qlge: Fix redundant call to free resources.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
0857e9d7 130 unsigned int wait_count = 30;
c4e84bde
RM
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
0857e9d7
RM
134 udelay(100);
135 } while (--wait_count);
c4e84bde
RM
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
4322c5be
RM
217 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218 if (status)
219 return status;
220
c4e84bde
RM
221 status = ql_wait_cfg(qdev, bit);
222 if (status) {
223 QPRINTK(qdev, IFUP, ERR,
224 "Timed out waiting for CFG to come ready.\n");
225 goto exit;
226 }
227
c4e84bde
RM
228 ql_write32(qdev, ICB_L, (u32) map);
229 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
4322c5be 240 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
241 pci_unmap_single(qdev->pdev, map, size, direction);
242 return status;
243}
244
245/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247 u32 *value)
248{
249 u32 offset = 0;
250 int status;
251
c4e84bde
RM
252 switch (type) {
253 case MAC_ADDR_TYPE_MULTI_MAC:
254 case MAC_ADDR_TYPE_CAM_MAC:
255 {
256 status =
257 ql_wait_reg_rdy(qdev,
939678f8 258 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
259 if (status)
260 goto exit;
261 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262 (index << MAC_ADDR_IDX_SHIFT) | /* index */
263 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 status =
265 ql_wait_reg_rdy(qdev,
939678f8 266 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
267 if (status)
268 goto exit;
269 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 status =
271 ql_wait_reg_rdy(qdev,
939678f8 272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
939678f8 280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 status =
286 ql_wait_reg_rdy(qdev,
939678f8 287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 295 MAC_ADDR_MR, 0);
c4e84bde
RM
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
299 }
300 break;
301 }
302 case MAC_ADDR_TYPE_VLAN:
303 case MAC_ADDR_TYPE_MULTI_FLTR:
304 default:
305 QPRINTK(qdev, IFUP, CRIT,
306 "Address type %d not yet supported.\n", type);
307 status = -EPERM;
308 }
309exit:
c4e84bde
RM
310 return status;
311}
312
313/* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
315 */
316static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317 u16 index)
318{
319 u32 offset = 0;
320 int status = 0;
321
c4e84bde
RM
322 switch (type) {
323 case MAC_ADDR_TYPE_MULTI_MAC:
324 case MAC_ADDR_TYPE_CAM_MAC:
325 {
326 u32 cam_output;
327 u32 upper = (addr[0] << 8) | addr[1];
328 u32 lower =
329 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330 (addr[5]);
331
4974097a 332 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 333 "Adding %s address %pM"
c4e84bde
RM
334 " at index %d in the CAM.\n",
335 ((type ==
336 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 337 "UNICAST"), addr, index);
c4e84bde
RM
338
339 status =
340 ql_wait_reg_rdy(qdev,
939678f8 341 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
342 if (status)
343 goto exit;
344 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 type); /* type */
347 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 status =
349 ql_wait_reg_rdy(qdev,
939678f8 350 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
351 if (status)
352 goto exit;
353 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 type); /* type */
356 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 status =
358 ql_wait_reg_rdy(qdev,
939678f8 359 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
360 if (status)
361 goto exit;
362 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
363 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 type); /* type */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
368 */
369 if (type == MAC_ADDR_TYPE_CAM_MAC) {
370 cam_output = (CAM_OUT_ROUTE_NIC |
371 (qdev->
372 func << CAM_OUT_FUNC_SHIFT) |
373 (qdev->
374 rss_ring_first_cq_id <<
375 CAM_OUT_CQ_ID_SHIFT));
376 if (qdev->vlgrp)
377 cam_output |= CAM_OUT_RV;
378 /* route to NIC core */
379 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
380 }
381 break;
382 }
383 case MAC_ADDR_TYPE_VLAN:
384 {
385 u32 enable_bit = *((u32 *) &addr[0]);
386 /* For VLAN, the addr actually holds a bit that
387 * either enables or disables the vlan id we are
388 * addressing. It's either MAC_ADDR_E on or off.
389 * That's bit-27 we're talking about.
390 */
391 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
392 (enable_bit ? "Adding" : "Removing"),
393 index, (enable_bit ? "to" : "from"));
394
395 status =
396 ql_wait_reg_rdy(qdev,
939678f8 397 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
398 if (status)
399 goto exit;
400 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
401 (index << MAC_ADDR_IDX_SHIFT) | /* index */
402 type | /* type */
403 enable_bit); /* enable/disable */
404 break;
405 }
406 case MAC_ADDR_TYPE_MULTI_FLTR:
407 default:
408 QPRINTK(qdev, IFUP, CRIT,
409 "Address type %d not yet supported.\n", type);
410 status = -EPERM;
411 }
412exit:
c4e84bde
RM
413 return status;
414}
415
416/* Get a specific frame routing value from the CAM.
417 * Used for debug and reg dump.
418 */
419int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
420{
421 int status = 0;
422
939678f8 423 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
424 if (status)
425 goto exit;
426
427 ql_write32(qdev, RT_IDX,
428 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 429 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
430 if (status)
431 goto exit;
432 *value = ql_read32(qdev, RT_DATA);
433exit:
c4e84bde
RM
434 return status;
435}
436
437/* The NIC function for this chip has 16 routing indexes. Each one can be used
438 * to route different frame types to various inbound queues. We send broadcast/
439 * multicast/error frames to the default queue for slow handling,
440 * and CAM hit/RSS frames to the fast handling queues.
441 */
442static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
443 int enable)
444{
8587ea35 445 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
446 u32 value = 0;
447
c4e84bde
RM
448 QPRINTK(qdev, IFUP, DEBUG,
449 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
450 (enable ? "Adding" : "Removing"),
451 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
452 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
453 ((index ==
454 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
455 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
456 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
457 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
458 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
459 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
460 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
461 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
462 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
463 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
464 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
465 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
466 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
467 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
468 (enable ? "to" : "from"));
469
470 switch (mask) {
471 case RT_IDX_CAM_HIT:
472 {
473 value = RT_IDX_DST_CAM_Q | /* dest */
474 RT_IDX_TYPE_NICQ | /* type */
475 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
476 break;
477 }
478 case RT_IDX_VALID: /* Promiscuous Mode frames. */
479 {
480 value = RT_IDX_DST_DFLT_Q | /* dest */
481 RT_IDX_TYPE_NICQ | /* type */
482 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
483 break;
484 }
485 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
486 {
487 value = RT_IDX_DST_DFLT_Q | /* dest */
488 RT_IDX_TYPE_NICQ | /* type */
489 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
490 break;
491 }
492 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
493 {
494 value = RT_IDX_DST_DFLT_Q | /* dest */
495 RT_IDX_TYPE_NICQ | /* type */
496 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
497 break;
498 }
499 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
500 {
501 value = RT_IDX_DST_CAM_Q | /* dest */
502 RT_IDX_TYPE_NICQ | /* type */
503 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
504 break;
505 }
506 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
507 {
508 value = RT_IDX_DST_CAM_Q | /* dest */
509 RT_IDX_TYPE_NICQ | /* type */
510 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
511 break;
512 }
513 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
514 {
515 value = RT_IDX_DST_RSS | /* dest */
516 RT_IDX_TYPE_NICQ | /* type */
517 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
518 break;
519 }
520 case 0: /* Clear the E-bit on an entry. */
521 {
522 value = RT_IDX_DST_DFLT_Q | /* dest */
523 RT_IDX_TYPE_NICQ | /* type */
524 (index << RT_IDX_IDX_SHIFT);/* index */
525 break;
526 }
527 default:
528 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
529 mask);
530 status = -EPERM;
531 goto exit;
532 }
533
534 if (value) {
535 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
536 if (status)
537 goto exit;
538 value |= (enable ? RT_IDX_E : 0);
539 ql_write32(qdev, RT_IDX, value);
540 ql_write32(qdev, RT_DATA, enable ? mask : 0);
541 }
542exit:
c4e84bde
RM
543 return status;
544}
545
546static void ql_enable_interrupts(struct ql_adapter *qdev)
547{
548 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
549}
550
551static void ql_disable_interrupts(struct ql_adapter *qdev)
552{
553 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
554}
555
556/* If we're running with multiple MSI-X vectors then we enable on the fly.
557 * Otherwise, we may have multiple outstanding workers and don't want to
558 * enable until the last one finishes. In this case, the irq_cnt gets
559 * incremented everytime we queue a worker and decremented everytime
560 * a worker finishes. Once it hits zero we enable the interrupt.
561 */
bb0d215c 562u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 563{
bb0d215c
RM
564 u32 var = 0;
565 unsigned long hw_flags = 0;
566 struct intr_context *ctx = qdev->intr_context + intr;
567
568 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
569 /* Always enable if we're MSIX multi interrupts and
570 * it's not the default (zeroeth) interrupt.
571 */
c4e84bde 572 ql_write32(qdev, INTR_EN,
bb0d215c
RM
573 ctx->intr_en_mask);
574 var = ql_read32(qdev, STS);
575 return var;
c4e84bde 576 }
bb0d215c
RM
577
578 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
579 if (atomic_dec_and_test(&ctx->irq_cnt)) {
580 ql_write32(qdev, INTR_EN,
581 ctx->intr_en_mask);
582 var = ql_read32(qdev, STS);
583 }
584 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
585 return var;
c4e84bde
RM
586}
587
588static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
589{
590 u32 var = 0;
bb0d215c 591 struct intr_context *ctx;
c4e84bde 592
bb0d215c
RM
593 /* HW disables for us if we're MSIX multi interrupts and
594 * it's not the default (zeroeth) interrupt.
595 */
596 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
597 return 0;
598
599 ctx = qdev->intr_context + intr;
08b1bc8f 600 spin_lock(&qdev->hw_lock);
bb0d215c 601 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 602 ql_write32(qdev, INTR_EN,
bb0d215c 603 ctx->intr_dis_mask);
c4e84bde
RM
604 var = ql_read32(qdev, STS);
605 }
bb0d215c 606 atomic_inc(&ctx->irq_cnt);
08b1bc8f 607 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
608 return var;
609}
610
611static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
612{
613 int i;
614 for (i = 0; i < qdev->intr_count; i++) {
615 /* The enable call does a atomic_dec_and_test
616 * and enables only if the result is zero.
617 * So we precharge it here.
618 */
bb0d215c
RM
619 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
620 i == 0))
621 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
622 ql_enable_completion_interrupt(qdev, i);
623 }
624
625}
626
b0c2aadf
RM
627static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
628{
629 int status, i;
630 u16 csum = 0;
631 __le16 *flash = (__le16 *)&qdev->flash;
632
633 status = strncmp((char *)&qdev->flash, str, 4);
634 if (status) {
635 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
636 return status;
637 }
638
639 for (i = 0; i < size; i++)
640 csum += le16_to_cpu(*flash++);
641
642 if (csum)
643 QPRINTK(qdev, IFUP, ERR,
644 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
645
646 return csum;
647}
648
26351479 649static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
650{
651 int status = 0;
652 /* wait for reg to come ready */
653 status = ql_wait_reg_rdy(qdev,
654 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
655 if (status)
656 goto exit;
657 /* set up for reg read */
658 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
659 /* wait for reg to come ready */
660 status = ql_wait_reg_rdy(qdev,
661 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
662 if (status)
663 goto exit;
26351479
RM
664 /* This data is stored on flash as an array of
665 * __le32. Since ql_read32() returns cpu endian
666 * we need to swap it back.
667 */
668 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
669exit:
670 return status;
671}
672
cdca8d02
RM
673static int ql_get_8000_flash_params(struct ql_adapter *qdev)
674{
675 u32 i, size;
676 int status;
677 __le32 *p = (__le32 *)&qdev->flash;
678 u32 offset;
542512e4 679 u8 mac_addr[6];
cdca8d02
RM
680
681 /* Get flash offset for function and adjust
682 * for dword access.
683 */
e4552f51 684 if (!qdev->port)
cdca8d02
RM
685 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
686 else
687 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
688
689 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
690 return -ETIMEDOUT;
691
692 size = sizeof(struct flash_params_8000) / sizeof(u32);
693 for (i = 0; i < size; i++, p++) {
694 status = ql_read_flash_word(qdev, i+offset, p);
695 if (status) {
696 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
697 goto exit;
698 }
699 }
700
701 status = ql_validate_flash(qdev,
702 sizeof(struct flash_params_8000) / sizeof(u16),
703 "8000");
704 if (status) {
705 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
706 status = -EINVAL;
707 goto exit;
708 }
709
542512e4
RM
710 /* Extract either manufacturer or BOFM modified
711 * MAC address.
712 */
713 if (qdev->flash.flash_params_8000.data_type1 == 2)
714 memcpy(mac_addr,
715 qdev->flash.flash_params_8000.mac_addr1,
716 qdev->ndev->addr_len);
717 else
718 memcpy(mac_addr,
719 qdev->flash.flash_params_8000.mac_addr,
720 qdev->ndev->addr_len);
721
722 if (!is_valid_ether_addr(mac_addr)) {
cdca8d02
RM
723 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
724 status = -EINVAL;
725 goto exit;
726 }
727
728 memcpy(qdev->ndev->dev_addr,
542512e4 729 mac_addr,
cdca8d02
RM
730 qdev->ndev->addr_len);
731
732exit:
733 ql_sem_unlock(qdev, SEM_FLASH_MASK);
734 return status;
735}
736
b0c2aadf 737static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
738{
739 int i;
740 int status;
26351479 741 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 742 u32 offset = 0;
b0c2aadf 743 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
744
745 /* Second function's parameters follow the first
746 * function's.
747 */
e4552f51 748 if (qdev->port)
b0c2aadf 749 offset = size;
c4e84bde
RM
750
751 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
752 return -ETIMEDOUT;
753
b0c2aadf 754 for (i = 0; i < size; i++, p++) {
e78f5fa7 755 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
756 if (status) {
757 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
758 goto exit;
759 }
760
761 }
b0c2aadf
RM
762
763 status = ql_validate_flash(qdev,
764 sizeof(struct flash_params_8012) / sizeof(u16),
765 "8012");
766 if (status) {
767 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
768 status = -EINVAL;
769 goto exit;
770 }
771
772 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
773 status = -EINVAL;
774 goto exit;
775 }
776
777 memcpy(qdev->ndev->dev_addr,
778 qdev->flash.flash_params_8012.mac_addr,
779 qdev->ndev->addr_len);
780
c4e84bde
RM
781exit:
782 ql_sem_unlock(qdev, SEM_FLASH_MASK);
783 return status;
784}
785
786/* xgmac register are located behind the xgmac_addr and xgmac_data
787 * register pair. Each read/write requires us to wait for the ready
788 * bit before reading/writing the data.
789 */
790static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
791{
792 int status;
793 /* wait for reg to come ready */
794 status = ql_wait_reg_rdy(qdev,
795 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
796 if (status)
797 return status;
798 /* write the data to the data reg */
799 ql_write32(qdev, XGMAC_DATA, data);
800 /* trigger the write */
801 ql_write32(qdev, XGMAC_ADDR, reg);
802 return status;
803}
804
805/* xgmac register are located behind the xgmac_addr and xgmac_data
806 * register pair. Each read/write requires us to wait for the ready
807 * bit before reading/writing the data.
