[PATCH] mv643xx_eth: Update dev->last_rx on packet receive
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
78a5e534
OH
38#include <linux/in.h>
39#include <linux/ip.h>
1da177e4
LT
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/*
54 * The first part is the high level driver of the gigE ethernet ports.
55 */
56
57/* Constants */
58#define VLAN_HLEN 4
59#define FCS_LEN 4
b44cd572
DF
60#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61#define HW_IP_ALIGN 2 /* hw aligns IP header */
62#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
1da177e4
LT
63#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
64
c2e5b352
DF
65#define INT_UNMASK_ALL 0x0007ffff
66#define INT_UNMASK_ALL_EXT 0x0011ffff
67#define INT_MASK_ALL 0x00000000
68#define INT_MASK_ALL_EXT 0x00000000
1da177e4
LT
69#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
1da177e4
LT
71
72#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74#else
75#define MAX_DESCS_PER_SKB 1
76#endif
77
78#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79#define PHY_WAIT_MICRO_SECONDS 10
80
81/* Static function declarations */
82static int eth_port_link_is_up(unsigned int eth_port_num);
83static void eth_port_uc_addr_get(struct net_device *dev,
84 unsigned char *MacAddr);
16e03018 85static void eth_port_set_multicast_list(struct net_device *);
ab4384a6
DF
86static int mv643xx_eth_open(struct net_device *);
87static int mv643xx_eth_stop(struct net_device *);
1da177e4
LT
88static int mv643xx_eth_change_mtu(struct net_device *, int);
89static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
90static void eth_port_init_mac_tables(unsigned int eth_port_num);
91#ifdef MV643XX_NAPI
92static int mv643xx_poll(struct net_device *dev, int *budget);
93#endif
94static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
95static int ethernet_phy_detect(unsigned int eth_port_num);
96static struct ethtool_ops mv643xx_ethtool_ops;
97
98static char mv643xx_driver_name[] = "mv643xx_eth";
99static char mv643xx_driver_version[] = "1.0";
100
101static void __iomem *mv643xx_eth_shared_base;
102
103/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 104static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
105
106static inline u32 mv_read(int offset)
107{
dc074a8a 108 void __iomem *reg_base;
1da177e4
LT
109
110 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
111
112 return readl(reg_base + offset);
113}
114
115static inline void mv_write(int offset, u32 data)
116{
dc074a8a 117 void __iomem *reg_base;
1da177e4
LT
118
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
120 writel(data, reg_base + offset);
121}
122
123/*
124 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
125 *
126 * Input : pointer to ethernet interface network device structure
127 * new mtu size
128 * Output : 0 upon success, -EINVAL upon failure
129 */
130static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
131{
8f518703 132 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 133 return -EINVAL;
1da177e4
LT
134
135 dev->mtu = new_mtu;
136 /*
137 * Stop then re-open the interface. This will allocate RX skb's with
138 * the new MTU.
139 * There is a possible danger that the open will not successed, due
140 * to memory is full, which might fail the open function.
141 */
142 if (netif_running(dev)) {
ab4384a6
DF
143 mv643xx_eth_stop(dev);
144 if (mv643xx_eth_open(dev))
1da177e4
LT
145 printk(KERN_ERR
146 "%s: Fatal error on opening device\n",
147 dev->name);
148 }
149
1da177e4
LT
150 return 0;
151}
152
153/*
154 * mv643xx_eth_rx_task
155 *
156 * Fills / refills RX queue on a certain gigabit ethernet port
157 *
158 * Input : pointer to ethernet interface network device structure
159 * Output : N/A
160 */
161static void mv643xx_eth_rx_task(void *data)
162{
163 struct net_device *dev = (struct net_device *)data;
164 struct mv643xx_private *mp = netdev_priv(dev);
165 struct pkt_info pkt_info;
166 struct sk_buff *skb;
b44cd572 167 int unaligned;
1da177e4
LT
168
169 if (test_and_set_bit(0, &mp->rx_task_busy))
170 panic("%s: Error in test_set_bit / clear_bit", dev->name);
171
172 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
b44cd572 173 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
1da177e4
LT
174 if (!skb)
175 break;
176 mp->rx_ring_skbs++;
b44cd572
DF
177 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
178 if (unaligned)
179 skb_reserve(skb, DMA_ALIGN - unaligned);
1da177e4
LT
180 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
181 pkt_info.byte_cnt = RX_SKB_SIZE;
182 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
183 DMA_FROM_DEVICE);
184 pkt_info.return_info = skb;
185 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
186 printk(KERN_ERR
187 "%s: Error allocating RX Ring\n", dev->name);
188 break;
189 }
b44cd572 190 skb_reserve(skb, HW_IP_ALIGN);
1da177e4
LT
191 }
192 clear_bit(0, &mp->rx_task_busy);
193 /*
194 * If RX ring is empty of SKB, set a timer to try allocating
195 * again in a later time .
196 */
197 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
198 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
199 /* After 100mSec */
200 mp->timeout.expires = jiffies + (HZ / 10);
201 add_timer(&mp->timeout);
202 mp->rx_timer_flag = 1;
203 }
204#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
205 else {
206 /* Return interrupts */
207 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
c2e5b352 208 INT_UNMASK_ALL);
1da177e4
LT
209 }
210#endif
211}
212
213/*
214 * mv643xx_eth_rx_task_timer_wrapper
215 *
216 * Timer routine to wake up RX queue filling task. This function is
217 * used only in case the RX queue is empty, and all alloc_skb has
218 * failed (due to out of memory event).
219 *
220 * Input : pointer to ethernet interface network device structure
221 * Output : N/A
222 */
223static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
224{
225 struct net_device *dev = (struct net_device *)data;
226 struct mv643xx_private *mp = netdev_priv(dev);
227
228 mp->rx_timer_flag = 0;
229 mv643xx_eth_rx_task((void *)data);
230}
231
232/*
233 * mv643xx_eth_update_mac_address
234 *
235 * Update the MAC address of the port in the address table
236 *
237 * Input : pointer to ethernet interface network device structure
238 * Output : N/A
239 */
240static void mv643xx_eth_update_mac_address(struct net_device *dev)
241{
242 struct mv643xx_private *mp = netdev_priv(dev);
243 unsigned int port_num = mp->port_num;
244
245 eth_port_init_mac_tables(port_num);
246 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
247 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
248}
249
250/*
251 * mv643xx_eth_set_rx_mode
252 *
253 * Change from promiscuos to regular rx mode
254 *
255 * Input : pointer to ethernet interface network device structure
256 * Output : N/A
257 */
258static void mv643xx_eth_set_rx_mode(struct net_device *dev)
259{
260 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4 261
1da177e4 262 if (dev->flags & IFF_PROMISC)
7342cd81 263 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 264 else
7342cd81
DF
265 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
266
267 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
16e03018
DF
268
269 eth_port_set_multicast_list(dev);
1da177e4
LT
270}
271
272/*
273 * mv643xx_eth_set_mac_address
274 *
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
278 *
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
282 */
283static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
284{
285 int i;
286
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
292}
293
294/*
295 * mv643xx_eth_tx_timeout
296 *
297 * Called upon a timeout on transmitting a packet
298 *
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
301 */
302static void mv643xx_eth_tx_timeout(struct net_device *dev)
303{
304 struct mv643xx_private *mp = netdev_priv(dev);
305
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
307
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
310}
311
312/*
313 * mv643xx_eth_tx_timeout_task
314 *
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
316 */
317static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
318{
319 struct mv643xx_private *mp = netdev_priv(dev);
320
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
325}
326
327/*
328 * mv643xx_eth_free_tx_queue
329 *
330 * Input : dev - a pointer to the required interface
331 *
332 * Output : 0 if was able to release skb , nonzero otherwise
333 */
334static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
336{
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
341
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
344
1da177e4
LT
345 /* Check only queue 0 */
346 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
347 if (pkt_info.cmd_sts & BIT0) {
348 printk("%s: Error in TX\n", dev->name);
349 stats->tx_errors++;
350 }
351
cb415d30
PG
352 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
353 dma_unmap_single(NULL, pkt_info.buf_ptr,
354 pkt_info.byte_cnt,
355 DMA_TO_DEVICE);
356 else
357 dma_unmap_page(NULL, pkt_info.buf_ptr,
358 pkt_info.byte_cnt,
359 DMA_TO_DEVICE);
1da177e4 360
cb415d30 361 if (pkt_info.return_info) {
1da177e4
LT
362 dev_kfree_skb_irq(pkt_info.return_info);
363 released = 0;
cb415d30 364 }
1da177e4
LT
365 }
366
1da177e4
LT
367 return released;
368}
369
370/*
371 * mv643xx_eth_receive
372 *
373 * This function is forward packets that are received from the port's
374 * queues toward kernel core or FastRoute them to another interface.
375 *
376 * Input : dev - a pointer to the required interface
377 * max - maximum number to receive (0 means unlimted)
378 *
379 * Output : number of served packets
380 */
381#ifdef MV643XX_NAPI
382static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
383#else
384static int mv643xx_eth_receive_queue(struct net_device *dev)
385#endif
386{
387 struct mv643xx_private *mp = netdev_priv(dev);
388 struct net_device_stats *stats = &mp->stats;
389 unsigned int received_packets = 0;
390 struct sk_buff *skb;
391 struct pkt_info pkt_info;
392
393#ifdef MV643XX_NAPI
b1dd9ca1 394 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
1da177e4
LT
395#else
396 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
397#endif
398 mp->rx_ring_skbs--;
399 received_packets++;
b1dd9ca1 400
1da177e4
LT
401 /* Update statistics. Note byte count includes 4 byte CRC count */
402 stats->rx_packets++;
403 stats->rx_bytes += pkt_info.byte_cnt;
404 skb = pkt_info.return_info;
405 /*
406 * In case received a packet without first / last bits on OR
407 * the error summary bit is on, the packets needs to be dropeed.
408 */
409 if (((pkt_info.cmd_sts
410 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
411 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
412 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
413 stats->rx_dropped++;
414 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
415 ETH_RX_LAST_DESC)) !=
416 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
417 if (net_ratelimit())
418 printk(KERN_ERR
419 "%s: Received packet spread "
420 "on multiple descriptors\n",
421 dev->name);
422 }
423 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
424 stats->rx_errors++;
425
426 dev_kfree_skb_irq(skb);
427 } else {
428 /*
429 * The -4 is for the CRC in the trailer of the
430 * received packet
431 */
432 skb_put(skb, pkt_info.byte_cnt - 4);
433 skb->dev = dev;
434
435 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
436 skb->ip_summed = CHECKSUM_UNNECESSARY;
437 skb->csum = htons(
438 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
439 }
440 skb->protocol = eth_type_trans(skb, dev);
441#ifdef MV643XX_NAPI
442 netif_receive_skb(skb);
443#else
444 netif_rx(skb);
445#endif
446 }
12ad74f8 447 dev->last_rx = jiffies;
1da177e4
LT
448 }
449
450 return received_packets;
451}
452
453/*
454 * mv643xx_eth_int_handler
455 *
456 * Main interrupt handler for the gigbit ethernet ports
457 *
458 * Input : irq - irq number (not used)
459 * dev_id - a pointer to the required interface's data structure
460 * regs - not used
461 * Output : N/A
462 */
463
464static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
465 struct pt_regs *regs)
466{
467 struct net_device *dev = (struct net_device *)dev_id;
468 struct mv643xx_private *mp = netdev_priv(dev);
469 u32 eth_int_cause, eth_int_cause_ext = 0;
470 unsigned int port_num = mp->port_num;
471
472 /* Read interrupt cause registers */
473 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
c2e5b352 474 INT_UNMASK_ALL;
1da177e4
LT
475
476 if (eth_int_cause & BIT1)
477 eth_int_cause_ext = mv_read(
478 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
c2e5b352 479 INT_UNMASK_ALL_EXT;
1da177e4
LT
480
481#ifdef MV643XX_NAPI
482 if (!(eth_int_cause & 0x0007fffd)) {
483 /* Dont ack the Rx interrupt */
484#endif
485 /*
486 * Clear specific ethernet port intrerrupt registers by
487 * acknowleding relevant bits.
