ns83820: Remove unused have_optical variable.
[deliverable/linux.git] / drivers / net / ns83820.c
CommitLineData
10096974 1#define VERSION "0.23"
1da177e4
LT
2/* ns83820.c by Benjamin LaHaise with contributions.
3 *
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
5 *
6 * $Revision: 1.34.2.23 $
7 *
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
10 *
11 * Mmmm, chocolate vanilla mocha...
12 *
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 *
28 *
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
1da177e4
LT
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
6aa20a22 68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
c16ef1ce
BL
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
1da177e4
LT
71 * Driver Overview
72 * ===============
73 *
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
82 *
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
85 *
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
91 *
92 * Special thanks to SMC for providing hardware to test this driver on.
93 *
94 * Reports of success or failure would be greatly appreciated.
95 */
96//#define dprintk printk
97#define dprintk(x...) do { } while (0)
98
1da177e4
LT
99#include <linux/module.h>
100#include <linux/moduleparam.h>
101#include <linux/types.h>
102#include <linux/pci.h>
1e7f0bd8 103#include <linux/dma-mapping.h>
1da177e4
LT
104#include <linux/netdevice.h>
105#include <linux/etherdevice.h>
106#include <linux/delay.h>
1da177e4
LT
107#include <linux/workqueue.h>
108#include <linux/init.h>
109#include <linux/ip.h> /* for iph */
110#include <linux/in.h> /* for IPPROTO_... */
1da177e4
LT
111#include <linux/compiler.h>
112#include <linux/prefetch.h>
113#include <linux/ethtool.h>
d43c36dc 114#include <linux/sched.h>
1da177e4
LT
115#include <linux/timer.h>
116#include <linux/if_vlan.h>
14c85021 117#include <linux/rtnetlink.h>
ff5688ae 118#include <linux/jiffies.h>
5a0e3ad6 119#include <linux/slab.h>
1da177e4
LT
120
121#include <asm/io.h>
122#include <asm/uaccess.h>
123#include <asm/system.h>
124
125#define DRV_NAME "ns83820"
126
127/* Global parameters. See module_param near the bottom. */
128static int ihr = 2;
129static int reset_phy = 0;
130static int lnksts = 0; /* CFG_LNKSTS bit polarity */
131
132/* Dprintk is used for more interesting debug events */
133#undef Dprintk
134#define Dprintk dprintk
135
1da177e4
LT
136/* tunables */
137#define RX_BUF_SIZE 1500 /* 8192 */
138#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139#define NS83820_VLAN_ACCEL_SUPPORT
140#endif
141
142/* Must not exceed ~65000. */
143#define NR_RX_DESC 64
144#define NR_TX_DESC 128
145
146/* not tunable */
147#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148
149#define MIN_TX_DESC_FREE 8
150
151/* register defines */
152#define CFGCS 0x04
153
154#define CR_TXE 0x00000001
155#define CR_TXD 0x00000002
156/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157 * The Receive engine skips one descriptor and moves
158 * onto the next one!! */
159#define CR_RXE 0x00000004
160#define CR_RXD 0x00000008
161#define CR_TXR 0x00000010
162#define CR_RXR 0x00000020
163#define CR_SWI 0x00000080
164#define CR_RST 0x00000100
165
166#define PTSCR_EEBIST_FAIL 0x00000001
167#define PTSCR_EEBIST_EN 0x00000002
168#define PTSCR_EELOAD_EN 0x00000004
169#define PTSCR_RBIST_FAIL 0x000001b8
170#define PTSCR_RBIST_DONE 0x00000200
171#define PTSCR_RBIST_EN 0x00000400
172#define PTSCR_RBIST_RST 0x00002000
173
174#define MEAR_EEDI 0x00000001
175#define MEAR_EEDO 0x00000002
176#define MEAR_EECLK 0x00000004
177#define MEAR_EESEL 0x00000008
178#define MEAR_MDIO 0x00000010
179#define MEAR_MDDIR 0x00000020
180#define MEAR_MDC 0x00000040
181
182#define ISR_TXDESC3 0x40000000
183#define ISR_TXDESC2 0x20000000
184#define ISR_TXDESC1 0x10000000
185#define ISR_TXDESC0 0x08000000
186#define ISR_RXDESC3 0x04000000
187#define ISR_RXDESC2 0x02000000
188#define ISR_RXDESC1 0x01000000
189#define ISR_RXDESC0 0x00800000
190#define ISR_TXRCMP 0x00400000
191#define ISR_RXRCMP 0x00200000
192#define ISR_DPERR 0x00100000
193#define ISR_SSERR 0x00080000
194#define ISR_RMABT 0x00040000
195#define ISR_RTABT 0x00020000
196#define ISR_RXSOVR 0x00010000
197#define ISR_HIBINT 0x00008000
198#define ISR_PHY 0x00004000
199#define ISR_PME 0x00002000
200#define ISR_SWI 0x00001000
201#define ISR_MIB 0x00000800
202#define ISR_TXURN 0x00000400
203#define ISR_TXIDLE 0x00000200
204#define ISR_TXERR 0x00000100
205#define ISR_TXDESC 0x00000080
206#define ISR_TXOK 0x00000040
207#define ISR_RXORN 0x00000020
208#define ISR_RXIDLE 0x00000010
209#define ISR_RXEARLY 0x00000008
210#define ISR_RXERR 0x00000004
211#define ISR_RXDESC 0x00000002
212#define ISR_RXOK 0x00000001
213
214#define TXCFG_CSI 0x80000000
215#define TXCFG_HBI 0x40000000
216#define TXCFG_MLB 0x20000000
217#define TXCFG_ATP 0x10000000
218#define TXCFG_ECRETRY 0x00800000
219#define TXCFG_BRST_DIS 0x00080000
220#define TXCFG_MXDMA1024 0x00000000
221#define TXCFG_MXDMA512 0x00700000
222#define TXCFG_MXDMA256 0x00600000
223#define TXCFG_MXDMA128 0x00500000
224#define TXCFG_MXDMA64 0x00400000
225#define TXCFG_MXDMA32 0x00300000
226#define TXCFG_MXDMA16 0x00200000
227#define TXCFG_MXDMA8 0x00100000
228
229#define CFG_LNKSTS 0x80000000
230#define CFG_SPDSTS 0x60000000
231#define CFG_SPDSTS1 0x40000000
232#define CFG_SPDSTS0 0x20000000
233#define CFG_DUPSTS 0x10000000
234#define CFG_TBI_EN 0x01000000
235#define CFG_MODE_1000 0x00400000
236/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237 * Read the Phy response and then configure the MAC accordingly */
238#define CFG_AUTO_1000 0x00200000
239#define CFG_PINT_CTL 0x001c0000
240#define CFG_PINT_DUPSTS 0x00100000
241#define CFG_PINT_LNKSTS 0x00080000
242#define CFG_PINT_SPDSTS 0x00040000
243#define CFG_TMRTEST 0x00020000
244#define CFG_MRM_DIS 0x00010000
245#define CFG_MWI_DIS 0x00008000
246#define CFG_T64ADDR 0x00004000
247#define CFG_PCI64_DET 0x00002000
248#define CFG_DATA64_EN 0x00001000
249#define CFG_M64ADDR 0x00000800
250#define CFG_PHY_RST 0x00000400
251#define CFG_PHY_DIS 0x00000200
252#define CFG_EXTSTS_EN 0x00000100
253#define CFG_REQALG 0x00000080
254#define CFG_SB 0x00000040
255#define CFG_POW 0x00000020
256#define CFG_EXD 0x00000010
257#define CFG_PESEL 0x00000008
258#define CFG_BROM_DIS 0x00000004
259#define CFG_EXT_125 0x00000002
260#define CFG_BEM 0x00000001
261
262#define EXTSTS_UDPPKT 0x00200000
263#define EXTSTS_TCPPKT 0x00080000
264#define EXTSTS_IPPKT 0x00020000
265#define EXTSTS_VPKT 0x00010000
266#define EXTSTS_VTG_MASK 0x0000ffff
267
268#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269
270#define MIBC_MIBS 0x00000008
271#define MIBC_ACLR 0x00000004
272#define MIBC_FRZ 0x00000002
273#define MIBC_WRN 0x00000001
274
275#define PCR_PSEN (1 << 31)
276#define PCR_PS_MCAST (1 << 30)
277#define PCR_PS_DA (1 << 29)