808 */
809int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
810{
811 int status = 0;
812 /* wait for reg to come ready */
813 status = ql_wait_reg_rdy(qdev,
814 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
815 if (status)
816 goto exit;
817 /* set up for reg read */
818 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
819 /* wait for reg to come ready */
820 status = ql_wait_reg_rdy(qdev,
821 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
822 if (status)
823 goto exit;
824 /* get the data */
825 *data = ql_read32(qdev, XGMAC_DATA);
826exit:
827 return status;
828}
829
830/* This is used for reading the 64-bit statistics regs. */
831int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
832{
833 int status = 0;
834 u32 hi = 0;
835 u32 lo = 0;
836
837 status = ql_read_xgmac_reg(qdev, reg, &lo);
838 if (status)
839 goto exit;
840
841 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
842 if (status)
843 goto exit;
844
845 *data = (u64) lo | ((u64) hi << 32);
846
847exit:
848 return status;
849}
850
cdca8d02
RM
851static int ql_8000_port_initialize(struct ql_adapter *qdev)
852{
bcc2cb3b 853 int status;
cfec0cbc
RM
854 /*
855 * Get MPI firmware version for driver banner
856 * and ethool info.
857 */
858 status = ql_mb_about_fw(qdev);
859 if (status)
860 goto exit;
bcc2cb3b
RM
861 status = ql_mb_get_fw_state(qdev);
862 if (status)
863 goto exit;
864 /* Wake up a worker to get/set the TX/RX frame sizes. */
865 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
866exit:
867 return status;
cdca8d02
RM
868}
869
c4e84bde
RM
870/* Take the MAC Core out of reset.
871 * Enable statistics counting.
872 * Take the transmitter/receiver out of reset.
873 * This functionality may be done in the MPI firmware at a
874 * later date.
875 */
b0c2aadf 876static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
877{
878 int status = 0;
879 u32 data;
880
881 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
882 /* Another function has the semaphore, so
883 * wait for the port init bit to come ready.
884 */
885 QPRINTK(qdev, LINK, INFO,
886 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
887 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
888 if (status) {
889 QPRINTK(qdev, LINK, CRIT,
890 "Port initialize timed out.\n");
891 }
892 return status;
893 }
894
895 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
896 /* Set the core reset. */
897 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
898 if (status)
899 goto end;
900 data |= GLOBAL_CFG_RESET;
901 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
902 if (status)
903 goto end;
904
905 /* Clear the core reset and turn on jumbo for receiver. */
906 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
907 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
908 data |= GLOBAL_CFG_TX_STAT_EN;
909 data |= GLOBAL_CFG_RX_STAT_EN;
910 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
911 if (status)
912 goto end;
913
914 /* Enable transmitter, and clear it's reset. */
915 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
916 if (status)
917 goto end;
918 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
919 data |= TX_CFG_EN; /* Enable the transmitter. */
920 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
921 if (status)
922 goto end;
923
924 /* Enable receiver and clear it's reset. */
925 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
926 if (status)
927 goto end;
928 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
929 data |= RX_CFG_EN; /* Enable the receiver. */
930 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
931 if (status)
932 goto end;
933
934 /* Turn on jumbo. */
935 status =
936 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
937 if (status)
938 goto end;
939 status =
940 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
941 if (status)
942 goto end;
943
944 /* Signal to the world that the port is enabled. */
945 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
946end:
947 ql_sem_unlock(qdev, qdev->xg_sem_mask);
948 return status;
949}
950
951/* Get the next large buffer. */
8668ae92 952static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
953{
954 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
955 rx_ring->lbq_curr_idx++;
956 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
957 rx_ring->lbq_curr_idx = 0;
958 rx_ring->lbq_free_cnt++;
959 return lbq_desc;
960}
961
962/* Get the next small buffer. */
8668ae92 963static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
964{
965 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
966 rx_ring->sbq_curr_idx++;
967 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
968 rx_ring->sbq_curr_idx = 0;
969 rx_ring->sbq_free_cnt++;
970 return sbq_desc;
971}
972
973/* Update an rx ring index. */
974static void ql_update_cq(struct rx_ring *rx_ring)
975{
976 rx_ring->cnsmr_idx++;
977 rx_ring->curr_entry++;
978 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
979 rx_ring->cnsmr_idx = 0;
980 rx_ring->curr_entry = rx_ring->cq_base;
981 }
982}
983
984static void ql_write_cq_idx(struct rx_ring *rx_ring)
985{
986 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
987}
988
989/* Process (refill) a large buffer queue. */
990static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
991{
49f2186d
RM
992 u32 clean_idx = rx_ring->lbq_clean_idx;
993 u32 start_idx = clean_idx;
c4e84bde 994 struct bq_desc *lbq_desc;
c4e84bde
RM
995 u64 map;
996 int i;
997
998 while (rx_ring->lbq_free_cnt > 16) {
999 for (i = 0; i < 16; i++) {
1000 QPRINTK(qdev, RX_STATUS, DEBUG,
1001 "lbq: try cleaning clean_idx = %d.\n",
1002 clean_idx);
1003 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
1004 if (lbq_desc->p.lbq_page == NULL) {
1005 QPRINTK(qdev, RX_STATUS, DEBUG,
1006 "lbq: getting new page for index %d.\n",
1007 lbq_desc->index);
1008 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1009 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 1010 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
1011 QPRINTK(qdev, RX_STATUS, ERR,
1012 "Couldn't get a page.\n");
1013 return;
1014 }
1015 map = pci_map_page(qdev->pdev,
1016 lbq_desc->p.lbq_page,
1017 0, PAGE_SIZE,
1018 PCI_DMA_FROMDEVICE);
1019 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 1020 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
1021 put_page(lbq_desc->p.lbq_page);
1022 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
1023 QPRINTK(qdev, RX_STATUS, ERR,
1024 "PCI mapping failed.\n");
1025 return;
1026 }
1027 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1028 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 1029 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1030 }
1031 clean_idx++;
1032 if (clean_idx == rx_ring->lbq_len)
1033 clean_idx = 0;
1034 }
1035
1036 rx_ring->lbq_clean_idx = clean_idx;
1037 rx_ring->lbq_prod_idx += 16;
1038 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1039 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1040 rx_ring->lbq_free_cnt -= 16;
1041 }
1042
1043 if (start_idx != clean_idx) {
c4e84bde
RM
1044 QPRINTK(qdev, RX_STATUS, DEBUG,
1045 "lbq: updating prod idx = %d.\n",
1046 rx_ring->lbq_prod_idx);
1047 ql_write_db_reg(rx_ring->lbq_prod_idx,
1048 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1049 }
1050}
1051
1052/* Process (refill) a small buffer queue. */
1053static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1054{
49f2186d
RM
1055 u32 clean_idx = rx_ring->sbq_clean_idx;
1056 u32 start_idx = clean_idx;
c4e84bde 1057 struct bq_desc *sbq_desc;
c4e84bde
RM
1058 u64 map;
1059 int i;
1060
1061 while (rx_ring->sbq_free_cnt > 16) {
1062 for (i = 0; i < 16; i++) {
1063 sbq_desc = &rx_ring->sbq[clean_idx];
1064 QPRINTK(qdev, RX_STATUS, DEBUG,
1065 "sbq: try cleaning clean_idx = %d.\n",
1066 clean_idx);
c4e84bde
RM
1067 if (sbq_desc->p.skb == NULL) {
1068 QPRINTK(qdev, RX_STATUS, DEBUG,
1069 "sbq: getting new skb for index %d.\n",
1070 sbq_desc->index);
1071 sbq_desc->p.skb =
1072 netdev_alloc_skb(qdev->ndev,
1073 rx_ring->sbq_buf_size);
1074 if (sbq_desc->p.skb == NULL) {
1075 QPRINTK(qdev, PROBE, ERR,
1076 "Couldn't get an skb.\n");
1077 rx_ring->sbq_clean_idx = clean_idx;
1078 return;
1079 }
1080 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1081 map = pci_map_single(qdev->pdev,
1082 sbq_desc->p.skb->data,
1083 rx_ring->sbq_buf_size /
1084 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
1085 if (pci_dma_mapping_error(qdev->pdev, map)) {
1086 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1087 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1088 dev_kfree_skb_any(sbq_desc->p.skb);
1089 sbq_desc->p.skb = NULL;
c907a35a
RM
1090 return;
1091 }
c4e84bde
RM
1092 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1093 pci_unmap_len_set(sbq_desc, maplen,
1094 rx_ring->sbq_buf_size / 2);
2c9a0d41 1095 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1096 }
1097
1098 clean_idx++;
1099 if (clean_idx == rx_ring->sbq_len)
1100 clean_idx = 0;
1101 }
1102 rx_ring->sbq_clean_idx = clean_idx;
1103 rx_ring->sbq_prod_idx += 16;
1104 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1105 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1106 rx_ring->sbq_free_cnt -= 16;
1107 }
1108
1109 if (start_idx != clean_idx) {
c4e84bde
RM
1110 QPRINTK(qdev, RX_STATUS, DEBUG,
1111 "sbq: updating prod idx = %d.\n",
1112 rx_ring->sbq_prod_idx);
1113 ql_write_db_reg(rx_ring->sbq_prod_idx,
1114 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1115 }
1116}
1117
1118static void ql_update_buffer_queues(struct ql_adapter *qdev,
1119 struct rx_ring *rx_ring)
1120{
1121 ql_update_sbq(qdev, rx_ring);
1122 ql_update_lbq(qdev, rx_ring);
1123}
1124
1125/* Unmaps tx buffers. Can be called from send() if a pci mapping
1126 * fails at some stage, or from the interrupt when a tx completes.
1127 */
1128static void ql_unmap_send(struct ql_adapter *qdev,
1129 struct tx_ring_desc *tx_ring_desc, int mapped)
1130{
1131 int i;
1132 for (i = 0; i < mapped; i++) {
1133 if (i == 0 || (i == 7 && mapped > 7)) {
1134 /*
1135 * Unmap the skb->data area, or the
1136 * external sglist (AKA the Outbound
1137 * Address List (OAL)).
1138 * If its the zeroeth element, then it's
1139 * the skb->data area. If it's the 7th
1140 * element and there is more than 6 frags,
1141 * then its an OAL.
1142 */
1143 if (i == 7) {
1144 QPRINTK(qdev, TX_DONE, DEBUG,
1145 "unmapping OAL area.\n");
1146 }
1147 pci_unmap_single(qdev->pdev,
1148 pci_unmap_addr(&tx_ring_desc->map[i],
1149 mapaddr),
1150 pci_unmap_len(&tx_ring_desc->map[i],
1151 maplen),
1152 PCI_DMA_TODEVICE);
1153 } else {
1154 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1155 i);
1156 pci_unmap_page(qdev->pdev,
1157 pci_unmap_addr(&tx_ring_desc->map[i],
1158 mapaddr),
1159 pci_unmap_len(&tx_ring_desc->map[i],
1160 maplen), PCI_DMA_TODEVICE);
1161 }
1162 }
1163
1164}
1165
1166/* Map the buffers for this transmit. This will return
1167 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1168 */
1169static int ql_map_send(struct ql_adapter *qdev,
1170 struct ob_mac_iocb_req *mac_iocb_ptr,
1171 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1172{
1173 int len = skb_headlen(skb);
1174 dma_addr_t map;
1175 int frag_idx, err, map_idx = 0;
1176 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1177 int frag_cnt = skb_shinfo(skb)->nr_frags;
1178
1179 if (frag_cnt) {
1180 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1181 }
1182 /*
1183 * Map the skb buffer first.
1184 */
1185 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1186
1187 err = pci_dma_mapping_error(qdev->pdev, map);
1188 if (err) {
1189 QPRINTK(qdev, TX_QUEUED, ERR,
1190 "PCI mapping failed with error: %d\n", err);
1191
1192 return NETDEV_TX_BUSY;
1193 }
1194
1195 tbd->len = cpu_to_le32(len);
1196 tbd->addr = cpu_to_le64(map);
1197 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1198 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1199 map_idx++;
1200
1201 /*
1202 * This loop fills the remainder of the 8 address descriptors
1203 * in the IOCB. If there are more than 7 fragments, then the
1204 * eighth address desc will point to an external list (OAL).
1205 * When this happens, the remainder of the frags will be stored
1206 * in this list.
1207 */
1208 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1209 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1210 tbd++;
1211 if (frag_idx == 6 && frag_cnt > 7) {
1212 /* Let's tack on an sglist.
1213 * Our control block will now
1214 * look like this:
1215 * iocb->seg[0] = skb->data
1216 * iocb->seg[1] = frag[0]
1217 * iocb->seg[2] = frag[1]
1218 * iocb->seg[3] = frag[2]
1219 * iocb->seg[4] = frag[3]
1220 * iocb->seg[5] = frag[4]
1221 * iocb->seg[6] = frag[5]
1222 * iocb->seg[7] = ptr to OAL (external sglist)
1223 * oal->seg[0] = frag[6]
1224 * oal->seg[1] = frag[7]
1225 * oal->seg[2] = frag[8]
1226 * oal->seg[3] = frag[9]
1227 * oal->seg[4] = frag[10]
1228 * etc...
1229 */
1230 /* Tack on the OAL in the eighth segment of IOCB. */
1231 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1232 sizeof(struct oal),
1233 PCI_DMA_TODEVICE);
1234 err = pci_dma_mapping_error(qdev->pdev, map);
1235 if (err) {
1236 QPRINTK(qdev, TX_QUEUED, ERR,
1237 "PCI mapping outbound address list with error: %d\n",
1238 err);
1239 goto map_error;
1240 }
1241
1242 tbd->addr = cpu_to_le64(map);
1243 /*
1244 * The length is the number of fragments
1245 * that remain to be mapped times the length
1246 * of our sglist (OAL).
1247 */
1248 tbd->len =
1249 cpu_to_le32((sizeof(struct tx_buf_desc) *
1250 (frag_cnt - frag_idx)) | TX_DESC_C);
1251 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1252 map);
1253 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1254 sizeof(struct oal));
1255 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1256 map_idx++;
1257 }
1258
1259 map =
1260 pci_map_page(qdev->pdev, frag->page,
1261 frag->page_offset, frag->size,
1262 PCI_DMA_TODEVICE);
1263
1264 err = pci_dma_mapping_error(qdev->pdev, map);
1265 if (err) {
1266 QPRINTK(qdev, TX_QUEUED, ERR,
1267 "PCI mapping frags failed with error: %d.\n",
1268 err);
1269 goto map_error;
1270 }
1271
1272 tbd->addr = cpu_to_le64(map);
1273 tbd->len = cpu_to_le32(frag->size);
1274 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1276 frag->size);
1277
1278 }
1279 /* Save the number of segments we've mapped. */
1280 tx_ring_desc->map_cnt = map_idx;
1281 /* Terminate the last segment. */
1282 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1283 return NETDEV_TX_OK;
1284
1285map_error:
1286 /*
1287 * If the first frag mapping failed, then i will be zero.
