qlge: Get rid of 'default' rx_ring type.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
0857e9d7 130 unsigned int wait_count = 30;
c4e84bde
RM
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
0857e9d7
RM
134 udelay(100);
135 } while (--wait_count);
c4e84bde
RM
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
4322c5be
RM
217 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218 if (status)
219 return status;
220
c4e84bde
RM
221 status = ql_wait_cfg(qdev, bit);
222 if (status) {
223 QPRINTK(qdev, IFUP, ERR,
224 "Timed out waiting for CFG to come ready.\n");
225 goto exit;
226 }
227
c4e84bde
RM
228 ql_write32(qdev, ICB_L, (u32) map);
229 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
4322c5be 240 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
241 pci_unmap_single(qdev->pdev, map, size, direction);
242 return status;
243}
244
245/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247 u32 *value)
248{
249 u32 offset = 0;
250 int status;
251
c4e84bde
RM
252 switch (type) {
253 case MAC_ADDR_TYPE_MULTI_MAC:
254 case MAC_ADDR_TYPE_CAM_MAC:
255 {
256 status =
257 ql_wait_reg_rdy(qdev,
939678f8 258 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
259 if (status)
260 goto exit;
261 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262 (index << MAC_ADDR_IDX_SHIFT) | /* index */
263 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 status =
265 ql_wait_reg_rdy(qdev,
939678f8 266 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
267 if (status)
268 goto exit;
269 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 status =
271 ql_wait_reg_rdy(qdev,
939678f8 272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
939678f8 280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 status =
286 ql_wait_reg_rdy(qdev,
939678f8 287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 295 MAC_ADDR_MR, 0);
c4e84bde
RM
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
299 }
300 break;
301 }
302 case MAC_ADDR_TYPE_VLAN:
303 case MAC_ADDR_TYPE_MULTI_FLTR:
304 default:
305 QPRINTK(qdev, IFUP, CRIT,
306 "Address type %d not yet supported.\n", type);
307 status = -EPERM;
308 }
309exit:
c4e84bde
RM
310 return status;
311}
312
313/* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
315 */
316static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317 u16 index)
318{
319 u32 offset = 0;
320 int status = 0;
321
c4e84bde
RM
322 switch (type) {
323 case MAC_ADDR_TYPE_MULTI_MAC:
324 case MAC_ADDR_TYPE_CAM_MAC:
325 {
326 u32 cam_output;
327 u32 upper = (addr[0] << 8) | addr[1];
328 u32 lower =
329 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330 (addr[5]);
331
4974097a 332 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 333 "Adding %s address %pM"
c4e84bde
RM
334 " at index %d in the CAM.\n",
335 ((type ==
336 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 337 "UNICAST"), addr, index);
c4e84bde
RM
338
339 status =
340 ql_wait_reg_rdy(qdev,
939678f8 341 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
342 if (status)
343 goto exit;
344 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 type); /* type */
347 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 status =
349 ql_wait_reg_rdy(qdev,
939678f8 350 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
351 if (status)
352 goto exit;
353 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 type); /* type */
356 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 status =
358 ql_wait_reg_rdy(qdev,
939678f8 359 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
360 if (status)
361 goto exit;
362 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
363 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 type); /* type */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
368 */
369 if (type == MAC_ADDR_TYPE_CAM_MAC) {
370 cam_output = (CAM_OUT_ROUTE_NIC |
371 (qdev->
372 func << CAM_OUT_FUNC_SHIFT) |
b2014ff8 373 (0 << CAM_OUT_CQ_ID_SHIFT));
c4e84bde
RM
374 if (qdev->vlgrp)
375 cam_output |= CAM_OUT_RV;
376 /* route to NIC core */
377 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
378 }
379 break;
380 }
381 case MAC_ADDR_TYPE_VLAN:
382 {
383 u32 enable_bit = *((u32 *) &addr[0]);
384 /* For VLAN, the addr actually holds a bit that
385 * either enables or disables the vlan id we are
386 * addressing. It's either MAC_ADDR_E on or off.
387 * That's bit-27 we're talking about.
388 */
389 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
390 (enable_bit ? "Adding" : "Removing"),
391 index, (enable_bit ? "to" : "from"));
392
393 status =
394 ql_wait_reg_rdy(qdev,
939678f8 395 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
396 if (status)
397 goto exit;
398 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
399 (index << MAC_ADDR_IDX_SHIFT) | /* index */
400 type | /* type */
401 enable_bit); /* enable/disable */
402 break;
403 }
404 case MAC_ADDR_TYPE_MULTI_FLTR:
405 default:
406 QPRINTK(qdev, IFUP, CRIT,
407 "Address type %d not yet supported.\n", type);
408 status = -EPERM;
409 }
410exit:
c4e84bde
RM
411 return status;
412}
413
7fab3bfe
RM
414/* Set or clear MAC address in hardware. We sometimes
415 * have to clear it to prevent wrong frame routing
416 * especially in a bonding environment.
417 */
418static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
419{
420 int status;
421 char zero_mac_addr[ETH_ALEN];
422 char *addr;
423
424 if (set) {
425 addr = &qdev->ndev->dev_addr[0];
426 QPRINTK(qdev, IFUP, DEBUG,
427 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
428 addr[0], addr[1], addr[2], addr[3],
429 addr[4], addr[5]);
430 } else {
431 memset(zero_mac_addr, 0, ETH_ALEN);
432 addr = &zero_mac_addr[0];
433 QPRINTK(qdev, IFUP, DEBUG,
434 "Clearing MAC address on %s\n",
435 qdev->ndev->name);
436 }
437 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
438 if (status)
439 return status;
440 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
441 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
442 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
443 if (status)
444 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
445 "address.\n");
446 return status;
447}
448
6a473308
RM
449void ql_link_on(struct ql_adapter *qdev)
450{
451 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
452 qdev->ndev->name);
453 netif_carrier_on(qdev->ndev);
454 ql_set_mac_addr(qdev, 1);
455}
456
457void ql_link_off(struct ql_adapter *qdev)
458{
459 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
460 qdev->ndev->name);
461 netif_carrier_off(qdev->ndev);
462 ql_set_mac_addr(qdev, 0);
463}
464
c4e84bde
RM
465/* Get a specific frame routing value from the CAM.
466 * Used for debug and reg dump.
467 */
468int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
469{
470 int status = 0;
471
939678f8 472 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
473 if (status)
474 goto exit;
475
476 ql_write32(qdev, RT_IDX,
477 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 478 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
479 if (status)
480 goto exit;
481 *value = ql_read32(qdev, RT_DATA);
482exit:
c4e84bde
RM
483 return status;
484}
485
486/* The NIC function for this chip has 16 routing indexes. Each one can be used
487 * to route different frame types to various inbound queues. We send broadcast/
488 * multicast/error frames to the default queue for slow handling,
489 * and CAM hit/RSS frames to the fast handling queues.
490 */
491static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
492 int enable)
493{
8587ea35 494 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
495 u32 value = 0;
496
c4e84bde
RM
497 QPRINTK(qdev, IFUP, DEBUG,
498 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
499 (enable ? "Adding" : "Removing"),
500 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
501 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
502 ((index ==
503 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
504 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
505 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
506 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
507 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
508 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
509 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
510 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
511 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
512 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
513 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
514 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
515 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
516 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
517 (enable ? "to" : "from"));
518
519 switch (mask) {
520 case RT_IDX_CAM_HIT:
521 {
522 value = RT_IDX_DST_CAM_Q | /* dest */
523 RT_IDX_TYPE_NICQ | /* type */
524 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
525 break;
526 }
527 case RT_IDX_VALID: /* Promiscuous Mode frames. */
528 {
529 value = RT_IDX_DST_DFLT_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
549 {
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
553 break;
554 }
555 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
556 {
557 value = RT_IDX_DST_CAM_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
560 break;
561 }
562 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
563 {
564 value = RT_IDX_DST_RSS | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
567 break;
568 }
569 case 0: /* Clear the E-bit on an entry. */
570 {
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (index << RT_IDX_IDX_SHIFT);/* index */
574 break;
575 }
576 default:
577 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
578 mask);
579 status = -EPERM;
580 goto exit;
581 }
582
583 if (value) {
584 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
585 if (status)
586 goto exit;
587 value |= (enable ? RT_IDX_E : 0);
588 ql_write32(qdev, RT_IDX, value);
589 ql_write32(qdev, RT_DATA, enable ? mask : 0);
590 }
591exit:
c4e84bde
RM
592 return status;
593}
594
595static void ql_enable_interrupts(struct ql_adapter *qdev)
596{
597 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
598}
599
600static void ql_disable_interrupts(struct ql_adapter *qdev)
601{
602 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
603}
604
605/* If we're running with multiple MSI-X vectors then we enable on the fly.
606 * Otherwise, we may have multiple outstanding workers and don't want to
607 * enable until the last one finishes. In this case, the irq_cnt gets
608 * incremented everytime we queue a worker and decremented everytime
609 * a worker finishes. Once it hits zero we enable the interrupt.
610 */
bb0d215c 611u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 612{
bb0d215c
RM
613 u32 var = 0;
614 unsigned long hw_flags = 0;
615 struct intr_context *ctx = qdev->intr_context + intr;
616
617 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
618 /* Always enable if we're MSIX multi interrupts and
619 * it's not the default (zeroeth) interrupt.
620 */
c4e84bde 621 ql_write32(qdev, INTR_EN,
bb0d215c
RM
622 ctx->intr_en_mask);
623 var = ql_read32(qdev, STS);
624 return var;
c4e84bde 625 }
bb0d215c
RM
626
627 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
628 if (atomic_dec_and_test(&ctx->irq_cnt)) {
629 ql_write32(qdev, INTR_EN,
630 ctx->intr_en_mask);
631 var = ql_read32(qdev, STS);
632 }
633 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
634 return var;
c4e84bde
RM
635}
636
637static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
638{
639 u32 var = 0;
bb0d215c 640 struct intr_context *ctx;
c4e84bde 641
bb0d215c
RM
642 /* HW disables for us if we're MSIX multi interrupts and
643 * it's not the default (zeroeth) interrupt.
644 */
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
646 return 0;
647
648 ctx = qdev->intr_context + intr;
08b1bc8f 649 spin_lock(&qdev->hw_lock);
bb0d215c 650 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 651 ql_write32(qdev, INTR_EN,
bb0d215c 652 ctx->intr_dis_mask);
c4e84bde
RM
653 var = ql_read32(qdev, STS);
654 }
bb0d215c 655 atomic_inc(&ctx->irq_cnt);
08b1bc8f 656 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
657 return var;
658}
659
660static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
661{
662 int i;
663 for (i = 0; i < qdev->intr_count; i++) {
664 /* The enable call does a atomic_dec_and_test
665 * and enables only if the result is zero.
666 * So we precharge it here.
667 */
bb0d215c
RM
668 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
669 i == 0))
670 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
671 ql_enable_completion_interrupt(qdev, i);
672 }
673
674}
675
b0c2aadf
RM
676static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
677{
678 int status, i;
679 u16 csum = 0;
680 __le16 *flash = (__le16 *)&qdev->flash;
681
682 status = strncmp((char *)&qdev->flash, str, 4);
683 if (status) {
684 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
685 return status;
686 }
687
688 for (i = 0; i < size; i++)
689 csum += le16_to_cpu(*flash++);
690
691 if (csum)
692 QPRINTK(qdev, IFUP, ERR,
693 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
694
695 return csum;
696}
697
26351479 698static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
699{
700 int status = 0;
701 /* wait for reg to come ready */
702 status = ql_wait_reg_rdy(qdev,
703 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
704 if (status)
705 goto exit;
706 /* set up for reg read */
707 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
708 /* wait for reg to come ready */
709 status = ql_wait_reg_rdy(qdev,
710 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
711 if (status)
712 goto exit;
26351479
RM
713 /* This data is stored on flash as an array of
714 * __le32. Since ql_read32() returns cpu endian
715 * we need to swap it back.
716 */
717 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
718exit:
719 return status;
720}
721
cdca8d02
RM
722static int ql_get_8000_flash_params(struct ql_adapter *qdev)
723{
724 u32 i, size;
725 int status;
726 __le32 *p = (__le32 *)&qdev->flash;
727 u32 offset;
542512e4 728 u8 mac_addr[6];
cdca8d02
RM
729
730 /* Get flash offset for function and adjust
731 * for dword access.
732 */
e4552f51 733 if (!qdev->port)
cdca8d02
RM
734 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
735 else
736 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
737
738 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
739 return -ETIMEDOUT;
740
741 size = sizeof(struct flash_params_8000) / sizeof(u32);
742 for (i = 0; i < size; i++, p++) {
743 status = ql_read_flash_word(qdev, i+offset, p);
744 if (status) {
745 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
746 goto exit;
747 }
748 }
749
750 status = ql_validate_flash(qdev,
751 sizeof(struct flash_params_8000) / sizeof(u16),
752 "8000");
753 if (status) {
754 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
755 status = -EINVAL;
756 goto exit;
757 }
758
542512e4
RM
759 /* Extract either manufacturer or BOFM modified
760 * MAC address.
761 */
762 if (qdev->flash.flash_params_8000.data_type1 == 2)
763 memcpy(mac_addr,
764 qdev->flash.flash_params_8000.mac_addr1,
765 qdev->ndev->addr_len);
766 else
767 memcpy(mac_addr,
768 qdev->flash.flash_params_8000.mac_addr,
769 qdev->ndev->addr_len);
770
771 if (!is_valid_ether_addr(mac_addr)) {
cdca8d02
RM
772 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
773 status = -EINVAL;
774 goto exit;
775 }
776
777 memcpy(qdev->ndev->dev_addr,
542512e4 778 mac_addr,
cdca8d02
RM
779 qdev->ndev->addr_len);
780
781exit:
782 ql_sem_unlock(qdev, SEM_FLASH_MASK);
783 return status;
784}
785
b0c2aadf 786static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
787{
788 int i;
789 int status;
26351479 790 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 791 u32 offset = 0;
b0c2aadf 792 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
793
794 /* Second function's parameters follow the first
795 * function's.
796 */
e4552f51 797 if (qdev->port)
b0c2aadf 798 offset = size;
c4e84bde
RM
799
800 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
801 return -ETIMEDOUT;
802
b0c2aadf 803 for (i = 0; i < size; i++, p++) {
e78f5fa7 804 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
805 if (status) {
806 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
807 goto exit;
808 }
809
810 }
b0c2aadf
RM
811
812 status = ql_validate_flash(qdev,
813 sizeof(struct flash_params_8012) / sizeof(u16),
814 "8012");
815 if (status) {
816 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
817 status = -EINVAL;
818 goto exit;
819 }
820
821 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
822 status = -EINVAL;
823 goto exit;
824 }
825
826 memcpy(qdev->ndev->dev_addr,
827 qdev->flash.flash_params_8012.mac_addr,
828 qdev->ndev->addr_len);
829
c4e84bde
RM
830exit:
831 ql_sem_unlock(qdev, SEM_FLASH_MASK);
832 return status;
833}
834
835/* xgmac register are located behind the xgmac_addr and xgmac_data
836 * register pair. Each read/write requires us to wait for the ready
837 * bit before reading/writing the data.
