qlge: Add support for GRO.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
0857e9d7 130 unsigned int wait_count = 30;
c4e84bde
RM
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
0857e9d7
RM
134 udelay(100);
135 } while (--wait_count);
c4e84bde
RM
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
c4e84bde
RM
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
939678f8 257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
939678f8 265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
939678f8 271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
939678f8 279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
939678f8 286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 294 MAC_ADDR_MR, 0);
c4e84bde
RM
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308exit:
c4e84bde
RM
309 return status;
310}
311
312/* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317{
318 u32 offset = 0;
319 int status = 0;
320
c4e84bde
RM
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
324 {
325 u32 cam_output;
326 u32 upper = (addr[0] << 8) | addr[1];
327 u32 lower =
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329 (addr[5]);
330
4974097a 331 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 332 "Adding %s address %pM"
c4e84bde
RM
333 " at index %d in the CAM.\n",
334 ((type ==
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 336 "UNICAST"), addr, index);
c4e84bde
RM
337
338 status =
339 ql_wait_reg_rdy(qdev,
939678f8 340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
341 if (status)
342 goto exit;
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
345 type); /* type */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
347 status =
348 ql_wait_reg_rdy(qdev,
939678f8 349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
354 type); /* type */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
356 status =
357 ql_wait_reg_rdy(qdev,
939678f8 358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
363 type); /* type */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
367 */
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
370 (qdev->
371 func << CAM_OUT_FUNC_SHIFT) |
372 (qdev->
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
375 if (qdev->vlgrp)
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379 }
380 break;
381 }
382 case MAC_ADDR_TYPE_VLAN:
383 {
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
389 */
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
393
394 status =
395 ql_wait_reg_rdy(qdev,
939678f8 396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type | /* type */
402 enable_bit); /* enable/disable */
403 break;
404 }
405 case MAC_ADDR_TYPE_MULTI_FLTR:
406 default:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
409 status = -EPERM;
410 }
411exit:
c4e84bde
RM
412 return status;
413}
414
415/* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
417 */
418int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
419{
420 int status = 0;
421
939678f8 422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
423 if (status)
424 goto exit;
425
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 *value = ql_read32(qdev, RT_DATA);
432exit:
c4e84bde
RM
433 return status;
434}
435
436/* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
440 */
441static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442 int enable)
443{
8587ea35 444 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
445 u32 value = 0;
446
c4e84bde
RM
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452 ((index ==
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
468
469 switch (mask) {
470 case RT_IDX_CAM_HIT:
471 {
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475 break;
476 }
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
478 {
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482 break;
483 }
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
485 {
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489 break;
490 }
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
492 {
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496 break;
497 }
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
499 {
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503 break;
504 }
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
506 {
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510 break;
511 }
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
513 {
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517 break;
518 }
519 case 0: /* Clear the E-bit on an entry. */
520 {
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
524 break;
525 }
526 default:
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528 mask);
529 status = -EPERM;
530 goto exit;
531 }
532
533 if (value) {
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535 if (status)
536 goto exit;
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
540 }
541exit:
c4e84bde
RM
542 return status;
543}
544
545static void ql_enable_interrupts(struct ql_adapter *qdev)
546{
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
548}
549
550static void ql_disable_interrupts(struct ql_adapter *qdev)
551{
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
553}
554
555/* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
560 */
bb0d215c 561u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 562{
bb0d215c
RM
563 u32 var = 0;
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
566
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
570 */
c4e84bde 571 ql_write32(qdev, INTR_EN,
bb0d215c
RM
572 ctx->intr_en_mask);
573 var = ql_read32(qdev, STS);
574 return var;
c4e84bde 575 }
bb0d215c
RM
576
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
580 ctx->intr_en_mask);
581 var = ql_read32(qdev, STS);
582 }
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584 return var;
c4e84bde
RM
585}
586
587static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
588{
589 u32 var = 0;
bb0d215c
RM
590 unsigned long hw_flags;
591 struct intr_context *ctx;
c4e84bde 592
bb0d215c
RM
593 /* HW disables for us if we're MSIX multi interrupts and
594 * it's not the default (zeroeth) interrupt.
595 */
596 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
597 return 0;
598
599 ctx = qdev->intr_context + intr;
600 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
601 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 602 ql_write32(qdev, INTR_EN,
bb0d215c 603 ctx->intr_dis_mask);
c4e84bde
RM
604 var = ql_read32(qdev, STS);
605 }
bb0d215c
RM
606 atomic_inc(&ctx->irq_cnt);
607 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
608 return var;
609}
610
611static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
612{
613 int i;
614 for (i = 0; i < qdev->intr_count; i++) {
615 /* The enable call does a atomic_dec_and_test
616 * and enables only if the result is zero.
617 * So we precharge it here.
618 */
bb0d215c
RM
619 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
620 i == 0))
621 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
622 ql_enable_completion_interrupt(qdev, i);
623 }
624
625}
626
b0c2aadf
RM
627static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
628{
629 int status, i;
630 u16 csum = 0;
631 __le16 *flash = (__le16 *)&qdev->flash;
632
633 status = strncmp((char *)&qdev->flash, str, 4);
634 if (status) {
635 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
636 return status;
637 }
638
639 for (i = 0; i < size; i++)
640 csum += le16_to_cpu(*flash++);
641
642 if (csum)
643 QPRINTK(qdev, IFUP, ERR,
644 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
645
646 return csum;
647}
648
26351479 649static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
650{
651 int status = 0;
652 /* wait for reg to come ready */
653 status = ql_wait_reg_rdy(qdev,
654 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
655 if (status)
656 goto exit;
657 /* set up for reg read */
658 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
659 /* wait for reg to come ready */
660 status = ql_wait_reg_rdy(qdev,
661 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
662 if (status)
663 goto exit;
26351479
RM
664 /* This data is stored on flash as an array of
665 * __le32. Since ql_read32() returns cpu endian
666 * we need to swap it back.
667 */
668 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
669exit:
670 return status;
671}
672
cdca8d02
RM
673static int ql_get_8000_flash_params(struct ql_adapter *qdev)
674{
675 u32 i, size;
676 int status;
677 __le32 *p = (__le32 *)&qdev->flash;
678 u32 offset;
679
680 /* Get flash offset for function and adjust
681 * for dword access.
682 */
683 if (!qdev->func)
684 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
685 else
686 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
687
688 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
689 return -ETIMEDOUT;
690
691 size = sizeof(struct flash_params_8000) / sizeof(u32);
692 for (i = 0; i < size; i++, p++) {
693 status = ql_read_flash_word(qdev, i+offset, p);
694 if (status) {
695 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
696 goto exit;
697 }
698 }
699
700 status = ql_validate_flash(qdev,
701 sizeof(struct flash_params_8000) / sizeof(u16),
702 "8000");
703 if (status) {
704 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
705 status = -EINVAL;
706 goto exit;
707 }
708
709 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
710 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
711 status = -EINVAL;
712 goto exit;
713 }
714
715 memcpy(qdev->ndev->dev_addr,
716 qdev->flash.flash_params_8000.mac_addr,
717 qdev->ndev->addr_len);
718
719exit:
720 ql_sem_unlock(qdev, SEM_FLASH_MASK);
721 return status;
722}
723
b0c2aadf 724static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
725{
726 int i;
727 int status;
26351479 728 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 729 u32 offset = 0;
b0c2aadf 730 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
731
732 /* Second function's parameters follow the first
733 * function's.
734 */
735 if (qdev->func)
b0c2aadf 736 offset = size;
c4e84bde
RM
737
738 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
739 return -ETIMEDOUT;
740
b0c2aadf 741 for (i = 0; i < size; i++, p++) {
e78f5fa7 742 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
743 if (status) {
744 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
745 goto exit;
746 }
747
748 }
b0c2aadf
RM
749
750 status = ql_validate_flash(qdev,
751 sizeof(struct flash_params_8012) / sizeof(u16),
752 "8012");
753 if (status) {
754 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
755 status = -EINVAL;
756 goto exit;
757 }
758
759 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
760 status = -EINVAL;
761 goto exit;
762 }
763
764 memcpy(qdev->ndev->dev_addr,
765 qdev->flash.flash_params_8012.mac_addr,
766 qdev->ndev->addr_len);
767
c4e84bde
RM
768exit:
769 ql_sem_unlock(qdev, SEM_FLASH_MASK);
770 return status;
771}
772
773/* xgmac register are located behind the xgmac_addr and xgmac_data
774 * register pair. Each read/write requires us to wait for the ready
775 * bit before reading/writing the data.
776 */
777static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
778{
779 int status;
780 /* wait for reg to come ready */
781 status = ql_wait_reg_rdy(qdev,
782 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
783 if (status)
784 return status;
785 /* write the data to the data reg */
786 ql_write32(qdev, XGMAC_DATA, data);
787 /* trigger the write */
788 ql_write32(qdev, XGMAC_ADDR, reg);
789 return status;
790}
791
792/* xgmac register are located behind the xgmac_addr and xgmac_data
793 * register pair. Each read/write requires us to wait for the ready
794 * bit before reading/writing the data.
795 */
796int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
797{
798 int status = 0;
799 /* wait for reg to come ready */
800 status = ql_wait_reg_rdy(qdev,
801 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
802 if (status)
803 goto exit;
804 /* set up for reg read */
805 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
806 /* wait for reg to come ready */
807 status = ql_wait_reg_rdy(qdev,
808 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
809 if (status)
810 goto exit;
811 /* get the data */
812 *data = ql_read32(qdev, XGMAC_DATA);
813exit:
814 return status;
815}
816
817/* This is used for reading the 64-bit statistics regs. */
818int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
819{
820 int status = 0;
821 u32 hi = 0;
822 u32 lo = 0;
823
824 status = ql_read_xgmac_reg(qdev, reg, &lo);
825 if (status)
826 goto exit;
827
828 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
829 if (status)
830 goto exit;
831
832 *data = (u64) lo | ((u64) hi << 32);
833
834exit:
835 return status;
836}
837
cdca8d02
RM
838static int ql_8000_port_initialize(struct ql_adapter *qdev)
839{
bcc2cb3b
RM
840 int status;
841 status = ql_mb_get_fw_state(qdev);
842 if (status)
843 goto exit;
844 /* Wake up a worker to get/set the TX/RX frame sizes. */
845 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
846exit:
847 return status;
cdca8d02
RM
848}
849
c4e84bde
RM
850/* Take the MAC Core out of reset.
851 * Enable statistics counting.
852 * Take the transmitter/receiver out of reset.
853 * This functionality may be done in the MPI firmware at a
854 * later date.
855 */
b0c2aadf 856static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
857{
858 int status = 0;
859 u32 data;
860
861 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
862 /* Another function has the semaphore, so
863 * wait for the port init bit to come ready.