1288 * This causes the unmap of the skb->data area. Otherwise
1289 * we pass in the number of frags that mapped successfully
1290 * so they can be umapped.
1291 */
1292 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1293 return NETDEV_TX_BUSY;
1294}
1295
8668ae92 1296static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1297{
1298 void *temp_addr = skb->data;
1299
1300 /* Undo the skb_reserve(skb,32) we did before
1301 * giving to hardware, and realign data on
1302 * a 2-byte boundary.
1303 */
1304 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1305 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1306 skb_copy_to_linear_data(skb, temp_addr,
1307 (unsigned int)len);
1308}
1309
1310/*
1311 * This function builds an skb for the given inbound
1312 * completion. It will be rewritten for readability in the near
1313 * future, but for not it works well.
1314 */
1315static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1316 struct rx_ring *rx_ring,
1317 struct ib_mac_iocb_rsp *ib_mac_rsp)
1318{
1319 struct bq_desc *lbq_desc;
1320 struct bq_desc *sbq_desc;
1321 struct sk_buff *skb = NULL;
1322 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1323 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1324
1325 /*
1326 * Handle the header buffer if present.
1327 */
1328 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1329 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1330 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1331 /*
1332 * Headers fit nicely into a small buffer.
1333 */
1334 sbq_desc = ql_get_curr_sbuf(rx_ring);
1335 pci_unmap_single(qdev->pdev,
1336 pci_unmap_addr(sbq_desc, mapaddr),
1337 pci_unmap_len(sbq_desc, maplen),
1338 PCI_DMA_FROMDEVICE);
1339 skb = sbq_desc->p.skb;
1340 ql_realign_skb(skb, hdr_len);
1341 skb_put(skb, hdr_len);
1342 sbq_desc->p.skb = NULL;
1343 }
1344
1345 /*
1346 * Handle the data buffer(s).
1347 */
1348 if (unlikely(!length)) { /* Is there data too? */
1349 QPRINTK(qdev, RX_STATUS, DEBUG,
1350 "No Data buffer in this packet.\n");
1351 return skb;
1352 }
1353
1354 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1355 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1356 QPRINTK(qdev, RX_STATUS, DEBUG,
1357 "Headers in small, data of %d bytes in small, combine them.\n", length);
1358 /*
1359 * Data is less than small buffer size so it's
1360 * stuffed in a small buffer.
1361 * For this case we append the data
1362 * from the "data" small buffer to the "header" small
1363 * buffer.
1364 */
1365 sbq_desc = ql_get_curr_sbuf(rx_ring);
1366 pci_dma_sync_single_for_cpu(qdev->pdev,
1367 pci_unmap_addr
1368 (sbq_desc, mapaddr),
1369 pci_unmap_len
1370 (sbq_desc, maplen),
1371 PCI_DMA_FROMDEVICE);
1372 memcpy(skb_put(skb, length),
1373 sbq_desc->p.skb->data, length);
1374 pci_dma_sync_single_for_device(qdev->pdev,
1375 pci_unmap_addr
1376 (sbq_desc,
1377 mapaddr),
1378 pci_unmap_len
1379 (sbq_desc,
1380 maplen),
1381 PCI_DMA_FROMDEVICE);
1382 } else {
1383 QPRINTK(qdev, RX_STATUS, DEBUG,
1384 "%d bytes in a single small buffer.\n", length);
1385 sbq_desc = ql_get_curr_sbuf(rx_ring);
1386 skb = sbq_desc->p.skb;
1387 ql_realign_skb(skb, length);
1388 skb_put(skb, length);
1389 pci_unmap_single(qdev->pdev,
1390 pci_unmap_addr(sbq_desc,
1391 mapaddr),
1392 pci_unmap_len(sbq_desc,
1393 maplen),
1394 PCI_DMA_FROMDEVICE);
1395 sbq_desc->p.skb = NULL;
1396 }
1397 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1398 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1399 QPRINTK(qdev, RX_STATUS, DEBUG,
1400 "Header in small, %d bytes in large. Chain large to small!\n", length);
1401 /*
1402 * The data is in a single large buffer. We
1403 * chain it to the header buffer's skb and let
1404 * it rip.
1405 */
1406 lbq_desc = ql_get_curr_lbuf(rx_ring);
1407 pci_unmap_page(qdev->pdev,
1408 pci_unmap_addr(lbq_desc,
1409 mapaddr),
1410 pci_unmap_len(lbq_desc, maplen),
1411 PCI_DMA_FROMDEVICE);
1412 QPRINTK(qdev, RX_STATUS, DEBUG,
1413 "Chaining page to skb.\n");
1414 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1415 0, length);
1416 skb->len += length;
1417 skb->data_len += length;
1418 skb->truesize += length;
1419 lbq_desc->p.lbq_page = NULL;
1420 } else {
1421 /*
1422 * The headers and data are in a single large buffer. We
1423 * copy it to a new skb and let it go. This can happen with
1424 * jumbo mtu on a non-TCP/UDP frame.
1425 */
1426 lbq_desc = ql_get_curr_lbuf(rx_ring);
1427 skb = netdev_alloc_skb(qdev->ndev, length);
1428 if (skb == NULL) {
1429 QPRINTK(qdev, PROBE, DEBUG,
1430 "No skb available, drop the packet.\n");
1431 return NULL;
1432 }
4055c7d4
RM
1433 pci_unmap_page(qdev->pdev,
1434 pci_unmap_addr(lbq_desc,
1435 mapaddr),
1436 pci_unmap_len(lbq_desc, maplen),
1437 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1438 skb_reserve(skb, NET_IP_ALIGN);
1439 QPRINTK(qdev, RX_STATUS, DEBUG,
1440 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1441 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1442 0, length);
1443 skb->len += length;
1444 skb->data_len += length;
1445 skb->truesize += length;
1446 length -= length;
1447 lbq_desc->p.lbq_page = NULL;
1448 __pskb_pull_tail(skb,
1449 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1450 VLAN_ETH_HLEN : ETH_HLEN);
1451 }
1452 } else {
1453 /*
1454 * The data is in a chain of large buffers
1455 * pointed to by a small buffer. We loop
1456 * thru and chain them to the our small header
1457 * buffer's skb.
1458 * frags: There are 18 max frags and our small
1459 * buffer will hold 32 of them. The thing is,
1460 * we'll use 3 max for our 9000 byte jumbo
1461 * frames. If the MTU goes up we could
1462 * eventually be in trouble.
1463 */
1464 int size, offset, i = 0;
2c9a0d41 1465 __le64 *bq, bq_array[8];
c4e84bde
RM
1466 sbq_desc = ql_get_curr_sbuf(rx_ring);
1467 pci_unmap_single(qdev->pdev,
1468 pci_unmap_addr(sbq_desc, mapaddr),
1469 pci_unmap_len(sbq_desc, maplen),
1470 PCI_DMA_FROMDEVICE);
1471 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1472 /*
1473 * This is an non TCP/UDP IP frame, so
1474 * the headers aren't split into a small
1475 * buffer. We have to use the small buffer
1476 * that contains our sg list as our skb to
1477 * send upstairs. Copy the sg list here to
1478 * a local buffer and use it to find the
1479 * pages to chain.
1480 */
1481 QPRINTK(qdev, RX_STATUS, DEBUG,
1482 "%d bytes of headers & data in chain of large.\n", length);
1483 skb = sbq_desc->p.skb;
1484 bq = &bq_array[0];
1485 memcpy(bq, skb->data, sizeof(bq_array));
1486 sbq_desc->p.skb = NULL;
1487 skb_reserve(skb, NET_IP_ALIGN);
1488 } else {
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1491 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1492 }
1493 while (length > 0) {
1494 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1495 pci_unmap_page(qdev->pdev,
1496 pci_unmap_addr(lbq_desc,
1497 mapaddr),
1498 pci_unmap_len(lbq_desc,
1499 maplen),
1500 PCI_DMA_FROMDEVICE);
1501 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1502 offset = 0;
1503
1504 QPRINTK(qdev, RX_STATUS, DEBUG,
1505 "Adding page %d to skb for %d bytes.\n",
1506 i, size);
1507 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1508 offset, size);
1509 skb->len += size;
1510 skb->data_len += size;
1511 skb->truesize += size;
1512 length -= size;
1513 lbq_desc->p.lbq_page = NULL;
1514 bq++;
1515 i++;
1516 }
1517 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1518 VLAN_ETH_HLEN : ETH_HLEN);
1519 }
1520 return skb;
1521}
1522
1523/* Process an inbound completion from an rx ring. */
1524static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1525 struct rx_ring *rx_ring,
1526 struct ib_mac_iocb_rsp *ib_mac_rsp)
1527{
1528 struct net_device *ndev = qdev->ndev;
1529 struct sk_buff *skb = NULL;
22bdd4f5
RM
1530 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1531 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1532
1533 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1534
1535 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1536 if (unlikely(!skb)) {
1537 QPRINTK(qdev, RX_STATUS, DEBUG,
1538 "No skb available, drop packet.\n");
1539 return;
1540 }
1541
a32959cd
RM
1542 /* Frame error, so drop the packet. */
1543 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1544 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1545 ib_mac_rsp->flags2);
1546 dev_kfree_skb_any(skb);
1547 return;
1548 }
ec33a491
RM
1549
1550 /* The max framesize filter on this chip is set higher than
1551 * MTU since FCoE uses 2k frames.
1552 */
1553 if (skb->len > ndev->mtu + ETH_HLEN) {
1554 dev_kfree_skb_any(skb);
1555 return;
1556 }
1557
c4e84bde
RM
1558 prefetch(skb->data);
1559 skb->dev = ndev;
1560 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1561 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1562 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1563 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1564 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1565 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1566 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1567 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1568 }
1569 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1570 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1571 }
d555f592 1572
d555f592
RM
1573 skb->protocol = eth_type_trans(skb, ndev);
1574 skb->ip_summed = CHECKSUM_NONE;
1575
1576 /* If rx checksum is on, and there are no
1577 * csum or frame errors.
1578 */
1579 if (qdev->rx_csum &&
d555f592
RM
1580 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1581 /* TCP frame. */
1582 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1583 QPRINTK(qdev, RX_STATUS, DEBUG,
1584 "TCP checksum done!\n");
1585 skb->ip_summed = CHECKSUM_UNNECESSARY;
1586 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1587 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1588 /* Unfragmented ipv4 UDP frame. */
1589 struct iphdr *iph = (struct iphdr *) skb->data;
1590 if (!(iph->frag_off &
1591 cpu_to_be16(IP_MF|IP_OFFSET))) {
1592 skb->ip_summed = CHECKSUM_UNNECESSARY;
1593 QPRINTK(qdev, RX_STATUS, DEBUG,
1594 "TCP checksum done!\n");
1595 }
1596 }
c4e84bde 1597 }
d555f592 1598
c4e84bde
RM
1599 qdev->stats.rx_packets++;
1600 qdev->stats.rx_bytes += skb->len;
22bdd4f5
RM
1601 skb_record_rx_queue(skb,
1602 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1603 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1604 if (qdev->vlgrp &&
1605 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1606 (vlan_id != 0))
1607 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1608 vlan_id, skb);
1609 else
1610 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1611 } else {
22bdd4f5
RM
1612 if (qdev->vlgrp &&
1613 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1614 (vlan_id != 0))
1615 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1616 else
1617 netif_receive_skb(skb);
c4e84bde 1618 }
c4e84bde
RM
1619}
1620
1621/* Process an outbound completion from an rx ring. */
1622static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1623 struct ob_mac_iocb_rsp *mac_rsp)
1624{
1625 struct tx_ring *tx_ring;
1626 struct tx_ring_desc *tx_ring_desc;
1627
1628 QL_DUMP_OB_MAC_RSP(mac_rsp);
1629 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1630 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1631 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1632 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1633 qdev->stats.tx_packets++;
1634 dev_kfree_skb(tx_ring_desc->skb);
1635 tx_ring_desc->skb = NULL;
1636
1637 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1638 OB_MAC_IOCB_RSP_S |
1639 OB_MAC_IOCB_RSP_L |
1640 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1641 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1642 QPRINTK(qdev, TX_DONE, WARNING,
1643 "Total descriptor length did not match transfer length.\n");
1644 }
1645 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1646 QPRINTK(qdev, TX_DONE, WARNING,
1647 "Frame too short to be legal, not sent.\n");
1648 }
1649 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1650 QPRINTK(qdev, TX_DONE, WARNING,
1651 "Frame too long, but sent anyway.\n");
1652 }
1653 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1654 QPRINTK(qdev, TX_DONE, WARNING,
1655 "PCI backplane error. Frame not sent.\n");
1656 }
1657 }
1658 atomic_inc(&tx_ring->tx_count);
1659}
1660
1661/* Fire up a handler to reset the MPI processor. */
1662void ql_queue_fw_error(struct ql_adapter *qdev)
1663{
c4e84bde
RM
1664 netif_carrier_off(qdev->ndev);
1665 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1666}
1667
1668void ql_queue_asic_error(struct ql_adapter *qdev)
1669{
c4e84bde
RM
1670 netif_carrier_off(qdev->ndev);
1671 ql_disable_interrupts(qdev);
6497b607
RM
1672 /* Clear adapter up bit to signal the recovery
1673 * process that it shouldn't kill the reset worker
1674 * thread
1675 */
1676 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1677 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1678}
1679
1680static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1681 struct ib_ae_iocb_rsp *ib_ae_rsp)
1682{
1683 switch (ib_ae_rsp->event) {
1684 case MGMT_ERR_EVENT:
1685 QPRINTK(qdev, RX_ERR, ERR,
1686 "Management Processor Fatal Error.\n");
1687 ql_queue_fw_error(qdev);
1688 return;
1689
1690 case CAM_LOOKUP_ERR_EVENT:
1691 QPRINTK(qdev, LINK, ERR,
1692 "Multiple CAM hits lookup occurred.\n");
1693 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1694 ql_queue_asic_error(qdev);
1695 return;
1696
1697 case SOFT_ECC_ERROR_EVENT:
1698 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1699 ql_queue_asic_error(qdev);
1700 break;
1701
1702 case PCI_ERR_ANON_BUF_RD:
1703 QPRINTK(qdev, RX_ERR, ERR,
1704 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1705 ib_ae_rsp->q_id);
1706 ql_queue_asic_error(qdev);
1707 break;
1708
1709 default:
1710 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1711 ib_ae_rsp->event);
1712 ql_queue_asic_error(qdev);
1713 break;
1714 }
1715}
1716
1717static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1718{
1719 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1720 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1721 struct ob_mac_iocb_rsp *net_rsp = NULL;
1722 int count = 0;
1723
1e213303 1724 struct tx_ring *tx_ring;
c4e84bde
RM
1725 /* While there are entries in the completion queue. */
1726 while (prod != rx_ring->cnsmr_idx) {
1727
1728 QPRINTK(qdev, RX_STATUS, DEBUG,
1729 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1730 prod, rx_ring->cnsmr_idx);
1731
1732 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1733 rmb();
1734 switch (net_rsp->opcode) {
1735
1736 case OPCODE_OB_MAC_TSO_IOCB:
1737 case OPCODE_OB_MAC_IOCB:
1738 ql_process_mac_tx_intr(qdev, net_rsp);
1739 break;
1740 default:
1741 QPRINTK(qdev, RX_STATUS, DEBUG,
1742 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1743 net_rsp->opcode);
1744 }
1745 count++;
1746 ql_update_cq(rx_ring);
ba7cd3ba 1747 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1748 }
1749 ql_write_cq_idx(rx_ring);
1e213303
RM
1750 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1751 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1752 net_rsp != NULL) {
c4e84bde
RM
1753 if (atomic_read(&tx_ring->queue_stopped) &&
1754 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1755 /*
1756 * The queue got stopped because the tx_ring was full.