488 */
489 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
490 ~eth_int_cause);
491 if (eth_int_cause_ext != 0x0)
492 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
493 (port_num), ~eth_int_cause_ext);
494
495 /* UDP change : We may need this */
496 if ((eth_int_cause_ext & 0x0000ffff) &&
497 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
498 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
499 netif_wake_queue(dev);
500#ifdef MV643XX_NAPI
501 } else {
502 if (netif_rx_schedule_prep(dev)) {
503 /* Mask all the interrupts */
c2e5b352
DF
504 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
505 INT_MASK_ALL);
506 /* wait for previous write to complete */
507 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1da177e4
LT
508 __netif_rx_schedule(dev);
509 }
510#else
511 if (eth_int_cause & (BIT2 | BIT11))
512 mv643xx_eth_receive_queue(dev, 0);
513
514 /*
515 * After forwarded received packets to upper layer, add a task
516 * in an interrupts enabled context that refills the RX ring
517 * with skb's.
518 */
519#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
c2e5b352 520 /* Mask all interrupts on ethernet port */
1da177e4 521 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 522 INT_MASK_ALL);
8f518703
DF
523 /* wait for previous write to take effect */
524 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
525
1da177e4
LT
526 queue_task(&mp->rx_task, &tq_immediate);
527 mark_bh(IMMEDIATE_BH);
528#else
529 mp->rx_task.func(dev);
530#endif
531#endif
532 }
533 /* PHY status changed */
534 if (eth_int_cause_ext & (BIT16 | BIT20)) {
535 if (eth_port_link_is_up(port_num)) {
536 netif_carrier_on(dev);
537 netif_wake_queue(dev);
538 /* Start TX queue */
539 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
540 (port_num), 1);
541 } else {
542 netif_carrier_off(dev);
543 netif_stop_queue(dev);
544 }
545 }
546
547 /*
548 * If no real interrupt occured, exit.
549 * This can happen when using gigE interrupt coalescing mechanism.
550 */
551 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
552 return IRQ_NONE;
553
554 return IRQ_HANDLED;
555}
556
557#ifdef MV643XX_COAL
558
559/*
560 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
561 *
562 * DESCRIPTION:
563 * This routine sets the RX coalescing interrupt mechanism parameter.
564 * This parameter is a timeout counter, that counts in 64 t_clk
565 * chunks ; that when timeout event occurs a maskable interrupt
566 * occurs.
567 * The parameter is calculated using the tClk of the MV-643xx chip
568 * , and the required delay of the interrupt in usec.
569 *
570 * INPUT:
571 * unsigned int eth_port_num Ethernet port number
572 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
573 * unsigned int delay Delay in usec
574 *
575 * OUTPUT:
576 * Interrupt coalescing mechanism value is set in MV-643xx chip.
577 *
578 * RETURN:
579 * The interrupt coalescing value set in the gigE port.
580 *
581 */
582static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
583 unsigned int t_clk, unsigned int delay)
584{
585 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
586
587 /* Set RX Coalescing mechanism */
588 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
589 ((coal & 0x3fff) << 8) |
590 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
591 & 0xffc000ff));
592
593 return coal;
594}
595#endif
596
597/*
598 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
599 *
600 * DESCRIPTION:
601 * This routine sets the TX coalescing interrupt mechanism parameter.
602 * This parameter is a timeout counter, that counts in 64 t_clk
603 * chunks ; that when timeout event occurs a maskable interrupt
604 * occurs.
605 * The parameter is calculated using the t_cLK frequency of the
606 * MV-643xx chip and the required delay in the interrupt in uSec
607 *
608 * INPUT:
609 * unsigned int eth_port_num Ethernet port number
610 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
611 * unsigned int delay Delay in uSeconds
612 *
613 * OUTPUT:
614 * Interrupt coalescing mechanism value is set in MV-643xx chip.
615 *
616 * RETURN:
617 * The interrupt coalescing value set in the gigE port.
618 *
619 */
620static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
621 unsigned int t_clk, unsigned int delay)
622{
623 unsigned int coal;
624 coal = ((t_clk / 1000000) * delay) / 64;
625 /* Set TX Coalescing mechanism */
626 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
627 coal << 4);
628 return coal;
629}
630
1da177e4
LT
631/*
632 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
633 *
634 * DESCRIPTION:
635 * This function prepares a Rx chained list of descriptors and packet
636 * buffers in a form of a ring. The routine must be called after port
637 * initialization routine and before port start routine.
638 * The Ethernet SDMA engine uses CPU bus addresses to access the various
639 * devices in the system (i.e. DRAM). This function uses the ethernet
640 * struct 'virtual to physical' routine (set by the user) to set the ring
641 * with physical addresses.
642 *
643 * INPUT:
644 * struct mv643xx_private *mp Ethernet Port Control srtuct.
645 *
646 * OUTPUT:
647 * The routine updates the Ethernet port control struct with information
648 * regarding the Rx descriptors and buffers.
649 *
650 * RETURN:
651 * None.
652 */
653static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
654{
655 volatile struct eth_rx_desc *p_rx_desc;
656 int rx_desc_num = mp->rx_ring_size;
657 int i;
658
659 /* initialize the next_desc_ptr links in the Rx descriptors ring */
660 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
661 for (i = 0; i < rx_desc_num; i++) {
662 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
663 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
664 }
665
666 /* Save Rx desc pointer to driver struct. */
667 mp->rx_curr_desc_q = 0;
668 mp->rx_used_desc_q = 0;
669
670 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
671
672 /* Add the queue to the list of RX queues of this port */
673 mp->port_rx_queue_command |= 1;
674}
675
676/*
677 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
678 *
679 * DESCRIPTION:
680 * This function prepares a Tx chained list of descriptors and packet
681 * buffers in a form of a ring. The routine must be called after port
682 * initialization routine and before port start routine.
683 * The Ethernet SDMA engine uses CPU bus addresses to access the various
684 * devices in the system (i.e. DRAM). This function uses the ethernet
685 * struct 'virtual to physical' routine (set by the user) to set the ring
686 * with physical addresses.
687 *
688 * INPUT:
689 * struct mv643xx_private *mp Ethernet Port Control srtuct.
690 *
691 * OUTPUT:
692 * The routine updates the Ethernet port control struct with information
693 * regarding the Tx descriptors and buffers.
694 *
695 * RETURN:
696 * None.
697 */
698static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
699{
700 int tx_desc_num = mp->tx_ring_size;
701 struct eth_tx_desc *p_tx_desc;
702 int i;
703
704 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
705 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
706 for (i = 0; i < tx_desc_num; i++) {
707 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
708 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
709 }
710
711 mp->tx_curr_desc_q = 0;
712 mp->tx_used_desc_q = 0;
713#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
714 mp->tx_first_desc_q = 0;
715#endif
716
717 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
718
719 /* Add the queue to the list of Tx queues of this port */
720 mp->port_tx_queue_command |= 1;
721}
722
ab4384a6
DF
723/*
724 * mv643xx_eth_open
725 *
726 * This function is called when openning the network device. The function
727 * should initialize all the hardware, initialize cyclic Rx/Tx
728 * descriptors chain and buffers and allocate an IRQ to the network
729 * device.
730 *
731 * Input : a pointer to the network device structure
732 *
733 * Output : zero of success , nonzero if fails.
734 */
735
736static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
737{
738 struct mv643xx_private *mp = netdev_priv(dev);
739 unsigned int port_num = mp->port_num;
740 unsigned int size;
ab4384a6
DF
741 int err;
742
743 err = request_irq(dev->irq, mv643xx_eth_int_handler,
744 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
745 if (err) {
746 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
747 port_num);
748 return -EAGAIN;
749 }
1da177e4
LT
750
751 /* Stop RX Queues */
752 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
753
1da177e4
LT
754 /* Set the MAC Address */
755 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
756
757 eth_port_init(mp);
758
759 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
760
761 memset(&mp->timeout, 0, sizeof(struct timer_list));
762 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
763 mp->timeout.data = (unsigned long)dev;
764
765 mp->rx_task_busy = 0;
766 mp->rx_timer_flag = 0;
767
768 /* Allocate RX and TX skb rings */
769 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
770 GFP_KERNEL);
771 if (!mp->rx_skb) {
772 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
773 err = -ENOMEM;
774 goto out_free_irq;
1da177e4
LT
775 }
776 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
777 GFP_KERNEL);
778 if (!mp->tx_skb) {
779 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
780 err = -ENOMEM;
781 goto out_free_rx_skb;
1da177e4
LT
782 }
783
784 /* Allocate TX ring */
785 mp->tx_ring_skbs = 0;
786 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
787 mp->tx_desc_area_size = size;
788
789 if (mp->tx_sram_size) {
790 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
791 mp->tx_sram_size);
792 mp->tx_desc_dma = mp->tx_sram_addr;
793 } else
794 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
795 &mp->tx_desc_dma,
796 GFP_KERNEL);
797
798 if (!mp->p_tx_desc_area) {
799 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
800 dev->name, size);
ab4384a6
DF
801 err = -ENOMEM;
802 goto out_free_tx_skb;
1da177e4
LT
803 }
804 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
805 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
806
807 ether_init_tx_desc_ring(mp);
808
809 /* Allocate RX ring */
810 mp->rx_ring_skbs = 0;
811 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
812 mp->rx_desc_area_size = size;
813
814 if (mp->rx_sram_size) {
815 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
816 mp->rx_sram_size);
817 mp->rx_desc_dma = mp->rx_sram_addr;
818 } else
819 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
820 &mp->rx_desc_dma,
821 GFP_KERNEL);
822
823 if (!mp->p_rx_desc_area) {
824 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
825 dev->name, size);
826 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
827 dev->name);
828 if (mp->rx_sram_size)
dd09b1de 829 iounmap(mp->p_tx_desc_area);
1da177e4
LT
830 else
831 dma_free_coherent(NULL, mp->tx_desc_area_size,
832 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
833 err = -ENOMEM;
834 goto out_free_tx_skb;
1da177e4
LT
835 }
836 memset((void *)mp->p_rx_desc_area, 0, size);
837
838 ether_init_rx_desc_ring(mp);
839
840 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
841
842 eth_port_start(mp);
843
844 /* Interrupt Coalescing */
845
846#ifdef MV643XX_COAL
847 mp->rx_int_coal =
848 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
849#endif
850
851 mp->tx_int_coal =
852 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
853
8f518703
DF
854 /* Clear any pending ethernet port interrupts */
855 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
856 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
857
858 /* Unmask phy and link status changes interrupts */
859 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
c2e5b352 860 INT_UNMASK_ALL_EXT);
1da177e4 861
8f518703 862 /* Unmask RX buffer and TX end interrupt */
c2e5b352 863 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
1da177e4 864 return 0;
ab4384a6
DF
865
866out_free_tx_skb:
867 kfree(mp->tx_skb);
868out_free_rx_skb:
869 kfree(mp->rx_skb);
870out_free_irq:
871 free_irq(dev->irq, dev);
872
873 return err;
1da177e4
LT
874}
875
876static void mv643xx_eth_free_tx_rings(struct net_device *dev)
877{
878 struct mv643xx_private *mp = netdev_priv(dev);
879 unsigned int port_num = mp->port_num;
880 unsigned int curr;
4476e0e4 881 struct sk_buff *skb;
1da177e4
LT
882
883 /* Stop Tx Queues */
884 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
885
886 /* Free outstanding skb's on TX rings */
887 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
4476e0e4
DF
888 skb = mp->tx_skb[curr];
889 if (skb) {
890 mp->tx_ring_skbs -= skb_shinfo(skb)->nr_frags;
891 dev_kfree_skb(skb);
1da177e4
LT
892 mp->tx_ring_skbs--;
893 }
894 }
895 if (mp->tx_ring_skbs)
896 printk("%s: Error on Tx descriptor free - could not free %d"
897 " descriptors\n", dev->name, mp->tx_ring_skbs);
898
899 /* Free TX ring */
900 if (mp->tx_sram_size)
901 iounmap(mp->p_tx_desc_area);
902 else
903 dma_free_coherent(NULL, mp->tx_desc_area_size,
904 mp->p_tx_desc_area, mp->tx_desc_dma);
905}
906
907static void mv643xx_eth_free_rx_rings(struct net_device *dev)
908{
909 struct mv643xx_private *mp = netdev_priv(dev);
910 unsigned int port_num = mp->port_num;
911 int curr;
912
913 /* Stop RX Queues */
914 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
915
916 /* Free preallocated skb's on RX rings */
917 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
918 if (mp->rx_skb[curr]) {
919 dev_kfree_skb(mp->rx_skb[curr]);
920 mp->rx_ring_skbs--;
921 }
922 }
923
924 if (mp->rx_ring_skbs)
925 printk(KERN_ERR
926 "%s: Error in freeing Rx Ring. %d skb's still"
927 " stuck in RX Ring - ignoring them\n", dev->name,
928 mp->rx_ring_skbs);
929 /* Free RX ring */
930 if (mp->rx_sram_size)
931 iounmap(mp->p_rx_desc_area);
932 else
933 dma_free_coherent(NULL, mp->rx_desc_area_size,
934 mp->p_rx_desc_area, mp->rx_desc_dma);
935}
936
937/*
938 * mv643xx_eth_stop
939 *
940 * This function is used when closing the network device.