864 */
865 QPRINTK(qdev, LINK, INFO,
866 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
867 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
868 if (status) {
869 QPRINTK(qdev, LINK, CRIT,
870 "Port initialize timed out.\n");
871 }
872 return status;
873 }
874
875 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
876 /* Set the core reset. */
877 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
878 if (status)
879 goto end;
880 data |= GLOBAL_CFG_RESET;
881 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
882 if (status)
883 goto end;
884
885 /* Clear the core reset and turn on jumbo for receiver. */
886 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
887 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
888 data |= GLOBAL_CFG_TX_STAT_EN;
889 data |= GLOBAL_CFG_RX_STAT_EN;
890 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
891 if (status)
892 goto end;
893
894 /* Enable transmitter, and clear it's reset. */
895 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
896 if (status)
897 goto end;
898 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
899 data |= TX_CFG_EN; /* Enable the transmitter. */
900 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
901 if (status)
902 goto end;
903
904 /* Enable receiver and clear it's reset. */
905 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
906 if (status)
907 goto end;
908 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
909 data |= RX_CFG_EN; /* Enable the receiver. */
910 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
911 if (status)
912 goto end;
913
914 /* Turn on jumbo. */
915 status =
916 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
917 if (status)
918 goto end;
919 status =
920 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
921 if (status)
922 goto end;
923
924 /* Signal to the world that the port is enabled. */
925 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
926end:
927 ql_sem_unlock(qdev, qdev->xg_sem_mask);
928 return status;
929}
930
931/* Get the next large buffer. */
8668ae92 932static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
933{
934 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
935 rx_ring->lbq_curr_idx++;
936 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
937 rx_ring->lbq_curr_idx = 0;
938 rx_ring->lbq_free_cnt++;
939 return lbq_desc;
940}
941
942/* Get the next small buffer. */
8668ae92 943static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
944{
945 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
946 rx_ring->sbq_curr_idx++;
947 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
948 rx_ring->sbq_curr_idx = 0;
949 rx_ring->sbq_free_cnt++;
950 return sbq_desc;
951}
952
953/* Update an rx ring index. */
954static void ql_update_cq(struct rx_ring *rx_ring)
955{
956 rx_ring->cnsmr_idx++;
957 rx_ring->curr_entry++;
958 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
959 rx_ring->cnsmr_idx = 0;
960 rx_ring->curr_entry = rx_ring->cq_base;
961 }
962}
963
964static void ql_write_cq_idx(struct rx_ring *rx_ring)
965{
966 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
967}
968
969/* Process (refill) a large buffer queue. */
970static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
971{
49f2186d
RM
972 u32 clean_idx = rx_ring->lbq_clean_idx;
973 u32 start_idx = clean_idx;
c4e84bde 974 struct bq_desc *lbq_desc;
c4e84bde
RM
975 u64 map;
976 int i;
977
978 while (rx_ring->lbq_free_cnt > 16) {
979 for (i = 0; i < 16; i++) {
980 QPRINTK(qdev, RX_STATUS, DEBUG,
981 "lbq: try cleaning clean_idx = %d.\n",
982 clean_idx);
983 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
984 if (lbq_desc->p.lbq_page == NULL) {
985 QPRINTK(qdev, RX_STATUS, DEBUG,
986 "lbq: getting new page for index %d.\n",
987 lbq_desc->index);
988 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
989 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 990 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
991 QPRINTK(qdev, RX_STATUS, ERR,
992 "Couldn't get a page.\n");
993 return;
994 }
995 map = pci_map_page(qdev->pdev,
996 lbq_desc->p.lbq_page,
997 0, PAGE_SIZE,
998 PCI_DMA_FROMDEVICE);
999 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 1000 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
1001 put_page(lbq_desc->p.lbq_page);
1002 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
1003 QPRINTK(qdev, RX_STATUS, ERR,
1004 "PCI mapping failed.\n");
1005 return;
1006 }
1007 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1008 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 1009 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1010 }
1011 clean_idx++;
1012 if (clean_idx == rx_ring->lbq_len)
1013 clean_idx = 0;
1014 }
1015
1016 rx_ring->lbq_clean_idx = clean_idx;
1017 rx_ring->lbq_prod_idx += 16;
1018 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1019 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1020 rx_ring->lbq_free_cnt -= 16;
1021 }
1022
1023 if (start_idx != clean_idx) {
c4e84bde
RM
1024 QPRINTK(qdev, RX_STATUS, DEBUG,
1025 "lbq: updating prod idx = %d.\n",
1026 rx_ring->lbq_prod_idx);
1027 ql_write_db_reg(rx_ring->lbq_prod_idx,
1028 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1029 }
1030}
1031
1032/* Process (refill) a small buffer queue. */
1033static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1034{
49f2186d
RM
1035 u32 clean_idx = rx_ring->sbq_clean_idx;
1036 u32 start_idx = clean_idx;
c4e84bde 1037 struct bq_desc *sbq_desc;
c4e84bde
RM
1038 u64 map;
1039 int i;
1040
1041 while (rx_ring->sbq_free_cnt > 16) {
1042 for (i = 0; i < 16; i++) {
1043 sbq_desc = &rx_ring->sbq[clean_idx];
1044 QPRINTK(qdev, RX_STATUS, DEBUG,
1045 "sbq: try cleaning clean_idx = %d.\n",
1046 clean_idx);
c4e84bde
RM
1047 if (sbq_desc->p.skb == NULL) {
1048 QPRINTK(qdev, RX_STATUS, DEBUG,
1049 "sbq: getting new skb for index %d.\n",
1050 sbq_desc->index);
1051 sbq_desc->p.skb =
1052 netdev_alloc_skb(qdev->ndev,
1053 rx_ring->sbq_buf_size);
1054 if (sbq_desc->p.skb == NULL) {
1055 QPRINTK(qdev, PROBE, ERR,
1056 "Couldn't get an skb.\n");
1057 rx_ring->sbq_clean_idx = clean_idx;
1058 return;
1059 }
1060 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1061 map = pci_map_single(qdev->pdev,
1062 sbq_desc->p.skb->data,
1063 rx_ring->sbq_buf_size /
1064 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
1065 if (pci_dma_mapping_error(qdev->pdev, map)) {
1066 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1067 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1068 dev_kfree_skb_any(sbq_desc->p.skb);
1069 sbq_desc->p.skb = NULL;
c907a35a
RM
1070 return;
1071 }
c4e84bde
RM
1072 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1073 pci_unmap_len_set(sbq_desc, maplen,
1074 rx_ring->sbq_buf_size / 2);
2c9a0d41 1075 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1076 }
1077
1078 clean_idx++;
1079 if (clean_idx == rx_ring->sbq_len)
1080 clean_idx = 0;
1081 }
1082 rx_ring->sbq_clean_idx = clean_idx;
1083 rx_ring->sbq_prod_idx += 16;
1084 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1085 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1086 rx_ring->sbq_free_cnt -= 16;
1087 }
1088
1089 if (start_idx != clean_idx) {
c4e84bde
RM
1090 QPRINTK(qdev, RX_STATUS, DEBUG,
1091 "sbq: updating prod idx = %d.\n",
1092 rx_ring->sbq_prod_idx);
1093 ql_write_db_reg(rx_ring->sbq_prod_idx,
1094 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1095 }
1096}
1097
1098static void ql_update_buffer_queues(struct ql_adapter *qdev,
1099 struct rx_ring *rx_ring)
1100{
1101 ql_update_sbq(qdev, rx_ring);
1102 ql_update_lbq(qdev, rx_ring);
1103}
1104
1105/* Unmaps tx buffers. Can be called from send() if a pci mapping
1106 * fails at some stage, or from the interrupt when a tx completes.
1107 */
1108static void ql_unmap_send(struct ql_adapter *qdev,
1109 struct tx_ring_desc *tx_ring_desc, int mapped)
1110{
1111 int i;
1112 for (i = 0; i < mapped; i++) {
1113 if (i == 0 || (i == 7 && mapped > 7)) {
1114 /*
1115 * Unmap the skb->data area, or the
1116 * external sglist (AKA the Outbound
1117 * Address List (OAL)).
1118 * If its the zeroeth element, then it's
1119 * the skb->data area. If it's the 7th
1120 * element and there is more than 6 frags,
1121 * then its an OAL.
1122 */
1123 if (i == 7) {
1124 QPRINTK(qdev, TX_DONE, DEBUG,
1125 "unmapping OAL area.\n");
1126 }
1127 pci_unmap_single(qdev->pdev,
1128 pci_unmap_addr(&tx_ring_desc->map[i],
1129 mapaddr),
1130 pci_unmap_len(&tx_ring_desc->map[i],
1131 maplen),
1132 PCI_DMA_TODEVICE);
1133 } else {
1134 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1135 i);
1136 pci_unmap_page(qdev->pdev,
1137 pci_unmap_addr(&tx_ring_desc->map[i],
1138 mapaddr),
1139 pci_unmap_len(&tx_ring_desc->map[i],
1140 maplen), PCI_DMA_TODEVICE);
1141 }
1142 }
1143
1144}
1145
1146/* Map the buffers for this transmit. This will return
1147 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1148 */
1149static int ql_map_send(struct ql_adapter *qdev,
1150 struct ob_mac_iocb_req *mac_iocb_ptr,
1151 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1152{
1153 int len = skb_headlen(skb);
1154 dma_addr_t map;
1155 int frag_idx, err, map_idx = 0;
1156 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1157 int frag_cnt = skb_shinfo(skb)->nr_frags;
1158
1159 if (frag_cnt) {
1160 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1161 }
1162 /*
1163 * Map the skb buffer first.
1164 */
1165 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1166
1167 err = pci_dma_mapping_error(qdev->pdev, map);
1168 if (err) {
1169 QPRINTK(qdev, TX_QUEUED, ERR,
1170 "PCI mapping failed with error: %d\n", err);
1171
1172 return NETDEV_TX_BUSY;
1173 }
1174
1175 tbd->len = cpu_to_le32(len);
1176 tbd->addr = cpu_to_le64(map);
1177 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1178 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1179 map_idx++;
1180
1181 /*
1182 * This loop fills the remainder of the 8 address descriptors
1183 * in the IOCB. If there are more than 7 fragments, then the
1184 * eighth address desc will point to an external list (OAL).
1185 * When this happens, the remainder of the frags will be stored
1186 * in this list.
1187 */
1188 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1189 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1190 tbd++;
1191 if (frag_idx == 6 && frag_cnt > 7) {
1192 /* Let's tack on an sglist.
1193 * Our control block will now
1194 * look like this:
1195 * iocb->seg[0] = skb->data
1196 * iocb->seg[1] = frag[0]
1197 * iocb->seg[2] = frag[1]
1198 * iocb->seg[3] = frag[2]
1199 * iocb->seg[4] = frag[3]
1200 * iocb->seg[5] = frag[4]
1201 * iocb->seg[6] = frag[5]
1202 * iocb->seg[7] = ptr to OAL (external sglist)
1203 * oal->seg[0] = frag[6]
1204 * oal->seg[1] = frag[7]
1205 * oal->seg[2] = frag[8]
1206 * oal->seg[3] = frag[9]
1207 * oal->seg[4] = frag[10]
1208 * etc...
1209 */
1210 /* Tack on the OAL in the eighth segment of IOCB. */
1211 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1212 sizeof(struct oal),
1213 PCI_DMA_TODEVICE);
1214 err = pci_dma_mapping_error(qdev->pdev, map);
1215 if (err) {
1216 QPRINTK(qdev, TX_QUEUED, ERR,
1217 "PCI mapping outbound address list with error: %d\n",
1218 err);
1219 goto map_error;
1220 }
1221
1222 tbd->addr = cpu_to_le64(map);
1223 /*
1224 * The length is the number of fragments
1225 * that remain to be mapped times the length
1226 * of our sglist (OAL).
1227 */
1228 tbd->len =
1229 cpu_to_le32((sizeof(struct tx_buf_desc) *
1230 (frag_cnt - frag_idx)) | TX_DESC_C);
1231 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1232 map);
1233 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1234 sizeof(struct oal));
1235 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1236 map_idx++;
1237 }
1238
1239 map =
1240 pci_map_page(qdev->pdev, frag->page,
1241 frag->page_offset, frag->size,
1242 PCI_DMA_TODEVICE);
1243
1244 err = pci_dma_mapping_error(qdev->pdev, map);
1245 if (err) {
1246 QPRINTK(qdev, TX_QUEUED, ERR,
1247 "PCI mapping frags failed with error: %d.\n",
1248 err);
1249 goto map_error;
1250 }
1251
1252 tbd->addr = cpu_to_le64(map);
1253 tbd->len = cpu_to_le32(frag->size);
1254 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1255 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1256 frag->size);
1257
1258 }
1259 /* Save the number of segments we've mapped. */
1260 tx_ring_desc->map_cnt = map_idx;
1261 /* Terminate the last segment. */
1262 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1263 return NETDEV_TX_OK;
1264
1265map_error:
1266 /*
1267 * If the first frag mapping failed, then i will be zero.
1268 * This causes the unmap of the skb->data area. Otherwise
1269 * we pass in the number of frags that mapped successfully
1270 * so they can be umapped.
1271 */
1272 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1273 return NETDEV_TX_BUSY;
1274}
1275
8668ae92 1276static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1277{
1278 void *temp_addr = skb->data;
1279
1280 /* Undo the skb_reserve(skb,32) we did before
1281 * giving to hardware, and realign data on
1282 * a 2-byte boundary.
1283 */
1284 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1285 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1286 skb_copy_to_linear_data(skb, temp_addr,
1287 (unsigned int)len);
1288}
1289
1290/*
1291 * This function builds an skb for the given inbound
1292 * completion. It will be rewritten for readability in the near
1293 * future, but for not it works well.
1294 */
1295static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1296 struct rx_ring *rx_ring,
1297 struct ib_mac_iocb_rsp *ib_mac_rsp)
1298{
1299 struct bq_desc *lbq_desc;
1300 struct bq_desc *sbq_desc;
1301 struct sk_buff *skb = NULL;
1302 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1303 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1304
1305 /*
1306 * Handle the header buffer if present.
1307 */
1308 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1309 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1310 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1311 /*
1312 * Headers fit nicely into a small buffer.
1313 */
1314 sbq_desc = ql_get_curr_sbuf(rx_ring);
1315 pci_unmap_single(qdev->pdev,
1316 pci_unmap_addr(sbq_desc, mapaddr),
1317 pci_unmap_len(sbq_desc, maplen),
1318 PCI_DMA_FROMDEVICE);
1319 skb = sbq_desc->p.skb;
1320 ql_realign_skb(skb, hdr_len);
1321 skb_put(skb, hdr_len);
1322 sbq_desc->p.skb = NULL;
1323 }
1324
1325 /*
1326 * Handle the data buffer(s).
1327 */
1328 if (unlikely(!length)) { /* Is there data too? */
1329 QPRINTK(qdev, RX_STATUS, DEBUG,
1330 "No Data buffer in this packet.\n");
1331 return skb;
1332 }
1333
1334 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1335 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1336 QPRINTK(qdev, RX_STATUS, DEBUG,
1337 "Headers in small, data of %d bytes in small, combine them.\n", length);
1338 /*
1339 * Data is less than small buffer size so it's
1340 * stuffed in a small buffer.
1341 * For this case we append the data
1342 * from the "data" small buffer to the "header" small
1343 * buffer.
1344 */
1345 sbq_desc = ql_get_curr_sbuf(rx_ring);
1346 pci_dma_sync_single_for_cpu(qdev->pdev,
1347 pci_unmap_addr
1348 (sbq_desc, mapaddr),
1349 pci_unmap_len
1350 (sbq_desc, maplen),
1351 PCI_DMA_FROMDEVICE);
1352 memcpy(skb_put(skb, length),
1353 sbq_desc->p.skb->data, length);
1354 pci_dma_sync_single_for_device(qdev->pdev,
1355 pci_unmap_addr
1356 (sbq_desc,
1357 mapaddr),
1358 pci_unmap_len
1359 (sbq_desc,
1360 maplen),
1361 PCI_DMA_FROMDEVICE);
1362 } else {
1363 QPRINTK(qdev, RX_STATUS, DEBUG,
1364 "%d bytes in a single small buffer.\n", length);
1365 sbq_desc = ql_get_curr_sbuf(rx_ring);
1366 skb = sbq_desc->p.skb;
1367 ql_realign_skb(skb, length);
1368 skb_put(skb, length);
1369 pci_unmap_single(qdev->pdev,
1370 pci_unmap_addr(sbq_desc,
1371 mapaddr),
1372 pci_unmap_len(sbq_desc,
1373 maplen),
1374 PCI_DMA_FROMDEVICE);
1375 sbq_desc->p.skb = NULL;
1376 }
1377 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1378 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1379 QPRINTK(qdev, RX_STATUS, DEBUG,
1380 "Header in small, %d bytes in large. Chain large to small!\n", length);
1381 /*
1382 * The data is in a single large buffer. We
1383 * chain it to the header buffer's skb and let
1384 * it rip.
