl;
1053
1054 /* Disables QMU Receive (RXCR1). */
1055 cntl = ks_rdreg16(ks, KS_RXCR1);
1056 cntl &= ~RXCR1_RXE ;
1057 ks_wrreg16(ks, KS_RXCR1, cntl);
1058
1059} /* ks_stop_rx */
1060
1061static unsigned long const ethernet_polynomial = 0x04c11db7U;
1062
1063static unsigned long ether_gen_crc(int length, u8 *data)
1064{
1065 long crc = -1;
1066 while (--length >= 0) {
1067 u8 current_octet = *data++;
1068 int bit;
1069
1070 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1071 crc = (crc << 1) ^
1072 ((crc < 0) ^ (current_octet & 1) ?
1073 ethernet_polynomial : 0);
1074 }
1075 }
1076 return (unsigned long)crc;
1077} /* ether_gen_crc */
1078
1079/**
1080* ks_set_grpaddr - set multicast information
1081* @ks : The chip information
1082*/
1083
1084static void ks_set_grpaddr(struct ks_net *ks)
1085{
1086 u8 i;
1087 u32 index, position, value;
1088
1089 memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1090
1091 for (i = 0; i < ks->mcast_lst_size; i++) {
1092 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1093 index = position >> 3;
1094 value = 1 << (position & 7);
1095 ks->mcast_bits[index] |= (u8)value;
1096 }
1097
1098 for (i = 0; i < HW_MCAST_SIZE; i++) {
1099 if (i & 1) {
1100 ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1101 (ks->mcast_bits[i] << 8) |
1102 ks->mcast_bits[i - 1]);
1103 }
1104 }
1105} /* ks_set_grpaddr */
1106
1107/*
1108* ks_clear_mcast - clear multicast information
1109*
1110* @ks : The chip information
1111* This routine removes all mcast addresses set in the hardware.
1112*/
1113
1114static void ks_clear_mcast(struct ks_net *ks)
1115{
1116 u16 i, mcast_size;
1117 for (i = 0; i < HW_MCAST_SIZE; i++)
1118 ks->mcast_bits[i] = 0;
1119
1120 mcast_size = HW_MCAST_SIZE >> 2;
1121 for (i = 0; i < mcast_size; i++)
1122 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1123}
1124
1125static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1126{
1127 u16 cntl;
1128 ks->promiscuous = promiscuous_mode;
1129 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1130 cntl = ks_rdreg16(ks, KS_RXCR1);
1131
1132 cntl &= ~RXCR1_FILTER_MASK;
1133 if (promiscuous_mode)
1134 /* Enable Promiscuous mode */
1135 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1136 else
1137 /* Disable Promiscuous mode (default normal mode) */
1138 cntl |= RXCR1_RXPAFMA;
1139
1140 ks_wrreg16(ks, KS_RXCR1, cntl);
1141
1142 if (ks->enabled)
1143 ks_start_rx(ks);
1144
1145} /* ks_set_promis */
1146
1147static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1148{
1149 u16 cntl;
1150
1151 ks->all_mcast = mcast;
1152 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1153 cntl = ks_rdreg16(ks, KS_RXCR1);
1154 cntl &= ~RXCR1_FILTER_MASK;
1155 if (mcast)
1156 /* Enable "Perfect with Multicast address passed mode" */
1157 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1158 else
1159 /**
1160 * Disable "Perfect with Multicast address passed
1161 * mode" (normal mode).