941 * It updates the hardware,
942 * release all memory that holds buffers and descriptors and release the IRQ.
943 * Input : a pointer to the device structure
944 * Output : zero if success , nonzero if fails
945 */
946
ab4384a6 947static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
948{
949 struct mv643xx_private *mp = netdev_priv(dev);
950 unsigned int port_num = mp->port_num;
951
c2e5b352
DF
952 /* Mask all interrupts on ethernet port */
953 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
954 /* wait for previous write to complete */
8f518703
DF
955 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
956
957#ifdef MV643XX_NAPI
958 netif_poll_disable(dev);
959#endif
1da177e4
LT
960 netif_carrier_off(dev);
961 netif_stop_queue(dev);
962
1da177e4
LT
963 eth_port_reset(mp->port_num);
964
8f518703
DF
965 mv643xx_eth_free_tx_rings(dev);
966 mv643xx_eth_free_rx_rings(dev);
1da177e4 967
8f518703
DF
968#ifdef MV643XX_NAPI
969 netif_poll_enable(dev);
970#endif
1da177e4 971
1da177e4 972 free_irq(dev->irq, dev);
1da177e4
LT
973
974 return 0;
975}
976
977#ifdef MV643XX_NAPI
978static void mv643xx_tx(struct net_device *dev)
979{
980 struct mv643xx_private *mp = netdev_priv(dev);
981 struct pkt_info pkt_info;
982
983 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
cb415d30
PG
984 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
985 dma_unmap_single(NULL, pkt_info.buf_ptr,
986 pkt_info.byte_cnt,
987 DMA_TO_DEVICE);
988 else
989 dma_unmap_page(NULL, pkt_info.buf_ptr,
990 pkt_info.byte_cnt,
991 DMA_TO_DEVICE);
1da177e4 992
cb415d30 993 if (pkt_info.return_info)
1da177e4 994 dev_kfree_skb_irq(pkt_info.return_info);
1da177e4
LT
995 }
996
997 if (netif_queue_stopped(dev) &&
998 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
999 netif_wake_queue(dev);
1000}
1001
1002/*
1003 * mv643xx_poll
1004 *
1005 * This function is used in case of NAPI
1006 */
1007static int mv643xx_poll(struct net_device *dev, int *budget)
1008{
1009 struct mv643xx_private *mp = netdev_priv(dev);
1010 int done = 1, orig_budget, work_done;
1011 unsigned int port_num = mp->port_num;
1da177e4
LT
1012
1013#ifdef MV643XX_TX_FAST_REFILL
1014 if (++mp->tx_clean_threshold > 5) {
1da177e4
LT
1015 mv643xx_tx(dev);
1016 mp->tx_clean_threshold = 0;
1da177e4
LT
1017 }
1018#endif
1019
1020 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1021 != (u32) mp->rx_used_desc_q) {
1022 orig_budget = *budget;
1023 if (orig_budget > dev->quota)
1024 orig_budget = dev->quota;
1025 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1026 mp->rx_task.func(dev);
1027 *budget -= work_done;
1028 dev->quota -= work_done;
1029 if (work_done >= orig_budget)
1030 done = 0;
1031 }
1032
1033 if (done) {
8f518703 1034 netif_rx_complete(dev);
1da177e4
LT
1035 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1036 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1037 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 1038 INT_UNMASK_ALL);
1da177e4
LT
1039 }
1040
1041 return done ? 0 : 1;
1042}
1043#endif
1044
f7ea3337
PJ
1045/* Hardware can't handle unaligned fragments smaller than 9 bytes.
1046 * This helper function detects that case.
1047 */
1048
1049static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1050{
1051 unsigned int frag;
1052 skb_frag_t *fragp;
1053
1054 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1055 fragp = &skb_shinfo(skb)->frags[frag];
1056 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1057 return 1;
1058
1059 }
1060 return 0;
1061}
1062
1063
1da177e4
LT
1064/*
1065 * mv643xx_eth_start_xmit
1066 *
1067 * This function is queues a packet in the Tx descriptor for
1068 * required port.
1069 *
1070 * Input : skb - a pointer to socket buffer
1071 * dev - a pointer to the required port
1072 *
1073 * Output : zero upon success
1074 */
1075static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1076{
1077 struct mv643xx_private *mp = netdev_priv(dev);
1078 struct net_device_stats *stats = &mp->stats;
1079 ETH_FUNC_RET_STATUS status;
1080 unsigned long flags;
1081 struct pkt_info pkt_info;
1082
1083 if (netif_queue_stopped(dev)) {
1084 printk(KERN_ERR
1085 "%s: Tried sending packet when interface is stopped\n",
1086 dev->name);
1087 return 1;
1088 }
1089
1090 /* This is a hard error, log it. */
1091 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1092 (skb_shinfo(skb)->nr_frags + 1)) {
1093 netif_stop_queue(dev);
1094 printk(KERN_ERR
1095 "%s: Bug in mv643xx_eth - Trying to transmit when"
1096 " queue full !\n", dev->name);
1097 return 1;
1098 }
1099
1100 /* Paranoid check - this shouldn't happen */
1101 if (skb == NULL) {
1102 stats->tx_dropped++;
1103 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1104 return 1;
1105 }
1106
f7ea3337
PJ
1107#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1108 if (has_tiny_unaligned_frags(skb)) {
1109 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1110 stats->tx_dropped++;
1111 printk(KERN_DEBUG "%s: failed to linearize tiny "
1112 "unaligned fragment\n", dev->name);
1113 return 1;
1114 }
1115 }
1116
1da177e4
LT
1117 spin_lock_irqsave(&mp->lock, flags);
1118
1da177e4 1119 if (!skb_shinfo(skb)->nr_frags) {
1da177e4 1120 if (skb->ip_summed != CHECKSUM_HW) {
26006360 1121 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1da177e4 1122 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1123 ETH_TX_FIRST_DESC |
1124 ETH_TX_LAST_DESC |
1125 5 << ETH_TX_IHL_SHIFT;
1da177e4
LT
1126 pkt_info.l4i_chk = 0;
1127 } else {
1da177e4 1128 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1129 ETH_TX_FIRST_DESC |
1130 ETH_TX_LAST_DESC |
1131 ETH_GEN_TCP_UDP_CHECKSUM |
1132 ETH_GEN_IP_V_4_CHECKSUM |
1133 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1134 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1135 if ((skb->protocol == ETH_P_IP) &&
1136 (skb->nh.iph->protocol == IPPROTO_UDP) ) {
1da177e4
LT
1137 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1138 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1139 } else if ((skb->protocol == ETH_P_IP) &&
1140 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1141 pkt_info.l4i_chk = skb->h.th->check;
1142 else {
1143 printk(KERN_ERR
63890576 1144 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1145 dev->name);
1146 spin_unlock_irqrestore(&mp->lock, flags);
1147 return 1;
1148 }
1149 }
1150 pkt_info.byte_cnt = skb->len;
1151 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1152 DMA_TO_DEVICE);
1153 pkt_info.return_info = skb;
1da177e4
LT
1154 status = eth_port_send(mp, &pkt_info);
1155 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1156 printk(KERN_ERR "%s: Error on transmitting packet\n",
1157 dev->name);
1158 stats->tx_bytes += pkt_info.byte_cnt;
1159 } else {
1160 unsigned int frag;
1da177e4 1161
1da177e4
LT
1162 /* first frag which is skb header */
1163 pkt_info.byte_cnt = skb_headlen(skb);
1164 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1165 skb_headlen(skb),
1166 DMA_TO_DEVICE);
1167 pkt_info.l4i_chk = 0;
1168 pkt_info.return_info = 0;
1da177e4 1169
26006360
DF
1170 if (skb->ip_summed != CHECKSUM_HW)
1171 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1172 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1173 5 << ETH_TX_IHL_SHIFT;
1174 else {
1175 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1176 ETH_GEN_TCP_UDP_CHECKSUM |
1177 ETH_GEN_IP_V_4_CHECKSUM |
1178 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1179 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1180 if ((skb->protocol == ETH_P_IP) &&
1181 (skb->nh.iph->protocol == IPPROTO_UDP)) {
1da177e4
LT
1182 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1183 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1184 } else if ((skb->protocol == ETH_P_IP) &&
1185 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1186 pkt_info.l4i_chk = skb->h.th->check;
1187 else {
1188 printk(KERN_ERR
63890576 1189 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1190 dev->name);
1191 spin_unlock_irqrestore(&mp->lock, flags);
1192 return 1;
1193 }
1194 }
1195
1196 status = eth_port_send(mp, &pkt_info);
1197 if (status != ETH_OK) {
1198 if ((status == ETH_ERROR))
1199 printk(KERN_ERR
1200 "%s: Error on transmitting packet\n",
1201 dev->name);
1202 if (status == ETH_QUEUE_FULL)
1203 printk("Error on Queue Full \n");
1204 if (status == ETH_QUEUE_LAST_RESOURCE)
1205 printk("Tx resource error \n");
1206 }
1207 stats->tx_bytes += pkt_info.byte_cnt;
1208
1209 /* Check for the remaining frags */
1210 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1211 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1212 pkt_info.l4i_chk = 0x0000;
1213 pkt_info.cmd_sts = 0x00000000;
1214
1215 /* Last Frag enables interrupt and frees the skb */
1216 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1217 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1218 ETH_TX_LAST_DESC;
1219 pkt_info.return_info = skb;
1da177e4
LT
1220 } else {
1221 pkt_info.return_info = 0;
1222 }
1223 pkt_info.l4i_chk = 0;
1224 pkt_info.byte_cnt = this_frag->size;
1225
1226 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1227 this_frag->page_offset,
1228 this_frag->size,
1229 DMA_TO_DEVICE);
1230
1231 status = eth_port_send(mp, &pkt_info);
1232
1233 if (status != ETH_OK) {
1234 if ((status == ETH_ERROR))
1235 printk(KERN_ERR "%s: Error on "
1236 "transmitting packet\n",
1237 dev->name);
1238
1239 if (status == ETH_QUEUE_LAST_RESOURCE)
1240 printk("Tx resource error \n");
1241
1242 if (status == ETH_QUEUE_FULL)
1243 printk("Queue is full \n");
1244 }
1245 stats->tx_bytes += pkt_info.byte_cnt;
1246 }
1247 }
1248#else
f7ea3337
PJ
1249 spin_lock_irqsave(&mp->lock, flags);
1250
1da177e4
LT
1251 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1252 ETH_TX_LAST_DESC;
1253 pkt_info.l4i_chk = 0;
1254 pkt_info.byte_cnt = skb->len;
1255 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1256 DMA_TO_DEVICE);
1257 pkt_info.return_info = skb;
1da177e4
LT
1258 status = eth_port_send(mp, &pkt_info);
1259 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1260 printk(KERN_ERR "%s: Error on transmitting packet\n",
1261 dev->name);
1262 stats->tx_bytes += pkt_info.byte_cnt;
1263#endif
1264
1265 /* Check if TX queue can handle another skb. If not, then
1266 * signal higher layers to stop requesting TX
1267 */
1268 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1269 /*
1270 * Stop getting skb's from upper layers.