1385 */
1386 lbq_desc = ql_get_curr_lbuf(rx_ring);
1387 pci_unmap_page(qdev->pdev,
1388 pci_unmap_addr(lbq_desc,
1389 mapaddr),
1390 pci_unmap_len(lbq_desc, maplen),
1391 PCI_DMA_FROMDEVICE);
1392 QPRINTK(qdev, RX_STATUS, DEBUG,
1393 "Chaining page to skb.\n");
1394 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1395 0, length);
1396 skb->len += length;
1397 skb->data_len += length;
1398 skb->truesize += length;
1399 lbq_desc->p.lbq_page = NULL;
1400 } else {
1401 /*
1402 * The headers and data are in a single large buffer. We
1403 * copy it to a new skb and let it go. This can happen with
1404 * jumbo mtu on a non-TCP/UDP frame.
1405 */
1406 lbq_desc = ql_get_curr_lbuf(rx_ring);
1407 skb = netdev_alloc_skb(qdev->ndev, length);
1408 if (skb == NULL) {
1409 QPRINTK(qdev, PROBE, DEBUG,
1410 "No skb available, drop the packet.\n");
1411 return NULL;
1412 }
4055c7d4
RM
1413 pci_unmap_page(qdev->pdev,
1414 pci_unmap_addr(lbq_desc,
1415 mapaddr),
1416 pci_unmap_len(lbq_desc, maplen),
1417 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1418 skb_reserve(skb, NET_IP_ALIGN);
1419 QPRINTK(qdev, RX_STATUS, DEBUG,
1420 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1421 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1422 0, length);
1423 skb->len += length;
1424 skb->data_len += length;
1425 skb->truesize += length;
1426 length -= length;
1427 lbq_desc->p.lbq_page = NULL;
1428 __pskb_pull_tail(skb,
1429 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1430 VLAN_ETH_HLEN : ETH_HLEN);
1431 }
1432 } else {
1433 /*
1434 * The data is in a chain of large buffers
1435 * pointed to by a small buffer. We loop
1436 * thru and chain them to the our small header
1437 * buffer's skb.
1438 * frags: There are 18 max frags and our small
1439 * buffer will hold 32 of them. The thing is,
1440 * we'll use 3 max for our 9000 byte jumbo
1441 * frames. If the MTU goes up we could
1442 * eventually be in trouble.
1443 */
1444 int size, offset, i = 0;
2c9a0d41 1445 __le64 *bq, bq_array[8];
c4e84bde
RM
1446 sbq_desc = ql_get_curr_sbuf(rx_ring);
1447 pci_unmap_single(qdev->pdev,
1448 pci_unmap_addr(sbq_desc, mapaddr),
1449 pci_unmap_len(sbq_desc, maplen),
1450 PCI_DMA_FROMDEVICE);
1451 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1452 /*
1453 * This is an non TCP/UDP IP frame, so
1454 * the headers aren't split into a small
1455 * buffer. We have to use the small buffer
1456 * that contains our sg list as our skb to
1457 * send upstairs. Copy the sg list here to
1458 * a local buffer and use it to find the
1459 * pages to chain.
1460 */
1461 QPRINTK(qdev, RX_STATUS, DEBUG,
1462 "%d bytes of headers & data in chain of large.\n", length);
1463 skb = sbq_desc->p.skb;
1464 bq = &bq_array[0];
1465 memcpy(bq, skb->data, sizeof(bq_array));
1466 sbq_desc->p.skb = NULL;
1467 skb_reserve(skb, NET_IP_ALIGN);
1468 } else {
1469 QPRINTK(qdev, RX_STATUS, DEBUG,
1470 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1471 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1472 }
1473 while (length > 0) {
1474 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1475 pci_unmap_page(qdev->pdev,
1476 pci_unmap_addr(lbq_desc,
1477 mapaddr),
1478 pci_unmap_len(lbq_desc,
1479 maplen),
1480 PCI_DMA_FROMDEVICE);
1481 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1482 offset = 0;
1483
1484 QPRINTK(qdev, RX_STATUS, DEBUG,
1485 "Adding page %d to skb for %d bytes.\n",
1486 i, size);
1487 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1488 offset, size);
1489 skb->len += size;
1490 skb->data_len += size;
1491 skb->truesize += size;
1492 length -= size;
1493 lbq_desc->p.lbq_page = NULL;
1494 bq++;
1495 i++;
1496 }
1497 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1498 VLAN_ETH_HLEN : ETH_HLEN);
1499 }
1500 return skb;
1501}
1502
1503/* Process an inbound completion from an rx ring. */
1504static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1505 struct rx_ring *rx_ring,
1506 struct ib_mac_iocb_rsp *ib_mac_rsp)
1507{
1508 struct net_device *ndev = qdev->ndev;
1509 struct sk_buff *skb = NULL;
22bdd4f5
RM
1510 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1511 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1512
1513 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1514
1515 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1516 if (unlikely(!skb)) {
1517 QPRINTK(qdev, RX_STATUS, DEBUG,
1518 "No skb available, drop packet.\n");
1519 return;
1520 }
1521
1522 prefetch(skb->data);
1523 skb->dev = ndev;
1524 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1525 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1526 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1527 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1528 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1529 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1530 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1531 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1532 }
1533 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1534 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1535 }
d555f592
RM
1536
1537
1538 skb->protocol = eth_type_trans(skb, ndev);
1539 skb->ip_summed = CHECKSUM_NONE;
1540
1541 /* If rx checksum is on, and there are no
1542 * csum or frame errors.
1543 */
1544 if (qdev->rx_csum &&
1545 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1546 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1547 /* TCP frame. */
1548 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1549 QPRINTK(qdev, RX_STATUS, DEBUG,
1550 "TCP checksum done!\n");
1551 skb->ip_summed = CHECKSUM_UNNECESSARY;
1552 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1553 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1554 /* Unfragmented ipv4 UDP frame. */
1555 struct iphdr *iph = (struct iphdr *) skb->data;
1556 if (!(iph->frag_off &
1557 cpu_to_be16(IP_MF|IP_OFFSET))) {
1558 skb->ip_summed = CHECKSUM_UNNECESSARY;
1559 QPRINTK(qdev, RX_STATUS, DEBUG,
1560 "TCP checksum done!\n");
1561 }
1562 }
c4e84bde 1563 }
d555f592 1564
c4e84bde
RM
1565 qdev->stats.rx_packets++;
1566 qdev->stats.rx_bytes += skb->len;
22bdd4f5
RM
1567 skb_record_rx_queue(skb,
1568 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1569 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1570 if (qdev->vlgrp &&
1571 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1572 (vlan_id != 0))
1573 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1574 vlan_id, skb);
1575 else
1576 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1577 } else {
22bdd4f5
RM
1578 if (qdev->vlgrp &&
1579 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1580 (vlan_id != 0))
1581 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1582 else
1583 netif_receive_skb(skb);
c4e84bde 1584 }
c4e84bde
RM
1585}
1586
1587/* Process an outbound completion from an rx ring. */
1588static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1589 struct ob_mac_iocb_rsp *mac_rsp)
1590{
1591 struct tx_ring *tx_ring;
1592 struct tx_ring_desc *tx_ring_desc;
1593
1594 QL_DUMP_OB_MAC_RSP(mac_rsp);
1595 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1596 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1597 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1598 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1599 qdev->stats.tx_packets++;
1600 dev_kfree_skb(tx_ring_desc->skb);
1601 tx_ring_desc->skb = NULL;
1602
1603 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1604 OB_MAC_IOCB_RSP_S |
1605 OB_MAC_IOCB_RSP_L |
1606 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1607 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1608 QPRINTK(qdev, TX_DONE, WARNING,
1609 "Total descriptor length did not match transfer length.\n");
1610 }
1611 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1612 QPRINTK(qdev, TX_DONE, WARNING,
1613 "Frame too short to be legal, not sent.\n");
1614 }
1615 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1616 QPRINTK(qdev, TX_DONE, WARNING,
1617 "Frame too long, but sent anyway.\n");
1618 }
1619 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1620 QPRINTK(qdev, TX_DONE, WARNING,
1621 "PCI backplane error. Frame not sent.\n");
1622 }
1623 }
1624 atomic_inc(&tx_ring->tx_count);
1625}
1626
1627/* Fire up a handler to reset the MPI processor. */
1628void ql_queue_fw_error(struct ql_adapter *qdev)
1629{
1630 netif_stop_queue(qdev->ndev);
1631 netif_carrier_off(qdev->ndev);
1632 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1633}
1634
1635void ql_queue_asic_error(struct ql_adapter *qdev)
1636{
1637 netif_stop_queue(qdev->ndev);
1638 netif_carrier_off(qdev->ndev);
1639 ql_disable_interrupts(qdev);
6497b607
RM
1640 /* Clear adapter up bit to signal the recovery
1641 * process that it shouldn't kill the reset worker
1642 * thread
1643 */
1644 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1645 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1646}
1647
1648static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1649 struct ib_ae_iocb_rsp *ib_ae_rsp)
1650{
1651 switch (ib_ae_rsp->event) {
1652 case MGMT_ERR_EVENT:
1653 QPRINTK(qdev, RX_ERR, ERR,
1654 "Management Processor Fatal Error.\n");
1655 ql_queue_fw_error(qdev);
1656 return;
1657
1658 case CAM_LOOKUP_ERR_EVENT:
1659 QPRINTK(qdev, LINK, ERR,
1660 "Multiple CAM hits lookup occurred.\n");
1661 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1662 ql_queue_asic_error(qdev);
1663 return;
1664
1665 case SOFT_ECC_ERROR_EVENT:
1666 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1667 ql_queue_asic_error(qdev);
1668 break;
1669
1670 case PCI_ERR_ANON_BUF_RD:
1671 QPRINTK(qdev, RX_ERR, ERR,
1672 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1673 ib_ae_rsp->q_id);
1674 ql_queue_asic_error(qdev);
1675 break;
1676
1677 default:
1678 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1679 ib_ae_rsp->event);
1680 ql_queue_asic_error(qdev);
1681 break;
1682 }
1683}
1684
1685static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1686{
1687 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1688 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1689 struct ob_mac_iocb_rsp *net_rsp = NULL;
1690 int count = 0;
1691
1692 /* While there are entries in the completion queue. */
1693 while (prod != rx_ring->cnsmr_idx) {
1694
1695 QPRINTK(qdev, RX_STATUS, DEBUG,
1696 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1697 prod, rx_ring->cnsmr_idx);
1698
1699 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1700 rmb();
1701 switch (net_rsp->opcode) {
1702
1703 case OPCODE_OB_MAC_TSO_IOCB:
1704 case OPCODE_OB_MAC_IOCB:
1705 ql_process_mac_tx_intr(qdev, net_rsp);
1706 break;
1707 default:
1708 QPRINTK(qdev, RX_STATUS, DEBUG,
1709 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1710 net_rsp->opcode);
1711 }
1712 count++;
1713 ql_update_cq(rx_ring);
ba7cd3ba 1714 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1715 }
1716 ql_write_cq_idx(rx_ring);
1717 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1718 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1719 if (atomic_read(&tx_ring->queue_stopped) &&
1720 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1721 /*
1722 * The queue got stopped because the tx_ring was full.
1723 * Wake it up, because it's now at least 25% empty.
1724 */
1725 netif_wake_queue(qdev->ndev);
1726 }
1727
1728 return count;
1729}
1730
1731static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1732{
1733 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1734 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1735 struct ql_net_rsp_iocb *net_rsp;
1736 int count = 0;
1737
1738 /* While there are entries in the completion queue. */
1739 while (prod != rx_ring->cnsmr_idx) {
1740
1741 QPRINTK(qdev, RX_STATUS, DEBUG,
1742 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1743 prod, rx_ring->cnsmr_idx);
1744
1745 net_rsp = rx_ring->curr_entry;
1746 rmb();
1747 switch (net_rsp->opcode) {
1748 case OPCODE_IB_MAC_IOCB:
1749 ql_process_mac_rx_intr(qdev, rx_ring,
1750 (struct ib_mac_iocb_rsp *)
1751 net_rsp);
1752 break;
1753
1754 case OPCODE_IB_AE_IOCB:
1755 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1756 net_rsp);
1757 break;
1758 default:
1759 {
1760 QPRINTK(qdev, RX_STATUS, DEBUG,
1761 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1762 net_rsp->opcode);
1763 }
1764 }
1765 count++;
1766 ql_update_cq(rx_ring);
ba7cd3ba 1767 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1768 if (count == budget)
1769 break;
1770 }
1771 ql_update_buffer_queues(qdev, rx_ring);
1772 ql_write_cq_idx(rx_ring);
1773 return count;
1774}
1775
1776static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1777{
1778 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1779 struct ql_adapter *qdev = rx_ring->qdev;
1780 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1781
1782 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1783 rx_ring->cq_id);
1784
1785 if (work_done < budget) {
22bdd4f5 1786 napi_complete(napi);
c4e84bde
RM
1787 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1788 }
1789 return work_done;
1790}
1791
1792static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1793{
1794 struct ql_adapter *qdev = netdev_priv(ndev);
1795
1796 qdev->vlgrp = grp;
1797 if (grp) {
1798 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1799 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1800 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1801 } else {
1802 QPRINTK(qdev, IFUP, DEBUG,
1803 "Turning off VLAN in NIC_RCV_CFG.\n");
1804 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1805 }
1806}
1807
1808static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1809{
1810 struct ql_adapter *qdev = netdev_priv(ndev);
1811 u32 enable_bit = MAC_ADDR_E;
cc288f54 1812 int status;
c4e84bde 1813
cc288f54
RM
1814 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1815 if (status)
1816 return;
c4e84bde
RM
1817 spin_lock(&qdev->hw_lock);
1818 if (ql_set_mac_addr_reg
1819 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1820 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1821 }
1822 spin_unlock(&qdev->hw_lock);
cc288f54 1823 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1824}
1825
1826static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1827{
1828 struct ql_adapter *qdev = netdev_priv(ndev);
1829 u32 enable_bit = 0;
cc288f54
RM
1830 int status;
1831
1832 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1833 if (status)
1834 return;
c4e84bde
RM
1835
1836 spin_lock(&qdev->hw_lock);
1837 if (ql_set_mac_addr_reg
1838 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1839 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1840 }
1841 spin_unlock(&qdev->hw_lock);
cc288f54 1842 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1843
1844}
1845
1846/* Worker thread to process a given rx_ring that is dedicated
1847 * to outbound completions.