1757 * Wake it up, because it's now at least 25% empty.
1758 */
1e213303 1759 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
1760 }
1761
1762 return count;
1763}
1764
1765static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1766{
1767 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1768 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1769 struct ql_net_rsp_iocb *net_rsp;
1770 int count = 0;
1771
1772 /* While there are entries in the completion queue. */
1773 while (prod != rx_ring->cnsmr_idx) {
1774
1775 QPRINTK(qdev, RX_STATUS, DEBUG,
1776 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1777 prod, rx_ring->cnsmr_idx);
1778
1779 net_rsp = rx_ring->curr_entry;
1780 rmb();
1781 switch (net_rsp->opcode) {
1782 case OPCODE_IB_MAC_IOCB:
1783 ql_process_mac_rx_intr(qdev, rx_ring,
1784 (struct ib_mac_iocb_rsp *)
1785 net_rsp);
1786 break;
1787
1788 case OPCODE_IB_AE_IOCB:
1789 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1790 net_rsp);
1791 break;
1792 default:
1793 {
1794 QPRINTK(qdev, RX_STATUS, DEBUG,
1795 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1796 net_rsp->opcode);
1797 }
1798 }
1799 count++;
1800 ql_update_cq(rx_ring);
ba7cd3ba 1801 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1802 if (count == budget)
1803 break;
1804 }
1805 ql_update_buffer_queues(qdev, rx_ring);
1806 ql_write_cq_idx(rx_ring);
1807 return count;
1808}
1809
1810static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1811{
1812 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1813 struct ql_adapter *qdev = rx_ring->qdev;
1814 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1815
1816 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1817 rx_ring->cq_id);
1818
1819 if (work_done < budget) {
22bdd4f5 1820 napi_complete(napi);
c4e84bde
RM
1821 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1822 }
1823 return work_done;
1824}
1825
1826static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1827{
1828 struct ql_adapter *qdev = netdev_priv(ndev);
1829
1830 qdev->vlgrp = grp;
1831 if (grp) {
1832 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1833 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1834 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1835 } else {
1836 QPRINTK(qdev, IFUP, DEBUG,
1837 "Turning off VLAN in NIC_RCV_CFG.\n");
1838 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1839 }
1840}
1841
1842static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1843{
1844 struct ql_adapter *qdev = netdev_priv(ndev);
1845 u32 enable_bit = MAC_ADDR_E;
cc288f54 1846 int status;
c4e84bde 1847
cc288f54
RM
1848 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1849 if (status)
1850 return;
c4e84bde
RM
1851 spin_lock(&qdev->hw_lock);
1852 if (ql_set_mac_addr_reg
1853 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1854 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1855 }
1856 spin_unlock(&qdev->hw_lock);
cc288f54 1857 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1858}
1859
1860static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1861{
1862 struct ql_adapter *qdev = netdev_priv(ndev);
1863 u32 enable_bit = 0;
cc288f54
RM
1864 int status;
1865
1866 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1867 if (status)
1868 return;
c4e84bde
RM
1869
1870 spin_lock(&qdev->hw_lock);
1871 if (ql_set_mac_addr_reg
1872 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1873 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1874 }
1875 spin_unlock(&qdev->hw_lock);
cc288f54 1876 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1877
1878}
1879
1880/* Worker thread to process a given rx_ring that is dedicated
1881 * to outbound completions.
1882 */
1883static void ql_tx_clean(struct work_struct *work)
1884{
1885 struct rx_ring *rx_ring =
1886 container_of(work, struct rx_ring, rx_work.work);
1887 ql_clean_outbound_rx_ring(rx_ring);
1888 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1889
1890}
1891
1892/* Worker thread to process a given rx_ring that is dedicated
1893 * to inbound completions.
1894 */
1895static void ql_rx_clean(struct work_struct *work)
1896{
1897 struct rx_ring *rx_ring =
1898 container_of(work, struct rx_ring, rx_work.work);
1899 ql_clean_inbound_rx_ring(rx_ring, 64);
1900 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1901}
1902
1903/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1904static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1905{
1906 struct rx_ring *rx_ring = dev_id;
1907 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1908 &rx_ring->rx_work, 0);
1909 return IRQ_HANDLED;
1910}
1911
1912/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1913static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1914{
1915 struct rx_ring *rx_ring = dev_id;
288379f0 1916 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1917 return IRQ_HANDLED;
1918}
1919
c4e84bde
RM
1920/* This handles a fatal error, MPI activity, and the default
1921 * rx_ring in an MSI-X multiple vector environment.
1922 * In MSI/Legacy environment it also process the rest of
1923 * the rx_rings.
1924 */
1925static irqreturn_t qlge_isr(int irq, void *dev_id)
1926{
1927 struct rx_ring *rx_ring = dev_id;
1928 struct ql_adapter *qdev = rx_ring->qdev;
1929 struct intr_context *intr_context = &qdev->intr_context[0];
1930 u32 var;
1931 int i;
1932 int work_done = 0;
1933
bb0d215c
RM
1934 spin_lock(&qdev->hw_lock);
1935 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1936 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1937 spin_unlock(&qdev->hw_lock);
1938 return IRQ_NONE;
c4e84bde 1939 }
bb0d215c 1940 spin_unlock(&qdev->hw_lock);
c4e84bde 1941
bb0d215c 1942 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1943
1944 /*
1945 * Check for fatal error.
1946 */
1947 if (var & STS_FE) {
1948 ql_queue_asic_error(qdev);
1949 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1950 var = ql_read32(qdev, ERR_STS);
1951 QPRINTK(qdev, INTR, ERR,
1952 "Resetting chip. Error Status Register = 0x%x\n", var);
1953 return IRQ_HANDLED;
1954 }
1955
1956 /*
1957 * Check MPI processor activity.
1958 */
1959 if (var & STS_PI) {
1960 /*
1961 * We've got an async event or mailbox completion.
1962 * Handle it and clear the source of the interrupt.
1963 */
1964 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1965 ql_disable_completion_interrupt(qdev, intr_context->intr);
1966 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1967 &qdev->mpi_work, 0);
1968 work_done++;
1969 }
1970
1971 /*
1972 * Check the default queue and wake handler if active.
1973 */
1974 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1975 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1976 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1977 ql_disable_completion_interrupt(qdev, intr_context->intr);
1978 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1979 &rx_ring->rx_work, 0);
1980 work_done++;
1981 }
1982
1983 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1984 /*
1985 * Start the DPC for each active queue.
1986 */
1987 for (i = 1; i < qdev->rx_ring_count; i++) {
1988 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1989 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1990 rx_ring->cnsmr_idx) {
1991 QPRINTK(qdev, INTR, INFO,
1992 "Waking handler for rx_ring[%d].\n", i);
1993 ql_disable_completion_interrupt(qdev,
1994 intr_context->
1995 intr);
1996 if (i < qdev->rss_ring_first_cq_id)
1997 queue_delayed_work_on(rx_ring->cpu,
1998 qdev->q_workqueue,
1999 &rx_ring->rx_work,
2000 0);
2001 else
288379f0 2002 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2003 work_done++;
2004 }
2005 }
2006 }
bb0d215c 2007 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2008 return work_done ? IRQ_HANDLED : IRQ_NONE;
2009}
2010
2011static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2012{
2013
2014 if (skb_is_gso(skb)) {
2015 int err;
2016 if (skb_header_cloned(skb)) {
2017 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2018 if (err)
2019 return err;
2020 }
2021
2022 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2023 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2024 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2025 mac_iocb_ptr->total_hdrs_len =
2026 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2027 mac_iocb_ptr->net_trans_offset =
2028 cpu_to_le16(skb_network_offset(skb) |
2029 skb_transport_offset(skb)
2030 << OB_MAC_TRANSPORT_HDR_SHIFT);
2031 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2032 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2033 if (likely(skb->protocol == htons(ETH_P_IP))) {
2034 struct iphdr *iph = ip_hdr(skb);
2035 iph->check = 0;
2036 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2037 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2038 iph->daddr, 0,
2039 IPPROTO_TCP,
2040 0);
2041 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2042 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2043 tcp_hdr(skb)->check =
2044 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2045 &ipv6_hdr(skb)->daddr,
2046 0, IPPROTO_TCP, 0);
2047 }
2048 return 1;
2049 }
2050 return 0;
2051}
2052
2053static void ql_hw_csum_setup(struct sk_buff *skb,
2054 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2055{
2056 int len;
2057 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2058 __sum16 *check;
c4e84bde
RM
2059 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2060 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2061 mac_iocb_ptr->net_trans_offset =
2062 cpu_to_le16(skb_network_offset(skb) |
2063 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2064
2065 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2066 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2067 if (likely(iph->protocol == IPPROTO_TCP)) {
2068 check = &(tcp_hdr(skb)->check);
2069 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2070 mac_iocb_ptr->total_hdrs_len =
2071 cpu_to_le16(skb_transport_offset(skb) +
2072 (tcp_hdr(skb)->doff << 2));
2073 } else {
2074 check = &(udp_hdr(skb)->check);
2075 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2076 mac_iocb_ptr->total_hdrs_len =
2077 cpu_to_le16(skb_transport_offset(skb) +
2078 sizeof(struct udphdr));
2079 }
2080 *check = ~csum_tcpudp_magic(iph->saddr,
2081 iph->daddr, len, iph->protocol, 0);
2082}
2083
2084static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2085{
2086 struct tx_ring_desc *tx_ring_desc;
2087 struct ob_mac_iocb_req *mac_iocb_ptr;
2088 struct ql_adapter *qdev = netdev_priv(ndev);
2089 int tso;
2090 struct tx_ring *tx_ring;
1e213303 2091 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2092
2093 tx_ring = &qdev->tx_ring[tx_ring_idx];
2094
74c50b4b
RM
2095 if (skb_padto(skb, ETH_ZLEN))
2096 return NETDEV_TX_OK;
2097
c4e84bde
RM
2098 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2099 QPRINTK(qdev, TX_QUEUED, INFO,
2100 "%s: shutting down tx queue %d du to lack of resources.\n",
2101 __func__, tx_ring_idx);
1e213303 2102 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde
RM
2103 atomic_inc(&tx_ring->queue_stopped);
2104 return NETDEV_TX_BUSY;
2105 }
2106 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2107 mac_iocb_ptr = tx_ring_desc->queue_entry;
2108 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
c4e84bde
RM
2109
2110 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2111 mac_iocb_ptr->tid = tx_ring_desc->index;
2112 /* We use the upper 32-bits to store the tx queue for this IO.
2113 * When we get the completion we can use it to establish the context.
2114 */
2115 mac_iocb_ptr->txq_idx = tx_ring_idx;
2116 tx_ring_desc->skb = skb;
2117
2118 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2119
2120 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2121 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2122 vlan_tx_tag_get(skb));
2123 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2124 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2125 }
2126 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2127 if (tso < 0) {
2128 dev_kfree_skb_any(skb);
2129 return NETDEV_TX_OK;
2130 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2131 ql_hw_csum_setup(skb,
2132 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2133 }
0d979f74
RM
2134 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2135 NETDEV_TX_OK) {
2136 QPRINTK(qdev, TX_QUEUED, ERR,
2137 "Could not map the segments.\n");
2138 return NETDEV_TX_BUSY;
2139 }
c4e84bde
RM
2140 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2141 tx_ring->prod_idx++;
2142 if (tx_ring->prod_idx == tx_ring->wq_len)
2143 tx_ring->prod_idx = 0;
2144 wmb();
2145
2146 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
c4e84bde
RM
2147 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2148 tx_ring->prod_idx, skb->len);
2149
2150 atomic_dec(&tx_ring->tx_count);
2151 return NETDEV_TX_OK;
2152}
2153
2154static void ql_free_shadow_space(struct ql_adapter *qdev)
2155{
2156 if (qdev->rx_ring_shadow_reg_area) {
2157 pci_free_consistent(qdev->pdev,
2158 PAGE_SIZE,
2159 qdev->rx_ring_shadow_reg_area,
2160 qdev->rx_ring_shadow_reg_dma);
2161 qdev->rx_ring_shadow_reg_area = NULL;
2162 }
2163 if (qdev->tx_ring_shadow_reg_area) {
2164 pci_free_consistent(qdev->pdev,
2165 PAGE_SIZE,
2166 qdev->tx_ring_shadow_reg_area,
2167 qdev->tx_ring_shadow_reg_dma);
2168 qdev->tx_ring_shadow_reg_area = NULL;
2169 }
2170}
2171
2172static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2173{
2174 qdev->rx_ring_shadow_reg_area =
2175 pci_alloc_consistent(qdev->pdev,
2176 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2177 if (qdev->rx_ring_shadow_reg_area == NULL) {
2178 QPRINTK(qdev, IFUP, ERR,
2179 "Allocation of RX shadow space failed.\n");
2180 return -ENOMEM;
2181 }
b25215d0 2182 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2183 qdev->tx_ring_shadow_reg_area =
2184 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2185 &qdev->tx_ring_shadow_reg_dma);
2186 if (qdev->tx_ring_shadow_reg_area == NULL) {
2187 QPRINTK(qdev, IFUP, ERR,
2188 "Allocation of TX shadow space failed.\n");
2189 goto err_wqp_sh_area;
2190 }
b25215d0 2191 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2192 return 0;
2193
2194err_wqp_sh_area:
2195 pci_free_consistent(qdev->pdev,
2196 PAGE_SIZE,
2197 qdev->rx_ring_shadow_reg_area,
2198 qdev->rx_ring_shadow_reg_dma);
2199 return -ENOMEM;
2200}
2201
2202static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2203{
2204 struct tx_ring_desc *tx_ring_desc;
2205 int i;
2206 struct ob_mac_iocb_req *mac_iocb_ptr;
2207
2208 mac_iocb_ptr = tx_ring->wq_base;
2209 tx_ring_desc = tx_ring->q;
2210 for (i = 0; i < tx_ring->wq_len; i++) {
2211 tx_ring_desc->index = i;
2212 tx_ring_desc->skb = NULL;
2213 tx_ring_desc->queue_entry = mac_iocb_ptr;
2214 mac_iocb_ptr++;
2215 tx_ring_desc++;
2216 }
2217 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2218 atomic_set(&tx_ring->queue_stopped, 0);
2219}
2220
2221static void ql_free_tx_resources(struct ql_adapter *qdev,
2222 struct tx_ring *tx_ring)
2223{
2224 if (tx_ring->wq_base) {
2225 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2226 tx_ring->wq_base, tx_ring->wq_base_dma);
2227 tx_ring->wq_base = NULL;
2228 }
2229 kfree(tx_ring->q);
2230 tx_ring->q = NULL;
2231}
2232
2233static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2234 struct tx_ring *tx_ring)
2235{
2236 tx_ring->wq_base =
2237 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2238 &tx_ring->wq_base_dma);
2239
2240 if ((tx_ring->wq_base == NULL)
88c55e3c 2241 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
c4e84bde
RM
2242 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2243 return -ENOMEM;
2244 }
2245 tx_ring->q =
2246 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2247 if (tx_ring->q == NULL)
2248 goto err;
2249
2250 return 0;
2251err:
2252 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2253 tx_ring->wq_base, tx_ring->wq_base_dma);
2254 return -ENOMEM;
2255}
2256
8668ae92 2257static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2258{
2259 int i;
2260 struct bq_desc *lbq_desc;
2261
2262 for (i = 0; i < rx_ring->lbq_len; i++) {
2263 lbq_desc = &rx_ring->lbq[i];
2264 if (lbq_desc->p.lbq_page) {
2265 pci_unmap_page(qdev->pdev,
2266 pci_unmap_addr(lbq_desc, mapaddr),
2267 pci_unmap_len(lbq_desc, maplen),
2268 PCI_DMA_FROMDEVICE);
2269
2270 put_page(lbq_desc->p.lbq_page);
2271 lbq_desc->p.lbq_page = NULL;
2272 }
c4e84bde
RM
2273 }
2274}
2275
8668ae92 2276static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2277{
2278 int i;
2279 struct bq_desc *sbq_desc;
2280
2281 for (i = 0; i < rx_ring->sbq_len; i++) {
2282 sbq_desc = &rx_ring->sbq[i];
2283 if (sbq_desc == NULL) {
2284 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2285 return;
2286 }
2287 if (sbq_desc->p.skb) {
2288 pci_unmap_single(qdev->pdev,
2289 pci_unmap_addr(sbq_desc, mapaddr),
2290 pci_unmap_len(sbq_desc, maplen),
2291 PCI_DMA_FROMDEVICE);
2292 dev_kfree_skb(sbq_desc->p.skb);
2293 sbq_desc->p.skb = NULL;
2294 }
c4e84bde
RM
2295 }
2296}
2297
4545a3f2
RM
2298/* Free all large and small rx buffers associated
2299 * with the completion queues for this device.