1271 * Getting skb's from upper layers will be enabled again after
1272 * packets are released.
1273 */
1274 netif_stop_queue(dev);
1275
1276 /* Update statistics and start of transmittion time */
1277 stats->tx_packets++;
1278 dev->trans_start = jiffies;
1279
1280 spin_unlock_irqrestore(&mp->lock, flags);
1281
1282 return 0; /* success */
1283}
1284
1285/*
1286 * mv643xx_eth_get_stats
1287 *
1288 * Returns a pointer to the interface statistics.
1289 *
1290 * Input : dev - a pointer to the required interface
1291 *
1292 * Output : a pointer to the interface's statistics
1293 */
1294
1295static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1296{
1297 struct mv643xx_private *mp = netdev_priv(dev);
1298
1299 return &mp->stats;
1300}
1301
63c9e549 1302#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1303static void mv643xx_netpoll(struct net_device *netdev)
1304{
1305 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1306 int port_num = mp->port_num;
1307
1308 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1309 /* wait for previous write to complete */
1310 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
63c9e549 1311
63c9e549 1312 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
c2e5b352
DF
1313
1314 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
63c9e549
DF
1315}
1316#endif
1317
1da177e4
LT
1318/*/
1319 * mv643xx_eth_probe
1320 *
1321 * First function called after registering the network device.
1322 * It's purpose is to initialize the device as an ethernet device,
1323 * fill the ethernet device structure with pointers * to functions,
1324 * and set the MAC address of the interface
1325 *
1326 * Input : struct device *
1327 * Output : -ENOMEM if failed , 0 if success
1328 */
3ae5eaec 1329static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1330{
1da177e4
LT
1331 struct mv643xx_eth_platform_data *pd;
1332 int port_num = pdev->id;
1333 struct mv643xx_private *mp;
1334 struct net_device *dev;
1335 u8 *p;
1336 struct resource *res;
1337 int err;
1338
1339 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1340 if (!dev)
1341 return -ENOMEM;
1342
3ae5eaec 1343 platform_set_drvdata(pdev, dev);
1da177e4
LT
1344
1345 mp = netdev_priv(dev);
1346
1347 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1348 BUG_ON(!res);
1349 dev->irq = res->start;
1350
1351 mp->port_num = port_num;
1352
1353 dev->open = mv643xx_eth_open;
1354 dev->stop = mv643xx_eth_stop;
1355 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1356 dev->get_stats = mv643xx_eth_get_stats;
1357 dev->set_mac_address = mv643xx_eth_set_mac_address;
1358 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1359
1360 /* No need to Tx Timeout */
1361 dev->tx_timeout = mv643xx_eth_tx_timeout;
1362#ifdef MV643XX_NAPI
1363 dev->poll = mv643xx_poll;
1364 dev->weight = 64;
1365#endif
1366
63c9e549
DF
1367#ifdef CONFIG_NET_POLL_CONTROLLER
1368 dev->poll_controller = mv643xx_netpoll;
1369#endif
1370
1da177e4
LT
1371 dev->watchdog_timeo = 2 * HZ;
1372 dev->tx_queue_len = mp->tx_ring_size;
1373 dev->base_addr = 0;
1374 dev->change_mtu = mv643xx_eth_change_mtu;
1375 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1376
1377#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1378#ifdef MAX_SKB_FRAGS
1379 /*
1380 * Zero copy can only work if we use Discovery II memory. Else, we will
1381 * have to map the buffers to ISA memory which is only 16 MB
1382 */
63890576 1383 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1384#endif
1385#endif
1386
1387 /* Configure the timeout task */
1388 INIT_WORK(&mp->tx_timeout_task,
1389 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1390
1391 spin_lock_init(&mp->lock);
1392
1393 /* set default config values */
1394 eth_port_uc_addr_get(dev, dev->dev_addr);
1395 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1396 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1397 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1398 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1399 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1400 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1401
1402 pd = pdev->dev.platform_data;
1403 if (pd) {
1404 if (pd->mac_addr != NULL)
1405 memcpy(dev->dev_addr, pd->mac_addr, 6);
1406
1407 if (pd->phy_addr || pd->force_phy_addr)
1408 ethernet_phy_set(port_num, pd->phy_addr);
1409
1410 if (pd->port_config || pd->force_port_config)
1411 mp->port_config = pd->port_config;
1412
1413 if (pd->port_config_extend || pd->force_port_config_extend)
1414 mp->port_config_extend = pd->port_config_extend;
1415
1416 if (pd->port_sdma_config || pd->force_port_sdma_config)
1417 mp->port_sdma_config = pd->port_sdma_config;
1418
1419 if (pd->port_serial_control || pd->force_port_serial_control)
1420 mp->port_serial_control = pd->port_serial_control;
1421
1422 if (pd->rx_queue_size)
1423 mp->rx_ring_size = pd->rx_queue_size;
1424
1425 if (pd->tx_queue_size)
1426 mp->tx_ring_size = pd->tx_queue_size;
1427
1428 if (pd->tx_sram_size) {
1429 mp->tx_sram_size = pd->tx_sram_size;
1430 mp->tx_sram_addr = pd->tx_sram_addr;
1431 }
1432
1433 if (pd->rx_sram_size) {
1434 mp->rx_sram_size = pd->rx_sram_size;
1435 mp->rx_sram_addr = pd->rx_sram_addr;
1436 }
1437 }
1438
1439 err = ethernet_phy_detect(port_num);
1440 if (err) {
1441 pr_debug("MV643xx ethernet port %d: "
1442 "No PHY detected at addr %d\n",
1443 port_num, ethernet_phy_get(port_num));
1444 return err;
1445 }
1446
1447 err = register_netdev(dev);
1448 if (err)
1449 goto out;
1450
1451 p = dev->dev_addr;
1452 printk(KERN_NOTICE
1453 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1454 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1455
1456 if (dev->features & NETIF_F_SG)
1457 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1458
1459 if (dev->features & NETIF_F_IP_CSUM)
1460 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1461 dev->name);
1462
1463#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1464 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1465#endif
1466
1467#ifdef MV643XX_COAL
1468 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1469 dev->name);
1470#endif
1471
1472#ifdef MV643XX_NAPI
1473 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1474#endif
1475
b1529871
ND
1476 if (mp->tx_sram_size > 0)
1477 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1478
1da177e4
LT
1479 return 0;
1480
1481out:
1482 free_netdev(dev);
1483
1484 return err;
1485}
1486
3ae5eaec 1487static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1488{
3ae5eaec 1489 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1490
1491 unregister_netdev(dev);
1492 flush_scheduled_work();
1493
1494 free_netdev(dev);
3ae5eaec 1495 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1496 return 0;
1497}
1498
3ae5eaec 1499static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1500{
1da177e4
LT
1501 struct resource *res;
1502
1503 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1504
1505 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1506 if (res == NULL)
1507 return -ENODEV;
1508
1509 mv643xx_eth_shared_base = ioremap(res->start,
1510 MV643XX_ETH_SHARED_REGS_SIZE);
1511 if (mv643xx_eth_shared_base == NULL)
1512 return -ENOMEM;
1513
1514 return 0;
1515
1516}
1517
3ae5eaec 1518static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1519{
1520 iounmap(mv643xx_eth_shared_base);
1521 mv643xx_eth_shared_base = NULL;
1522
1523 return 0;
1524}
1525
3ae5eaec 1526static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1527 .probe = mv643xx_eth_probe,
1528 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1529 .driver = {
1530 .name = MV643XX_ETH_NAME,
1531 },
1da177e4
LT
1532};
1533
3ae5eaec 1534static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1535 .probe = mv643xx_eth_shared_probe,
1536 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1537 .driver = {
1538 .name = MV643XX_ETH_SHARED_NAME,
1539 },
1da177e4
LT
1540};
1541
1542/*
1543 * mv643xx_init_module
1544 *
1545 * Registers the network drivers into the Linux kernel
1546 *
1547 * Input : N/A
1548 *
1549 * Output : N/A
1550 */
1551static int __init mv643xx_init_module(void)
1552{
1553 int rc;
1554
3ae5eaec 1555 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1556 if (!rc) {
3ae5eaec 1557 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1558 if (rc)
3ae5eaec 1559 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1560 }
1561 return rc;
1562}
1563
1564/*
1565 * mv643xx_cleanup_module
1566 *
1567 * Registers the network drivers into the Linux kernel
1568 *
1569 * Input : N/A
1570 *
1571 * Output : N/A
1572 */
1573static void __exit mv643xx_cleanup_module(void)
1574{
3ae5eaec
RK
1575 platform_driver_unregister(&mv643xx_eth_driver);
1576 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1577}
1578
1579module_init(mv643xx_init_module);
1580module_exit(mv643xx_cleanup_module);
1581
1582MODULE_LICENSE("GPL");
1583MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1584 " and Dale Farnsworth");
1585MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1586
1587/*
1588 * The second part is the low level driver of the gigE ethernet ports.
1589 */
1590
1591/*
1592 * Marvell's Gigabit Ethernet controller low level driver
1593 *
1594 * DESCRIPTION:
1595 * This file introduce low level API to Marvell's Gigabit Ethernet
1596 * controller. This Gigabit Ethernet Controller driver API controls
1597 * 1) Operations (i.e. port init, start, reset etc').
1598 * 2) Data flow (i.e. port send, receive etc').
1599 * Each Gigabit Ethernet port is controlled via
1600 * struct mv643xx_private.
1601 * This struct includes user configuration information as well as
1602 * driver internal data needed for its operations.
1603 *
1604 * Supported Features:
1605 * - This low level driver is OS independent. Allocating memory for
1606 * the descriptor rings and buffers are not within the scope of
1607 * this driver.
1608 * - The user is free from Rx/Tx queue managing.
1609 * - This low level driver introduce functionality API that enable
1610 * the to operate Marvell's Gigabit Ethernet Controller in a
1611 * convenient way.
1612 * - Simple Gigabit Ethernet port operation API.