838 */
839static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
840{
841 int status;
842 /* wait for reg to come ready */
843 status = ql_wait_reg_rdy(qdev,
844 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
845 if (status)
846 return status;
847 /* write the data to the data reg */
848 ql_write32(qdev, XGMAC_DATA, data);
849 /* trigger the write */
850 ql_write32(qdev, XGMAC_ADDR, reg);
851 return status;
852}
853
854/* xgmac register are located behind the xgmac_addr and xgmac_data
855 * register pair. Each read/write requires us to wait for the ready
856 * bit before reading/writing the data.
857 */
858int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
859{
860 int status = 0;
861 /* wait for reg to come ready */
862 status = ql_wait_reg_rdy(qdev,
863 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
864 if (status)
865 goto exit;
866 /* set up for reg read */
867 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
868 /* wait for reg to come ready */
869 status = ql_wait_reg_rdy(qdev,
870 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
871 if (status)
872 goto exit;
873 /* get the data */
874 *data = ql_read32(qdev, XGMAC_DATA);
875exit:
876 return status;
877}
878
879/* This is used for reading the 64-bit statistics regs. */
880int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
881{
882 int status = 0;
883 u32 hi = 0;
884 u32 lo = 0;
885
886 status = ql_read_xgmac_reg(qdev, reg, &lo);
887 if (status)
888 goto exit;
889
890 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
891 if (status)
892 goto exit;
893
894 *data = (u64) lo | ((u64) hi << 32);
895
896exit:
897 return status;
898}
899
cdca8d02
RM
900static int ql_8000_port_initialize(struct ql_adapter *qdev)
901{
bcc2cb3b 902 int status;
cfec0cbc
RM
903 /*
904 * Get MPI firmware version for driver banner
905 * and ethool info.
906 */
907 status = ql_mb_about_fw(qdev);
908 if (status)
909 goto exit;
bcc2cb3b
RM
910 status = ql_mb_get_fw_state(qdev);
911 if (status)
912 goto exit;
913 /* Wake up a worker to get/set the TX/RX frame sizes. */
914 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
915exit:
916 return status;
cdca8d02
RM
917}
918
c4e84bde
RM
919/* Take the MAC Core out of reset.
920 * Enable statistics counting.
921 * Take the transmitter/receiver out of reset.
922 * This functionality may be done in the MPI firmware at a
923 * later date.
924 */
b0c2aadf 925static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
926{
927 int status = 0;
928 u32 data;
929
930 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
931 /* Another function has the semaphore, so
932 * wait for the port init bit to come ready.
933 */
934 QPRINTK(qdev, LINK, INFO,
935 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
936 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
937 if (status) {
938 QPRINTK(qdev, LINK, CRIT,
939 "Port initialize timed out.\n");
940 }
941 return status;
942 }
943
944 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
945 /* Set the core reset. */
946 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
947 if (status)
948 goto end;
949 data |= GLOBAL_CFG_RESET;
950 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
951 if (status)
952 goto end;
953
954 /* Clear the core reset and turn on jumbo for receiver. */
955 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
956 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
957 data |= GLOBAL_CFG_TX_STAT_EN;
958 data |= GLOBAL_CFG_RX_STAT_EN;
959 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
960 if (status)
961 goto end;
962
963 /* Enable transmitter, and clear it's reset. */
964 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
965 if (status)
966 goto end;
967 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
968 data |= TX_CFG_EN; /* Enable the transmitter. */
969 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
970 if (status)
971 goto end;
972
973 /* Enable receiver and clear it's reset. */
974 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
975 if (status)
976 goto end;
977 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
978 data |= RX_CFG_EN; /* Enable the receiver. */
979 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
980 if (status)
981 goto end;
982
983 /* Turn on jumbo. */
984 status =
985 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
986 if (status)
987 goto end;
988 status =
989 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
990 if (status)
991 goto end;
992
993 /* Signal to the world that the port is enabled. */
994 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
995end:
996 ql_sem_unlock(qdev, qdev->xg_sem_mask);
997 return status;
998}
999
1000/* Get the next large buffer. */
8668ae92 1001static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1002{
1003 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1004 rx_ring->lbq_curr_idx++;
1005 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1006 rx_ring->lbq_curr_idx = 0;
1007 rx_ring->lbq_free_cnt++;
1008 return lbq_desc;
1009}
1010
1011/* Get the next small buffer. */
8668ae92 1012static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1013{
1014 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1015 rx_ring->sbq_curr_idx++;
1016 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1017 rx_ring->sbq_curr_idx = 0;
1018 rx_ring->sbq_free_cnt++;
1019 return sbq_desc;
1020}
1021
1022/* Update an rx ring index. */
1023static void ql_update_cq(struct rx_ring *rx_ring)
1024{
1025 rx_ring->cnsmr_idx++;
1026 rx_ring->curr_entry++;
1027 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1028 rx_ring->cnsmr_idx = 0;
1029 rx_ring->curr_entry = rx_ring->cq_base;
1030 }
1031}
1032
1033static void ql_write_cq_idx(struct rx_ring *rx_ring)
1034{
1035 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1036}
1037
1038/* Process (refill) a large buffer queue. */
1039static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1040{
49f2186d
RM
1041 u32 clean_idx = rx_ring->lbq_clean_idx;
1042 u32 start_idx = clean_idx;
c4e84bde 1043 struct bq_desc *lbq_desc;
c4e84bde
RM
1044 u64 map;
1045 int i;
1046
1047 while (rx_ring->lbq_free_cnt > 16) {
1048 for (i = 0; i < 16; i++) {
1049 QPRINTK(qdev, RX_STATUS, DEBUG,
1050 "lbq: try cleaning clean_idx = %d.\n",
1051 clean_idx);
1052 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
1053 if (lbq_desc->p.lbq_page == NULL) {
1054 QPRINTK(qdev, RX_STATUS, DEBUG,
1055 "lbq: getting new page for index %d.\n",
1056 lbq_desc->index);
1057 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1058 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 1059 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
1060 QPRINTK(qdev, RX_STATUS, ERR,
1061 "Couldn't get a page.\n");
1062 return;
1063 }
1064 map = pci_map_page(qdev->pdev,
1065 lbq_desc->p.lbq_page,
1066 0, PAGE_SIZE,
1067 PCI_DMA_FROMDEVICE);
1068 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 1069 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
1070 put_page(lbq_desc->p.lbq_page);
1071 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
1072 QPRINTK(qdev, RX_STATUS, ERR,
1073 "PCI mapping failed.\n");
1074 return;
1075 }
1076 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1077 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 1078 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1079 }
1080 clean_idx++;
1081 if (clean_idx == rx_ring->lbq_len)
1082 clean_idx = 0;
1083 }
1084
1085 rx_ring->lbq_clean_idx = clean_idx;
1086 rx_ring->lbq_prod_idx += 16;
1087 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1088 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1089 rx_ring->lbq_free_cnt -= 16;
1090 }
1091
1092 if (start_idx != clean_idx) {
c4e84bde
RM
1093 QPRINTK(qdev, RX_STATUS, DEBUG,
1094 "lbq: updating prod idx = %d.\n",
1095 rx_ring->lbq_prod_idx);
1096 ql_write_db_reg(rx_ring->lbq_prod_idx,
1097 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1098 }
1099}
1100
1101/* Process (refill) a small buffer queue. */
1102static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1103{
49f2186d
RM
1104 u32 clean_idx = rx_ring->sbq_clean_idx;
1105 u32 start_idx = clean_idx;
c4e84bde 1106 struct bq_desc *sbq_desc;
c4e84bde
RM
1107 u64 map;
1108 int i;
1109
1110 while (rx_ring->sbq_free_cnt > 16) {
1111 for (i = 0; i < 16; i++) {
1112 sbq_desc = &rx_ring->sbq[clean_idx];
1113 QPRINTK(qdev, RX_STATUS, DEBUG,
1114 "sbq: try cleaning clean_idx = %d.\n",
1115 clean_idx);
c4e84bde
RM
1116 if (sbq_desc->p.skb == NULL) {
1117 QPRINTK(qdev, RX_STATUS, DEBUG,
1118 "sbq: getting new skb for index %d.\n",
1119 sbq_desc->index);
1120 sbq_desc->p.skb =
1121 netdev_alloc_skb(qdev->ndev,
1122 rx_ring->sbq_buf_size);
1123 if (sbq_desc->p.skb == NULL) {
1124 QPRINTK(qdev, PROBE, ERR,
1125 "Couldn't get an skb.\n");
1126 rx_ring->sbq_clean_idx = clean_idx;
1127 return;
1128 }
1129 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1130 map = pci_map_single(qdev->pdev,
1131 sbq_desc->p.skb->data,
1132 rx_ring->sbq_buf_size /
1133 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
1134 if (pci_dma_mapping_error(qdev->pdev, map)) {
1135 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1136 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1137 dev_kfree_skb_any(sbq_desc->p.skb);
1138 sbq_desc->p.skb = NULL;
c907a35a
RM
1139 return;
1140 }
c4e84bde
RM
1141 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1142 pci_unmap_len_set(sbq_desc, maplen,
1143 rx_ring->sbq_buf_size / 2);
2c9a0d41 1144 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1145 }
1146
1147 clean_idx++;
1148 if (clean_idx == rx_ring->sbq_len)
1149 clean_idx = 0;
1150 }
1151 rx_ring->sbq_clean_idx = clean_idx;
1152 rx_ring->sbq_prod_idx += 16;
1153 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1154 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1155 rx_ring->sbq_free_cnt -= 16;
1156 }
1157
1158 if (start_idx != clean_idx) {
c4e84bde
RM
1159 QPRINTK(qdev, RX_STATUS, DEBUG,
1160 "sbq: updating prod idx = %d.\n",
1161 rx_ring->sbq_prod_idx);
1162 ql_write_db_reg(rx_ring->sbq_prod_idx,
1163 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1164 }
1165}
1166
1167static void ql_update_buffer_queues(struct ql_adapter *qdev,
1168 struct rx_ring *rx_ring)
1169{
1170 ql_update_sbq(qdev, rx_ring);
1171 ql_update_lbq(qdev, rx_ring);
1172}
1173
1174/* Unmaps tx buffers. Can be called from send() if a pci mapping
1175 * fails at some stage, or from the interrupt when a tx completes.
1176 */
1177static void ql_unmap_send(struct ql_adapter *qdev,
1178 struct tx_ring_desc *tx_ring_desc, int mapped)
1179{
1180 int i;
1181 for (i = 0; i < mapped; i++) {
1182 if (i == 0 || (i == 7 && mapped > 7)) {
1183 /*
1184 * Unmap the skb->data area, or the
1185 * external sglist (AKA the Outbound
1186 * Address List (OAL)).
1187 * If its the zeroeth element, then it's
1188 * the skb->data area. If it's the 7th
1189 * element and there is more than 6 frags,
1190 * then its an OAL.
1191 */
1192 if (i == 7) {
1193 QPRINTK(qdev, TX_DONE, DEBUG,
1194 "unmapping OAL area.\n");
1195 }
1196 pci_unmap_single(qdev->pdev,
1197 pci_unmap_addr(&tx_ring_desc->map[i],
1198 mapaddr),
1199 pci_unmap_len(&tx_ring_desc->map[i],
1200 maplen),
1201 PCI_DMA_TODEVICE);
1202 } else {
1203 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1204 i);
1205 pci_unmap_page(qdev->pdev,
1206 pci_unmap_addr(&tx_ring_desc->map[i],
1207 mapaddr),
1208 pci_unmap_len(&tx_ring_desc->map[i],
1209 maplen), PCI_DMA_TODEVICE);
1210 }
1211 }
1212
1213}
1214
1215/* Map the buffers for this transmit. This will return
1216 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1217 */
1218static int ql_map_send(struct ql_adapter *qdev,
1219 struct ob_mac_iocb_req *mac_iocb_ptr,
1220 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1221{
1222 int len = skb_headlen(skb);
1223 dma_addr_t map;
1224 int frag_idx, err, map_idx = 0;
1225 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1226 int frag_cnt = skb_shinfo(skb)->nr_frags;
1227
1228 if (frag_cnt) {
1229 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1230 }
1231 /*
1232 * Map the skb buffer first.
1233 */
1234 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1235
1236 err = pci_dma_mapping_error(qdev->pdev, map);
1237 if (err) {
1238 QPRINTK(qdev, TX_QUEUED, ERR,
1239 "PCI mapping failed with error: %d\n", err);
1240
1241 return NETDEV_TX_BUSY;
1242 }
1243
1244 tbd->len = cpu_to_le32(len);
1245 tbd->addr = cpu_to_le64(map);
1246 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1247 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1248 map_idx++;
1249
1250 /*
1251 * This loop fills the remainder of the 8 address descriptors
1252 * in the IOCB. If there are more than 7 fragments, then the
1253 * eighth address desc will point to an external list (OAL).
1254 * When this happens, the remainder of the frags will be stored
1255 * in this list.
1256 */
1257 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1258 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1259 tbd++;
1260 if (frag_idx == 6 && frag_cnt > 7) {
1261 /* Let's tack on an sglist.
1262 * Our control block will now
1263 * look like this:
1264 * iocb->seg[0] = skb->data
1265 * iocb->seg[1] = frag[0]
1266 * iocb->seg[2] = frag[1]
1267 * iocb->seg[3] = frag[2]
1268 * iocb->seg[4] = frag[3]
1269 * iocb->seg[5] = frag[4]
1270 * iocb->seg[6] = frag[5]
1271 * iocb->seg[7] = ptr to OAL (external sglist)
1272 * oal->seg[0] = frag[6]
1273 * oal->seg[1] = frag[7]
1274 * oal->seg[2] = frag[8]
1275 * oal->seg[3] = frag[9]
1276 * oal->seg[4] = frag[10]
1277 * etc...
1278 */
1279 /* Tack on the OAL in the eighth segment of IOCB. */
1280 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1281 sizeof(struct oal),
1282 PCI_DMA_TODEVICE);
1283 err = pci_dma_mapping_error(qdev->pdev, map);
1284 if (err) {
1285 QPRINTK(qdev, TX_QUEUED, ERR,
1286 "PCI mapping outbound address list with error: %d\n",
1287 err);
1288 goto map_error;
1289 }
1290
1291 tbd->addr = cpu_to_le64(map);
1292 /*
1293 * The length is the number of fragments
1294 * that remain to be mapped times the length
1295 * of our sglist (OAL).
1296 */
1297 tbd->len =
1298 cpu_to_le32((sizeof(struct tx_buf_desc) *
1299 (frag_cnt - frag_idx)) | TX_DESC_C);
1300 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1301 map);
1302 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1303 sizeof(struct oal));
1304 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1305 map_idx++;
1306 }
1307
1308 map =
1309 pci_map_page(qdev->pdev, frag->page,
1310 frag->page_offset, frag->size,
1311 PCI_DMA_TODEVICE);
1312
1313 err = pci_dma_mapping_error(qdev->pdev, map);
1314 if (err) {
1315 QPRINTK(qdev, TX_QUEUED, ERR,
1316 "PCI mapping frags failed with error: %d.\n",
1317 err);
1318 goto map_error;
1319 }
1320
1321 tbd->addr = cpu_to_le64(map);
1322 tbd->len = cpu_to_le32(frag->size);
1323 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1324 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1325 frag->size);
1326
1327 }
1328 /* Save the number of segments we've mapped. */
1329 tx_ring_desc->map_cnt = map_idx;
1330 /* Terminate the last segment. */
1331 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1332 return NETDEV_TX_OK;
1333
1334map_error:
1335 /*
1336 * If the first frag mapping failed, then i will be zero.