2300 */
2301static void ql_free_rx_buffers(struct ql_adapter *qdev)
2302{
2303 int i;
2304 struct rx_ring *rx_ring;
2305
2306 for (i = 0; i < qdev->rx_ring_count; i++) {
2307 rx_ring = &qdev->rx_ring[i];
2308 if (rx_ring->lbq)
2309 ql_free_lbq_buffers(qdev, rx_ring);
2310 if (rx_ring->sbq)
2311 ql_free_sbq_buffers(qdev, rx_ring);
2312 }
2313}
2314
2315static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2316{
2317 struct rx_ring *rx_ring;
2318 int i;
2319
2320 for (i = 0; i < qdev->rx_ring_count; i++) {
2321 rx_ring = &qdev->rx_ring[i];
2322 if (rx_ring->type != TX_Q)
2323 ql_update_buffer_queues(qdev, rx_ring);
2324 }
2325}
2326
2327static void ql_init_lbq_ring(struct ql_adapter *qdev,
2328 struct rx_ring *rx_ring)
2329{
2330 int i;
2331 struct bq_desc *lbq_desc;
2332 __le64 *bq = rx_ring->lbq_base;
2333
2334 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2335 for (i = 0; i < rx_ring->lbq_len; i++) {
2336 lbq_desc = &rx_ring->lbq[i];
2337 memset(lbq_desc, 0, sizeof(*lbq_desc));
2338 lbq_desc->index = i;
2339 lbq_desc->addr = bq;
2340 bq++;
2341 }
2342}
2343
2344static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2345 struct rx_ring *rx_ring)
2346{
2347 int i;
2348 struct bq_desc *sbq_desc;
2c9a0d41 2349 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2350
4545a3f2 2351 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2352 for (i = 0; i < rx_ring->sbq_len; i++) {
2353 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2354 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2355 sbq_desc->index = i;
2c9a0d41 2356 sbq_desc->addr = bq;
c4e84bde
RM
2357 bq++;
2358 }
c4e84bde
RM
2359}
2360
2361static void ql_free_rx_resources(struct ql_adapter *qdev,
2362 struct rx_ring *rx_ring)
2363{
c4e84bde
RM
2364 /* Free the small buffer queue. */
2365 if (rx_ring->sbq_base) {
2366 pci_free_consistent(qdev->pdev,
2367 rx_ring->sbq_size,
2368 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2369 rx_ring->sbq_base = NULL;
2370 }
2371
2372 /* Free the small buffer queue control blocks. */
2373 kfree(rx_ring->sbq);
2374 rx_ring->sbq = NULL;
2375
2376 /* Free the large buffer queue. */
2377 if (rx_ring->lbq_base) {
2378 pci_free_consistent(qdev->pdev,
2379 rx_ring->lbq_size,
2380 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2381 rx_ring->lbq_base = NULL;
2382 }
2383
2384 /* Free the large buffer queue control blocks. */
2385 kfree(rx_ring->lbq);
2386 rx_ring->lbq = NULL;
2387
2388 /* Free the rx queue. */
2389 if (rx_ring->cq_base) {
2390 pci_free_consistent(qdev->pdev,
2391 rx_ring->cq_size,
2392 rx_ring->cq_base, rx_ring->cq_base_dma);
2393 rx_ring->cq_base = NULL;
2394 }
2395}
2396
2397/* Allocate queues and buffers for this completions queue based
2398 * on the values in the parameter structure. */
2399static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2400 struct rx_ring *rx_ring)
2401{
2402
2403 /*
2404 * Allocate the completion queue for this rx_ring.
2405 */
2406 rx_ring->cq_base =
2407 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2408 &rx_ring->cq_base_dma);
2409
2410 if (rx_ring->cq_base == NULL) {
2411 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2412 return -ENOMEM;
2413 }
2414
2415 if (rx_ring->sbq_len) {
2416 /*
2417 * Allocate small buffer queue.
2418 */
2419 rx_ring->sbq_base =
2420 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2421 &rx_ring->sbq_base_dma);
2422
2423 if (rx_ring->sbq_base == NULL) {
2424 QPRINTK(qdev, IFUP, ERR,
2425 "Small buffer queue allocation failed.\n");
2426 goto err_mem;
2427 }
2428
2429 /*
2430 * Allocate small buffer queue control blocks.
2431 */
2432 rx_ring->sbq =
2433 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2434 GFP_KERNEL);
2435 if (rx_ring->sbq == NULL) {
2436 QPRINTK(qdev, IFUP, ERR,
2437 "Small buffer queue control block allocation failed.\n");
2438 goto err_mem;
2439 }
2440
4545a3f2 2441 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2442 }
2443
2444 if (rx_ring->lbq_len) {
2445 /*
2446 * Allocate large buffer queue.
2447 */
2448 rx_ring->lbq_base =
2449 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2450 &rx_ring->lbq_base_dma);
2451
2452 if (rx_ring->lbq_base == NULL) {
2453 QPRINTK(qdev, IFUP, ERR,
2454 "Large buffer queue allocation failed.\n");
2455 goto err_mem;
2456 }
2457 /*
2458 * Allocate large buffer queue control blocks.
2459 */
2460 rx_ring->lbq =
2461 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2462 GFP_KERNEL);
2463 if (rx_ring->lbq == NULL) {
2464 QPRINTK(qdev, IFUP, ERR,
2465 "Large buffer queue control block allocation failed.\n");
2466 goto err_mem;
2467 }
2468
4545a3f2 2469 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2470 }
2471
2472 return 0;
2473
2474err_mem:
2475 ql_free_rx_resources(qdev, rx_ring);
2476 return -ENOMEM;
2477}
2478
2479static void ql_tx_ring_clean(struct ql_adapter *qdev)
2480{
2481 struct tx_ring *tx_ring;
2482 struct tx_ring_desc *tx_ring_desc;
2483 int i, j;
2484
2485 /*
2486 * Loop through all queues and free
2487 * any resources.
2488 */
2489 for (j = 0; j < qdev->tx_ring_count; j++) {
2490 tx_ring = &qdev->tx_ring[j];
2491 for (i = 0; i < tx_ring->wq_len; i++) {
2492 tx_ring_desc = &tx_ring->q[i];
2493 if (tx_ring_desc && tx_ring_desc->skb) {
2494 QPRINTK(qdev, IFDOWN, ERR,
2495 "Freeing lost SKB %p, from queue %d, index %d.\n",
2496 tx_ring_desc->skb, j,
2497 tx_ring_desc->index);
2498 ql_unmap_send(qdev, tx_ring_desc,
2499 tx_ring_desc->map_cnt);
2500 dev_kfree_skb(tx_ring_desc->skb);
2501 tx_ring_desc->skb = NULL;
2502 }
2503 }
2504 }
2505}
2506
c4e84bde
RM
2507static void ql_free_mem_resources(struct ql_adapter *qdev)
2508{
2509 int i;
2510
2511 for (i = 0; i < qdev->tx_ring_count; i++)
2512 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2513 for (i = 0; i < qdev->rx_ring_count; i++)
2514 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2515 ql_free_shadow_space(qdev);
2516}
2517
2518static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2519{
2520 int i;
2521
2522 /* Allocate space for our shadow registers and such. */
2523 if (ql_alloc_shadow_space(qdev))
2524 return -ENOMEM;
2525
2526 for (i = 0; i < qdev->rx_ring_count; i++) {
2527 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2528 QPRINTK(qdev, IFUP, ERR,
2529 "RX resource allocation failed.\n");
2530 goto err_mem;
2531 }
2532 }
2533 /* Allocate tx queue resources */
2534 for (i = 0; i < qdev->tx_ring_count; i++) {
2535 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2536 QPRINTK(qdev, IFUP, ERR,
2537 "TX resource allocation failed.\n");
2538 goto err_mem;
2539 }
2540 }
2541 return 0;
2542
2543err_mem:
2544 ql_free_mem_resources(qdev);
2545 return -ENOMEM;
2546}
2547
2548/* Set up the rx ring control block and pass it to the chip.
2549 * The control block is defined as
2550 * "Completion Queue Initialization Control Block", or cqicb.
2551 */
2552static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2553{
2554 struct cqicb *cqicb = &rx_ring->cqicb;
2555 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 2556 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 2557 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 2558 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
2559 void __iomem *doorbell_area =
2560 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2561 int err = 0;
2562 u16 bq_len;
d4a4aba6 2563 u64 tmp;
b8facca0
RM
2564 __le64 *base_indirect_ptr;
2565 int page_entries;
c4e84bde
RM
2566
2567 /* Set up the shadow registers for this ring. */
2568 rx_ring->prod_idx_sh_reg = shadow_reg;
2569 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2570 shadow_reg += sizeof(u64);
2571 shadow_reg_dma += sizeof(u64);
2572 rx_ring->lbq_base_indirect = shadow_reg;
2573 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
2574 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2575 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
2576 rx_ring->sbq_base_indirect = shadow_reg;
2577 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2578
2579 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2580 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2581 rx_ring->cnsmr_idx = 0;
2582 rx_ring->curr_entry = rx_ring->cq_base;
2583
2584 /* PCI doorbell mem area + 0x04 for valid register */
2585 rx_ring->valid_db_reg = doorbell_area + 0x04;
2586
2587 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2588 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2589
2590 /* PCI doorbell mem area + 0x1c */
8668ae92 2591 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2592
2593 memset((void *)cqicb, 0, sizeof(struct cqicb));
2594 cqicb->msix_vect = rx_ring->irq;
2595
459caf5a
RM
2596 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2597 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2598
97345524 2599 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2600
97345524 2601 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2602
2603 /*
2604 * Set up the control block load flags.
2605 */
2606 cqicb->flags = FLAGS_LC | /* Load queue base address */
2607 FLAGS_LV | /* Load MSI-X vector */
2608 FLAGS_LI; /* Load irq delay values */
2609 if (rx_ring->lbq_len) {
2610 cqicb->flags |= FLAGS_LL; /* Load lbq values */
d4a4aba6 2611 tmp = (u64)rx_ring->lbq_base_dma;;
b8facca0
RM
2612 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2613 page_entries = 0;
2614 do {
2615 *base_indirect_ptr = cpu_to_le64(tmp);
2616 tmp += DB_PAGE_SIZE;
2617 base_indirect_ptr++;
2618 page_entries++;
2619 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
2620 cqicb->lbq_addr =
2621 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2622 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2623 (u16) rx_ring->lbq_buf_size;
2624 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2625 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2626 (u16) rx_ring->lbq_len;
c4e84bde 2627 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2628 rx_ring->lbq_prod_idx = 0;
c4e84bde 2629 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2630 rx_ring->lbq_clean_idx = 0;
2631 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2632 }
2633 if (rx_ring->sbq_len) {
2634 cqicb->flags |= FLAGS_LS; /* Load sbq values */
d4a4aba6 2635 tmp = (u64)rx_ring->sbq_base_dma;;
b8facca0
RM
2636 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2637 page_entries = 0;
2638 do {
2639 *base_indirect_ptr = cpu_to_le64(tmp);
2640 tmp += DB_PAGE_SIZE;
2641 base_indirect_ptr++;
2642 page_entries++;
2643 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
2644 cqicb->sbq_addr =
2645 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 2646 cqicb->sbq_buf_size =
d4a4aba6 2647 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
459caf5a
RM
2648 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2649 (u16) rx_ring->sbq_len;
c4e84bde 2650 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2651 rx_ring->sbq_prod_idx = 0;
c4e84bde 2652 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2653 rx_ring->sbq_clean_idx = 0;
2654 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2655 }
2656 switch (rx_ring->type) {
2657 case TX_Q:
2658 /* If there's only one interrupt, then we use
2659 * worker threads to process the outbound
2660 * completion handling rx_rings. We do this so
2661 * they can be run on multiple CPUs. There is
2662 * room to play with this more where we would only
2663 * run in a worker if there are more than x number
2664 * of outbound completions on the queue and more
2665 * than one queue active. Some threshold that
2666 * would indicate a benefit in spite of the cost
2667 * of a context switch.
2668 * If there's more than one interrupt, then the
2669 * outbound completions are processed in the ISR.
2670 */
2671 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2672 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2673 else {
2674 /* With all debug warnings on we see a WARN_ON message
2675 * when we free the skb in the interrupt context.
2676 */
2677 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2678 }
2679 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2680 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2681 break;
2682 case DEFAULT_Q:
2683 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2684 cqicb->irq_delay = 0;
2685 cqicb->pkt_delay = 0;
2686 break;
2687 case RX_Q:
2688 /* Inbound completion handling rx_rings run in
2689 * separate NAPI contexts.