278#define PCR_STHI_8 (3 << 23)
279#define PCR_STLO_4 (1 << 23)
280#define PCR_FFHI_8K (3 << 21)
281#define PCR_FFLO_4K (1 << 21)
282#define PCR_PAUSE_CNT 0xFFFE
283
284#define RXCFG_AEP 0x80000000
285#define RXCFG_ARP 0x40000000
286#define RXCFG_STRIPCRC 0x20000000
287#define RXCFG_RX_FD 0x10000000
288#define RXCFG_ALP 0x08000000
289#define RXCFG_AIRL 0x04000000
290#define RXCFG_MXDMA512 0x00700000
291#define RXCFG_DRTH 0x0000003e
292#define RXCFG_DRTH0 0x00000002
293
294#define RFCR_RFEN 0x80000000
295#define RFCR_AAB 0x40000000
296#define RFCR_AAM 0x20000000
297#define RFCR_AAU 0x10000000
298#define RFCR_APM 0x08000000
299#define RFCR_APAT 0x07800000
300#define RFCR_APAT3 0x04000000
301#define RFCR_APAT2 0x02000000
302#define RFCR_APAT1 0x01000000
303#define RFCR_APAT0 0x00800000
304#define RFCR_AARP 0x00400000
305#define RFCR_MHEN 0x00200000
306#define RFCR_UHEN 0x00100000
307#define RFCR_ULM 0x00080000
308
309#define VRCR_RUDPE 0x00000080
310#define VRCR_RTCPE 0x00000040
311#define VRCR_RIPE 0x00000020
312#define VRCR_IPEN 0x00000010
313#define VRCR_DUTF 0x00000008
314#define VRCR_DVTF 0x00000004
315#define VRCR_VTREN 0x00000002
316#define VRCR_VTDEN 0x00000001
317
318#define VTCR_PPCHK 0x00000008
319#define VTCR_GCHK 0x00000004
320#define VTCR_VPPTI 0x00000002
321#define VTCR_VGTI 0x00000001
322
323#define CR 0x00
324#define CFG 0x04
325#define MEAR 0x08
326#define PTSCR 0x0c
327#define ISR 0x10
328#define IMR 0x14
329#define IER 0x18
330#define IHR 0x1c
331#define TXDP 0x20
332#define TXDP_HI 0x24
333#define TXCFG 0x28
334#define GPIOR 0x2c
335#define RXDP 0x30
336#define RXDP_HI 0x34
337#define RXCFG 0x38
338#define PQCR 0x3c
339#define WCSR 0x40
340#define PCR 0x44
341#define RFCR 0x48
342#define RFDR 0x4c
343
344#define SRR 0x58
345
346#define VRCR 0xbc
347#define VTCR 0xc0
348#define VDR 0xc4
349#define CCSR 0xcc
350
351#define TBICR 0xe0
352#define TBISR 0xe4
353#define TANAR 0xe8
354#define TANLPAR 0xec
355#define TANER 0xf0
356#define TESR 0xf4
357
358#define TBICR_MR_AN_ENABLE 0x00001000
359#define TBICR_MR_RESTART_AN 0x00000200
360
361#define TBISR_MR_LINK_STATUS 0x00000020
362#define TBISR_MR_AN_COMPLETE 0x00000004
363
364#define TANAR_PS2 0x00000100
365#define TANAR_PS1 0x00000080
366#define TANAR_HALF_DUP 0x00000040
367#define TANAR_FULL_DUP 0x00000020
368
369#define GPIOR_GP5_OE 0x00000200
370#define GPIOR_GP4_OE 0x00000100
371#define GPIOR_GP3_OE 0x00000080
372#define GPIOR_GP2_OE 0x00000040
373#define GPIOR_GP1_OE 0x00000020
374#define GPIOR_GP3_OUT 0x00000004
375#define GPIOR_GP1_OUT 0x00000001
376
377#define LINK_AUTONEGOTIATE 0x01
378#define LINK_DOWN 0x02
379#define LINK_UP 0x04
380
6aa20a22 381#define HW_ADDR_LEN sizeof(dma_addr_t)
1da177e4
LT
382#define desc_addr_set(desc, addr) \
383 do { \
c16ef1ce
BL
384 ((desc)[0] = cpu_to_le32(addr)); \
385 if (HW_ADDR_LEN == 8) \
386 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
1da177e4
LT
387 } while(0)
388#define desc_addr_get(desc) \
c16ef1ce
BL
389 (le32_to_cpu((desc)[0]) | \
390 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
1da177e4
LT
391
392#define DESC_LINK 0
393#define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
394#define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
395#define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396
397#define CMDSTS_OWN 0x80000000
398#define CMDSTS_MORE 0x40000000
399#define CMDSTS_INTR 0x20000000
400#define CMDSTS_ERR 0x10000000
401#define CMDSTS_OK 0x08000000
402#define CMDSTS_RUNT 0x00200000
403#define CMDSTS_LEN_MASK 0x0000ffff
404
405#define CMDSTS_DEST_MASK 0x01800000
406#define CMDSTS_DEST_SELF 0x00800000
407#define CMDSTS_DEST_MULTI 0x01000000
408
409#define DESC_SIZE 8 /* Should be cache line sized */
410
411struct rx_info {
412 spinlock_t lock;
413 int up;
5d7dce76 414 unsigned long idle;
1da177e4
LT
415
416 struct sk_buff *skbs[NR_RX_DESC];
417
c69fda4e 418 __le32 *next_rx_desc;
1da177e4
LT
419 u16 next_rx, next_empty;
420
c69fda4e 421 __le32 *descs;
1da177e4
LT
422 dma_addr_t phy_descs;
423};
424
425
426struct ns83820 {
1da177e4
LT
427 u8 __iomem *base;
428
429 struct pci_dev *pci_dev;
c4028958 430 struct net_device *ndev;
1da177e4
LT
431
432#ifdef NS83820_VLAN_ACCEL_SUPPORT
433 struct vlan_group *vlgrp;
434#endif
435
436 struct rx_info rx_info;
437 struct tasklet_struct rx_tasklet;
438
439 unsigned ihr;
440 struct work_struct tq_refill;
441
442 /* protects everything below. irqsave when using. */
443 spinlock_t misc_lock;
444
445 u32 CFG_cache;
446
447 u32 MEAR_cache;
448 u32 IMR_cache;
1da177e4
LT
449
450 unsigned linkstate;
451
452 spinlock_t tx_lock;
453
454 u16 tx_done_idx;
455 u16 tx_idx;
456 volatile u16 tx_free_idx; /* idx of free desc chain */
457 u16 tx_intr_idx;
458
459 atomic_t nr_tx_skbs;
460 struct sk_buff *tx_skbs[NR_TX_DESC];
461
462 char pad[16] __attribute__((aligned(16)));
c69fda4e 463 __le32 *tx_descs;
1da177e4
LT
464 dma_addr_t tx_phy_descs;
465
466 struct timer_list tx_watchdog;
467};
468
469static inline struct ns83820 *PRIV(struct net_device *dev)
470{
471 return netdev_priv(dev);
472}
473
474#define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
475
476static inline void kick_rx(struct net_device *ndev)
477{
478 struct ns83820 *dev = PRIV(ndev);
479 dprintk("kick_rx: maybe kicking\n");
480 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
481 dprintk("actually kicking\n");
482 writel(dev->rx_info.phy_descs +
483 (4 * DESC_SIZE * dev->rx_info.next_rx),
484 dev->base + RXDP);
485 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
486 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
487 ndev->name);
488 __kick_rx(dev);
489 }
490}
491
492//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493#define start_tx_okay(dev) \
494 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
495
496
6aa20a22 497#ifdef NS83820_VLAN_ACCEL_SUPPORT
1da177e4
LT
498static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
499{
500 struct ns83820 *dev = PRIV(ndev);
501
502 spin_lock_irq(&dev->misc_lock);
503 spin_lock(&dev->tx_lock);
504
505 dev->vlgrp = grp;
506
507 spin_unlock(&dev->tx_lock);
508 spin_unlock_irq(&dev->misc_lock);
509}
1da177e4
LT
510#endif
511
512/* Packet Receiver
513 *
514 * The hardware supports linked lists of receive descriptors for
515 * which ownership is transfered back and forth by means of an
516 * ownership bit. While the hardware does support the use of a
517 * ring for receive descriptors, we only make use of a chain in
518 * an attempt to reduce bus traffic under heavy load scenarios.
519 * This will also make bugs a bit more obvious. The current code
520 * only makes use of a single rx chain; I hope to implement
521 * priority based rx for version 1.0. Goal: even under overload
522 * conditions, still route realtime traffic with as low jitter as
523 * possible.