1613 * - Simple Gigabit Ethernet port data flow API.
1614 * - Data flow and operation API support per queue functionality.
1615 * - Support cached descriptors for better performance.
1616 * - Enable access to all four DRAM banks and internal SRAM memory
1617 * spaces.
1618 * - PHY access and control API.
1619 * - Port control register configuration API.
1620 * - Full control over Unicast and Multicast MAC configurations.
1621 *
1622 * Operation flow:
1623 *
1624 * Initialization phase
1625 * This phase complete the initialization of the the
1626 * mv643xx_private struct.
1627 * User information regarding port configuration has to be set
1628 * prior to calling the port initialization routine.
1629 *
1630 * In this phase any port Tx/Rx activity is halted, MIB counters
1631 * are cleared, PHY address is set according to user parameter and
1632 * access to DRAM and internal SRAM memory spaces.
1633 *
1634 * Driver ring initialization
1635 * Allocating memory for the descriptor rings and buffers is not
1636 * within the scope of this driver. Thus, the user is required to
1637 * allocate memory for the descriptors ring and buffers. Those
1638 * memory parameters are used by the Rx and Tx ring initialization
1639 * routines in order to curve the descriptor linked list in a form
1640 * of a ring.
1641 * Note: Pay special attention to alignment issues when using
1642 * cached descriptors/buffers. In this phase the driver store
1643 * information in the mv643xx_private struct regarding each queue
1644 * ring.
1645 *
1646 * Driver start
1647 * This phase prepares the Ethernet port for Rx and Tx activity.
1648 * It uses the information stored in the mv643xx_private struct to
1649 * initialize the various port registers.
1650 *
1651 * Data flow:
1652 * All packet references to/from the driver are done using
1653 * struct pkt_info.
1654 * This struct is a unified struct used with Rx and Tx operations.
1655 * This way the user is not required to be familiar with neither
1656 * Tx nor Rx descriptors structures.
1657 * The driver's descriptors rings are management by indexes.
1658 * Those indexes controls the ring resources and used to indicate
1659 * a SW resource error:
1660 * 'current'
1661 * This index points to the current available resource for use. For
1662 * example in Rx process this index will point to the descriptor
1663 * that will be passed to the user upon calling the receive
1664 * routine. In Tx process, this index will point to the descriptor
1665 * that will be assigned with the user packet info and transmitted.
1666 * 'used'
1667 * This index points to the descriptor that need to restore its
1668 * resources. For example in Rx process, using the Rx buffer return
1669 * API will attach the buffer returned in packet info to the
1670 * descriptor pointed by 'used'. In Tx process, using the Tx
1671 * descriptor return will merely return the user packet info with
1672 * the command status of the transmitted buffer pointed by the
1673 * 'used' index. Nevertheless, it is essential to use this routine
1674 * to update the 'used' index.
1675 * 'first'
1676 * This index supports Tx Scatter-Gather. It points to the first
1677 * descriptor of a packet assembled of multiple buffers. For
1678 * example when in middle of Such packet we have a Tx resource
1679 * error the 'curr' index get the value of 'first' to indicate
1680 * that the ring returned to its state before trying to transmit
1681 * this packet.
1682 *
1683 * Receive operation:
1684 * The eth_port_receive API set the packet information struct,
1685 * passed by the caller, with received information from the
1686 * 'current' SDMA descriptor.
1687 * It is the user responsibility to return this resource back
1688 * to the Rx descriptor ring to enable the reuse of this source.
1689 * Return Rx resource is done using the eth_rx_return_buff API.
1690 *
1691 * Transmit operation:
1692 * The eth_port_send API supports Scatter-Gather which enables to
1693 * send a packet spanned over multiple buffers. This means that
1694 * for each packet info structure given by the user and put into
1695 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1696 * bit will be set in the packet info command status field. This
1697 * API also consider restriction regarding buffer alignments and
1698 * sizes.
1699 * The user must return a Tx resource after ensuring the buffer
1700 * has been transmitted to enable the Tx ring indexes to update.
1701 *
1702 * BOARD LAYOUT
1703 * This device is on-board. No jumper diagram is necessary.
1704 *
1705 * EXTERNAL INTERFACE
1706 *
1707 * Prior to calling the initialization routine eth_port_init() the user
1708 * must set the following fields under mv643xx_private struct:
1709 * port_num User Ethernet port number.
1710 * port_mac_addr[6] User defined port MAC address.
1711 * port_config User port configuration value.
1712 * port_config_extend User port config extend value.
1713 * port_sdma_config User port SDMA config value.
1714 * port_serial_control User port serial control value.
1715 *
1716 * This driver data flow is done using the struct pkt_info which
1717 * is a unified struct for Rx and Tx operations:
1718 *
1719 * byte_cnt Tx/Rx descriptor buffer byte count.
1720 * l4i_chk CPU provided TCP Checksum. For Tx operation
1721 * only.
1722 * cmd_sts Tx/Rx descriptor command status.
1723 * buf_ptr Tx/Rx descriptor buffer pointer.
1724 * return_info Tx/Rx user resource return information.
1725 */
1726
1727/* defines */
1728/* SDMA command macros */
1729#define ETH_ENABLE_TX_QUEUE(eth_port) \
1730 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1731
1732/* locals */
1733
1734/* PHY routines */
1735static int ethernet_phy_get(unsigned int eth_port_num);
1736static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1737
1738/* Ethernet Port routines */
1739static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1740 int option);
1741
1742/*
1743 * eth_port_init - Initialize the Ethernet port driver
1744 *
1745 * DESCRIPTION:
1746 * This function prepares the ethernet port to start its activity:
1747 * 1) Completes the ethernet port driver struct initialization toward port
1748 * start routine.
1749 * 2) Resets the device to a quiescent state in case of warm reboot.
1750 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1751 * 4) Clean MAC tables. The reset status of those tables is unknown.
1752 * 5) Set PHY address.
1753 * Note: Call this routine prior to eth_port_start routine and after
1754 * setting user values in the user fields of Ethernet port control
1755 * struct.
1756 *
1757 * INPUT:
1758 * struct mv643xx_private *mp Ethernet port control struct
1759 *
1760 * OUTPUT:
1761 * See description.
1762 *
1763 * RETURN:
1764 * None.
1765 */
1766static void eth_port_init(struct mv643xx_private *mp)
1767{
1768 mp->port_rx_queue_command = 0;
1769 mp->port_tx_queue_command = 0;
1770
1771 mp->rx_resource_err = 0;
1772 mp->tx_resource_err = 0;
1773
1774 eth_port_reset(mp->port_num);
1775
1776 eth_port_init_mac_tables(mp->port_num);
1777
1778 ethernet_phy_reset(mp->port_num);
1779}
1780
1781/*
1782 * eth_port_start - Start the Ethernet port activity.
1783 *
1784 * DESCRIPTION:
1785 * This routine prepares the Ethernet port for Rx and Tx activity:
1786 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1787 * has been initialized a descriptor's ring (using
1788 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1789 * 2. Initialize and enable the Ethernet configuration port by writing to
1790 * the port's configuration and command registers.
1791 * 3. Initialize and enable the SDMA by writing to the SDMA's
1792 * configuration and command registers. After completing these steps,
1793 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1794 *
1795 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1796 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1797 * and ether_init_rx_desc_ring for Rx queues).
1798 *
1799 * INPUT:
1800 * struct mv643xx_private *mp Ethernet port control struct
1801 *
1802 * OUTPUT:
1803 * Ethernet port is ready to receive and transmit.
1804 *
1805 * RETURN:
1806 * None.
1807 */
1808static void eth_port_start(struct mv643xx_private *mp)
1809{
1810 unsigned int port_num = mp->port_num;
1811 int tx_curr_desc, rx_curr_desc;
1812
1813 /* Assignment of Tx CTRP of given queue */
1814 tx_curr_desc = mp->tx_curr_desc_q;
1815 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1816 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1817
1818 /* Assignment of Rx CRDP of given queue */
1819 rx_curr_desc = mp->rx_curr_desc_q;
1820 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1821 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1822
1823 /* Add the assigned Ethernet address to the port's address table */
1824 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1825
1826 /* Assign port configuration and command. */
1827 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1828
1829 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1830 mp->port_config_extend);
1831
1832
1833 /* Increase the Rx side buffer size if supporting GigE */
1834 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1835 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1836 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1837 else
1838 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1839 mp->port_serial_control);
1840
1841 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1842 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1843 MV643XX_ETH_SERIAL_PORT_ENABLE);
1844
1845 /* Assign port SDMA configuration */
1846 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1847 mp->port_sdma_config);
1848
1849 /* Enable port Rx. */
1850 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1851 mp->port_rx_queue_command);
8f543718
DF
1852
1853 /* Disable port bandwidth limits by clearing MTU register */
1854 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1da177e4
LT
1855}
1856
1857/*
1858 * eth_port_uc_addr_set - This function Set the port Unicast address.
1859 *
1860 * DESCRIPTION:
1861 * This function Set the port Ethernet MAC address.
1862 *
1863 * INPUT:
1864 * unsigned int eth_port_num Port number.
1865 * char * p_addr Address to be set
1866 *
1867 * OUTPUT:
1868 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1869 * To set the unicast table with the proper information.
1870 *
1871 * RETURN:
1872 * N/A.
1873 *
1874 */
1875static void eth_port_uc_addr_set(unsigned int eth_port_num,
1876 unsigned char *p_addr)
1877{
1878 unsigned int mac_h;
1879 unsigned int mac_l;
1880
1881 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1882 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1883 (p_addr[3] << 0);
1884
1885 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1886 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1887
1888 /* Accept frames of this address */
1889 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1890
1891 return;
1892}
1893
1894/*
1895 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1896 * (MAC address) from the ethernet hw registers.
1897 *
1898 * DESCRIPTION:
1899 * This function retrieves the port Ethernet MAC address.
1900 *
1901 * INPUT:
1902 * unsigned int eth_port_num Port number.
1903 * char *MacAddr pointer where the MAC address is stored
1904 *
1905 * OUTPUT:
1906 * Copy the MAC address to the location pointed to by MacAddr
1907 *
1908 * RETURN:
1909 * N/A.
1910 *
1911 */
1912static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1913{
1914 struct mv643xx_private *mp = netdev_priv(dev);
1915 unsigned int mac_h;
1916 unsigned int mac_l;
1917
1918 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1919 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1920
1921 p_addr[0] = (mac_h >> 24) & 0xff;
1922 p_addr[1] = (mac_h >> 16) & 0xff;
1923 p_addr[2] = (mac_h >> 8) & 0xff;
1924 p_addr[3] = mac_h & 0xff;
1925 p_addr[4] = (mac_l >> 8) & 0xff;
1926 p_addr[5] = mac_l & 0xff;
1927}
1928
1929/*
1930 * eth_port_uc_addr - This function Set the port unicast address table
1931 *
1932 * DESCRIPTION:
1933 * This function locates the proper entry in the Unicast table for the
1934 * specified MAC nibble and sets its properties according to function
1935 * parameters.
1936 *
1937 * INPUT:
1938 * unsigned int eth_port_num Port number.
1939 * unsigned char uc_nibble Unicast MAC Address last nibble.
1940 * int option 0 = Add, 1 = remove address.
1941 *
1942 * OUTPUT:
1943 * This function add/removes MAC addresses from the port unicast address
1944 * table.
1945 *
1946 * RETURN:
1947 * true is output succeeded.
1948 * false if option parameter is invalid.