2690 */
2691 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2692 64);
2693 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2694 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2695 break;
2696 default:
2697 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2698 rx_ring->type);
2699 }
4974097a 2700 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2701 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2702 CFG_LCQ, rx_ring->cq_id);
2703 if (err) {
2704 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2705 return err;
2706 }
c4e84bde
RM
2707 return err;
2708}
2709
2710static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2711{
2712 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2713 void __iomem *doorbell_area =
2714 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2715 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2716 (tx_ring->wq_id * sizeof(u64));
2717 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2718 (tx_ring->wq_id * sizeof(u64));
2719 int err = 0;
2720
2721 /*
2722 * Assign doorbell registers for this tx_ring.
2723 */
2724 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2725 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2726 tx_ring->prod_idx = 0;
2727 /* TX PCI doorbell mem area + 0x04 */
2728 tx_ring->valid_db_reg = doorbell_area + 0x04;
2729
2730 /*
2731 * Assign shadow registers for this tx_ring.
2732 */
2733 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2734 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2735
2736 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2737 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2738 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2739 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2740 wqicb->rid = 0;
97345524 2741 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2742
97345524 2743 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2744
2745 ql_init_tx_ring(qdev, tx_ring);
2746
2747 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2748 (u16) tx_ring->wq_id);
2749 if (err) {
2750 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2751 return err;
2752 }
4974097a 2753 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2754 return err;
2755}
2756
2757static void ql_disable_msix(struct ql_adapter *qdev)
2758{
2759 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2760 pci_disable_msix(qdev->pdev);
2761 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2762 kfree(qdev->msi_x_entry);
2763 qdev->msi_x_entry = NULL;
2764 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2765 pci_disable_msi(qdev->pdev);
2766 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2767 }
2768}
2769
2770static void ql_enable_msix(struct ql_adapter *qdev)
2771{
2772 int i;
2773
2774 qdev->intr_count = 1;
2775 /* Get the MSIX vectors. */
2776 if (irq_type == MSIX_IRQ) {
2777 /* Try to alloc space for the msix struct,
2778 * if it fails then go to MSI/legacy.
2779 */
2780 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2781 sizeof(struct msix_entry),
2782 GFP_KERNEL);
2783 if (!qdev->msi_x_entry) {
2784 irq_type = MSI_IRQ;
2785 goto msi;
2786 }
2787
2788 for (i = 0; i < qdev->rx_ring_count; i++)
2789 qdev->msi_x_entry[i].entry = i;
2790
2791 if (!pci_enable_msix
2792 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2793 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2794 qdev->intr_count = qdev->rx_ring_count;
4974097a 2795 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2796 "MSI-X Enabled, got %d vectors.\n",
2797 qdev->intr_count);
2798 return;
2799 } else {
2800 kfree(qdev->msi_x_entry);
2801 qdev->msi_x_entry = NULL;
2802 QPRINTK(qdev, IFUP, WARNING,
2803 "MSI-X Enable failed, trying MSI.\n");
2804 irq_type = MSI_IRQ;
2805 }
2806 }
2807msi:
2808 if (irq_type == MSI_IRQ) {
2809 if (!pci_enable_msi(qdev->pdev)) {
2810 set_bit(QL_MSI_ENABLED, &qdev->flags);
2811 QPRINTK(qdev, IFUP, INFO,
2812 "Running with MSI interrupts.\n");
2813 return;
2814 }
2815 }
2816 irq_type = LEG_IRQ;
c4e84bde
RM
2817 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2818}
2819
2820/*
2821 * Here we build the intr_context structures based on
2822 * our rx_ring count and intr vector count.
2823 * The intr_context structure is used to hook each vector
2824 * to possibly different handlers.
2825 */
2826static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2827{
2828 int i = 0;
2829 struct intr_context *intr_context = &qdev->intr_context[0];
2830
2831 ql_enable_msix(qdev);
2832
2833 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2834 /* Each rx_ring has it's
2835 * own intr_context since we have separate
2836 * vectors for each queue.
2837 * This only true when MSI-X is enabled.
2838 */
2839 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2840 qdev->rx_ring[i].irq = i;
2841 intr_context->intr = i;
2842 intr_context->qdev = qdev;
2843 /*
2844 * We set up each vectors enable/disable/read bits so
2845 * there's no bit/mask calculations in the critical path.
2846 */
2847 intr_context->intr_en_mask =
2848 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2849 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2850 | i;
2851 intr_context->intr_dis_mask =
2852 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2853 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2854 INTR_EN_IHD | i;
2855 intr_context->intr_read_mask =
2856 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2857 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2858 i;
2859
2860 if (i == 0) {
2861 /*
2862 * Default queue handles bcast/mcast plus
2863 * async events. Needs buffers.
2864 */
2865 intr_context->handler = qlge_isr;
2866 sprintf(intr_context->name, "%s-default-queue",
2867 qdev->ndev->name);
2868 } else if (i < qdev->rss_ring_first_cq_id) {
2869 /*
2870 * Outbound queue is for outbound completions only.
2871 */
2872 intr_context->handler = qlge_msix_tx_isr;
c224969e 2873 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2874 qdev->ndev->name, i);
2875 } else {
2876 /*
2877 * Inbound queues handle unicast frames only.
2878 */
2879 intr_context->handler = qlge_msix_rx_isr;
c224969e 2880 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2881 qdev->ndev->name, i);
2882 }
2883 }
2884 } else {
2885 /*
2886 * All rx_rings use the same intr_context since
2887 * there is only one vector.
2888 */
2889 intr_context->intr = 0;
2890 intr_context->qdev = qdev;
2891 /*
2892 * We set up each vectors enable/disable/read bits so
2893 * there's no bit/mask calculations in the critical path.
2894 */
2895 intr_context->intr_en_mask =
2896 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2897 intr_context->intr_dis_mask =
2898 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2899 INTR_EN_TYPE_DISABLE;
2900 intr_context->intr_read_mask =
2901 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2902 /*
2903 * Single interrupt means one handler for all rings.
2904 */
2905 intr_context->handler = qlge_isr;
2906 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2907 for (i = 0; i < qdev->rx_ring_count; i++)
2908 qdev->rx_ring[i].irq = 0;
2909 }
2910}
2911
2912static void ql_free_irq(struct ql_adapter *qdev)
2913{
2914 int i;
2915 struct intr_context *intr_context = &qdev->intr_context[0];
2916
2917 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2918 if (intr_context->hooked) {
2919 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2920 free_irq(qdev->msi_x_entry[i].vector,
2921 &qdev->rx_ring[i]);
4974097a 2922 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2923 "freeing msix interrupt %d.\n", i);
2924 } else {
2925 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 2926 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2927 "freeing msi interrupt %d.\n", i);
2928 }
2929 }
2930 }
2931 ql_disable_msix(qdev);
2932}
2933
2934static int ql_request_irq(struct ql_adapter *qdev)
2935{
2936 int i;
2937 int status = 0;
2938 struct pci_dev *pdev = qdev->pdev;
2939 struct intr_context *intr_context = &qdev->intr_context[0];
2940
2941 ql_resolve_queues_to_irqs(qdev);
2942
2943 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2944 atomic_set(&intr_context->irq_cnt, 0);
2945 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2946 status = request_irq(qdev->msi_x_entry[i].vector,
2947 intr_context->handler,
2948 0,
2949 intr_context->name,
2950 &qdev->rx_ring[i]);
2951 if (status) {
2952 QPRINTK(qdev, IFUP, ERR,
2953 "Failed request for MSIX interrupt %d.\n",
2954 i);
2955 goto err_irq;
2956 } else {
4974097a 2957 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2958 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2959 i,
2960 qdev->rx_ring[i].type ==
2961 DEFAULT_Q ? "DEFAULT_Q" : "",
2962 qdev->rx_ring[i].type ==
2963 TX_Q ? "TX_Q" : "",
2964 qdev->rx_ring[i].type ==
2965 RX_Q ? "RX_Q" : "", intr_context->name);
2966 }
2967 } else {
2968 QPRINTK(qdev, IFUP, DEBUG,
2969 "trying msi or legacy interrupts.\n");
2970 QPRINTK(qdev, IFUP, DEBUG,
2971 "%s: irq = %d.\n", __func__, pdev->irq);
2972 QPRINTK(qdev, IFUP, DEBUG,
2973 "%s: context->name = %s.\n", __func__,
2974 intr_context->name);
2975 QPRINTK(qdev, IFUP, DEBUG,
2976 "%s: dev_id = 0x%p.\n", __func__,
2977 &qdev->rx_ring[0]);
2978 status =
2979 request_irq(pdev->irq, qlge_isr,
2980 test_bit(QL_MSI_ENABLED,
2981 &qdev->
2982 flags) ? 0 : IRQF_SHARED,
2983 intr_context->name, &qdev->rx_ring[0]);
2984 if (status)
2985 goto err_irq;
2986
2987 QPRINTK(qdev, IFUP, ERR,
2988 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2989 i,
2990 qdev->rx_ring[0].type ==
2991 DEFAULT_Q ? "DEFAULT_Q" : "",
2992 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2993 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2994 intr_context->name);
2995 }
2996 intr_context->hooked = 1;
2997 }
2998 return status;
2999err_irq:
3000 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3001 ql_free_irq(qdev);
3002 return status;
3003}
3004
3005static int ql_start_rss(struct ql_adapter *qdev)
3006{
3007 struct ricb *ricb = &qdev->ricb;
3008 int status = 0;
3009 int i;
3010 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3011
3012 memset((void *)ricb, 0, sizeof(ricb));
3013
3014 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
3015 ricb->flags =
3016 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3017 RSS_RT6);
3018 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3019
3020 /*
3021 * Fill out the Indirection Table.
3022 */
def48b6e
RM
3023 for (i = 0; i < 256; i++)
3024 hash_id[i] = i & (qdev->rss_ring_count - 1);
c4e84bde
RM
3025
3026 /*
3027 * Random values for the IPv6 and IPv4 Hash Keys.
3028 */
3029 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3030 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3031
4974097a 3032 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde
RM
3033
3034 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
3035 if (status) {
3036 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3037 return status;
3038 }
4974097a 3039 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
3040 return status;
3041}
3042
a5f59dc9 3043static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3044{
a5f59dc9 3045 int i, status = 0;
c4e84bde 3046
8587ea35
RM
3047 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3048 if (status)
3049 return status;
c4e84bde
RM
3050 /* Clear all the entries in the routing table. */
3051 for (i = 0; i < 16; i++) {
3052 status = ql_set_routing_reg(qdev, i, 0, 0);
3053 if (status) {
3054 QPRINTK(qdev, IFUP, ERR,
a5f59dc9
RM
3055 "Failed to init routing register for CAM "
3056 "packets.\n");
3057 break;
c4e84bde
RM
3058 }
3059 }
a5f59dc9
RM
3060 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3061 return status;
3062}
3063
3064/* Initialize the frame-to-queue routing. */
3065static int ql_route_initialize(struct ql_adapter *qdev)
3066{
3067 int status = 0;
3068
3069 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3070 if (status)
3071 return status;
3072
3073 /* Clear all the entries in the routing table. */
3074 status = ql_clear_routing_entries(qdev);
3075 if (status)
3076 goto exit;
c4e84bde
RM
3077
3078 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3079 if (status) {
3080 QPRINTK(qdev, IFUP, ERR,
3081 "Failed to init routing register for error packets.\n");
8587ea35 3082 goto exit;
c4e84bde
RM
3083 }
3084 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3085 if (status) {
3086 QPRINTK(qdev, IFUP, ERR,
3087 "Failed to init routing register for broadcast packets.\n");
8587ea35 3088 goto exit;
c4e84bde
RM
3089 }
3090 /* If we have more than one inbound queue, then turn on RSS in the
3091 * routing block.
3092 */
3093 if (qdev->rss_ring_count > 1) {
3094 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3095 RT_IDX_RSS_MATCH, 1);
3096 if (status) {
3097 QPRINTK(qdev, IFUP, ERR,
3098 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3099 goto exit;
c4e84bde
RM
3100 }
3101 }
3102
3103 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3104 RT_IDX_CAM_HIT, 1);
8587ea35 3105 if (status)
c4e84bde
RM
3106 QPRINTK(qdev, IFUP, ERR,
3107 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3108exit:
3109 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3110 return status;
3111}
3112
2ee1e272 3113int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6
RM
3114{
3115 int status;
3116
cc288f54
RM
3117 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3118 if (status)
3119 return status;
bb58b5b6
RM
3120 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3121 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 3122 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
bb58b5b6
RM
3123 if (status) {
3124 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3125 return status;
3126 }
3127
3128 status = ql_route_initialize(qdev);
3129 if (status)
3130 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3131
3132 return status;
3133}
3134
c4e84bde
RM
3135static int ql_adapter_initialize(struct ql_adapter *qdev)
3136{
3137 u32 value, mask;
3138 int i;
3139 int status = 0;
3140
3141 /*
3142 * Set up the System register to halt on errors.
3143 */
3144 value = SYS_EFE | SYS_FAE;
3145 mask = value << 16;
3146 ql_write32(qdev, SYS, mask | value);
3147
c9cf0a04
RM
3148 /* Set the default queue, and VLAN behavior. */
3149 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3150 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3151 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3152
3153 /* Set the MPI interrupt to enabled. */
3154 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3155
3156 /* Enable the function, set pagesize, enable error checking. */
3157 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3158 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3159
3160 /* Set/clear header splitting. */
3161 mask = FSC_VM_PAGESIZE_MASK |
3162 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3163 ql_write32(qdev, FSC, mask | value);
3164
3165 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3166 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3167
3168 /* Start up the rx queues. */
3169 for (i = 0; i < qdev->rx_ring_count; i++) {
3170 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3171 if (status) {
3172 QPRINTK(qdev, IFUP, ERR,
3173 "Failed to start rx ring[%d].\n", i);
3174 return status;
3175 }
3176 }
3177
3178 /* If there is more than one inbound completion queue
3179 * then download a RICB to configure RSS.
