net: remove interrupt.h inclusion from netdevice.h
[deliverable/linux.git] / drivers / net / ns83820.c
CommitLineData
10096974 1#define VERSION "0.23"
1da177e4
LT
2/* ns83820.c by Benjamin LaHaise with contributions.
3 *
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
5 *
6 * $Revision: 1.34.2.23 $
7 *
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
10 *
11 * Mmmm, chocolate vanilla mocha...
12 *
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 *
28 *
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
1da177e4
LT
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
6aa20a22 68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
c16ef1ce
BL
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
1da177e4
LT
71 * Driver Overview
72 * ===============
73 *
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
82 *
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
85 *
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
91 *
92 * Special thanks to SMC for providing hardware to test this driver on.
93 *
94 * Reports of success or failure would be greatly appreciated.
95 */
96//#define dprintk printk
97#define dprintk(x...) do { } while (0)
98
1da177e4
LT
99#include <linux/module.h>
100#include <linux/moduleparam.h>
101#include <linux/types.h>
102#include <linux/pci.h>
1e7f0bd8 103#include <linux/dma-mapping.h>
1da177e4
LT
104#include <linux/netdevice.h>
105#include <linux/etherdevice.h>
106#include <linux/delay.h>
1da177e4
LT
107#include <linux/workqueue.h>
108#include <linux/init.h>
a6b7a407 109#include <linux/interrupt.h>
1da177e4
LT
110#include <linux/ip.h> /* for iph */
111#include <linux/in.h> /* for IPPROTO_... */
1da177e4
LT
112#include <linux/compiler.h>
113#include <linux/prefetch.h>
114#include <linux/ethtool.h>
d43c36dc 115#include <linux/sched.h>
1da177e4
LT
116#include <linux/timer.h>
117#include <linux/if_vlan.h>
14c85021 118#include <linux/rtnetlink.h>
ff5688ae 119#include <linux/jiffies.h>
5a0e3ad6 120#include <linux/slab.h>
1da177e4
LT
121
122#include <asm/io.h>
123#include <asm/uaccess.h>
124#include <asm/system.h>
125
126#define DRV_NAME "ns83820"
127
128/* Global parameters. See module_param near the bottom. */
129static int ihr = 2;
130static int reset_phy = 0;
131static int lnksts = 0; /* CFG_LNKSTS bit polarity */
132
133/* Dprintk is used for more interesting debug events */
134#undef Dprintk
135#define Dprintk dprintk
136
1da177e4
LT
137/* tunables */
138#define RX_BUF_SIZE 1500 /* 8192 */
139#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
140#define NS83820_VLAN_ACCEL_SUPPORT
141#endif
142
143/* Must not exceed ~65000. */
144#define NR_RX_DESC 64
145#define NR_TX_DESC 128
146
147/* not tunable */
148#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
149
150#define MIN_TX_DESC_FREE 8
151
152/* register defines */
153#define CFGCS 0x04
154
155#define CR_TXE 0x00000001
156#define CR_TXD 0x00000002
157/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
158 * The Receive engine skips one descriptor and moves
159 * onto the next one!! */
160#define CR_RXE 0x00000004
161#define CR_RXD 0x00000008
162#define CR_TXR 0x00000010
163#define CR_RXR 0x00000020
164#define CR_SWI 0x00000080
165#define CR_RST 0x00000100
166
167#define PTSCR_EEBIST_FAIL 0x00000001
168#define PTSCR_EEBIST_EN 0x00000002
169#define PTSCR_EELOAD_EN 0x00000004
170#define PTSCR_RBIST_FAIL 0x000001b8
171#define PTSCR_RBIST_DONE 0x00000200
172#define PTSCR_RBIST_EN 0x00000400
173#define PTSCR_RBIST_RST 0x00002000
174
175#define MEAR_EEDI 0x00000001
176#define MEAR_EEDO 0x00000002
177#define MEAR_EECLK 0x00000004
178#define MEAR_EESEL 0x00000008
179#define MEAR_MDIO 0x00000010
180#define MEAR_MDDIR 0x00000020
181#define MEAR_MDC 0x00000040
182
183#define ISR_TXDESC3 0x40000000
184#define ISR_TXDESC2 0x20000000
185#define ISR_TXDESC1 0x10000000
186#define ISR_TXDESC0 0x08000000
187#define ISR_RXDESC3 0x04000000
188#define ISR_RXDESC2 0x02000000
189#define ISR_RXDESC1 0x01000000
190#define ISR_RXDESC0 0x00800000
191#define ISR_TXRCMP 0x00400000
192#define ISR_RXRCMP 0x00200000
193#define ISR_DPERR 0x00100000
194#define ISR_SSERR 0x00080000
195#define ISR_RMABT 0x00040000
196#define ISR_RTABT 0x00020000
197#define ISR_RXSOVR 0x00010000
198#define ISR_HIBINT 0x00008000
199#define ISR_PHY 0x00004000
200#define ISR_PME 0x00002000
201#define ISR_SWI 0x00001000
202#define ISR_MIB 0x00000800
203#define ISR_TXURN 0x00000400
204#define ISR_TXIDLE 0x00000200
205#define ISR_TXERR 0x00000100
206#define ISR_TXDESC 0x00000080
207#define ISR_TXOK 0x00000040
208#define ISR_RXORN 0x00000020
209#define ISR_RXIDLE 0x00000010
210#define ISR_RXEARLY 0x00000008
211#define ISR_RXERR 0x00000004
212#define ISR_RXDESC 0x00000002
213#define ISR_RXOK 0x00000001
214
215#define TXCFG_CSI 0x80000000
216#define TXCFG_HBI 0x40000000
217#define TXCFG_MLB 0x20000000
218#define TXCFG_ATP 0x10000000
219#define TXCFG_ECRETRY 0x00800000
220#define TXCFG_BRST_DIS 0x00080000
221#define TXCFG_MXDMA1024 0x00000000
222#define TXCFG_MXDMA512 0x00700000
223#define TXCFG_MXDMA256 0x00600000
224#define TXCFG_MXDMA128 0x00500000
225#define TXCFG_MXDMA64 0x00400000
226#define TXCFG_MXDMA32 0x00300000
227#define TXCFG_MXDMA16 0x00200000
228#define TXCFG_MXDMA8 0x00100000
229
230#define CFG_LNKSTS 0x80000000
231#define CFG_SPDSTS 0x60000000
232#define CFG_SPDSTS1 0x40000000
233#define CFG_SPDSTS0 0x20000000
234#define CFG_DUPSTS 0x10000000
235#define CFG_TBI_EN 0x01000000
236#define CFG_MODE_1000 0x00400000
237/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
238 * Read the Phy response and then configure the MAC accordingly */
239#define CFG_AUTO_1000 0x00200000
240#define CFG_PINT_CTL 0x001c0000
241#define CFG_PINT_DUPSTS 0x00100000
242#define CFG_PINT_LNKSTS 0x00080000
243#define CFG_PINT_SPDSTS 0x00040000
244#define CFG_TMRTEST 0x00020000
245#define CFG_MRM_DIS 0x00010000
246#define CFG_MWI_DIS 0x00008000
247#define CFG_T64ADDR 0x00004000
248#define CFG_PCI64_DET 0x00002000
249#define CFG_DATA64_EN 0x00001000
250#define CFG_M64ADDR 0x00000800
251#define CFG_PHY_RST 0x00000400
252#define CFG_PHY_DIS 0x00000200
253#define CFG_EXTSTS_EN 0x00000100
254#define CFG_REQALG 0x00000080
255#define CFG_SB 0x00000040
256#define CFG_POW 0x00000020
257#define CFG_EXD 0x00000010
258#define CFG_PESEL 0x00000008
259#define CFG_BROM_DIS 0x00000004
260#define CFG_EXT_125 0x00000002
261#define CFG_BEM 0x00000001
262
263#define EXTSTS_UDPPKT 0x00200000
264#define EXTSTS_TCPPKT 0x00080000
265#define EXTSTS_IPPKT 0x00020000
266#define EXTSTS_VPKT 0x00010000
267#define EXTSTS_VTG_MASK 0x0000ffff
268
269#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
270
271#define MIBC_MIBS 0x00000008
272#define MIBC_ACLR 0x00000004
273#define MIBC_FRZ 0x00000002
274#define MIBC_WRN 0x00000001
275
276#define PCR_PSEN (1 << 31)
277#define PCR_PS_MCAST (1 << 30)