1162 */
1163 cntl |= RXCR1_RXPAFMA;
1164
1165 ks_wrreg16(ks, KS_RXCR1, cntl);
1166
1167 if (ks->enabled)
1168 ks_start_rx(ks);
1169} /* ks_set_mcast */
1170
1171static void ks_set_rx_mode(struct net_device *netdev)
1172{
1173 struct ks_net *ks = netdev_priv(netdev);
22bedad3 1174 struct netdev_hw_addr *ha;
a55c0a0e
CD
1175
1176 /* Turn on/off promiscuous mode. */
1177 if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1178 ks_set_promis(ks,
1179 (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1180 /* Turn on/off all mcast mode. */
1181 else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1182 ks_set_mcast(ks,
1183 (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1184 else
1185 ks_set_promis(ks, false);
1186
4cd24eaf
JP
1187 if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1188 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
a55c0a0e 1189 int i = 0;
f9dcbcc9 1190
22bedad3
JP
1191 netdev_for_each_mc_addr(ha, netdev) {
1192 if (!(*ha->addr & 1))
a55c0a0e
CD
1193 continue;
1194 if (i >= MAX_MCAST_LST)
1195 break;
22bedad3 1196 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
a55c0a0e
CD
1197 }
1198 ks->mcast_lst_size = (u8)i;
1199 ks_set_grpaddr(ks);
1200 } else {
1201 /**
1202 * List too big to support so
1203 * turn on all mcast mode.
1204 */
1205 ks->mcast_lst_size = MAX_MCAST_LST;
1206 ks_set_mcast(ks, true);
1207 }
1208 } else {
1209 ks->mcast_lst_size = 0;
1210 ks_clear_mcast(ks);
1211 }
1212} /* ks_set_rx_mode */
1213
1214static void ks_set_mac(struct ks_net *ks, u8 *data)
1215{
1216 u16 *pw = (u16 *)data;
1217 u16 w, u;
1218
1219 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1220
1221 u = *pw++;
1222 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1223 ks_wrreg16(ks, KS_MARH, w);
1224
1225 u = *pw++;
1226 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1227 ks_wrreg16(ks, KS_MARM, w);
1228
1229 u = *pw;
1230 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1231 ks_wrreg16(ks, KS_MARL, w);
1232
1233 memcpy(ks->mac_addr, data, 6);
1234
1235 if (ks->enabled)
1236 ks_start_rx(ks);
1237}
1238
1239static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1240{
1241 struct ks_net *ks = netdev_priv(netdev);
1242 struct sockaddr *addr = paddr;
1243 u8 *da;
1244
1245 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1246
1247 da = (u8 *)netdev->dev_addr;
1248
1249 ks_set_mac(ks, da);
1250 return 0;
1251}
1252
1253static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1254{
1255 struct ks_net *ks = netdev_priv(netdev);
1256
1257 if (!netif_running(netdev))
1258 return -EINVAL;
1259
1260 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1261}
1262
1263static const struct net_device_ops ks_netdev_ops = {
1264 .ndo_open = ks_net_open,
1265 .ndo_stop = ks_net_stop,
1266 .ndo_do_ioctl = ks_net_ioctl,
1267 .ndo_start_xmit = ks_start_xmit,
1268 .ndo_set_mac_address = ks_set_mac_address,
1269 .ndo_set_rx_mode = ks_set_rx_mode,
1270 .ndo_change_mtu = eth_change_mtu,
1271 .ndo_validate_addr = eth_validate_addr,
1272};
1273
1274/* ethtool support */
1275
1276static void ks_get_drvinfo(struct net_device *netdev,
1277 struct ethtool_drvinfo *di)
1278{
1279 strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1280 strlcpy(di->version, "1.00", sizeof(di->version));
1281 strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1282 sizeof(di->bus_info));
1283}
1284
1285static u32 ks_get_msglevel(struct net_device *netdev)
1286{
1287 struct ks_net *ks = netdev_priv(netdev);
1288 return ks->msg_enable;
1289}
1290
1291static void ks_set_msglevel(struct net_device *netdev, u32 to)
1292{
1293 struct ks_net *ks = netdev_priv(netdev);
1294 ks->msg_enable = to;
1295}
1296
1297static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1298{
1299 struct ks_net *ks = netdev_priv(netdev);
1300 return mii_ethtool_gset(&ks->mii, cmd);
1301}
1302
1303static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1304{
1305 struct ks_net *ks = netdev_priv(netdev);
1306 return mii_ethtool_sset(&ks->mii, cmd);
1307}
1308
1309static u32 ks_get_link(struct net_device *netdev)
1310{
1311 struct ks_net *ks = netdev_priv(netdev);
1312 return mii_link_ok(&ks->mii);
1313}
1314
1315static int ks_nway_reset(struct net_device *netdev)
1316{
1317 struct ks_net *ks = netdev_priv(netdev);
1318 return mii_nway_restart(&ks->mii);
1319}
1320
1321static const struct ethtool_ops ks_ethtool_ops = {
1322 .get_drvinfo = ks_get_drvinfo,
1323 .get_msglevel = ks_get_msglevel,
1324 .set_msglevel = ks_set_msglevel,
1325 .get_settings = ks_get_settings,
1326 .set_settings = ks_set_settings,
1327 .get_link = ks_get_link,
1328 .nway_reset = ks_nway_reset,
1329};
1330
1331/* MII interface controls */
1332
1333/**
1334 * ks_phy_reg - convert MII register into a KS8851 register
1335 * @reg: MII register number.
