qlge: Move firmware event handler.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
c4e84bde
RM
250 switch (type) {
251 case MAC_ADDR_TYPE_MULTI_MAC:
252 case MAC_ADDR_TYPE_CAM_MAC:
253 {
254 status =
255 ql_wait_reg_rdy(qdev,
939678f8 256 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
257 if (status)
258 goto exit;
259 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
260 (index << MAC_ADDR_IDX_SHIFT) | /* index */
261 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
262 status =
263 ql_wait_reg_rdy(qdev,
939678f8 264 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
265 if (status)
266 goto exit;
267 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
268 status =
269 ql_wait_reg_rdy(qdev,
939678f8 270 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
271 if (status)
272 goto exit;
273 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
274 (index << MAC_ADDR_IDX_SHIFT) | /* index */
275 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
276 status =
277 ql_wait_reg_rdy(qdev,
939678f8 278 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
279 if (status)
280 goto exit;
281 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
282 if (type == MAC_ADDR_TYPE_CAM_MAC) {
283 status =
284 ql_wait_reg_rdy(qdev,
939678f8 285 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
286 if (status)
287 goto exit;
288 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
289 (index << MAC_ADDR_IDX_SHIFT) | /* index */
290 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
291 status =
292 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 293 MAC_ADDR_MR, 0);
c4e84bde
RM
294 if (status)
295 goto exit;
296 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
297 }
298 break;
299 }
300 case MAC_ADDR_TYPE_VLAN:
301 case MAC_ADDR_TYPE_MULTI_FLTR:
302 default:
303 QPRINTK(qdev, IFUP, CRIT,
304 "Address type %d not yet supported.\n", type);
305 status = -EPERM;
306 }
307exit:
c4e84bde
RM
308 return status;
309}
310
311/* Set up a MAC, multicast or VLAN address for the
312 * inbound frame matching.
313 */
314static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
315 u16 index)
316{
317 u32 offset = 0;
318 int status = 0;
319
c4e84bde
RM
320 switch (type) {
321 case MAC_ADDR_TYPE_MULTI_MAC:
322 case MAC_ADDR_TYPE_CAM_MAC:
323 {
324 u32 cam_output;
325 u32 upper = (addr[0] << 8) | addr[1];
326 u32 lower =
327 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
328 (addr[5]);
329
330 QPRINTK(qdev, IFUP, INFO,
7c510e4b 331 "Adding %s address %pM"
c4e84bde
RM
332 " at index %d in the CAM.\n",
333 ((type ==
334 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 335 "UNICAST"), addr, index);
c4e84bde
RM
336
337 status =
338 ql_wait_reg_rdy(qdev,
939678f8 339 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
340 if (status)
341 goto exit;
342 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
343 (index << MAC_ADDR_IDX_SHIFT) | /* index */
344 type); /* type */
345 ql_write32(qdev, MAC_ADDR_DATA, lower);
346 status =
347 ql_wait_reg_rdy(qdev,
939678f8 348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352 (index << MAC_ADDR_IDX_SHIFT) | /* index */
353 type); /* type */
354 ql_write32(qdev, MAC_ADDR_DATA, upper);
355 status =
356 ql_wait_reg_rdy(qdev,
939678f8 357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
361 (index << MAC_ADDR_IDX_SHIFT) | /* index */
362 type); /* type */
363 /* This field should also include the queue id
364 and possibly the function id. Right now we hardcode
365 the route field to NIC core.
366 */
367 if (type == MAC_ADDR_TYPE_CAM_MAC) {
368 cam_output = (CAM_OUT_ROUTE_NIC |
369 (qdev->
370 func << CAM_OUT_FUNC_SHIFT) |
371 (qdev->
372 rss_ring_first_cq_id <<
373 CAM_OUT_CQ_ID_SHIFT));
374 if (qdev->vlgrp)
375 cam_output |= CAM_OUT_RV;
376 /* route to NIC core */
377 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
378 }
379 break;
380 }
381 case MAC_ADDR_TYPE_VLAN:
382 {
383 u32 enable_bit = *((u32 *) &addr[0]);
384 /* For VLAN, the addr actually holds a bit that
385 * either enables or disables the vlan id we are
386 * addressing. It's either MAC_ADDR_E on or off.
387 * That's bit-27 we're talking about.
388 */
389 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
390 (enable_bit ? "Adding" : "Removing"),
391 index, (enable_bit ? "to" : "from"));
392
393 status =
394 ql_wait_reg_rdy(qdev,
939678f8 395 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
396 if (status)
397 goto exit;
398 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
399 (index << MAC_ADDR_IDX_SHIFT) | /* index */
400 type | /* type */
401 enable_bit); /* enable/disable */
402 break;
403 }
404 case MAC_ADDR_TYPE_MULTI_FLTR:
405 default:
406 QPRINTK(qdev, IFUP, CRIT,
407 "Address type %d not yet supported.\n", type);
408 status = -EPERM;
409 }
410exit:
c4e84bde
RM
411 return status;
412}
413
414/* Get a specific frame routing value from the CAM.
415 * Used for debug and reg dump.
416 */
417int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
418{
419 int status = 0;
420
939678f8 421 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
422 if (status)
423 goto exit;
424
425 ql_write32(qdev, RT_IDX,
426 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 427 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
428 if (status)
429 goto exit;
430 *value = ql_read32(qdev, RT_DATA);
431exit:
c4e84bde
RM
432 return status;
433}
434
435/* The NIC function for this chip has 16 routing indexes. Each one can be used
436 * to route different frame types to various inbound queues. We send broadcast/
437 * multicast/error frames to the default queue for slow handling,
438 * and CAM hit/RSS frames to the fast handling queues.
439 */
440static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
441 int enable)
442{
8587ea35 443 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
444 u32 value = 0;
445
c4e84bde
RM
446 QPRINTK(qdev, IFUP, DEBUG,
447 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
448 (enable ? "Adding" : "Removing"),
449 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
450 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
451 ((index ==
452 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
453 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
454 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
455 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
456 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
457 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
458 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
459 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
460 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
461 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
462 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
463 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
464 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
465 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
466 (enable ? "to" : "from"));
467
468 switch (mask) {
469 case RT_IDX_CAM_HIT:
470 {
471 value = RT_IDX_DST_CAM_Q | /* dest */
472 RT_IDX_TYPE_NICQ | /* type */
473 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
474 break;
475 }
476 case RT_IDX_VALID: /* Promiscuous Mode frames. */
477 {
478 value = RT_IDX_DST_DFLT_Q | /* dest */
479 RT_IDX_TYPE_NICQ | /* type */
480 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
481 break;
482 }
483 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
484 {
485 value = RT_IDX_DST_DFLT_Q | /* dest */
486 RT_IDX_TYPE_NICQ | /* type */
487 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
488 break;
489 }
490 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
491 {
492 value = RT_IDX_DST_DFLT_Q | /* dest */
493 RT_IDX_TYPE_NICQ | /* type */
494 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
495 break;
496 }
497 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
498 {
499 value = RT_IDX_DST_CAM_Q | /* dest */
500 RT_IDX_TYPE_NICQ | /* type */
501 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
502 break;
503 }
504 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
505 {
506 value = RT_IDX_DST_CAM_Q | /* dest */
507 RT_IDX_TYPE_NICQ | /* type */
508 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
509 break;
510 }
511 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
512 {
513 value = RT_IDX_DST_RSS | /* dest */
514 RT_IDX_TYPE_NICQ | /* type */
515 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
516 break;
517 }
518 case 0: /* Clear the E-bit on an entry. */
519 {
520 value = RT_IDX_DST_DFLT_Q | /* dest */
521 RT_IDX_TYPE_NICQ | /* type */
522 (index << RT_IDX_IDX_SHIFT);/* index */
523 break;
524 }
525 default:
526 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
527 mask);
528 status = -EPERM;
529 goto exit;
530 }
531
532 if (value) {
533 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
534 if (status)
535 goto exit;
536 value |= (enable ? RT_IDX_E : 0);
537 ql_write32(qdev, RT_IDX, value);
538 ql_write32(qdev, RT_DATA, enable ? mask : 0);
539 }
540exit:
c4e84bde
RM
541 return status;
542}
543
544static void ql_enable_interrupts(struct ql_adapter *qdev)
545{
546 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
547}
548
549static void ql_disable_interrupts(struct ql_adapter *qdev)
550{
551 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
552}
553
554/* If we're running with multiple MSI-X vectors then we enable on the fly.
555 * Otherwise, we may have multiple outstanding workers and don't want to
556 * enable until the last one finishes. In this case, the irq_cnt gets
557 * incremented everytime we queue a worker and decremented everytime
558 * a worker finishes. Once it hits zero we enable the interrupt.
559 */
bb0d215c 560u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 561{
bb0d215c
RM
562 u32 var = 0;
563 unsigned long hw_flags = 0;
564 struct intr_context *ctx = qdev->intr_context + intr;
565
566 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
567 /* Always enable if we're MSIX multi interrupts and
568 * it's not the default (zeroeth) interrupt.
569 */
c4e84bde 570 ql_write32(qdev, INTR_EN,
bb0d215c
RM
571 ctx->intr_en_mask);
572 var = ql_read32(qdev, STS);
573 return var;
c4e84bde 574 }
bb0d215c
RM
575
576 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
577 if (atomic_dec_and_test(&ctx->irq_cnt)) {
578 ql_write32(qdev, INTR_EN,
579 ctx->intr_en_mask);
580 var = ql_read32(qdev, STS);
581 }
582 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
583 return var;
c4e84bde
RM
584}
585
586static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
587{
588 u32 var = 0;
bb0d215c
RM
589 unsigned long hw_flags;
590 struct intr_context *ctx;
c4e84bde 591
bb0d215c
RM
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
594 */
595 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596 return 0;
597
598 ctx = qdev->intr_context + intr;
599 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
600 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 601 ql_write32(qdev, INTR_EN,
bb0d215c 602 ctx->intr_dis_mask);
c4e84bde
RM
603 var = ql_read32(qdev, STS);
604 }
bb0d215c
RM
605 atomic_inc(&ctx->irq_cnt);
606 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
607 return var;
608}
609
610static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611{
612 int i;
613 for (i = 0; i < qdev->intr_count; i++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
617 */
bb0d215c
RM
618 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619 i == 0))
620 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
621 ql_enable_completion_interrupt(qdev, i);
622 }
623
624}
625
26351479 626static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
627{
628 int status = 0;
629 /* wait for reg to come ready */
630 status = ql_wait_reg_rdy(qdev,
631 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
632 if (status)
633 goto exit;
634 /* set up for reg read */
635 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
636 /* wait for reg to come ready */
637 status = ql_wait_reg_rdy(qdev,
638 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
639 if (status)
640 goto exit;
26351479
RM
641 /* This data is stored on flash as an array of
642 * __le32. Since ql_read32() returns cpu endian
643 * we need to swap it back.
644 */
645 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
646exit:
647 return status;
648}
649
650static int ql_get_flash_params(struct ql_adapter *qdev)
651{
652 int i;
653 int status;
26351479 654 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7
RM
655 u32 offset = 0;
656
657 /* Second function's parameters follow the first
658 * function's.
659 */
660 if (qdev->func)
661 offset = sizeof(qdev->flash) / sizeof(u32);
c4e84bde
RM
662
663 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
664 return -ETIMEDOUT;
665
666 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
e78f5fa7 667 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
668 if (status) {
669 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
670 goto exit;
671 }
672
673 }
674exit:
675 ql_sem_unlock(qdev, SEM_FLASH_MASK);
676 return status;
677}
678
679/* xgmac register are located behind the xgmac_addr and xgmac_data
680 * register pair. Each read/write requires us to wait for the ready
681 * bit before reading/writing the data.
682 */
683static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
684{
685 int status;
686 /* wait for reg to come ready */
687 status = ql_wait_reg_rdy(qdev,
688 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
689 if (status)
690 return status;
691 /* write the data to the data reg */
692 ql_write32(qdev, XGMAC_DATA, data);
693 /* trigger the write */
694 ql_write32(qdev, XGMAC_ADDR, reg);
695 return status;
696}
697
698/* xgmac register are located behind the xgmac_addr and xgmac_data
699 * register pair. Each read/write requires us to wait for the ready
700 * bit before reading/writing the data.
701 */
702int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
703{
704 int status = 0;
705 /* wait for reg to come ready */
706 status = ql_wait_reg_rdy(qdev,
707 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
708 if (status)
709 goto exit;
710 /* set up for reg read */
711 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
712 /* wait for reg to come ready */
713 status = ql_wait_reg_rdy(qdev,
714 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
715 if (status)
716 goto exit;
717 /* get the data */
718 *data = ql_read32(qdev, XGMAC_DATA);
719exit:
720 return status;
721}
722
723/* This is used for reading the 64-bit statistics regs. */
724int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
725{
726 int status = 0;
727 u32 hi = 0;
728 u32 lo = 0;
729
730 status = ql_read_xgmac_reg(qdev, reg, &lo);
731 if (status)
732 goto exit;
733
734 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
735 if (status)
736 goto exit;
737
738 *data = (u64) lo | ((u64) hi << 32);
739
740exit:
741 return status;
742}
743
744/* Take the MAC Core out of reset.
745 * Enable statistics counting.
746 * Take the transmitter/receiver out of reset.
747 * This functionality may be done in the MPI firmware at a
748 * later date.
749 */
750static int ql_port_initialize(struct ql_adapter *qdev)
751{
752 int status = 0;
753 u32 data;
754
755 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
756 /* Another function has the semaphore, so
757 * wait for the port init bit to come ready.