278#define PCR_PS_DA (1 << 29)
279#define PCR_STHI_8 (3 << 23)
280#define PCR_STLO_4 (1 << 23)
281#define PCR_FFHI_8K (3 << 21)
282#define PCR_FFLO_4K (1 << 21)
283#define PCR_PAUSE_CNT 0xFFFE
284
285#define RXCFG_AEP 0x80000000
286#define RXCFG_ARP 0x40000000
287#define RXCFG_STRIPCRC 0x20000000
288#define RXCFG_RX_FD 0x10000000
289#define RXCFG_ALP 0x08000000
290#define RXCFG_AIRL 0x04000000
291#define RXCFG_MXDMA512 0x00700000
292#define RXCFG_DRTH 0x0000003e
293#define RXCFG_DRTH0 0x00000002
294
295#define RFCR_RFEN 0x80000000
296#define RFCR_AAB 0x40000000
297#define RFCR_AAM 0x20000000
298#define RFCR_AAU 0x10000000
299#define RFCR_APM 0x08000000
300#define RFCR_APAT 0x07800000
301#define RFCR_APAT3 0x04000000
302#define RFCR_APAT2 0x02000000
303#define RFCR_APAT1 0x01000000
304#define RFCR_APAT0 0x00800000
305#define RFCR_AARP 0x00400000
306#define RFCR_MHEN 0x00200000
307#define RFCR_UHEN 0x00100000
308#define RFCR_ULM 0x00080000
309
310#define VRCR_RUDPE 0x00000080
311#define VRCR_RTCPE 0x00000040
312#define VRCR_RIPE 0x00000020
313#define VRCR_IPEN 0x00000010
314#define VRCR_DUTF 0x00000008
315#define VRCR_DVTF 0x00000004
316#define VRCR_VTREN 0x00000002
317#define VRCR_VTDEN 0x00000001
318
319#define VTCR_PPCHK 0x00000008
320#define VTCR_GCHK 0x00000004
321#define VTCR_VPPTI 0x00000002
322#define VTCR_VGTI 0x00000001
323
324#define CR 0x00
325#define CFG 0x04
326#define MEAR 0x08
327#define PTSCR 0x0c
328#define ISR 0x10
329#define IMR 0x14
330#define IER 0x18
331#define IHR 0x1c
332#define TXDP 0x20
333#define TXDP_HI 0x24
334#define TXCFG 0x28
335#define GPIOR 0x2c
336#define RXDP 0x30
337#define RXDP_HI 0x34
338#define RXCFG 0x38
339#define PQCR 0x3c
340#define WCSR 0x40
341#define PCR 0x44
342#define RFCR 0x48
343#define RFDR 0x4c
344
345#define SRR 0x58
346
347#define VRCR 0xbc
348#define VTCR 0xc0
349#define VDR 0xc4
350#define CCSR 0xcc
351
352#define TBICR 0xe0
353#define TBISR 0xe4
354#define TANAR 0xe8
355#define TANLPAR 0xec
356#define TANER 0xf0
357#define TESR 0xf4
358
359#define TBICR_MR_AN_ENABLE 0x00001000
360#define TBICR_MR_RESTART_AN 0x00000200
361
362#define TBISR_MR_LINK_STATUS 0x00000020
363#define TBISR_MR_AN_COMPLETE 0x00000004
364
365#define TANAR_PS2 0x00000100
366#define TANAR_PS1 0x00000080
367#define TANAR_HALF_DUP 0x00000040
368#define TANAR_FULL_DUP 0x00000020
369
370#define GPIOR_GP5_OE 0x00000200
371#define GPIOR_GP4_OE 0x00000100
372#define GPIOR_GP3_OE 0x00000080
373#define GPIOR_GP2_OE 0x00000040
374#define GPIOR_GP1_OE 0x00000020
375#define GPIOR_GP3_OUT 0x00000004
376#define GPIOR_GP1_OUT 0x00000001
377
378#define LINK_AUTONEGOTIATE 0x01
379#define LINK_DOWN 0x02
380#define LINK_UP 0x04
381
6aa20a22 382#define HW_ADDR_LEN sizeof(dma_addr_t)
1da177e4
LT
383#define desc_addr_set(desc, addr) \
384 do { \
c16ef1ce
BL
385 ((desc)[0] = cpu_to_le32(addr)); \
386 if (HW_ADDR_LEN == 8) \
387 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
1da177e4
LT
388 } while(0)
389#define desc_addr_get(desc) \
c16ef1ce
BL
390 (le32_to_cpu((desc)[0]) | \
391 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
1da177e4
LT
392
393#define DESC_LINK 0
394#define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
395#define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
396#define DESC_EXTSTS (DESC_CMDSTS + 4/4)
397
398#define CMDSTS_OWN 0x80000000
399#define CMDSTS_MORE 0x40000000
400#define CMDSTS_INTR 0x20000000
401#define CMDSTS_ERR 0x10000000
402#define CMDSTS_OK 0x08000000
403#define CMDSTS_RUNT 0x00200000
404#define CMDSTS_LEN_MASK 0x0000ffff
405
406#define CMDSTS_DEST_MASK 0x01800000
407#define CMDSTS_DEST_SELF 0x00800000
408#define CMDSTS_DEST_MULTI 0x01000000
409
410#define DESC_SIZE 8 /* Should be cache line sized */
411
412struct rx_info {
413 spinlock_t lock;
414 int up;
5d7dce76 415 unsigned long idle;
1da177e4
LT
416
417 struct sk_buff *skbs[NR_RX_DESC];
418
c69fda4e 419 __le32 *next_rx_desc;
1da177e4
LT
420 u16 next_rx, next_empty;
421
c69fda4e 422 __le32 *descs;
1da177e4
LT
423 dma_addr_t phy_descs;
424};
425
426
427struct ns83820 {
1da177e4
LT
428 u8 __iomem *base;
429
430 struct pci_dev *pci_dev;
c4028958 431 struct net_device *ndev;
1da177e4
LT
432
433#ifdef NS83820_VLAN_ACCEL_SUPPORT
434 struct vlan_group *vlgrp;
435#endif
436
437 struct rx_info rx_info;
438 struct tasklet_struct rx_tasklet;
439
440 unsigned ihr;
441 struct work_struct tq_refill;
442
443 /* protects everything below. irqsave when using. */
444 spinlock_t misc_lock;
445
446 u32 CFG_cache;
447
448 u32 MEAR_cache;
449 u32 IMR_cache;
1da177e4
LT
450
451 unsigned linkstate;
452
453 spinlock_t tx_lock;
454
455 u16 tx_done_idx;
456 u16 tx_idx;
457 volatile u16 tx_free_idx; /* idx of free desc chain */
458 u16 tx_intr_idx;
459
460 atomic_t nr_tx_skbs;
461 struct sk_buff *tx_skbs[NR_TX_DESC];
462
463 char pad[16] __attribute__((aligned(16)));
c69fda4e 464 __le32 *tx_descs;
1da177e4
LT
465 dma_addr_t tx_phy_descs;
466
467 struct timer_list tx_watchdog;
468};
469
470static inline struct ns83820 *PRIV(struct net_device *dev)
471{
472 return netdev_priv(dev);
473}
474
475#define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
476
477static inline void kick_rx(struct net_device *ndev)
478{
479 struct ns83820 *dev = PRIV(ndev);
480 dprintk("kick_rx: maybe kicking\n");
481 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
482 dprintk("actually kicking\n");
483 writel(dev->rx_info.phy_descs +
484 (4 * DESC_SIZE * dev->rx_info.next_rx),
485 dev->base + RXDP);
486 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
487 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
488 ndev->name);
489 __kick_rx(dev);
490 }
491}
492
493//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
494#define start_tx_okay(dev) \
495 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
496
497
6aa20a22 498#ifdef NS83820_VLAN_ACCEL_SUPPORT
1da177e4
LT
499static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
500{
501 struct ns83820 *dev = PRIV(ndev);
502
503 spin_lock_irq(&dev->misc_lock);
504 spin_lock(&dev->tx_lock);
505
506 dev->vlgrp = grp;
507
508 spin_unlock(&dev->tx_lock);
509 spin_unlock_irq(&dev->misc_lock);
510}
1da177e4
LT
511#endif
512
513/* Packet Receiver
514 *
515 * The hardware supports linked lists of receive descriptors for
25985edc 516 * which ownership is transferred back and forth by means of an
1da177e4
LT
517 * ownership bit. While the hardware does support the use of a
518 * ring for receive descriptors, we only make use of a chain in
519 * an attempt to reduce bus traffic under heavy load scenarios.
520 * This will also make bugs a bit more obvious. The current code
521 * only makes use of a single rx chain; I hope to implement
522 * priority based rx for version 1.0. Goal: even under overload
523 * conditions, still route realtime traffic with as low jitter as
524 * possible.