1848 */
1849static void ql_tx_clean(struct work_struct *work)
1850{
1851 struct rx_ring *rx_ring =
1852 container_of(work, struct rx_ring, rx_work.work);
1853 ql_clean_outbound_rx_ring(rx_ring);
1854 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1855
1856}
1857
1858/* Worker thread to process a given rx_ring that is dedicated
1859 * to inbound completions.
1860 */
1861static void ql_rx_clean(struct work_struct *work)
1862{
1863 struct rx_ring *rx_ring =
1864 container_of(work, struct rx_ring, rx_work.work);
1865 ql_clean_inbound_rx_ring(rx_ring, 64);
1866 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1867}
1868
1869/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1870static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1871{
1872 struct rx_ring *rx_ring = dev_id;
1873 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1874 &rx_ring->rx_work, 0);
1875 return IRQ_HANDLED;
1876}
1877
1878/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1879static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1880{
1881 struct rx_ring *rx_ring = dev_id;
288379f0 1882 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1883 return IRQ_HANDLED;
1884}
1885
c4e84bde
RM
1886/* This handles a fatal error, MPI activity, and the default
1887 * rx_ring in an MSI-X multiple vector environment.
1888 * In MSI/Legacy environment it also process the rest of
1889 * the rx_rings.
1890 */
1891static irqreturn_t qlge_isr(int irq, void *dev_id)
1892{
1893 struct rx_ring *rx_ring = dev_id;
1894 struct ql_adapter *qdev = rx_ring->qdev;
1895 struct intr_context *intr_context = &qdev->intr_context[0];
1896 u32 var;
1897 int i;
1898 int work_done = 0;
1899
bb0d215c
RM
1900 spin_lock(&qdev->hw_lock);
1901 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1902 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1903 spin_unlock(&qdev->hw_lock);
1904 return IRQ_NONE;
c4e84bde 1905 }
bb0d215c 1906 spin_unlock(&qdev->hw_lock);
c4e84bde 1907
bb0d215c 1908 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1909
1910 /*
1911 * Check for fatal error.
1912 */
1913 if (var & STS_FE) {
1914 ql_queue_asic_error(qdev);
1915 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1916 var = ql_read32(qdev, ERR_STS);
1917 QPRINTK(qdev, INTR, ERR,
1918 "Resetting chip. Error Status Register = 0x%x\n", var);
1919 return IRQ_HANDLED;
1920 }
1921
1922 /*
1923 * Check MPI processor activity.
1924 */
1925 if (var & STS_PI) {
1926 /*
1927 * We've got an async event or mailbox completion.
1928 * Handle it and clear the source of the interrupt.
1929 */
1930 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1931 ql_disable_completion_interrupt(qdev, intr_context->intr);
1932 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1933 &qdev->mpi_work, 0);
1934 work_done++;
1935 }
1936
1937 /*
1938 * Check the default queue and wake handler if active.
1939 */
1940 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1941 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1942 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1943 ql_disable_completion_interrupt(qdev, intr_context->intr);
1944 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1945 &rx_ring->rx_work, 0);
1946 work_done++;
1947 }
1948
1949 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1950 /*
1951 * Start the DPC for each active queue.
1952 */
1953 for (i = 1; i < qdev->rx_ring_count; i++) {
1954 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1955 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1956 rx_ring->cnsmr_idx) {
1957 QPRINTK(qdev, INTR, INFO,
1958 "Waking handler for rx_ring[%d].\n", i);
1959 ql_disable_completion_interrupt(qdev,
1960 intr_context->
1961 intr);
1962 if (i < qdev->rss_ring_first_cq_id)
1963 queue_delayed_work_on(rx_ring->cpu,
1964 qdev->q_workqueue,
1965 &rx_ring->rx_work,
1966 0);
1967 else
288379f0 1968 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1969 work_done++;
1970 }
1971 }
1972 }
bb0d215c 1973 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1974 return work_done ? IRQ_HANDLED : IRQ_NONE;
1975}
1976
1977static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1978{
1979
1980 if (skb_is_gso(skb)) {
1981 int err;
1982 if (skb_header_cloned(skb)) {
1983 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1984 if (err)
1985 return err;
1986 }
1987
1988 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1989 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1990 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1991 mac_iocb_ptr->total_hdrs_len =
1992 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1993 mac_iocb_ptr->net_trans_offset =
1994 cpu_to_le16(skb_network_offset(skb) |
1995 skb_transport_offset(skb)
1996 << OB_MAC_TRANSPORT_HDR_SHIFT);
1997 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1998 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1999 if (likely(skb->protocol == htons(ETH_P_IP))) {
2000 struct iphdr *iph = ip_hdr(skb);
2001 iph->check = 0;
2002 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2003 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2004 iph->daddr, 0,
2005 IPPROTO_TCP,
2006 0);
2007 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2008 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2009 tcp_hdr(skb)->check =
2010 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2011 &ipv6_hdr(skb)->daddr,
2012 0, IPPROTO_TCP, 0);
2013 }
2014 return 1;
2015 }
2016 return 0;
2017}
2018
2019static void ql_hw_csum_setup(struct sk_buff *skb,
2020 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2021{
2022 int len;
2023 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2024 __sum16 *check;
c4e84bde
RM
2025 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2026 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2027 mac_iocb_ptr->net_trans_offset =
2028 cpu_to_le16(skb_network_offset(skb) |
2029 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2030
2031 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2032 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2033 if (likely(iph->protocol == IPPROTO_TCP)) {
2034 check = &(tcp_hdr(skb)->check);
2035 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2036 mac_iocb_ptr->total_hdrs_len =
2037 cpu_to_le16(skb_transport_offset(skb) +
2038 (tcp_hdr(skb)->doff << 2));
2039 } else {
2040 check = &(udp_hdr(skb)->check);
2041 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2042 mac_iocb_ptr->total_hdrs_len =
2043 cpu_to_le16(skb_transport_offset(skb) +
2044 sizeof(struct udphdr));
2045 }
2046 *check = ~csum_tcpudp_magic(iph->saddr,
2047 iph->daddr, len, iph->protocol, 0);
2048}
2049
2050static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2051{
2052 struct tx_ring_desc *tx_ring_desc;
2053 struct ob_mac_iocb_req *mac_iocb_ptr;
2054 struct ql_adapter *qdev = netdev_priv(ndev);
2055 int tso;
2056 struct tx_ring *tx_ring;
2057 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
2058
2059 tx_ring = &qdev->tx_ring[tx_ring_idx];
2060
2061 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2062 QPRINTK(qdev, TX_QUEUED, INFO,
2063 "%s: shutting down tx queue %d du to lack of resources.\n",
2064 __func__, tx_ring_idx);
2065 netif_stop_queue(ndev);
2066 atomic_inc(&tx_ring->queue_stopped);
2067 return NETDEV_TX_BUSY;
2068 }
2069 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2070 mac_iocb_ptr = tx_ring_desc->queue_entry;
2071 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
c4e84bde
RM
2072
2073 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2074 mac_iocb_ptr->tid = tx_ring_desc->index;
2075 /* We use the upper 32-bits to store the tx queue for this IO.
2076 * When we get the completion we can use it to establish the context.
2077 */
2078 mac_iocb_ptr->txq_idx = tx_ring_idx;
2079 tx_ring_desc->skb = skb;
2080
2081 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2082
2083 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2084 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2085 vlan_tx_tag_get(skb));
2086 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2087 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2088 }
2089 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2090 if (tso < 0) {
2091 dev_kfree_skb_any(skb);
2092 return NETDEV_TX_OK;
2093 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2094 ql_hw_csum_setup(skb,
2095 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2096 }
0d979f74
RM
2097 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2098 NETDEV_TX_OK) {
2099 QPRINTK(qdev, TX_QUEUED, ERR,
2100 "Could not map the segments.\n");
2101 return NETDEV_TX_BUSY;
2102 }
c4e84bde
RM
2103 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2104 tx_ring->prod_idx++;
2105 if (tx_ring->prod_idx == tx_ring->wq_len)
2106 tx_ring->prod_idx = 0;
2107 wmb();
2108
2109 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2110 ndev->trans_start = jiffies;
2111 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2112 tx_ring->prod_idx, skb->len);
2113
2114 atomic_dec(&tx_ring->tx_count);
2115 return NETDEV_TX_OK;
2116}
2117
2118static void ql_free_shadow_space(struct ql_adapter *qdev)
2119{
2120 if (qdev->rx_ring_shadow_reg_area) {
2121 pci_free_consistent(qdev->pdev,
2122 PAGE_SIZE,
2123 qdev->rx_ring_shadow_reg_area,
2124 qdev->rx_ring_shadow_reg_dma);
2125 qdev->rx_ring_shadow_reg_area = NULL;
2126 }
2127 if (qdev->tx_ring_shadow_reg_area) {
2128 pci_free_consistent(qdev->pdev,
2129 PAGE_SIZE,
2130 qdev->tx_ring_shadow_reg_area,
2131 qdev->tx_ring_shadow_reg_dma);
2132 qdev->tx_ring_shadow_reg_area = NULL;
2133 }
2134}
2135
2136static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2137{
2138 qdev->rx_ring_shadow_reg_area =
2139 pci_alloc_consistent(qdev->pdev,
2140 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2141 if (qdev->rx_ring_shadow_reg_area == NULL) {
2142 QPRINTK(qdev, IFUP, ERR,
2143 "Allocation of RX shadow space failed.\n");
2144 return -ENOMEM;
2145 }
2146 qdev->tx_ring_shadow_reg_area =
2147 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2148 &qdev->tx_ring_shadow_reg_dma);
2149 if (qdev->tx_ring_shadow_reg_area == NULL) {
2150 QPRINTK(qdev, IFUP, ERR,
2151 "Allocation of TX shadow space failed.\n");
2152 goto err_wqp_sh_area;
2153 }
2154 return 0;
2155
2156err_wqp_sh_area:
2157 pci_free_consistent(qdev->pdev,
2158 PAGE_SIZE,
2159 qdev->rx_ring_shadow_reg_area,
2160 qdev->rx_ring_shadow_reg_dma);
2161 return -ENOMEM;
2162}
2163
2164static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2165{
2166 struct tx_ring_desc *tx_ring_desc;
2167 int i;
2168 struct ob_mac_iocb_req *mac_iocb_ptr;
2169
2170 mac_iocb_ptr = tx_ring->wq_base;
2171 tx_ring_desc = tx_ring->q;
2172 for (i = 0; i < tx_ring->wq_len; i++) {
2173 tx_ring_desc->index = i;
2174 tx_ring_desc->skb = NULL;
2175 tx_ring_desc->queue_entry = mac_iocb_ptr;
2176 mac_iocb_ptr++;
2177 tx_ring_desc++;
2178 }
2179 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2180 atomic_set(&tx_ring->queue_stopped, 0);
2181}
2182
2183static void ql_free_tx_resources(struct ql_adapter *qdev,
2184 struct tx_ring *tx_ring)
2185{
2186 if (tx_ring->wq_base) {
2187 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2188 tx_ring->wq_base, tx_ring->wq_base_dma);
2189 tx_ring->wq_base = NULL;
2190 }
2191 kfree(tx_ring->q);
2192 tx_ring->q = NULL;
2193}
2194
2195static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2196 struct tx_ring *tx_ring)
2197{
2198 tx_ring->wq_base =
2199 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2200 &tx_ring->wq_base_dma);
2201
2202 if ((tx_ring->wq_base == NULL)
2203 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2204 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2205 return -ENOMEM;
2206 }
2207 tx_ring->q =
2208 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2209 if (tx_ring->q == NULL)
2210 goto err;
2211
2212 return 0;
2213err:
2214 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2215 tx_ring->wq_base, tx_ring->wq_base_dma);
2216 return -ENOMEM;
2217}
2218
8668ae92 2219static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2220{
2221 int i;
2222 struct bq_desc *lbq_desc;
2223
2224 for (i = 0; i < rx_ring->lbq_len; i++) {
2225 lbq_desc = &rx_ring->lbq[i];
2226 if (lbq_desc->p.lbq_page) {
2227 pci_unmap_page(qdev->pdev,
2228 pci_unmap_addr(lbq_desc, mapaddr),
2229 pci_unmap_len(lbq_desc, maplen),
2230 PCI_DMA_FROMDEVICE);
2231
2232 put_page(lbq_desc->p.lbq_page);
2233 lbq_desc->p.lbq_page = NULL;
2234 }
c4e84bde
RM
2235 }
2236}
2237
8668ae92 2238static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2239{
2240 int i;
2241 struct bq_desc *sbq_desc;
2242
2243 for (i = 0; i < rx_ring->sbq_len; i++) {
2244 sbq_desc = &rx_ring->sbq[i];
2245 if (sbq_desc == NULL) {
2246 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2247 return;
2248 }
2249 if (sbq_desc->p.skb) {
2250 pci_unmap_single(qdev->pdev,
2251 pci_unmap_addr(sbq_desc, mapaddr),
2252 pci_unmap_len(sbq_desc, maplen),
2253 PCI_DMA_FROMDEVICE);
2254 dev_kfree_skb(sbq_desc->p.skb);
2255 sbq_desc->p.skb = NULL;
2256 }
c4e84bde
RM
2257 }
2258}
2259
4545a3f2
RM
2260/* Free all large and small rx buffers associated
2261 * with the completion queues for this device.