1337 * This causes the unmap of the skb->data area. Otherwise
1338 * we pass in the number of frags that mapped successfully
1339 * so they can be umapped.
1340 */
1341 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1342 return NETDEV_TX_BUSY;
1343}
1344
8668ae92 1345static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1346{
1347 void *temp_addr = skb->data;
1348
1349 /* Undo the skb_reserve(skb,32) we did before
1350 * giving to hardware, and realign data on
1351 * a 2-byte boundary.
1352 */
1353 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1354 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1355 skb_copy_to_linear_data(skb, temp_addr,
1356 (unsigned int)len);
1357}
1358
1359/*
1360 * This function builds an skb for the given inbound
1361 * completion. It will be rewritten for readability in the near
1362 * future, but for not it works well.
1363 */
1364static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1365 struct rx_ring *rx_ring,
1366 struct ib_mac_iocb_rsp *ib_mac_rsp)
1367{
1368 struct bq_desc *lbq_desc;
1369 struct bq_desc *sbq_desc;
1370 struct sk_buff *skb = NULL;
1371 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1372 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1373
1374 /*
1375 * Handle the header buffer if present.
1376 */
1377 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1378 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1379 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1380 /*
1381 * Headers fit nicely into a small buffer.
1382 */
1383 sbq_desc = ql_get_curr_sbuf(rx_ring);
1384 pci_unmap_single(qdev->pdev,
1385 pci_unmap_addr(sbq_desc, mapaddr),
1386 pci_unmap_len(sbq_desc, maplen),
1387 PCI_DMA_FROMDEVICE);
1388 skb = sbq_desc->p.skb;
1389 ql_realign_skb(skb, hdr_len);
1390 skb_put(skb, hdr_len);
1391 sbq_desc->p.skb = NULL;
1392 }
1393
1394 /*
1395 * Handle the data buffer(s).
1396 */
1397 if (unlikely(!length)) { /* Is there data too? */
1398 QPRINTK(qdev, RX_STATUS, DEBUG,
1399 "No Data buffer in this packet.\n");
1400 return skb;
1401 }
1402
1403 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1404 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1405 QPRINTK(qdev, RX_STATUS, DEBUG,
1406 "Headers in small, data of %d bytes in small, combine them.\n", length);
1407 /*
1408 * Data is less than small buffer size so it's
1409 * stuffed in a small buffer.
1410 * For this case we append the data
1411 * from the "data" small buffer to the "header" small
1412 * buffer.
1413 */
1414 sbq_desc = ql_get_curr_sbuf(rx_ring);
1415 pci_dma_sync_single_for_cpu(qdev->pdev,
1416 pci_unmap_addr
1417 (sbq_desc, mapaddr),
1418 pci_unmap_len
1419 (sbq_desc, maplen),
1420 PCI_DMA_FROMDEVICE);
1421 memcpy(skb_put(skb, length),
1422 sbq_desc->p.skb->data, length);
1423 pci_dma_sync_single_for_device(qdev->pdev,
1424 pci_unmap_addr
1425 (sbq_desc,
1426 mapaddr),
1427 pci_unmap_len
1428 (sbq_desc,
1429 maplen),
1430 PCI_DMA_FROMDEVICE);
1431 } else {
1432 QPRINTK(qdev, RX_STATUS, DEBUG,
1433 "%d bytes in a single small buffer.\n", length);
1434 sbq_desc = ql_get_curr_sbuf(rx_ring);
1435 skb = sbq_desc->p.skb;
1436 ql_realign_skb(skb, length);
1437 skb_put(skb, length);
1438 pci_unmap_single(qdev->pdev,
1439 pci_unmap_addr(sbq_desc,
1440 mapaddr),
1441 pci_unmap_len(sbq_desc,
1442 maplen),
1443 PCI_DMA_FROMDEVICE);
1444 sbq_desc->p.skb = NULL;
1445 }
1446 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1447 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1448 QPRINTK(qdev, RX_STATUS, DEBUG,
1449 "Header in small, %d bytes in large. Chain large to small!\n", length);
1450 /*
1451 * The data is in a single large buffer. We
1452 * chain it to the header buffer's skb and let
1453 * it rip.
1454 */
1455 lbq_desc = ql_get_curr_lbuf(rx_ring);
1456 pci_unmap_page(qdev->pdev,
1457 pci_unmap_addr(lbq_desc,
1458 mapaddr),
1459 pci_unmap_len(lbq_desc, maplen),
1460 PCI_DMA_FROMDEVICE);
1461 QPRINTK(qdev, RX_STATUS, DEBUG,
1462 "Chaining page to skb.\n");
1463 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1464 0, length);
1465 skb->len += length;
1466 skb->data_len += length;
1467 skb->truesize += length;
1468 lbq_desc->p.lbq_page = NULL;
1469 } else {
1470 /*
1471 * The headers and data are in a single large buffer. We
1472 * copy it to a new skb and let it go. This can happen with
1473 * jumbo mtu on a non-TCP/UDP frame.
1474 */
1475 lbq_desc = ql_get_curr_lbuf(rx_ring);
1476 skb = netdev_alloc_skb(qdev->ndev, length);
1477 if (skb == NULL) {
1478 QPRINTK(qdev, PROBE, DEBUG,
1479 "No skb available, drop the packet.\n");
1480 return NULL;
1481 }
4055c7d4
RM
1482 pci_unmap_page(qdev->pdev,
1483 pci_unmap_addr(lbq_desc,
1484 mapaddr),
1485 pci_unmap_len(lbq_desc, maplen),
1486 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1487 skb_reserve(skb, NET_IP_ALIGN);
1488 QPRINTK(qdev, RX_STATUS, DEBUG,
1489 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1490 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1491 0, length);
1492 skb->len += length;
1493 skb->data_len += length;
1494 skb->truesize += length;
1495 length -= length;
1496 lbq_desc->p.lbq_page = NULL;
1497 __pskb_pull_tail(skb,
1498 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1499 VLAN_ETH_HLEN : ETH_HLEN);
1500 }
1501 } else {
1502 /*
1503 * The data is in a chain of large buffers
1504 * pointed to by a small buffer. We loop
1505 * thru and chain them to the our small header
1506 * buffer's skb.
1507 * frags: There are 18 max frags and our small
1508 * buffer will hold 32 of them. The thing is,
1509 * we'll use 3 max for our 9000 byte jumbo
1510 * frames. If the MTU goes up we could
1511 * eventually be in trouble.
1512 */
1513 int size, offset, i = 0;
2c9a0d41 1514 __le64 *bq, bq_array[8];
c4e84bde
RM
1515 sbq_desc = ql_get_curr_sbuf(rx_ring);
1516 pci_unmap_single(qdev->pdev,
1517 pci_unmap_addr(sbq_desc, mapaddr),
1518 pci_unmap_len(sbq_desc, maplen),
1519 PCI_DMA_FROMDEVICE);
1520 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1521 /*
1522 * This is an non TCP/UDP IP frame, so
1523 * the headers aren't split into a small
1524 * buffer. We have to use the small buffer
1525 * that contains our sg list as our skb to
1526 * send upstairs. Copy the sg list here to
1527 * a local buffer and use it to find the
1528 * pages to chain.
1529 */
1530 QPRINTK(qdev, RX_STATUS, DEBUG,
1531 "%d bytes of headers & data in chain of large.\n", length);
1532 skb = sbq_desc->p.skb;
1533 bq = &bq_array[0];
1534 memcpy(bq, skb->data, sizeof(bq_array));
1535 sbq_desc->p.skb = NULL;
1536 skb_reserve(skb, NET_IP_ALIGN);
1537 } else {
1538 QPRINTK(qdev, RX_STATUS, DEBUG,
1539 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1540 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1541 }
1542 while (length > 0) {
1543 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1544 pci_unmap_page(qdev->pdev,
1545 pci_unmap_addr(lbq_desc,
1546 mapaddr),
1547 pci_unmap_len(lbq_desc,
1548 maplen),
1549 PCI_DMA_FROMDEVICE);
1550 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1551 offset = 0;
1552
1553 QPRINTK(qdev, RX_STATUS, DEBUG,
1554 "Adding page %d to skb for %d bytes.\n",
1555 i, size);
1556 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1557 offset, size);
1558 skb->len += size;
1559 skb->data_len += size;
1560 skb->truesize += size;
1561 length -= size;
1562 lbq_desc->p.lbq_page = NULL;
1563 bq++;
1564 i++;
1565 }
1566 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1567 VLAN_ETH_HLEN : ETH_HLEN);
1568 }
1569 return skb;
1570}
1571
1572/* Process an inbound completion from an rx ring. */
1573static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1574 struct rx_ring *rx_ring,
1575 struct ib_mac_iocb_rsp *ib_mac_rsp)
1576{
1577 struct net_device *ndev = qdev->ndev;
1578 struct sk_buff *skb = NULL;
22bdd4f5
RM
1579 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1580 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1581
1582 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1583
1584 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1585 if (unlikely(!skb)) {
1586 QPRINTK(qdev, RX_STATUS, DEBUG,
1587 "No skb available, drop packet.\n");
1588 return;
1589 }
1590
a32959cd
RM
1591 /* Frame error, so drop the packet. */
1592 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1593 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1594 ib_mac_rsp->flags2);
1595 dev_kfree_skb_any(skb);
1596 return;
1597 }
ec33a491
RM
1598
1599 /* The max framesize filter on this chip is set higher than
1600 * MTU since FCoE uses 2k frames.
1601 */
1602 if (skb->len > ndev->mtu + ETH_HLEN) {
1603 dev_kfree_skb_any(skb);
1604 return;
1605 }
1606
c4e84bde
RM
1607 prefetch(skb->data);
1608 skb->dev = ndev;
1609 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1610 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1611 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1612 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1613 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1614 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1615 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1616 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1617 }
1618 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1619 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1620 }
d555f592 1621
d555f592
RM
1622 skb->protocol = eth_type_trans(skb, ndev);
1623 skb->ip_summed = CHECKSUM_NONE;
1624
1625 /* If rx checksum is on, and there are no
1626 * csum or frame errors.
1627 */
1628 if (qdev->rx_csum &&
d555f592
RM
1629 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1630 /* TCP frame. */
1631 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1632 QPRINTK(qdev, RX_STATUS, DEBUG,
1633 "TCP checksum done!\n");
1634 skb->ip_summed = CHECKSUM_UNNECESSARY;
1635 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1636 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1637 /* Unfragmented ipv4 UDP frame. */
1638 struct iphdr *iph = (struct iphdr *) skb->data;
1639 if (!(iph->frag_off &
1640 cpu_to_be16(IP_MF|IP_OFFSET))) {
1641 skb->ip_summed = CHECKSUM_UNNECESSARY;
1642 QPRINTK(qdev, RX_STATUS, DEBUG,
1643 "TCP checksum done!\n");
1644 }
1645 }
c4e84bde 1646 }
d555f592 1647
c4e84bde
RM
1648 qdev->stats.rx_packets++;
1649 qdev->stats.rx_bytes += skb->len;
b2014ff8 1650 skb_record_rx_queue(skb, rx_ring->cq_id);
22bdd4f5
RM
1651 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1652 if (qdev->vlgrp &&
1653 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1654 (vlan_id != 0))
1655 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1656 vlan_id, skb);
1657 else
1658 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1659 } else {
22bdd4f5
RM
1660 if (qdev->vlgrp &&
1661 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1662 (vlan_id != 0))
1663 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1664 else
1665 netif_receive_skb(skb);
c4e84bde 1666 }
c4e84bde
RM
1667}
1668
1669/* Process an outbound completion from an rx ring. */
1670static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1671 struct ob_mac_iocb_rsp *mac_rsp)
1672{
1673 struct tx_ring *tx_ring;
1674 struct tx_ring_desc *tx_ring_desc;
1675
1676 QL_DUMP_OB_MAC_RSP(mac_rsp);
1677 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1678 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1679 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
13cfd5be 1680 qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
c4e84bde
RM
1681 qdev->stats.tx_packets++;
1682 dev_kfree_skb(tx_ring_desc->skb);
1683 tx_ring_desc->skb = NULL;
1684
1685 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1686 OB_MAC_IOCB_RSP_S |
1687 OB_MAC_IOCB_RSP_L |
1688 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1689 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1690 QPRINTK(qdev, TX_DONE, WARNING,
1691 "Total descriptor length did not match transfer length.\n");
1692 }
1693 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1694 QPRINTK(qdev, TX_DONE, WARNING,
1695 "Frame too short to be legal, not sent.\n");
1696 }
1697 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1698 QPRINTK(qdev, TX_DONE, WARNING,
1699 "Frame too long, but sent anyway.\n");
1700 }
1701 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1702 QPRINTK(qdev, TX_DONE, WARNING,
1703 "PCI backplane error. Frame not sent.\n");
1704 }
1705 }
1706 atomic_inc(&tx_ring->tx_count);
1707}
1708
1709/* Fire up a handler to reset the MPI processor. */
1710void ql_queue_fw_error(struct ql_adapter *qdev)
1711{
6a473308 1712 ql_link_off(qdev);
c4e84bde
RM
1713 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1714}
1715
1716void ql_queue_asic_error(struct ql_adapter *qdev)
1717{
6a473308 1718 ql_link_off(qdev);
c4e84bde 1719 ql_disable_interrupts(qdev);
6497b607
RM
1720 /* Clear adapter up bit to signal the recovery
1721 * process that it shouldn't kill the reset worker
1722 * thread
1723 */
1724 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1725 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1726}
1727
1728static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1729 struct ib_ae_iocb_rsp *ib_ae_rsp)
1730{
1731 switch (ib_ae_rsp->event) {
1732 case MGMT_ERR_EVENT:
1733 QPRINTK(qdev, RX_ERR, ERR,
1734 "Management Processor Fatal Error.\n");
1735 ql_queue_fw_error(qdev);
1736 return;
1737
1738 case CAM_LOOKUP_ERR_EVENT:
1739 QPRINTK(qdev, LINK, ERR,
1740 "Multiple CAM hits lookup occurred.\n");
1741 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1742 ql_queue_asic_error(qdev);
1743 return;
1744
1745 case SOFT_ECC_ERROR_EVENT:
1746 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1747 ql_queue_asic_error(qdev);
1748 break;
1749
1750 case PCI_ERR_ANON_BUF_RD:
1751 QPRINTK(qdev, RX_ERR, ERR,
1752 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1753 ib_ae_rsp->q_id);
1754 ql_queue_asic_error(qdev);
1755 break;
1756
1757 default:
1758 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1759 ib_ae_rsp->event);
1760 ql_queue_asic_error(qdev);
1761 break;
1762 }
1763}
1764
1765static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1766{
1767 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1768 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1769 struct ob_mac_iocb_rsp *net_rsp = NULL;
1770 int count = 0;
1771
1e213303 1772 struct tx_ring *tx_ring;
c4e84bde
RM
1773 /* While there are entries in the completion queue. */
1774 while (prod != rx_ring->cnsmr_idx) {
1775
1776 QPRINTK(qdev, RX_STATUS, DEBUG,
1777 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1778 prod, rx_ring->cnsmr_idx);
1779
1780 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1781 rmb();
1782 switch (net_rsp->opcode) {
1783
1784 case OPCODE_OB_MAC_TSO_IOCB:
1785 case OPCODE_OB_MAC_IOCB:
1786 ql_process_mac_tx_intr(qdev, net_rsp);
1787 break;
1788 default:
1789 QPRINTK(qdev, RX_STATUS, DEBUG,
1790 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1791 net_rsp->opcode);
1792 }
1793 count++;
1794 ql_update_cq(rx_ring);
ba7cd3ba 1795 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1796 }
1797 ql_write_cq_idx(rx_ring);
1e213303
RM
1798 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1799 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1800 net_rsp != NULL) {
c4e84bde
RM
1801 if (atomic_read(&tx_ring->queue_stopped) &&
1802 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1803 /*
1804 * The queue got stopped because the tx_ring was full.