3180 */
3181 if (qdev->rss_ring_count > 1) {
3182 status = ql_start_rss(qdev);
3183 if (status) {
3184 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3185 return status;
3186 }
3187 }
3188
3189 /* Start up the tx queues. */
3190 for (i = 0; i < qdev->tx_ring_count; i++) {
3191 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3192 if (status) {
3193 QPRINTK(qdev, IFUP, ERR,
3194 "Failed to start tx ring[%d].\n", i);
3195 return status;
3196 }
3197 }
3198
b0c2aadf
RM
3199 /* Initialize the port and set the max framesize. */
3200 status = qdev->nic_ops->port_initialize(qdev);
3201 if (status) {
3202 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3203 return status;
3204 }
c4e84bde 3205
bb58b5b6
RM
3206 /* Set up the MAC address and frame routing filter. */
3207 status = ql_cam_route_initialize(qdev);
c4e84bde 3208 if (status) {
bb58b5b6
RM
3209 QPRINTK(qdev, IFUP, ERR,
3210 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3211 return status;
3212 }
3213
3214 /* Start NAPI for the RSS queues. */
3215 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
4974097a 3216 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3217 i);
3218 napi_enable(&qdev->rx_ring[i].napi);
3219 }
3220
3221 return status;
3222}
3223
3224/* Issue soft reset to chip. */
3225static int ql_adapter_reset(struct ql_adapter *qdev)
3226{
3227 u32 value;
c4e84bde 3228 int status = 0;
a5f59dc9 3229 unsigned long end_jiffies;
c4e84bde 3230
a5f59dc9
RM
3231 /* Clear all the entries in the routing table. */
3232 status = ql_clear_routing_entries(qdev);
3233 if (status) {
3234 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3235 return status;
3236 }
3237
3238 end_jiffies = jiffies +
3239 max((unsigned long)1, usecs_to_jiffies(30));
c4e84bde 3240 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3241
c4e84bde
RM
3242 do {
3243 value = ql_read32(qdev, RST_FO);
3244 if ((value & RST_FO_FR) == 0)
3245 break;
a75ee7f1
RM
3246 cpu_relax();
3247 } while (time_before(jiffies, end_jiffies));
c4e84bde 3248
c4e84bde 3249 if (value & RST_FO_FR) {
c4e84bde 3250 QPRINTK(qdev, IFDOWN, ERR,
3ac49a1c 3251 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3252 status = -ETIMEDOUT;
c4e84bde
RM
3253 }
3254
3255 return status;
3256}
3257
3258static void ql_display_dev_info(struct net_device *ndev)
3259{
3260 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3261
3262 QPRINTK(qdev, PROBE, INFO,
e4552f51 3263 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
c4e84bde
RM
3264 "XG Roll = %d, XG Rev = %d.\n",
3265 qdev->func,
e4552f51 3266 qdev->port,
c4e84bde
RM
3267 qdev->chip_rev_id & 0x0000000f,
3268 qdev->chip_rev_id >> 4 & 0x0000000f,
3269 qdev->chip_rev_id >> 8 & 0x0000000f,
3270 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3271 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3272}
3273
3274static int ql_adapter_down(struct ql_adapter *qdev)
3275{
c4e84bde
RM
3276 int i, status = 0;
3277 struct rx_ring *rx_ring;
3278
1e213303 3279 netif_carrier_off(qdev->ndev);
c4e84bde 3280
6497b607
RM
3281 /* Don't kill the reset worker thread if we
3282 * are in the process of recovery.
3283 */
3284 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3285 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3286 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3287 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3288 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3289 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde
RM
3290
3291 /* The default queue at index 0 is always processed in
3292 * a workqueue.
3293 */
3294 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3295
3296 /* The rest of the rx_rings are processed in
3297 * a workqueue only if it's a single interrupt
3298 * environment (MSI/Legacy).
3299 */
c062076c 3300 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3301 rx_ring = &qdev->rx_ring[i];
3302 /* Only the RSS rings use NAPI on multi irq
3303 * environment. Outbound completion processing
3304 * is done in interrupt context.
3305 */
3306 if (i >= qdev->rss_ring_first_cq_id) {
3307 napi_disable(&rx_ring->napi);
3308 } else {
3309 cancel_delayed_work_sync(&rx_ring->rx_work);
3310 }
3311 }
3312
3313 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3314
3315 ql_disable_interrupts(qdev);
3316
3317 ql_tx_ring_clean(qdev);
3318
6b318cb3
RM
3319 /* Call netif_napi_del() from common point.
3320 */
3321 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3322 netif_napi_del(&qdev->rx_ring[i].napi);
3323
4545a3f2 3324 ql_free_rx_buffers(qdev);
2d6a5e95 3325
c4e84bde
RM
3326 spin_lock(&qdev->hw_lock);
3327 status = ql_adapter_reset(qdev);
3328 if (status)
3329 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3330 qdev->func);
3331 spin_unlock(&qdev->hw_lock);
3332 return status;
3333}
3334
3335static int ql_adapter_up(struct ql_adapter *qdev)
3336{
3337 int err = 0;
3338
c4e84bde
RM
3339 err = ql_adapter_initialize(qdev);
3340 if (err) {
3341 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
c4e84bde
RM
3342 goto err_init;
3343 }
c4e84bde 3344 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3345 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3346 /* If the port is initialized and the
3347 * link is up the turn on the carrier.
3348 */
3349 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3350 (ql_read32(qdev, STS) & qdev->port_link_up))
1e213303 3351 netif_carrier_on(qdev->ndev);
c4e84bde
RM
3352 ql_enable_interrupts(qdev);
3353 ql_enable_all_completion_interrupts(qdev);
1e213303 3354 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3355
3356 return 0;
3357err_init:
3358 ql_adapter_reset(qdev);
3359 return err;
3360}
3361
c4e84bde
RM
3362static void ql_release_adapter_resources(struct ql_adapter *qdev)
3363{
3364 ql_free_mem_resources(qdev);
3365 ql_free_irq(qdev);
3366}
3367
3368static int ql_get_adapter_resources(struct ql_adapter *qdev)
3369{
3370 int status = 0;
3371
3372 if (ql_alloc_mem_resources(qdev)) {
3373 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3374 return -ENOMEM;
3375 }
3376 status = ql_request_irq(qdev);
c4e84bde
RM
3377 return status;
3378}
3379
3380static int qlge_close(struct net_device *ndev)
3381{
3382 struct ql_adapter *qdev = netdev_priv(ndev);
3383
3384 /*
3385 * Wait for device to recover from a reset.
3386 * (Rarely happens, but possible.)
3387 */
3388 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3389 msleep(1);
3390 ql_adapter_down(qdev);
3391 ql_release_adapter_resources(qdev);
c4e84bde
RM
3392 return 0;
3393}
3394
3395static int ql_configure_rings(struct ql_adapter *qdev)
3396{
3397 int i;
3398 struct rx_ring *rx_ring;
3399 struct tx_ring *tx_ring;
3400 int cpu_cnt = num_online_cpus();
3401
3402 /*
3403 * For each processor present we allocate one
3404 * rx_ring for outbound completions, and one
3405 * rx_ring for inbound completions. Plus there is
3406 * always the one default queue. For the CPU
3407 * counts we end up with the following rx_rings:
3408 * rx_ring count =
3409 * one default queue +
3410 * (CPU count * outbound completion rx_ring) +
3411 * (CPU count * inbound (RSS) completion rx_ring)
3412 * To keep it simple we limit the total number of
3413 * queues to < 32, so we truncate CPU to 8.
3414 * This limitation can be removed when requested.
3415 */
3416
683d46a9
RM
3417 if (cpu_cnt > MAX_CPUS)
3418 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3419
3420 /*
3421 * rx_ring[0] is always the default queue.
3422 */
3423 /* Allocate outbound completion ring for each CPU. */
3424 qdev->tx_ring_count = cpu_cnt;
3425 /* Allocate inbound completion (RSS) ring for each CPU. */
3426 qdev->rss_ring_count = cpu_cnt;
3427 /* cq_id for the first inbound ring handler. */
3428 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3429 /*
3430 * qdev->rx_ring_count:
3431 * Total number of rx_rings. This includes the one
3432 * default queue, a number of outbound completion
3433 * handler rx_rings, and the number of inbound
3434 * completion handler rx_rings.
3435 */
3436 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3437
c4e84bde
RM
3438 for (i = 0; i < qdev->tx_ring_count; i++) {
3439 tx_ring = &qdev->tx_ring[i];
3440 memset((void *)tx_ring, 0, sizeof(tx_ring));
3441 tx_ring->qdev = qdev;
3442 tx_ring->wq_id = i;
3443 tx_ring->wq_len = qdev->tx_ring_size;
3444 tx_ring->wq_size =
3445 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3446
3447 /*
3448 * The completion queue ID for the tx rings start
3449 * immediately after the default Q ID, which is zero.
3450 */
3451 tx_ring->cq_id = i + 1;
3452 }
3453
3454 for (i = 0; i < qdev->rx_ring_count; i++) {
3455 rx_ring = &qdev->rx_ring[i];
3456 memset((void *)rx_ring, 0, sizeof(rx_ring));
3457 rx_ring->qdev = qdev;
3458 rx_ring->cq_id = i;
3459 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3460 if (i == 0) { /* Default queue at index 0. */
3461 /*
3462 * Default queue handles bcast/mcast plus
3463 * async events. Needs buffers.
3464 */
3465 rx_ring->cq_len = qdev->rx_ring_size;
3466 rx_ring->cq_size =
3467 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3468 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3469 rx_ring->lbq_size =
2c9a0d41 3470 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3471 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3472 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3473 rx_ring->sbq_size =
2c9a0d41 3474 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3475 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3476 rx_ring->type = DEFAULT_Q;
3477 } else if (i < qdev->rss_ring_first_cq_id) {
3478 /*
3479 * Outbound queue handles outbound completions only.
3480 */
3481 /* outbound cq is same size as tx_ring it services. */
3482 rx_ring->cq_len = qdev->tx_ring_size;
3483 rx_ring->cq_size =
3484 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3485 rx_ring->lbq_len = 0;
3486 rx_ring->lbq_size = 0;
3487 rx_ring->lbq_buf_size = 0;
3488 rx_ring->sbq_len = 0;
3489 rx_ring->sbq_size = 0;
3490 rx_ring->sbq_buf_size = 0;
3491 rx_ring->type = TX_Q;
3492 } else { /* Inbound completions (RSS) queues */
3493 /*
3494 * Inbound queues handle unicast frames only.
3495 */
3496 rx_ring->cq_len = qdev->rx_ring_size;
3497 rx_ring->cq_size =
3498 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3499 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3500 rx_ring->lbq_size =
2c9a0d41 3501 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3502 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3503 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3504 rx_ring->sbq_size =
2c9a0d41 3505 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3506 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3507 rx_ring->type = RX_Q;
3508 }
3509 }
3510 return 0;
3511}
3512
3513static int qlge_open(struct net_device *ndev)
3514{
3515 int err = 0;
3516 struct ql_adapter *qdev = netdev_priv(ndev);
3517
3518 err = ql_configure_rings(qdev);
3519 if (err)
3520 return err;
3521
3522 err = ql_get_adapter_resources(qdev);
3523 if (err)
3524 goto error_up;
3525
3526 err = ql_adapter_up(qdev);
3527 if (err)
3528 goto error_up;
3529
3530 return err;
3531
3532error_up:
3533 ql_release_adapter_resources(qdev);
c4e84bde
RM
3534 return err;
3535}
3536
3537static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3538{
3539 struct ql_adapter *qdev = netdev_priv(ndev);
3540
3541 if (ndev->mtu == 1500 && new_mtu == 9000) {
3542 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
bcc2cb3b
RM
3543 queue_delayed_work(qdev->workqueue,
3544 &qdev->mpi_port_cfg_work, 0);
c4e84bde
RM
3545 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3546 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3547 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3548 (ndev->mtu == 9000 && new_mtu == 9000)) {
3549 return 0;
3550 } else
3551 return -EINVAL;
3552 ndev->mtu = new_mtu;
3553 return 0;
3554}
3555
3556static struct net_device_stats *qlge_get_stats(struct net_device
3557 *ndev)
3558{
3559 struct ql_adapter *qdev = netdev_priv(ndev);
3560 return &qdev->stats;
3561}
3562
3563static void qlge_set_multicast_list(struct net_device *ndev)
3564{
3565 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3566 struct dev_mc_list *mc_ptr;
cc288f54 3567 int i, status;
c4e84bde 3568
cc288f54
RM
3569 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3570 if (status)
3571 return;
c4e84bde
RM
3572 spin_lock(&qdev->hw_lock);
3573 /*
3574 * Set or clear promiscuous mode if a
3575 * transition is taking place.
3576 */
3577 if (ndev->flags & IFF_PROMISC) {
3578 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3579 if (ql_set_routing_reg
3580 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3581 QPRINTK(qdev, HW, ERR,
3582 "Failed to set promiscous mode.\n");
3583 } else {
3584 set_bit(QL_PROMISCUOUS, &qdev->flags);
3585 }
3586 }
3587 } else {
3588 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3589 if (ql_set_routing_reg
3590 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3591 QPRINTK(qdev, HW, ERR,
3592 "Failed to clear promiscous mode.\n");
3593 } else {
3594 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3595 }
3596 }
3597 }
3598
3599 /*
3600 * Set or clear all multicast mode if a
3601 * transition is taking place.
3602 */
3603 if ((ndev->flags & IFF_ALLMULTI) ||
3604 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3605 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3606 if (ql_set_routing_reg
3607 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3608 QPRINTK(qdev, HW, ERR,
3609 "Failed to set all-multi mode.\n");
3610 } else {
3611 set_bit(QL_ALLMULTI, &qdev->flags);
3612 }
3613 }
3614 } else {
3615 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3616 if (ql_set_routing_reg
3617 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3618 QPRINTK(qdev, HW, ERR,
3619 "Failed to clear all-multi mode.\n");
3620 } else {
3621 clear_bit(QL_ALLMULTI, &qdev->flags);
3622 }
3623 }
3624 }
3625
3626 if (ndev->mc_count) {
cc288f54
RM
3627 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3628 if (status)
3629 goto exit;
c4e84bde
RM
3630 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3631 i++, mc_ptr = mc_ptr->next)
3632 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3633 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3634 QPRINTK(qdev, HW, ERR,
3635 "Failed to loadmulticast address.\n");
cc288f54 3636 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3637 goto exit;
3638 }
cc288f54 3639 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3640 if (ql_set_routing_reg
3641 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3642 QPRINTK(qdev, HW, ERR,
3643 "Failed to set multicast match mode.\n");
3644 } else {
3645 set_bit(QL_ALLMULTI, &qdev->flags);
3646 }
3647 }
3648exit:
3649 spin_unlock(&qdev->hw_lock);
8587ea35 3650 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3651}
3652
3653static int qlge_set_mac_address(struct net_device *ndev, void *p)
3654{
3655 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3656 struct sockaddr *addr = p;
cc288f54 3657 int status;
c4e84bde
RM
3658
3659 if (netif_running(ndev))
3660 return -EBUSY;
3661
3662 if (!is_valid_ether_addr(addr->sa_data))
3663 return -EADDRNOTAVAIL;
3664 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3665
cc288f54
RM
3666 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3667 if (status)
3668 return status;
c4e84bde 3669 spin_lock(&qdev->hw_lock);
cc288f54
RM
3670 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3671 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
c4e84bde 3672 spin_unlock(&qdev->hw_lock);
cc288f54
RM
3673 if (status)
3674 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3675 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3676 return status;
c4e84bde
RM
3677}
3678
3679static void qlge_tx_timeout(struct net_device *ndev)
3680{
3681 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3682 ql_queue_asic_error(qdev);
c4e84bde
RM
3683}
3684
3685static void ql_asic_reset_work(struct work_struct *work)
3686{
3687 struct ql_adapter *qdev =
3688 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f
RM
3689 int status;
3690
3691 status = ql_adapter_down(qdev);
3692 if (status)
3693 goto error;
3694
3695 status = ql_adapter_up(qdev);
3696 if (status)
3697 goto error;
3698
3699 return;
3700error:
3701 QPRINTK(qdev, IFUP, ALERT,
3702 "Driver up/down cycle failed, closing device\n");
3703 rtnl_lock();
3704 set_bit(QL_ADAPTER_UP, &qdev->flags);
3705 dev_close(qdev->ndev);
3706 rtnl_unlock();
c4e84bde
RM
3707}
3708
b0c2aadf
RM
3709static struct nic_operations qla8012_nic_ops = {
3710 .get_flash = ql_get_8012_flash_params,
3711 .port_initialize = ql_8012_port_initialize,
3712};
3713
cdca8d02
RM
3714static struct nic_operations qla8000_nic_ops = {
3715 .get_flash = ql_get_8000_flash_params,
3716 .port_initialize = ql_8000_port_initialize,
3717};
3718
e4552f51
RM
3719/* Find the pcie function number for the other NIC
3720 * on this chip. Since both NIC functions share a
3721 * common firmware we have the lowest enabled function
3722 * do any common work. Examples would be resetting
3723 * after a fatal firmware error, or doing a firmware
3724 * coredump.