2262 */
2263static void ql_free_rx_buffers(struct ql_adapter *qdev)
2264{
2265 int i;
2266 struct rx_ring *rx_ring;
2267
2268 for (i = 0; i < qdev->rx_ring_count; i++) {
2269 rx_ring = &qdev->rx_ring[i];
2270 if (rx_ring->lbq)
2271 ql_free_lbq_buffers(qdev, rx_ring);
2272 if (rx_ring->sbq)
2273 ql_free_sbq_buffers(qdev, rx_ring);
2274 }
2275}
2276
2277static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2278{
2279 struct rx_ring *rx_ring;
2280 int i;
2281
2282 for (i = 0; i < qdev->rx_ring_count; i++) {
2283 rx_ring = &qdev->rx_ring[i];
2284 if (rx_ring->type != TX_Q)
2285 ql_update_buffer_queues(qdev, rx_ring);
2286 }
2287}
2288
2289static void ql_init_lbq_ring(struct ql_adapter *qdev,
2290 struct rx_ring *rx_ring)
2291{
2292 int i;
2293 struct bq_desc *lbq_desc;
2294 __le64 *bq = rx_ring->lbq_base;
2295
2296 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2297 for (i = 0; i < rx_ring->lbq_len; i++) {
2298 lbq_desc = &rx_ring->lbq[i];
2299 memset(lbq_desc, 0, sizeof(*lbq_desc));
2300 lbq_desc->index = i;
2301 lbq_desc->addr = bq;
2302 bq++;
2303 }
2304}
2305
2306static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2307 struct rx_ring *rx_ring)
2308{
2309 int i;
2310 struct bq_desc *sbq_desc;
2c9a0d41 2311 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2312
4545a3f2 2313 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2314 for (i = 0; i < rx_ring->sbq_len; i++) {
2315 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2316 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2317 sbq_desc->index = i;
2c9a0d41 2318 sbq_desc->addr = bq;
c4e84bde
RM
2319 bq++;
2320 }
c4e84bde
RM
2321}
2322
2323static void ql_free_rx_resources(struct ql_adapter *qdev,
2324 struct rx_ring *rx_ring)
2325{
c4e84bde
RM
2326 /* Free the small buffer queue. */
2327 if (rx_ring->sbq_base) {
2328 pci_free_consistent(qdev->pdev,
2329 rx_ring->sbq_size,
2330 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2331 rx_ring->sbq_base = NULL;
2332 }
2333
2334 /* Free the small buffer queue control blocks. */
2335 kfree(rx_ring->sbq);
2336 rx_ring->sbq = NULL;
2337
2338 /* Free the large buffer queue. */
2339 if (rx_ring->lbq_base) {
2340 pci_free_consistent(qdev->pdev,
2341 rx_ring->lbq_size,
2342 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2343 rx_ring->lbq_base = NULL;
2344 }
2345
2346 /* Free the large buffer queue control blocks. */
2347 kfree(rx_ring->lbq);
2348 rx_ring->lbq = NULL;
2349
2350 /* Free the rx queue. */
2351 if (rx_ring->cq_base) {
2352 pci_free_consistent(qdev->pdev,
2353 rx_ring->cq_size,
2354 rx_ring->cq_base, rx_ring->cq_base_dma);
2355 rx_ring->cq_base = NULL;
2356 }
2357}
2358
2359/* Allocate queues and buffers for this completions queue based
2360 * on the values in the parameter structure. */
2361static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2362 struct rx_ring *rx_ring)
2363{
2364
2365 /*
2366 * Allocate the completion queue for this rx_ring.
2367 */
2368 rx_ring->cq_base =
2369 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2370 &rx_ring->cq_base_dma);
2371
2372 if (rx_ring->cq_base == NULL) {
2373 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2374 return -ENOMEM;
2375 }
2376
2377 if (rx_ring->sbq_len) {
2378 /*
2379 * Allocate small buffer queue.
2380 */
2381 rx_ring->sbq_base =
2382 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2383 &rx_ring->sbq_base_dma);
2384
2385 if (rx_ring->sbq_base == NULL) {
2386 QPRINTK(qdev, IFUP, ERR,
2387 "Small buffer queue allocation failed.\n");
2388 goto err_mem;
2389 }
2390
2391 /*
2392 * Allocate small buffer queue control blocks.
2393 */
2394 rx_ring->sbq =
2395 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2396 GFP_KERNEL);
2397 if (rx_ring->sbq == NULL) {
2398 QPRINTK(qdev, IFUP, ERR,
2399 "Small buffer queue control block allocation failed.\n");
2400 goto err_mem;
2401 }
2402
4545a3f2 2403 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2404 }
2405
2406 if (rx_ring->lbq_len) {
2407 /*
2408 * Allocate large buffer queue.
2409 */
2410 rx_ring->lbq_base =
2411 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2412 &rx_ring->lbq_base_dma);
2413
2414 if (rx_ring->lbq_base == NULL) {
2415 QPRINTK(qdev, IFUP, ERR,
2416 "Large buffer queue allocation failed.\n");
2417 goto err_mem;
2418 }
2419 /*
2420 * Allocate large buffer queue control blocks.
2421 */
2422 rx_ring->lbq =
2423 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2424 GFP_KERNEL);
2425 if (rx_ring->lbq == NULL) {
2426 QPRINTK(qdev, IFUP, ERR,
2427 "Large buffer queue control block allocation failed.\n");
2428 goto err_mem;
2429 }
2430
4545a3f2 2431 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2432 }
2433
2434 return 0;
2435
2436err_mem:
2437 ql_free_rx_resources(qdev, rx_ring);
2438 return -ENOMEM;
2439}
2440
2441static void ql_tx_ring_clean(struct ql_adapter *qdev)
2442{
2443 struct tx_ring *tx_ring;
2444 struct tx_ring_desc *tx_ring_desc;
2445 int i, j;
2446
2447 /*
2448 * Loop through all queues and free
2449 * any resources.
2450 */
2451 for (j = 0; j < qdev->tx_ring_count; j++) {
2452 tx_ring = &qdev->tx_ring[j];
2453 for (i = 0; i < tx_ring->wq_len; i++) {
2454 tx_ring_desc = &tx_ring->q[i];
2455 if (tx_ring_desc && tx_ring_desc->skb) {
2456 QPRINTK(qdev, IFDOWN, ERR,
2457 "Freeing lost SKB %p, from queue %d, index %d.\n",
2458 tx_ring_desc->skb, j,
2459 tx_ring_desc->index);
2460 ql_unmap_send(qdev, tx_ring_desc,
2461 tx_ring_desc->map_cnt);
2462 dev_kfree_skb(tx_ring_desc->skb);
2463 tx_ring_desc->skb = NULL;
2464 }
2465 }
2466 }
2467}
2468
c4e84bde
RM
2469static void ql_free_mem_resources(struct ql_adapter *qdev)
2470{
2471 int i;
2472
2473 for (i = 0; i < qdev->tx_ring_count; i++)
2474 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2475 for (i = 0; i < qdev->rx_ring_count; i++)
2476 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2477 ql_free_shadow_space(qdev);
2478}
2479
2480static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2481{
2482 int i;
2483
2484 /* Allocate space for our shadow registers and such. */
2485 if (ql_alloc_shadow_space(qdev))
2486 return -ENOMEM;
2487
2488 for (i = 0; i < qdev->rx_ring_count; i++) {
2489 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2490 QPRINTK(qdev, IFUP, ERR,
2491 "RX resource allocation failed.\n");
2492 goto err_mem;
2493 }
2494 }
2495 /* Allocate tx queue resources */
2496 for (i = 0; i < qdev->tx_ring_count; i++) {
2497 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2498 QPRINTK(qdev, IFUP, ERR,
2499 "TX resource allocation failed.\n");
2500 goto err_mem;
2501 }
2502 }
2503 return 0;
2504
2505err_mem:
2506 ql_free_mem_resources(qdev);
2507 return -ENOMEM;
2508}
2509
2510/* Set up the rx ring control block and pass it to the chip.
2511 * The control block is defined as
2512 * "Completion Queue Initialization Control Block", or cqicb.
2513 */
2514static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2515{
2516 struct cqicb *cqicb = &rx_ring->cqicb;
2517 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2518 (rx_ring->cq_id * sizeof(u64) * 4);
2519 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2520 (rx_ring->cq_id * sizeof(u64) * 4);
2521 void __iomem *doorbell_area =
2522 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2523 int err = 0;
2524 u16 bq_len;
2525
2526 /* Set up the shadow registers for this ring. */
2527 rx_ring->prod_idx_sh_reg = shadow_reg;
2528 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2529 shadow_reg += sizeof(u64);
2530 shadow_reg_dma += sizeof(u64);
2531 rx_ring->lbq_base_indirect = shadow_reg;
2532 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2533 shadow_reg += sizeof(u64);
2534 shadow_reg_dma += sizeof(u64);
2535 rx_ring->sbq_base_indirect = shadow_reg;
2536 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2537
2538 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2539 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2540 rx_ring->cnsmr_idx = 0;
2541 rx_ring->curr_entry = rx_ring->cq_base;
2542
2543 /* PCI doorbell mem area + 0x04 for valid register */
2544 rx_ring->valid_db_reg = doorbell_area + 0x04;
2545
2546 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2547 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2548
2549 /* PCI doorbell mem area + 0x1c */
8668ae92 2550 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2551
2552 memset((void *)cqicb, 0, sizeof(struct cqicb));
2553 cqicb->msix_vect = rx_ring->irq;
2554
459caf5a
RM
2555 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2556 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2557
97345524 2558 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2559
97345524 2560 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2561
2562 /*
2563 * Set up the control block load flags.
2564 */
2565 cqicb->flags = FLAGS_LC | /* Load queue base address */
2566 FLAGS_LV | /* Load MSI-X vector */
2567 FLAGS_LI; /* Load irq delay values */
2568 if (rx_ring->lbq_len) {
2569 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2570 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2571 cqicb->lbq_addr =
2572 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2573 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2574 (u16) rx_ring->lbq_buf_size;
2575 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2576 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2577 (u16) rx_ring->lbq_len;
c4e84bde 2578 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2579 rx_ring->lbq_prod_idx = 0;
c4e84bde 2580 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2581 rx_ring->lbq_clean_idx = 0;
2582 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2583 }
2584 if (rx_ring->sbq_len) {
2585 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2586 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2587 cqicb->sbq_addr =
2588 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2589 cqicb->sbq_buf_size =
2590 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2591 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2592 (u16) rx_ring->sbq_len;
c4e84bde 2593 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2594 rx_ring->sbq_prod_idx = 0;
c4e84bde 2595 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2596 rx_ring->sbq_clean_idx = 0;
2597 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2598 }
2599 switch (rx_ring->type) {
2600 case TX_Q:
2601 /* If there's only one interrupt, then we use
2602 * worker threads to process the outbound
2603 * completion handling rx_rings. We do this so
2604 * they can be run on multiple CPUs. There is
2605 * room to play with this more where we would only
2606 * run in a worker if there are more than x number
2607 * of outbound completions on the queue and more
2608 * than one queue active. Some threshold that
2609 * would indicate a benefit in spite of the cost
2610 * of a context switch.
2611 * If there's more than one interrupt, then the
2612 * outbound completions are processed in the ISR.
2613 */
2614 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2615 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2616 else {
2617 /* With all debug warnings on we see a WARN_ON message
2618 * when we free the skb in the interrupt context.
2619 */
2620 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2621 }
2622 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2623 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2624 break;
2625 case DEFAULT_Q:
2626 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2627 cqicb->irq_delay = 0;
2628 cqicb->pkt_delay = 0;
2629 break;
2630 case RX_Q:
2631 /* Inbound completion handling rx_rings run in
2632 * separate NAPI contexts.
2633 */
2634 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2635 64);
2636 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2637 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2638 break;
2639 default:
2640 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2641 rx_ring->type);
2642 }
4974097a 2643 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2644 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2645 CFG_LCQ, rx_ring->cq_id);
2646 if (err) {
2647 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2648 return err;
2649 }
c4e84bde
RM
2650 return err;
2651}
2652
2653static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2654{
2655 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2656 void __iomem *doorbell_area =
2657 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2658 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2659 (tx_ring->wq_id * sizeof(u64));
2660 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2661 (tx_ring->wq_id * sizeof(u64));
2662 int err = 0;
2663
2664 /*
2665 * Assign doorbell registers for this tx_ring.
2666 */
2667 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2668 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2669 tx_ring->prod_idx = 0;
2670 /* TX PCI doorbell mem area + 0x04 */
2671 tx_ring->valid_db_reg = doorbell_area + 0x04;
2672
2673 /*
2674 * Assign shadow registers for this tx_ring.
2675 */
2676 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2677 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2678
2679 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2680 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2681 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2682 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2683 wqicb->rid = 0;
97345524 2684 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2685
97345524 2686 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2687
2688 ql_init_tx_ring(qdev, tx_ring);
2689
2690 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2691 (u16) tx_ring->wq_id);
2692 if (err) {
2693 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2694 return err;
2695 }
4974097a 2696 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2697 return err;
2698}
2699
2700static void ql_disable_msix(struct ql_adapter *qdev)
2701{
2702 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2703 pci_disable_msix(qdev->pdev);
2704 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2705 kfree(qdev->msi_x_entry);
2706 qdev->msi_x_entry = NULL;
2707 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2708 pci_disable_msi(qdev->pdev);
2709 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2710 }
2711}
2712
2713static void ql_enable_msix(struct ql_adapter *qdev)
2714{
2715 int i;
2716
2717 qdev->intr_count = 1;
2718 /* Get the MSIX vectors. */
2719 if (irq_type == MSIX_IRQ) {
2720 /* Try to alloc space for the msix struct,
2721 * if it fails then go to MSI/legacy.