524 */
c69fda4e 525static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
1da177e4
LT
526{
527 desc_addr_set(desc + DESC_LINK, link);
528 desc_addr_set(desc + DESC_BUFPTR, buf);
529 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
530 mb();
531 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
532}
533
534#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
535static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
536{
537 unsigned next_empty;
538 u32 cmdsts;
c69fda4e 539 __le32 *sg;
1da177e4
LT
540 dma_addr_t buf;
541
542 next_empty = dev->rx_info.next_empty;
543
544 /* don't overrun last rx marker */
545 if (unlikely(nr_rx_empty(dev) <= 2)) {
546 kfree_skb(skb);
547 return 1;
548 }
549
550#if 0
551 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
552 dev->rx_info.next_empty,
553 dev->rx_info.nr_used,
554 dev->rx_info.next_rx
555 );
556#endif
557
558 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
5d9428de 559 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
1da177e4
LT
560 dev->rx_info.skbs[next_empty] = skb;
561
562 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
563 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
689be439 564 buf = pci_map_single(dev->pci_dev, skb->data,
1da177e4
LT
565 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
566 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
567 /* update link of previous rx */
568 if (likely(next_empty != dev->rx_info.next_rx))
569 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
570
571 return 0;
572}
573
dd0fc66f 574static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
1da177e4
LT
575{
576 struct ns83820 *dev = PRIV(ndev);
577 unsigned i;
578 unsigned long flags = 0;
579
580 if (unlikely(nr_rx_empty(dev) <= 2))
581 return 0;
582
583 dprintk("rx_refill(%p)\n", ndev);
584 if (gfp == GFP_ATOMIC)
585 spin_lock_irqsave(&dev->rx_info.lock, flags);
586 for (i=0; i<NR_RX_DESC; i++) {
587 struct sk_buff *skb;
588 long res;
e83728c7 589
1da177e4 590 /* extra 16 bytes for alignment */
e83728c7 591 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
1da177e4
LT
592 if (unlikely(!skb))
593 break;
594
e83728c7 595 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
1da177e4
LT
596 if (gfp != GFP_ATOMIC)
597 spin_lock_irqsave(&dev->rx_info.lock, flags);
598 res = ns83820_add_rx_skb(dev, skb);
599 if (gfp != GFP_ATOMIC)
600 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
601 if (res) {
602 i = 1;
603 break;
604 }
605 }
606 if (gfp == GFP_ATOMIC)
607 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
608
609 return i ? 0 : -ENOMEM;
610}
611
7eefb04e 612static void rx_refill_atomic(struct net_device *ndev)
1da177e4
LT
613{
614 rx_refill(ndev, GFP_ATOMIC);
615}
616
617/* REFILL */
c4028958 618static inline void queue_refill(struct work_struct *work)
1da177e4 619{
c4028958
DH
620 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
621 struct net_device *ndev = dev->ndev;
1da177e4
LT
622
623 rx_refill(ndev, GFP_KERNEL);
624 if (dev->rx_info.up)
625 kick_rx(ndev);
626}
627
628static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
629{
630 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
631}
632
7eefb04e 633static void phy_intr(struct net_device *ndev)
1da177e4
LT
634{
635 struct ns83820 *dev = PRIV(ndev);
f71e1309 636 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
1da177e4
LT
637 u32 cfg, new_cfg;
638 u32 tbisr, tanar, tanlpar;
639 int speed, fullduplex, newlinkstate;
640
641 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
642
643 if (dev->CFG_cache & CFG_TBI_EN) {
644 /* we have an optical transceiver */
645 tbisr = readl(dev->base + TBISR);
646 tanar = readl(dev->base + TANAR);
647 tanlpar = readl(dev->base + TANLPAR);
648 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
649 tbisr, tanar, tanlpar);
650
8e95a202
JP
651 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
652 (tanar & TANAR_FULL_DUP)) ) {
1da177e4
LT
653
654 /* both of us are full duplex */
655 writel(readl(dev->base + TXCFG)
656 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
657 dev->base + TXCFG);
658 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
659 dev->base + RXCFG);
660 /* Light up full duplex LED */
661 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
662 dev->base + GPIOR);
663
8e95a202
JP
664 } else if (((tanlpar & TANAR_HALF_DUP) &&
665 (tanar & TANAR_HALF_DUP)) ||
666 ((tanlpar & TANAR_FULL_DUP) &&
667 (tanar & TANAR_HALF_DUP)) ||
668 ((tanlpar & TANAR_HALF_DUP) &&
669 (tanar & TANAR_FULL_DUP))) {
1da177e4
LT
670
671 /* one or both of us are half duplex */
672 writel((readl(dev->base + TXCFG)
673 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
674 dev->base + TXCFG);
675 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
676 dev->base + RXCFG);
677 /* Turn off full duplex LED */
678 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
679 dev->base + GPIOR);
680 }
681
682 speed = 4; /* 1000F */
683
684 } else {
685 /* we have a copper transceiver */
686 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
687
688 if (cfg & CFG_SPDSTS1)
689 new_cfg |= CFG_MODE_1000;
690 else
691 new_cfg &= ~CFG_MODE_1000;
692
693 speed = ((cfg / CFG_SPDSTS0) & 3);
694 fullduplex = (cfg & CFG_DUPSTS);
695
c16ef1ce 696 if (fullduplex) {
1da177e4 697 new_cfg |= CFG_SB;
c16ef1ce
BL
698 writel(readl(dev->base + TXCFG)
699 | TXCFG_CSI | TXCFG_HBI,
700 dev->base + TXCFG);
701 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
702 dev->base + RXCFG);
703 } else {
704 writel(readl(dev->base + TXCFG)
705 & ~(TXCFG_CSI | TXCFG_HBI),
706 dev->base + TXCFG);
707 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
708 dev->base + RXCFG);
709 }
1da177e4
LT
710
711 if ((cfg & CFG_LNKSTS) &&
c16ef1ce 712 ((new_cfg ^ dev->CFG_cache) != 0)) {
1da177e4
LT
713 writel(new_cfg, dev->base + CFG);
714 dev->CFG_cache = new_cfg;
715 }
716
717 dev->CFG_cache &= ~CFG_SPDSTS;
718 dev->CFG_cache |= cfg & CFG_SPDSTS;
719 }
720
721 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
722
8e95a202
JP
723 if (newlinkstate & LINK_UP &&
724 dev->linkstate != newlinkstate) {
1da177e4
LT
725 netif_start_queue(ndev);
726 netif_wake_queue(ndev);
727 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
728 ndev->name,
729 speeds[speed],
730 fullduplex ? "full" : "half");
8e95a202
JP
731 } else if (newlinkstate & LINK_DOWN &&
732 dev->linkstate != newlinkstate) {
1da177e4
LT
733 netif_stop_queue(ndev);
734 printk(KERN_INFO "%s: link now down.\n", ndev->name);
735 }
736
737 dev->linkstate = newlinkstate;
738}
739
740static int ns83820_setup_rx(struct net_device *ndev)
741{
742 struct ns83820 *dev = PRIV(ndev);
743 unsigned i;
744 int ret;
745
746 dprintk("ns83820_setup_rx(%p)\n", ndev);
747
748 dev->rx_info.idle = 1;
749 dev->rx_info.next_rx = 0;
750 dev->rx_info.next_rx_desc = dev->rx_info.descs;
751 dev->rx_info.next_empty = 0;
752
753 for (i=0; i<NR_RX_DESC; i++)
754 clear_rx_desc(dev, i);
755
756 writel(0, dev->base + RXDP_HI);
757 writel(dev->rx_info.phy_descs, dev->base + RXDP);
758
759 ret = rx_refill(ndev, GFP_KERNEL);
760 if (!ret) {
761 dprintk("starting receiver\n");
762 /* prevent the interrupt handler from stomping on us */
763 spin_lock_irq(&dev->rx_info.lock);
764
765 writel(0x0001, dev->base + CCSR);
766 writel(0, dev->base + RFCR);
767 writel(0x7fc00000, dev->base + RFCR);
768 writel(0xffc00000, dev->base + RFCR);
769
770 dev->rx_info.up = 1;
771
772 phy_intr(ndev);
773
774 /* Okay, let it rip */
775 spin_lock_irq(&dev->misc_lock);
776 dev->IMR_cache |= ISR_PHY;
777 dev->IMR_cache |= ISR_RXRCMP;
778 //dev->IMR_cache |= ISR_RXERR;
779 //dev->IMR_cache |= ISR_RXOK;
780 dev->IMR_cache |= ISR_RXORN;
781 dev->IMR_cache |= ISR_RXSOVR;
782 dev->IMR_cache |= ISR_RXDESC;
783 dev->IMR_cache |= ISR_RXIDLE;
784 dev->IMR_cache |= ISR_TXDESC;
785 dev->IMR_cache |= ISR_TXIDLE;
786
787 writel(dev->IMR_cache, dev->base + IMR);
788 writel(1, dev->base + IER);
3a10cceb 789 spin_unlock(&dev->misc_lock);
1da177e4
LT
790
791 kick_rx(ndev);
792
793 spin_unlock_irq(&dev->rx_info.lock);
794 }
795 return ret;
796}
797
798static void ns83820_cleanup_rx(struct ns83820 *dev)
799{
800 unsigned i;
801 unsigned long flags;
802
803 dprintk("ns83820_cleanup_rx(%p)\n", dev);
804
805 /* disable receive interrupts */
806 spin_lock_irqsave(&dev->misc_lock, flags);
807 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
808 writel(dev->IMR_cache, dev->base + IMR);
809 spin_unlock_irqrestore(&dev->misc_lock, flags);
810
811 /* synchronize with the interrupt handler and kill it */
812 dev->rx_info.up = 0;
813 synchronize_irq(dev->pci_dev->irq);
814
815 /* touch the pci bus... */
816 readl(dev->base + IMR);
817
818 /* assumes the transmitter is already disabled and reset */
819 writel(0, dev->base + RXDP_HI);
820 writel(0, dev->base + RXDP);
821
822 for (i=0; i<NR_RX_DESC; i++) {
823 struct sk_buff *skb = dev->rx_info.skbs[i];
824 dev->rx_info.skbs[i] = NULL;
825 clear_rx_desc(dev, i);
893d7de7 826 kfree_skb(skb);
1da177e4
LT
827 }
828}
829
7eefb04e 830static void ns83820_rx_kick(struct net_device *ndev)
1da177e4
LT
831{
832 struct ns83820 *dev = PRIV(ndev);
833 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
834 if (dev->rx_info.up) {
835 rx_refill_atomic(ndev);
836 kick_rx(ndev);
837 }
838 }
839
840 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
841 schedule_work(&dev->tq_refill);
842 else
843 kick_rx(ndev);
844 if (dev->rx_info.idle)
845 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
846}
847
848/* rx_irq
6aa20a22 849 *
1da177e4 850 */
7eefb04e 851static void rx_irq(struct net_device *ndev)
1da177e4
LT
852{
853 struct ns83820 *dev = PRIV(ndev);
854 struct rx_info *info = &dev->rx_info;
855 unsigned next_rx;
856 int rx_rc, len;
c69fda4e
AV
857 u32 cmdsts;
858 __le32 *desc;
1da177e4
LT
859 unsigned long flags;
860 int nr = 0;
861
862 dprintk("rx_irq(%p)\n", ndev);
863 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
864 readl(dev->base + RXDP),
865 (long)(dev->rx_info.phy_descs),
866 (int)dev->rx_info.next_rx,
867 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
868 (int)dev->rx_info.next_empty,
869 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
870 );
871
872 spin_lock_irqsave(&info->lock, flags);
873 if (!info->up)
874 goto out;
875
876 dprintk("walking descs\n");
877 next_rx = info->next_rx;
878 desc = info->next_rx_desc;
879 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
880 (cmdsts != CMDSTS_OWN)) {
881 struct sk_buff *skb;
882 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
883 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
884
885 dprintk("cmdsts: %08x\n", cmdsts);
886 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
887 dprintk("extsts: %08x\n", extsts);
888
889 skb = info->skbs[next_rx];
890 info->skbs[next_rx] = NULL;
891 info->next_rx = (next_rx + 1) % NR_RX_DESC;
892
893 mb();
894 clear_rx_desc(dev, next_rx);
895
896 pci_unmap_single(dev->pci_dev, bufptr,
897 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
898 len = cmdsts & CMDSTS_LEN_MASK;
899#ifdef NS83820_VLAN_ACCEL_SUPPORT
900 /* NH: As was mentioned below, this chip is kinda
901 * brain dead about vlan tag stripping. Frames
902 * that are 64 bytes with a vlan header appended
903 * like arp frames, or pings, are flagged as Runts
904 * when the tag is stripped and hardware. This
6aa20a22 905 * also means that the OK bit in the descriptor
1da177e4
LT
906 * is cleared when the frame comes in so we have
907 * to do a specific length check here to make sure
908 * the frame would have been ok, had we not stripped
909 * the tag.