758 */
759 QPRINTK(qdev, LINK, INFO,
760 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
761 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
762 if (status) {
763 QPRINTK(qdev, LINK, CRIT,
764 "Port initialize timed out.\n");
765 }
766 return status;
767 }
768
769 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
770 /* Set the core reset. */
771 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
772 if (status)
773 goto end;
774 data |= GLOBAL_CFG_RESET;
775 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
776 if (status)
777 goto end;
778
779 /* Clear the core reset and turn on jumbo for receiver. */
780 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
781 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
782 data |= GLOBAL_CFG_TX_STAT_EN;
783 data |= GLOBAL_CFG_RX_STAT_EN;
784 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
785 if (status)
786 goto end;
787
788 /* Enable transmitter, and clear it's reset. */
789 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
790 if (status)
791 goto end;
792 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
793 data |= TX_CFG_EN; /* Enable the transmitter. */
794 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
795 if (status)
796 goto end;
797
798 /* Enable receiver and clear it's reset. */
799 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
800 if (status)
801 goto end;
802 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
803 data |= RX_CFG_EN; /* Enable the receiver. */
804 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
805 if (status)
806 goto end;
807
808 /* Turn on jumbo. */
809 status =
810 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
811 if (status)
812 goto end;
813 status =
814 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
815 if (status)
816 goto end;
817
818 /* Signal to the world that the port is enabled. */
819 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
820end:
821 ql_sem_unlock(qdev, qdev->xg_sem_mask);
822 return status;
823}
824
825/* Get the next large buffer. */
8668ae92 826static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
827{
828 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
829 rx_ring->lbq_curr_idx++;
830 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
831 rx_ring->lbq_curr_idx = 0;
832 rx_ring->lbq_free_cnt++;
833 return lbq_desc;
834}
835
836/* Get the next small buffer. */
8668ae92 837static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
838{
839 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
840 rx_ring->sbq_curr_idx++;
841 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
842 rx_ring->sbq_curr_idx = 0;
843 rx_ring->sbq_free_cnt++;
844 return sbq_desc;
845}
846
847/* Update an rx ring index. */
848static void ql_update_cq(struct rx_ring *rx_ring)
849{
850 rx_ring->cnsmr_idx++;
851 rx_ring->curr_entry++;
852 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
853 rx_ring->cnsmr_idx = 0;
854 rx_ring->curr_entry = rx_ring->cq_base;
855 }
856}
857
858static void ql_write_cq_idx(struct rx_ring *rx_ring)
859{
860 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
861}
862
863/* Process (refill) a large buffer queue. */
864static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
865{
49f2186d
RM
866 u32 clean_idx = rx_ring->lbq_clean_idx;
867 u32 start_idx = clean_idx;
c4e84bde 868 struct bq_desc *lbq_desc;
c4e84bde
RM
869 u64 map;
870 int i;
871
872 while (rx_ring->lbq_free_cnt > 16) {
873 for (i = 0; i < 16; i++) {
874 QPRINTK(qdev, RX_STATUS, DEBUG,
875 "lbq: try cleaning clean_idx = %d.\n",
876 clean_idx);
877 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
878 if (lbq_desc->p.lbq_page == NULL) {
879 QPRINTK(qdev, RX_STATUS, DEBUG,
880 "lbq: getting new page for index %d.\n",
881 lbq_desc->index);
882 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
883 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 884 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
885 QPRINTK(qdev, RX_STATUS, ERR,
886 "Couldn't get a page.\n");
887 return;
888 }
889 map = pci_map_page(qdev->pdev,
890 lbq_desc->p.lbq_page,
891 0, PAGE_SIZE,
892 PCI_DMA_FROMDEVICE);
893 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 894 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
895 put_page(lbq_desc->p.lbq_page);
896 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
897 QPRINTK(qdev, RX_STATUS, ERR,
898 "PCI mapping failed.\n");
899 return;
900 }
901 pci_unmap_addr_set(lbq_desc, mapaddr, map);
902 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 903 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
904 }
905 clean_idx++;
906 if (clean_idx == rx_ring->lbq_len)
907 clean_idx = 0;
908 }
909
910 rx_ring->lbq_clean_idx = clean_idx;
911 rx_ring->lbq_prod_idx += 16;
912 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
913 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
914 rx_ring->lbq_free_cnt -= 16;
915 }
916
917 if (start_idx != clean_idx) {
c4e84bde
RM
918 QPRINTK(qdev, RX_STATUS, DEBUG,
919 "lbq: updating prod idx = %d.\n",
920 rx_ring->lbq_prod_idx);
921 ql_write_db_reg(rx_ring->lbq_prod_idx,
922 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
923 }
924}
925
926/* Process (refill) a small buffer queue. */
927static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
928{
49f2186d
RM
929 u32 clean_idx = rx_ring->sbq_clean_idx;
930 u32 start_idx = clean_idx;
c4e84bde 931 struct bq_desc *sbq_desc;
c4e84bde
RM
932 u64 map;
933 int i;
934
935 while (rx_ring->sbq_free_cnt > 16) {
936 for (i = 0; i < 16; i++) {
937 sbq_desc = &rx_ring->sbq[clean_idx];
938 QPRINTK(qdev, RX_STATUS, DEBUG,
939 "sbq: try cleaning clean_idx = %d.\n",
940 clean_idx);
c4e84bde
RM
941 if (sbq_desc->p.skb == NULL) {
942 QPRINTK(qdev, RX_STATUS, DEBUG,
943 "sbq: getting new skb for index %d.\n",
944 sbq_desc->index);
945 sbq_desc->p.skb =
946 netdev_alloc_skb(qdev->ndev,
947 rx_ring->sbq_buf_size);
948 if (sbq_desc->p.skb == NULL) {
949 QPRINTK(qdev, PROBE, ERR,
950 "Couldn't get an skb.\n");
951 rx_ring->sbq_clean_idx = clean_idx;
952 return;
953 }
954 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
955 map = pci_map_single(qdev->pdev,
956 sbq_desc->p.skb->data,
957 rx_ring->sbq_buf_size /
958 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
959 if (pci_dma_mapping_error(qdev->pdev, map)) {
960 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
961 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
962 dev_kfree_skb_any(sbq_desc->p.skb);
963 sbq_desc->p.skb = NULL;
c907a35a
RM
964 return;
965 }
c4e84bde
RM
966 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967 pci_unmap_len_set(sbq_desc, maplen,
968 rx_ring->sbq_buf_size / 2);
2c9a0d41 969 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
970 }
971
972 clean_idx++;
973 if (clean_idx == rx_ring->sbq_len)
974 clean_idx = 0;
975 }
976 rx_ring->sbq_clean_idx = clean_idx;
977 rx_ring->sbq_prod_idx += 16;
978 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
979 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
980 rx_ring->sbq_free_cnt -= 16;
981 }
982
983 if (start_idx != clean_idx) {
c4e84bde
RM
984 QPRINTK(qdev, RX_STATUS, DEBUG,
985 "sbq: updating prod idx = %d.\n",
986 rx_ring->sbq_prod_idx);
987 ql_write_db_reg(rx_ring->sbq_prod_idx,
988 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
989 }
990}
991
992static void ql_update_buffer_queues(struct ql_adapter *qdev,
993 struct rx_ring *rx_ring)
994{
995 ql_update_sbq(qdev, rx_ring);
996 ql_update_lbq(qdev, rx_ring);
997}
998
999/* Unmaps tx buffers. Can be called from send() if a pci mapping
1000 * fails at some stage, or from the interrupt when a tx completes.
1001 */
1002static void ql_unmap_send(struct ql_adapter *qdev,
1003 struct tx_ring_desc *tx_ring_desc, int mapped)
1004{
1005 int i;
1006 for (i = 0; i < mapped; i++) {
1007 if (i == 0 || (i == 7 && mapped > 7)) {
1008 /*
1009 * Unmap the skb->data area, or the
1010 * external sglist (AKA the Outbound
1011 * Address List (OAL)).
1012 * If its the zeroeth element, then it's
1013 * the skb->data area. If it's the 7th
1014 * element and there is more than 6 frags,
1015 * then its an OAL.
1016 */
1017 if (i == 7) {
1018 QPRINTK(qdev, TX_DONE, DEBUG,
1019 "unmapping OAL area.\n");
1020 }
1021 pci_unmap_single(qdev->pdev,
1022 pci_unmap_addr(&tx_ring_desc->map[i],
1023 mapaddr),
1024 pci_unmap_len(&tx_ring_desc->map[i],
1025 maplen),
1026 PCI_DMA_TODEVICE);
1027 } else {
1028 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1029 i);
1030 pci_unmap_page(qdev->pdev,
1031 pci_unmap_addr(&tx_ring_desc->map[i],
1032 mapaddr),
1033 pci_unmap_len(&tx_ring_desc->map[i],
1034 maplen), PCI_DMA_TODEVICE);
1035 }
1036 }
1037
1038}
1039
1040/* Map the buffers for this transmit. This will return
1041 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1042 */
1043static int ql_map_send(struct ql_adapter *qdev,
1044 struct ob_mac_iocb_req *mac_iocb_ptr,
1045 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1046{
1047 int len = skb_headlen(skb);
1048 dma_addr_t map;
1049 int frag_idx, err, map_idx = 0;
1050 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1051 int frag_cnt = skb_shinfo(skb)->nr_frags;
1052
1053 if (frag_cnt) {
1054 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1055 }
1056 /*
1057 * Map the skb buffer first.
1058 */
1059 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1060
1061 err = pci_dma_mapping_error(qdev->pdev, map);
1062 if (err) {
1063 QPRINTK(qdev, TX_QUEUED, ERR,
1064 "PCI mapping failed with error: %d\n", err);
1065
1066 return NETDEV_TX_BUSY;
1067 }
1068
1069 tbd->len = cpu_to_le32(len);
1070 tbd->addr = cpu_to_le64(map);
1071 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1072 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1073 map_idx++;
1074
1075 /*
1076 * This loop fills the remainder of the 8 address descriptors
1077 * in the IOCB. If there are more than 7 fragments, then the
1078 * eighth address desc will point to an external list (OAL).
1079 * When this happens, the remainder of the frags will be stored
1080 * in this list.
1081 */
1082 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1083 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1084 tbd++;
1085 if (frag_idx == 6 && frag_cnt > 7) {
1086 /* Let's tack on an sglist.
1087 * Our control block will now
1088 * look like this:
1089 * iocb->seg[0] = skb->data
1090 * iocb->seg[1] = frag[0]
1091 * iocb->seg[2] = frag[1]
1092 * iocb->seg[3] = frag[2]
1093 * iocb->seg[4] = frag[3]
1094 * iocb->seg[5] = frag[4]
1095 * iocb->seg[6] = frag[5]
1096 * iocb->seg[7] = ptr to OAL (external sglist)
1097 * oal->seg[0] = frag[6]
1098 * oal->seg[1] = frag[7]
1099 * oal->seg[2] = frag[8]
1100 * oal->seg[3] = frag[9]
1101 * oal->seg[4] = frag[10]
1102 * etc...
1103 */
1104 /* Tack on the OAL in the eighth segment of IOCB. */
1105 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1106 sizeof(struct oal),
1107 PCI_DMA_TODEVICE);
1108 err = pci_dma_mapping_error(qdev->pdev, map);
1109 if (err) {
1110 QPRINTK(qdev, TX_QUEUED, ERR,
1111 "PCI mapping outbound address list with error: %d\n",
1112 err);
1113 goto map_error;
1114 }
1115
1116 tbd->addr = cpu_to_le64(map);
1117 /*
1118 * The length is the number of fragments
1119 * that remain to be mapped times the length
1120 * of our sglist (OAL).
1121 */
1122 tbd->len =
1123 cpu_to_le32((sizeof(struct tx_buf_desc) *
1124 (frag_cnt - frag_idx)) | TX_DESC_C);
1125 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1126 map);
1127 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1128 sizeof(struct oal));
1129 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1130 map_idx++;
1131 }
1132
1133 map =
1134 pci_map_page(qdev->pdev, frag->page,
1135 frag->page_offset, frag->size,
1136 PCI_DMA_TODEVICE);
1137
1138 err = pci_dma_mapping_error(qdev->pdev, map);
1139 if (err) {
1140 QPRINTK(qdev, TX_QUEUED, ERR,
1141 "PCI mapping frags failed with error: %d.\n",
1142 err);
1143 goto map_error;
1144 }
1145
1146 tbd->addr = cpu_to_le64(map);
1147 tbd->len = cpu_to_le32(frag->size);
1148 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1149 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1150 frag->size);
1151
1152 }
1153 /* Save the number of segments we've mapped. */
1154 tx_ring_desc->map_cnt = map_idx;
1155 /* Terminate the last segment. */
1156 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1157 return NETDEV_TX_OK;
1158
1159map_error:
1160 /*
1161 * If the first frag mapping failed, then i will be zero.
1162 * This causes the unmap of the skb->data area. Otherwise
1163 * we pass in the number of frags that mapped successfully
1164 * so they can be umapped.
1165 */
1166 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1167 return NETDEV_TX_BUSY;
1168}
1169
8668ae92 1170static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1171{
1172 void *temp_addr = skb->data;
1173
1174 /* Undo the skb_reserve(skb,32) we did before
1175 * giving to hardware, and realign data on
1176 * a 2-byte boundary.
1177 */
1178 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1179 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1180 skb_copy_to_linear_data(skb, temp_addr,
1181 (unsigned int)len);
1182}
1183
1184/*
1185 * This function builds an skb for the given inbound
1186 * completion. It will be rewritten for readability in the near
1187 * future, but for not it works well.
1188 */
1189static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1190 struct rx_ring *rx_ring,
1191 struct ib_mac_iocb_rsp *ib_mac_rsp)
1192{
1193 struct bq_desc *lbq_desc;
1194 struct bq_desc *sbq_desc;
1195 struct sk_buff *skb = NULL;
1196 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1197 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1198
1199 /*
1200 * Handle the header buffer if present.
1201 */
1202 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1203 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1204 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1205 /*
1206 * Headers fit nicely into a small buffer.
1207 */
1208 sbq_desc = ql_get_curr_sbuf(rx_ring);
1209 pci_unmap_single(qdev->pdev,
1210 pci_unmap_addr(sbq_desc, mapaddr),
1211 pci_unmap_len(sbq_desc, maplen),
1212 PCI_DMA_FROMDEVICE);
1213 skb = sbq_desc->p.skb;
1214 ql_realign_skb(skb, hdr_len);
1215 skb_put(skb, hdr_len);
1216 sbq_desc->p.skb = NULL;
1217 }
1218
1219 /*
1220 * Handle the data buffer(s).