1336 *
1337 * Return the KS8851 register number for the corresponding MII PHY register
1338 * if possible. Return zero if the MII register has no direct mapping to the
1339 * KS8851 register set.
1340 */
1341static int ks_phy_reg(int reg)
1342{
1343 switch (reg) {
1344 case MII_BMCR:
1345 return KS_P1MBCR;
1346 case MII_BMSR:
1347 return KS_P1MBSR;
1348 case MII_PHYSID1:
1349 return KS_PHY1ILR;
1350 case MII_PHYSID2:
1351 return KS_PHY1IHR;
1352 case MII_ADVERTISE:
1353 return KS_P1ANAR;
1354 case MII_LPA:
1355 return KS_P1ANLPR;
1356 }
1357
1358 return 0x0;
1359}
1360
1361/**
1362 * ks_phy_read - MII interface PHY register read.
1363 * @netdev: The network device the PHY is on.
1364 * @phy_addr: Address of PHY (ignored as we only have one)
1365 * @reg: The register to read.
1366 *
1367 * This call reads data from the PHY register specified in @reg. Since the
25985edc 1368 * device does not support all the MII registers, the non-existent values
a55c0a0e
CD
1369 * are always returned as zero.
1370 *
1371 * We return zero for unsupported registers as the MII code does not check
1372 * the value returned for any error status, and simply returns it to the
1373 * caller. The mii-tool that the driver was tested with takes any -ve error
1374 * as real PHY capabilities, thus displaying incorrect data to the user.
1375 */
1376static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1377{
1378 struct ks_net *ks = netdev_priv(netdev);
1379 int ksreg;
1380 int result;
1381
1382 ksreg = ks_phy_reg(reg);
1383 if (!ksreg)
1384 return 0x0; /* no error return allowed, so use zero */
1385
1386 mutex_lock(&ks->lock);
1387 result = ks_rdreg16(ks, ksreg);
1388 mutex_unlock(&ks->lock);
1389
1390 return result;
1391}
1392
1393static void ks_phy_write(struct net_device *netdev,
1394 int phy, int reg, int value)
1395{
1396 struct ks_net *ks = netdev_priv(netdev);
1397 int ksreg;
1398
1399 ksreg = ks_phy_reg(reg);
1400 if (ksreg) {
1401 mutex_lock(&ks->lock);
1402 ks_wrreg16(ks, ksreg, value);
1403 mutex_unlock(&ks->lock);
1404 }
1405}
1406
1407/**
1408 * ks_read_selftest - read the selftest memory info.
1409 * @ks: The device state
1410 *
1411 * Read and check the TX/RX memory selftest information.