6aa20a22 910 */
1da177e4 911 if (likely((CMDSTS_OK & cmdsts) ||
6aa20a22 912 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
1da177e4
LT
913#else
914 if (likely(CMDSTS_OK & cmdsts)) {
915#endif
916 skb_put(skb, len);
917 if (unlikely(!skb))
918 goto netdev_mangle_me_harder_failed;
919 if (cmdsts & CMDSTS_DEST_MULTI)
e929bc33
KV
920 ndev->stats.multicast++;
921 ndev->stats.rx_packets++;
922 ndev->stats.rx_bytes += len;
1da177e4
LT
923 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
924 skb->ip_summed = CHECKSUM_UNNECESSARY;
925 } else {
bc8acf2c 926 skb_checksum_none_assert(skb);
1da177e4
LT
927 }
928 skb->protocol = eth_type_trans(skb, ndev);
6aa20a22 929#ifdef NS83820_VLAN_ACCEL_SUPPORT
1da177e4
LT
930 if(extsts & EXTSTS_VPKT) {
931 unsigned short tag;
932 tag = ntohs(extsts & EXTSTS_VTG_MASK);
933 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
934 } else {
935 rx_rc = netif_rx(skb);
936 }
937#else
938 rx_rc = netif_rx(skb);
939#endif
940 if (NET_RX_DROP == rx_rc) {
941netdev_mangle_me_harder_failed:
e929bc33 942 ndev->stats.rx_dropped++;
1da177e4
LT
943 }
944 } else {
945 kfree_skb(skb);
946 }
947
948 nr++;
949 next_rx = info->next_rx;
950 desc = info->descs + (DESC_SIZE * next_rx);
951 }
952 info->next_rx = next_rx;
953 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
954
955out:
956 if (0 && !nr) {
957 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
958 }
959
960 spin_unlock_irqrestore(&info->lock, flags);
961}
962
963static void rx_action(unsigned long _dev)
964{
965 struct net_device *ndev = (void *)_dev;
966 struct ns83820 *dev = PRIV(ndev);
967 rx_irq(ndev);
968 writel(ihr, dev->base + IHR);
969
970 spin_lock_irq(&dev->misc_lock);
971 dev->IMR_cache |= ISR_RXDESC;
972 writel(dev->IMR_cache, dev->base + IMR);
973 spin_unlock_irq(&dev->misc_lock);
974
975 rx_irq(ndev);
976 ns83820_rx_kick(ndev);
977}
978
979/* Packet Transmit code
980 */
981static inline void kick_tx(struct ns83820 *dev)
982{
983 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
984 dev, dev->tx_idx, dev->tx_free_idx);
985 writel(CR_TXE, dev->base + CR);
986}
987
988/* No spinlock needed on the transmit irq path as the interrupt handler is
989 * serialized.
990 */
991static void do_tx_done(struct net_device *ndev)
992{
993 struct ns83820 *dev = PRIV(ndev);
c69fda4e
AV
994 u32 cmdsts, tx_done_idx;
995 __le32 *desc;
1da177e4 996
1da177e4
LT
997 dprintk("do_tx_done(%p)\n", ndev);
998 tx_done_idx = dev->tx_done_idx;
999 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1000
1001 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1002 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1003 while ((tx_done_idx != dev->tx_free_idx) &&
1004 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1005 struct sk_buff *skb;
1006 unsigned len;
1007 dma_addr_t addr;
1008
1009 if (cmdsts & CMDSTS_ERR)
e929bc33 1010 ndev->stats.tx_errors++;
1da177e4 1011 if (cmdsts & CMDSTS_OK)
e929bc33 1012 ndev->stats.tx_packets++;
1da177e4 1013 if (cmdsts & CMDSTS_OK)
e929bc33 1014 ndev->stats.tx_bytes += cmdsts & 0xffff;
1da177e4
LT
1015
1016 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1017 tx_done_idx, dev->tx_free_idx, cmdsts);
1018 skb = dev->tx_skbs[tx_done_idx];
1019 dev->tx_skbs[tx_done_idx] = NULL;
1020 dprintk("done(%p)\n", skb);
1021
1022 len = cmdsts & CMDSTS_LEN_MASK;
1023 addr = desc_addr_get(desc + DESC_BUFPTR);
1024 if (skb) {
1025 pci_unmap_single(dev->pci_dev,
1026 addr,
1027 len,
1028 PCI_DMA_TODEVICE);
1029 dev_kfree_skb_irq(skb);
1030 atomic_dec(&dev->nr_tx_skbs);
1031 } else
6aa20a22 1032 pci_unmap_page(dev->pci_dev,
1da177e4
LT
1033 addr,
1034 len,
1035 PCI_DMA_TODEVICE);
1036
1037 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1038 dev->tx_done_idx = tx_done_idx;
1039 desc[DESC_CMDSTS] = cpu_to_le32(0);
1040 mb();
1041 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1042 }
1043
1044 /* Allow network stack to resume queueing packets after we've
1045 * finished transmitting at least 1/4 of the packets in the queue.
1046 */
1047 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1048 dprintk("start_queue(%p)\n", ndev);
1049 netif_start_queue(ndev);
1050 netif_wake_queue(ndev);
1051 }
1da177e4
LT
1052}
1053
1054static void ns83820_cleanup_tx(struct ns83820 *dev)
1055{
1056 unsigned i;
1057
1058 for (i=0; i<NR_TX_DESC; i++) {
1059 struct sk_buff *skb = dev->tx_skbs[i];
1060 dev->tx_skbs[i] = NULL;
1061 if (skb) {
c69fda4e 1062 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1da177e4
LT
1063 pci_unmap_single(dev->pci_dev,
1064 desc_addr_get(desc + DESC_BUFPTR),
1065 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1066 PCI_DMA_TODEVICE);
1067 dev_kfree_skb_irq(skb);
1068 atomic_dec(&dev->nr_tx_skbs);
1069 }
1070 }
1071
1072 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1073}
1074
1075/* transmit routine. This code relies on the network layer serializing
1076 * its calls in, but will run happily in parallel with the interrupt
1077 * handler. This code currently has provisions for fragmenting tx buffers
1078 * while trying to track down a bug in either the zero copy code or
1079 * the tx fifo (hence the MAX_FRAG_LEN).