1221 */
1222 if (unlikely(!length)) { /* Is there data too? */
1223 QPRINTK(qdev, RX_STATUS, DEBUG,
1224 "No Data buffer in this packet.\n");
1225 return skb;
1226 }
1227
1228 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1229 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1230 QPRINTK(qdev, RX_STATUS, DEBUG,
1231 "Headers in small, data of %d bytes in small, combine them.\n", length);
1232 /*
1233 * Data is less than small buffer size so it's
1234 * stuffed in a small buffer.
1235 * For this case we append the data
1236 * from the "data" small buffer to the "header" small
1237 * buffer.
1238 */
1239 sbq_desc = ql_get_curr_sbuf(rx_ring);
1240 pci_dma_sync_single_for_cpu(qdev->pdev,
1241 pci_unmap_addr
1242 (sbq_desc, mapaddr),
1243 pci_unmap_len
1244 (sbq_desc, maplen),
1245 PCI_DMA_FROMDEVICE);
1246 memcpy(skb_put(skb, length),
1247 sbq_desc->p.skb->data, length);
1248 pci_dma_sync_single_for_device(qdev->pdev,
1249 pci_unmap_addr
1250 (sbq_desc,
1251 mapaddr),
1252 pci_unmap_len
1253 (sbq_desc,
1254 maplen),
1255 PCI_DMA_FROMDEVICE);
1256 } else {
1257 QPRINTK(qdev, RX_STATUS, DEBUG,
1258 "%d bytes in a single small buffer.\n", length);
1259 sbq_desc = ql_get_curr_sbuf(rx_ring);
1260 skb = sbq_desc->p.skb;
1261 ql_realign_skb(skb, length);
1262 skb_put(skb, length);
1263 pci_unmap_single(qdev->pdev,
1264 pci_unmap_addr(sbq_desc,
1265 mapaddr),
1266 pci_unmap_len(sbq_desc,
1267 maplen),
1268 PCI_DMA_FROMDEVICE);
1269 sbq_desc->p.skb = NULL;
1270 }
1271 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1272 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1273 QPRINTK(qdev, RX_STATUS, DEBUG,
1274 "Header in small, %d bytes in large. Chain large to small!\n", length);
1275 /*
1276 * The data is in a single large buffer. We
1277 * chain it to the header buffer's skb and let
1278 * it rip.
1279 */
1280 lbq_desc = ql_get_curr_lbuf(rx_ring);
1281 pci_unmap_page(qdev->pdev,
1282 pci_unmap_addr(lbq_desc,
1283 mapaddr),
1284 pci_unmap_len(lbq_desc, maplen),
1285 PCI_DMA_FROMDEVICE);
1286 QPRINTK(qdev, RX_STATUS, DEBUG,
1287 "Chaining page to skb.\n");
1288 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1289 0, length);
1290 skb->len += length;
1291 skb->data_len += length;
1292 skb->truesize += length;
1293 lbq_desc->p.lbq_page = NULL;
1294 } else {
1295 /*
1296 * The headers and data are in a single large buffer. We
1297 * copy it to a new skb and let it go. This can happen with
1298 * jumbo mtu on a non-TCP/UDP frame.
1299 */
1300 lbq_desc = ql_get_curr_lbuf(rx_ring);
1301 skb = netdev_alloc_skb(qdev->ndev, length);
1302 if (skb == NULL) {
1303 QPRINTK(qdev, PROBE, DEBUG,
1304 "No skb available, drop the packet.\n");
1305 return NULL;
1306 }
4055c7d4
RM
1307 pci_unmap_page(qdev->pdev,
1308 pci_unmap_addr(lbq_desc,
1309 mapaddr),
1310 pci_unmap_len(lbq_desc, maplen),
1311 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1312 skb_reserve(skb, NET_IP_ALIGN);
1313 QPRINTK(qdev, RX_STATUS, DEBUG,
1314 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1315 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1316 0, length);
1317 skb->len += length;
1318 skb->data_len += length;
1319 skb->truesize += length;
1320 length -= length;
1321 lbq_desc->p.lbq_page = NULL;
1322 __pskb_pull_tail(skb,
1323 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1324 VLAN_ETH_HLEN : ETH_HLEN);
1325 }
1326 } else {
1327 /*
1328 * The data is in a chain of large buffers
1329 * pointed to by a small buffer. We loop
1330 * thru and chain them to the our small header
1331 * buffer's skb.
1332 * frags: There are 18 max frags and our small
1333 * buffer will hold 32 of them. The thing is,
1334 * we'll use 3 max for our 9000 byte jumbo
1335 * frames. If the MTU goes up we could
1336 * eventually be in trouble.
1337 */
1338 int size, offset, i = 0;
2c9a0d41 1339 __le64 *bq, bq_array[8];
c4e84bde
RM
1340 sbq_desc = ql_get_curr_sbuf(rx_ring);
1341 pci_unmap_single(qdev->pdev,
1342 pci_unmap_addr(sbq_desc, mapaddr),
1343 pci_unmap_len(sbq_desc, maplen),
1344 PCI_DMA_FROMDEVICE);
1345 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1346 /*
1347 * This is an non TCP/UDP IP frame, so
1348 * the headers aren't split into a small
1349 * buffer. We have to use the small buffer
1350 * that contains our sg list as our skb to
1351 * send upstairs. Copy the sg list here to
1352 * a local buffer and use it to find the
1353 * pages to chain.
1354 */
1355 QPRINTK(qdev, RX_STATUS, DEBUG,
1356 "%d bytes of headers & data in chain of large.\n", length);
1357 skb = sbq_desc->p.skb;
1358 bq = &bq_array[0];
1359 memcpy(bq, skb->data, sizeof(bq_array));
1360 sbq_desc->p.skb = NULL;
1361 skb_reserve(skb, NET_IP_ALIGN);
1362 } else {
1363 QPRINTK(qdev, RX_STATUS, DEBUG,
1364 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1365 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1366 }
1367 while (length > 0) {
1368 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1369 pci_unmap_page(qdev->pdev,
1370 pci_unmap_addr(lbq_desc,
1371 mapaddr),
1372 pci_unmap_len(lbq_desc,
1373 maplen),
1374 PCI_DMA_FROMDEVICE);
1375 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1376 offset = 0;
1377
1378 QPRINTK(qdev, RX_STATUS, DEBUG,
1379 "Adding page %d to skb for %d bytes.\n",
1380 i, size);
1381 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1382 offset, size);
1383 skb->len += size;
1384 skb->data_len += size;
1385 skb->truesize += size;
1386 length -= size;
1387 lbq_desc->p.lbq_page = NULL;
1388 bq++;
1389 i++;
1390 }
1391 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1392 VLAN_ETH_HLEN : ETH_HLEN);
1393 }
1394 return skb;
1395}
1396
1397/* Process an inbound completion from an rx ring. */
1398static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1399 struct rx_ring *rx_ring,
1400 struct ib_mac_iocb_rsp *ib_mac_rsp)
1401{
1402 struct net_device *ndev = qdev->ndev;
1403 struct sk_buff *skb = NULL;
1404
1405 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1406
1407 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1408 if (unlikely(!skb)) {
1409 QPRINTK(qdev, RX_STATUS, DEBUG,
1410 "No skb available, drop packet.\n");
1411 return;
1412 }
1413
1414 prefetch(skb->data);
1415 skb->dev = ndev;
1416 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1417 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1418 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1420 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1422 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1423 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1424 }
1425 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1426 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1427 }
1428 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1429 QPRINTK(qdev, RX_STATUS, ERR,
1430 "Bad checksum for this %s packet.\n",
1431 ((ib_mac_rsp->
1432 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1433 skb->ip_summed = CHECKSUM_NONE;
1434 } else if (qdev->rx_csum &&
1435 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1436 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1437 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1438 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1439 skb->ip_summed = CHECKSUM_UNNECESSARY;
1440 }
1441 qdev->stats.rx_packets++;
1442 qdev->stats.rx_bytes += skb->len;
1443 skb->protocol = eth_type_trans(skb, ndev);
0c8dfc83 1444 skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
c4e84bde
RM
1445 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1446 QPRINTK(qdev, RX_STATUS, DEBUG,
1447 "Passing a VLAN packet upstream.\n");
7a9deb66 1448 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
c4e84bde
RM
1449 le16_to_cpu(ib_mac_rsp->vlan_id));
1450 } else {
1451 QPRINTK(qdev, RX_STATUS, DEBUG,
1452 "Passing a normal packet upstream.\n");
7a9deb66 1453 netif_receive_skb(skb);
c4e84bde 1454 }
c4e84bde
RM
1455}
1456
1457/* Process an outbound completion from an rx ring. */
1458static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1459 struct ob_mac_iocb_rsp *mac_rsp)
1460{
1461 struct tx_ring *tx_ring;
1462 struct tx_ring_desc *tx_ring_desc;
1463
1464 QL_DUMP_OB_MAC_RSP(mac_rsp);
1465 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1466 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1467 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1468 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1469 qdev->stats.tx_packets++;
1470 dev_kfree_skb(tx_ring_desc->skb);
1471 tx_ring_desc->skb = NULL;
1472
1473 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1474 OB_MAC_IOCB_RSP_S |
1475 OB_MAC_IOCB_RSP_L |
1476 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1477 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1478 QPRINTK(qdev, TX_DONE, WARNING,
1479 "Total descriptor length did not match transfer length.\n");
1480 }
1481 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1482 QPRINTK(qdev, TX_DONE, WARNING,
1483 "Frame too short to be legal, not sent.\n");
1484 }
1485 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1486 QPRINTK(qdev, TX_DONE, WARNING,
1487 "Frame too long, but sent anyway.\n");
1488 }
1489 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1490 QPRINTK(qdev, TX_DONE, WARNING,
1491 "PCI backplane error. Frame not sent.\n");
1492 }
1493 }
1494 atomic_inc(&tx_ring->tx_count);
1495}
1496
1497/* Fire up a handler to reset the MPI processor. */
1498void ql_queue_fw_error(struct ql_adapter *qdev)
1499{
1500 netif_stop_queue(qdev->ndev);
1501 netif_carrier_off(qdev->ndev);
1502 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1503}
1504
1505void ql_queue_asic_error(struct ql_adapter *qdev)
1506{
1507 netif_stop_queue(qdev->ndev);
1508 netif_carrier_off(qdev->ndev);
1509 ql_disable_interrupts(qdev);
6497b607
RM
1510 /* Clear adapter up bit to signal the recovery
1511 * process that it shouldn't kill the reset worker
1512 * thread
1513 */
1514 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1515 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1516}
1517
1518static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1519 struct ib_ae_iocb_rsp *ib_ae_rsp)
1520{
1521 switch (ib_ae_rsp->event) {
1522 case MGMT_ERR_EVENT:
1523 QPRINTK(qdev, RX_ERR, ERR,
1524 "Management Processor Fatal Error.\n");
1525 ql_queue_fw_error(qdev);
1526 return;
1527
1528 case CAM_LOOKUP_ERR_EVENT:
1529 QPRINTK(qdev, LINK, ERR,
1530 "Multiple CAM hits lookup occurred.\n");
1531 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1532 ql_queue_asic_error(qdev);
1533 return;
1534
1535 case SOFT_ECC_ERROR_EVENT:
1536 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1537 ql_queue_asic_error(qdev);
1538 break;
1539
1540 case PCI_ERR_ANON_BUF_RD:
1541 QPRINTK(qdev, RX_ERR, ERR,
1542 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1543 ib_ae_rsp->q_id);
1544 ql_queue_asic_error(qdev);
1545 break;
1546
1547 default:
1548 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1549 ib_ae_rsp->event);
1550 ql_queue_asic_error(qdev);
1551 break;
1552 }
1553}
1554
1555static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1556{
1557 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1558 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1559 struct ob_mac_iocb_rsp *net_rsp = NULL;
1560 int count = 0;
1561
1562 /* While there are entries in the completion queue. */
1563 while (prod != rx_ring->cnsmr_idx) {
1564
1565 QPRINTK(qdev, RX_STATUS, DEBUG,
1566 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1567 prod, rx_ring->cnsmr_idx);
1568
1569 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1570 rmb();
1571 switch (net_rsp->opcode) {
1572
1573 case OPCODE_OB_MAC_TSO_IOCB:
1574 case OPCODE_OB_MAC_IOCB:
1575 ql_process_mac_tx_intr(qdev, net_rsp);
1576 break;
1577 default:
1578 QPRINTK(qdev, RX_STATUS, DEBUG,
1579 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1580 net_rsp->opcode);
1581 }
1582 count++;
1583 ql_update_cq(rx_ring);
ba7cd3ba 1584 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1585 }
1586 ql_write_cq_idx(rx_ring);
1587 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1588 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1589 if (atomic_read(&tx_ring->queue_stopped) &&
1590 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1591 /*
1592 * The queue got stopped because the tx_ring was full.
1593 * Wake it up, because it's now at least 25% empty.