1805 * Wake it up, because it's now at least 25% empty.
1806 */
1e213303 1807 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
1808 }
1809
1810 return count;
1811}
1812
1813static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1814{
1815 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1816 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1817 struct ql_net_rsp_iocb *net_rsp;
1818 int count = 0;
1819
1820 /* While there are entries in the completion queue. */
1821 while (prod != rx_ring->cnsmr_idx) {
1822
1823 QPRINTK(qdev, RX_STATUS, DEBUG,
1824 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1825 prod, rx_ring->cnsmr_idx);
1826
1827 net_rsp = rx_ring->curr_entry;
1828 rmb();
1829 switch (net_rsp->opcode) {
1830 case OPCODE_IB_MAC_IOCB:
1831 ql_process_mac_rx_intr(qdev, rx_ring,
1832 (struct ib_mac_iocb_rsp *)
1833 net_rsp);
1834 break;
1835
1836 case OPCODE_IB_AE_IOCB:
1837 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1838 net_rsp);
1839 break;
1840 default:
1841 {
1842 QPRINTK(qdev, RX_STATUS, DEBUG,
1843 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1844 net_rsp->opcode);
1845 }
1846 }
1847 count++;
1848 ql_update_cq(rx_ring);
ba7cd3ba 1849 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1850 if (count == budget)
1851 break;
1852 }
1853 ql_update_buffer_queues(qdev, rx_ring);
1854 ql_write_cq_idx(rx_ring);
1855 return count;
1856}
1857
1858static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1859{
1860 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1861 struct ql_adapter *qdev = rx_ring->qdev;
1862 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1863
1864 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1865 rx_ring->cq_id);
1866
1867 if (work_done < budget) {
22bdd4f5 1868 napi_complete(napi);
c4e84bde
RM
1869 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1870 }
1871 return work_done;
1872}
1873
1874static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1875{
1876 struct ql_adapter *qdev = netdev_priv(ndev);
1877
1878 qdev->vlgrp = grp;
1879 if (grp) {
1880 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1881 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1882 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1883 } else {
1884 QPRINTK(qdev, IFUP, DEBUG,
1885 "Turning off VLAN in NIC_RCV_CFG.\n");
1886 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1887 }
1888}
1889
1890static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1891{
1892 struct ql_adapter *qdev = netdev_priv(ndev);
1893 u32 enable_bit = MAC_ADDR_E;
cc288f54 1894 int status;
c4e84bde 1895
cc288f54
RM
1896 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1897 if (status)
1898 return;
c4e84bde
RM
1899 spin_lock(&qdev->hw_lock);
1900 if (ql_set_mac_addr_reg
1901 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1902 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1903 }
1904 spin_unlock(&qdev->hw_lock);
cc288f54 1905 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1906}
1907
1908static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1909{
1910 struct ql_adapter *qdev = netdev_priv(ndev);
1911 u32 enable_bit = 0;
cc288f54
RM
1912 int status;
1913
1914 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1915 if (status)
1916 return;
c4e84bde
RM
1917
1918 spin_lock(&qdev->hw_lock);
1919 if (ql_set_mac_addr_reg
1920 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1921 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1922 }
1923 spin_unlock(&qdev->hw_lock);
cc288f54 1924 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1925
1926}
1927
1928/* Worker thread to process a given rx_ring that is dedicated
1929 * to outbound completions.
1930 */
1931static void ql_tx_clean(struct work_struct *work)
1932{
1933 struct rx_ring *rx_ring =
1934 container_of(work, struct rx_ring, rx_work.work);
1935 ql_clean_outbound_rx_ring(rx_ring);
1936 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1937
1938}
1939
1940/* Worker thread to process a given rx_ring that is dedicated
1941 * to inbound completions.
1942 */
1943static void ql_rx_clean(struct work_struct *work)
1944{
1945 struct rx_ring *rx_ring =
1946 container_of(work, struct rx_ring, rx_work.work);
1947 ql_clean_inbound_rx_ring(rx_ring, 64);
1948 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1949}
1950
1951/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1952static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1953{
1954 struct rx_ring *rx_ring = dev_id;
1955 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1956 &rx_ring->rx_work, 0);
1957 return IRQ_HANDLED;
1958}
1959
1960/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1961static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1962{
1963 struct rx_ring *rx_ring = dev_id;
288379f0 1964 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1965 return IRQ_HANDLED;
1966}
1967
c4e84bde
RM
1968/* This handles a fatal error, MPI activity, and the default
1969 * rx_ring in an MSI-X multiple vector environment.
1970 * In MSI/Legacy environment it also process the rest of
1971 * the rx_rings.
1972 */
1973static irqreturn_t qlge_isr(int irq, void *dev_id)
1974{
1975 struct rx_ring *rx_ring = dev_id;
1976 struct ql_adapter *qdev = rx_ring->qdev;
1977 struct intr_context *intr_context = &qdev->intr_context[0];
1978 u32 var;
1979 int i;
1980 int work_done = 0;
1981
bb0d215c
RM
1982 spin_lock(&qdev->hw_lock);
1983 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1984 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1985 spin_unlock(&qdev->hw_lock);
1986 return IRQ_NONE;
c4e84bde 1987 }
bb0d215c 1988 spin_unlock(&qdev->hw_lock);
c4e84bde 1989
bb0d215c 1990 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1991
1992 /*
1993 * Check for fatal error.
1994 */
1995 if (var & STS_FE) {
1996 ql_queue_asic_error(qdev);
1997 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1998 var = ql_read32(qdev, ERR_STS);
1999 QPRINTK(qdev, INTR, ERR,
2000 "Resetting chip. Error Status Register = 0x%x\n", var);
2001 return IRQ_HANDLED;
2002 }
2003
2004 /*
2005 * Check MPI processor activity.
2006 */
2007 if (var & STS_PI) {
2008 /*
2009 * We've got an async event or mailbox completion.
2010 * Handle it and clear the source of the interrupt.
2011 */
2012 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2013 ql_disable_completion_interrupt(qdev, intr_context->intr);
2014 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
2015 &qdev->mpi_work, 0);
2016 work_done++;
2017 }
2018
2019 /*
2020 * Check the default queue and wake handler if active.
2021 */
2022 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 2023 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
2024 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
2025 ql_disable_completion_interrupt(qdev, intr_context->intr);
2026 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
2027 &rx_ring->rx_work, 0);
2028 work_done++;
2029 }
2030
2031 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2032 /*
2033 * Start the DPC for each active queue.
2034 */
2035 for (i = 1; i < qdev->rx_ring_count; i++) {
2036 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 2037 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
2038 rx_ring->cnsmr_idx) {
2039 QPRINTK(qdev, INTR, INFO,
2040 "Waking handler for rx_ring[%d].\n", i);
2041 ql_disable_completion_interrupt(qdev,
2042 intr_context->
2043 intr);
b2014ff8 2044 if (i >= qdev->rss_ring_count)
c4e84bde
RM
2045 queue_delayed_work_on(rx_ring->cpu,
2046 qdev->q_workqueue,
2047 &rx_ring->rx_work,
2048 0);
2049 else
288379f0 2050 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2051 work_done++;
2052 }
2053 }
2054 }
bb0d215c 2055 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2056 return work_done ? IRQ_HANDLED : IRQ_NONE;
2057}
2058
2059static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2060{
2061
2062 if (skb_is_gso(skb)) {
2063 int err;
2064 if (skb_header_cloned(skb)) {
2065 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2066 if (err)
2067 return err;
2068 }
2069
2070 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2071 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2072 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2073 mac_iocb_ptr->total_hdrs_len =
2074 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2075 mac_iocb_ptr->net_trans_offset =
2076 cpu_to_le16(skb_network_offset(skb) |
2077 skb_transport_offset(skb)
2078 << OB_MAC_TRANSPORT_HDR_SHIFT);
2079 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2080 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2081 if (likely(skb->protocol == htons(ETH_P_IP))) {
2082 struct iphdr *iph = ip_hdr(skb);
2083 iph->check = 0;
2084 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2085 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2086 iph->daddr, 0,
2087 IPPROTO_TCP,
2088 0);
2089 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2090 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2091 tcp_hdr(skb)->check =
2092 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2093 &ipv6_hdr(skb)->daddr,
2094 0, IPPROTO_TCP, 0);
2095 }
2096 return 1;
2097 }
2098 return 0;
2099}
2100
2101static void ql_hw_csum_setup(struct sk_buff *skb,
2102 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2103{
2104 int len;
2105 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2106 __sum16 *check;
c4e84bde
RM
2107 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2108 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2109 mac_iocb_ptr->net_trans_offset =
2110 cpu_to_le16(skb_network_offset(skb) |
2111 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2112
2113 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2114 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2115 if (likely(iph->protocol == IPPROTO_TCP)) {
2116 check = &(tcp_hdr(skb)->check);
2117 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2118 mac_iocb_ptr->total_hdrs_len =
2119 cpu_to_le16(skb_transport_offset(skb) +
2120 (tcp_hdr(skb)->doff << 2));
2121 } else {
2122 check = &(udp_hdr(skb)->check);
2123 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2124 mac_iocb_ptr->total_hdrs_len =
2125 cpu_to_le16(skb_transport_offset(skb) +
2126 sizeof(struct udphdr));
2127 }
2128 *check = ~csum_tcpudp_magic(iph->saddr,
2129 iph->daddr, len, iph->protocol, 0);
2130}
2131
2132static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2133{
2134 struct tx_ring_desc *tx_ring_desc;
2135 struct ob_mac_iocb_req *mac_iocb_ptr;
2136 struct ql_adapter *qdev = netdev_priv(ndev);
2137 int tso;
2138 struct tx_ring *tx_ring;
1e213303 2139 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2140
2141 tx_ring = &qdev->tx_ring[tx_ring_idx];
2142
74c50b4b
RM
2143 if (skb_padto(skb, ETH_ZLEN))
2144 return NETDEV_TX_OK;
2145
c4e84bde
RM
2146 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2147 QPRINTK(qdev, TX_QUEUED, INFO,
2148 "%s: shutting down tx queue %d du to lack of resources.\n",
2149 __func__, tx_ring_idx);
1e213303 2150 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde
RM
2151 atomic_inc(&tx_ring->queue_stopped);
2152 return NETDEV_TX_BUSY;
2153 }
2154 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2155 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2156 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2157
2158 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2159 mac_iocb_ptr->tid = tx_ring_desc->index;
2160 /* We use the upper 32-bits to store the tx queue for this IO.
2161 * When we get the completion we can use it to establish the context.
2162 */
2163 mac_iocb_ptr->txq_idx = tx_ring_idx;
2164 tx_ring_desc->skb = skb;
2165
2166 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2167
2168 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2169 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2170 vlan_tx_tag_get(skb));
2171 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2172 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2173 }
2174 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2175 if (tso < 0) {
2176 dev_kfree_skb_any(skb);
2177 return NETDEV_TX_OK;
2178 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2179 ql_hw_csum_setup(skb,
2180 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2181 }
0d979f74
RM
2182 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2183 NETDEV_TX_OK) {
2184 QPRINTK(qdev, TX_QUEUED, ERR,
2185 "Could not map the segments.\n");
2186 return NETDEV_TX_BUSY;
2187 }
c4e84bde
RM
2188 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2189 tx_ring->prod_idx++;
2190 if (tx_ring->prod_idx == tx_ring->wq_len)
2191 tx_ring->prod_idx = 0;
2192 wmb();
2193
2194 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
c4e84bde
RM
2195 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2196 tx_ring->prod_idx, skb->len);
2197
2198 atomic_dec(&tx_ring->tx_count);
2199 return NETDEV_TX_OK;
2200}
2201
2202static void ql_free_shadow_space(struct ql_adapter *qdev)
2203{
2204 if (qdev->rx_ring_shadow_reg_area) {
2205 pci_free_consistent(qdev->pdev,
2206 PAGE_SIZE,
2207 qdev->rx_ring_shadow_reg_area,
2208 qdev->rx_ring_shadow_reg_dma);
2209 qdev->rx_ring_shadow_reg_area = NULL;
2210 }
2211 if (qdev->tx_ring_shadow_reg_area) {
2212 pci_free_consistent(qdev->pdev,
2213 PAGE_SIZE,
2214 qdev->tx_ring_shadow_reg_area,
2215 qdev->tx_ring_shadow_reg_dma);
2216 qdev->tx_ring_shadow_reg_area = NULL;
2217 }
2218}
2219
2220static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2221{
2222 qdev->rx_ring_shadow_reg_area =
2223 pci_alloc_consistent(qdev->pdev,
2224 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2225 if (qdev->rx_ring_shadow_reg_area == NULL) {
2226 QPRINTK(qdev, IFUP, ERR,
2227 "Allocation of RX shadow space failed.\n");
2228 return -ENOMEM;
2229 }
b25215d0 2230 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2231 qdev->tx_ring_shadow_reg_area =
2232 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2233 &qdev->tx_ring_shadow_reg_dma);
2234 if (qdev->tx_ring_shadow_reg_area == NULL) {
2235 QPRINTK(qdev, IFUP, ERR,
2236 "Allocation of TX shadow space failed.\n");
2237 goto err_wqp_sh_area;
2238 }
b25215d0 2239 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2240 return 0;
2241
2242err_wqp_sh_area:
2243 pci_free_consistent(qdev->pdev,
2244 PAGE_SIZE,
2245 qdev->rx_ring_shadow_reg_area,
2246 qdev->rx_ring_shadow_reg_dma);
2247 return -ENOMEM;
2248}
2249
2250static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2251{
2252 struct tx_ring_desc *tx_ring_desc;
2253 int i;
2254 struct ob_mac_iocb_req *mac_iocb_ptr;
2255
2256 mac_iocb_ptr = tx_ring->wq_base;
2257 tx_ring_desc = tx_ring->q;
2258 for (i = 0; i < tx_ring->wq_len; i++) {
2259 tx_ring_desc->index = i;
2260 tx_ring_desc->skb = NULL;
2261 tx_ring_desc->queue_entry = mac_iocb_ptr;
2262 mac_iocb_ptr++;
2263 tx_ring_desc++;
2264 }
2265 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2266 atomic_set(&tx_ring->queue_stopped, 0);
2267}
2268
2269static void ql_free_tx_resources(struct ql_adapter *qdev,
2270 struct tx_ring *tx_ring)
2271{
2272 if (tx_ring->wq_base) {
2273 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2274 tx_ring->wq_base, tx_ring->wq_base_dma);
2275 tx_ring->wq_base = NULL;
2276 }
2277 kfree(tx_ring->q);
2278 tx_ring->q = NULL;
2279}
2280
2281static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2282 struct tx_ring *tx_ring)
2283{
2284 tx_ring->wq_base =
2285 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2286 &tx_ring->wq_base_dma);
2287
2288 if ((tx_ring->wq_base == NULL)
88c55e3c 2289 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
c4e84bde
RM
2290 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2291 return -ENOMEM;
2292 }
2293 tx_ring->q =
2294 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2295 if (tx_ring->q == NULL)
2296 goto err;
2297
2298 return 0;
2299err:
2300 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2301 tx_ring->wq_base, tx_ring->wq_base_dma);
2302 return -ENOMEM;
2303}
2304
8668ae92 2305static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2306{
2307 int i;
2308 struct bq_desc *lbq_desc;
2309
2310 for (i = 0; i < rx_ring->lbq_len; i++) {
2311 lbq_desc = &rx_ring->lbq[i];
2312 if (lbq_desc->p.lbq_page) {
2313 pci_unmap_page(qdev->pdev,
2314 pci_unmap_addr(lbq_desc, mapaddr),
2315 pci_unmap_len(lbq_desc, maplen),
2316 PCI_DMA_FROMDEVICE);
2317
2318 put_page(lbq_desc->p.lbq_page);
2319 lbq_desc->p.lbq_page = NULL;
2320 }
c4e84bde
RM
2321 }
2322}
2323
8668ae92 2324static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2325{
2326 int i;
2327 struct bq_desc *sbq_desc;
2328
2329 for (i = 0; i < rx_ring->sbq_len; i++) {
2330 sbq_desc = &rx_ring->sbq[i];
2331 if (sbq_desc == NULL) {
2332 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2333 return;
2334 }
2335 if (sbq_desc->p.skb) {
2336 pci_unmap_single(qdev->pdev,
2337 pci_unmap_addr(sbq_desc, mapaddr),
2338 pci_unmap_len(sbq_desc, maplen),
2339 PCI_DMA_FROMDEVICE);
2340 dev_kfree_skb(sbq_desc->p.skb);
2341 sbq_desc->p.skb = NULL;
2342 }
c4e84bde
RM
2343 }
2344}
2345
4545a3f2
RM
2346/* Free all large and small rx buffers associated
2347 * with the completion queues for this device.