1080 */
61357325
SH
1081static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1082 struct net_device *ndev)
1da177e4
LT
1083{
1084 struct ns83820 *dev = PRIV(ndev);
1085 u32 free_idx, cmdsts, extsts;
1086 int nr_free, nr_frags;
1087 unsigned tx_done_idx, last_idx;
1088 dma_addr_t buf;
1089 unsigned len;
1090 skb_frag_t *frag;
1091 int stopped = 0;
1092 int do_intr = 0;
c69fda4e 1093 volatile __le32 *first_desc;
1da177e4
LT
1094
1095 dprintk("ns83820_hard_start_xmit\n");
1096
1097 nr_frags = skb_shinfo(skb)->nr_frags;
1098again:
1099 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1100 netif_stop_queue(ndev);
1101 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
5b548140 1102 return NETDEV_TX_BUSY;
1da177e4
LT
1103 netif_start_queue(ndev);
1104 }
1105
1106 last_idx = free_idx = dev->tx_free_idx;
1107 tx_done_idx = dev->tx_done_idx;
1108 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1109 nr_free -= 1;
1110 if (nr_free <= nr_frags) {
1111 dprintk("stop_queue - not enough(%p)\n", ndev);
1112 netif_stop_queue(ndev);
1113
1114 /* Check again: we may have raced with a tx done irq */
1115 if (dev->tx_done_idx != tx_done_idx) {
1116 dprintk("restart queue(%p)\n", ndev);
1117 netif_start_queue(ndev);
1118 goto again;
1119 }
5b548140 1120 return NETDEV_TX_BUSY;
1da177e4
LT
1121 }
1122
1123 if (free_idx == dev->tx_intr_idx) {
1124 do_intr = 1;
1125 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1126 }
1127
1128 nr_free -= nr_frags;
1129 if (nr_free < MIN_TX_DESC_FREE) {
1130 dprintk("stop_queue - last entry(%p)\n", ndev);
1131 netif_stop_queue(ndev);
1132 stopped = 1;
1133 }
1134
1135 frag = skb_shinfo(skb)->frags;
1136 if (!nr_frags)
1137 frag = NULL;
1138 extsts = 0;
84fa7933 1139 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1140 extsts |= EXTSTS_IPPKT;
eddc9ec5 1141 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1da177e4 1142 extsts |= EXTSTS_TCPPKT;
eddc9ec5 1143 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1da177e4
LT
1144 extsts |= EXTSTS_UDPPKT;
1145 }
1146
1147#ifdef NS83820_VLAN_ACCEL_SUPPORT
1148 if(vlan_tx_tag_present(skb)) {
1149 /* fetch the vlan tag info out of the
1150 * ancilliary data if the vlan code
1151 * is using hw vlan acceleration
1152 */
1153 short tag = vlan_tx_tag_get(skb);
1154 extsts |= (EXTSTS_VPKT | htons(tag));
1155 }
1156#endif
1157
1158 len = skb->len;
1159 if (nr_frags)
1160 len -= skb->data_len;
1161 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1162
1163 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1164
1165 for (;;) {
c69fda4e 1166 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1da177e4
LT
1167
1168 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1169 (unsigned long long)buf);
1170 last_idx = free_idx;
1171 free_idx = (free_idx + 1) % NR_TX_DESC;
1172 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1173 desc_addr_set(desc + DESC_BUFPTR, buf);
1174 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1175
c16ef1ce 1176 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1da177e4
LT
1177 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1178 cmdsts |= len;
1179 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1180
1da177e4
LT
1181 if (!nr_frags)
1182 break;
1183
1184 buf = pci_map_page(dev->pci_dev, frag->page,
1185 frag->page_offset,
1186 frag->size, PCI_DMA_TODEVICE);
1187 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1188 (long long)buf, (long) page_to_pfn(frag->page),
1189 frag->page_offset);
1190 len = frag->size;
1191 frag++;
1192 nr_frags--;
1193 }
1194 dprintk("done pkt\n");
1195
1196 spin_lock_irq(&dev->tx_lock);
1197 dev->tx_skbs[last_idx] = skb;
1198 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1199 dev->tx_free_idx = free_idx;
1200 atomic_inc(&dev->nr_tx_skbs);
1201 spin_unlock_irq(&dev->tx_lock);
1202
1203 kick_tx(dev);
1204
1205 /* Check again: we may have raced with a tx done irq */
1206 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1207 netif_start_queue(ndev);
1208
cdd0db05 1209 return NETDEV_TX_OK;
1da177e4
LT
1210}
1211
1212static void ns83820_update_stats(struct ns83820 *dev)
1213{
e929bc33 1214 struct net_device *ndev = dev->ndev;
1da177e4
LT
1215 u8 __iomem *base = dev->base;
1216
1217 /* the DP83820 will freeze counters, so we need to read all of them */
e929bc33
KV
1218 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1219 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1220 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1221 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1222 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1223 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1224 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1225 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1226 /*ndev->stats.rx_pause_count += */ readl(base + 0x80);
1227 /*ndev->stats.tx_pause_count += */ readl(base + 0x84);
1228 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1da177e4
LT
1229}
1230
1231static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1232{
1233 struct ns83820 *dev = PRIV(ndev);
1234
1235 /* somewhat overkill */
1236 spin_lock_irq(&dev->misc_lock);
1237 ns83820_update_stats(dev);
1238 spin_unlock_irq(&dev->misc_lock);
1239
e929bc33 1240 return &ndev->stats;
1da177e4
LT
1241}
1242
10096974
JG
1243/* Let ethtool retrieve info */
1244static int ns83820_get_settings(struct net_device *ndev,
1245 struct ethtool_cmd *cmd)
1246{
1247 struct ns83820 *dev = PRIV(ndev);
1248 u32 cfg, tanar, tbicr;
10096974
JG
1249 int fullduplex = 0;
1250
1251 /*
1252 * Here's the list of available ethtool commands from other drivers:
1253 * cmd->advertising =
1254 * cmd->speed =
1255 * cmd->duplex =
1256 * cmd->port = 0;
1257 * cmd->phy_address =
1258 * cmd->transceiver = 0;
1259 * cmd->autoneg =
1260 * cmd->maxtxpkt = 0;
1261 * cmd->maxrxpkt = 0;
1262 */
1263
1264 /* read current configuration */
1265 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1266 tanar = readl(dev->base + TANAR);
1267 tbicr = readl(dev->base + TBICR);
1268
7457e911 1269 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
10096974
JG
1270
1271 cmd->supported = SUPPORTED_Autoneg;
1272
1273 /* we have optical interface */
1274 if (dev->CFG_cache & CFG_TBI_EN) {
1275 cmd->supported |= SUPPORTED_1000baseT_Half |
1276 SUPPORTED_1000baseT_Full |
1277 SUPPORTED_FIBRE;
1278 cmd->port = PORT_FIBRE;
1279 } /* TODO: else copper related support */
1280
1281 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1282 switch (cfg / CFG_SPDSTS0 & 3) {
1283 case 2:
1284 cmd->speed = SPEED_1000;
1285 break;
1286 case 1:
1287 cmd->speed = SPEED_100;
1288 break;
1289 default:
1290 cmd->speed = SPEED_10;
1291 break;
1292 }
1293 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1294 return 0;
1295}
1296
1297/* Let ethool change settings*/
1298static int ns83820_set_settings(struct net_device *ndev,
1299 struct ethtool_cmd *cmd)
1300{
1301 struct ns83820 *dev = PRIV(ndev);
1302 u32 cfg, tanar;
1303 int have_optical = 0;
1304 int fullduplex = 0;
1305
1306 /* read current configuration */
1307 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1308 tanar = readl(dev->base + TANAR);
1309
1310 if (dev->CFG_cache & CFG_TBI_EN) {
1311 /* we have optical */
1312 have_optical = 1;
1313 fullduplex = (tanar & TANAR_FULL_DUP);
1314
1315 } else {
1316 /* we have copper */
1317 fullduplex = cfg & CFG_DUPSTS;
1318 }
1319
1320 spin_lock_irq(&dev->misc_lock);
1321 spin_lock(&dev->tx_lock);
1322
1323 /* Set duplex */
1324 if (cmd->duplex != fullduplex) {
1325 if (have_optical) {
1326 /*set full duplex*/
1327 if (cmd->duplex == DUPLEX_FULL) {
1328 /* force full duplex */
1329 writel(readl(dev->base + TXCFG)
1330 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1331 dev->base + TXCFG);
1332 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1333 dev->base + RXCFG);
1334 /* Light up full duplex LED */
1335 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1336 dev->base + GPIOR);
1337 } else {
1338 /*TODO: set half duplex */
1339 }
1340
1341 } else {
1342 /*we have copper*/
1343 /* TODO: Set duplex for copper cards */
1344 }
1345 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1346 ndev->name);
1347 }
1348
1349 /* Set autonegotiation */
1350 if (1) {
1351 if (cmd->autoneg == AUTONEG_ENABLE) {
1352 /* restart auto negotiation */
1353 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1354 dev->base + TBICR);
1355 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1356 dev->linkstate = LINK_AUTONEGOTIATE;
1357
1358 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1359 ndev->name);
1360 } else {
1361 /* disable auto negotiation */
1362 writel(0x00000000, dev->base + TBICR);
1363 }
1364
1365 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1366 cmd->autoneg ? "ENABLED" : "DISABLED");
1367 }
1368
1369 phy_intr(ndev);
1370 spin_unlock(&dev->tx_lock);
1371 spin_unlock_irq(&dev->misc_lock);
1372
1373 return 0;
1374}
1375/* end ethtool get/set support -df */
1376
1da177e4
LT
1377static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1378{
1379 struct ns83820 *dev = PRIV(ndev);
1380 strcpy(info->driver, "ns83820");
1381 strcpy(info->version, VERSION);
1382 strcpy(info->bus_info, pci_name(dev->pci_dev));
1383}
1384
1385static u32 ns83820_get_link(struct net_device *ndev)
1386{
1387 struct ns83820 *dev = PRIV(ndev);
1388 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1389 return cfg & CFG_LNKSTS ? 1 : 0;
1390}
1391
7282d491 1392static const struct ethtool_ops ops = {
10096974
JG
1393 .get_settings = ns83820_get_settings,
1394 .set_settings = ns83820_set_settings,
1395 .get_drvinfo = ns83820_get_drvinfo,
1396 .get_link = ns83820_get_link
1da177e4
LT
1397};
1398
1a9f28c8
DK
1399static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1400{
1401 writel(0, dev->base + IMR);
1402 writel(0, dev->base + IER);
1403 readl(dev->base + IER);
1404}
1405
3a10cceb 1406/* this function is called in irq context from the ISR */
1da177e4
LT
1407static void ns83820_mib_isr(struct ns83820 *dev)
1408{
3a10cceb
IM
1409 unsigned long flags;
1410 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4 1411 ns83820_update_stats(dev);
3a10cceb 1412 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1413}
1414
1415static void ns83820_do_isr(struct net_device *ndev, u32 isr);
7d12e780 1416static irqreturn_t ns83820_irq(int foo, void *data)
1da177e4
LT
1417{
1418 struct net_device *ndev = data;
1419 struct ns83820 *dev = PRIV(ndev);
1420 u32 isr;
1421 dprintk("ns83820_irq(%p)\n", ndev);
1422
1423 dev->ihr = 0;
1424
1425 isr = readl(dev->base + ISR);
1426 dprintk("irq: %08x\n", isr);
1427 ns83820_do_isr(ndev, isr);
1428 return IRQ_HANDLED;
1429}
1430
1431static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1432{
1433 struct ns83820 *dev = PRIV(ndev);
3a10cceb
IM
1434 unsigned long flags;
1435
1da177e4
LT
1436#ifdef DEBUG
1437 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1438 Dprintk("odd isr? 0x%08x\n", isr);
1439#endif
1440
1441 if (ISR_RXIDLE & isr) {
1442 dev->rx_info.idle = 1;
1443 Dprintk("oh dear, we are idle\n");
1444 ns83820_rx_kick(ndev);
1445 }
1446
1447 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1448 prefetch(dev->rx_info.next_rx_desc);
1449
3a10cceb 1450 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1451 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1452 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1453 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1454
1455 tasklet_schedule(&dev->rx_tasklet);
1456 //rx_irq(ndev);
1457 //writel(4, dev->base + IHR);
1458 }
1459
1460 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1461 ns83820_rx_kick(ndev);
1462
1463 if (unlikely(ISR_RXSOVR & isr)) {
1464 //printk("overrun: rxsovr\n");
e929bc33 1465 ndev->stats.rx_fifo_errors++;
1da177e4
LT
1466 }
1467
1468 if (unlikely(ISR_RXORN & isr)) {
1469 //printk("overrun: rxorn\n");
e929bc33 1470 ndev->stats.rx_fifo_errors++;
1da177e4
LT
1471 }
1472
1473 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1474 writel(CR_RXE, dev->base + CR);
1475
1476 if (ISR_TXIDLE & isr) {
1477 u32 txdp;
1478 txdp = readl(dev->base + TXDP);
1479 dprintk("txdp: %08x\n", txdp);
1480 txdp -= dev->tx_phy_descs;
1481 dev->tx_idx = txdp / (DESC_SIZE * 4);
1482 if (dev->tx_idx >= NR_TX_DESC) {
1483 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1484 dev->tx_idx = 0;
1485 }
1486 /* The may have been a race between a pci originated read
6aa20a22
JG
1487 * and the descriptor update from the cpu. Just in case,
1488 * kick the transmitter if the hardware thinks it is on a
1da177e4
LT
1489 * different descriptor than we are.