1594 */
1595 netif_wake_queue(qdev->ndev);
1596 }
1597
1598 return count;
1599}
1600
1601static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1602{
1603 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1604 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1605 struct ql_net_rsp_iocb *net_rsp;
1606 int count = 0;
1607
1608 /* While there are entries in the completion queue. */
1609 while (prod != rx_ring->cnsmr_idx) {
1610
1611 QPRINTK(qdev, RX_STATUS, DEBUG,
1612 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1613 prod, rx_ring->cnsmr_idx);
1614
1615 net_rsp = rx_ring->curr_entry;
1616 rmb();
1617 switch (net_rsp->opcode) {
1618 case OPCODE_IB_MAC_IOCB:
1619 ql_process_mac_rx_intr(qdev, rx_ring,
1620 (struct ib_mac_iocb_rsp *)
1621 net_rsp);
1622 break;
1623
1624 case OPCODE_IB_AE_IOCB:
1625 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1626 net_rsp);
1627 break;
1628 default:
1629 {
1630 QPRINTK(qdev, RX_STATUS, DEBUG,
1631 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1632 net_rsp->opcode);
1633 }
1634 }
1635 count++;
1636 ql_update_cq(rx_ring);
ba7cd3ba 1637 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1638 if (count == budget)
1639 break;
1640 }
1641 ql_update_buffer_queues(qdev, rx_ring);
1642 ql_write_cq_idx(rx_ring);
1643 return count;
1644}
1645
1646static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1647{
1648 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1649 struct ql_adapter *qdev = rx_ring->qdev;
1650 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1651
1652 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1653 rx_ring->cq_id);
1654
1655 if (work_done < budget) {
288379f0 1656 __napi_complete(napi);
c4e84bde
RM
1657 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1658 }
1659 return work_done;
1660}
1661
1662static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1663{
1664 struct ql_adapter *qdev = netdev_priv(ndev);
1665
1666 qdev->vlgrp = grp;
1667 if (grp) {
1668 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1669 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1670 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1671 } else {
1672 QPRINTK(qdev, IFUP, DEBUG,
1673 "Turning off VLAN in NIC_RCV_CFG.\n");
1674 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1675 }
1676}
1677
1678static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1679{
1680 struct ql_adapter *qdev = netdev_priv(ndev);
1681 u32 enable_bit = MAC_ADDR_E;
cc288f54 1682 int status;
c4e84bde 1683
cc288f54
RM
1684 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1685 if (status)
1686 return;
c4e84bde
RM
1687 spin_lock(&qdev->hw_lock);
1688 if (ql_set_mac_addr_reg
1689 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1690 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1691 }
1692 spin_unlock(&qdev->hw_lock);
cc288f54 1693 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1694}
1695
1696static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1697{
1698 struct ql_adapter *qdev = netdev_priv(ndev);
1699 u32 enable_bit = 0;
cc288f54
RM
1700 int status;
1701
1702 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1703 if (status)
1704 return;
c4e84bde
RM
1705
1706 spin_lock(&qdev->hw_lock);
1707 if (ql_set_mac_addr_reg
1708 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1709 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1710 }
1711 spin_unlock(&qdev->hw_lock);
cc288f54 1712 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1713
1714}
1715
1716/* Worker thread to process a given rx_ring that is dedicated
1717 * to outbound completions.
1718 */
1719static void ql_tx_clean(struct work_struct *work)
1720{
1721 struct rx_ring *rx_ring =
1722 container_of(work, struct rx_ring, rx_work.work);
1723 ql_clean_outbound_rx_ring(rx_ring);
1724 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1725
1726}
1727
1728/* Worker thread to process a given rx_ring that is dedicated
1729 * to inbound completions.
1730 */
1731static void ql_rx_clean(struct work_struct *work)
1732{
1733 struct rx_ring *rx_ring =
1734 container_of(work, struct rx_ring, rx_work.work);
1735 ql_clean_inbound_rx_ring(rx_ring, 64);
1736 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1737}
1738
1739/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1740static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1741{
1742 struct rx_ring *rx_ring = dev_id;
1743 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1744 &rx_ring->rx_work, 0);
1745 return IRQ_HANDLED;
1746}
1747
1748/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1749static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1750{
1751 struct rx_ring *rx_ring = dev_id;
288379f0 1752 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1753 return IRQ_HANDLED;
1754}
1755
c4e84bde
RM
1756/* This handles a fatal error, MPI activity, and the default
1757 * rx_ring in an MSI-X multiple vector environment.
1758 * In MSI/Legacy environment it also process the rest of
1759 * the rx_rings.
1760 */
1761static irqreturn_t qlge_isr(int irq, void *dev_id)
1762{
1763 struct rx_ring *rx_ring = dev_id;
1764 struct ql_adapter *qdev = rx_ring->qdev;
1765 struct intr_context *intr_context = &qdev->intr_context[0];
1766 u32 var;
1767 int i;
1768 int work_done = 0;
1769
bb0d215c
RM
1770 spin_lock(&qdev->hw_lock);
1771 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1772 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1773 spin_unlock(&qdev->hw_lock);
1774 return IRQ_NONE;
c4e84bde 1775 }
bb0d215c 1776 spin_unlock(&qdev->hw_lock);
c4e84bde 1777
bb0d215c 1778 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1779
1780 /*
1781 * Check for fatal error.
1782 */
1783 if (var & STS_FE) {
1784 ql_queue_asic_error(qdev);
1785 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1786 var = ql_read32(qdev, ERR_STS);
1787 QPRINTK(qdev, INTR, ERR,
1788 "Resetting chip. Error Status Register = 0x%x\n", var);
1789 return IRQ_HANDLED;
1790 }
1791
1792 /*
1793 * Check MPI processor activity.
1794 */
1795 if (var & STS_PI) {
1796 /*
1797 * We've got an async event or mailbox completion.
1798 * Handle it and clear the source of the interrupt.
1799 */
1800 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1801 ql_disable_completion_interrupt(qdev, intr_context->intr);
1802 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1803 &qdev->mpi_work, 0);
1804 work_done++;
1805 }
1806
1807 /*
1808 * Check the default queue and wake handler if active.
1809 */
1810 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1811 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1812 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1813 ql_disable_completion_interrupt(qdev, intr_context->intr);
1814 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1815 &rx_ring->rx_work, 0);
1816 work_done++;
1817 }
1818
1819 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1820 /*
1821 * Start the DPC for each active queue.
1822 */
1823 for (i = 1; i < qdev->rx_ring_count; i++) {
1824 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1825 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1826 rx_ring->cnsmr_idx) {
1827 QPRINTK(qdev, INTR, INFO,
1828 "Waking handler for rx_ring[%d].\n", i);
1829 ql_disable_completion_interrupt(qdev,
1830 intr_context->
1831 intr);
1832 if (i < qdev->rss_ring_first_cq_id)
1833 queue_delayed_work_on(rx_ring->cpu,
1834 qdev->q_workqueue,
1835 &rx_ring->rx_work,
1836 0);
1837 else
288379f0 1838 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1839 work_done++;
1840 }
1841 }
1842 }
bb0d215c 1843 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1844 return work_done ? IRQ_HANDLED : IRQ_NONE;
1845}
1846
1847static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1848{
1849
1850 if (skb_is_gso(skb)) {
1851 int err;
1852 if (skb_header_cloned(skb)) {
1853 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1854 if (err)
1855 return err;
1856 }
1857
1858 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1859 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1860 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1861 mac_iocb_ptr->total_hdrs_len =
1862 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1863 mac_iocb_ptr->net_trans_offset =
1864 cpu_to_le16(skb_network_offset(skb) |
1865 skb_transport_offset(skb)
1866 << OB_MAC_TRANSPORT_HDR_SHIFT);
1867 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1868 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1869 if (likely(skb->protocol == htons(ETH_P_IP))) {
1870 struct iphdr *iph = ip_hdr(skb);
1871 iph->check = 0;
1872 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1873 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1874 iph->daddr, 0,
1875 IPPROTO_TCP,
1876 0);
1877 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1878 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1879 tcp_hdr(skb)->check =
1880 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1881 &ipv6_hdr(skb)->daddr,
1882 0, IPPROTO_TCP, 0);
1883 }
1884 return 1;
1885 }
1886 return 0;
1887}
1888
1889static void ql_hw_csum_setup(struct sk_buff *skb,
1890 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1891{
1892 int len;
1893 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 1894 __sum16 *check;
c4e84bde
RM
1895 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1896 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1897 mac_iocb_ptr->net_trans_offset =
1898 cpu_to_le16(skb_network_offset(skb) |
1899 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1900
1901 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1902 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1903 if (likely(iph->protocol == IPPROTO_TCP)) {
1904 check = &(tcp_hdr(skb)->check);
1905 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1906 mac_iocb_ptr->total_hdrs_len =
1907 cpu_to_le16(skb_transport_offset(skb) +
1908 (tcp_hdr(skb)->doff << 2));
1909 } else {
1910 check = &(udp_hdr(skb)->check);
1911 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1912 mac_iocb_ptr->total_hdrs_len =
1913 cpu_to_le16(skb_transport_offset(skb) +
1914 sizeof(struct udphdr));
1915 }
1916 *check = ~csum_tcpudp_magic(iph->saddr,
1917 iph->daddr, len, iph->protocol, 0);
1918}
1919
1920static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1921{
1922 struct tx_ring_desc *tx_ring_desc;
1923 struct ob_mac_iocb_req *mac_iocb_ptr;
1924 struct ql_adapter *qdev = netdev_priv(ndev);
1925 int tso;
1926 struct tx_ring *tx_ring;
1927 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1928
1929 tx_ring = &qdev->tx_ring[tx_ring_idx];
1930
1931 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1932 QPRINTK(qdev, TX_QUEUED, INFO,
1933 "%s: shutting down tx queue %d du to lack of resources.\n",
1934 __func__, tx_ring_idx);
1935 netif_stop_queue(ndev);
1936 atomic_inc(&tx_ring->queue_stopped);
1937 return NETDEV_TX_BUSY;
1938 }
1939 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1940 mac_iocb_ptr = tx_ring_desc->queue_entry;
1941 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
c4e84bde
RM
1942
1943 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1944 mac_iocb_ptr->tid = tx_ring_desc->index;
1945 /* We use the upper 32-bits to store the tx queue for this IO.
1946 * When we get the completion we can use it to establish the context.
1947 */
1948 mac_iocb_ptr->txq_idx = tx_ring_idx;
1949 tx_ring_desc->skb = skb;
1950
1951 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1952
1953 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1954 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1955 vlan_tx_tag_get(skb));
1956 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1957 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1958 }
1959 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1960 if (tso < 0) {
1961 dev_kfree_skb_any(skb);
1962 return NETDEV_TX_OK;
1963 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1964 ql_hw_csum_setup(skb,
1965 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1966 }
0d979f74
RM
1967 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1968 NETDEV_TX_OK) {
1969 QPRINTK(qdev, TX_QUEUED, ERR,
1970 "Could not map the segments.\n");
1971 return NETDEV_TX_BUSY;
1972 }
c4e84bde
RM
1973 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1974 tx_ring->prod_idx++;
1975 if (tx_ring->prod_idx == tx_ring->wq_len)
1976 tx_ring->prod_idx = 0;
1977 wmb();
1978
1979 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1980 ndev->trans_start = jiffies;
1981 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1982 tx_ring->prod_idx, skb->len);
1983
1984 atomic_dec(&tx_ring->tx_count);
1985 return NETDEV_TX_OK;
1986}
1987
1988static void ql_free_shadow_space(struct ql_adapter *qdev)
1989{
1990 if (qdev->rx_ring_shadow_reg_area) {
1991 pci_free_consistent(qdev->pdev,
1992 PAGE_SIZE,
1993 qdev->rx_ring_shadow_reg_area,
1994 qdev->rx_ring_shadow_reg_dma);
1995 qdev->rx_ring_shadow_reg_area = NULL;
1996 }
1997 if (qdev->tx_ring_shadow_reg_area) {
1998 pci_free_consistent(qdev->pdev,
1999 PAGE_SIZE,
2000 qdev->tx_ring_shadow_reg_area,
2001 qdev->tx_ring_shadow_reg_dma);
2002 qdev->tx_ring_shadow_reg_area = NULL;
2003 }
2004}
2005
2006static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2007{
2008 qdev->rx_ring_shadow_reg_area =
2009 pci_alloc_consistent(qdev->pdev,
2010 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2011 if (qdev->rx_ring_shadow_reg_area == NULL) {
2012 QPRINTK(qdev, IFUP, ERR,
2013 "Allocation of RX shadow space failed.\n");
2014 return -ENOMEM;
2015 }
2016 qdev->tx_ring_shadow_reg_area =
2017 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2018 &qdev->tx_ring_shadow_reg_dma);
2019 if (qdev->tx_ring_shadow_reg_area == NULL) {
2020 QPRINTK(qdev, IFUP, ERR,
2021 "Allocation of TX shadow space failed.\n");
2022 goto err_wqp_sh_area;
2023 }
2024 return 0;
2025
2026err_wqp_sh_area:
2027 pci_free_consistent(qdev->pdev,
2028 PAGE_SIZE,
2029 qdev->rx_ring_shadow_reg_area,
2030 qdev->rx_ring_shadow_reg_dma);
2031 return -ENOMEM;
2032}
2033
2034static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2035{
2036 struct tx_ring_desc *tx_ring_desc;
2037 int i;
2038 struct ob_mac_iocb_req *mac_iocb_ptr;
2039
2040 mac_iocb_ptr = tx_ring->wq_base;
2041 tx_ring_desc = tx_ring->q;
2042 for (i = 0; i < tx_ring->wq_len; i++) {
2043 tx_ring_desc->index = i;
2044 tx_ring_desc->skb = NULL;
2045 tx_ring_desc->queue_entry = mac_iocb_ptr;
2046 mac_iocb_ptr++;
2047 tx_ring_desc++;
2048 }
2049 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2050 atomic_set(&tx_ring->queue_stopped, 0);
2051}
2052
2053static void ql_free_tx_resources(struct ql_adapter *qdev,
2054 struct tx_ring *tx_ring)
2055{
2056 if (tx_ring->wq_base) {
2057 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2058 tx_ring->wq_base, tx_ring->wq_base_dma);
2059 tx_ring->wq_base = NULL;
2060 }
2061 kfree(tx_ring->q);
2062 tx_ring->q = NULL;
2063}
2064
2065static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2066 struct tx_ring *tx_ring)
2067{
2068 tx_ring->wq_base =
2069 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2070 &tx_ring->wq_base_dma);
2071
2072 if ((tx_ring->wq_base == NULL)
2073 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2074 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2075 return -ENOMEM;
2076 }
2077 tx_ring->q =
2078 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2079 if (tx_ring->q == NULL)
2080 goto err;
2081
2082 return 0;
2083err:
2084 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2085 tx_ring->wq_base, tx_ring->wq_base_dma);
2086 return -ENOMEM;
2087}
2088
8668ae92 2089static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2090{
2091 int i;
2092 struct bq_desc *lbq_desc;
2093
2094 for (i = 0; i < rx_ring->lbq_len; i++) {
2095 lbq_desc = &rx_ring->lbq[i];
2096 if (lbq_desc->p.lbq_page) {
2097 pci_unmap_page(qdev->pdev,
2098 pci_unmap_addr(lbq_desc, mapaddr),
2099 pci_unmap_len(lbq_desc, maplen),
2100 PCI_DMA_FROMDEVICE);
2101
2102 put_page(lbq_desc->p.lbq_page);
2103 lbq_desc->p.lbq_page = NULL;
2104 }
c4e84bde
RM
2105 }
2106}
2107
8668ae92 2108static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2109{
2110 int i;
2111 struct bq_desc *sbq_desc;
2112
2113 for (i = 0; i < rx_ring->sbq_len; i++) {
2114 sbq_desc = &rx_ring->sbq[i];
2115 if (sbq_desc == NULL) {
2116 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2117 return;
2118 }
2119 if (sbq_desc->p.skb) {
2120 pci_unmap_single(qdev->pdev,
2121 pci_unmap_addr(sbq_desc, mapaddr),
2122 pci_unmap_len(sbq_desc, maplen),
2123 PCI_DMA_FROMDEVICE);
2124 dev_kfree_skb(sbq_desc->p.skb);
2125 sbq_desc->p.skb = NULL;
2126 }
c4e84bde
RM
2127 }
2128}
2129
4545a3f2
RM
2130/* Free all large and small rx buffers associated
2131 * with the completion queues for this device.