2348 */
2349static void ql_free_rx_buffers(struct ql_adapter *qdev)
2350{
2351 int i;
2352 struct rx_ring *rx_ring;
2353
2354 for (i = 0; i < qdev->rx_ring_count; i++) {
2355 rx_ring = &qdev->rx_ring[i];
2356 if (rx_ring->lbq)
2357 ql_free_lbq_buffers(qdev, rx_ring);
2358 if (rx_ring->sbq)
2359 ql_free_sbq_buffers(qdev, rx_ring);
2360 }
2361}
2362
2363static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2364{
2365 struct rx_ring *rx_ring;
2366 int i;
2367
2368 for (i = 0; i < qdev->rx_ring_count; i++) {
2369 rx_ring = &qdev->rx_ring[i];
2370 if (rx_ring->type != TX_Q)
2371 ql_update_buffer_queues(qdev, rx_ring);
2372 }
2373}
2374
2375static void ql_init_lbq_ring(struct ql_adapter *qdev,
2376 struct rx_ring *rx_ring)
2377{
2378 int i;
2379 struct bq_desc *lbq_desc;
2380 __le64 *bq = rx_ring->lbq_base;
2381
2382 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2383 for (i = 0; i < rx_ring->lbq_len; i++) {
2384 lbq_desc = &rx_ring->lbq[i];
2385 memset(lbq_desc, 0, sizeof(*lbq_desc));
2386 lbq_desc->index = i;
2387 lbq_desc->addr = bq;
2388 bq++;
2389 }
2390}
2391
2392static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2393 struct rx_ring *rx_ring)
2394{
2395 int i;
2396 struct bq_desc *sbq_desc;
2c9a0d41 2397 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2398
4545a3f2 2399 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2400 for (i = 0; i < rx_ring->sbq_len; i++) {
2401 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2402 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2403 sbq_desc->index = i;
2c9a0d41 2404 sbq_desc->addr = bq;
c4e84bde
RM
2405 bq++;
2406 }
c4e84bde
RM
2407}
2408
2409static void ql_free_rx_resources(struct ql_adapter *qdev,
2410 struct rx_ring *rx_ring)
2411{
c4e84bde
RM
2412 /* Free the small buffer queue. */
2413 if (rx_ring->sbq_base) {
2414 pci_free_consistent(qdev->pdev,
2415 rx_ring->sbq_size,
2416 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2417 rx_ring->sbq_base = NULL;
2418 }
2419
2420 /* Free the small buffer queue control blocks. */
2421 kfree(rx_ring->sbq);
2422 rx_ring->sbq = NULL;
2423
2424 /* Free the large buffer queue. */
2425 if (rx_ring->lbq_base) {
2426 pci_free_consistent(qdev->pdev,
2427 rx_ring->lbq_size,
2428 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2429 rx_ring->lbq_base = NULL;
2430 }
2431
2432 /* Free the large buffer queue control blocks. */
2433 kfree(rx_ring->lbq);
2434 rx_ring->lbq = NULL;
2435
2436 /* Free the rx queue. */
2437 if (rx_ring->cq_base) {
2438 pci_free_consistent(qdev->pdev,
2439 rx_ring->cq_size,
2440 rx_ring->cq_base, rx_ring->cq_base_dma);
2441 rx_ring->cq_base = NULL;
2442 }
2443}
2444
2445/* Allocate queues and buffers for this completions queue based
2446 * on the values in the parameter structure. */
2447static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2448 struct rx_ring *rx_ring)
2449{
2450
2451 /*
2452 * Allocate the completion queue for this rx_ring.
2453 */
2454 rx_ring->cq_base =
2455 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2456 &rx_ring->cq_base_dma);
2457
2458 if (rx_ring->cq_base == NULL) {
2459 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2460 return -ENOMEM;
2461 }
2462
2463 if (rx_ring->sbq_len) {
2464 /*
2465 * Allocate small buffer queue.
2466 */
2467 rx_ring->sbq_base =
2468 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2469 &rx_ring->sbq_base_dma);
2470
2471 if (rx_ring->sbq_base == NULL) {
2472 QPRINTK(qdev, IFUP, ERR,
2473 "Small buffer queue allocation failed.\n");
2474 goto err_mem;
2475 }
2476
2477 /*
2478 * Allocate small buffer queue control blocks.
2479 */
2480 rx_ring->sbq =
2481 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2482 GFP_KERNEL);
2483 if (rx_ring->sbq == NULL) {
2484 QPRINTK(qdev, IFUP, ERR,
2485 "Small buffer queue control block allocation failed.\n");
2486 goto err_mem;
2487 }
2488
4545a3f2 2489 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2490 }
2491
2492 if (rx_ring->lbq_len) {
2493 /*
2494 * Allocate large buffer queue.
2495 */
2496 rx_ring->lbq_base =
2497 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2498 &rx_ring->lbq_base_dma);
2499
2500 if (rx_ring->lbq_base == NULL) {
2501 QPRINTK(qdev, IFUP, ERR,
2502 "Large buffer queue allocation failed.\n");
2503 goto err_mem;
2504 }
2505 /*
2506 * Allocate large buffer queue control blocks.
2507 */
2508 rx_ring->lbq =
2509 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2510 GFP_KERNEL);
2511 if (rx_ring->lbq == NULL) {
2512 QPRINTK(qdev, IFUP, ERR,
2513 "Large buffer queue control block allocation failed.\n");
2514 goto err_mem;
2515 }
2516
4545a3f2 2517 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2518 }
2519
2520 return 0;
2521
2522err_mem:
2523 ql_free_rx_resources(qdev, rx_ring);
2524 return -ENOMEM;
2525}
2526
2527static void ql_tx_ring_clean(struct ql_adapter *qdev)
2528{
2529 struct tx_ring *tx_ring;
2530 struct tx_ring_desc *tx_ring_desc;
2531 int i, j;
2532
2533 /*
2534 * Loop through all queues and free
2535 * any resources.
2536 */
2537 for (j = 0; j < qdev->tx_ring_count; j++) {
2538 tx_ring = &qdev->tx_ring[j];
2539 for (i = 0; i < tx_ring->wq_len; i++) {
2540 tx_ring_desc = &tx_ring->q[i];
2541 if (tx_ring_desc && tx_ring_desc->skb) {
2542 QPRINTK(qdev, IFDOWN, ERR,
2543 "Freeing lost SKB %p, from queue %d, index %d.\n",
2544 tx_ring_desc->skb, j,
2545 tx_ring_desc->index);
2546 ql_unmap_send(qdev, tx_ring_desc,
2547 tx_ring_desc->map_cnt);
2548 dev_kfree_skb(tx_ring_desc->skb);
2549 tx_ring_desc->skb = NULL;
2550 }
2551 }
2552 }
2553}
2554
c4e84bde
RM
2555static void ql_free_mem_resources(struct ql_adapter *qdev)
2556{
2557 int i;
2558
2559 for (i = 0; i < qdev->tx_ring_count; i++)
2560 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2561 for (i = 0; i < qdev->rx_ring_count; i++)
2562 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2563 ql_free_shadow_space(qdev);
2564}
2565
2566static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2567{
2568 int i;
2569
2570 /* Allocate space for our shadow registers and such. */
2571 if (ql_alloc_shadow_space(qdev))
2572 return -ENOMEM;
2573
2574 for (i = 0; i < qdev->rx_ring_count; i++) {
2575 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2576 QPRINTK(qdev, IFUP, ERR,
2577 "RX resource allocation failed.\n");
2578 goto err_mem;
2579 }
2580 }
2581 /* Allocate tx queue resources */
2582 for (i = 0; i < qdev->tx_ring_count; i++) {
2583 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2584 QPRINTK(qdev, IFUP, ERR,
2585 "TX resource allocation failed.\n");
2586 goto err_mem;
2587 }
2588 }
2589 return 0;
2590
2591err_mem:
2592 ql_free_mem_resources(qdev);
2593 return -ENOMEM;
2594}
2595
2596/* Set up the rx ring control block and pass it to the chip.
2597 * The control block is defined as
2598 * "Completion Queue Initialization Control Block", or cqicb.
2599 */
2600static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2601{
2602 struct cqicb *cqicb = &rx_ring->cqicb;
2603 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 2604 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 2605 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 2606 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
2607 void __iomem *doorbell_area =
2608 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2609 int err = 0;
2610 u16 bq_len;
d4a4aba6 2611 u64 tmp;
b8facca0
RM
2612 __le64 *base_indirect_ptr;
2613 int page_entries;
c4e84bde
RM
2614
2615 /* Set up the shadow registers for this ring. */
2616 rx_ring->prod_idx_sh_reg = shadow_reg;
2617 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2618 shadow_reg += sizeof(u64);
2619 shadow_reg_dma += sizeof(u64);
2620 rx_ring->lbq_base_indirect = shadow_reg;
2621 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
2622 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2623 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
2624 rx_ring->sbq_base_indirect = shadow_reg;
2625 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2626
2627 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2628 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2629 rx_ring->cnsmr_idx = 0;
2630 rx_ring->curr_entry = rx_ring->cq_base;
2631
2632 /* PCI doorbell mem area + 0x04 for valid register */
2633 rx_ring->valid_db_reg = doorbell_area + 0x04;
2634
2635 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2636 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2637
2638 /* PCI doorbell mem area + 0x1c */
8668ae92 2639 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2640
2641 memset((void *)cqicb, 0, sizeof(struct cqicb));
2642 cqicb->msix_vect = rx_ring->irq;
2643
459caf5a
RM
2644 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2645 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2646
97345524 2647 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2648
97345524 2649 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2650
2651 /*
2652 * Set up the control block load flags.
2653 */
2654 cqicb->flags = FLAGS_LC | /* Load queue base address */
2655 FLAGS_LV | /* Load MSI-X vector */
2656 FLAGS_LI; /* Load irq delay values */
2657 if (rx_ring->lbq_len) {
2658 cqicb->flags |= FLAGS_LL; /* Load lbq values */
d4a4aba6 2659 tmp = (u64)rx_ring->lbq_base_dma;;
b8facca0
RM
2660 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2661 page_entries = 0;
2662 do {
2663 *base_indirect_ptr = cpu_to_le64(tmp);
2664 tmp += DB_PAGE_SIZE;
2665 base_indirect_ptr++;
2666 page_entries++;
2667 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
2668 cqicb->lbq_addr =
2669 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2670 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2671 (u16) rx_ring->lbq_buf_size;
2672 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2673 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2674 (u16) rx_ring->lbq_len;
c4e84bde 2675 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2676 rx_ring->lbq_prod_idx = 0;
c4e84bde 2677 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2678 rx_ring->lbq_clean_idx = 0;
2679 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2680 }
2681 if (rx_ring->sbq_len) {
2682 cqicb->flags |= FLAGS_LS; /* Load sbq values */
d4a4aba6 2683 tmp = (u64)rx_ring->sbq_base_dma;;
b8facca0
RM
2684 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2685 page_entries = 0;
2686 do {
2687 *base_indirect_ptr = cpu_to_le64(tmp);
2688 tmp += DB_PAGE_SIZE;
2689 base_indirect_ptr++;
2690 page_entries++;
2691 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
2692 cqicb->sbq_addr =
2693 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 2694 cqicb->sbq_buf_size =
d4a4aba6 2695 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
459caf5a
RM
2696 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2697 (u16) rx_ring->sbq_len;
c4e84bde 2698 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2699 rx_ring->sbq_prod_idx = 0;
c4e84bde 2700 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2701 rx_ring->sbq_clean_idx = 0;
2702 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2703 }
2704 switch (rx_ring->type) {
2705 case TX_Q:
2706 /* If there's only one interrupt, then we use
2707 * worker threads to process the outbound
2708 * completion handling rx_rings. We do this so
2709 * they can be run on multiple CPUs. There is
2710 * room to play with this more where we would only
2711 * run in a worker if there are more than x number
2712 * of outbound completions on the queue and more
2713 * than one queue active. Some threshold that
2714 * would indicate a benefit in spite of the cost
2715 * of a context switch.
2716 * If there's more than one interrupt, then the
2717 * outbound completions are processed in the ISR.