525 */
c69fda4e 526static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
1da177e4
LT
527{
528 desc_addr_set(desc + DESC_LINK, link);
529 desc_addr_set(desc + DESC_BUFPTR, buf);
530 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
531 mb();
532 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
533}
534
535#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
536static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
537{
538 unsigned next_empty;
539 u32 cmdsts;
c69fda4e 540 __le32 *sg;
1da177e4
LT
541 dma_addr_t buf;
542
543 next_empty = dev->rx_info.next_empty;
544
545 /* don't overrun last rx marker */
546 if (unlikely(nr_rx_empty(dev) <= 2)) {
547 kfree_skb(skb);
548 return 1;
549 }
550
551#if 0
552 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
553 dev->rx_info.next_empty,
554 dev->rx_info.nr_used,
555 dev->rx_info.next_rx
556 );
557#endif
558
559 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
5d9428de 560 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
1da177e4
LT
561 dev->rx_info.skbs[next_empty] = skb;
562
563 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
564 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
689be439 565 buf = pci_map_single(dev->pci_dev, skb->data,
1da177e4
LT
566 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
567 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
568 /* update link of previous rx */
569 if (likely(next_empty != dev->rx_info.next_rx))
570 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
571
572 return 0;
573}
574
dd0fc66f 575static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
1da177e4
LT
576{
577 struct ns83820 *dev = PRIV(ndev);
578 unsigned i;
579 unsigned long flags = 0;
580
581 if (unlikely(nr_rx_empty(dev) <= 2))
582 return 0;
583
584 dprintk("rx_refill(%p)\n", ndev);
585 if (gfp == GFP_ATOMIC)
586 spin_lock_irqsave(&dev->rx_info.lock, flags);
587 for (i=0; i<NR_RX_DESC; i++) {
588 struct sk_buff *skb;
589 long res;
e83728c7 590
1da177e4 591 /* extra 16 bytes for alignment */
e83728c7 592 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
1da177e4
LT
593 if (unlikely(!skb))
594 break;
595
e83728c7 596 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
1da177e4
LT
597 if (gfp != GFP_ATOMIC)
598 spin_lock_irqsave(&dev->rx_info.lock, flags);
599 res = ns83820_add_rx_skb(dev, skb);
600 if (gfp != GFP_ATOMIC)
601 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
602 if (res) {
603 i = 1;
604 break;
605 }
606 }
607 if (gfp == GFP_ATOMIC)
608 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
609
610 return i ? 0 : -ENOMEM;
611}
612
7eefb04e 613static void rx_refill_atomic(struct net_device *ndev)
1da177e4
LT
614{
615 rx_refill(ndev, GFP_ATOMIC);
616}
617
618/* REFILL */
c4028958 619static inline void queue_refill(struct work_struct *work)
1da177e4 620{
c4028958
DH
621 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
622 struct net_device *ndev = dev->ndev;
1da177e4
LT
623
624 rx_refill(ndev, GFP_KERNEL);
625 if (dev->rx_info.up)
626 kick_rx(ndev);
627}
628
629static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
630{
631 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
632}
633
7eefb04e 634static void phy_intr(struct net_device *ndev)
1da177e4
LT
635{
636 struct ns83820 *dev = PRIV(ndev);
f71e1309 637 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
1da177e4
LT
638 u32 cfg, new_cfg;
639 u32 tbisr, tanar, tanlpar;
640 int speed, fullduplex, newlinkstate;
641
642 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
643
644 if (dev->CFG_cache & CFG_TBI_EN) {
645 /* we have an optical transceiver */
646 tbisr = readl(dev->base + TBISR);
647 tanar = readl(dev->base + TANAR);
648 tanlpar = readl(dev->base + TANLPAR);
649 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
650 tbisr, tanar, tanlpar);
651
8e95a202
JP
652 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
653 (tanar & TANAR_FULL_DUP)) ) {
1da177e4
LT
654
655 /* both of us are full duplex */
656 writel(readl(dev->base + TXCFG)
657 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
658 dev->base + TXCFG);
659 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
660 dev->base + RXCFG);
661 /* Light up full duplex LED */
662 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
663 dev->base + GPIOR);
664
8e95a202
JP
665 } else if (((tanlpar & TANAR_HALF_DUP) &&
666 (tanar & TANAR_HALF_DUP)) ||
667 ((tanlpar & TANAR_FULL_DUP) &&
668 (tanar & TANAR_HALF_DUP)) ||
669 ((tanlpar & TANAR_HALF_DUP) &&
670 (tanar & TANAR_FULL_DUP))) {
1da177e4
LT
671
672 /* one or both of us are half duplex */
673 writel((readl(dev->base + TXCFG)
674 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
675 dev->base + TXCFG);
676 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
677 dev->base + RXCFG);
678 /* Turn off full duplex LED */
679 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
680 dev->base + GPIOR);
681 }
682
683 speed = 4; /* 1000F */
684
685 } else {
686 /* we have a copper transceiver */
687 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
688
689 if (cfg & CFG_SPDSTS1)
690 new_cfg |= CFG_MODE_1000;
691 else
692 new_cfg &= ~CFG_MODE_1000;
693
694 speed = ((cfg / CFG_SPDSTS0) & 3);
695 fullduplex = (cfg & CFG_DUPSTS);
696
c16ef1ce 697 if (fullduplex) {
1da177e4 698 new_cfg |= CFG_SB;
c16ef1ce
BL
699 writel(readl(dev->base + TXCFG)
700 | TXCFG_CSI | TXCFG_HBI,
701 dev->base + TXCFG);
702 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
703 dev->base + RXCFG);
704 } else {
705 writel(readl(dev->base + TXCFG)
706 & ~(TXCFG_CSI | TXCFG_HBI),
707 dev->base + TXCFG);
708 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
709 dev->base + RXCFG);
710 }
1da177e4
LT
711
712 if ((cfg & CFG_LNKSTS) &&
c16ef1ce 713 ((new_cfg ^ dev->CFG_cache) != 0)) {
1da177e4
LT
714 writel(new_cfg, dev->base + CFG);
715 dev->CFG_cache = new_cfg;
716 }
717
718 dev->CFG_cache &= ~CFG_SPDSTS;
719 dev->CFG_cache |= cfg & CFG_SPDSTS;
720 }
721
722 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
723
8e95a202
JP
724 if (newlinkstate & LINK_UP &&
725 dev->linkstate != newlinkstate) {
1da177e4
LT
726 netif_start_queue(ndev);
727 netif_wake_queue(ndev);
728 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
729 ndev->name,
730 speeds[speed],
731 fullduplex ? "full" : "half");
8e95a202
JP
732 } else if (newlinkstate & LINK_DOWN &&
733 dev->linkstate != newlinkstate) {
1da177e4
LT
734 netif_stop_queue(ndev);
735 printk(KERN_INFO "%s: link now down.\n", ndev->name);
736 }
737
738 dev->linkstate = newlinkstate;
739}
740
741static int ns83820_setup_rx(struct net_device *ndev)
742{
743 struct ns83820 *dev = PRIV(ndev);
744 unsigned i;
745 int ret;
746
747 dprintk("ns83820_setup_rx(%p)\n", ndev);
748
749 dev->rx_info.idle = 1;
750 dev->rx_info.next_rx = 0;
751 dev->rx_info.next_rx_desc = dev->rx_info.descs;
752 dev->rx_info.next_empty = 0;
753
754 for (i=0; i<NR_RX_DESC; i++)
755 clear_rx_desc(dev, i);
756
757 writel(0, dev->base + RXDP_HI);
758 writel(dev->rx_info.phy_descs, dev->base + RXDP);
759
760 ret = rx_refill(ndev, GFP_KERNEL);
761 if (!ret) {
762 dprintk("starting receiver\n");
763 /* prevent the interrupt handler from stomping on us */
764 spin_lock_irq(&dev->rx_info.lock);
765
766 writel(0x0001, dev->base + CCSR);
767 writel(0, dev->base + RFCR);
768 writel(0x7fc00000, dev->base + RFCR);
769 writel(0xffc00000, dev->base + RFCR);
770
771 dev->rx_info.up = 1;
772
773 phy_intr(ndev);
774
775 /* Okay, let it rip */
cdd861d6 776 spin_lock(&dev->misc_lock);
1da177e4
LT
777 dev->IMR_cache |= ISR_PHY;
778 dev->IMR_cache |= ISR_RXRCMP;
779 //dev->IMR_cache |= ISR_RXERR;
780 //dev->IMR_cache |= ISR_RXOK;
781 dev->IMR_cache |= ISR_RXORN;
782 dev->IMR_cache |= ISR_RXSOVR;
783 dev->IMR_cache |= ISR_RXDESC;
784 dev->IMR_cache |= ISR_RXIDLE;
785 dev->IMR_cache |= ISR_TXDESC;
786 dev->IMR_cache |= ISR_TXIDLE;
787
788 writel(dev->IMR_cache, dev->base + IMR);
789 writel(1, dev->base + IER);
3a10cceb 790 spin_unlock(&dev->misc_lock);
1da177e4
LT
791
792 kick_rx(ndev);
793
794 spin_unlock_irq(&dev->rx_info.lock);
795 }
796 return ret;
797}
798
799static void ns83820_cleanup_rx(struct ns83820 *dev)
800{
801 unsigned i;
802 unsigned long flags;
803
804 dprintk("ns83820_cleanup_rx(%p)\n", dev);
805
806 /* disable receive interrupts */
807 spin_lock_irqsave(&dev->misc_lock, flags);
808 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
809 writel(dev->IMR_cache, dev->base + IMR);
810 spin_unlock_irqrestore(&dev->misc_lock, flags);
811
812 /* synchronize with the interrupt handler and kill it */
813 dev->rx_info.up = 0;
814 synchronize_irq(dev->pci_dev->irq);
815
816 /* touch the pci bus... */
817 readl(dev->base + IMR);
818
819 /* assumes the transmitter is already disabled and reset */
820 writel(0, dev->base + RXDP_HI);
821 writel(0, dev->base + RXDP);
822
823 for (i=0; i<NR_RX_DESC; i++) {
824 struct sk_buff *skb = dev->rx_info.skbs[i];
825 dev->rx_info.skbs[i] = NULL;
826 clear_rx_desc(dev, i);
893d7de7 827 kfree_skb(skb);
1da177e4
LT
828 }
829}
830
7eefb04e 831static void ns83820_rx_kick(struct net_device *ndev)
1da177e4
LT
832{
833 struct ns83820 *dev = PRIV(ndev);
834 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
835 if (dev->rx_info.up) {
836 rx_refill_atomic(ndev);
837 kick_rx(ndev);
838 }
839 }
840
841 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
842 schedule_work(&dev->tq_refill);
843 else
844 kick_rx(ndev);
845 if (dev->rx_info.idle)
846 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
847}
848
849/* rx_irq
6aa20a22 850 *
1da177e4 851 */
7eefb04e 852static void rx_irq(struct net_device *ndev)
1da177e4
LT
853{
854 struct ns83820 *dev = PRIV(ndev);
855 struct rx_info *info = &dev->rx_info;
856 unsigned next_rx;
857 int rx_rc, len;
c69fda4e
AV
858 u32 cmdsts;
859 __le32 *desc;
1da177e4
LT
860 unsigned long flags;
861 int nr = 0;
862
863 dprintk("rx_irq(%p)\n", ndev);
864 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
865 readl(dev->base + RXDP),
866 (long)(dev->rx_info.phy_descs),
867 (int)dev->rx_info.next_rx,
868 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
869 (int)dev->rx_info.next_empty,
870 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
871 );
872
873 spin_lock_irqsave(&info->lock, flags);
874 if (!info->up)
875 goto out;
876
877 dprintk("walking descs\n");
878 next_rx = info->next_rx;
879 desc = info->next_rx_desc;
880 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
881 (cmdsts != CMDSTS_OWN)) {
882 struct sk_buff *skb;
883 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
884 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
885
886 dprintk("cmdsts: %08x\n", cmdsts);
887 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
888 dprintk("extsts: %08x\n", extsts);
889
890 skb = info->skbs[next_rx];
891 info->skbs[next_rx] = NULL;
892 info->next_rx = (next_rx + 1) % NR_RX_DESC;
893
894 mb();
895 clear_rx_desc(dev, next_rx);
896
897 pci_unmap_single(dev->pci_dev, bufptr,
898 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
899 len = cmdsts & CMDSTS_LEN_MASK;
900#ifdef NS83820_VLAN_ACCEL_SUPPORT
901 /* NH: As was mentioned below, this chip is kinda
902 * brain dead about vlan tag stripping. Frames
903 * that are 64 bytes with a vlan header appended
904 * like arp frames, or pings, are flagged as Runts
905 * when the tag is stripped and hardware. This
6aa20a22 906 * also means that the OK bit in the descriptor
1da177e4
LT
907 * is cleared when the frame comes in so we have
908 * to do a specific length check here to make sure
909 * the frame would have been ok, had we not stripped
910 * the tag.