1412 */
1413static int ks_read_selftest(struct ks_net *ks)
1414{
1415 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1416 int ret = 0;
1417 unsigned rd;
1418
1419 rd = ks_rdreg16(ks, KS_MBIR);
1420
1421 if ((rd & both_done) != both_done) {
0dc7d2b3 1422 netdev_warn(ks->netdev, "Memory selftest not finished\n");
a55c0a0e
CD
1423 return 0;
1424 }
1425
1426 if (rd & MBIR_TXMBFA) {
0dc7d2b3 1427 netdev_err(ks->netdev, "TX memory selftest fails\n");
a55c0a0e
CD
1428 ret |= 1;
1429 }
1430
1431 if (rd & MBIR_RXMBFA) {
0dc7d2b3 1432 netdev_err(ks->netdev, "RX memory selftest fails\n");
a55c0a0e
CD
1433 ret |= 2;
1434 }
1435
0dc7d2b3 1436 netdev_info(ks->netdev, "the selftest passes\n");
a55c0a0e
CD
1437 return ret;
1438}
1439
a55c0a0e
CD
1440static void ks_setup(struct ks_net *ks)
1441{
1442 u16 w;
1443
1444 /**
1445 * Configure QMU Transmit
1446 */
1447
1448 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1449 ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1450
1451 /* Setup Receive Frame Data Pointer Auto-Increment */
1452 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1453
1454 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1455 ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1456
1457 /* Setup RxQ Command Control (RXQCR) */
1458 ks->rc_rxqcr = RXQCR_CMD_CNTL;
1459 ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1460
1461 /**
1462 * set the force mode to half duplex, default is full duplex
1463 * because if the auto-negotiation fails, most switch uses
1464 * half-duplex.
1465 */
1466
1467 w = ks_rdreg16(ks, KS_P1MBCR);
1468 w &= ~P1MBCR_FORCE_FDX;
1469 ks_wrreg16(ks, KS_P1MBCR, w);
1470
1471 w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1472 ks_wrreg16(ks, KS_TXCR, w);
1473
4a91ca4e 1474 w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
a55c0a0e
CD
1475
1476 if (ks->promiscuous) /* bPromiscuous */
1477 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1478 else if (ks->all_mcast) /* Multicast address passed mode */
1479 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1480 else /* Normal mode */
1481 w |= RXCR1_RXPAFMA;
1482
1483 ks_wrreg16(ks, KS_RXCR1, w);
1484} /*ks_setup */
1485
1486
1487static void ks_setup_int(struct ks_net *ks)
1488{
1489 ks->rc_ier = 0x00;
1490 /* Clear the interrupts status of the hardware. */
1491 ks_wrreg16(ks, KS_ISR, 0xffff);
1492
1493 /* Enables the interrupts of the hardware. */
1494 ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1495} /* ks_setup_int */
1496
a55c0a0e
CD
1497static int ks_hw_init(struct ks_net *ks)
1498{
1499#define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1500 ks->promiscuous = 0;
1501 ks->all_mcast = 0;
1502 ks->mcast_lst_size = 0;
1503
1504 ks->frame_head_info = (struct type_frame_head *) \
1505 kmalloc(MHEADER_SIZE, GFP_KERNEL);
1506 if (!ks->frame_head_info) {
0dc7d2b3 1507 pr_err("Error: Fail to allocate frame memory\n");
a55c0a0e
CD
1508 return false;
1509 }
1510
1511 ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1512 return true;
1513}
1514
1515
1516static int __devinit ks8851_probe(struct platform_device *pdev)
1517{
1518 int err = -ENOMEM;
1519 struct resource *io_d, *io_c;
1520 struct net_device *netdev;
1521 struct ks_net *ks;
1522 u16 id, data;
1523
1524 io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1525 io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1526
1527 if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1528 goto err_mem_region;
1529
1530 if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1531 goto err_mem_region1;
1532
1533 netdev = alloc_etherdev(sizeof(struct ks_net));
1534 if (!netdev)
1535 goto err_alloc_etherdev;
1536
1537 SET_NETDEV_DEV(netdev, &pdev->dev);
1538
1539 ks = netdev_priv(netdev);
1540 ks->netdev = netdev;
1541 ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1542
1543 if (!ks->hw_addr)
1544 goto err_ioremap;
1545