2718 */
2719 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2720 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2721 else {
2722 /* With all debug warnings on we see a WARN_ON message
2723 * when we free the skb in the interrupt context.
2724 */
2725 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2726 }
2727 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2728 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2729 break;
2730 case DEFAULT_Q:
2731 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2732 cqicb->irq_delay = 0;
2733 cqicb->pkt_delay = 0;
2734 break;
2735 case RX_Q:
2736 /* Inbound completion handling rx_rings run in
2737 * separate NAPI contexts.
2738 */
2739 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2740 64);
2741 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2742 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2743 break;
2744 default:
2745 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2746 rx_ring->type);
2747 }
4974097a 2748 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2749 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2750 CFG_LCQ, rx_ring->cq_id);
2751 if (err) {
2752 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2753 return err;
2754 }
c4e84bde
RM
2755 return err;
2756}
2757
2758static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2759{
2760 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2761 void __iomem *doorbell_area =
2762 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2763 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2764 (tx_ring->wq_id * sizeof(u64));
2765 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2766 (tx_ring->wq_id * sizeof(u64));
2767 int err = 0;
2768
2769 /*
2770 * Assign doorbell registers for this tx_ring.
2771 */
2772 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2773 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2774 tx_ring->prod_idx = 0;
2775 /* TX PCI doorbell mem area + 0x04 */
2776 tx_ring->valid_db_reg = doorbell_area + 0x04;
2777
2778 /*
2779 * Assign shadow registers for this tx_ring.
2780 */
2781 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2782 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2783
2784 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2785 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2786 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2787 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2788 wqicb->rid = 0;
97345524 2789 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2790
97345524 2791 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2792
2793 ql_init_tx_ring(qdev, tx_ring);
2794
e332471c 2795 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
2796 (u16) tx_ring->wq_id);
2797 if (err) {
2798 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2799 return err;
2800 }
4974097a 2801 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2802 return err;
2803}
2804
2805static void ql_disable_msix(struct ql_adapter *qdev)
2806{
2807 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2808 pci_disable_msix(qdev->pdev);
2809 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2810 kfree(qdev->msi_x_entry);
2811 qdev->msi_x_entry = NULL;
2812 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2813 pci_disable_msi(qdev->pdev);
2814 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2815 }
2816}
2817
2818static void ql_enable_msix(struct ql_adapter *qdev)
2819{
2820 int i;
2821
2822 qdev->intr_count = 1;
2823 /* Get the MSIX vectors. */
2824 if (irq_type == MSIX_IRQ) {
2825 /* Try to alloc space for the msix struct,
2826 * if it fails then go to MSI/legacy.
2827 */
2828 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2829 sizeof(struct msix_entry),
2830 GFP_KERNEL);
2831 if (!qdev->msi_x_entry) {
2832 irq_type = MSI_IRQ;
2833 goto msi;
2834 }
2835
2836 for (i = 0; i < qdev->rx_ring_count; i++)
2837 qdev->msi_x_entry[i].entry = i;
2838
2839 if (!pci_enable_msix
2840 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2841 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2842 qdev->intr_count = qdev->rx_ring_count;
4974097a 2843 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2844 "MSI-X Enabled, got %d vectors.\n",
2845 qdev->intr_count);
2846 return;
2847 } else {
2848 kfree(qdev->msi_x_entry);
2849 qdev->msi_x_entry = NULL;
2850 QPRINTK(qdev, IFUP, WARNING,
2851 "MSI-X Enable failed, trying MSI.\n");
2852 irq_type = MSI_IRQ;
2853 }
2854 }
2855msi:
2856 if (irq_type == MSI_IRQ) {
2857 if (!pci_enable_msi(qdev->pdev)) {
2858 set_bit(QL_MSI_ENABLED, &qdev->flags);
2859 QPRINTK(qdev, IFUP, INFO,
2860 "Running with MSI interrupts.\n");
2861 return;
2862 }
2863 }
2864 irq_type = LEG_IRQ;
c4e84bde
RM
2865 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2866}
2867
2868/*
2869 * Here we build the intr_context structures based on
2870 * our rx_ring count and intr vector count.
2871 * The intr_context structure is used to hook each vector
2872 * to possibly different handlers.
2873 */
2874static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2875{
2876 int i = 0;
2877 struct intr_context *intr_context = &qdev->intr_context[0];
2878
2879 ql_enable_msix(qdev);
2880
2881 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2882 /* Each rx_ring has it's
2883 * own intr_context since we have separate
2884 * vectors for each queue.
2885 * This only true when MSI-X is enabled.
2886 */
2887 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2888 qdev->rx_ring[i].irq = i;
2889 intr_context->intr = i;
2890 intr_context->qdev = qdev;
2891 /*
2892 * We set up each vectors enable/disable/read bits so
2893 * there's no bit/mask calculations in the critical path.
2894 */
2895 intr_context->intr_en_mask =
2896 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2897 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2898 | i;
2899 intr_context->intr_dis_mask =
2900 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2901 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2902 INTR_EN_IHD | i;
2903 intr_context->intr_read_mask =
2904 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2905 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2906 i;
2907
b2014ff8 2908 if (i < qdev->rss_ring_count) {
c4e84bde 2909 /*
b2014ff8 2910 * Inbound queues handle unicast frames only.
c4e84bde 2911 */
b2014ff8
RM
2912 intr_context->handler = qlge_msix_rx_isr;
2913 sprintf(intr_context->name, "%s-rx-%d",
2914 qdev->ndev->name, i);
2915 } else {
c4e84bde
RM
2916 /*
2917 * Outbound queue is for outbound completions only.
2918 */
2919 intr_context->handler = qlge_msix_tx_isr;
c224969e 2920 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde 2921 qdev->ndev->name, i);
c4e84bde
RM
2922 }
2923 }
2924 } else {
2925 /*
2926 * All rx_rings use the same intr_context since
2927 * there is only one vector.
2928 */
2929 intr_context->intr = 0;
2930 intr_context->qdev = qdev;
2931 /*
2932 * We set up each vectors enable/disable/read bits so
2933 * there's no bit/mask calculations in the critical path.
2934 */
2935 intr_context->intr_en_mask =
2936 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2937 intr_context->intr_dis_mask =
2938 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2939 INTR_EN_TYPE_DISABLE;
2940 intr_context->intr_read_mask =
2941 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2942 /*
2943 * Single interrupt means one handler for all rings.
2944 */
2945 intr_context->handler = qlge_isr;
2946 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2947 for (i = 0; i < qdev->rx_ring_count; i++)
2948 qdev->rx_ring[i].irq = 0;
2949 }
2950}
2951
2952static void ql_free_irq(struct ql_adapter *qdev)
2953{
2954 int i;
2955 struct intr_context *intr_context = &qdev->intr_context[0];
2956
2957 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2958 if (intr_context->hooked) {
2959 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2960 free_irq(qdev->msi_x_entry[i].vector,
2961 &qdev->rx_ring[i]);
4974097a 2962 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2963 "freeing msix interrupt %d.\n", i);
2964 } else {
2965 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 2966 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2967 "freeing msi interrupt %d.\n", i);
2968 }
2969 }
2970 }
2971 ql_disable_msix(qdev);
2972}
2973
2974static int ql_request_irq(struct ql_adapter *qdev)
2975{
2976 int i;
2977 int status = 0;
2978 struct pci_dev *pdev = qdev->pdev;
2979 struct intr_context *intr_context = &qdev->intr_context[0];
2980
2981 ql_resolve_queues_to_irqs(qdev);
2982
2983 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2984 atomic_set(&intr_context->irq_cnt, 0);
2985 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2986 status = request_irq(qdev->msi_x_entry[i].vector,
2987 intr_context->handler,
2988 0,
2989 intr_context->name,
2990 &qdev->rx_ring[i]);
2991 if (status) {
2992 QPRINTK(qdev, IFUP, ERR,
2993 "Failed request for MSIX interrupt %d.\n",
2994 i);
2995 goto err_irq;
2996 } else {
4974097a 2997 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2998 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2999 i,
3000 qdev->rx_ring[i].type ==
3001 DEFAULT_Q ? "DEFAULT_Q" : "",
3002 qdev->rx_ring[i].type ==
3003 TX_Q ? "TX_Q" : "",
3004 qdev->rx_ring[i].type ==
3005 RX_Q ? "RX_Q" : "", intr_context->name);
3006 }
3007 } else {
3008 QPRINTK(qdev, IFUP, DEBUG,
3009 "trying msi or legacy interrupts.\n");
3010 QPRINTK(qdev, IFUP, DEBUG,
3011 "%s: irq = %d.\n", __func__, pdev->irq);
3012 QPRINTK(qdev, IFUP, DEBUG,
3013 "%s: context->name = %s.\n", __func__,
3014 intr_context->name);
3015 QPRINTK(qdev, IFUP, DEBUG,
3016 "%s: dev_id = 0x%p.\n", __func__,
3017 &qdev->rx_ring[0]);
3018 status =
3019 request_irq(pdev->irq, qlge_isr,
3020 test_bit(QL_MSI_ENABLED,
3021 &qdev->
3022 flags) ? 0 : IRQF_SHARED,
3023 intr_context->name, &qdev->rx_ring[0]);
3024 if (status)
3025 goto err_irq;
3026
3027 QPRINTK(qdev, IFUP, ERR,
3028 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3029 i,
3030 qdev->rx_ring[0].type ==
3031 DEFAULT_Q ? "DEFAULT_Q" : "",
3032 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3033 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3034 intr_context->name);
3035 }
3036 intr_context->hooked = 1;
3037 }
3038 return status;
3039err_irq:
3040 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3041 ql_free_irq(qdev);
3042 return status;
3043}
3044
3045static int ql_start_rss(struct ql_adapter *qdev)
3046{
3047 struct ricb *ricb = &qdev->ricb;
3048 int status = 0;
3049 int i;
3050 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3051
e332471c 3052 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3053
b2014ff8 3054 ricb->base_cq = RSS_L4K;
c4e84bde
RM
3055 ricb->flags =
3056 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3057 RSS_RT6);
3058 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3059
3060 /*
3061 * Fill out the Indirection Table.
3062 */
def48b6e
RM
3063 for (i = 0; i < 256; i++)
3064 hash_id[i] = i & (qdev->rss_ring_count - 1);
c4e84bde
RM
3065
3066 /*
3067 * Random values for the IPv6 and IPv4 Hash Keys.
3068 */
3069 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3070 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3071
4974097a 3072 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde 3073
e332471c 3074 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde
RM
3075 if (status) {
3076 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3077 return status;
3078 }
4974097a 3079 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
3080 return status;
3081}
3082
a5f59dc9 3083static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3084{
a5f59dc9 3085 int i, status = 0;
c4e84bde 3086
8587ea35
RM
3087 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3088 if (status)
3089 return status;
c4e84bde
RM
3090 /* Clear all the entries in the routing table. */
3091 for (i = 0; i < 16; i++) {
3092 status = ql_set_routing_reg(qdev, i, 0, 0);
3093 if (status) {
3094 QPRINTK(qdev, IFUP, ERR,
a5f59dc9
RM
3095 "Failed to init routing register for CAM "
3096 "packets.\n");
3097 break;
c4e84bde
RM
3098 }
3099 }
a5f59dc9
RM
3100 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3101 return status;
3102}
3103
3104/* Initialize the frame-to-queue routing. */
3105static int ql_route_initialize(struct ql_adapter *qdev)
3106{
3107 int status = 0;
3108
3109 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3110 if (status)
3111 return status;
3112
3113 /* Clear all the entries in the routing table. */
3114 status = ql_clear_routing_entries(qdev);
3115 if (status)
3116 goto exit;
c4e84bde
RM
3117
3118 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3119 if (status) {
3120 QPRINTK(qdev, IFUP, ERR,
3121 "Failed to init routing register for error packets.\n");
8587ea35 3122 goto exit;
c4e84bde
RM
3123 }
3124 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3125 if (status) {
3126 QPRINTK(qdev, IFUP, ERR,
3127 "Failed to init routing register for broadcast packets.\n");
8587ea35 3128 goto exit;
c4e84bde
RM
3129 }
3130 /* If we have more than one inbound queue, then turn on RSS in the
3131 * routing block.
3132 */
3133 if (qdev->rss_ring_count > 1) {
3134 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3135 RT_IDX_RSS_MATCH, 1);
3136 if (status) {
3137 QPRINTK(qdev, IFUP, ERR,
3138 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3139 goto exit;
c4e84bde
RM
3140 }
3141 }
3142
3143 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3144 RT_IDX_CAM_HIT, 1);
8587ea35 3145 if (status)
c4e84bde
RM
3146 QPRINTK(qdev, IFUP, ERR,
3147 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3148exit:
3149 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3150 return status;
3151}
3152
2ee1e272 3153int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3154{
7fab3bfe 3155 int status, set;
bb58b5b6 3156
7fab3bfe
RM
3157 /* If check if the link is up and use to
3158 * determine if we are setting or clearing
3159 * the MAC address in the CAM.
3160 */
3161 set = ql_read32(qdev, STS);
3162 set &= qdev->port_link_up;
3163 status = ql_set_mac_addr(qdev, set);
bb58b5b6
RM
3164 if (status) {
3165 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3166 return status;
3167 }
3168
3169 status = ql_route_initialize(qdev);
3170 if (status)
3171 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3172
3173 return status;
3174}
3175
c4e84bde
RM
3176static int ql_adapter_initialize(struct ql_adapter *qdev)
3177{
3178 u32 value, mask;
3179 int i;
3180 int status = 0;
3181
3182 /*
3183 * Set up the System register to halt on errors.
3184 */
3185 value = SYS_EFE | SYS_FAE;
3186 mask = value << 16;
3187 ql_write32(qdev, SYS, mask | value);
3188
c9cf0a04
RM
3189 /* Set the default queue, and VLAN behavior. */
3190 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3191 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3192 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3193
3194 /* Set the MPI interrupt to enabled. */
3195 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3196
3197 /* Enable the function, set pagesize, enable error checking. */
3198 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3199 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3200
3201 /* Set/clear header splitting. */
3202 mask = FSC_VM_PAGESIZE_MASK |
3203 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3204 ql_write32(qdev, FSC, mask | value);
3205
3206 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3207 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3208
3209 /* Start up the rx queues. */
3210 for (i = 0; i < qdev->rx_ring_count; i++) {
3211 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3212 if (status) {
3213 QPRINTK(qdev, IFUP, ERR,
3214 "Failed to start rx ring[%d].\n", i);
3215 return status;
3216 }
3217 }
3218
3219 /* If there is more than one inbound completion queue
3220 * then download a RICB to configure RSS.