6aa20a22 911 */
1da177e4 912 if (likely((CMDSTS_OK & cmdsts) ||
6aa20a22 913 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
1da177e4
LT
914#else
915 if (likely(CMDSTS_OK & cmdsts)) {
916#endif
917 skb_put(skb, len);
918 if (unlikely(!skb))
919 goto netdev_mangle_me_harder_failed;
920 if (cmdsts & CMDSTS_DEST_MULTI)
e929bc33
KV
921 ndev->stats.multicast++;
922 ndev->stats.rx_packets++;
923 ndev->stats.rx_bytes += len;
1da177e4
LT
924 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
925 skb->ip_summed = CHECKSUM_UNNECESSARY;
926 } else {
bc8acf2c 927 skb_checksum_none_assert(skb);
1da177e4
LT
928 }
929 skb->protocol = eth_type_trans(skb, ndev);
6aa20a22 930#ifdef NS83820_VLAN_ACCEL_SUPPORT
1da177e4
LT
931 if(extsts & EXTSTS_VPKT) {
932 unsigned short tag;
933 tag = ntohs(extsts & EXTSTS_VTG_MASK);
934 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
935 } else {
936 rx_rc = netif_rx(skb);
937 }
938#else
939 rx_rc = netif_rx(skb);
940#endif
941 if (NET_RX_DROP == rx_rc) {
942netdev_mangle_me_harder_failed:
e929bc33 943 ndev->stats.rx_dropped++;
1da177e4
LT
944 }
945 } else {
946 kfree_skb(skb);
947 }
948
949 nr++;
950 next_rx = info->next_rx;
951 desc = info->descs + (DESC_SIZE * next_rx);
952 }
953 info->next_rx = next_rx;
954 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
955
956out:
957 if (0 && !nr) {
958 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
959 }
960
961 spin_unlock_irqrestore(&info->lock, flags);
962}
963
964static void rx_action(unsigned long _dev)
965{
966 struct net_device *ndev = (void *)_dev;
967 struct ns83820 *dev = PRIV(ndev);
968 rx_irq(ndev);
969 writel(ihr, dev->base + IHR);
970
971 spin_lock_irq(&dev->misc_lock);
972 dev->IMR_cache |= ISR_RXDESC;
973 writel(dev->IMR_cache, dev->base + IMR);
974 spin_unlock_irq(&dev->misc_lock);
975
976 rx_irq(ndev);
977 ns83820_rx_kick(ndev);
978}
979
980/* Packet Transmit code
981 */
982static inline void kick_tx(struct ns83820 *dev)
983{
984 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
985 dev, dev->tx_idx, dev->tx_free_idx);
986 writel(CR_TXE, dev->base + CR);
987}
988
989/* No spinlock needed on the transmit irq path as the interrupt handler is
990 * serialized.
991 */
992static void do_tx_done(struct net_device *ndev)
993{
994 struct ns83820 *dev = PRIV(ndev);
c69fda4e
AV
995 u32 cmdsts, tx_done_idx;
996 __le32 *desc;
1da177e4 997
1da177e4
LT
998 dprintk("do_tx_done(%p)\n", ndev);
999 tx_done_idx = dev->tx_done_idx;
1000 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1001
1002 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1003 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1004 while ((tx_done_idx != dev->tx_free_idx) &&
1005 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1006 struct sk_buff *skb;
1007 unsigned len;
1008 dma_addr_t addr;
1009
1010 if (cmdsts & CMDSTS_ERR)
e929bc33 1011 ndev->stats.tx_errors++;
1da177e4 1012 if (cmdsts & CMDSTS_OK)
e929bc33 1013 ndev->stats.tx_packets++;
1da177e4 1014 if (cmdsts & CMDSTS_OK)
e929bc33 1015 ndev->stats.tx_bytes += cmdsts & 0xffff;
1da177e4
LT
1016
1017 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1018 tx_done_idx, dev->tx_free_idx, cmdsts);
1019 skb = dev->tx_skbs[tx_done_idx];
1020 dev->tx_skbs[tx_done_idx] = NULL;
1021 dprintk("done(%p)\n", skb);
1022
1023 len = cmdsts & CMDSTS_LEN_MASK;
1024 addr = desc_addr_get(desc + DESC_BUFPTR);
1025 if (skb) {
1026 pci_unmap_single(dev->pci_dev,
1027 addr,
1028 len,
1029 PCI_DMA_TODEVICE);
1030 dev_kfree_skb_irq(skb);
1031 atomic_dec(&dev->nr_tx_skbs);
1032 } else
6aa20a22 1033 pci_unmap_page(dev->pci_dev,
1da177e4
LT
1034 addr,
1035 len,
1036 PCI_DMA_TODEVICE);
1037
1038 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1039 dev->tx_done_idx = tx_done_idx;
1040 desc[DESC_CMDSTS] = cpu_to_le32(0);
1041 mb();
1042 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1043 }
1044
1045 /* Allow network stack to resume queueing packets after we've
1046 * finished transmitting at least 1/4 of the packets in the queue.
1047 */
1048 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1049 dprintk("start_queue(%p)\n", ndev);
1050 netif_start_queue(ndev);
1051 netif_wake_queue(ndev);
1052 }
1da177e4
LT
1053}
1054
1055static void ns83820_cleanup_tx(struct ns83820 *dev)
1056{
1057 unsigned i;
1058
1059 for (i=0; i<NR_TX_DESC; i++) {
1060 struct sk_buff *skb = dev->tx_skbs[i];
1061 dev->tx_skbs[i] = NULL;
1062 if (skb) {
c69fda4e 1063 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1da177e4
LT
1064 pci_unmap_single(dev->pci_dev,
1065 desc_addr_get(desc + DESC_BUFPTR),
1066 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1067 PCI_DMA_TODEVICE);
1068 dev_kfree_skb_irq(skb);
1069 atomic_dec(&dev->nr_tx_skbs);
1070 }
1071 }
1072
1073 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1074}
1075
1076/* transmit routine. This code relies on the network layer serializing
1077 * its calls in, but will run happily in parallel with the interrupt
1078 * handler. This code currently has provisions for fragmenting tx buffers
1079 * while trying to track down a bug in either the zero copy code or
1080 * the tx fifo (hence the MAX_FRAG_LEN).