1949 *
1950 */
1951static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1952 int option)
1953{
1954 unsigned int unicast_reg;
1955 unsigned int tbl_offset;
1956 unsigned int reg_offset;
1957
1958 /* Locate the Unicast table entry */
1959 uc_nibble = (0xf & uc_nibble);
1960 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1961 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1962
1963 switch (option) {
1964 case REJECT_MAC_ADDR:
1965 /* Clear accepts frame bit at given unicast DA table entry */
1966 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1967 (eth_port_num) + tbl_offset));
1968
1969 unicast_reg &= (0x0E << (8 * reg_offset));
1970
1971 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1972 (eth_port_num) + tbl_offset), unicast_reg);
1973 break;
1974
1975 case ACCEPT_MAC_ADDR:
1976 /* Set accepts frame bit at unicast DA filter table entry */
1977 unicast_reg =
1978 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1979 (eth_port_num) + tbl_offset));
1980
1981 unicast_reg |= (0x01 << (8 * reg_offset));
1982
1983 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1984 (eth_port_num) + tbl_offset), unicast_reg);
1985
1986 break;
1987
1988 default:
1989 return 0;
1990 }
1991
1992 return 1;
1993}
1994
16e03018
DF
1995/*
1996 * The entries in each table are indexed by a hash of a packet's MAC
1997 * address. One bit in each entry determines whether the packet is
1998 * accepted. There are 4 entries (each 8 bits wide) in each register
1999 * of the table. The bits in each entry are defined as follows:
2000 * 0 Accept=1, Drop=0
2001 * 3-1 Queue (ETH_Q0=0)
2002 * 7-4 Reserved = 0;
2003 */
2004static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2005{
2006 unsigned int table_reg;
2007 unsigned int tbl_offset;
2008 unsigned int reg_offset;
2009
2010 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2011 reg_offset = entry % 4; /* Entry offset within the register */
2012
2013 /* Set "accepts frame bit" at specified table entry */
2014 table_reg = mv_read(table + tbl_offset);
2015 table_reg |= 0x01 << (8 * reg_offset);
2016 mv_write(table + tbl_offset, table_reg);
2017}
2018
2019/*
2020 * eth_port_mc_addr - Multicast address settings.
2021 *
2022 * The MV device supports multicast using two tables:
2023 * 1) Special Multicast Table for MAC addresses of the form
2024 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2025 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2026 * Table entries in the DA-Filter table.
2027 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2028 * is used as an index to the Other Multicast Table entries in the
2029 * DA-Filter table. This function calculates the CRC-8bit value.
2030 * In either case, eth_port_set_filter_table_entry() is then called
2031 * to set to set the actual table entry.
2032 */
2033static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2034{
2035 unsigned int mac_h;
2036 unsigned int mac_l;
2037 unsigned char crc_result = 0;
2038 int table;
2039 int mac_array[48];
2040 int crc[8];
2041 int i;
2042
2043 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2044 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2045 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2046 (eth_port_num);
2047 eth_port_set_filter_table_entry(table, p_addr[5]);
2048 return;
2049 }
2050
2051 /* Calculate CRC-8 out of the given address */
2052 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2053 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2054 (p_addr[4] << 8) | (p_addr[5] << 0);
2055
2056 for (i = 0; i < 32; i++)
2057 mac_array[i] = (mac_l >> i) & 0x1;
2058 for (i = 32; i < 48; i++)
2059 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2060
2061 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2062 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2063 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2064 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2065 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2066
2067 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2068 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2069 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2070 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2071 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2072 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2073 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2074
2075 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2076 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2077 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2078 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2079 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2080 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2081
2082 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2083 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2084 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2085 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2086 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2087 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2088
2089 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2090 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2091 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2092 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2093 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2094 mac_array[3] ^ mac_array[2];
2095
2096 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2097 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2098 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2099 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2100 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2101 mac_array[4] ^ mac_array[3];
2102
2103 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2104 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2105 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2106 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2107 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2108 mac_array[4];
2109
2110 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2111 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2112 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2113 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2114 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2115
2116 for (i = 0; i < 8; i++)
2117 crc_result = crc_result | (crc[i] << i);
2118
2119 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2120 eth_port_set_filter_table_entry(table, crc_result);
2121}
2122
2123/*
2124 * Set the entire multicast list based on dev->mc_list.
2125 */
2126static void eth_port_set_multicast_list(struct net_device *dev)
2127{
2128
2129 struct dev_mc_list *mc_list;
2130 int i;
2131 int table_index;
2132 struct mv643xx_private *mp = netdev_priv(dev);
2133 unsigned int eth_port_num = mp->port_num;
2134
2135 /* If the device is in promiscuous mode or in all multicast mode,
2136 * we will fully populate both multicast tables with accept.
2137 * This is guaranteed to yield a match on all multicast addresses...
2138 */
2139 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2140 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2141 /* Set all entries in DA filter special multicast
2142 * table (Ex_dFSMT)
2143 * Set for ETH_Q0 for now
2144 * Bits
2145 * 0 Accept=1, Drop=0
2146 * 3-1 Queue ETH_Q0=0
2147 * 7-4 Reserved = 0;
2148 */
2149 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2150
2151 /* Set all entries in DA filter other multicast
2152 * table (Ex_dFOMT)
2153 * Set for ETH_Q0 for now
2154 * Bits
2155 * 0 Accept=1, Drop=0
2156 * 3-1 Queue ETH_Q0=0
2157 * 7-4 Reserved = 0;
2158 */
2159 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2160 }
2161 return;
2162 }
2163
2164 /* We will clear out multicast tables every time we get the list.
2165 * Then add the entire new list...
2166 */
2167 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2168 /* Clear DA filter special multicast table (Ex_dFSMT) */
2169 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2170 (eth_port_num) + table_index, 0);
2171
2172 /* Clear DA filter other multicast table (Ex_dFOMT) */
2173 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2174 (eth_port_num) + table_index, 0);
2175 }
2176
2177 /* Get pointer to net_device multicast list and add each one... */
2178 for (i = 0, mc_list = dev->mc_list;
2179 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2180 i++, mc_list = mc_list->next)
2181 if (mc_list->dmi_addrlen == 6)
2182 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2183}
2184
1da177e4
LT
2185/*
2186 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2187 *
2188 * DESCRIPTION:
2189 * Go through all the DA filter tables (Unicast, Special Multicast &
2190 * Other Multicast) and set each entry to 0.
2191 *
2192 * INPUT:
2193 * unsigned int eth_port_num Ethernet Port number.
2194 *
2195 * OUTPUT:
2196 * Multicast and Unicast packets are rejected.
2197 *
2198 * RETURN:
2199 * None.
2200 */
2201static void eth_port_init_mac_tables(unsigned int eth_port_num)
2202{
2203 int table_index;
2204
2205 /* Clear DA filter unicast table (Ex_dFUT) */
2206 for (table_index = 0; table_index <= 0xC; table_index += 4)
2207 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2208 (eth_port_num) + table_index), 0);
2209
2210 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2211 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2212 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2213 (eth_port_num) + table_index, 0);
1da177e4 2214 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2215 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2216 (eth_port_num) + table_index, 0);
1da177e4
LT
2217 }
2218}
2219
2220/*
2221 * eth_clear_mib_counters - Clear all MIB counters
2222 *
2223 * DESCRIPTION:
2224 * This function clears all MIB counters of a specific ethernet port.
2225 * A read from the MIB counter will reset the counter.
2226 *
2227 * INPUT:
2228 * unsigned int eth_port_num Ethernet Port number.
2229 *
2230 * OUTPUT:
2231 * After reading all MIB counters, the counters resets.
2232 *
2233 * RETURN:
2234 * MIB counter value.
2235 *
2236 */
2237static void eth_clear_mib_counters(unsigned int eth_port_num)
2238{
2239 int i;
2240
2241 /* Perform dummy reads from MIB counters */
2242 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2243 i += 4)
2244 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2245}
2246
2247static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2248{
2249 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2250}
2251
2252static void eth_update_mib_counters(struct mv643xx_private *mp)
2253{
2254 struct mv643xx_mib_counters *p = &mp->mib_counters;
2255 int offset;
2256
2257 p->good_octets_received +=
2258 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2259 p->good_octets_received +=
2260 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2261
2262 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2263 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2264 offset += 4)
2265 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2266
2267 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2268 p->good_octets_sent +=
2269 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2270
2271 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2272 offset <= ETH_MIB_LATE_COLLISION;
2273 offset += 4)
2274 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2275}
2276
2277/*
2278 * ethernet_phy_detect - Detect whether a phy is present
2279 *
2280 * DESCRIPTION:
2281 * This function tests whether there is a PHY present on
2282 * the specified port.
2283 *
2284 * INPUT:
2285 * unsigned int eth_port_num Ethernet Port number.
2286 *
2287 * OUTPUT:
2288 * None
2289 *
2290 * RETURN:
2291 * 0 on success
2292 * -ENODEV on failure
2293 *
2294 */
2295static int ethernet_phy_detect(unsigned int port_num)
2296{
2297 unsigned int phy_reg_data0;
2298 int auto_neg;
2299
2300 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2301 auto_neg = phy_reg_data0 & 0x1000;
2302 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2303 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2304
2305 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2306 if ((phy_reg_data0 & 0x1000) == auto_neg)
2307 return -ENODEV; /* change didn't take */
2308
2309 phy_reg_data0 ^= 0x1000;
2310 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2311 return 0;
2312}
2313
2314/*
2315 * ethernet_phy_get - Get the ethernet port PHY address.
2316 *
2317 * DESCRIPTION:
2318 * This routine returns the given ethernet port PHY address.
2319 *
2320 * INPUT:
2321 * unsigned int eth_port_num Ethernet Port number.
2322 *
2323 * OUTPUT:
2324 * None.
2325 *
2326 * RETURN:
2327 * PHY address.
2328 *
2329 */
2330static int ethernet_phy_get(unsigned int eth_port_num)
2331{
2332 unsigned int reg_data;
2333
2334 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2335
2336 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2337}
2338
2339/*
2340 * ethernet_phy_set - Set the ethernet port PHY address.
2341 *
2342 * DESCRIPTION:
2343 * This routine sets the given ethernet port PHY address.
2344 *
2345 * INPUT:
2346 * unsigned int eth_port_num Ethernet Port number.
2347 * int phy_addr PHY address.
2348 *
2349 * OUTPUT:
2350 * None.
2351 *
2352 * RETURN:
2353 * None.
2354 *
2355 */
2356static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2357{
2358 u32 reg_data;
2359 int addr_shift = 5 * eth_port_num;
2360
2361 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2362 reg_data &= ~(0x1f << addr_shift);
2363 reg_data |= (phy_addr & 0x1f) << addr_shift;
2364 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2365}
2366
2367/*
2368 * ethernet_phy_reset - Reset Ethernet port PHY.
2369 *
2370 * DESCRIPTION:
2371 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2372 *
2373 * INPUT:
2374 * unsigned int eth_port_num Ethernet Port number.
2375 *
2376 * OUTPUT:
2377 * The PHY is reset.
2378 *
2379 * RETURN:
2380 * None.
2381 *
2382 */
2383static void ethernet_phy_reset(unsigned int eth_port_num)
2384{
2385 unsigned int phy_reg_data;
2386
2387 /* Reset the PHY */
2388 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2389 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2390 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2391}
2392
2393/*
2394 * eth_port_reset - Reset Ethernet port
2395 *
2396 * DESCRIPTION:
2397 * This routine resets the chip by aborting any SDMA engine activity and
2398 * clearing the MIB counters. The Receiver and the Transmit unit are in
2399 * idle state after this command is performed and the port is disabled.
2400 *
2401 * INPUT:
2402 * unsigned int eth_port_num Ethernet Port number.
2403 *
2404 * OUTPUT:
2405 * Channel activity is halted.