3221 */
3222 if (qdev->rss_ring_count > 1) {
3223 status = ql_start_rss(qdev);
3224 if (status) {
3225 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3226 return status;
3227 }
3228 }
3229
3230 /* Start up the tx queues. */
3231 for (i = 0; i < qdev->tx_ring_count; i++) {
3232 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3233 if (status) {
3234 QPRINTK(qdev, IFUP, ERR,
3235 "Failed to start tx ring[%d].\n", i);
3236 return status;
3237 }
3238 }
3239
b0c2aadf
RM
3240 /* Initialize the port and set the max framesize. */
3241 status = qdev->nic_ops->port_initialize(qdev);
3242 if (status) {
3243 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3244 return status;
3245 }
c4e84bde 3246
bb58b5b6
RM
3247 /* Set up the MAC address and frame routing filter. */
3248 status = ql_cam_route_initialize(qdev);
c4e84bde 3249 if (status) {
bb58b5b6
RM
3250 QPRINTK(qdev, IFUP, ERR,
3251 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3252 return status;
3253 }
3254
3255 /* Start NAPI for the RSS queues. */
b2014ff8 3256 for (i = 0; i < qdev->rss_ring_count; i++) {
4974097a 3257 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3258 i);
3259 napi_enable(&qdev->rx_ring[i].napi);
3260 }
3261
3262 return status;
3263}
3264
3265/* Issue soft reset to chip. */
3266static int ql_adapter_reset(struct ql_adapter *qdev)
3267{
3268 u32 value;
c4e84bde 3269 int status = 0;
a5f59dc9 3270 unsigned long end_jiffies;
c4e84bde 3271
a5f59dc9
RM
3272 /* Clear all the entries in the routing table. */
3273 status = ql_clear_routing_entries(qdev);
3274 if (status) {
3275 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3276 return status;
3277 }
3278
3279 end_jiffies = jiffies +
3280 max((unsigned long)1, usecs_to_jiffies(30));
c4e84bde 3281 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3282
c4e84bde
RM
3283 do {
3284 value = ql_read32(qdev, RST_FO);
3285 if ((value & RST_FO_FR) == 0)
3286 break;
a75ee7f1
RM
3287 cpu_relax();
3288 } while (time_before(jiffies, end_jiffies));
c4e84bde 3289
c4e84bde 3290 if (value & RST_FO_FR) {
c4e84bde 3291 QPRINTK(qdev, IFDOWN, ERR,
3ac49a1c 3292 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3293 status = -ETIMEDOUT;
c4e84bde
RM
3294 }
3295
3296 return status;
3297}
3298
3299static void ql_display_dev_info(struct net_device *ndev)
3300{
3301 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3302
3303 QPRINTK(qdev, PROBE, INFO,
e4552f51 3304 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
c4e84bde
RM
3305 "XG Roll = %d, XG Rev = %d.\n",
3306 qdev->func,
e4552f51 3307 qdev->port,
c4e84bde
RM
3308 qdev->chip_rev_id & 0x0000000f,
3309 qdev->chip_rev_id >> 4 & 0x0000000f,
3310 qdev->chip_rev_id >> 8 & 0x0000000f,
3311 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3312 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3313}
3314
3315static int ql_adapter_down(struct ql_adapter *qdev)
3316{
c4e84bde
RM
3317 int i, status = 0;
3318 struct rx_ring *rx_ring;
3319
6a473308 3320 ql_link_off(qdev);
c4e84bde 3321
6497b607
RM
3322 /* Don't kill the reset worker thread if we
3323 * are in the process of recovery.
3324 */
3325 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3326 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3327 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3328 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3329 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3330 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde
RM
3331
3332 /* The default queue at index 0 is always processed in
3333 * a workqueue.
3334 */
3335 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3336
3337 /* The rest of the rx_rings are processed in
3338 * a workqueue only if it's a single interrupt
3339 * environment (MSI/Legacy).
3340 */
c062076c 3341 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3342 rx_ring = &qdev->rx_ring[i];
3343 /* Only the RSS rings use NAPI on multi irq
3344 * environment. Outbound completion processing
3345 * is done in interrupt context.
3346 */
b2014ff8 3347 if (i <= qdev->rss_ring_count) {
c4e84bde
RM
3348 napi_disable(&rx_ring->napi);
3349 } else {
3350 cancel_delayed_work_sync(&rx_ring->rx_work);
3351 }
3352 }
3353
3354 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3355
3356 ql_disable_interrupts(qdev);
3357
3358 ql_tx_ring_clean(qdev);
3359
6b318cb3
RM
3360 /* Call netif_napi_del() from common point.
3361 */
b2014ff8 3362 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3363 netif_napi_del(&qdev->rx_ring[i].napi);
3364
4545a3f2 3365 ql_free_rx_buffers(qdev);
2d6a5e95 3366
c4e84bde
RM
3367 spin_lock(&qdev->hw_lock);
3368 status = ql_adapter_reset(qdev);
3369 if (status)
3370 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3371 qdev->func);
3372 spin_unlock(&qdev->hw_lock);
3373 return status;
3374}
3375
3376static int ql_adapter_up(struct ql_adapter *qdev)
3377{
3378 int err = 0;
3379
c4e84bde
RM
3380 err = ql_adapter_initialize(qdev);
3381 if (err) {
3382 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
c4e84bde
RM
3383 goto err_init;
3384 }
c4e84bde 3385 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3386 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3387 /* If the port is initialized and the
3388 * link is up the turn on the carrier.
3389 */
3390 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3391 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3392 ql_link_on(qdev);
c4e84bde
RM
3393 ql_enable_interrupts(qdev);
3394 ql_enable_all_completion_interrupts(qdev);
1e213303 3395 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3396
3397 return 0;
3398err_init:
3399 ql_adapter_reset(qdev);
3400 return err;
3401}
3402
c4e84bde
RM
3403static void ql_release_adapter_resources(struct ql_adapter *qdev)
3404{
3405 ql_free_mem_resources(qdev);
3406 ql_free_irq(qdev);
3407}
3408
3409static int ql_get_adapter_resources(struct ql_adapter *qdev)
3410{
3411 int status = 0;
3412
3413 if (ql_alloc_mem_resources(qdev)) {
3414 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3415 return -ENOMEM;
3416 }
3417 status = ql_request_irq(qdev);
c4e84bde
RM
3418 return status;
3419}
3420
3421static int qlge_close(struct net_device *ndev)
3422{
3423 struct ql_adapter *qdev = netdev_priv(ndev);
3424
3425 /*
3426 * Wait for device to recover from a reset.
3427 * (Rarely happens, but possible.)
3428 */
3429 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3430 msleep(1);
3431 ql_adapter_down(qdev);
3432 ql_release_adapter_resources(qdev);
c4e84bde
RM
3433 return 0;
3434}
3435
3436static int ql_configure_rings(struct ql_adapter *qdev)
3437{
3438 int i;
3439 struct rx_ring *rx_ring;
3440 struct tx_ring *tx_ring;
3441 int cpu_cnt = num_online_cpus();
3442
3443 /*
3444 * For each processor present we allocate one
3445 * rx_ring for outbound completions, and one
3446 * rx_ring for inbound completions. Plus there is
3447 * always the one default queue. For the CPU
3448 * counts we end up with the following rx_rings:
3449 * rx_ring count =
3450 * one default queue +
3451 * (CPU count * outbound completion rx_ring) +
3452 * (CPU count * inbound (RSS) completion rx_ring)
3453 * To keep it simple we limit the total number of
3454 * queues to < 32, so we truncate CPU to 8.
3455 * This limitation can be removed when requested.
3456 */
3457
683d46a9
RM
3458 if (cpu_cnt > MAX_CPUS)
3459 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3460
3461 /*
3462 * rx_ring[0] is always the default queue.
3463 */
3464 /* Allocate outbound completion ring for each CPU. */
3465 qdev->tx_ring_count = cpu_cnt;
3466 /* Allocate inbound completion (RSS) ring for each CPU. */
3467 qdev->rss_ring_count = cpu_cnt;
c4e84bde
RM
3468 /*
3469 * qdev->rx_ring_count:
3470 * Total number of rx_rings. This includes the one
3471 * default queue, a number of outbound completion
3472 * handler rx_rings, and the number of inbound
3473 * completion handler rx_rings.
3474 */
b2014ff8 3475 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 3476
c4e84bde
RM
3477 for (i = 0; i < qdev->tx_ring_count; i++) {
3478 tx_ring = &qdev->tx_ring[i];
e332471c 3479 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
3480 tx_ring->qdev = qdev;
3481 tx_ring->wq_id = i;
3482 tx_ring->wq_len = qdev->tx_ring_size;
3483 tx_ring->wq_size =
3484 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3485
3486 /*
3487 * The completion queue ID for the tx rings start
3488 * immediately after the default Q ID, which is zero.
3489 */
b2014ff8 3490 tx_ring->cq_id = i + qdev->rss_ring_count;
c4e84bde
RM
3491 }
3492
3493 for (i = 0; i < qdev->rx_ring_count; i++) {
3494 rx_ring = &qdev->rx_ring[i];
e332471c 3495 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
3496 rx_ring->qdev = qdev;
3497 rx_ring->cq_id = i;
3498 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8
RM
3499 if (i < qdev->rss_ring_count) {
3500 /* Inbound completions (RSS) queues */
c4e84bde
RM
3501 rx_ring->cq_len = qdev->rx_ring_size;
3502 rx_ring->cq_size =
3503 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3504 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3505 rx_ring->lbq_size =
2c9a0d41 3506 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3507 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3508 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3509 rx_ring->sbq_size =
2c9a0d41 3510 rx_ring->sbq_len * sizeof(__le64);
c4e84bde 3511 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
b2014ff8
RM
3512 rx_ring->type = RX_Q;
3513 } else {
c4e84bde
RM
3514 /*
3515 * Outbound queue handles outbound completions only.
3516 */
3517 /* outbound cq is same size as tx_ring it services. */
3518 rx_ring->cq_len = qdev->tx_ring_size;
3519 rx_ring->cq_size =
3520 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3521 rx_ring->lbq_len = 0;
3522 rx_ring->lbq_size = 0;
3523 rx_ring->lbq_buf_size = 0;
3524 rx_ring->sbq_len = 0;
3525 rx_ring->sbq_size = 0;
3526 rx_ring->sbq_buf_size = 0;
3527 rx_ring->type = TX_Q;
c4e84bde
RM
3528 }
3529 }
3530 return 0;
3531}
3532
3533static int qlge_open(struct net_device *ndev)
3534{
3535 int err = 0;
3536 struct ql_adapter *qdev = netdev_priv(ndev);
3537
3538 err = ql_configure_rings(qdev);
3539 if (err)
3540 return err;
3541
3542 err = ql_get_adapter_resources(qdev);
3543 if (err)
3544 goto error_up;
3545
3546 err = ql_adapter_up(qdev);
3547 if (err)
3548 goto error_up;
3549
3550 return err;
3551
3552error_up:
3553 ql_release_adapter_resources(qdev);
c4e84bde
RM
3554 return err;
3555}
3556
3557static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3558{
3559 struct ql_adapter *qdev = netdev_priv(ndev);
3560
3561 if (ndev->mtu == 1500 && new_mtu == 9000) {
3562 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
bcc2cb3b
RM
3563 queue_delayed_work(qdev->workqueue,
3564 &qdev->mpi_port_cfg_work, 0);
c4e84bde
RM
3565 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3566 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3567 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3568 (ndev->mtu == 9000 && new_mtu == 9000)) {
3569 return 0;
3570 } else
3571 return -EINVAL;
3572 ndev->mtu = new_mtu;
3573 return 0;
3574}
3575
3576static struct net_device_stats *qlge_get_stats(struct net_device
3577 *ndev)
3578{
3579 struct ql_adapter *qdev = netdev_priv(ndev);
3580 return &qdev->stats;
3581}
3582
3583static void qlge_set_multicast_list(struct net_device *ndev)
3584{
3585 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3586 struct dev_mc_list *mc_ptr;
cc288f54 3587 int i, status;
c4e84bde 3588
cc288f54
RM
3589 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3590 if (status)
3591 return;
c4e84bde
RM
3592 spin_lock(&qdev->hw_lock);
3593 /*
3594 * Set or clear promiscuous mode if a
3595 * transition is taking place.
3596 */
3597 if (ndev->flags & IFF_PROMISC) {
3598 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3599 if (ql_set_routing_reg
3600 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3601 QPRINTK(qdev, HW, ERR,
3602 "Failed to set promiscous mode.\n");
3603 } else {
3604 set_bit(QL_PROMISCUOUS, &qdev->flags);
3605 }
3606 }
3607 } else {
3608 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3609 if (ql_set_routing_reg
3610 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3611 QPRINTK(qdev, HW, ERR,
3612 "Failed to clear promiscous mode.\n");
3613 } else {
3614 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3615 }
3616 }
3617 }
3618
3619 /*
3620 * Set or clear all multicast mode if a
3621 * transition is taking place.
3622 */
3623 if ((ndev->flags & IFF_ALLMULTI) ||
3624 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3625 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3626 if (ql_set_routing_reg
3627 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3628 QPRINTK(qdev, HW, ERR,
3629 "Failed to set all-multi mode.\n");
3630 } else {
3631 set_bit(QL_ALLMULTI, &qdev->flags);
3632 }
3633 }
3634 } else {
3635 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3636 if (ql_set_routing_reg
3637 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3638 QPRINTK(qdev, HW, ERR,
3639 "Failed to clear all-multi mode.\n");
3640 } else {
3641 clear_bit(QL_ALLMULTI, &qdev->flags);
3642 }
3643 }
3644 }
3645
3646 if (ndev->mc_count) {
cc288f54
RM
3647 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3648 if (status)
3649 goto exit;
c4e84bde
RM
3650 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3651 i++, mc_ptr = mc_ptr->next)
3652 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3653 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3654 QPRINTK(qdev, HW, ERR,
3655 "Failed to loadmulticast address.\n");
cc288f54 3656 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3657 goto exit;
3658 }
cc288f54 3659 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3660 if (ql_set_routing_reg
3661 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3662 QPRINTK(qdev, HW, ERR,
3663 "Failed to set multicast match mode.\n");
3664 } else {
3665 set_bit(QL_ALLMULTI, &qdev->flags);
3666 }
3667 }
3668exit:
3669 spin_unlock(&qdev->hw_lock);
8587ea35 3670 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3671}
3672
3673static int qlge_set_mac_address(struct net_device *ndev, void *p)
3674{
3675 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3676 struct sockaddr *addr = p;
cc288f54 3677 int status;
c4e84bde
RM
3678
3679 if (netif_running(ndev))
3680 return -EBUSY;
3681
3682 if (!is_valid_ether_addr(addr->sa_data))
3683 return -EADDRNOTAVAIL;
3684 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3685
cc288f54
RM
3686 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3687 if (status)
3688 return status;
c4e84bde 3689 spin_lock(&qdev->hw_lock);
cc288f54
RM
3690 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3691 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
c4e84bde 3692 spin_unlock(&qdev->hw_lock);
cc288f54
RM
3693 if (status)
3694 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3695 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3696 return status;
c4e84bde
RM
3697}
3698
3699static void qlge_tx_timeout(struct net_device *ndev)
3700{
3701 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3702 ql_queue_asic_error(qdev);
c4e84bde
RM
3703}
3704
3705static void ql_asic_reset_work(struct work_struct *work)
3706{
3707 struct ql_adapter *qdev =
3708 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f
RM
3709 int status;
3710
3711 status = ql_adapter_down(qdev);
3712 if (status)
3713 goto error;
3714
3715 status = ql_adapter_up(qdev);
3716 if (status)
3717 goto error;
3718
3719 return;
3720error:
3721 QPRINTK(qdev, IFUP, ALERT,
3722 "Driver up/down cycle failed, closing device\n");
3723 rtnl_lock();
3724 set_bit(QL_ADAPTER_UP, &qdev->flags);
3725 dev_close(qdev->ndev);
3726 rtnl_unlock();
c4e84bde
RM
3727}
3728
b0c2aadf
RM
3729static struct nic_operations qla8012_nic_ops = {
3730 .get_flash = ql_get_8012_flash_params,
3731 .port_initialize = ql_8012_port_initialize,
3732};
3733
cdca8d02
RM
3734static struct nic_operations qla8000_nic_ops = {
3735 .get_flash = ql_get_8000_flash_params,
3736 .port_initialize = ql_8000_port_initialize,
3737};
3738
e4552f51
RM
3739/* Find the pcie function number for the other NIC
3740 * on this chip. Since both NIC functions share a
3741 * common firmware we have the lowest enabled function
3742 * do any common work. Examples would be resetting
3743 * after a fatal firmware error, or doing a firmware
3744 * coredump.