1081 */
61357325
SH
1082static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1083 struct net_device *ndev)
1da177e4
LT
1084{
1085 struct ns83820 *dev = PRIV(ndev);
1086 u32 free_idx, cmdsts, extsts;
1087 int nr_free, nr_frags;
1088 unsigned tx_done_idx, last_idx;
1089 dma_addr_t buf;
1090 unsigned len;
1091 skb_frag_t *frag;
1092 int stopped = 0;
1093 int do_intr = 0;
c69fda4e 1094 volatile __le32 *first_desc;
1da177e4
LT
1095
1096 dprintk("ns83820_hard_start_xmit\n");
1097
1098 nr_frags = skb_shinfo(skb)->nr_frags;
1099again:
1100 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1101 netif_stop_queue(ndev);
1102 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
5b548140 1103 return NETDEV_TX_BUSY;
1da177e4
LT
1104 netif_start_queue(ndev);
1105 }
1106
1107 last_idx = free_idx = dev->tx_free_idx;
1108 tx_done_idx = dev->tx_done_idx;
1109 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1110 nr_free -= 1;
1111 if (nr_free <= nr_frags) {
1112 dprintk("stop_queue - not enough(%p)\n", ndev);
1113 netif_stop_queue(ndev);
1114
1115 /* Check again: we may have raced with a tx done irq */
1116 if (dev->tx_done_idx != tx_done_idx) {
1117 dprintk("restart queue(%p)\n", ndev);
1118 netif_start_queue(ndev);
1119 goto again;
1120 }
5b548140 1121 return NETDEV_TX_BUSY;
1da177e4
LT
1122 }
1123
1124 if (free_idx == dev->tx_intr_idx) {
1125 do_intr = 1;
1126 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1127 }
1128
1129 nr_free -= nr_frags;
1130 if (nr_free < MIN_TX_DESC_FREE) {
1131 dprintk("stop_queue - last entry(%p)\n", ndev);
1132 netif_stop_queue(ndev);
1133 stopped = 1;
1134 }
1135
1136 frag = skb_shinfo(skb)->frags;
1137 if (!nr_frags)
1138 frag = NULL;
1139 extsts = 0;
84fa7933 1140 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1141 extsts |= EXTSTS_IPPKT;
eddc9ec5 1142 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1da177e4 1143 extsts |= EXTSTS_TCPPKT;
eddc9ec5 1144 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1da177e4
LT
1145 extsts |= EXTSTS_UDPPKT;
1146 }
1147
1148#ifdef NS83820_VLAN_ACCEL_SUPPORT
1149 if(vlan_tx_tag_present(skb)) {
1150 /* fetch the vlan tag info out of the
25985edc 1151 * ancillary data if the vlan code
1da177e4
LT
1152 * is using hw vlan acceleration
1153 */
1154 short tag = vlan_tx_tag_get(skb);
1155 extsts |= (EXTSTS_VPKT | htons(tag));
1156 }
1157#endif
1158
1159 len = skb->len;
1160 if (nr_frags)
1161 len -= skb->data_len;
1162 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1163
1164 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1165
1166 for (;;) {
c69fda4e 1167 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1da177e4
LT
1168
1169 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1170 (unsigned long long)buf);
1171 last_idx = free_idx;
1172 free_idx = (free_idx + 1) % NR_TX_DESC;
1173 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1174 desc_addr_set(desc + DESC_BUFPTR, buf);
1175 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1176
c16ef1ce 1177 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1da177e4
LT
1178 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1179 cmdsts |= len;
1180 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1181
1da177e4
LT
1182 if (!nr_frags)
1183 break;
1184
1185 buf = pci_map_page(dev->pci_dev, frag->page,
1186 frag->page_offset,
1187 frag->size, PCI_DMA_TODEVICE);
1188 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1189 (long long)buf, (long) page_to_pfn(frag->page),
1190 frag->page_offset);
1191 len = frag->size;
1192 frag++;
1193 nr_frags--;
1194 }
1195 dprintk("done pkt\n");
1196
1197 spin_lock_irq(&dev->tx_lock);
1198 dev->tx_skbs[last_idx] = skb;
1199 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1200 dev->tx_free_idx = free_idx;
1201 atomic_inc(&dev->nr_tx_skbs);
1202 spin_unlock_irq(&dev->tx_lock);
1203
1204 kick_tx(dev);
1205
1206 /* Check again: we may have raced with a tx done irq */
1207 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1208 netif_start_queue(ndev);
1209
cdd0db05 1210 return NETDEV_TX_OK;
1da177e4
LT
1211}
1212
1213static void ns83820_update_stats(struct ns83820 *dev)
1214{
e929bc33 1215 struct net_device *ndev = dev->ndev;
1da177e4
LT
1216 u8 __iomem *base = dev->base;
1217
1218 /* the DP83820 will freeze counters, so we need to read all of them */
e929bc33
KV
1219 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1220 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1221 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1222 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1223 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1224 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1225 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1226 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1227 /*ndev->stats.rx_pause_count += */ readl(base + 0x80);
1228 /*ndev->stats.tx_pause_count += */ readl(base + 0x84);
1229 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1da177e4
LT
1230}
1231
1232static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1233{
1234 struct ns83820 *dev = PRIV(ndev);
1235
1236 /* somewhat overkill */
1237 spin_lock_irq(&dev->misc_lock);
1238 ns83820_update_stats(dev);
1239 spin_unlock_irq(&dev->misc_lock);
1240
e929bc33 1241 return &ndev->stats;
1da177e4
LT
1242}
1243
10096974
JG
1244/* Let ethtool retrieve info */
1245static int ns83820_get_settings(struct net_device *ndev,
1246 struct ethtool_cmd *cmd)
1247{
1248 struct ns83820 *dev = PRIV(ndev);
1249 u32 cfg, tanar, tbicr;
10096974
JG
1250 int fullduplex = 0;
1251
1252 /*
1253 * Here's the list of available ethtool commands from other drivers:
1254 * cmd->advertising =
70739497 1255 * ethtool_cmd_speed_set(cmd, ...)
10096974
JG
1256 * cmd->duplex =
1257 * cmd->port = 0;
1258 * cmd->phy_address =
1259 * cmd->transceiver = 0;
1260 * cmd->autoneg =
1261 * cmd->maxtxpkt = 0;
1262 * cmd->maxrxpkt = 0;
1263 */
1264
1265 /* read current configuration */
1266 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1267 tanar = readl(dev->base + TANAR);
1268 tbicr = readl(dev->base + TBICR);
1269
7457e911 1270 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
10096974
JG
1271
1272 cmd->supported = SUPPORTED_Autoneg;
1273
10096974 1274 if (dev->CFG_cache & CFG_TBI_EN) {
3c083edc 1275 /* we have optical interface */
10096974
JG
1276 cmd->supported |= SUPPORTED_1000baseT_Half |
1277 SUPPORTED_1000baseT_Full |
1278 SUPPORTED_FIBRE;
1279 cmd->port = PORT_FIBRE;
3c083edc
DK
1280 } else {
1281 /* we have copper */
1282 cmd->supported |= SUPPORTED_10baseT_Half |
1283 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1284 SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1285 SUPPORTED_1000baseT_Full |
1286 SUPPORTED_MII;
1287 cmd->port = PORT_MII;
1288 }
10096974
JG
1289
1290 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1291 switch (cfg / CFG_SPDSTS0 & 3) {
1292 case 2:
70739497 1293 ethtool_cmd_speed_set(cmd, SPEED_1000);
10096974
JG
1294 break;
1295 case 1:
70739497 1296 ethtool_cmd_speed_set(cmd, SPEED_100);
10096974
JG
1297 break;
1298 default:
70739497 1299 ethtool_cmd_speed_set(cmd, SPEED_10);
10096974
JG
1300 break;
1301 }
a5d31e0f
DK
1302 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1303 ? AUTONEG_ENABLE : AUTONEG_DISABLE;
10096974
JG
1304 return 0;
1305}
1306
1307/* Let ethool change settings*/
1308static int ns83820_set_settings(struct net_device *ndev,
1309 struct ethtool_cmd *cmd)
1310{
1311 struct ns83820 *dev = PRIV(ndev);
1312 u32 cfg, tanar;
1313 int have_optical = 0;
1314 int fullduplex = 0;
1315
1316 /* read current configuration */
1317 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1318 tanar = readl(dev->base + TANAR);
1319
1320 if (dev->CFG_cache & CFG_TBI_EN) {
1321 /* we have optical */
1322 have_optical = 1;
1323 fullduplex = (tanar & TANAR_FULL_DUP);
1324
1325 } else {
1326 /* we have copper */
1327 fullduplex = cfg & CFG_DUPSTS;
1328 }
1329
1330 spin_lock_irq(&dev->misc_lock);
1331 spin_lock(&dev->tx_lock);
1332
1333 /* Set duplex */
1334 if (cmd->duplex != fullduplex) {
1335 if (have_optical) {
1336 /*set full duplex*/
1337 if (cmd->duplex == DUPLEX_FULL) {
1338 /* force full duplex */
1339 writel(readl(dev->base + TXCFG)
1340 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1341 dev->base + TXCFG);
1342 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1343 dev->base + RXCFG);
1344 /* Light up full duplex LED */
1345 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1346 dev->base + GPIOR);
1347 } else {
1348 /*TODO: set half duplex */
1349 }
1350
1351 } else {
1352 /*we have copper*/
1353 /* TODO: Set duplex for copper cards */
1354 }
1355 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1356 ndev->name);
1357 }
1358
1359 /* Set autonegotiation */
1360 if (1) {
1361 if (cmd->autoneg == AUTONEG_ENABLE) {
1362 /* restart auto negotiation */
1363 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1364 dev->base + TBICR);
1365 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1366 dev->linkstate = LINK_AUTONEGOTIATE;
1367
1368 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1369 ndev->name);
1370 } else {
1371 /* disable auto negotiation */
1372 writel(0x00000000, dev->base + TBICR);
1373 }
1374
1375 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1376 cmd->autoneg ? "ENABLED" : "DISABLED");
1377 }
1378
1379 phy_intr(ndev);
1380 spin_unlock(&dev->tx_lock);
1381 spin_unlock_irq(&dev->misc_lock);
1382
1383 return 0;
1384}
1385/* end ethtool get/set support -df */
1386
1da177e4
LT
1387static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1388{
1389 struct ns83820 *dev = PRIV(ndev);
1390 strcpy(info->driver, "ns83820");
1391 strcpy(info->version, VERSION);
1392 strcpy(info->bus_info, pci_name(dev->pci_dev));
1393}
1394
1395static u32 ns83820_get_link(struct net_device *ndev)
1396{
1397 struct ns83820 *dev = PRIV(ndev);
1398 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1399 return cfg & CFG_LNKSTS ? 1 : 0;
1400}
1401
7282d491 1402static const struct ethtool_ops ops = {
10096974
JG
1403 .get_settings = ns83820_get_settings,
1404 .set_settings = ns83820_set_settings,
1405 .get_drvinfo = ns83820_get_drvinfo,
1406 .get_link = ns83820_get_link
1da177e4
LT
1407};
1408
1a9f28c8
DK
1409static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1410{
1411 writel(0, dev->base + IMR);
1412 writel(0, dev->base + IER);
1413 readl(dev->base + IER);
1414}
1415
3a10cceb 1416/* this function is called in irq context from the ISR */
1da177e4
LT
1417static void ns83820_mib_isr(struct ns83820 *dev)
1418{
3a10cceb
IM
1419 unsigned long flags;
1420 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4 1421 ns83820_update_stats(dev);
3a10cceb 1422 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1423}
1424
1425static void ns83820_do_isr(struct net_device *ndev, u32 isr);
7d12e780 1426static irqreturn_t ns83820_irq(int foo, void *data)
1da177e4
LT
1427{
1428 struct net_device *ndev = data;
1429 struct ns83820 *dev = PRIV(ndev);
1430 u32 isr;
1431 dprintk("ns83820_irq(%p)\n", ndev);
1432
1433 dev->ihr = 0;
1434
1435 isr = readl(dev->base + ISR);
1436 dprintk("irq: %08x\n", isr);
1437 ns83820_do_isr(ndev, isr);
1438 return IRQ_HANDLED;
1439}
1440
1441static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1442{
1443 struct ns83820 *dev = PRIV(ndev);
3a10cceb
IM
1444 unsigned long flags;
1445
1da177e4
LT
1446#ifdef DEBUG
1447 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1448 Dprintk("odd isr? 0x%08x\n", isr);
1449#endif
1450
1451 if (ISR_RXIDLE & isr) {
1452 dev->rx_info.idle = 1;
1453 Dprintk("oh dear, we are idle\n");
1454 ns83820_rx_kick(ndev);
1455 }
1456
1457 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1458 prefetch(dev->rx_info.next_rx_desc);
1459
3a10cceb 1460 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1461 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1462 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1463 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1464
1465 tasklet_schedule(&dev->rx_tasklet);
1466 //rx_irq(ndev);
1467 //writel(4, dev->base + IHR);
1468 }
1469
1470 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1471 ns83820_rx_kick(ndev);
1472
1473 if (unlikely(ISR_RXSOVR & isr)) {
1474 //printk("overrun: rxsovr\n");
e929bc33 1475 ndev->stats.rx_fifo_errors++;
1da177e4
LT
1476 }
1477
1478 if (unlikely(ISR_RXORN & isr)) {
1479 //printk("overrun: rxorn\n");
e929bc33 1480 ndev->stats.rx_fifo_errors++;
1da177e4
LT
1481 }
1482
1483 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1484 writel(CR_RXE, dev->base + CR);
1485
1486 if (ISR_TXIDLE & isr) {
1487 u32 txdp;
1488 txdp = readl(dev->base + TXDP);
1489 dprintk("txdp: %08x\n", txdp);
1490 txdp -= dev->tx_phy_descs;
1491 dev->tx_idx = txdp / (DESC_SIZE * 4);
1492 if (dev->tx_idx >= NR_TX_DESC) {
1493 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1494 dev->tx_idx = 0;
1495 }
1496 /* The may have been a race between a pci originated read
6aa20a22
JG
1497 * and the descriptor update from the cpu. Just in case,
1498 * kick the transmitter if the hardware thinks it is on a
1da177e4
LT
1499 * different descriptor than we are.