2406 *
2407 * RETURN:
2408 * None.
2409 *
2410 */
2411static void eth_port_reset(unsigned int port_num)
2412{
2413 unsigned int reg_data;
2414
2415 /* Stop Tx port activity. Check port Tx activity. */
2416 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2417
2418 if (reg_data & 0xFF) {
2419 /* Issue stop command for active channels only */
2420 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2421 (reg_data << 8));
2422
2423 /* Wait for all Tx activity to terminate. */
2424 /* Check port cause register that all Tx queues are stopped */
2425 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2426 & 0xFF)
2427 udelay(10);
2428 }
2429
2430 /* Stop Rx port activity. Check port Rx activity. */
2431 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2432
2433 if (reg_data & 0xFF) {
2434 /* Issue stop command for active channels only */
2435 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2436 (reg_data << 8));
2437
2438 /* Wait for all Rx activity to terminate. */
2439 /* Check port cause register that all Rx queues are stopped */
2440 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2441 & 0xFF)
2442 udelay(10);
2443 }
2444
2445 /* Clear all MIB counters */
2446 eth_clear_mib_counters(port_num);
2447
2448 /* Reset the Enable bit in the Configuration Register */
2449 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2450 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2451 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2452}
2453
1da177e4
LT
2454
2455static int eth_port_autoneg_supported(unsigned int eth_port_num)
2456{
2457 unsigned int phy_reg_data0;
2458
2459 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2460
2461 return phy_reg_data0 & 0x1000;
2462}
2463
2464static int eth_port_link_is_up(unsigned int eth_port_num)
2465{
2466 unsigned int phy_reg_data1;
2467
2468 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2469
2470 if (eth_port_autoneg_supported(eth_port_num)) {
2471 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2472 return 1;
2473 } else if (phy_reg_data1 & 0x4) /* link up */
2474 return 1;
2475
2476 return 0;
2477}
2478
1da177e4
LT
2479/*
2480 * eth_port_read_smi_reg - Read PHY registers
2481 *
2482 * DESCRIPTION:
2483 * This routine utilize the SMI interface to interact with the PHY in
2484 * order to perform PHY register read.
2485 *
2486 * INPUT:
2487 * unsigned int port_num Ethernet Port number.
2488 * unsigned int phy_reg PHY register address offset.
2489 * unsigned int *value Register value buffer.
2490 *
2491 * OUTPUT:
2492 * Write the value of a specified PHY register into given buffer.
2493 *
2494 * RETURN:
2495 * false if the PHY is busy or read data is not in valid state.
2496 * true otherwise.
2497 *
2498 */
2499static void eth_port_read_smi_reg(unsigned int port_num,
2500 unsigned int phy_reg, unsigned int *value)
2501{
2502 int phy_addr = ethernet_phy_get(port_num);
2503 unsigned long flags;
2504 int i;
2505
2506 /* the SMI register is a shared resource */
2507 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2508
2509 /* wait for the SMI register to become available */
2510 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2511 if (i == PHY_WAIT_ITERATIONS) {
2512 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2513 goto out;
2514 }
2515 udelay(PHY_WAIT_MICRO_SECONDS);
2516 }
2517
2518 mv_write(MV643XX_ETH_SMI_REG,
2519 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2520
2521 /* now wait for the data to be valid */
2522 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2523 if (i == PHY_WAIT_ITERATIONS) {
2524 printk("mv643xx PHY read timeout, port %d\n", port_num);
2525 goto out;
2526 }
2527 udelay(PHY_WAIT_MICRO_SECONDS);
2528 }
2529
2530 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2531out:
2532 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2533}
2534
2535/*
2536 * eth_port_write_smi_reg - Write to PHY registers
2537 *
2538 * DESCRIPTION:
2539 * This routine utilize the SMI interface to interact with the PHY in
2540 * order to perform writes to PHY registers.
2541 *
2542 * INPUT:
2543 * unsigned int eth_port_num Ethernet Port number.
2544 * unsigned int phy_reg PHY register address offset.
2545 * unsigned int value Register value.
2546 *
2547 * OUTPUT:
2548 * Write the given value to the specified PHY register.
2549 *
2550 * RETURN:
2551 * false if the PHY is busy.
2552 * true otherwise.
2553 *
2554 */
2555static void eth_port_write_smi_reg(unsigned int eth_port_num,
2556 unsigned int phy_reg, unsigned int value)
2557{
2558 int phy_addr;
2559 int i;
2560 unsigned long flags;
2561
2562 phy_addr = ethernet_phy_get(eth_port_num);
2563
2564 /* the SMI register is a shared resource */
2565 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2566
2567 /* wait for the SMI register to become available */
2568 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2569 if (i == PHY_WAIT_ITERATIONS) {
2570 printk("mv643xx PHY busy timeout, port %d\n",
2571 eth_port_num);
2572 goto out;
2573 }
2574 udelay(PHY_WAIT_MICRO_SECONDS);
2575 }
2576
2577 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2578 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2579out:
2580 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2581}
2582
2583/*
2584 * eth_port_send - Send an Ethernet packet
2585 *
2586 * DESCRIPTION:
2587 * This routine send a given packet described by p_pktinfo parameter. It
2588 * supports transmitting of a packet spaned over multiple buffers. The
2589 * routine updates 'curr' and 'first' indexes according to the packet
2590 * segment passed to the routine. In case the packet segment is first,
2591 * the 'first' index is update. In any case, the 'curr' index is updated.
2592 * If the routine get into Tx resource error it assigns 'curr' index as
2593 * 'first'. This way the function can abort Tx process of multiple
2594 * descriptors per packet.
2595 *
2596 * INPUT:
2597 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2598 * struct pkt_info *p_pkt_info User packet buffer.
2599 *
2600 * OUTPUT:
2601 * Tx ring 'curr' and 'first' indexes are updated.
2602 *
2603 * RETURN:
2604 * ETH_QUEUE_FULL in case of Tx resource error.
2605 * ETH_ERROR in case the routine can not access Tx desc ring.
2606 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2607 * ETH_OK otherwise.
2608 *
2609 */
2610#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2611/*
2612 * Modified to include the first descriptor pointer in case of SG
2613 */
2614static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2615 struct pkt_info *p_pkt_info)
2616{
2617 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2618 struct eth_tx_desc *current_descriptor;
2619 struct eth_tx_desc *first_descriptor;
2620 u32 command;
2621
2622 /* Do not process Tx ring in case of Tx ring resource error */
2623 if (mp->tx_resource_err)
2624 return ETH_QUEUE_FULL;
2625
2626 /*
2627 * The hardware requires that each buffer that is <= 8 bytes
2628 * in length must be aligned on an 8 byte boundary.
2629 */
2630 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2631 printk(KERN_ERR
2632 "mv643xx_eth port %d: packet size <= 8 problem\n",
2633 mp->port_num);
2634 return ETH_ERROR;
2635 }
2636
b111ceb6
DF
2637 mp->tx_ring_skbs++;
2638 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2639
1da177e4
LT
2640 /* Get the Tx Desc ring indexes */
2641 tx_desc_curr = mp->tx_curr_desc_q;
2642 tx_desc_used = mp->tx_used_desc_q;
2643
2644 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2645
2646 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2647
2648 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2649 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2650 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2651 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2652
2653 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2654 ETH_BUFFER_OWNED_BY_DMA;
2655 if (command & ETH_TX_FIRST_DESC) {
2656 tx_first_desc = tx_desc_curr;
2657 mp->tx_first_desc_q = tx_first_desc;
2658 first_descriptor = current_descriptor;
2659 mp->tx_first_command = command;
2660 } else {
2661 tx_first_desc = mp->tx_first_desc_q;
2662 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2663 BUG_ON(first_descriptor == NULL);
2664 current_descriptor->cmd_sts = command;
2665 }
2666
2667 if (command & ETH_TX_LAST_DESC) {
2668 wmb();
2669 first_descriptor->cmd_sts = mp->tx_first_command;
2670
2671 wmb();
2672 ETH_ENABLE_TX_QUEUE(mp->port_num);
2673
2674 /*
2675 * Finish Tx packet. Update first desc in case of Tx resource
2676 * error */
2677 tx_first_desc = tx_next_desc;
2678 mp->tx_first_desc_q = tx_first_desc;
2679 }
2680
2681 /* Check for ring index overlap in the Tx desc ring */
2682 if (tx_next_desc == tx_desc_used) {
2683 mp->tx_resource_err = 1;
2684 mp->tx_curr_desc_q = tx_first_desc;
2685
2686 return ETH_QUEUE_LAST_RESOURCE;
2687 }
2688
2689 mp->tx_curr_desc_q = tx_next_desc;
2690
2691 return ETH_OK;
2692}
2693#else
2694static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2695 struct pkt_info *p_pkt_info)
2696{
2697 int tx_desc_curr;
2698 int tx_desc_used;
2699 struct eth_tx_desc *current_descriptor;
2700 unsigned int command_status;
2701
2702 /* Do not process Tx ring in case of Tx ring resource error */
2703 if (mp->tx_resource_err)
2704 return ETH_QUEUE_FULL;
2705
b111ceb6
DF
2706 mp->tx_ring_skbs++;
2707 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2708
1da177e4
LT
2709 /* Get the Tx Desc ring indexes */
2710 tx_desc_curr = mp->tx_curr_desc_q;
2711 tx_desc_used = mp->tx_used_desc_q;
2712 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2713
2714 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2715 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2716 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2717 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2718
2719 /* Set last desc with DMA ownership and interrupt enable. */
2720 wmb();
2721 current_descriptor->cmd_sts = command_status |
2722 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2723
2724 wmb();
2725 ETH_ENABLE_TX_QUEUE(mp->port_num);
2726
2727 /* Finish Tx packet. Update first desc in case of Tx resource error */
2728 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2729
2730 /* Update the current descriptor */
2731 mp->tx_curr_desc_q = tx_desc_curr;
2732
2733 /* Check for ring index overlap in the Tx desc ring */
2734 if (tx_desc_curr == tx_desc_used) {
2735 mp->tx_resource_err = 1;
2736 return ETH_QUEUE_LAST_RESOURCE;
2737 }
2738
2739 return ETH_OK;
2740}
2741#endif
2742
2743/*
2744 * eth_tx_return_desc - Free all used Tx descriptors
2745 *
2746 * DESCRIPTION:
2747 * This routine returns the transmitted packet information to the caller.
2748 * It uses the 'first' index to support Tx desc return in case a transmit
2749 * of a packet spanned over multiple buffer still in process.
2750 * In case the Tx queue was in "resource error" condition, where there are
2751 * no available Tx resources, the function resets the resource error flag.
2752 *
2753 * INPUT:
2754 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2755 * struct pkt_info *p_pkt_info User packet buffer.
2756 *
2757 * OUTPUT:
2758 * Tx ring 'first' and 'used' indexes are updated.
2759 *
2760 * RETURN:
8f518703
DF
2761 * ETH_OK on success
2762 * ETH_ERROR otherwise.