1490 */
1491 if (dev->tx_idx != dev->tx_free_idx)
1492 kick_tx(dev);
1493 }
1494
1495 /* Defer tx ring processing until more than a minimum amount of
1496 * work has accumulated
1497 */
1498 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
3a10cceb 1499 spin_lock_irqsave(&dev->tx_lock, flags);
1da177e4 1500 do_tx_done(ndev);
3a10cceb 1501 spin_unlock_irqrestore(&dev->tx_lock, flags);
1da177e4
LT
1502
1503 /* Disable TxOk if there are no outstanding tx packets.
1504 */
1505 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1506 (dev->IMR_cache & ISR_TXOK)) {
3a10cceb 1507 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1508 dev->IMR_cache &= ~ISR_TXOK;
1509 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1510 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1511 }
1512 }
1513
1514 /* The TxIdle interrupt can come in before the transmit has
1515 * completed. Normally we reap packets off of the combination
6aa20a22
JG
1516 * of TxDesc and TxIdle and leave TxOk disabled (since it
1517 * occurs on every packet), but when no further irqs of this
1da177e4
LT
1518 * nature are expected, we must enable TxOk.
1519 */
1520 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
3a10cceb 1521 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1522 dev->IMR_cache |= ISR_TXOK;
1523 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1524 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1525 }
1526
1527 /* MIB interrupt: one of the statistics counters is about to overflow */
1528 if (unlikely(ISR_MIB & isr))
1529 ns83820_mib_isr(dev);
1530
1531 /* PHY: Link up/down/negotiation state change */
1532 if (unlikely(ISR_PHY & isr))
1533 phy_intr(ndev);
1534
1535#if 0 /* Still working on the interrupt mitigation strategy */
1536 if (dev->ihr)
1537 writel(dev->ihr, dev->base + IHR);
1538#endif
1539}
1540
1541static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1542{
1543 Dprintk("resetting chip...\n");
1544 writel(which, dev->base + CR);
1545 do {
1546 schedule();
1547 } while (readl(dev->base + CR) & which);
1548 Dprintk("okay!\n");
1549}
1550
1551static int ns83820_stop(struct net_device *ndev)
1552{
1553 struct ns83820 *dev = PRIV(ndev);
1554
1555 /* FIXME: protect against interrupt handler? */
1556 del_timer_sync(&dev->tx_watchdog);
1557
1a9f28c8 1558 ns83820_disable_interrupts(dev);
1da177e4
LT
1559
1560 dev->rx_info.up = 0;
1561 synchronize_irq(dev->pci_dev->irq);
1562
1563 ns83820_do_reset(dev, CR_RST);
1564
1565 synchronize_irq(dev->pci_dev->irq);
1566
1567 spin_lock_irq(&dev->misc_lock);
1568 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1569 spin_unlock_irq(&dev->misc_lock);
1570
1571 ns83820_cleanup_rx(dev);
1572 ns83820_cleanup_tx(dev);
1573
1574 return 0;
1575}
1576
1577static void ns83820_tx_timeout(struct net_device *ndev)
1578{
1579 struct ns83820 *dev = PRIV(ndev);
c69fda4e
AV
1580 u32 tx_done_idx;
1581 __le32 *desc;
1da177e4
LT
1582 unsigned long flags;
1583
3a10cceb 1584 spin_lock_irqsave(&dev->tx_lock, flags);
1da177e4
LT
1585
1586 tx_done_idx = dev->tx_done_idx;
1587 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1588
1589 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1590 ndev->name,
1591 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1592
1593#if defined(DEBUG)
1594 {
1595 u32 isr;
1596 isr = readl(dev->base + ISR);
1597 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1598 ns83820_do_isr(ndev, isr);
1599 }
1600#endif
1601
1602 do_tx_done(ndev);
1603
1604 tx_done_idx = dev->tx_done_idx;
1605 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1606
1607 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1608 ndev->name,
1609 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1610
3a10cceb 1611 spin_unlock_irqrestore(&dev->tx_lock, flags);
1da177e4
LT
1612}
1613
1614static void ns83820_tx_watch(unsigned long data)
1615{
1616 struct net_device *ndev = (void *)data;
1617 struct ns83820 *dev = PRIV(ndev);
1618
1619#if defined(DEBUG)
1620 printk("ns83820_tx_watch: %u %u %d\n",
1621 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1622 );
1623#endif
1624
cdd0db05 1625 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1da177e4
LT
1626 dev->tx_done_idx != dev->tx_free_idx) {
1627 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1628 ndev->name,
1629 dev->tx_done_idx, dev->tx_free_idx,
1630 atomic_read(&dev->nr_tx_skbs));
1631 ns83820_tx_timeout(ndev);
1632 }
1633
1634 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1635}
1636
1637static int ns83820_open(struct net_device *ndev)
1638{
1639 struct ns83820 *dev = PRIV(ndev);
1640 unsigned i;
1641 u32 desc;
1642 int ret;
1643
1644 dprintk("ns83820_open\n");
1645
1646 writel(0, dev->base + PQCR);
1647
1648 ret = ns83820_setup_rx(ndev);
1649 if (ret)
1650 goto failed;
1651
1652 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1653 for (i=0; i<NR_TX_DESC; i++) {
1654 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1655 = cpu_to_le32(
1656 dev->tx_phy_descs
1657 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1658 }
1659
1660 dev->tx_idx = 0;
1661 dev->tx_done_idx = 0;
1662 desc = dev->tx_phy_descs;
1663 writel(0, dev->base + TXDP_HI);
1664 writel(desc, dev->base + TXDP);
1665
1666 init_timer(&dev->tx_watchdog);
1667 dev->tx_watchdog.data = (unsigned long)ndev;
1668 dev->tx_watchdog.function = ns83820_tx_watch;
1669 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1670
1671 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1672
1673 return 0;
1674
1675failed:
1676 ns83820_stop(ndev);
1677 return ret;
1678}
1679
1680static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1681{
1682 unsigned i;
1683 for (i=0; i<3; i++) {
1684 u32 data;
48888cc6 1685
1da177e4
LT
1686 /* Read from the perfect match memory: this is loaded by
1687 * the chip from the EEPROM via the EELOAD self test.