2722 */
2723 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2724 sizeof(struct msix_entry),
2725 GFP_KERNEL);
2726 if (!qdev->msi_x_entry) {
2727 irq_type = MSI_IRQ;
2728 goto msi;
2729 }
2730
2731 for (i = 0; i < qdev->rx_ring_count; i++)
2732 qdev->msi_x_entry[i].entry = i;
2733
2734 if (!pci_enable_msix
2735 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2736 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2737 qdev->intr_count = qdev->rx_ring_count;
4974097a 2738 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2739 "MSI-X Enabled, got %d vectors.\n",
2740 qdev->intr_count);
2741 return;
2742 } else {
2743 kfree(qdev->msi_x_entry);
2744 qdev->msi_x_entry = NULL;
2745 QPRINTK(qdev, IFUP, WARNING,
2746 "MSI-X Enable failed, trying MSI.\n");
2747 irq_type = MSI_IRQ;
2748 }
2749 }
2750msi:
2751 if (irq_type == MSI_IRQ) {
2752 if (!pci_enable_msi(qdev->pdev)) {
2753 set_bit(QL_MSI_ENABLED, &qdev->flags);
2754 QPRINTK(qdev, IFUP, INFO,
2755 "Running with MSI interrupts.\n");
2756 return;
2757 }
2758 }
2759 irq_type = LEG_IRQ;
c4e84bde
RM
2760 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2761}
2762
2763/*
2764 * Here we build the intr_context structures based on
2765 * our rx_ring count and intr vector count.
2766 * The intr_context structure is used to hook each vector
2767 * to possibly different handlers.
2768 */
2769static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2770{
2771 int i = 0;
2772 struct intr_context *intr_context = &qdev->intr_context[0];
2773
2774 ql_enable_msix(qdev);
2775
2776 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2777 /* Each rx_ring has it's
2778 * own intr_context since we have separate
2779 * vectors for each queue.
2780 * This only true when MSI-X is enabled.
2781 */
2782 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2783 qdev->rx_ring[i].irq = i;
2784 intr_context->intr = i;
2785 intr_context->qdev = qdev;
2786 /*
2787 * We set up each vectors enable/disable/read bits so
2788 * there's no bit/mask calculations in the critical path.
2789 */
2790 intr_context->intr_en_mask =
2791 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2792 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2793 | i;
2794 intr_context->intr_dis_mask =
2795 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2796 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2797 INTR_EN_IHD | i;
2798 intr_context->intr_read_mask =
2799 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2800 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2801 i;
2802
2803 if (i == 0) {
2804 /*
2805 * Default queue handles bcast/mcast plus
2806 * async events. Needs buffers.
2807 */
2808 intr_context->handler = qlge_isr;
2809 sprintf(intr_context->name, "%s-default-queue",
2810 qdev->ndev->name);
2811 } else if (i < qdev->rss_ring_first_cq_id) {
2812 /*
2813 * Outbound queue is for outbound completions only.
2814 */
2815 intr_context->handler = qlge_msix_tx_isr;
c224969e 2816 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2817 qdev->ndev->name, i);
2818 } else {
2819 /*
2820 * Inbound queues handle unicast frames only.
2821 */
2822 intr_context->handler = qlge_msix_rx_isr;
c224969e 2823 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2824 qdev->ndev->name, i);
2825 }
2826 }
2827 } else {
2828 /*
2829 * All rx_rings use the same intr_context since
2830 * there is only one vector.
2831 */
2832 intr_context->intr = 0;
2833 intr_context->qdev = qdev;
2834 /*
2835 * We set up each vectors enable/disable/read bits so
2836 * there's no bit/mask calculations in the critical path.
2837 */
2838 intr_context->intr_en_mask =
2839 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2840 intr_context->intr_dis_mask =
2841 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2842 INTR_EN_TYPE_DISABLE;
2843 intr_context->intr_read_mask =
2844 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2845 /*
2846 * Single interrupt means one handler for all rings.
2847 */
2848 intr_context->handler = qlge_isr;
2849 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2850 for (i = 0; i < qdev->rx_ring_count; i++)
2851 qdev->rx_ring[i].irq = 0;
2852 }
2853}
2854
2855static void ql_free_irq(struct ql_adapter *qdev)
2856{
2857 int i;
2858 struct intr_context *intr_context = &qdev->intr_context[0];
2859
2860 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2861 if (intr_context->hooked) {
2862 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2863 free_irq(qdev->msi_x_entry[i].vector,
2864 &qdev->rx_ring[i]);
4974097a 2865 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2866 "freeing msix interrupt %d.\n", i);
2867 } else {
2868 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 2869 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2870 "freeing msi interrupt %d.\n", i);
2871 }
2872 }
2873 }
2874 ql_disable_msix(qdev);
2875}
2876
2877static int ql_request_irq(struct ql_adapter *qdev)
2878{
2879 int i;
2880 int status = 0;
2881 struct pci_dev *pdev = qdev->pdev;
2882 struct intr_context *intr_context = &qdev->intr_context[0];
2883
2884 ql_resolve_queues_to_irqs(qdev);
2885
2886 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2887 atomic_set(&intr_context->irq_cnt, 0);
2888 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2889 status = request_irq(qdev->msi_x_entry[i].vector,
2890 intr_context->handler,
2891 0,
2892 intr_context->name,
2893 &qdev->rx_ring[i]);
2894 if (status) {
2895 QPRINTK(qdev, IFUP, ERR,
2896 "Failed request for MSIX interrupt %d.\n",
2897 i);
2898 goto err_irq;
2899 } else {
4974097a 2900 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2901 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2902 i,
2903 qdev->rx_ring[i].type ==
2904 DEFAULT_Q ? "DEFAULT_Q" : "",
2905 qdev->rx_ring[i].type ==
2906 TX_Q ? "TX_Q" : "",
2907 qdev->rx_ring[i].type ==
2908 RX_Q ? "RX_Q" : "", intr_context->name);
2909 }
2910 } else {
2911 QPRINTK(qdev, IFUP, DEBUG,
2912 "trying msi or legacy interrupts.\n");
2913 QPRINTK(qdev, IFUP, DEBUG,
2914 "%s: irq = %d.\n", __func__, pdev->irq);
2915 QPRINTK(qdev, IFUP, DEBUG,
2916 "%s: context->name = %s.\n", __func__,
2917 intr_context->name);
2918 QPRINTK(qdev, IFUP, DEBUG,
2919 "%s: dev_id = 0x%p.\n", __func__,
2920 &qdev->rx_ring[0]);
2921 status =
2922 request_irq(pdev->irq, qlge_isr,
2923 test_bit(QL_MSI_ENABLED,
2924 &qdev->
2925 flags) ? 0 : IRQF_SHARED,
2926 intr_context->name, &qdev->rx_ring[0]);
2927 if (status)
2928 goto err_irq;
2929
2930 QPRINTK(qdev, IFUP, ERR,
2931 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2932 i,
2933 qdev->rx_ring[0].type ==
2934 DEFAULT_Q ? "DEFAULT_Q" : "",
2935 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2936 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2937 intr_context->name);
2938 }
2939 intr_context->hooked = 1;
2940 }
2941 return status;
2942err_irq:
2943 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2944 ql_free_irq(qdev);
2945 return status;
2946}
2947
2948static int ql_start_rss(struct ql_adapter *qdev)
2949{
2950 struct ricb *ricb = &qdev->ricb;
2951 int status = 0;
2952 int i;
2953 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2954
2955 memset((void *)ricb, 0, sizeof(ricb));
2956
2957 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2958 ricb->flags =
2959 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2960 RSS_RT6);
2961 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2962
2963 /*
2964 * Fill out the Indirection Table.
2965 */
def48b6e
RM
2966 for (i = 0; i < 256; i++)
2967 hash_id[i] = i & (qdev->rss_ring_count - 1);
c4e84bde
RM
2968
2969 /*
2970 * Random values for the IPv6 and IPv4 Hash Keys.
2971 */
2972 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2973 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2974
4974097a 2975 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde
RM
2976
2977 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2978 if (status) {
2979 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2980 return status;
2981 }
4974097a 2982 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
2983 return status;
2984}
2985
2986/* Initialize the frame-to-queue routing. */
2987static int ql_route_initialize(struct ql_adapter *qdev)
2988{
2989 int status = 0;
2990 int i;
2991
8587ea35
RM
2992 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2993 if (status)
2994 return status;
2995
c4e84bde
RM
2996 /* Clear all the entries in the routing table. */
2997 for (i = 0; i < 16; i++) {
2998 status = ql_set_routing_reg(qdev, i, 0, 0);
2999 if (status) {
3000 QPRINTK(qdev, IFUP, ERR,
3001 "Failed to init routing register for CAM packets.\n");
8587ea35 3002 goto exit;
c4e84bde
RM
3003 }
3004 }
3005
3006 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3007 if (status) {
3008 QPRINTK(qdev, IFUP, ERR,
3009 "Failed to init routing register for error packets.\n");
8587ea35 3010 goto exit;
c4e84bde
RM
3011 }
3012 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3013 if (status) {
3014 QPRINTK(qdev, IFUP, ERR,
3015 "Failed to init routing register for broadcast packets.\n");
8587ea35 3016 goto exit;
c4e84bde
RM
3017 }
3018 /* If we have more than one inbound queue, then turn on RSS in the
3019 * routing block.
3020 */
3021 if (qdev->rss_ring_count > 1) {
3022 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3023 RT_IDX_RSS_MATCH, 1);
3024 if (status) {
3025 QPRINTK(qdev, IFUP, ERR,
3026 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3027 goto exit;
c4e84bde
RM
3028 }
3029 }
3030
3031 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3032 RT_IDX_CAM_HIT, 1);
8587ea35 3033 if (status)
c4e84bde
RM
3034 QPRINTK(qdev, IFUP, ERR,
3035 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3036exit:
3037 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3038 return status;
3039}
3040
2ee1e272 3041int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6
RM
3042{
3043 int status;
3044
cc288f54
RM
3045 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3046 if (status)
3047 return status;
bb58b5b6
RM
3048 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3049 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 3050 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
bb58b5b6
RM
3051 if (status) {
3052 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3053 return status;
3054 }
3055
3056 status = ql_route_initialize(qdev);
3057 if (status)
3058 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3059
3060 return status;
3061}
3062
c4e84bde
RM
3063static int ql_adapter_initialize(struct ql_adapter *qdev)
3064{
3065 u32 value, mask;
3066 int i;
3067 int status = 0;
3068
3069 /*
3070 * Set up the System register to halt on errors.
3071 */
3072 value = SYS_EFE | SYS_FAE;
3073 mask = value << 16;
3074 ql_write32(qdev, SYS, mask | value);
3075
3076 /* Set the default queue. */
3077 value = NIC_RCV_CFG_DFQ;
3078 mask = NIC_RCV_CFG_DFQ_MASK;
3079 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3080
3081 /* Set the MPI interrupt to enabled. */
3082 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3083
3084 /* Enable the function, set pagesize, enable error checking. */
3085 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3086 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3087
3088 /* Set/clear header splitting. */
3089 mask = FSC_VM_PAGESIZE_MASK |
3090 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3091 ql_write32(qdev, FSC, mask | value);
3092
3093 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3094 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3095
3096 /* Start up the rx queues. */
3097 for (i = 0; i < qdev->rx_ring_count; i++) {
3098 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3099 if (status) {
3100 QPRINTK(qdev, IFUP, ERR,
3101 "Failed to start rx ring[%d].\n", i);
3102 return status;
3103 }
3104 }
3105
3106 /* If there is more than one inbound completion queue
3107 * then download a RICB to configure RSS.
3108 */
3109 if (qdev->rss_ring_count > 1) {
3110 status = ql_start_rss(qdev);
3111 if (status) {
3112 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3113 return status;
3114 }
3115 }
3116
3117 /* Start up the tx queues. */
3118 for (i = 0; i < qdev->tx_ring_count; i++) {
3119 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3120 if (status) {
3121 QPRINTK(qdev, IFUP, ERR,
3122 "Failed to start tx ring[%d].\n", i);
3123 return status;
3124 }
3125 }
3126
b0c2aadf
RM
3127 /* Initialize the port and set the max framesize. */
3128 status = qdev->nic_ops->port_initialize(qdev);
3129 if (status) {
3130 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3131 return status;
3132 }
c4e84bde 3133
bb58b5b6
RM
3134 /* Set up the MAC address and frame routing filter. */
3135 status = ql_cam_route_initialize(qdev);
c4e84bde 3136 if (status) {
bb58b5b6
RM
3137 QPRINTK(qdev, IFUP, ERR,
3138 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3139 return status;
3140 }
3141
3142 /* Start NAPI for the RSS queues. */
3143 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
4974097a 3144 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3145 i);
3146 napi_enable(&qdev->rx_ring[i].napi);
3147 }
3148
3149 return status;
3150}
3151
3152/* Issue soft reset to chip. */
3153static int ql_adapter_reset(struct ql_adapter *qdev)
3154{
3155 u32 value;
c4e84bde 3156 int status = 0;
a75ee7f1
RM
3157 unsigned long end_jiffies = jiffies +
3158 max((unsigned long)1, usecs_to_jiffies(30));
c4e84bde 3159
c4e84bde 3160 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3161
c4e84bde
RM
3162 do {
3163 value = ql_read32(qdev, RST_FO);
3164 if ((value & RST_FO_FR) == 0)
3165 break;
a75ee7f1
RM
3166 cpu_relax();
3167 } while (time_before(jiffies, end_jiffies));
c4e84bde 3168
c4e84bde 3169 if (value & RST_FO_FR) {
c4e84bde
RM
3170 QPRINTK(qdev, IFDOWN, ERR,
3171 "ETIMEOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3172 status = -ETIMEDOUT;
c4e84bde
RM
3173 }
3174
3175 return status;
3176}
3177
3178static void ql_display_dev_info(struct net_device *ndev)
3179{
3180 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3181
3182 QPRINTK(qdev, PROBE, INFO,
3183 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3184 "XG Roll = %d, XG Rev = %d.\n",
3185 qdev->func,
3186 qdev->chip_rev_id & 0x0000000f,
3187 qdev->chip_rev_id >> 4 & 0x0000000f,
3188 qdev->chip_rev_id >> 8 & 0x0000000f,
3189 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3190 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3191}
3192
3193static int ql_adapter_down(struct ql_adapter *qdev)
3194{
3195 struct net_device *ndev = qdev->ndev;
3196 int i, status = 0;
3197 struct rx_ring *rx_ring;
3198
3199 netif_stop_queue(ndev);
3200 netif_carrier_off(ndev);
3201
6497b607
RM
3202 /* Don't kill the reset worker thread if we
3203 * are in the process of recovery.