2132 */
2133static void ql_free_rx_buffers(struct ql_adapter *qdev)
2134{
2135 int i;
2136 struct rx_ring *rx_ring;
2137
2138 for (i = 0; i < qdev->rx_ring_count; i++) {
2139 rx_ring = &qdev->rx_ring[i];
2140 if (rx_ring->lbq)
2141 ql_free_lbq_buffers(qdev, rx_ring);
2142 if (rx_ring->sbq)
2143 ql_free_sbq_buffers(qdev, rx_ring);
2144 }
2145}
2146
2147static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2148{
2149 struct rx_ring *rx_ring;
2150 int i;
2151
2152 for (i = 0; i < qdev->rx_ring_count; i++) {
2153 rx_ring = &qdev->rx_ring[i];
2154 if (rx_ring->type != TX_Q)
2155 ql_update_buffer_queues(qdev, rx_ring);
2156 }
2157}
2158
2159static void ql_init_lbq_ring(struct ql_adapter *qdev,
2160 struct rx_ring *rx_ring)
2161{
2162 int i;
2163 struct bq_desc *lbq_desc;
2164 __le64 *bq = rx_ring->lbq_base;
2165
2166 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2167 for (i = 0; i < rx_ring->lbq_len; i++) {
2168 lbq_desc = &rx_ring->lbq[i];
2169 memset(lbq_desc, 0, sizeof(*lbq_desc));
2170 lbq_desc->index = i;
2171 lbq_desc->addr = bq;
2172 bq++;
2173 }
2174}
2175
2176static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2177 struct rx_ring *rx_ring)
2178{
2179 int i;
2180 struct bq_desc *sbq_desc;
2c9a0d41 2181 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2182
4545a3f2 2183 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2184 for (i = 0; i < rx_ring->sbq_len; i++) {
2185 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2186 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2187 sbq_desc->index = i;
2c9a0d41 2188 sbq_desc->addr = bq;
c4e84bde
RM
2189 bq++;
2190 }
c4e84bde
RM
2191}
2192
2193static void ql_free_rx_resources(struct ql_adapter *qdev,
2194 struct rx_ring *rx_ring)
2195{
c4e84bde
RM
2196 /* Free the small buffer queue. */
2197 if (rx_ring->sbq_base) {
2198 pci_free_consistent(qdev->pdev,
2199 rx_ring->sbq_size,
2200 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2201 rx_ring->sbq_base = NULL;
2202 }
2203
2204 /* Free the small buffer queue control blocks. */
2205 kfree(rx_ring->sbq);
2206 rx_ring->sbq = NULL;
2207
2208 /* Free the large buffer queue. */
2209 if (rx_ring->lbq_base) {
2210 pci_free_consistent(qdev->pdev,
2211 rx_ring->lbq_size,
2212 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2213 rx_ring->lbq_base = NULL;
2214 }
2215
2216 /* Free the large buffer queue control blocks. */
2217 kfree(rx_ring->lbq);
2218 rx_ring->lbq = NULL;
2219
2220 /* Free the rx queue. */
2221 if (rx_ring->cq_base) {
2222 pci_free_consistent(qdev->pdev,
2223 rx_ring->cq_size,
2224 rx_ring->cq_base, rx_ring->cq_base_dma);
2225 rx_ring->cq_base = NULL;
2226 }
2227}
2228
2229/* Allocate queues and buffers for this completions queue based
2230 * on the values in the parameter structure. */
2231static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2232 struct rx_ring *rx_ring)
2233{
2234
2235 /*
2236 * Allocate the completion queue for this rx_ring.
2237 */
2238 rx_ring->cq_base =
2239 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2240 &rx_ring->cq_base_dma);
2241
2242 if (rx_ring->cq_base == NULL) {
2243 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2244 return -ENOMEM;
2245 }
2246
2247 if (rx_ring->sbq_len) {
2248 /*
2249 * Allocate small buffer queue.
2250 */
2251 rx_ring->sbq_base =
2252 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2253 &rx_ring->sbq_base_dma);
2254
2255 if (rx_ring->sbq_base == NULL) {
2256 QPRINTK(qdev, IFUP, ERR,
2257 "Small buffer queue allocation failed.\n");
2258 goto err_mem;
2259 }
2260
2261 /*
2262 * Allocate small buffer queue control blocks.
2263 */
2264 rx_ring->sbq =
2265 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2266 GFP_KERNEL);
2267 if (rx_ring->sbq == NULL) {
2268 QPRINTK(qdev, IFUP, ERR,
2269 "Small buffer queue control block allocation failed.\n");
2270 goto err_mem;
2271 }
2272
4545a3f2 2273 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2274 }
2275
2276 if (rx_ring->lbq_len) {
2277 /*
2278 * Allocate large buffer queue.
2279 */
2280 rx_ring->lbq_base =
2281 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2282 &rx_ring->lbq_base_dma);
2283
2284 if (rx_ring->lbq_base == NULL) {
2285 QPRINTK(qdev, IFUP, ERR,
2286 "Large buffer queue allocation failed.\n");
2287 goto err_mem;
2288 }
2289 /*
2290 * Allocate large buffer queue control blocks.
2291 */
2292 rx_ring->lbq =
2293 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2294 GFP_KERNEL);
2295 if (rx_ring->lbq == NULL) {
2296 QPRINTK(qdev, IFUP, ERR,
2297 "Large buffer queue control block allocation failed.\n");
2298 goto err_mem;
2299 }
2300
4545a3f2 2301 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2302 }
2303
2304 return 0;
2305
2306err_mem:
2307 ql_free_rx_resources(qdev, rx_ring);
2308 return -ENOMEM;
2309}
2310
2311static void ql_tx_ring_clean(struct ql_adapter *qdev)
2312{
2313 struct tx_ring *tx_ring;
2314 struct tx_ring_desc *tx_ring_desc;
2315 int i, j;
2316
2317 /*
2318 * Loop through all queues and free
2319 * any resources.
2320 */
2321 for (j = 0; j < qdev->tx_ring_count; j++) {
2322 tx_ring = &qdev->tx_ring[j];
2323 for (i = 0; i < tx_ring->wq_len; i++) {
2324 tx_ring_desc = &tx_ring->q[i];
2325 if (tx_ring_desc && tx_ring_desc->skb) {
2326 QPRINTK(qdev, IFDOWN, ERR,
2327 "Freeing lost SKB %p, from queue %d, index %d.\n",
2328 tx_ring_desc->skb, j,
2329 tx_ring_desc->index);
2330 ql_unmap_send(qdev, tx_ring_desc,
2331 tx_ring_desc->map_cnt);
2332 dev_kfree_skb(tx_ring_desc->skb);
2333 tx_ring_desc->skb = NULL;
2334 }
2335 }
2336 }
2337}
2338
c4e84bde
RM
2339static void ql_free_mem_resources(struct ql_adapter *qdev)
2340{
2341 int i;
2342
2343 for (i = 0; i < qdev->tx_ring_count; i++)
2344 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2345 for (i = 0; i < qdev->rx_ring_count; i++)
2346 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2347 ql_free_shadow_space(qdev);
2348}
2349
2350static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2351{
2352 int i;
2353
2354 /* Allocate space for our shadow registers and such. */
2355 if (ql_alloc_shadow_space(qdev))
2356 return -ENOMEM;
2357
2358 for (i = 0; i < qdev->rx_ring_count; i++) {
2359 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2360 QPRINTK(qdev, IFUP, ERR,
2361 "RX resource allocation failed.\n");
2362 goto err_mem;
2363 }
2364 }
2365 /* Allocate tx queue resources */
2366 for (i = 0; i < qdev->tx_ring_count; i++) {
2367 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2368 QPRINTK(qdev, IFUP, ERR,
2369 "TX resource allocation failed.\n");
2370 goto err_mem;
2371 }
2372 }
2373 return 0;
2374
2375err_mem:
2376 ql_free_mem_resources(qdev);
2377 return -ENOMEM;
2378}
2379
2380/* Set up the rx ring control block and pass it to the chip.
2381 * The control block is defined as
2382 * "Completion Queue Initialization Control Block", or cqicb.
2383 */
2384static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2385{
2386 struct cqicb *cqicb = &rx_ring->cqicb;
2387 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2388 (rx_ring->cq_id * sizeof(u64) * 4);
2389 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2390 (rx_ring->cq_id * sizeof(u64) * 4);
2391 void __iomem *doorbell_area =
2392 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2393 int err = 0;
2394 u16 bq_len;
2395
2396 /* Set up the shadow registers for this ring. */
2397 rx_ring->prod_idx_sh_reg = shadow_reg;
2398 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2399 shadow_reg += sizeof(u64);
2400 shadow_reg_dma += sizeof(u64);
2401 rx_ring->lbq_base_indirect = shadow_reg;
2402 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2403 shadow_reg += sizeof(u64);
2404 shadow_reg_dma += sizeof(u64);
2405 rx_ring->sbq_base_indirect = shadow_reg;
2406 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2407
2408 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2409 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2410 rx_ring->cnsmr_idx = 0;
2411 rx_ring->curr_entry = rx_ring->cq_base;
2412
2413 /* PCI doorbell mem area + 0x04 for valid register */
2414 rx_ring->valid_db_reg = doorbell_area + 0x04;
2415
2416 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2417 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2418
2419 /* PCI doorbell mem area + 0x1c */
8668ae92 2420 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2421
2422 memset((void *)cqicb, 0, sizeof(struct cqicb));
2423 cqicb->msix_vect = rx_ring->irq;
2424
459caf5a
RM
2425 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2426 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2427
97345524 2428 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2429
97345524 2430 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2431
2432 /*
2433 * Set up the control block load flags.
2434 */
2435 cqicb->flags = FLAGS_LC | /* Load queue base address */
2436 FLAGS_LV | /* Load MSI-X vector */
2437 FLAGS_LI; /* Load irq delay values */
2438 if (rx_ring->lbq_len) {
2439 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2440 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2441 cqicb->lbq_addr =
2442 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2443 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2444 (u16) rx_ring->lbq_buf_size;
2445 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2446 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2447 (u16) rx_ring->lbq_len;
c4e84bde 2448 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2449 rx_ring->lbq_prod_idx = 0;
c4e84bde 2450 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2451 rx_ring->lbq_clean_idx = 0;
2452 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2453 }
2454 if (rx_ring->sbq_len) {
2455 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2456 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2457 cqicb->sbq_addr =
2458 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2459 cqicb->sbq_buf_size =
2460 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2461 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2462 (u16) rx_ring->sbq_len;
c4e84bde 2463 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2464 rx_ring->sbq_prod_idx = 0;
c4e84bde 2465 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2466 rx_ring->sbq_clean_idx = 0;
2467 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2468 }
2469 switch (rx_ring->type) {
2470 case TX_Q:
2471 /* If there's only one interrupt, then we use
2472 * worker threads to process the outbound
2473 * completion handling rx_rings. We do this so
2474 * they can be run on multiple CPUs. There is
2475 * room to play with this more where we would only
2476 * run in a worker if there are more than x number
2477 * of outbound completions on the queue and more
2478 * than one queue active. Some threshold that
2479 * would indicate a benefit in spite of the cost
2480 * of a context switch.
2481 * If there's more than one interrupt, then the
2482 * outbound completions are processed in the ISR.
2483 */
2484 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2485 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2486 else {
2487 /* With all debug warnings on we see a WARN_ON message
2488 * when we free the skb in the interrupt context.
2489 */
2490 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2491 }
2492 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2493 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2494 break;
2495 case DEFAULT_Q:
2496 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2497 cqicb->irq_delay = 0;
2498 cqicb->pkt_delay = 0;
2499 break;
2500 case RX_Q:
2501 /* Inbound completion handling rx_rings run in
2502 * separate NAPI contexts.
2503 */
2504 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2505 64);
2506 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2507 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2508 break;
2509 default:
2510 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2511 rx_ring->type);
2512 }
2513 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2514 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2515 CFG_LCQ, rx_ring->cq_id);
2516 if (err) {
2517 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2518 return err;
2519 }
c4e84bde
RM
2520 return err;
2521}
2522
2523static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2524{
2525 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2526 void __iomem *doorbell_area =
2527 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2528 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2529 (tx_ring->wq_id * sizeof(u64));
2530 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2531 (tx_ring->wq_id * sizeof(u64));
2532 int err = 0;
2533
2534 /*
2535 * Assign doorbell registers for this tx_ring.