1da177e4
LT
2763 *
2764 */
2765static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2766 struct pkt_info *p_pkt_info)
2767{
2768 int tx_desc_used;
8f518703
DF
2769 int tx_busy_desc;
2770 struct eth_tx_desc *p_tx_desc_used;
2771 unsigned int command_status;
2772 unsigned long flags;
2773 int err = ETH_OK;
2774
2775 spin_lock_irqsave(&mp->lock, flags);
2776
1da177e4 2777#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
8f518703 2778 tx_busy_desc = mp->tx_first_desc_q;
1da177e4 2779#else
8f518703 2780 tx_busy_desc = mp->tx_curr_desc_q;
1da177e4 2781#endif
1da177e4
LT
2782
2783 /* Get the Tx Desc ring indexes */
2784 tx_desc_used = mp->tx_used_desc_q;
2785
2786 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2787
2788 /* Sanity check */
8f518703
DF
2789 if (p_tx_desc_used == NULL) {
2790 err = ETH_ERROR;
2791 goto out;
2792 }
1da177e4
LT
2793
2794 /* Stop release. About to overlap the current available Tx descriptor */
8f518703
DF
2795 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2796 err = ETH_ERROR;
2797 goto out;
2798 }
1da177e4
LT
2799
2800 command_status = p_tx_desc_used->cmd_sts;
2801
2802 /* Still transmitting... */
8f518703
DF
2803 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2804 err = ETH_ERROR;
2805 goto out;
2806 }
1da177e4
LT
2807
2808 /* Pass the packet information to the caller */
2809 p_pkt_info->cmd_sts = command_status;
2810 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
4eaa3cb3
PG
2811 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2812 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
1da177e4
LT
2813 mp->tx_skb[tx_desc_used] = NULL;
2814
2815 /* Update the next descriptor to release. */
2816 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2817
2818 /* Any Tx return cancels the Tx resource error status */
2819 mp->tx_resource_err = 0;
2820
b111ceb6
DF
2821 BUG_ON(mp->tx_ring_skbs == 0);
2822 mp->tx_ring_skbs--;
2823
8f518703
DF
2824out:
2825 spin_unlock_irqrestore(&mp->lock, flags);
2826
2827 return err;
1da177e4
LT
2828}
2829
2830/*
2831 * eth_port_receive - Get received information from Rx ring.
2832 *
2833 * DESCRIPTION:
2834 * This routine returns the received data to the caller. There is no
2835 * data copying during routine operation. All information is returned
2836 * using pointer to packet information struct passed from the caller.
2837 * If the routine exhausts Rx ring resources then the resource error flag
2838 * is set.
2839 *
2840 * INPUT:
2841 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2842 * struct pkt_info *p_pkt_info User packet buffer.
2843 *
2844 * OUTPUT:
2845 * Rx ring current and used indexes are updated.
2846 *
2847 * RETURN:
2848 * ETH_ERROR in case the routine can not access Rx desc ring.
2849 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2850 * ETH_END_OF_JOB if there is no received data.
2851 * ETH_OK otherwise.
2852 */
2853static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2854 struct pkt_info *p_pkt_info)
2855{
2856 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2857 volatile struct eth_rx_desc *p_rx_desc;
2858 unsigned int command_status;
8f518703 2859 unsigned long flags;
1da177e4
LT
2860
2861 /* Do not process Rx ring in case of Rx ring resource error */
2862 if (mp->rx_resource_err)
2863 return ETH_QUEUE_FULL;
2864
8f518703
DF
2865 spin_lock_irqsave(&mp->lock, flags);
2866
1da177e4
LT
2867 /* Get the Rx Desc ring 'curr and 'used' indexes */
2868 rx_curr_desc = mp->rx_curr_desc_q;
2869 rx_used_desc = mp->rx_used_desc_q;
2870
2871 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2872
2873 /* The following parameters are used to save readings from memory */
2874 command_status = p_rx_desc->cmd_sts;
2875 rmb();
2876
2877 /* Nothing to receive... */
8f518703
DF
2878 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2879 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2880 return ETH_END_OF_JOB;
8f518703 2881 }
1da177e4
LT
2882
2883 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2884 p_pkt_info->cmd_sts = command_status;
2885 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2886 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2887 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2888
2889 /* Clean the return info field to indicate that the packet has been */
2890 /* moved to the upper layers */
2891 mp->rx_skb[rx_curr_desc] = NULL;
2892
2893 /* Update current index in data structure */
2894 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2895 mp->rx_curr_desc_q = rx_next_curr_desc;
2896
2897 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2898 if (rx_next_curr_desc == rx_used_desc)
2899 mp->rx_resource_err = 1;
2900
8f518703
DF
2901 spin_unlock_irqrestore(&mp->lock, flags);
2902
1da177e4
LT
2903 return ETH_OK;
2904}
2905
2906/*
2907 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2908 *
2909 * DESCRIPTION:
2910 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2911 * next 'used' descriptor and attached the returned buffer to it.
2912 * In case the Rx ring was in "resource error" condition, where there are
2913 * no available Rx resources, the function resets the resource error flag.
2914 *
2915 * INPUT:
2916 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2917 * struct pkt_info *p_pkt_info Information on returned buffer.
2918 *
2919 * OUTPUT:
2920 * New available Rx resource in Rx descriptor ring.
2921 *
2922 * RETURN:
2923 * ETH_ERROR in case the routine can not access Rx desc ring.
2924 * ETH_OK otherwise.
2925 */
2926static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2927 struct pkt_info *p_pkt_info)
2928{
2929 int used_rx_desc; /* Where to return Rx resource */
2930 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
2931 unsigned long flags;
2932
2933 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
2934
2935 /* Get 'used' Rx descriptor */
2936 used_rx_desc = mp->rx_used_desc_q;
2937 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2938
2939 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2940 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2941 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2942
2943 /* Flush the write pipe */
2944
2945 /* Return the descriptor to DMA ownership */
2946 wmb();
2947 p_used_rx_desc->cmd_sts =
2948 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2949 wmb();
2950
2951 /* Move the used descriptor pointer to the next descriptor */
2952 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2953
2954 /* Any Rx return cancels the Rx resource error status */
2955 mp->rx_resource_err = 0;
2956
8f518703
DF
2957 spin_unlock_irqrestore(&mp->lock, flags);
2958
1da177e4
LT
2959 return ETH_OK;
2960}
2961
2962/************* Begin ethtool support *************************/
2963
2964struct mv643xx_stats {
2965 char stat_string[ETH_GSTRING_LEN];
2966 int sizeof_stat;
2967 int stat_offset;
2968};
2969
2970#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2971 offsetof(struct mv643xx_private, m)
2972
2973static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2974 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2975 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2976 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2977 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2978 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2979 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2980 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2981 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2982 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2983 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2984 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2985 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2986 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2987 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2988 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2989 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2990 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2991 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2992 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2993 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2994 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2995 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2996 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2997 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2998 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2999 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3000 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3001 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3002 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3003 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3004 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3005 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3006 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3007 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3008 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3009 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3010 { "collision", MV643XX_STAT(mib_counters.collision) },
3011 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3012};
3013
3014#define MV643XX_STATS_LEN \
3015 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
3016
3017static int
3018mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
3019{
3020 struct mv643xx_private *mp = netdev->priv;
3021 int port_num = mp->port_num;
3022 int autoneg = eth_port_autoneg_supported(port_num);
3023 int mode_10_bit;
3024 int auto_duplex;
3025 int half_duplex = 0;
3026 int full_duplex = 0;
3027 int auto_speed;
3028 int speed_10 = 0;
3029 int speed_100 = 0;
3030 int speed_1000 = 0;
3031
3032 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
3033 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
3034
3035 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
3036
3037 if (mode_10_bit) {
3038 ecmd->supported = SUPPORTED_10baseT_Half;
3039 } else {
3040 ecmd->supported = (SUPPORTED_10baseT_Half |
3041 SUPPORTED_10baseT_Full |
3042 SUPPORTED_100baseT_Half |
3043 SUPPORTED_100baseT_Full |
3044 SUPPORTED_1000baseT_Full |
3045 (autoneg ? SUPPORTED_Autoneg : 0) |
3046 SUPPORTED_TP);
3047
3048 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
3049 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
3050
3051 ecmd->advertising = ADVERTISED_TP;
3052
3053 if (autoneg) {
3054 ecmd->advertising |= ADVERTISED_Autoneg;
3055
3056 if (auto_duplex) {
3057 half_duplex = 1;
3058 full_duplex = 1;
3059 } else {
3060 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
3061 full_duplex = 1;
3062 else
3063 half_duplex = 1;
3064 }
3065
3066 if (auto_speed) {
3067 speed_10 = 1;
3068 speed_100 = 1;
3069 speed_1000 = 1;
3070 } else {
3071 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
3072 speed_1000 = 1;
3073 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
3074 speed_100 = 1;
3075 else
3076 speed_10 = 1;
3077 }
3078
3079 if (speed_10 & half_duplex)
3080 ecmd->advertising |= ADVERTISED_10baseT_Half;
3081 if (speed_10 & full_duplex)
3082 ecmd->advertising |= ADVERTISED_10baseT_Full;
3083 if (speed_100 & half_duplex)
3084 ecmd->advertising |= ADVERTISED_100baseT_Half;
3085 if (speed_100 & full_duplex)
3086 ecmd->advertising |= ADVERTISED_100baseT_Full;
3087 if (speed_1000)
3088 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3089 }
3090 }
3091
3092 ecmd->port = PORT_TP;
3093 ecmd->phy_address = ethernet_phy_get(port_num);
3094
3095 ecmd->transceiver = XCVR_EXTERNAL;
3096
3097 if (netif_carrier_ok(netdev)) {
3098 if (mode_10_bit)
3099 ecmd->speed = SPEED_10;
3100 else {
3101 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
3102 ecmd->speed = SPEED_1000;
3103 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
3104 ecmd->speed = SPEED_100;
3105 else
3106 ecmd->speed = SPEED_10;
3107 }
3108
3109 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
3110 ecmd->duplex = DUPLEX_FULL;
3111 else
3112 ecmd->duplex = DUPLEX_HALF;
3113 } else {
3114 ecmd->speed = -1;
3115 ecmd->duplex = -1;
3116 }
3117
3118 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3119 return 0;
3120}
3121
3122static void
3123mv643xx_get_drvinfo(struct net_device *netdev,
3124 struct ethtool_drvinfo *drvinfo)
3125{
3126 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3127 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3128 strncpy(drvinfo->fw_version, "N/A", 32);
3129 strncpy(drvinfo->bus_info, "mv643xx", 32);
3130 drvinfo->n_stats = MV643XX_STATS_LEN;
3131}
3132
3133static int
3134mv643xx_get_stats_count(struct net_device *netdev)
3135{
3136 return MV643XX_STATS_LEN;
3137}
3138
3139static void
3140mv643xx_get_ethtool_stats(struct net_device *netdev,
3141 struct ethtool_stats *stats, uint64_t *data)
3142{
3143 struct mv643xx_private *mp = netdev->priv;
3144 int i;
3145
3146 eth_update_mib_counters(mp);
3147
3148 for(i = 0; i < MV643XX_STATS_LEN; i++) {
3149 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3150 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3151 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3152 }
3153}
3154
3155static void
3156mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3157{
3158 int i;
3159
3160 switch(stringset) {
3161 case ETH_SS_STATS:
3162 for (i=0; i < MV643XX_STATS_LEN; i++) {
3163 memcpy(data + i * ETH_GSTRING_LEN,
3164 mv643xx_gstrings_stats[i].stat_string,
3165 ETH_GSTRING_LEN);
3166 }
3167 break;
3168 }
3169}
3170
3171static struct ethtool_ops mv643xx_ethtool_ops = {
3172 .get_settings = mv643xx_get_settings,
3173 .get_drvinfo = mv643xx_get_drvinfo,
3174 .get_link = ethtool_op_get_link,
3175 .get_sg = ethtool_op_get_sg,
3176 .set_sg = ethtool_op_set_sg,
3177 .get_strings = mv643xx_get_strings,
3178 .get_stats_count = mv643xx_get_stats_count,
3179 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3180};
3181
3182/************* End ethtool support *************************/
This page took 0.327958 seconds and 5 git commands to generate.