3745 */
3746static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3747{
3748 int status = 0;
3749 u32 temp;
3750 u32 nic_func1, nic_func2;
3751
3752 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3753 &temp);
3754 if (status)
3755 return status;
3756
3757 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3758 MPI_TEST_NIC_FUNC_MASK);
3759 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3760 MPI_TEST_NIC_FUNC_MASK);
3761
3762 if (qdev->func == nic_func1)
3763 qdev->alt_func = nic_func2;
3764 else if (qdev->func == nic_func2)
3765 qdev->alt_func = nic_func1;
3766 else
3767 status = -EIO;
3768
3769 return status;
3770}
b0c2aadf 3771
e4552f51 3772static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 3773{
e4552f51 3774 int status;
c4e84bde
RM
3775 qdev->func =
3776 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
3777 if (qdev->func > 3)
3778 return -EIO;
3779
3780 status = ql_get_alt_pcie_func(qdev);
3781 if (status)
3782 return status;
3783
3784 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3785 if (qdev->port) {
c4e84bde
RM
3786 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3787 qdev->port_link_up = STS_PL1;
3788 qdev->port_init = STS_PI1;
3789 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3790 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3791 } else {
3792 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3793 qdev->port_link_up = STS_PL0;
3794 qdev->port_init = STS_PI0;
3795 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3796 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3797 }
3798 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
3799 qdev->device_id = qdev->pdev->device;
3800 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3801 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
3802 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3803 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 3804 return status;
c4e84bde
RM
3805}
3806
3807static void ql_release_all(struct pci_dev *pdev)
3808{
3809 struct net_device *ndev = pci_get_drvdata(pdev);
3810 struct ql_adapter *qdev = netdev_priv(ndev);
3811
3812 if (qdev->workqueue) {
3813 destroy_workqueue(qdev->workqueue);
3814 qdev->workqueue = NULL;
3815 }
3816 if (qdev->q_workqueue) {
3817 destroy_workqueue(qdev->q_workqueue);
3818 qdev->q_workqueue = NULL;
3819 }
3820 if (qdev->reg_base)
8668ae92 3821 iounmap(qdev->reg_base);
c4e84bde
RM
3822 if (qdev->doorbell_area)
3823 iounmap(qdev->doorbell_area);
3824 pci_release_regions(pdev);
3825 pci_set_drvdata(pdev, NULL);
3826}
3827
3828static int __devinit ql_init_device(struct pci_dev *pdev,
3829 struct net_device *ndev, int cards_found)
3830{
3831 struct ql_adapter *qdev = netdev_priv(ndev);
3832 int pos, err = 0;
3833 u16 val16;
3834
e332471c 3835 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
3836 err = pci_enable_device(pdev);
3837 if (err) {
3838 dev_err(&pdev->dev, "PCI device enable failed.\n");
3839 return err;
3840 }
3841
3842 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3843 if (pos <= 0) {
3844 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3845 "aborting.\n");
3846 goto err_out;
3847 } else {
3848 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3849 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3850 val16 |= (PCI_EXP_DEVCTL_CERE |
3851 PCI_EXP_DEVCTL_NFERE |
3852 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3853 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3854 }
3855
3856 err = pci_request_regions(pdev, DRV_NAME);
3857 if (err) {
3858 dev_err(&pdev->dev, "PCI region request failed.\n");
3859 goto err_out;
3860 }
3861
3862 pci_set_master(pdev);
6a35528a 3863 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 3864 set_bit(QL_DMA64, &qdev->flags);
6a35528a 3865 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 3866 } else {
284901a9 3867 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 3868 if (!err)
284901a9 3869 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
3870 }
3871
3872 if (err) {
3873 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3874 goto err_out;
3875 }
3876
3877 pci_set_drvdata(pdev, ndev);
3878 qdev->reg_base =
3879 ioremap_nocache(pci_resource_start(pdev, 1),
3880 pci_resource_len(pdev, 1));
3881 if (!qdev->reg_base) {
3882 dev_err(&pdev->dev, "Register mapping failed.\n");
3883 err = -ENOMEM;
3884 goto err_out;
3885 }
3886
3887 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3888 qdev->doorbell_area =
3889 ioremap_nocache(pci_resource_start(pdev, 3),
3890 pci_resource_len(pdev, 3));
3891 if (!qdev->doorbell_area) {
3892 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3893 err = -ENOMEM;
3894 goto err_out;
3895 }
3896
c4e84bde
RM
3897 qdev->ndev = ndev;
3898 qdev->pdev = pdev;
e4552f51
RM
3899 err = ql_get_board_info(qdev);
3900 if (err) {
3901 dev_err(&pdev->dev, "Register access failed.\n");
3902 err = -EIO;
3903 goto err_out;
3904 }
c4e84bde
RM
3905 qdev->msg_enable = netif_msg_init(debug, default_msg);
3906 spin_lock_init(&qdev->hw_lock);
3907 spin_lock_init(&qdev->stats_lock);
3908
3909 /* make sure the EEPROM is good */
b0c2aadf 3910 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
3911 if (err) {
3912 dev_err(&pdev->dev, "Invalid FLASH.\n");
3913 goto err_out;
3914 }
3915
c4e84bde
RM
3916 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3917
3918 /* Set up the default ring sizes. */
3919 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3920 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3921
3922 /* Set up the coalescing parameters. */
3923 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3924 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3925 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3926 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3927
3928 /*
3929 * Set up the operating parameters.
3930 */
3931 qdev->rx_csum = 1;
3932
3933 qdev->q_workqueue = create_workqueue(ndev->name);
3934 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3935 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3936 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3937 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 3938 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 3939 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
125844ea 3940 mutex_init(&qdev->mpi_mutex);
bcc2cb3b 3941 init_completion(&qdev->ide_completion);
c4e84bde
RM
3942
3943 if (!cards_found) {
3944 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3945 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3946 DRV_NAME, DRV_VERSION);
3947 }
3948 return 0;
3949err_out:
3950 ql_release_all(pdev);
3951 pci_disable_device(pdev);
3952 return err;
3953}
3954
25ed7849
SH
3955
3956static const struct net_device_ops qlge_netdev_ops = {
3957 .ndo_open = qlge_open,
3958 .ndo_stop = qlge_close,
3959 .ndo_start_xmit = qlge_send,
3960 .ndo_change_mtu = qlge_change_mtu,
3961 .ndo_get_stats = qlge_get_stats,
3962 .ndo_set_multicast_list = qlge_set_multicast_list,
3963 .ndo_set_mac_address = qlge_set_mac_address,
3964 .ndo_validate_addr = eth_validate_addr,
3965 .ndo_tx_timeout = qlge_tx_timeout,
3966 .ndo_vlan_rx_register = ql_vlan_rx_register,
3967 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3968 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3969};
3970
c4e84bde
RM
3971static int __devinit qlge_probe(struct pci_dev *pdev,
3972 const struct pci_device_id *pci_entry)
3973{
3974 struct net_device *ndev = NULL;
3975 struct ql_adapter *qdev = NULL;
3976 static int cards_found = 0;
3977 int err = 0;
3978
1e213303
RM
3979 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3980 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
3981 if (!ndev)
3982 return -ENOMEM;
3983
3984 err = ql_init_device(pdev, ndev, cards_found);
3985 if (err < 0) {
3986 free_netdev(ndev);
3987 return err;
3988 }
3989
3990 qdev = netdev_priv(ndev);
3991 SET_NETDEV_DEV(ndev, &pdev->dev);
3992 ndev->features = (0
3993 | NETIF_F_IP_CSUM
3994 | NETIF_F_SG
3995 | NETIF_F_TSO
3996 | NETIF_F_TSO6
3997 | NETIF_F_TSO_ECN
3998 | NETIF_F_HW_VLAN_TX
3999 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 4000 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
4001
4002 if (test_bit(QL_DMA64, &qdev->flags))
4003 ndev->features |= NETIF_F_HIGHDMA;
4004
4005 /*
4006 * Set up net_device structure.
4007 */
4008 ndev->tx_queue_len = qdev->tx_ring_size;
4009 ndev->irq = pdev->irq;
25ed7849
SH
4010
4011 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4012 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4013 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4014
c4e84bde
RM
4015 err = register_netdev(ndev);
4016 if (err) {
4017 dev_err(&pdev->dev, "net device registration failed.\n");
4018 ql_release_all(pdev);
4019 pci_disable_device(pdev);
4020 return err;
4021 }
6a473308 4022 ql_link_off(qdev);
c4e84bde
RM
4023 ql_display_dev_info(ndev);
4024 cards_found++;
4025 return 0;
4026}
4027
4028static void __devexit qlge_remove(struct pci_dev *pdev)
4029{
4030 struct net_device *ndev = pci_get_drvdata(pdev);
4031 unregister_netdev(ndev);
4032 ql_release_all(pdev);
4033 pci_disable_device(pdev);
4034 free_netdev(ndev);
4035}
4036
4037/*
4038 * This callback is called by the PCI subsystem whenever
4039 * a PCI bus error is detected.
4040 */
4041static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4042 enum pci_channel_state state)
4043{
4044 struct net_device *ndev = pci_get_drvdata(pdev);
4045 struct ql_adapter *qdev = netdev_priv(ndev);
4046
fbc663ce
DN
4047 netif_device_detach(ndev);
4048
4049 if (state == pci_channel_io_perm_failure)
4050 return PCI_ERS_RESULT_DISCONNECT;
4051
c4e84bde
RM
4052 if (netif_running(ndev))
4053 ql_adapter_down(qdev);
4054
4055 pci_disable_device(pdev);
4056
4057 /* Request a slot reset. */
4058 return PCI_ERS_RESULT_NEED_RESET;
4059}
4060
4061/*
4062 * This callback is called after the PCI buss has been reset.
4063 * Basically, this tries to restart the card from scratch.
4064 * This is a shortened version of the device probe/discovery code,
4065 * it resembles the first-half of the () routine.
4066 */
4067static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4068{
4069 struct net_device *ndev = pci_get_drvdata(pdev);
4070 struct ql_adapter *qdev = netdev_priv(ndev);
4071
4072 if (pci_enable_device(pdev)) {
4073 QPRINTK(qdev, IFUP, ERR,
4074 "Cannot re-enable PCI device after reset.\n");
4075 return PCI_ERS_RESULT_DISCONNECT;
4076 }
4077
4078 pci_set_master(pdev);
4079
4080 netif_carrier_off(ndev);
c4e84bde
RM
4081 ql_adapter_reset(qdev);
4082
4083 /* Make sure the EEPROM is good */
4084 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4085
4086 if (!is_valid_ether_addr(ndev->perm_addr)) {
4087 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4088 return PCI_ERS_RESULT_DISCONNECT;
4089 }
4090
4091 return PCI_ERS_RESULT_RECOVERED;
4092}
4093
4094static void qlge_io_resume(struct pci_dev *pdev)
4095{
4096 struct net_device *ndev = pci_get_drvdata(pdev);
4097 struct ql_adapter *qdev = netdev_priv(ndev);
4098
4099 pci_set_master(pdev);
4100
4101 if (netif_running(ndev)) {
4102 if (ql_adapter_up(qdev)) {
4103 QPRINTK(qdev, IFUP, ERR,
4104 "Device initialization failed after reset.\n");
4105 return;
4106 }
4107 }
4108
4109 netif_device_attach(ndev);
4110}
4111
4112static struct pci_error_handlers qlge_err_handler = {
4113 .error_detected = qlge_io_error_detected,
4114 .slot_reset = qlge_io_slot_reset,
4115 .resume = qlge_io_resume,
4116};
4117
4118static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4119{
4120 struct net_device *ndev = pci_get_drvdata(pdev);
4121 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4122 int err;
c4e84bde
RM
4123
4124 netif_device_detach(ndev);
4125
4126 if (netif_running(ndev)) {
4127 err = ql_adapter_down(qdev);
4128 if (!err)
4129 return err;
4130 }
4131
4132 err = pci_save_state(pdev);
4133 if (err)
4134 return err;
4135
4136 pci_disable_device(pdev);
4137
4138 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4139
4140 return 0;
4141}
4142
04da2cf9 4143#ifdef CONFIG_PM
c4e84bde
RM
4144static int qlge_resume(struct pci_dev *pdev)
4145{
4146 struct net_device *ndev = pci_get_drvdata(pdev);
4147 struct ql_adapter *qdev = netdev_priv(ndev);
4148 int err;
4149
4150 pci_set_power_state(pdev, PCI_D0);
4151 pci_restore_state(pdev);
4152 err = pci_enable_device(pdev);
4153 if (err) {
4154 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4155 return err;
4156 }
4157 pci_set_master(pdev);
4158
4159 pci_enable_wake(pdev, PCI_D3hot, 0);
4160 pci_enable_wake(pdev, PCI_D3cold, 0);
4161
4162 if (netif_running(ndev)) {
4163 err = ql_adapter_up(qdev);
4164 if (err)
4165 return err;
4166 }
4167
4168 netif_device_attach(ndev);
4169
4170 return 0;
4171}
04da2cf9 4172#endif /* CONFIG_PM */
c4e84bde
RM
4173
4174static void qlge_shutdown(struct pci_dev *pdev)
4175{
4176 qlge_suspend(pdev, PMSG_SUSPEND);
4177}
4178
4179static struct pci_driver qlge_driver = {
4180 .name = DRV_NAME,
4181 .id_table = qlge_pci_tbl,
4182 .probe = qlge_probe,
4183 .remove = __devexit_p(qlge_remove),
4184#ifdef CONFIG_PM
4185 .suspend = qlge_suspend,
4186 .resume = qlge_resume,
4187#endif
4188 .shutdown = qlge_shutdown,
4189 .err_handler = &qlge_err_handler
4190};
4191
4192static int __init qlge_init_module(void)
4193{
4194 return pci_register_driver(&qlge_driver);
4195}
4196
4197static void __exit qlge_exit(void)
4198{
4199 pci_unregister_driver(&qlge_driver);
4200}
4201
4202module_init(qlge_init_module);
4203module_exit(qlge_exit);
This page took 0.677378 seconds and 5 git commands to generate.