3204 */
3205 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3206 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3207 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3208 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3209 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3210 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde
RM
3211
3212 /* The default queue at index 0 is always processed in
3213 * a workqueue.
3214 */
3215 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3216
3217 /* The rest of the rx_rings are processed in
3218 * a workqueue only if it's a single interrupt
3219 * environment (MSI/Legacy).
3220 */
c062076c 3221 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3222 rx_ring = &qdev->rx_ring[i];
3223 /* Only the RSS rings use NAPI on multi irq
3224 * environment. Outbound completion processing
3225 * is done in interrupt context.
3226 */
3227 if (i >= qdev->rss_ring_first_cq_id) {
3228 napi_disable(&rx_ring->napi);
3229 } else {
3230 cancel_delayed_work_sync(&rx_ring->rx_work);
3231 }
3232 }
3233
3234 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3235
3236 ql_disable_interrupts(qdev);
3237
3238 ql_tx_ring_clean(qdev);
3239
4545a3f2 3240 ql_free_rx_buffers(qdev);
c4e84bde
RM
3241 spin_lock(&qdev->hw_lock);
3242 status = ql_adapter_reset(qdev);
3243 if (status)
3244 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3245 qdev->func);
3246 spin_unlock(&qdev->hw_lock);
3247 return status;
3248}
3249
3250static int ql_adapter_up(struct ql_adapter *qdev)
3251{
3252 int err = 0;
3253
3254 spin_lock(&qdev->hw_lock);
3255 err = ql_adapter_initialize(qdev);
3256 if (err) {
3257 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3258 spin_unlock(&qdev->hw_lock);
3259 goto err_init;
3260 }
3261 spin_unlock(&qdev->hw_lock);
3262 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3263 ql_alloc_rx_buffers(qdev);
c4e84bde
RM
3264 ql_enable_interrupts(qdev);
3265 ql_enable_all_completion_interrupts(qdev);
3266 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3267 netif_carrier_on(qdev->ndev);
3268 netif_start_queue(qdev->ndev);
3269 }
3270
3271 return 0;
3272err_init:
3273 ql_adapter_reset(qdev);
3274 return err;
3275}
3276
c4e84bde
RM
3277static void ql_release_adapter_resources(struct ql_adapter *qdev)
3278{
3279 ql_free_mem_resources(qdev);
3280 ql_free_irq(qdev);
3281}
3282
3283static int ql_get_adapter_resources(struct ql_adapter *qdev)
3284{
3285 int status = 0;
3286
3287 if (ql_alloc_mem_resources(qdev)) {
3288 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3289 return -ENOMEM;
3290 }
3291 status = ql_request_irq(qdev);
3292 if (status)
3293 goto err_irq;
3294 return status;
3295err_irq:
3296 ql_free_mem_resources(qdev);
3297 return status;
3298}
3299
3300static int qlge_close(struct net_device *ndev)
3301{
3302 struct ql_adapter *qdev = netdev_priv(ndev);
3303
3304 /*
3305 * Wait for device to recover from a reset.
3306 * (Rarely happens, but possible.)
3307 */
3308 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3309 msleep(1);
3310 ql_adapter_down(qdev);
3311 ql_release_adapter_resources(qdev);
c4e84bde
RM
3312 return 0;
3313}
3314
3315static int ql_configure_rings(struct ql_adapter *qdev)
3316{
3317 int i;
3318 struct rx_ring *rx_ring;
3319 struct tx_ring *tx_ring;
3320 int cpu_cnt = num_online_cpus();
3321
3322 /*
3323 * For each processor present we allocate one
3324 * rx_ring for outbound completions, and one
3325 * rx_ring for inbound completions. Plus there is
3326 * always the one default queue. For the CPU
3327 * counts we end up with the following rx_rings:
3328 * rx_ring count =
3329 * one default queue +
3330 * (CPU count * outbound completion rx_ring) +
3331 * (CPU count * inbound (RSS) completion rx_ring)
3332 * To keep it simple we limit the total number of
3333 * queues to < 32, so we truncate CPU to 8.
3334 * This limitation can be removed when requested.
3335 */
3336
683d46a9
RM
3337 if (cpu_cnt > MAX_CPUS)
3338 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3339
3340 /*
3341 * rx_ring[0] is always the default queue.
3342 */
3343 /* Allocate outbound completion ring for each CPU. */
3344 qdev->tx_ring_count = cpu_cnt;
3345 /* Allocate inbound completion (RSS) ring for each CPU. */
3346 qdev->rss_ring_count = cpu_cnt;
3347 /* cq_id for the first inbound ring handler. */
3348 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3349 /*
3350 * qdev->rx_ring_count:
3351 * Total number of rx_rings. This includes the one
3352 * default queue, a number of outbound completion
3353 * handler rx_rings, and the number of inbound
3354 * completion handler rx_rings.
3355 */
3356 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3357
c4e84bde
RM
3358 for (i = 0; i < qdev->tx_ring_count; i++) {
3359 tx_ring = &qdev->tx_ring[i];
3360 memset((void *)tx_ring, 0, sizeof(tx_ring));
3361 tx_ring->qdev = qdev;
3362 tx_ring->wq_id = i;
3363 tx_ring->wq_len = qdev->tx_ring_size;
3364 tx_ring->wq_size =
3365 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3366
3367 /*
3368 * The completion queue ID for the tx rings start
3369 * immediately after the default Q ID, which is zero.
3370 */
3371 tx_ring->cq_id = i + 1;
3372 }
3373
3374 for (i = 0; i < qdev->rx_ring_count; i++) {
3375 rx_ring = &qdev->rx_ring[i];
3376 memset((void *)rx_ring, 0, sizeof(rx_ring));
3377 rx_ring->qdev = qdev;
3378 rx_ring->cq_id = i;
3379 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3380 if (i == 0) { /* Default queue at index 0. */
3381 /*
3382 * Default queue handles bcast/mcast plus
3383 * async events. Needs buffers.
3384 */
3385 rx_ring->cq_len = qdev->rx_ring_size;
3386 rx_ring->cq_size =
3387 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3388 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3389 rx_ring->lbq_size =
2c9a0d41 3390 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3391 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3392 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3393 rx_ring->sbq_size =
2c9a0d41 3394 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3395 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3396 rx_ring->type = DEFAULT_Q;
3397 } else if (i < qdev->rss_ring_first_cq_id) {
3398 /*
3399 * Outbound queue handles outbound completions only.
3400 */
3401 /* outbound cq is same size as tx_ring it services. */
3402 rx_ring->cq_len = qdev->tx_ring_size;
3403 rx_ring->cq_size =
3404 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3405 rx_ring->lbq_len = 0;
3406 rx_ring->lbq_size = 0;
3407 rx_ring->lbq_buf_size = 0;
3408 rx_ring->sbq_len = 0;
3409 rx_ring->sbq_size = 0;
3410 rx_ring->sbq_buf_size = 0;
3411 rx_ring->type = TX_Q;
3412 } else { /* Inbound completions (RSS) queues */
3413 /*
3414 * Inbound queues handle unicast frames only.
3415 */
3416 rx_ring->cq_len = qdev->rx_ring_size;
3417 rx_ring->cq_size =
3418 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3419 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3420 rx_ring->lbq_size =
2c9a0d41 3421 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3422 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3423 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3424 rx_ring->sbq_size =
2c9a0d41 3425 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3426 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3427 rx_ring->type = RX_Q;
3428 }
3429 }
3430 return 0;
3431}
3432
3433static int qlge_open(struct net_device *ndev)
3434{
3435 int err = 0;
3436 struct ql_adapter *qdev = netdev_priv(ndev);
3437
3438 err = ql_configure_rings(qdev);
3439 if (err)
3440 return err;
3441
3442 err = ql_get_adapter_resources(qdev);
3443 if (err)
3444 goto error_up;
3445
3446 err = ql_adapter_up(qdev);
3447 if (err)
3448 goto error_up;
3449
3450 return err;
3451
3452error_up:
3453 ql_release_adapter_resources(qdev);
c4e84bde
RM
3454 return err;
3455}
3456
3457static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3458{
3459 struct ql_adapter *qdev = netdev_priv(ndev);
3460
3461 if (ndev->mtu == 1500 && new_mtu == 9000) {
3462 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
bcc2cb3b
RM
3463 queue_delayed_work(qdev->workqueue,
3464 &qdev->mpi_port_cfg_work, 0);
c4e84bde
RM
3465 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3466 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3467 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3468 (ndev->mtu == 9000 && new_mtu == 9000)) {
3469 return 0;
3470 } else
3471 return -EINVAL;
3472 ndev->mtu = new_mtu;
3473 return 0;
3474}
3475
3476static struct net_device_stats *qlge_get_stats(struct net_device
3477 *ndev)
3478{
3479 struct ql_adapter *qdev = netdev_priv(ndev);
3480 return &qdev->stats;
3481}
3482
3483static void qlge_set_multicast_list(struct net_device *ndev)
3484{
3485 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3486 struct dev_mc_list *mc_ptr;
cc288f54 3487 int i, status;
c4e84bde 3488
cc288f54
RM
3489 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3490 if (status)
3491 return;
c4e84bde
RM
3492 spin_lock(&qdev->hw_lock);
3493 /*
3494 * Set or clear promiscuous mode if a
3495 * transition is taking place.
3496 */
3497 if (ndev->flags & IFF_PROMISC) {
3498 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3499 if (ql_set_routing_reg
3500 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3501 QPRINTK(qdev, HW, ERR,
3502 "Failed to set promiscous mode.\n");
3503 } else {
3504 set_bit(QL_PROMISCUOUS, &qdev->flags);
3505 }
3506 }
3507 } else {
3508 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3509 if (ql_set_routing_reg
3510 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3511 QPRINTK(qdev, HW, ERR,
3512 "Failed to clear promiscous mode.\n");
3513 } else {
3514 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3515 }
3516 }
3517 }
3518
3519 /*
3520 * Set or clear all multicast mode if a
3521 * transition is taking place.