1500 */
1501 if (dev->tx_idx != dev->tx_free_idx)
1502 kick_tx(dev);
1503 }
1504
1505 /* Defer tx ring processing until more than a minimum amount of
1506 * work has accumulated
1507 */
1508 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
3a10cceb 1509 spin_lock_irqsave(&dev->tx_lock, flags);
1da177e4 1510 do_tx_done(ndev);
3a10cceb 1511 spin_unlock_irqrestore(&dev->tx_lock, flags);
1da177e4
LT
1512
1513 /* Disable TxOk if there are no outstanding tx packets.
1514 */
1515 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1516 (dev->IMR_cache & ISR_TXOK)) {
3a10cceb 1517 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1518 dev->IMR_cache &= ~ISR_TXOK;
1519 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1520 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1521 }
1522 }
1523
1524 /* The TxIdle interrupt can come in before the transmit has
1525 * completed. Normally we reap packets off of the combination
6aa20a22
JG
1526 * of TxDesc and TxIdle and leave TxOk disabled (since it
1527 * occurs on every packet), but when no further irqs of this
1da177e4
LT
1528 * nature are expected, we must enable TxOk.
1529 */
1530 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
3a10cceb 1531 spin_lock_irqsave(&dev->misc_lock, flags);
1da177e4
LT
1532 dev->IMR_cache |= ISR_TXOK;
1533 writel(dev->IMR_cache, dev->base + IMR);
3a10cceb 1534 spin_unlock_irqrestore(&dev->misc_lock, flags);
1da177e4
LT
1535 }
1536
1537 /* MIB interrupt: one of the statistics counters is about to overflow */
1538 if (unlikely(ISR_MIB & isr))
1539 ns83820_mib_isr(dev);
1540
1541 /* PHY: Link up/down/negotiation state change */
1542 if (unlikely(ISR_PHY & isr))
1543 phy_intr(ndev);
1544
1545#if 0 /* Still working on the interrupt mitigation strategy */
1546 if (dev->ihr)
1547 writel(dev->ihr, dev->base + IHR);
1548#endif
1549}
1550
1551static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1552{
1553 Dprintk("resetting chip...\n");
1554 writel(which, dev->base + CR);
1555 do {
1556 schedule();
1557 } while (readl(dev->base + CR) & which);
1558 Dprintk("okay!\n");
1559}
1560
1561static int ns83820_stop(struct net_device *ndev)
1562{
1563 struct ns83820 *dev = PRIV(ndev);
1564
1565 /* FIXME: protect against interrupt handler? */
1566 del_timer_sync(&dev->tx_watchdog);
1567
1a9f28c8 1568 ns83820_disable_interrupts(dev);
1da177e4
LT
1569
1570 dev->rx_info.up = 0;
1571 synchronize_irq(dev->pci_dev->irq);
1572
1573 ns83820_do_reset(dev, CR_RST);
1574
1575 synchronize_irq(dev->pci_dev->irq);
1576
1577 spin_lock_irq(&dev->misc_lock);
1578 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1579 spin_unlock_irq(&dev->misc_lock);
1580
1581 ns83820_cleanup_rx(dev);
1582 ns83820_cleanup_tx(dev);
1583
1584 return 0;
1585}
1586
1587static void ns83820_tx_timeout(struct net_device *ndev)
1588{
1589 struct ns83820 *dev = PRIV(ndev);
c69fda4e
AV
1590 u32 tx_done_idx;
1591 __le32 *desc;
1da177e4
LT
1592 unsigned long flags;
1593
3a10cceb 1594 spin_lock_irqsave(&dev->tx_lock, flags);
1da177e4
LT
1595
1596 tx_done_idx = dev->tx_done_idx;
1597 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1598
1599 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1600 ndev->name,
1601 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1602
1603#if defined(DEBUG)
1604 {
1605 u32 isr;
1606 isr = readl(dev->base + ISR);
1607 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1608 ns83820_do_isr(ndev, isr);
1609 }
1610#endif
1611
1612 do_tx_done(ndev);
1613
1614 tx_done_idx = dev->tx_done_idx;
1615 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1616
1617 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1618 ndev->name,
1619 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1620
3a10cceb 1621 spin_unlock_irqrestore(&dev->tx_lock, flags);
1da177e4
LT
1622}
1623
1624static void ns83820_tx_watch(unsigned long data)
1625{
1626 struct net_device *ndev = (void *)data;
1627 struct ns83820 *dev = PRIV(ndev);
1628
1629#if defined(DEBUG)
1630 printk("ns83820_tx_watch: %u %u %d\n",
1631 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1632 );
1633#endif
1634
cdd0db05 1635 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1da177e4
LT
1636 dev->tx_done_idx != dev->tx_free_idx) {
1637 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1638 ndev->name,
1639 dev->tx_done_idx, dev->tx_free_idx,
1640 atomic_read(&dev->nr_tx_skbs));
1641 ns83820_tx_timeout(ndev);
1642 }
1643
1644 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1645}
1646
1647static int ns83820_open(struct net_device *ndev)
1648{
1649 struct ns83820 *dev = PRIV(ndev);
1650 unsigned i;
1651 u32 desc;
1652 int ret;
1653
1654 dprintk("ns83820_open\n");
1655
1656 writel(0, dev->base + PQCR);
1657
1658 ret = ns83820_setup_rx(ndev);
1659 if (ret)
1660 goto failed;
1661
1662 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1663 for (i=0; i<NR_TX_DESC; i++) {
1664 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1665 = cpu_to_le32(
1666 dev->tx_phy_descs
1667 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1668 }
1669
1670 dev->tx_idx = 0;
1671 dev->tx_done_idx = 0;
1672 desc = dev->tx_phy_descs;
1673 writel(0, dev->base + TXDP_HI);
1674 writel(desc, dev->base + TXDP);
1675
1676 init_timer(&dev->tx_watchdog);
1677 dev->tx_watchdog.data = (unsigned long)ndev;
1678 dev->tx_watchdog.function = ns83820_tx_watch;
1679 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1680
1681 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1682
1683 return 0;
1684
1685failed:
1686 ns83820_stop(ndev);
1687 return ret;
1688}
1689
1690static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1691{
1692 unsigned i;
1693 for (i=0; i<3; i++) {
1694 u32 data;
48888cc6 1695
1da177e4
LT
1696 /* Read from the perfect match memory: this is loaded by
1697 * the chip from the EEPROM via the EELOAD self test.