2536 */
2537 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2538 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2539 tx_ring->prod_idx = 0;
2540 /* TX PCI doorbell mem area + 0x04 */
2541 tx_ring->valid_db_reg = doorbell_area + 0x04;
2542
2543 /*
2544 * Assign shadow registers for this tx_ring.
2545 */
2546 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2547 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2548
2549 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2550 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2551 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2552 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2553 wqicb->rid = 0;
97345524 2554 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2555
97345524 2556 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2557
2558 ql_init_tx_ring(qdev, tx_ring);
2559
2560 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2561 (u16) tx_ring->wq_id);
2562 if (err) {
2563 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2564 return err;
2565 }
2566 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2567 return err;
2568}
2569
2570static void ql_disable_msix(struct ql_adapter *qdev)
2571{
2572 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2573 pci_disable_msix(qdev->pdev);
2574 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2575 kfree(qdev->msi_x_entry);
2576 qdev->msi_x_entry = NULL;
2577 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2578 pci_disable_msi(qdev->pdev);
2579 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2580 }
2581}
2582
2583static void ql_enable_msix(struct ql_adapter *qdev)
2584{
2585 int i;
2586
2587 qdev->intr_count = 1;
2588 /* Get the MSIX vectors. */
2589 if (irq_type == MSIX_IRQ) {
2590 /* Try to alloc space for the msix struct,
2591 * if it fails then go to MSI/legacy.
2592 */
2593 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2594 sizeof(struct msix_entry),
2595 GFP_KERNEL);
2596 if (!qdev->msi_x_entry) {
2597 irq_type = MSI_IRQ;
2598 goto msi;
2599 }
2600
2601 for (i = 0; i < qdev->rx_ring_count; i++)
2602 qdev->msi_x_entry[i].entry = i;
2603
2604 if (!pci_enable_msix
2605 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2606 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2607 qdev->intr_count = qdev->rx_ring_count;
2608 QPRINTK(qdev, IFUP, INFO,
2609 "MSI-X Enabled, got %d vectors.\n",
2610 qdev->intr_count);
2611 return;
2612 } else {
2613 kfree(qdev->msi_x_entry);
2614 qdev->msi_x_entry = NULL;
2615 QPRINTK(qdev, IFUP, WARNING,
2616 "MSI-X Enable failed, trying MSI.\n");
2617 irq_type = MSI_IRQ;
2618 }
2619 }
2620msi:
2621 if (irq_type == MSI_IRQ) {
2622 if (!pci_enable_msi(qdev->pdev)) {
2623 set_bit(QL_MSI_ENABLED, &qdev->flags);
2624 QPRINTK(qdev, IFUP, INFO,
2625 "Running with MSI interrupts.\n");
2626 return;
2627 }
2628 }
2629 irq_type = LEG_IRQ;
c4e84bde
RM
2630 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2631}
2632
2633/*
2634 * Here we build the intr_context structures based on
2635 * our rx_ring count and intr vector count.
2636 * The intr_context structure is used to hook each vector
2637 * to possibly different handlers.
2638 */
2639static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2640{
2641 int i = 0;
2642 struct intr_context *intr_context = &qdev->intr_context[0];
2643
2644 ql_enable_msix(qdev);
2645
2646 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2647 /* Each rx_ring has it's
2648 * own intr_context since we have separate
2649 * vectors for each queue.
2650 * This only true when MSI-X is enabled.
2651 */
2652 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2653 qdev->rx_ring[i].irq = i;
2654 intr_context->intr = i;
2655 intr_context->qdev = qdev;
2656 /*
2657 * We set up each vectors enable/disable/read bits so
2658 * there's no bit/mask calculations in the critical path.
2659 */
2660 intr_context->intr_en_mask =
2661 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2662 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2663 | i;
2664 intr_context->intr_dis_mask =
2665 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2666 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2667 INTR_EN_IHD | i;
2668 intr_context->intr_read_mask =
2669 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2670 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2671 i;
2672
2673 if (i == 0) {
2674 /*
2675 * Default queue handles bcast/mcast plus
2676 * async events. Needs buffers.
2677 */
2678 intr_context->handler = qlge_isr;
2679 sprintf(intr_context->name, "%s-default-queue",
2680 qdev->ndev->name);
2681 } else if (i < qdev->rss_ring_first_cq_id) {
2682 /*
2683 * Outbound queue is for outbound completions only.
2684 */
2685 intr_context->handler = qlge_msix_tx_isr;
c224969e 2686 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2687 qdev->ndev->name, i);
2688 } else {
2689 /*
2690 * Inbound queues handle unicast frames only.
2691 */
2692 intr_context->handler = qlge_msix_rx_isr;
c224969e 2693 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2694 qdev->ndev->name, i);
2695 }
2696 }
2697 } else {
2698 /*
2699 * All rx_rings use the same intr_context since
2700 * there is only one vector.
2701 */
2702 intr_context->intr = 0;
2703 intr_context->qdev = qdev;
2704 /*
2705 * We set up each vectors enable/disable/read bits so
2706 * there's no bit/mask calculations in the critical path.
2707 */
2708 intr_context->intr_en_mask =
2709 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2710 intr_context->intr_dis_mask =
2711 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2712 INTR_EN_TYPE_DISABLE;
2713 intr_context->intr_read_mask =
2714 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2715 /*
2716 * Single interrupt means one handler for all rings.
2717 */
2718 intr_context->handler = qlge_isr;
2719 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2720 for (i = 0; i < qdev->rx_ring_count; i++)
2721 qdev->rx_ring[i].irq = 0;
2722 }
2723}
2724
2725static void ql_free_irq(struct ql_adapter *qdev)
2726{
2727 int i;
2728 struct intr_context *intr_context = &qdev->intr_context[0];
2729
2730 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2731 if (intr_context->hooked) {
2732 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2733 free_irq(qdev->msi_x_entry[i].vector,
2734 &qdev->rx_ring[i]);
2735 QPRINTK(qdev, IFDOWN, ERR,
2736 "freeing msix interrupt %d.\n", i);
2737 } else {
2738 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2739 QPRINTK(qdev, IFDOWN, ERR,
2740 "freeing msi interrupt %d.\n", i);
2741 }
2742 }
2743 }
2744 ql_disable_msix(qdev);
2745}
2746
2747static int ql_request_irq(struct ql_adapter *qdev)
2748{
2749 int i;
2750 int status = 0;
2751 struct pci_dev *pdev = qdev->pdev;
2752 struct intr_context *intr_context = &qdev->intr_context[0];
2753
2754 ql_resolve_queues_to_irqs(qdev);
2755
2756 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2757 atomic_set(&intr_context->irq_cnt, 0);
2758 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2759 status = request_irq(qdev->msi_x_entry[i].vector,
2760 intr_context->handler,
2761 0,
2762 intr_context->name,
2763 &qdev->rx_ring[i]);
2764 if (status) {
2765 QPRINTK(qdev, IFUP, ERR,
2766 "Failed request for MSIX interrupt %d.\n",
2767 i);
2768 goto err_irq;
2769 } else {
2770 QPRINTK(qdev, IFUP, INFO,
2771 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2772 i,
2773 qdev->rx_ring[i].type ==
2774 DEFAULT_Q ? "DEFAULT_Q" : "",
2775 qdev->rx_ring[i].type ==
2776 TX_Q ? "TX_Q" : "",
2777 qdev->rx_ring[i].type ==
2778 RX_Q ? "RX_Q" : "", intr_context->name);
2779 }
2780 } else {
2781 QPRINTK(qdev, IFUP, DEBUG,
2782 "trying msi or legacy interrupts.\n");
2783 QPRINTK(qdev, IFUP, DEBUG,
2784 "%s: irq = %d.\n", __func__, pdev->irq);
2785 QPRINTK(qdev, IFUP, DEBUG,
2786 "%s: context->name = %s.\n", __func__,
2787 intr_context->name);
2788 QPRINTK(qdev, IFUP, DEBUG,
2789 "%s: dev_id = 0x%p.\n", __func__,
2790 &qdev->rx_ring[0]);
2791 status =
2792 request_irq(pdev->irq, qlge_isr,
2793 test_bit(QL_MSI_ENABLED,
2794 &qdev->
2795 flags) ? 0 : IRQF_SHARED,
2796 intr_context->name, &qdev->rx_ring[0]);
2797 if (status)
2798 goto err_irq;
2799
2800 QPRINTK(qdev, IFUP, ERR,
2801 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2802 i,
2803 qdev->rx_ring[0].type ==
2804 DEFAULT_Q ? "DEFAULT_Q" : "",
2805 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2806 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2807 intr_context->name);
2808 }
2809 intr_context->hooked = 1;
2810 }
2811 return status;
2812err_irq:
2813 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2814 ql_free_irq(qdev);
2815 return status;
2816}
2817
2818static int ql_start_rss(struct ql_adapter *qdev)
2819{
2820 struct ricb *ricb = &qdev->ricb;
2821 int status = 0;
2822 int i;
2823 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2824
2825 memset((void *)ricb, 0, sizeof(ricb));
2826
2827 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2828 ricb->flags =
2829 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2830 RSS_RT6);
2831 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2832
2833 /*
2834 * Fill out the Indirection Table.
2835 */
def48b6e
RM
2836 for (i = 0; i < 256; i++)
2837 hash_id[i] = i & (qdev->rss_ring_count - 1);
c4e84bde
RM
2838
2839 /*
2840 * Random values for the IPv6 and IPv4 Hash Keys.
2841 */
2842 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2843 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2844
2845 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2846
2847 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2848 if (status) {
2849 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2850 return status;
2851 }
2852 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2853 return status;
2854}
2855
2856/* Initialize the frame-to-queue routing. */
2857static int ql_route_initialize(struct ql_adapter *qdev)
2858{
2859 int status = 0;
2860 int i;
2861
8587ea35
RM
2862 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2863 if (status)
2864 return status;
2865
c4e84bde
RM
2866 /* Clear all the entries in the routing table. */
2867 for (i = 0; i < 16; i++) {
2868 status = ql_set_routing_reg(qdev, i, 0, 0);
2869 if (status) {
2870 QPRINTK(qdev, IFUP, ERR,
2871 "Failed to init routing register for CAM packets.\n");
8587ea35 2872 goto exit;
c4e84bde
RM
2873 }
2874 }
2875
2876 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2877 if (status) {
2878 QPRINTK(qdev, IFUP, ERR,
2879 "Failed to init routing register for error packets.\n");
8587ea35 2880 goto exit;
c4e84bde
RM
2881 }
2882 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2883 if (status) {
2884 QPRINTK(qdev, IFUP, ERR,
2885 "Failed to init routing register for broadcast packets.\n");
8587ea35 2886 goto exit;
c4e84bde
RM
2887 }
2888 /* If we have more than one inbound queue, then turn on RSS in the
2889 * routing block.
2890 */
2891 if (qdev->rss_ring_count > 1) {
2892 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2893 RT_IDX_RSS_MATCH, 1);
2894 if (status) {
2895 QPRINTK(qdev, IFUP, ERR,
2896 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 2897 goto exit;
c4e84bde
RM
2898 }
2899 }
2900
2901 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2902 RT_IDX_CAM_HIT, 1);
8587ea35 2903 if (status)
c4e84bde
RM
2904 QPRINTK(qdev, IFUP, ERR,
2905 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
2906exit:
2907 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
2908 return status;
2909}
2910
bb58b5b6
RM
2911static int ql_cam_route_initialize(struct ql_adapter *qdev)
2912{
2913 int status;
2914
cc288f54
RM
2915 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2916 if (status)
2917 return status;
bb58b5b6
RM
2918 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
2919 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 2920 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
bb58b5b6
RM
2921 if (status) {
2922 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
2923 return status;
2924 }
2925
2926 status = ql_route_initialize(qdev);
2927 if (status)
2928 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
2929
2930 return status;
2931}
2932
c4e84bde
RM
2933static int ql_adapter_initialize(struct ql_adapter *qdev)
2934{
2935 u32 value, mask;
2936 int i;
2937 int status = 0;
2938
2939 /*
2940 * Set up the System register to halt on errors.
2941 */
2942 value = SYS_EFE | SYS_FAE;
2943 mask = value << 16;
2944 ql_write32(qdev, SYS, mask | value);
2945
2946 /* Set the default queue. */
2947 value = NIC_RCV_CFG_DFQ;
2948 mask = NIC_RCV_CFG_DFQ_MASK;
2949 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2950
2951 /* Set the MPI interrupt to enabled. */
2952 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2953
2954 /* Enable the function, set pagesize, enable error checking. */
2955 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2956 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2957
2958 /* Set/clear header splitting. */
2959 mask = FSC_VM_PAGESIZE_MASK |
2960 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2961 ql_write32(qdev, FSC, mask | value);
2962
2963 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2964 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2965
2966 /* Start up the rx queues. */
2967 for (i = 0; i < qdev->rx_ring_count; i++) {
2968 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2969 if (status) {
2970 QPRINTK(qdev, IFUP, ERR,
2971 "Failed to start rx ring[%d].\n", i);
2972 return status;
2973 }
2974 }
2975
2976 /* If there is more than one inbound completion queue
2977 * then download a RICB to configure RSS.