1546 ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1547 if (!ks->hw_addr_cmd)
1548 goto err_ioremap1;
1549
1550 ks->irq = platform_get_irq(pdev, 0);
1551
1552 if (ks->irq < 0) {
1553 err = ks->irq;
1554 goto err_get_irq;
1555 }
1556
1557 ks->pdev = pdev;
1558
1559 mutex_init(&ks->lock);
1560 spin_lock_init(&ks->statelock);
1561
1562 netdev->netdev_ops = &ks_netdev_ops;
1563 netdev->ethtool_ops = &ks_ethtool_ops;
1564
1565 /* setup mii state */
1566 ks->mii.dev = netdev;
1567 ks->mii.phy_id = 1,
1568 ks->mii.phy_id_mask = 1;
1569 ks->mii.reg_num_mask = 0xf;
1570 ks->mii.mdio_read = ks_phy_read;
1571 ks->mii.mdio_write = ks_phy_write;
1572
0dc7d2b3 1573 netdev_info(netdev, "message enable is %d\n", msg_enable);
a55c0a0e
CD
1574 /* set the default message enable */
1575 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1576 NETIF_MSG_PROBE |
1577 NETIF_MSG_LINK));
1578 ks_read_config(ks);
1579
1580 /* simple check for a valid chip being connected to the bus */
1581 if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
0dc7d2b3 1582 netdev_err(netdev, "failed to read device ID\n");
a55c0a0e
CD
1583 err = -ENODEV;
1584 goto err_register;
1585 }
1586
1587 if (ks_read_selftest(ks)) {
0dc7d2b3 1588 netdev_err(netdev, "failed to read device ID\n");
a55c0a0e
CD
1589 err = -ENODEV;
1590 goto err_register;
1591 }
1592
1593 err = register_netdev(netdev);
1594 if (err)
1595 goto err_register;
1596
1597 platform_set_drvdata(pdev, netdev);
1598
1599 ks_soft_reset(ks, GRR_GSR);
1600 ks_hw_init(ks);
4a91ca4e 1601 ks_disable_qmu(ks);
a55c0a0e
CD
1602 ks_setup(ks);
1603 ks_setup_int(ks);
a55c0a0e
CD
1604 memcpy(netdev->dev_addr, ks->mac_addr, 6);
1605
1606 data = ks_rdreg16(ks, KS_OBCR);
1607 ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1608
1609 /**
1610 * If you want to use the default MAC addr,
1611 * comment out the 2 functions below.
1612 */
1613
1614 random_ether_addr(netdev->dev_addr);
1615 ks_set_mac(ks, netdev->dev_addr);
1616
1617 id = ks_rdreg16(ks, KS_CIDER);
1618
0dc7d2b3
JP
1619 netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1620 (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
a55c0a0e
CD
1621 return 0;
1622
1623err_register:
1624err_get_irq:
1625 iounmap(ks->hw_addr_cmd);
1626err_ioremap1:
1627 iounmap(ks->hw_addr);
1628err_ioremap:
1629 free_netdev(netdev);
1630err_alloc_etherdev:
1631 release_mem_region(io_c->start, resource_size(io_c));
1632err_mem_region1:
1633 release_mem_region(io_d->start, resource_size(io_d));
1634err_mem_region:
1635 return err;
1636}
1637
1638static int __devexit ks8851_remove(struct platform_device *pdev)
1639{
1640 struct net_device *netdev = platform_get_drvdata(pdev);
1641 struct ks_net *ks = netdev_priv(netdev);
1642 struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1643
4a91ca4e 1644 kfree(ks->frame_head_info);
a55c0a0e
CD
1645 unregister_netdev(netdev);
1646 iounmap(ks->hw_addr);
1647 free_netdev(netdev);
1648 release_mem_region(iomem->start, resource_size(iomem));
1649 platform_set_drvdata(pdev, NULL);
1650 return 0;
1651
1652}
1653
1654static struct platform_driver ks8851_platform_driver = {
1655 .driver = {
1656 .name = DRV_NAME,
1657 .owner = THIS_MODULE,
1658 },
1659 .probe = ks8851_probe,
1660 .remove = __devexit_p(ks8851_remove),
1661};
1662
1663static int __init ks8851_init(void)
1664{
1665 return platform_driver_register(&ks8851_platform_driver);
1666}
1667
1668static void __exit ks8851_exit(void)
1669{
1670 platform_driver_unregister(&ks8851_platform_driver);
1671}
1672
1673module_init(ks8851_init);
1674module_exit(ks8851_exit);
1675
1676MODULE_DESCRIPTION("KS8851 MLL Network driver");
1677MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1678MODULE_LICENSE("GPL");
1679module_param_named(message, msg_enable, int, 0);
1680MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1681
This page took 0.246667 seconds and 5 git commands to generate.