1688 */
1689 writel(i*2, dev->base + RFCR);
1690 data = readl(dev->base + RFDR);
48888cc6 1691
1da177e4
LT
1692 *mac++ = data;
1693 *mac++ = data >> 8;
1694 }
1695}
1696
1697static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1698{
1699 if (new_mtu > RX_BUF_SIZE)
1700 return -EINVAL;
1701 ndev->mtu = new_mtu;
1702 return 0;
1703}
1704
1705static void ns83820_set_multicast(struct net_device *ndev)
1706{
1707 struct ns83820 *dev = PRIV(ndev);
1708 u8 __iomem *rfcr = dev->base + RFCR;
1709 u32 and_mask = 0xffffffff;
1710 u32 or_mask = 0;
1711 u32 val;
1712
1713 if (ndev->flags & IFF_PROMISC)
1714 or_mask |= RFCR_AAU | RFCR_AAM;
1715 else
1716 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1717
4cd24eaf 1718 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1da177e4
LT
1719 or_mask |= RFCR_AAM;
1720 else
1721 and_mask &= ~RFCR_AAM;
1722
1723 spin_lock_irq(&dev->misc_lock);
1724 val = (readl(rfcr) & and_mask) | or_mask;
1725 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1726 writel(val & ~RFCR_RFEN, rfcr);
1727 writel(val, rfcr);
1728 spin_unlock_irq(&dev->misc_lock);
1729}
1730
1731static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1732{
1733 struct ns83820 *dev = PRIV(ndev);
1734 int timed_out = 0;
ff5688ae 1735 unsigned long start;
1da177e4
LT
1736 u32 status;
1737 int loops = 0;
1738
1739 dprintk("%s: start %s\n", ndev->name, name);
1740
1741 start = jiffies;
1742
1743 writel(enable, dev->base + PTSCR);
1744 for (;;) {
1745 loops++;
1746 status = readl(dev->base + PTSCR);
1747 if (!(status & enable))
1748 break;
1749 if (status & done)
1750 break;
1751 if (status & fail)
1752 break;
ff5688ae 1753 if (time_after_eq(jiffies, start + HZ)) {
1da177e4
LT
1754 timed_out = 1;
1755 break;
1756 }
3173c890 1757 schedule_timeout_uninterruptible(1);
1da177e4
LT
1758 }
1759
1760 if (status & fail)
1761 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1762 ndev->name, name, status, fail);
1763 else if (timed_out)
1764 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1765 ndev->name, name, status);
1766
1767 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1768}
1769
1770#ifdef PHY_CODE_IS_FINISHED
1771static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1772{
1773 /* drive MDC low */
1774 dev->MEAR_cache &= ~MEAR_MDC;
1775 writel(dev->MEAR_cache, dev->base + MEAR);
1776 readl(dev->base + MEAR);
1777
1778 /* enable output, set bit */
1779 dev->MEAR_cache |= MEAR_MDDIR;
1780 if (bit)
1781 dev->MEAR_cache |= MEAR_MDIO;
1782 else
1783 dev->MEAR_cache &= ~MEAR_MDIO;
1784
1785 /* set the output bit */
1786 writel(dev->MEAR_cache, dev->base + MEAR);
1787 readl(dev->base + MEAR);
1788
1789 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1790 udelay(1);
1791
1792 /* drive MDC high causing the data bit to be latched */
1793 dev->MEAR_cache |= MEAR_MDC;
1794 writel(dev->MEAR_cache, dev->base + MEAR);
1795 readl(dev->base + MEAR);
1796
1797 /* Wait again... */
1798 udelay(1);
1799}
1800
1801static int ns83820_mii_read_bit(struct ns83820 *dev)
1802{
1803 int bit;
1804
1805 /* drive MDC low, disable output */
1806 dev->MEAR_cache &= ~MEAR_MDC;
1807 dev->MEAR_cache &= ~MEAR_MDDIR;
1808 writel(dev->MEAR_cache, dev->base + MEAR);
1809 readl(dev->base + MEAR);
1810
1811 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1812 udelay(1);
1813
1814 /* drive MDC high causing the data bit to be latched */
1815 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1816 dev->MEAR_cache |= MEAR_MDC;
1817 writel(dev->MEAR_cache, dev->base + MEAR);
1818
1819 /* Wait again... */
1820 udelay(1);
1821
1822 return bit;
1823}
1824
1825static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1826{
1827 unsigned data = 0;
1828 int i;
1829
1830 /* read some garbage so that we eventually sync up */
1831 for (i=0; i<64; i++)
1832 ns83820_mii_read_bit(dev);
1833
1834 ns83820_mii_write_bit(dev, 0); /* start */
1835 ns83820_mii_write_bit(dev, 1);
1836 ns83820_mii_write_bit(dev, 1); /* opcode read */
1837 ns83820_mii_write_bit(dev, 0);
1838
1839 /* write out the phy address: 5 bits, msb first */
1840 for (i=0; i<5; i++)
1841 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1842
1843 /* write out the register address, 5 bits, msb first */
1844 for (i=0; i<5; i++)
1845 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1846
1847 ns83820_mii_read_bit(dev); /* turn around cycles */
1848 ns83820_mii_read_bit(dev);
1849
1850 /* read in the register data, 16 bits msb first */
1851 for (i=0; i<16; i++) {
1852 data <<= 1;
1853 data |= ns83820_mii_read_bit(dev);
1854 }
1855
1856 return data;
1857}
1858
1859static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1860{
1861 int i;
1862
1863 /* read some garbage so that we eventually sync up */
1864 for (i=0; i<64; i++)
1865 ns83820_mii_read_bit(dev);
1866
1867 ns83820_mii_write_bit(dev, 0); /* start */
1868 ns83820_mii_write_bit(dev, 1);
1869 ns83820_mii_write_bit(dev, 0); /* opcode read */
1870 ns83820_mii_write_bit(dev, 1);
1871
1872 /* write out the phy address: 5 bits, msb first */
1873 for (i=0; i<5; i++)
1874 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1875
1876 /* write out the register address, 5 bits, msb first */
1877 for (i=0; i<5; i++)
1878 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1879
1880 ns83820_mii_read_bit(dev); /* turn around cycles */
1881 ns83820_mii_read_bit(dev);
1882
1883 /* read in the register data, 16 bits msb first */
1884 for (i=0; i<16; i++)
1885 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1886
1887 return data;
1888}
1889
1890static void ns83820_probe_phy(struct net_device *ndev)
1891{
1892 struct ns83820 *dev = PRIV(ndev);
1893 static int first;
1894 int i;
1895#define MII_PHYIDR1 0x02
1896#define MII_PHYIDR2 0x03
1897
1898#if 0
1899 if (!first) {
1900 unsigned tmp;
1901 ns83820_mii_read_reg(dev, 1, 0x09);
1902 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1903
1904 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1905 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1906 udelay(1300);
1907 ns83820_mii_read_reg(dev, 1, 0x09);
1908 }
1909#endif
1910 first = 1;
1911
1912 for (i=1; i<2; i++) {
1913 int j;
1914 unsigned a, b;
1915 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1916 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1917
1918 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1919 // ndev->name, i, a, b);
1920
1921 for (j=0; j<0x16; j+=4) {
1922 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1923 ndev->name, j,
1924 ns83820_mii_read_reg(dev, i, 0 + j),
1925 ns83820_mii_read_reg(dev, i, 1 + j),
1926 ns83820_mii_read_reg(dev, i, 2 + j),
1927 ns83820_mii_read_reg(dev, i, 3 + j)
1928 );
1929 }
1930 }
1931 {
1932 unsigned a, b;
1933 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1934 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1935 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1936 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1937
1938 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1939 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1940 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1941 dprintk("version: 0x%04x 0x%04x\n", a, b);
1942 }
1943}
1944#endif
1945
6557d7b8
SH
1946static const struct net_device_ops netdev_ops = {
1947 .ndo_open = ns83820_open,
1948 .ndo_stop = ns83820_stop,
1949 .ndo_start_xmit = ns83820_hard_start_xmit,
1950 .ndo_get_stats = ns83820_get_stats,
1951 .ndo_change_mtu = ns83820_change_mtu,
1952 .ndo_set_multicast_list = ns83820_set_multicast,
1953 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 1954 .ndo_set_mac_address = eth_mac_addr,
6557d7b8 1955 .ndo_tx_timeout = ns83820_tx_timeout,
a7d1de25
SH
1956#ifdef NS83820_VLAN_ACCEL_SUPPORT
1957 .ndo_vlan_rx_register = ns83820_vlan_rx_register,
1958#endif
6557d7b8
SH
1959};
1960
1961static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1962 const struct pci_device_id *id)
1da177e4
LT
1963{
1964 struct net_device *ndev;
1965 struct ns83820 *dev;
1966 long addr;
1967 int err;
1968 int using_dac = 0;
1969
1970 /* See if we can set the dma mask early on; failure is fatal. */
910638ae 1971 if (sizeof(dma_addr_t) == 8 &&
6a35528a 1972 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1da177e4 1973 using_dac = 1;
284901a9 1974 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1da177e4
LT
1975 using_dac = 0;
1976 } else {
9b91cf9d 1977 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1da177e4
LT
1978 return -ENODEV;
1979 }
1980
1981 ndev = alloc_etherdev(sizeof(struct ns83820));
1982 dev = PRIV(ndev);
d14e37e1 1983
1da177e4
LT
1984 err = -ENOMEM;
1985 if (!dev)
1986 goto out;
1987
d14e37e1
AB
1988 dev->ndev = ndev;
1989
1da177e4
LT
1990 spin_lock_init(&dev->rx_info.lock);
1991 spin_lock_init(&dev->tx_lock);
1992 spin_lock_init(&dev->misc_lock);
1993 dev->pci_dev = pci_dev;
1994
1da177e4
LT
1995 SET_NETDEV_DEV(ndev, &pci_dev->dev);
1996
c4028958 1997 INIT_WORK(&dev->tq_refill, queue_refill);
1da177e4
LT
1998 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1999
2000 err = pci_enable_device(pci_dev);
2001 if (err) {
9b91cf9d 2002 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1da177e4
LT
2003 goto out_free;
2004 }
2005
2006 pci_set_master(pci_dev);
2007 addr = pci_resource_start(pci_dev, 1);
2008 dev->base = ioremap_nocache(addr, PAGE_SIZE);
2009 dev->tx_descs = pci_alloc_consistent(pci_dev,
2010 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2011 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2012 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2013 err = -ENOMEM;
2014 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2015 goto out_disable;
2016
2017 dprintk("%p: %08lx %p: %08lx\n",
2018 dev->tx_descs, (long)dev->tx_phy_descs,
2019 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2020
1a9f28c8 2021 ns83820_disable_interrupts(dev);
1da177e4
LT
2022
2023 dev->IMR_cache = 0;
2024
1fb9df5d 2025 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1da177e4
LT
2026 DRV_NAME, ndev);
2027 if (err) {
9b91cf9d 2028 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2e8a538d 2029 pci_dev->irq, err);
1da177e4
LT
2030 goto out_disable;
2031 }
2032
2033 /*
2034 * FIXME: we are holding rtnl_lock() over obscenely long area only
2035 * because some of the setup code uses dev->name. It's Wrong(tm) -
2036 * we should be using driver-specific names for all that stuff.