2978 */
2979 if (qdev->rss_ring_count > 1) {
2980 status = ql_start_rss(qdev);
2981 if (status) {
2982 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
2983 return status;
2984 }
2985 }
2986
2987 /* Start up the tx queues. */
2988 for (i = 0; i < qdev->tx_ring_count; i++) {
2989 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
2990 if (status) {
2991 QPRINTK(qdev, IFUP, ERR,
2992 "Failed to start tx ring[%d].\n", i);
2993 return status;
2994 }
2995 }
2996
2997 status = ql_port_initialize(qdev);
2998 if (status) {
2999 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3000 return status;
3001 }
3002
bb58b5b6
RM
3003 /* Set up the MAC address and frame routing filter. */
3004 status = ql_cam_route_initialize(qdev);
c4e84bde 3005 if (status) {
bb58b5b6
RM
3006 QPRINTK(qdev, IFUP, ERR,
3007 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3008 return status;
3009 }
3010
3011 /* Start NAPI for the RSS queues. */
3012 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3013 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3014 i);
3015 napi_enable(&qdev->rx_ring[i].napi);
3016 }
3017
3018 return status;
3019}
3020
3021/* Issue soft reset to chip. */
3022static int ql_adapter_reset(struct ql_adapter *qdev)
3023{
3024 u32 value;
3025 int max_wait_time;
3026 int status = 0;
3027 int resetCnt = 0;
3028
3029#define MAX_RESET_CNT 1
3030issueReset:
3031 resetCnt++;
3032 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3033 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3034 /* Wait for reset to complete. */
3035 max_wait_time = 3;
3036 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3037 max_wait_time);
3038 do {
3039 value = ql_read32(qdev, RST_FO);
3040 if ((value & RST_FO_FR) == 0)
3041 break;
3042
3043 ssleep(1);
3044 } while ((--max_wait_time));
3045 if (value & RST_FO_FR) {
3046 QPRINTK(qdev, IFDOWN, ERR,
3047 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3048 if (resetCnt < MAX_RESET_CNT)
3049 goto issueReset;
3050 }
3051 if (max_wait_time == 0) {
3052 status = -ETIMEDOUT;
3053 QPRINTK(qdev, IFDOWN, ERR,
3054 "ETIMEOUT!!! errored out of resetting the chip!\n");
3055 }
3056
3057 return status;
3058}
3059
3060static void ql_display_dev_info(struct net_device *ndev)
3061{
3062 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3063
3064 QPRINTK(qdev, PROBE, INFO,
3065 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3066 "XG Roll = %d, XG Rev = %d.\n",
3067 qdev->func,
3068 qdev->chip_rev_id & 0x0000000f,
3069 qdev->chip_rev_id >> 4 & 0x0000000f,
3070 qdev->chip_rev_id >> 8 & 0x0000000f,
3071 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3072 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3073}
3074
3075static int ql_adapter_down(struct ql_adapter *qdev)
3076{
3077 struct net_device *ndev = qdev->ndev;
3078 int i, status = 0;
3079 struct rx_ring *rx_ring;
3080
3081 netif_stop_queue(ndev);
3082 netif_carrier_off(ndev);
3083
6497b607
RM
3084 /* Don't kill the reset worker thread if we
3085 * are in the process of recovery.
3086 */
3087 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3088 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3089 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3090 cancel_delayed_work_sync(&qdev->mpi_work);
3091
3092 /* The default queue at index 0 is always processed in
3093 * a workqueue.
3094 */
3095 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3096
3097 /* The rest of the rx_rings are processed in
3098 * a workqueue only if it's a single interrupt
3099 * environment (MSI/Legacy).
3100 */
c062076c 3101 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3102 rx_ring = &qdev->rx_ring[i];
3103 /* Only the RSS rings use NAPI on multi irq
3104 * environment. Outbound completion processing
3105 * is done in interrupt context.
3106 */
3107 if (i >= qdev->rss_ring_first_cq_id) {
3108 napi_disable(&rx_ring->napi);
3109 } else {
3110 cancel_delayed_work_sync(&rx_ring->rx_work);
3111 }
3112 }
3113
3114 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3115
3116 ql_disable_interrupts(qdev);
3117
3118 ql_tx_ring_clean(qdev);
3119
4545a3f2 3120 ql_free_rx_buffers(qdev);
c4e84bde
RM
3121 spin_lock(&qdev->hw_lock);
3122 status = ql_adapter_reset(qdev);
3123 if (status)
3124 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3125 qdev->func);
3126 spin_unlock(&qdev->hw_lock);
3127 return status;
3128}
3129
3130static int ql_adapter_up(struct ql_adapter *qdev)
3131{
3132 int err = 0;
3133
3134 spin_lock(&qdev->hw_lock);
3135 err = ql_adapter_initialize(qdev);
3136 if (err) {
3137 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3138 spin_unlock(&qdev->hw_lock);
3139 goto err_init;
3140 }
3141 spin_unlock(&qdev->hw_lock);
3142 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3143 ql_alloc_rx_buffers(qdev);
c4e84bde
RM
3144 ql_enable_interrupts(qdev);
3145 ql_enable_all_completion_interrupts(qdev);
3146 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3147 netif_carrier_on(qdev->ndev);
3148 netif_start_queue(qdev->ndev);
3149 }
3150
3151 return 0;
3152err_init:
3153 ql_adapter_reset(qdev);
3154 return err;
3155}
3156
3157static int ql_cycle_adapter(struct ql_adapter *qdev)
3158{
3159 int status;
3160
3161 status = ql_adapter_down(qdev);
3162 if (status)
3163 goto error;
3164
3165 status = ql_adapter_up(qdev);
3166 if (status)
3167 goto error;
3168
3169 return status;
3170error:
3171 QPRINTK(qdev, IFUP, ALERT,
3172 "Driver up/down cycle failed, closing device\n");
3173 rtnl_lock();
3174 dev_close(qdev->ndev);
3175 rtnl_unlock();
3176 return status;
3177}
3178
3179static void ql_release_adapter_resources(struct ql_adapter *qdev)
3180{
3181 ql_free_mem_resources(qdev);
3182 ql_free_irq(qdev);
3183}
3184
3185static int ql_get_adapter_resources(struct ql_adapter *qdev)
3186{
3187 int status = 0;
3188
3189 if (ql_alloc_mem_resources(qdev)) {
3190 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3191 return -ENOMEM;
3192 }
3193 status = ql_request_irq(qdev);
3194 if (status)
3195 goto err_irq;
3196 return status;
3197err_irq:
3198 ql_free_mem_resources(qdev);
3199 return status;
3200}
3201
3202static int qlge_close(struct net_device *ndev)
3203{
3204 struct ql_adapter *qdev = netdev_priv(ndev);
3205
3206 /*
3207 * Wait for device to recover from a reset.
3208 * (Rarely happens, but possible.)
3209 */
3210 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3211 msleep(1);
3212 ql_adapter_down(qdev);
3213 ql_release_adapter_resources(qdev);
c4e84bde
RM
3214 return 0;
3215}
3216
3217static int ql_configure_rings(struct ql_adapter *qdev)
3218{
3219 int i;
3220 struct rx_ring *rx_ring;
3221 struct tx_ring *tx_ring;
3222 int cpu_cnt = num_online_cpus();
3223
3224 /*
3225 * For each processor present we allocate one
3226 * rx_ring for outbound completions, and one
3227 * rx_ring for inbound completions. Plus there is
3228 * always the one default queue. For the CPU
3229 * counts we end up with the following rx_rings:
3230 * rx_ring count =
3231 * one default queue +
3232 * (CPU count * outbound completion rx_ring) +
3233 * (CPU count * inbound (RSS) completion rx_ring)
3234 * To keep it simple we limit the total number of
3235 * queues to < 32, so we truncate CPU to 8.
3236 * This limitation can be removed when requested.
3237 */
3238
683d46a9
RM
3239 if (cpu_cnt > MAX_CPUS)
3240 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3241
3242 /*
3243 * rx_ring[0] is always the default queue.
3244 */
3245 /* Allocate outbound completion ring for each CPU. */
3246 qdev->tx_ring_count = cpu_cnt;
3247 /* Allocate inbound completion (RSS) ring for each CPU. */
3248 qdev->rss_ring_count = cpu_cnt;
3249 /* cq_id for the first inbound ring handler. */
3250 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3251 /*
3252 * qdev->rx_ring_count:
3253 * Total number of rx_rings. This includes the one
3254 * default queue, a number of outbound completion
3255 * handler rx_rings, and the number of inbound
3256 * completion handler rx_rings.
3257 */
3258 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3259
c4e84bde
RM
3260 for (i = 0; i < qdev->tx_ring_count; i++) {
3261 tx_ring = &qdev->tx_ring[i];
3262 memset((void *)tx_ring, 0, sizeof(tx_ring));
3263 tx_ring->qdev = qdev;
3264 tx_ring->wq_id = i;
3265 tx_ring->wq_len = qdev->tx_ring_size;
3266 tx_ring->wq_size =
3267 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3268
3269 /*
3270 * The completion queue ID for the tx rings start
3271 * immediately after the default Q ID, which is zero.
3272 */
3273 tx_ring->cq_id = i + 1;
3274 }
3275
3276 for (i = 0; i < qdev->rx_ring_count; i++) {
3277 rx_ring = &qdev->rx_ring[i];
3278 memset((void *)rx_ring, 0, sizeof(rx_ring));
3279 rx_ring->qdev = qdev;
3280 rx_ring->cq_id = i;
3281 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3282 if (i == 0) { /* Default queue at index 0. */
3283 /*
3284 * Default queue handles bcast/mcast plus
3285 * async events. Needs buffers.
3286 */
3287 rx_ring->cq_len = qdev->rx_ring_size;
3288 rx_ring->cq_size =
3289 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3290 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3291 rx_ring->lbq_size =
2c9a0d41 3292 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3293 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3294 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3295 rx_ring->sbq_size =
2c9a0d41 3296 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3297 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3298 rx_ring->type = DEFAULT_Q;
3299 } else if (i < qdev->rss_ring_first_cq_id) {
3300 /*
3301 * Outbound queue handles outbound completions only.
3302 */
3303 /* outbound cq is same size as tx_ring it services. */
3304 rx_ring->cq_len = qdev->tx_ring_size;
3305 rx_ring->cq_size =
3306 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3307 rx_ring->lbq_len = 0;
3308 rx_ring->lbq_size = 0;
3309 rx_ring->lbq_buf_size = 0;
3310 rx_ring->sbq_len = 0;
3311 rx_ring->sbq_size = 0;
3312 rx_ring->sbq_buf_size = 0;
3313 rx_ring->type = TX_Q;
3314 } else { /* Inbound completions (RSS) queues */
3315 /*
3316 * Inbound queues handle unicast frames only.
3317 */
3318 rx_ring->cq_len = qdev->rx_ring_size;
3319 rx_ring->cq_size =
3320 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3321 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3322 rx_ring->lbq_size =
2c9a0d41 3323 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3324 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3325 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3326 rx_ring->sbq_size =
2c9a0d41 3327 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3328 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3329 rx_ring->type = RX_Q;
3330 }
3331 }
3332 return 0;
3333}
3334
3335static int qlge_open(struct net_device *ndev)
3336{
3337 int err = 0;
3338 struct ql_adapter *qdev = netdev_priv(ndev);
3339
3340 err = ql_configure_rings(qdev);
3341 if (err)
3342 return err;
3343
3344 err = ql_get_adapter_resources(qdev);
3345 if (err)
3346 goto error_up;
3347
3348 err = ql_adapter_up(qdev);
3349 if (err)
3350 goto error_up;
3351
3352 return err;
3353
3354error_up:
3355 ql_release_adapter_resources(qdev);
c4e84bde
RM
3356 return err;
3357}
3358
3359static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3360{
3361 struct ql_adapter *qdev = netdev_priv(ndev);
3362
3363 if (ndev->mtu == 1500 && new_mtu == 9000) {
3364 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3365 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3366 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3367 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3368 (ndev->mtu == 9000 && new_mtu == 9000)) {
3369 return 0;
3370 } else
3371 return -EINVAL;
3372 ndev->mtu = new_mtu;
3373 return 0;
3374}
3375
3376static struct net_device_stats *qlge_get_stats(struct net_device
3377 *ndev)
3378{
3379 struct ql_adapter *qdev = netdev_priv(ndev);
3380 return &qdev->stats;
3381}
3382
3383static void qlge_set_multicast_list(struct net_device *ndev)
3384{
3385 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3386 struct dev_mc_list *mc_ptr;
cc288f54 3387 int i, status;
c4e84bde 3388
cc288f54
RM
3389 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3390 if (status)
3391 return;
c4e84bde
RM
3392 spin_lock(&qdev->hw_lock);
3393 /*
3394 * Set or clear promiscuous mode if a
3395 * transition is taking place.
3396 */
3397 if (ndev->flags & IFF_PROMISC) {
3398 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3399 if (ql_set_routing_reg
3400 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3401 QPRINTK(qdev, HW, ERR,
3402 "Failed to set promiscous mode.\n");
3403 } else {
3404 set_bit(QL_PROMISCUOUS, &qdev->flags);
3405 }
3406 }
3407 } else {
3408 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3409 if (ql_set_routing_reg
3410 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3411 QPRINTK(qdev, HW, ERR,
3412 "Failed to clear promiscous mode.\n");
3413 } else {
3414 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3415 }
3416 }
3417 }
3418
3419 /*
3420 * Set or clear all multicast mode if a
3421 * transition is taking place.