3522 */
3523 if ((ndev->flags & IFF_ALLMULTI) ||
3524 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3525 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3526 if (ql_set_routing_reg
3527 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3528 QPRINTK(qdev, HW, ERR,
3529 "Failed to set all-multi mode.\n");
3530 } else {
3531 set_bit(QL_ALLMULTI, &qdev->flags);
3532 }
3533 }
3534 } else {
3535 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3536 if (ql_set_routing_reg
3537 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3538 QPRINTK(qdev, HW, ERR,
3539 "Failed to clear all-multi mode.\n");
3540 } else {
3541 clear_bit(QL_ALLMULTI, &qdev->flags);
3542 }
3543 }
3544 }
3545
3546 if (ndev->mc_count) {
cc288f54
RM
3547 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3548 if (status)
3549 goto exit;
c4e84bde
RM
3550 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3551 i++, mc_ptr = mc_ptr->next)
3552 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3553 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3554 QPRINTK(qdev, HW, ERR,
3555 "Failed to loadmulticast address.\n");
cc288f54 3556 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3557 goto exit;
3558 }
cc288f54 3559 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3560 if (ql_set_routing_reg
3561 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3562 QPRINTK(qdev, HW, ERR,
3563 "Failed to set multicast match mode.\n");
3564 } else {
3565 set_bit(QL_ALLMULTI, &qdev->flags);
3566 }
3567 }
3568exit:
3569 spin_unlock(&qdev->hw_lock);
8587ea35 3570 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3571}
3572
3573static int qlge_set_mac_address(struct net_device *ndev, void *p)
3574{
3575 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3576 struct sockaddr *addr = p;
cc288f54 3577 int status;
c4e84bde
RM
3578
3579 if (netif_running(ndev))
3580 return -EBUSY;
3581
3582 if (!is_valid_ether_addr(addr->sa_data))
3583 return -EADDRNOTAVAIL;
3584 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3585
cc288f54
RM
3586 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3587 if (status)
3588 return status;
c4e84bde 3589 spin_lock(&qdev->hw_lock);
cc288f54
RM
3590 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3591 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
c4e84bde 3592 spin_unlock(&qdev->hw_lock);
cc288f54
RM
3593 if (status)
3594 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3595 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3596 return status;
c4e84bde
RM
3597}
3598
3599static void qlge_tx_timeout(struct net_device *ndev)
3600{
3601 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3602 ql_queue_asic_error(qdev);
c4e84bde
RM
3603}
3604
3605static void ql_asic_reset_work(struct work_struct *work)
3606{
3607 struct ql_adapter *qdev =
3608 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f
RM
3609 int status;
3610
3611 status = ql_adapter_down(qdev);
3612 if (status)
3613 goto error;
3614
3615 status = ql_adapter_up(qdev);
3616 if (status)
3617 goto error;
3618
3619 return;
3620error:
3621 QPRINTK(qdev, IFUP, ALERT,
3622 "Driver up/down cycle failed, closing device\n");
3623 rtnl_lock();
3624 set_bit(QL_ADAPTER_UP, &qdev->flags);
3625 dev_close(qdev->ndev);
3626 rtnl_unlock();
c4e84bde
RM
3627}
3628
b0c2aadf
RM
3629static struct nic_operations qla8012_nic_ops = {
3630 .get_flash = ql_get_8012_flash_params,
3631 .port_initialize = ql_8012_port_initialize,
3632};
3633
cdca8d02
RM
3634static struct nic_operations qla8000_nic_ops = {
3635 .get_flash = ql_get_8000_flash_params,
3636 .port_initialize = ql_8000_port_initialize,
3637};
3638
b0c2aadf 3639
c4e84bde
RM
3640static void ql_get_board_info(struct ql_adapter *qdev)
3641{
3642 qdev->func =
3643 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3644 if (qdev->func) {
3645 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3646 qdev->port_link_up = STS_PL1;
3647 qdev->port_init = STS_PI1;
3648 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3649 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3650 } else {
3651 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3652 qdev->port_link_up = STS_PL0;
3653 qdev->port_init = STS_PI0;
3654 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3655 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3656 }
3657 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
3658 qdev->device_id = qdev->pdev->device;
3659 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3660 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
3661 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3662 qdev->nic_ops = &qla8000_nic_ops;
c4e84bde
RM
3663}
3664
3665static void ql_release_all(struct pci_dev *pdev)
3666{
3667 struct net_device *ndev = pci_get_drvdata(pdev);
3668 struct ql_adapter *qdev = netdev_priv(ndev);
3669
3670 if (qdev->workqueue) {
3671 destroy_workqueue(qdev->workqueue);
3672 qdev->workqueue = NULL;
3673 }
3674 if (qdev->q_workqueue) {
3675 destroy_workqueue(qdev->q_workqueue);
3676 qdev->q_workqueue = NULL;
3677 }
3678 if (qdev->reg_base)
8668ae92 3679 iounmap(qdev->reg_base);
c4e84bde
RM
3680 if (qdev->doorbell_area)
3681 iounmap(qdev->doorbell_area);
3682 pci_release_regions(pdev);
3683 pci_set_drvdata(pdev, NULL);
3684}
3685
3686static int __devinit ql_init_device(struct pci_dev *pdev,
3687 struct net_device *ndev, int cards_found)
3688{
3689 struct ql_adapter *qdev = netdev_priv(ndev);
3690 int pos, err = 0;
3691 u16 val16;
3692
3693 memset((void *)qdev, 0, sizeof(qdev));
3694 err = pci_enable_device(pdev);
3695 if (err) {
3696 dev_err(&pdev->dev, "PCI device enable failed.\n");
3697 return err;
3698 }
3699
3700 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3701 if (pos <= 0) {
3702 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3703 "aborting.\n");
3704 goto err_out;
3705 } else {
3706 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3707 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3708 val16 |= (PCI_EXP_DEVCTL_CERE |
3709 PCI_EXP_DEVCTL_NFERE |
3710 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3711 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3712 }
3713
3714 err = pci_request_regions(pdev, DRV_NAME);
3715 if (err) {
3716 dev_err(&pdev->dev, "PCI region request failed.\n");
3717 goto err_out;
3718 }
3719
3720 pci_set_master(pdev);
3721 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3722 set_bit(QL_DMA64, &qdev->flags);
3723 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3724 } else {
3725 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3726 if (!err)
3727 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3728 }
3729
3730 if (err) {
3731 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3732 goto err_out;
3733 }
3734
3735 pci_set_drvdata(pdev, ndev);
3736 qdev->reg_base =
3737 ioremap_nocache(pci_resource_start(pdev, 1),
3738 pci_resource_len(pdev, 1));
3739 if (!qdev->reg_base) {
3740 dev_err(&pdev->dev, "Register mapping failed.\n");
3741 err = -ENOMEM;
3742 goto err_out;
3743 }
3744
3745 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3746 qdev->doorbell_area =
3747 ioremap_nocache(pci_resource_start(pdev, 3),
3748 pci_resource_len(pdev, 3));
3749 if (!qdev->doorbell_area) {
3750 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3751 err = -ENOMEM;
3752 goto err_out;
3753 }
3754
c4e84bde
RM
3755 qdev->ndev = ndev;
3756 qdev->pdev = pdev;
b0c2aadf 3757 ql_get_board_info(qdev);
c4e84bde
RM
3758 qdev->msg_enable = netif_msg_init(debug, default_msg);
3759 spin_lock_init(&qdev->hw_lock);
3760 spin_lock_init(&qdev->stats_lock);
3761
3762 /* make sure the EEPROM is good */
b0c2aadf 3763 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
3764 if (err) {
3765 dev_err(&pdev->dev, "Invalid FLASH.\n");
3766 goto err_out;
3767 }
3768
c4e84bde
RM
3769 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3770
3771 /* Set up the default ring sizes. */
3772 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3773 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3774
3775 /* Set up the coalescing parameters. */
3776 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3777 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3778 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3779 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3780
3781 /*
3782 * Set up the operating parameters.
3783 */
3784 qdev->rx_csum = 1;
3785
3786 qdev->q_workqueue = create_workqueue(ndev->name);
3787 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3788 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3789 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3790 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 3791 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 3792 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
125844ea 3793 mutex_init(&qdev->mpi_mutex);
bcc2cb3b 3794 init_completion(&qdev->ide_completion);
c4e84bde
RM
3795
3796 if (!cards_found) {
3797 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3798 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3799 DRV_NAME, DRV_VERSION);
3800 }
3801 return 0;
3802err_out:
3803 ql_release_all(pdev);
3804 pci_disable_device(pdev);
3805 return err;
3806}
3807
25ed7849
SH
3808
3809static const struct net_device_ops qlge_netdev_ops = {
3810 .ndo_open = qlge_open,
3811 .ndo_stop = qlge_close,
3812 .ndo_start_xmit = qlge_send,
3813 .ndo_change_mtu = qlge_change_mtu,
3814 .ndo_get_stats = qlge_get_stats,
3815 .ndo_set_multicast_list = qlge_set_multicast_list,
3816 .ndo_set_mac_address = qlge_set_mac_address,
3817 .ndo_validate_addr = eth_validate_addr,
3818 .ndo_tx_timeout = qlge_tx_timeout,
3819 .ndo_vlan_rx_register = ql_vlan_rx_register,
3820 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3821 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3822};
3823
c4e84bde
RM
3824static int __devinit qlge_probe(struct pci_dev *pdev,
3825 const struct pci_device_id *pci_entry)
3826{
3827 struct net_device *ndev = NULL;
3828 struct ql_adapter *qdev = NULL;
3829 static int cards_found = 0;
3830 int err = 0;
3831
3832 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3833 if (!ndev)
3834 return -ENOMEM;
3835
3836 err = ql_init_device(pdev, ndev, cards_found);
3837 if (err < 0) {
3838 free_netdev(ndev);
3839 return err;
3840 }
3841
3842 qdev = netdev_priv(ndev);
3843 SET_NETDEV_DEV(ndev, &pdev->dev);
3844 ndev->features = (0
3845 | NETIF_F_IP_CSUM
3846 | NETIF_F_SG
3847 | NETIF_F_TSO
3848 | NETIF_F_TSO6
3849 | NETIF_F_TSO_ECN
3850 | NETIF_F_HW_VLAN_TX
3851 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 3852 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
3853
3854 if (test_bit(QL_DMA64, &qdev->flags))
3855 ndev->features |= NETIF_F_HIGHDMA;
3856
3857 /*
3858 * Set up net_device structure.
3859 */
3860 ndev->tx_queue_len = qdev->tx_ring_size;
3861 ndev->irq = pdev->irq;
25ed7849
SH
3862
3863 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3864 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3865 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3866
c4e84bde
RM
3867 err = register_netdev(ndev);
3868 if (err) {
3869 dev_err(&pdev->dev, "net device registration failed.\n");
3870 ql_release_all(pdev);
3871 pci_disable_device(pdev);
3872 return err;
3873 }
3874 netif_carrier_off(ndev);
3875 netif_stop_queue(ndev);
3876 ql_display_dev_info(ndev);
3877 cards_found++;
3878 return 0;
3879}
3880
3881static void __devexit qlge_remove(struct pci_dev *pdev)
3882{
3883 struct net_device *ndev = pci_get_drvdata(pdev);
3884 unregister_netdev(ndev);
3885 ql_release_all(pdev);
3886 pci_disable_device(pdev);
3887 free_netdev(ndev);
3888}
3889
3890/*
3891 * This callback is called by the PCI subsystem whenever
3892 * a PCI bus error is detected.
3893 */
3894static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3895 enum pci_channel_state state)
3896{
3897 struct net_device *ndev = pci_get_drvdata(pdev);
3898 struct ql_adapter *qdev = netdev_priv(ndev);
3899
3900 if (netif_running(ndev))
3901 ql_adapter_down(qdev);
3902
3903 pci_disable_device(pdev);
3904
3905 /* Request a slot reset. */
3906 return PCI_ERS_RESULT_NEED_RESET;
3907}
3908
3909/*
3910 * This callback is called after the PCI buss has been reset.
3911 * Basically, this tries to restart the card from scratch.
3912 * This is a shortened version of the device probe/discovery code,
3913 * it resembles the first-half of the () routine.
3914 */
3915static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3916{
3917 struct net_device *ndev = pci_get_drvdata(pdev);
3918 struct ql_adapter *qdev = netdev_priv(ndev);
3919
3920 if (pci_enable_device(pdev)) {
3921 QPRINTK(qdev, IFUP, ERR,
3922 "Cannot re-enable PCI device after reset.\n");
3923 return PCI_ERS_RESULT_DISCONNECT;
3924 }
3925
3926 pci_set_master(pdev);
3927
3928 netif_carrier_off(ndev);
3929 netif_stop_queue(ndev);
3930 ql_adapter_reset(qdev);
3931
3932 /* Make sure the EEPROM is good */
3933 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3934
3935 if (!is_valid_ether_addr(ndev->perm_addr)) {
3936 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3937 return PCI_ERS_RESULT_DISCONNECT;
3938 }
3939
3940 return PCI_ERS_RESULT_RECOVERED;
3941}
3942
3943static void qlge_io_resume(struct pci_dev *pdev)
3944{
3945 struct net_device *ndev = pci_get_drvdata(pdev);
3946 struct ql_adapter *qdev = netdev_priv(ndev);
3947
3948 pci_set_master(pdev);
3949
3950 if (netif_running(ndev)) {
3951 if (ql_adapter_up(qdev)) {
3952 QPRINTK(qdev, IFUP, ERR,
3953 "Device initialization failed after reset.\n");
3954 return;
3955 }
3956 }
3957
3958 netif_device_attach(ndev);
3959}
3960
3961static struct pci_error_handlers qlge_err_handler = {
3962 .error_detected = qlge_io_error_detected,
3963 .slot_reset = qlge_io_slot_reset,
3964 .resume = qlge_io_resume,
3965};
3966
3967static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3968{
3969 struct net_device *ndev = pci_get_drvdata(pdev);
3970 struct ql_adapter *qdev = netdev_priv(ndev);
0047e5d2 3971 int err, i;
c4e84bde
RM
3972
3973 netif_device_detach(ndev);
3974
3975 if (netif_running(ndev)) {
3976 err = ql_adapter_down(qdev);
3977 if (!err)
3978 return err;
3979 }
3980
0047e5d2
RM
3981 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3982 netif_napi_del(&qdev->rx_ring[i].napi);
3983
c4e84bde
RM
3984 err = pci_save_state(pdev);
3985 if (err)
3986 return err;
3987
3988 pci_disable_device(pdev);
3989
3990 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3991
3992 return 0;
3993}
3994
04da2cf9 3995#ifdef CONFIG_PM
c4e84bde
RM
3996static int qlge_resume(struct pci_dev *pdev)
3997{
3998 struct net_device *ndev = pci_get_drvdata(pdev);
3999 struct ql_adapter *qdev = netdev_priv(ndev);
4000 int err;
4001
4002 pci_set_power_state(pdev, PCI_D0);
4003 pci_restore_state(pdev);
4004 err = pci_enable_device(pdev);
4005 if (err) {
4006 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4007 return err;
4008 }
4009 pci_set_master(pdev);
4010
4011 pci_enable_wake(pdev, PCI_D3hot, 0);
4012 pci_enable_wake(pdev, PCI_D3cold, 0);
4013
4014 if (netif_running(ndev)) {
4015 err = ql_adapter_up(qdev);
4016 if (err)
4017 return err;
4018 }
4019
4020 netif_device_attach(ndev);
4021
4022 return 0;
4023}
04da2cf9 4024#endif /* CONFIG_PM */
c4e84bde
RM
4025
4026static void qlge_shutdown(struct pci_dev *pdev)
4027{
4028 qlge_suspend(pdev, PMSG_SUSPEND);
4029}
4030
4031static struct pci_driver qlge_driver = {
4032 .name = DRV_NAME,
4033 .id_table = qlge_pci_tbl,
4034 .probe = qlge_probe,
4035 .remove = __devexit_p(qlge_remove),
4036#ifdef CONFIG_PM
4037 .suspend = qlge_suspend,
4038 .resume = qlge_resume,
4039#endif
4040 .shutdown = qlge_shutdown,
4041 .err_handler = &qlge_err_handler
4042};
4043
4044static int __init qlge_init_module(void)
4045{
4046 return pci_register_driver(&qlge_driver);
4047}
4048
4049static void __exit qlge_exit(void)
4050{
4051 pci_unregister_driver(&qlge_driver);
4052}
4053
4054module_init(qlge_init_module);
4055module_exit(qlge_exit);
This page took 0.319494 seconds and 5 git commands to generate.