3725 */
3726static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3727{
3728 int status = 0;
3729 u32 temp;
3730 u32 nic_func1, nic_func2;
3731
3732 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3733 &temp);
3734 if (status)
3735 return status;
3736
3737 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3738 MPI_TEST_NIC_FUNC_MASK);
3739 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3740 MPI_TEST_NIC_FUNC_MASK);
3741
3742 if (qdev->func == nic_func1)
3743 qdev->alt_func = nic_func2;
3744 else if (qdev->func == nic_func2)
3745 qdev->alt_func = nic_func1;
3746 else
3747 status = -EIO;
3748
3749 return status;
3750}
b0c2aadf 3751
e4552f51 3752static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 3753{
e4552f51 3754 int status;
c4e84bde
RM
3755 qdev->func =
3756 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
3757 if (qdev->func > 3)
3758 return -EIO;
3759
3760 status = ql_get_alt_pcie_func(qdev);
3761 if (status)
3762 return status;
3763
3764 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3765 if (qdev->port) {
c4e84bde
RM
3766 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3767 qdev->port_link_up = STS_PL1;
3768 qdev->port_init = STS_PI1;
3769 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3770 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3771 } else {
3772 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3773 qdev->port_link_up = STS_PL0;
3774 qdev->port_init = STS_PI0;
3775 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3776 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3777 }
3778 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
3779 qdev->device_id = qdev->pdev->device;
3780 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3781 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
3782 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3783 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 3784 return status;
c4e84bde
RM
3785}
3786
3787static void ql_release_all(struct pci_dev *pdev)
3788{
3789 struct net_device *ndev = pci_get_drvdata(pdev);
3790 struct ql_adapter *qdev = netdev_priv(ndev);
3791
3792 if (qdev->workqueue) {
3793 destroy_workqueue(qdev->workqueue);
3794 qdev->workqueue = NULL;
3795 }
3796 if (qdev->q_workqueue) {
3797 destroy_workqueue(qdev->q_workqueue);
3798 qdev->q_workqueue = NULL;
3799 }
3800 if (qdev->reg_base)
8668ae92 3801 iounmap(qdev->reg_base);
c4e84bde
RM
3802 if (qdev->doorbell_area)
3803 iounmap(qdev->doorbell_area);
3804 pci_release_regions(pdev);
3805 pci_set_drvdata(pdev, NULL);
3806}
3807
3808static int __devinit ql_init_device(struct pci_dev *pdev,
3809 struct net_device *ndev, int cards_found)
3810{
3811 struct ql_adapter *qdev = netdev_priv(ndev);
3812 int pos, err = 0;
3813 u16 val16;
3814
3815 memset((void *)qdev, 0, sizeof(qdev));
3816 err = pci_enable_device(pdev);
3817 if (err) {
3818 dev_err(&pdev->dev, "PCI device enable failed.\n");
3819 return err;
3820 }
3821
3822 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3823 if (pos <= 0) {
3824 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3825 "aborting.\n");
3826 goto err_out;
3827 } else {
3828 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3829 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3830 val16 |= (PCI_EXP_DEVCTL_CERE |
3831 PCI_EXP_DEVCTL_NFERE |
3832 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3833 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3834 }
3835
3836 err = pci_request_regions(pdev, DRV_NAME);
3837 if (err) {
3838 dev_err(&pdev->dev, "PCI region request failed.\n");
3839 goto err_out;
3840 }
3841
3842 pci_set_master(pdev);
6a35528a 3843 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 3844 set_bit(QL_DMA64, &qdev->flags);
6a35528a 3845 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 3846 } else {
284901a9 3847 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 3848 if (!err)
284901a9 3849 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
3850 }
3851
3852 if (err) {
3853 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3854 goto err_out;
3855 }
3856
3857 pci_set_drvdata(pdev, ndev);
3858 qdev->reg_base =
3859 ioremap_nocache(pci_resource_start(pdev, 1),
3860 pci_resource_len(pdev, 1));
3861 if (!qdev->reg_base) {
3862 dev_err(&pdev->dev, "Register mapping failed.\n");
3863 err = -ENOMEM;
3864 goto err_out;
3865 }
3866
3867 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3868 qdev->doorbell_area =
3869 ioremap_nocache(pci_resource_start(pdev, 3),
3870 pci_resource_len(pdev, 3));
3871 if (!qdev->doorbell_area) {
3872 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3873 err = -ENOMEM;
3874 goto err_out;
3875 }
3876
c4e84bde
RM
3877 qdev->ndev = ndev;
3878 qdev->pdev = pdev;
e4552f51
RM
3879 err = ql_get_board_info(qdev);
3880 if (err) {
3881 dev_err(&pdev->dev, "Register access failed.\n");
3882 err = -EIO;
3883 goto err_out;
3884 }
c4e84bde
RM
3885 qdev->msg_enable = netif_msg_init(debug, default_msg);
3886 spin_lock_init(&qdev->hw_lock);
3887 spin_lock_init(&qdev->stats_lock);
3888
3889 /* make sure the EEPROM is good */
b0c2aadf 3890 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
3891 if (err) {
3892 dev_err(&pdev->dev, "Invalid FLASH.\n");
3893 goto err_out;
3894 }
3895
c4e84bde
RM
3896 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3897
3898 /* Set up the default ring sizes. */
3899 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3900 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3901
3902 /* Set up the coalescing parameters. */
3903 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3904 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3905 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3906 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3907
3908 /*
3909 * Set up the operating parameters.
3910 */
3911 qdev->rx_csum = 1;
3912
3913 qdev->q_workqueue = create_workqueue(ndev->name);
3914 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3915 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3916 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3917 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 3918 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 3919 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
125844ea 3920 mutex_init(&qdev->mpi_mutex);
bcc2cb3b 3921 init_completion(&qdev->ide_completion);
c4e84bde
RM
3922
3923 if (!cards_found) {
3924 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3925 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3926 DRV_NAME, DRV_VERSION);
3927 }
3928 return 0;
3929err_out:
3930 ql_release_all(pdev);
3931 pci_disable_device(pdev);
3932 return err;
3933}
3934
25ed7849
SH
3935
3936static const struct net_device_ops qlge_netdev_ops = {
3937 .ndo_open = qlge_open,
3938 .ndo_stop = qlge_close,
3939 .ndo_start_xmit = qlge_send,
3940 .ndo_change_mtu = qlge_change_mtu,
3941 .ndo_get_stats = qlge_get_stats,
3942 .ndo_set_multicast_list = qlge_set_multicast_list,
3943 .ndo_set_mac_address = qlge_set_mac_address,
3944 .ndo_validate_addr = eth_validate_addr,
3945 .ndo_tx_timeout = qlge_tx_timeout,
3946 .ndo_vlan_rx_register = ql_vlan_rx_register,
3947 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3948 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3949};
3950
c4e84bde
RM
3951static int __devinit qlge_probe(struct pci_dev *pdev,
3952 const struct pci_device_id *pci_entry)
3953{
3954 struct net_device *ndev = NULL;
3955 struct ql_adapter *qdev = NULL;
3956 static int cards_found = 0;
3957 int err = 0;
3958
1e213303
RM
3959 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3960 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
3961 if (!ndev)
3962 return -ENOMEM;
3963
3964 err = ql_init_device(pdev, ndev, cards_found);
3965 if (err < 0) {
3966 free_netdev(ndev);
3967 return err;
3968 }
3969
3970 qdev = netdev_priv(ndev);
3971 SET_NETDEV_DEV(ndev, &pdev->dev);
3972 ndev->features = (0
3973 | NETIF_F_IP_CSUM
3974 | NETIF_F_SG
3975 | NETIF_F_TSO
3976 | NETIF_F_TSO6
3977 | NETIF_F_TSO_ECN
3978 | NETIF_F_HW_VLAN_TX
3979 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 3980 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
3981
3982 if (test_bit(QL_DMA64, &qdev->flags))
3983 ndev->features |= NETIF_F_HIGHDMA;
3984
3985 /*
3986 * Set up net_device structure.
3987 */
3988 ndev->tx_queue_len = qdev->tx_ring_size;
3989 ndev->irq = pdev->irq;
25ed7849
SH
3990
3991 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3992 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3993 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3994
c4e84bde
RM
3995 err = register_netdev(ndev);
3996 if (err) {
3997 dev_err(&pdev->dev, "net device registration failed.\n");
3998 ql_release_all(pdev);
3999 pci_disable_device(pdev);
4000 return err;
4001 }
4002 netif_carrier_off(ndev);
c4e84bde
RM
4003 ql_display_dev_info(ndev);
4004 cards_found++;
4005 return 0;
4006}
4007
4008static void __devexit qlge_remove(struct pci_dev *pdev)
4009{
4010 struct net_device *ndev = pci_get_drvdata(pdev);
4011 unregister_netdev(ndev);
4012 ql_release_all(pdev);
4013 pci_disable_device(pdev);
4014 free_netdev(ndev);
4015}
4016
4017/*
4018 * This callback is called by the PCI subsystem whenever
4019 * a PCI bus error is detected.
4020 */
4021static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4022 enum pci_channel_state state)
4023{
4024 struct net_device *ndev = pci_get_drvdata(pdev);
4025 struct ql_adapter *qdev = netdev_priv(ndev);
4026
4027 if (netif_running(ndev))
4028 ql_adapter_down(qdev);
4029
4030 pci_disable_device(pdev);
4031
4032 /* Request a slot reset. */
4033 return PCI_ERS_RESULT_NEED_RESET;
4034}
4035
4036/*
4037 * This callback is called after the PCI buss has been reset.
4038 * Basically, this tries to restart the card from scratch.
4039 * This is a shortened version of the device probe/discovery code,
4040 * it resembles the first-half of the () routine.
4041 */
4042static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4043{
4044 struct net_device *ndev = pci_get_drvdata(pdev);
4045 struct ql_adapter *qdev = netdev_priv(ndev);
4046
4047 if (pci_enable_device(pdev)) {
4048 QPRINTK(qdev, IFUP, ERR,
4049 "Cannot re-enable PCI device after reset.\n");
4050 return PCI_ERS_RESULT_DISCONNECT;
4051 }
4052
4053 pci_set_master(pdev);
4054
4055 netif_carrier_off(ndev);
c4e84bde
RM
4056 ql_adapter_reset(qdev);
4057
4058 /* Make sure the EEPROM is good */
4059 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4060
4061 if (!is_valid_ether_addr(ndev->perm_addr)) {
4062 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4063 return PCI_ERS_RESULT_DISCONNECT;
4064 }
4065
4066 return PCI_ERS_RESULT_RECOVERED;
4067}
4068
4069static void qlge_io_resume(struct pci_dev *pdev)
4070{
4071 struct net_device *ndev = pci_get_drvdata(pdev);
4072 struct ql_adapter *qdev = netdev_priv(ndev);
4073
4074 pci_set_master(pdev);
4075
4076 if (netif_running(ndev)) {
4077 if (ql_adapter_up(qdev)) {
4078 QPRINTK(qdev, IFUP, ERR,
4079 "Device initialization failed after reset.\n");
4080 return;
4081 }
4082 }
4083
4084 netif_device_attach(ndev);
4085}
4086
4087static struct pci_error_handlers qlge_err_handler = {
4088 .error_detected = qlge_io_error_detected,
4089 .slot_reset = qlge_io_slot_reset,
4090 .resume = qlge_io_resume,
4091};
4092
4093static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4094{
4095 struct net_device *ndev = pci_get_drvdata(pdev);
4096 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4097 int err;
c4e84bde
RM
4098
4099 netif_device_detach(ndev);
4100
4101 if (netif_running(ndev)) {
4102 err = ql_adapter_down(qdev);
4103 if (!err)
4104 return err;
4105 }
4106
4107 err = pci_save_state(pdev);
4108 if (err)
4109 return err;
4110
4111 pci_disable_device(pdev);
4112
4113 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4114
4115 return 0;
4116}
4117
04da2cf9 4118#ifdef CONFIG_PM
c4e84bde
RM
4119static int qlge_resume(struct pci_dev *pdev)
4120{
4121 struct net_device *ndev = pci_get_drvdata(pdev);
4122 struct ql_adapter *qdev = netdev_priv(ndev);
4123 int err;
4124
4125 pci_set_power_state(pdev, PCI_D0);
4126 pci_restore_state(pdev);
4127 err = pci_enable_device(pdev);
4128 if (err) {
4129 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4130 return err;
4131 }
4132 pci_set_master(pdev);
4133
4134 pci_enable_wake(pdev, PCI_D3hot, 0);
4135 pci_enable_wake(pdev, PCI_D3cold, 0);
4136
4137 if (netif_running(ndev)) {
4138 err = ql_adapter_up(qdev);
4139 if (err)
4140 return err;
4141 }
4142
4143 netif_device_attach(ndev);
4144
4145 return 0;
4146}
04da2cf9 4147#endif /* CONFIG_PM */
c4e84bde
RM
4148
4149static void qlge_shutdown(struct pci_dev *pdev)
4150{
4151 qlge_suspend(pdev, PMSG_SUSPEND);
4152}
4153
4154static struct pci_driver qlge_driver = {
4155 .name = DRV_NAME,
4156 .id_table = qlge_pci_tbl,
4157 .probe = qlge_probe,
4158 .remove = __devexit_p(qlge_remove),
4159#ifdef CONFIG_PM
4160 .suspend = qlge_suspend,
4161 .resume = qlge_resume,
4162#endif
4163 .shutdown = qlge_shutdown,
4164 .err_handler = &qlge_err_handler
4165};
4166
4167static int __init qlge_init_module(void)
4168{
4169 return pci_register_driver(&qlge_driver);
4170}
4171
4172static void __exit qlge_exit(void)
4173{
4174 pci_unregister_driver(&qlge_driver);
4175}
4176
4177module_init(qlge_init_module);
4178module_exit(qlge_exit);
This page took 0.364481 seconds and 5 git commands to generate.