1698 */
1699 writel(i*2, dev->base + RFCR);
1700 data = readl(dev->base + RFDR);
48888cc6 1701
1da177e4
LT
1702 *mac++ = data;
1703 *mac++ = data >> 8;
1704 }
1705}
1706
1707static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1708{
1709 if (new_mtu > RX_BUF_SIZE)
1710 return -EINVAL;
1711 ndev->mtu = new_mtu;
1712 return 0;
1713}
1714
1715static void ns83820_set_multicast(struct net_device *ndev)
1716{
1717 struct ns83820 *dev = PRIV(ndev);
1718 u8 __iomem *rfcr = dev->base + RFCR;
1719 u32 and_mask = 0xffffffff;
1720 u32 or_mask = 0;
1721 u32 val;
1722
1723 if (ndev->flags & IFF_PROMISC)
1724 or_mask |= RFCR_AAU | RFCR_AAM;
1725 else
1726 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1727
4cd24eaf 1728 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1da177e4
LT
1729 or_mask |= RFCR_AAM;
1730 else
1731 and_mask &= ~RFCR_AAM;
1732
1733 spin_lock_irq(&dev->misc_lock);
1734 val = (readl(rfcr) & and_mask) | or_mask;
1735 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1736 writel(val & ~RFCR_RFEN, rfcr);
1737 writel(val, rfcr);
1738 spin_unlock_irq(&dev->misc_lock);
1739}
1740
1741static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1742{
1743 struct ns83820 *dev = PRIV(ndev);
1744 int timed_out = 0;
ff5688ae 1745 unsigned long start;
1da177e4
LT
1746 u32 status;
1747 int loops = 0;
1748
1749 dprintk("%s: start %s\n", ndev->name, name);
1750
1751 start = jiffies;
1752
1753 writel(enable, dev->base + PTSCR);
1754 for (;;) {
1755 loops++;
1756 status = readl(dev->base + PTSCR);
1757 if (!(status & enable))
1758 break;
1759 if (status & done)
1760 break;
1761 if (status & fail)
1762 break;
ff5688ae 1763 if (time_after_eq(jiffies, start + HZ)) {
1da177e4
LT
1764 timed_out = 1;
1765 break;
1766 }
3173c890 1767 schedule_timeout_uninterruptible(1);
1da177e4
LT
1768 }
1769
1770 if (status & fail)
1771 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1772 ndev->name, name, status, fail);
1773 else if (timed_out)
1774 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1775 ndev->name, name, status);
1776
1777 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1778}
1779
1780#ifdef PHY_CODE_IS_FINISHED
1781static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1782{
1783 /* drive MDC low */
1784 dev->MEAR_cache &= ~MEAR_MDC;
1785 writel(dev->MEAR_cache, dev->base + MEAR);
1786 readl(dev->base + MEAR);
1787
1788 /* enable output, set bit */
1789 dev->MEAR_cache |= MEAR_MDDIR;
1790 if (bit)
1791 dev->MEAR_cache |= MEAR_MDIO;
1792 else
1793 dev->MEAR_cache &= ~MEAR_MDIO;
1794
1795 /* set the output bit */
1796 writel(dev->MEAR_cache, dev->base + MEAR);
1797 readl(dev->base + MEAR);
1798
1799 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1800 udelay(1);
1801
1802 /* drive MDC high causing the data bit to be latched */
1803 dev->MEAR_cache |= MEAR_MDC;
1804 writel(dev->MEAR_cache, dev->base + MEAR);
1805 readl(dev->base + MEAR);
1806
1807 /* Wait again... */
1808 udelay(1);
1809}
1810
1811static int ns83820_mii_read_bit(struct ns83820 *dev)
1812{
1813 int bit;
1814
1815 /* drive MDC low, disable output */
1816 dev->MEAR_cache &= ~MEAR_MDC;
1817 dev->MEAR_cache &= ~MEAR_MDDIR;
1818 writel(dev->MEAR_cache, dev->base + MEAR);
1819 readl(dev->base + MEAR);
1820
1821 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1822 udelay(1);
1823
1824 /* drive MDC high causing the data bit to be latched */
1825 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1826 dev->MEAR_cache |= MEAR_MDC;
1827 writel(dev->MEAR_cache, dev->base + MEAR);
1828
1829 /* Wait again... */
1830 udelay(1);
1831
1832 return bit;
1833}
1834
1835static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1836{
1837 unsigned data = 0;
1838 int i;
1839
1840 /* read some garbage so that we eventually sync up */
1841 for (i=0; i<64; i++)
1842 ns83820_mii_read_bit(dev);
1843
1844 ns83820_mii_write_bit(dev, 0); /* start */
1845 ns83820_mii_write_bit(dev, 1);
1846 ns83820_mii_write_bit(dev, 1); /* opcode read */
1847 ns83820_mii_write_bit(dev, 0);
1848
1849 /* write out the phy address: 5 bits, msb first */
1850 for (i=0; i<5; i++)
1851 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1852
1853 /* write out the register address, 5 bits, msb first */
1854 for (i=0; i<5; i++)
1855 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1856
1857 ns83820_mii_read_bit(dev); /* turn around cycles */
1858 ns83820_mii_read_bit(dev);
1859
1860 /* read in the register data, 16 bits msb first */
1861 for (i=0; i<16; i++) {
1862 data <<= 1;
1863 data |= ns83820_mii_read_bit(dev);
1864 }
1865
1866 return data;
1867}
1868
1869static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1870{
1871 int i;
1872
1873 /* read some garbage so that we eventually sync up */
1874 for (i=0; i<64; i++)
1875 ns83820_mii_read_bit(dev);
1876
1877 ns83820_mii_write_bit(dev, 0); /* start */
1878 ns83820_mii_write_bit(dev, 1);
1879 ns83820_mii_write_bit(dev, 0); /* opcode read */
1880 ns83820_mii_write_bit(dev, 1);
1881
1882 /* write out the phy address: 5 bits, msb first */
1883 for (i=0; i<5; i++)
1884 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1885
1886 /* write out the register address, 5 bits, msb first */
1887 for (i=0; i<5; i++)
1888 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1889
1890 ns83820_mii_read_bit(dev); /* turn around cycles */
1891 ns83820_mii_read_bit(dev);
1892
1893 /* read in the register data, 16 bits msb first */
1894 for (i=0; i<16; i++)
1895 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1896
1897 return data;
1898}
1899
1900static void ns83820_probe_phy(struct net_device *ndev)
1901{
1902 struct ns83820 *dev = PRIV(ndev);
1903 static int first;
1904 int i;
1905#define MII_PHYIDR1 0x02
1906#define MII_PHYIDR2 0x03
1907
1908#if 0
1909 if (!first) {
1910 unsigned tmp;
1911 ns83820_mii_read_reg(dev, 1, 0x09);
1912 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1913
1914 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1915 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1916 udelay(1300);
1917 ns83820_mii_read_reg(dev, 1, 0x09);
1918 }
1919#endif
1920 first = 1;
1921
1922 for (i=1; i<2; i++) {
1923 int j;
1924 unsigned a, b;
1925 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1926 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1927
1928 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1929 // ndev->name, i, a, b);
1930
1931 for (j=0; j<0x16; j+=4) {
1932 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1933 ndev->name, j,
1934 ns83820_mii_read_reg(dev, i, 0 + j),
1935 ns83820_mii_read_reg(dev, i, 1 + j),
1936 ns83820_mii_read_reg(dev, i, 2 + j),
1937 ns83820_mii_read_reg(dev, i, 3 + j)
1938 );
1939 }
1940 }
1941 {
1942 unsigned a, b;
1943 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1944 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1945 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1946 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1947
1948 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1949 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1950 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1951 dprintk("version: 0x%04x 0x%04x\n", a, b);
1952 }
1953}
1954#endif
1955
6557d7b8
SH
1956static const struct net_device_ops netdev_ops = {
1957 .ndo_open = ns83820_open,
1958 .ndo_stop = ns83820_stop,
1959 .ndo_start_xmit = ns83820_hard_start_xmit,
1960 .ndo_get_stats = ns83820_get_stats,
1961 .ndo_change_mtu = ns83820_change_mtu,
1962 .ndo_set_multicast_list = ns83820_set_multicast,
1963 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 1964 .ndo_set_mac_address = eth_mac_addr,
6557d7b8 1965 .ndo_tx_timeout = ns83820_tx_timeout,
a7d1de25
SH
1966#ifdef NS83820_VLAN_ACCEL_SUPPORT
1967 .ndo_vlan_rx_register = ns83820_vlan_rx_register,
1968#endif
6557d7b8
SH
1969};
1970
1971static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1972 const struct pci_device_id *id)
1da177e4
LT
1973{
1974 struct net_device *ndev;
1975 struct ns83820 *dev;
1976 long addr;
1977 int err;
1978 int using_dac = 0;
1979
1980 /* See if we can set the dma mask early on; failure is fatal. */
910638ae 1981 if (sizeof(dma_addr_t) == 8 &&
6a35528a 1982 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1da177e4 1983 using_dac = 1;
284901a9 1984 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1da177e4
LT
1985 using_dac = 0;
1986 } else {
9b91cf9d 1987 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1da177e4
LT
1988 return -ENODEV;
1989 }
1990
1991 ndev = alloc_etherdev(sizeof(struct ns83820));
1da177e4 1992 err = -ENOMEM;
1956cc52 1993 if (!ndev)
1da177e4
LT
1994 goto out;
1995
1956cc52 1996 dev = PRIV(ndev);
d14e37e1
AB
1997 dev->ndev = ndev;
1998
1da177e4
LT
1999 spin_lock_init(&dev->rx_info.lock);
2000 spin_lock_init(&dev->tx_lock);
2001 spin_lock_init(&dev->misc_lock);
2002 dev->pci_dev = pci_dev;
2003
1da177e4
LT
2004 SET_NETDEV_DEV(ndev, &pci_dev->dev);
2005
c4028958 2006 INIT_WORK(&dev->tq_refill, queue_refill);
1da177e4
LT
2007 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
2008
2009 err = pci_enable_device(pci_dev);
2010 if (err) {
9b91cf9d 2011 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1da177e4
LT
2012 goto out_free;
2013 }
2014
2015 pci_set_master(pci_dev);
2016 addr = pci_resource_start(pci_dev, 1);
2017 dev->base = ioremap_nocache(addr, PAGE_SIZE);
2018 dev->tx_descs = pci_alloc_consistent(pci_dev,
2019 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2020 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2021 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2022 err = -ENOMEM;
2023 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2024 goto out_disable;
2025
2026 dprintk("%p: %08lx %p: %08lx\n",
2027 dev->tx_descs, (long)dev->tx_phy_descs,
2028 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2029
1a9f28c8 2030 ns83820_disable_interrupts(dev);
1da177e4
LT
2031
2032 dev->IMR_cache = 0;
2033
1fb9df5d 2034 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1da177e4
LT
2035 DRV_NAME, ndev);
2036 if (err) {
9b91cf9d 2037 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2e8a538d 2038 pci_dev->irq, err);
1da177e4
LT
2039 goto out_disable;
2040 }
2041
2042 /*
2043 * FIXME: we are holding rtnl_lock() over obscenely long area only
2044 * because some of the setup code uses dev->name. It's Wrong(tm) -
2045 * we should be using driver-specific names for all that stuff.