2037 * For now that will do, but we really need to come back and kill
2038 * most of the dev_alloc_name() users later.
2039 */
2040 rtnl_lock();
2041 err = dev_alloc_name(ndev, ndev->name);
2042 if (err < 0) {
9b91cf9d 2043 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1da177e4
LT
2044 goto out_free_irq;
2045 }
2046
2047 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2048 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2049 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2050
6557d7b8 2051 ndev->netdev_ops = &netdev_ops;
1da177e4 2052 SET_ETHTOOL_OPS(ndev, &ops);
1da177e4
LT
2053 ndev->watchdog_timeo = 5 * HZ;
2054 pci_set_drvdata(pci_dev, ndev);
2055
2056 ns83820_do_reset(dev, CR_RST);
2057
2058 /* Must reset the ram bist before running it */
2059 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2060 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2061 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2062 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2063 PTSCR_EEBIST_FAIL);
2064 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2065
2066 /* I love config registers */
2067 dev->CFG_cache = readl(dev->base + CFG);
2068
2069 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2070 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2071 ndev->name);
2072 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2073 if (!(dev->CFG_cache & CFG_DATA64_EN))
2074 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2075 ndev->name);
2076 } else
2077 dev->CFG_cache &= ~(CFG_DATA64_EN);
2078
2079 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2080 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2081 CFG_M64ADDR);
2082 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2083 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2084 dev->CFG_cache |= CFG_REQALG;
2085 dev->CFG_cache |= CFG_POW;
2086 dev->CFG_cache |= CFG_TMRTEST;
2087
2088 /* When compiled with 64 bit addressing, we must always enable
2089 * the 64 bit descriptor format.
2090 */
6aa20a22 2091 if (sizeof(dma_addr_t) == 8)
c16ef1ce 2092 dev->CFG_cache |= CFG_M64ADDR;
1da177e4
LT
2093 if (using_dac)
2094 dev->CFG_cache |= CFG_T64ADDR;
2095
2096 /* Big endian mode does not seem to do what the docs suggest */
2097 dev->CFG_cache &= ~CFG_BEM;
2098
2099 /* setup optical transceiver if we have one */
2100 if (dev->CFG_cache & CFG_TBI_EN) {
2101 printk(KERN_INFO "%s: enabling optical transceiver\n",
2102 ndev->name);
2103 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2104
2105 /* setup auto negotiation feature advertisement */
2106 writel(readl(dev->base + TANAR)
2107 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2108 dev->base + TANAR);
2109
2110 /* start auto negotiation */
2111 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2112 dev->base + TBICR);
2113 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2114 dev->linkstate = LINK_AUTONEGOTIATE;
2115
2116 dev->CFG_cache |= CFG_MODE_1000;
2117 }
2118
2119 writel(dev->CFG_cache, dev->base + CFG);
2120 dprintk("CFG: %08x\n", dev->CFG_cache);
2121
2122 if (reset_phy) {
2123 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2124 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2125 msleep(10);
2126 writel(dev->CFG_cache, dev->base + CFG);
2127 }
2128
6aa20a22 2129#if 0 /* Huh? This sets the PCI latency register. Should be done via
1da177e4
LT
2130 * the PCI layer. FIXME.
2131 */
2132 if (readl(dev->base + SRR))
2133 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2134#endif
2135
2136 /* Note! The DMA burst size interacts with packet
2137 * transmission, such that the largest packet that
2138 * can be transmitted is 8192 - FLTH - burst size.
2139 * If only the transmit fifo was larger...
2140 */
6aa20a22 2141 /* Ramit : 1024 DMA is not a good idea, it ends up banging
1da177e4
LT
2142 * some DELL and COMPAQ SMP systems */
2143 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2144 | ((1600 / 32) * 0x100),
2145 dev->base + TXCFG);
2146
2147 /* Flush the interrupt holdoff timer */
2148 writel(0x000, dev->base + IHR);
2149 writel(0x100, dev->base + IHR);
2150 writel(0x000, dev->base + IHR);
2151
2152 /* Set Rx to full duplex, don't accept runt, errored, long or length
2153 * range errored packets. Use 512 byte DMA.
2154 */
6aa20a22
JG
2155 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2156 * some DELL and COMPAQ SMP systems
1da177e4
LT
2157 * Turn on ALP, only we are accpeting Jumbo Packets */
2158 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2159 | RXCFG_STRIPCRC
2160 //| RXCFG_ALP
2161 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2162
2163 /* Disable priority queueing */
2164 writel(0, dev->base + PQCR);
2165
2166 /* Enable IP checksum validation and detetion of VLAN headers.
2167 * Note: do not set the reject options as at least the 0x102
2168 * revision of the chip does not properly accept IP fragments
2169 * at least for UDP.
2170 */
2171 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2172 * the MAC it calculates the packetsize AFTER stripping the VLAN
2173 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2174 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2175 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2176 * it discrards it!. These guys......
2177 * also turn on tag stripping if hardware acceleration is enabled
2178 */
2179#ifdef NS83820_VLAN_ACCEL_SUPPORT
6aa20a22 2180#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
1da177e4
LT
2181#else
2182#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2183#endif
2184 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2185
2186 /* Enable per-packet TCP/UDP/IP checksumming
2187 * and per packet vlan tag insertion if
2188 * vlan hardware acceleration is enabled
2189 */
2190#ifdef NS83820_VLAN_ACCEL_SUPPORT
2191#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2192#else
2193#define VTCR_INIT_VALUE VTCR_PPCHK
2194#endif
2195 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2196
2197 /* Ramit : Enable async and sync pause frames */
2198 /* writel(0, dev->base + PCR); */
2199 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2200 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2201 dev->base + PCR);
2202
2203 /* Disable Wake On Lan */
2204 writel(0, dev->base + WCSR);
2205
2206 ns83820_getmac(dev, ndev->dev_addr);
2207
2208 /* Yes, we support dumb IP checksum on transmit */
2209 ndev->features |= NETIF_F_SG;
2210 ndev->features |= NETIF_F_IP_CSUM;
2211
2212#ifdef NS83820_VLAN_ACCEL_SUPPORT
2213 /* We also support hardware vlan acceleration */
2214 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1da177e4
LT
2215#endif
2216
2217 if (using_dac) {
2218 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2219 ndev->name);
2220 ndev->features |= NETIF_F_HIGHDMA;
2221 }
2222
e174961c 2223 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
1da177e4
LT
2224 ndev->name,
2225 (unsigned)readl(dev->base + SRR) >> 8,
2226 (unsigned)readl(dev->base + SRR) & 0xff,
e174961c 2227 ndev->dev_addr, addr, pci_dev->irq,
1da177e4
LT
2228 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2229 );
2230
2231#ifdef PHY_CODE_IS_FINISHED
2232 ns83820_probe_phy(ndev);
2233#endif
2234
2235 err = register_netdevice(ndev);
2236 if (err) {
2237 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2238 goto out_cleanup;
2239 }
2240 rtnl_unlock();
2241
2242 return 0;
2243
2244out_cleanup:
1a9f28c8 2245 ns83820_disable_interrupts(dev); /* paranoia */
1da177e4
LT
2246out_free_irq:
2247 rtnl_unlock();
2248 free_irq(pci_dev->irq, ndev);
2249out_disable:
2250 if (dev->base)
2251 iounmap(dev->base);
2252 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2253 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2254 pci_disable_device(pci_dev);
2255out_free:
2256 free_netdev(ndev);
2257 pci_set_drvdata(pci_dev, NULL);
2258out:
2259 return err;
2260}
2261
2262static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2263{
2264 struct net_device *ndev = pci_get_drvdata(pci_dev);
2265 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2266
2267 if (!ndev) /* paranoia */
2268 return;
2269
1a9f28c8 2270 ns83820_disable_interrupts(dev); /* paranoia */
1da177e4
LT
2271
2272 unregister_netdev(ndev);
2273 free_irq(dev->pci_dev->irq, ndev);
2274 iounmap(dev->base);
2275 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2276 dev->tx_descs, dev->tx_phy_descs);
2277 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2278 dev->rx_info.descs, dev->rx_info.phy_descs);
2279 pci_disable_device(dev->pci_dev);
2280 free_netdev(ndev);
2281 pci_set_drvdata(pci_dev, NULL);
2282}
2283
a3aa1884 2284static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
1da177e4
LT
2285 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2286 { 0, },
2287};
2288
2289static struct pci_driver driver = {
2290 .name = "ns83820",
2291 .id_table = ns83820_pci_tbl,
2292 .probe = ns83820_init_one,
2293 .remove = __devexit_p(ns83820_remove_one),
2294#if 0 /* FIXME: implement */
2295 .suspend = ,
2296 .resume = ,
2297#endif
2298};
2299
2300
2301static int __init ns83820_init(void)
2302{
2303 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
29917620 2304 return pci_register_driver(&driver);
1da177e4
LT
2305}
2306
2307static void __exit ns83820_exit(void)
2308{
2309 pci_unregister_driver(&driver);
2310}
2311
2312MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2313MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2314MODULE_LICENSE("GPL");
2315
2316MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2317
2318module_param(lnksts, int, 0);
2319MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2320
2321module_param(ihr, int, 0);
2322MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2323
2324module_param(reset_phy, int, 0);
2325MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2326
2327module_init(ns83820_init);
2328module_exit(ns83820_exit);
This page took 1.27947 seconds and 5 git commands to generate.