3422 */
3423 if ((ndev->flags & IFF_ALLMULTI) ||
3424 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3425 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3426 if (ql_set_routing_reg
3427 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3428 QPRINTK(qdev, HW, ERR,
3429 "Failed to set all-multi mode.\n");
3430 } else {
3431 set_bit(QL_ALLMULTI, &qdev->flags);
3432 }
3433 }
3434 } else {
3435 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3436 if (ql_set_routing_reg
3437 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3438 QPRINTK(qdev, HW, ERR,
3439 "Failed to clear all-multi mode.\n");
3440 } else {
3441 clear_bit(QL_ALLMULTI, &qdev->flags);
3442 }
3443 }
3444 }
3445
3446 if (ndev->mc_count) {
cc288f54
RM
3447 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3448 if (status)
3449 goto exit;
c4e84bde
RM
3450 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3451 i++, mc_ptr = mc_ptr->next)
3452 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3453 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3454 QPRINTK(qdev, HW, ERR,
3455 "Failed to loadmulticast address.\n");
cc288f54 3456 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3457 goto exit;
3458 }
cc288f54 3459 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3460 if (ql_set_routing_reg
3461 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3462 QPRINTK(qdev, HW, ERR,
3463 "Failed to set multicast match mode.\n");
3464 } else {
3465 set_bit(QL_ALLMULTI, &qdev->flags);
3466 }
3467 }
3468exit:
3469 spin_unlock(&qdev->hw_lock);
8587ea35 3470 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3471}
3472
3473static int qlge_set_mac_address(struct net_device *ndev, void *p)
3474{
3475 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3476 struct sockaddr *addr = p;
cc288f54 3477 int status;
c4e84bde
RM
3478
3479 if (netif_running(ndev))
3480 return -EBUSY;
3481
3482 if (!is_valid_ether_addr(addr->sa_data))
3483 return -EADDRNOTAVAIL;
3484 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3485
cc288f54
RM
3486 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3487 if (status)
3488 return status;
c4e84bde 3489 spin_lock(&qdev->hw_lock);
cc288f54
RM
3490 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3491 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
c4e84bde 3492 spin_unlock(&qdev->hw_lock);
cc288f54
RM
3493 if (status)
3494 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3495 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3496 return status;
c4e84bde
RM
3497}
3498
3499static void qlge_tx_timeout(struct net_device *ndev)
3500{
3501 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3502 ql_queue_asic_error(qdev);
c4e84bde
RM
3503}
3504
3505static void ql_asic_reset_work(struct work_struct *work)
3506{
3507 struct ql_adapter *qdev =
3508 container_of(work, struct ql_adapter, asic_reset_work.work);
3509 ql_cycle_adapter(qdev);
3510}
3511
3512static void ql_get_board_info(struct ql_adapter *qdev)
3513{
3514 qdev->func =
3515 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3516 if (qdev->func) {
3517 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3518 qdev->port_link_up = STS_PL1;
3519 qdev->port_init = STS_PI1;
3520 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3521 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3522 } else {
3523 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3524 qdev->port_link_up = STS_PL0;
3525 qdev->port_init = STS_PI0;
3526 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3527 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3528 }
3529 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3530}
3531
3532static void ql_release_all(struct pci_dev *pdev)
3533{
3534 struct net_device *ndev = pci_get_drvdata(pdev);
3535 struct ql_adapter *qdev = netdev_priv(ndev);
3536
3537 if (qdev->workqueue) {
3538 destroy_workqueue(qdev->workqueue);
3539 qdev->workqueue = NULL;
3540 }
3541 if (qdev->q_workqueue) {
3542 destroy_workqueue(qdev->q_workqueue);
3543 qdev->q_workqueue = NULL;
3544 }
3545 if (qdev->reg_base)
8668ae92 3546 iounmap(qdev->reg_base);
c4e84bde
RM
3547 if (qdev->doorbell_area)
3548 iounmap(qdev->doorbell_area);
3549 pci_release_regions(pdev);
3550 pci_set_drvdata(pdev, NULL);
3551}
3552
3553static int __devinit ql_init_device(struct pci_dev *pdev,
3554 struct net_device *ndev, int cards_found)
3555{
3556 struct ql_adapter *qdev = netdev_priv(ndev);
3557 int pos, err = 0;
3558 u16 val16;
3559
3560 memset((void *)qdev, 0, sizeof(qdev));
3561 err = pci_enable_device(pdev);
3562 if (err) {
3563 dev_err(&pdev->dev, "PCI device enable failed.\n");
3564 return err;
3565 }
3566
3567 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3568 if (pos <= 0) {
3569 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3570 "aborting.\n");
3571 goto err_out;
3572 } else {
3573 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3574 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3575 val16 |= (PCI_EXP_DEVCTL_CERE |
3576 PCI_EXP_DEVCTL_NFERE |
3577 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3578 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3579 }
3580
3581 err = pci_request_regions(pdev, DRV_NAME);
3582 if (err) {
3583 dev_err(&pdev->dev, "PCI region request failed.\n");
3584 goto err_out;
3585 }
3586
3587 pci_set_master(pdev);
3588 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3589 set_bit(QL_DMA64, &qdev->flags);
3590 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3591 } else {
3592 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3593 if (!err)
3594 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3595 }
3596
3597 if (err) {
3598 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3599 goto err_out;
3600 }
3601
3602 pci_set_drvdata(pdev, ndev);
3603 qdev->reg_base =
3604 ioremap_nocache(pci_resource_start(pdev, 1),
3605 pci_resource_len(pdev, 1));
3606 if (!qdev->reg_base) {
3607 dev_err(&pdev->dev, "Register mapping failed.\n");
3608 err = -ENOMEM;
3609 goto err_out;
3610 }
3611
3612 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3613 qdev->doorbell_area =
3614 ioremap_nocache(pci_resource_start(pdev, 3),
3615 pci_resource_len(pdev, 3));
3616 if (!qdev->doorbell_area) {
3617 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3618 err = -ENOMEM;
3619 goto err_out;
3620 }
3621
3622 ql_get_board_info(qdev);
3623 qdev->ndev = ndev;
3624 qdev->pdev = pdev;
3625 qdev->msg_enable = netif_msg_init(debug, default_msg);
3626 spin_lock_init(&qdev->hw_lock);
3627 spin_lock_init(&qdev->stats_lock);
3628
3629 /* make sure the EEPROM is good */
3630 err = ql_get_flash_params(qdev);
3631 if (err) {
3632 dev_err(&pdev->dev, "Invalid FLASH.\n");
3633 goto err_out;
3634 }
3635
3636 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3637 goto err_out;
3638
3639 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3640 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3641
3642 /* Set up the default ring sizes. */
3643 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3644 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3645
3646 /* Set up the coalescing parameters. */
3647 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3648 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3649 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3650 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3651
3652 /*
3653 * Set up the operating parameters.
3654 */
3655 qdev->rx_csum = 1;
3656
3657 qdev->q_workqueue = create_workqueue(ndev->name);
3658 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3659 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3660 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3661 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
125844ea 3662 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
3663
3664 if (!cards_found) {
3665 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3666 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3667 DRV_NAME, DRV_VERSION);
3668 }
3669 return 0;
3670err_out:
3671 ql_release_all(pdev);
3672 pci_disable_device(pdev);
3673 return err;
3674}
3675
25ed7849
SH
3676
3677static const struct net_device_ops qlge_netdev_ops = {
3678 .ndo_open = qlge_open,
3679 .ndo_stop = qlge_close,
3680 .ndo_start_xmit = qlge_send,
3681 .ndo_change_mtu = qlge_change_mtu,
3682 .ndo_get_stats = qlge_get_stats,
3683 .ndo_set_multicast_list = qlge_set_multicast_list,
3684 .ndo_set_mac_address = qlge_set_mac_address,
3685 .ndo_validate_addr = eth_validate_addr,
3686 .ndo_tx_timeout = qlge_tx_timeout,
3687 .ndo_vlan_rx_register = ql_vlan_rx_register,
3688 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3689 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3690};
3691
c4e84bde
RM
3692static int __devinit qlge_probe(struct pci_dev *pdev,
3693 const struct pci_device_id *pci_entry)
3694{
3695 struct net_device *ndev = NULL;
3696 struct ql_adapter *qdev = NULL;
3697 static int cards_found = 0;
3698 int err = 0;
3699
3700 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3701 if (!ndev)
3702 return -ENOMEM;
3703
3704 err = ql_init_device(pdev, ndev, cards_found);
3705 if (err < 0) {
3706 free_netdev(ndev);
3707 return err;
3708 }
3709
3710 qdev = netdev_priv(ndev);
3711 SET_NETDEV_DEV(ndev, &pdev->dev);
3712 ndev->features = (0
3713 | NETIF_F_IP_CSUM
3714 | NETIF_F_SG
3715 | NETIF_F_TSO
3716 | NETIF_F_TSO6
3717 | NETIF_F_TSO_ECN
3718 | NETIF_F_HW_VLAN_TX
3719 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3720
3721 if (test_bit(QL_DMA64, &qdev->flags))
3722 ndev->features |= NETIF_F_HIGHDMA;
3723
3724 /*
3725 * Set up net_device structure.
3726 */
3727 ndev->tx_queue_len = qdev->tx_ring_size;
3728 ndev->irq = pdev->irq;
25ed7849
SH
3729
3730 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3731 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3732 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3733
c4e84bde
RM
3734 err = register_netdev(ndev);
3735 if (err) {
3736 dev_err(&pdev->dev, "net device registration failed.\n");
3737 ql_release_all(pdev);
3738 pci_disable_device(pdev);
3739 return err;
3740 }
3741 netif_carrier_off(ndev);
3742 netif_stop_queue(ndev);
3743 ql_display_dev_info(ndev);
3744 cards_found++;
3745 return 0;
3746}
3747
3748static void __devexit qlge_remove(struct pci_dev *pdev)
3749{
3750 struct net_device *ndev = pci_get_drvdata(pdev);
3751 unregister_netdev(ndev);
3752 ql_release_all(pdev);
3753 pci_disable_device(pdev);
3754 free_netdev(ndev);
3755}
3756
3757/*
3758 * This callback is called by the PCI subsystem whenever
3759 * a PCI bus error is detected.
3760 */
3761static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3762 enum pci_channel_state state)
3763{
3764 struct net_device *ndev = pci_get_drvdata(pdev);
3765 struct ql_adapter *qdev = netdev_priv(ndev);
3766
3767 if (netif_running(ndev))
3768 ql_adapter_down(qdev);
3769
3770 pci_disable_device(pdev);
3771
3772 /* Request a slot reset. */
3773 return PCI_ERS_RESULT_NEED_RESET;
3774}
3775
3776/*
3777 * This callback is called after the PCI buss has been reset.
3778 * Basically, this tries to restart the card from scratch.
3779 * This is a shortened version of the device probe/discovery code,
3780 * it resembles the first-half of the () routine.
3781 */
3782static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3783{
3784 struct net_device *ndev = pci_get_drvdata(pdev);
3785 struct ql_adapter *qdev = netdev_priv(ndev);
3786
3787 if (pci_enable_device(pdev)) {
3788 QPRINTK(qdev, IFUP, ERR,
3789 "Cannot re-enable PCI device after reset.\n");
3790 return PCI_ERS_RESULT_DISCONNECT;
3791 }
3792
3793 pci_set_master(pdev);
3794
3795 netif_carrier_off(ndev);
3796 netif_stop_queue(ndev);
3797 ql_adapter_reset(qdev);
3798
3799 /* Make sure the EEPROM is good */
3800 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3801
3802 if (!is_valid_ether_addr(ndev->perm_addr)) {
3803 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3804 return PCI_ERS_RESULT_DISCONNECT;
3805 }
3806
3807 return PCI_ERS_RESULT_RECOVERED;
3808}
3809
3810static void qlge_io_resume(struct pci_dev *pdev)
3811{
3812 struct net_device *ndev = pci_get_drvdata(pdev);
3813 struct ql_adapter *qdev = netdev_priv(ndev);
3814
3815 pci_set_master(pdev);
3816
3817 if (netif_running(ndev)) {
3818 if (ql_adapter_up(qdev)) {
3819 QPRINTK(qdev, IFUP, ERR,
3820 "Device initialization failed after reset.\n");
3821 return;
3822 }
3823 }
3824
3825 netif_device_attach(ndev);
3826}
3827
3828static struct pci_error_handlers qlge_err_handler = {
3829 .error_detected = qlge_io_error_detected,
3830 .slot_reset = qlge_io_slot_reset,
3831 .resume = qlge_io_resume,
3832};
3833
3834static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3835{
3836 struct net_device *ndev = pci_get_drvdata(pdev);
3837 struct ql_adapter *qdev = netdev_priv(ndev);
0047e5d2 3838 int err, i;
c4e84bde
RM
3839
3840 netif_device_detach(ndev);
3841
3842 if (netif_running(ndev)) {
3843 err = ql_adapter_down(qdev);
3844 if (!err)
3845 return err;
3846 }
3847
0047e5d2
RM
3848 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3849 netif_napi_del(&qdev->rx_ring[i].napi);
3850
c4e84bde
RM
3851 err = pci_save_state(pdev);
3852 if (err)
3853 return err;
3854
3855 pci_disable_device(pdev);
3856
3857 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3858
3859 return 0;
3860}
3861
04da2cf9 3862#ifdef CONFIG_PM
c4e84bde
RM
3863static int qlge_resume(struct pci_dev *pdev)
3864{
3865 struct net_device *ndev = pci_get_drvdata(pdev);
3866 struct ql_adapter *qdev = netdev_priv(ndev);
3867 int err;
3868
3869 pci_set_power_state(pdev, PCI_D0);
3870 pci_restore_state(pdev);
3871 err = pci_enable_device(pdev);
3872 if (err) {
3873 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3874 return err;
3875 }
3876 pci_set_master(pdev);
3877
3878 pci_enable_wake(pdev, PCI_D3hot, 0);
3879 pci_enable_wake(pdev, PCI_D3cold, 0);
3880
3881 if (netif_running(ndev)) {
3882 err = ql_adapter_up(qdev);
3883 if (err)
3884 return err;
3885 }
3886
3887 netif_device_attach(ndev);
3888
3889 return 0;
3890}
04da2cf9 3891#endif /* CONFIG_PM */
c4e84bde
RM
3892
3893static void qlge_shutdown(struct pci_dev *pdev)
3894{
3895 qlge_suspend(pdev, PMSG_SUSPEND);
3896}
3897
3898static struct pci_driver qlge_driver = {
3899 .name = DRV_NAME,
3900 .id_table = qlge_pci_tbl,
3901 .probe = qlge_probe,
3902 .remove = __devexit_p(qlge_remove),
3903#ifdef CONFIG_PM
3904 .suspend = qlge_suspend,
3905 .resume = qlge_resume,
3906#endif
3907 .shutdown = qlge_shutdown,
3908 .err_handler = &qlge_err_handler
3909};
3910
3911static int __init qlge_init_module(void)
3912{
3913 return pci_register_driver(&qlge_driver);
3914}
3915
3916static void __exit qlge_exit(void)
3917{
3918 pci_unregister_driver(&qlge_driver);
3919}
3920
3921module_init(qlge_init_module);
3922module_exit(qlge_exit);
This page took 0.251739 seconds and 5 git commands to generate.