2046 * For now that will do, but we really need to come back and kill
2047 * most of the dev_alloc_name() users later.
2048 */
2049 rtnl_lock();
2050 err = dev_alloc_name(ndev, ndev->name);
2051 if (err < 0) {
9b91cf9d 2052 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1da177e4
LT
2053 goto out_free_irq;
2054 }
2055
2056 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2057 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2058 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2059
6557d7b8 2060 ndev->netdev_ops = &netdev_ops;
1da177e4 2061 SET_ETHTOOL_OPS(ndev, &ops);
1da177e4
LT
2062 ndev->watchdog_timeo = 5 * HZ;
2063 pci_set_drvdata(pci_dev, ndev);
2064
2065 ns83820_do_reset(dev, CR_RST);
2066
2067 /* Must reset the ram bist before running it */
2068 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2069 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2070 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2071 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2072 PTSCR_EEBIST_FAIL);
2073 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2074
2075 /* I love config registers */
2076 dev->CFG_cache = readl(dev->base + CFG);
2077
2078 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2079 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2080 ndev->name);
2081 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2082 if (!(dev->CFG_cache & CFG_DATA64_EN))
2083 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2084 ndev->name);
2085 } else
2086 dev->CFG_cache &= ~(CFG_DATA64_EN);
2087
2088 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2089 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2090 CFG_M64ADDR);
2091 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2092 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2093 dev->CFG_cache |= CFG_REQALG;
2094 dev->CFG_cache |= CFG_POW;
2095 dev->CFG_cache |= CFG_TMRTEST;
2096
2097 /* When compiled with 64 bit addressing, we must always enable
2098 * the 64 bit descriptor format.
2099 */
6aa20a22 2100 if (sizeof(dma_addr_t) == 8)
c16ef1ce 2101 dev->CFG_cache |= CFG_M64ADDR;
1da177e4
LT
2102 if (using_dac)
2103 dev->CFG_cache |= CFG_T64ADDR;
2104
2105 /* Big endian mode does not seem to do what the docs suggest */
2106 dev->CFG_cache &= ~CFG_BEM;
2107
2108 /* setup optical transceiver if we have one */
2109 if (dev->CFG_cache & CFG_TBI_EN) {
2110 printk(KERN_INFO "%s: enabling optical transceiver\n",
2111 ndev->name);
2112 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2113
2114 /* setup auto negotiation feature advertisement */
2115 writel(readl(dev->base + TANAR)
2116 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2117 dev->base + TANAR);
2118
2119 /* start auto negotiation */
2120 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2121 dev->base + TBICR);
2122 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2123 dev->linkstate = LINK_AUTONEGOTIATE;
2124
2125 dev->CFG_cache |= CFG_MODE_1000;
2126 }
2127
2128 writel(dev->CFG_cache, dev->base + CFG);
2129 dprintk("CFG: %08x\n", dev->CFG_cache);
2130
2131 if (reset_phy) {
2132 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2133 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2134 msleep(10);
2135 writel(dev->CFG_cache, dev->base + CFG);
2136 }
2137
6aa20a22 2138#if 0 /* Huh? This sets the PCI latency register. Should be done via
1da177e4
LT
2139 * the PCI layer. FIXME.
2140 */
2141 if (readl(dev->base + SRR))
2142 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2143#endif
2144
2145 /* Note! The DMA burst size interacts with packet
2146 * transmission, such that the largest packet that
2147 * can be transmitted is 8192 - FLTH - burst size.
2148 * If only the transmit fifo was larger...
2149 */
6aa20a22 2150 /* Ramit : 1024 DMA is not a good idea, it ends up banging
1da177e4
LT
2151 * some DELL and COMPAQ SMP systems */
2152 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2153 | ((1600 / 32) * 0x100),
2154 dev->base + TXCFG);
2155
2156 /* Flush the interrupt holdoff timer */
2157 writel(0x000, dev->base + IHR);
2158 writel(0x100, dev->base + IHR);
2159 writel(0x000, dev->base + IHR);
2160
2161 /* Set Rx to full duplex, don't accept runt, errored, long or length
2162 * range errored packets. Use 512 byte DMA.
2163 */
6aa20a22
JG
2164 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2165 * some DELL and COMPAQ SMP systems
1da177e4
LT
2166 * Turn on ALP, only we are accpeting Jumbo Packets */
2167 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2168 | RXCFG_STRIPCRC
2169 //| RXCFG_ALP
2170 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2171
2172 /* Disable priority queueing */
2173 writel(0, dev->base + PQCR);
2174
2175 /* Enable IP checksum validation and detetion of VLAN headers.
2176 * Note: do not set the reject options as at least the 0x102
2177 * revision of the chip does not properly accept IP fragments
2178 * at least for UDP.
2179 */
2180 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2181 * the MAC it calculates the packetsize AFTER stripping the VLAN
2182 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2183 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2184 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2185 * it discrards it!. These guys......
2186 * also turn on tag stripping if hardware acceleration is enabled
2187 */
2188#ifdef NS83820_VLAN_ACCEL_SUPPORT
6aa20a22 2189#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
1da177e4
LT
2190#else
2191#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2192#endif
2193 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2194
2195 /* Enable per-packet TCP/UDP/IP checksumming
2196 * and per packet vlan tag insertion if
2197 * vlan hardware acceleration is enabled
2198 */
2199#ifdef NS83820_VLAN_ACCEL_SUPPORT
2200#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2201#else
2202#define VTCR_INIT_VALUE VTCR_PPCHK
2203#endif
2204 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2205
2206 /* Ramit : Enable async and sync pause frames */
2207 /* writel(0, dev->base + PCR); */
2208 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2209 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2210 dev->base + PCR);
2211
2212 /* Disable Wake On Lan */
2213 writel(0, dev->base + WCSR);
2214
2215 ns83820_getmac(dev, ndev->dev_addr);
2216
2217 /* Yes, we support dumb IP checksum on transmit */
2218 ndev->features |= NETIF_F_SG;
2219 ndev->features |= NETIF_F_IP_CSUM;
2220
2221#ifdef NS83820_VLAN_ACCEL_SUPPORT
2222 /* We also support hardware vlan acceleration */
2223 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1da177e4
LT
2224#endif
2225
2226 if (using_dac) {
2227 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2228 ndev->name);
2229 ndev->features |= NETIF_F_HIGHDMA;
2230 }
2231
e174961c 2232 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
1da177e4
LT
2233 ndev->name,
2234 (unsigned)readl(dev->base + SRR) >> 8,
2235 (unsigned)readl(dev->base + SRR) & 0xff,
e174961c 2236 ndev->dev_addr, addr, pci_dev->irq,
1da177e4
LT
2237 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2238 );
2239
2240#ifdef PHY_CODE_IS_FINISHED
2241 ns83820_probe_phy(ndev);
2242#endif
2243
2244 err = register_netdevice(ndev);
2245 if (err) {
2246 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2247 goto out_cleanup;
2248 }
2249 rtnl_unlock();
2250
2251 return 0;
2252
2253out_cleanup:
1a9f28c8 2254 ns83820_disable_interrupts(dev); /* paranoia */
1da177e4
LT
2255out_free_irq:
2256 rtnl_unlock();
2257 free_irq(pci_dev->irq, ndev);
2258out_disable:
2259 if (dev->base)
2260 iounmap(dev->base);
2261 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2262 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2263 pci_disable_device(pci_dev);
2264out_free:
2265 free_netdev(ndev);
2266 pci_set_drvdata(pci_dev, NULL);
2267out:
2268 return err;
2269}
2270
2271static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2272{
2273 struct net_device *ndev = pci_get_drvdata(pci_dev);
2274 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2275
2276 if (!ndev) /* paranoia */
2277 return;
2278
1a9f28c8 2279 ns83820_disable_interrupts(dev); /* paranoia */
1da177e4
LT
2280
2281 unregister_netdev(ndev);
2282 free_irq(dev->pci_dev->irq, ndev);
2283 iounmap(dev->base);
2284 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2285 dev->tx_descs, dev->tx_phy_descs);
2286 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2287 dev->rx_info.descs, dev->rx_info.phy_descs);
2288 pci_disable_device(dev->pci_dev);
2289 free_netdev(ndev);
2290 pci_set_drvdata(pci_dev, NULL);
2291}
2292
a3aa1884 2293static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
1da177e4
LT
2294 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2295 { 0, },
2296};
2297
2298static struct pci_driver driver = {
2299 .name = "ns83820",
2300 .id_table = ns83820_pci_tbl,
2301 .probe = ns83820_init_one,
2302 .remove = __devexit_p(ns83820_remove_one),
2303#if 0 /* FIXME: implement */
2304 .suspend = ,
2305 .resume = ,
2306#endif
2307};
2308
2309
2310static int __init ns83820_init(void)
2311{
2312 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
29917620 2313 return pci_register_driver(&driver);
1da177e4
LT
2314}
2315
2316static void __exit ns83820_exit(void)
2317{
2318 pci_unregister_driver(&driver);
2319}
2320
2321MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2322MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2323MODULE_LICENSE("GPL");
2324
2325MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2326
2327module_param(lnksts, int, 0);
2328MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2329
2330module_param(ihr, int, 0);
2331MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2332
2333module_param(reset_phy, int, 0);
2334MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2335
2336module_init(ns83820_init);
2337module_exit(ns83820_exit);
This page took 0.839576 seconds and 5 git commands to generate.