vlan: Don't check for vlan group before vlan_tx_tag_present.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
c4e84bde 37#include <linux/if_vlan.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
b7c6bfb7 41#include <net/ip6_checksum.h>
c4e84bde
RM
42
43#include "qlge.h"
44
45char qlge_driver_name[] = DRV_NAME;
46const char qlge_driver_version[] = DRV_VERSION;
47
48MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49MODULE_DESCRIPTION(DRV_STRING " ");
50MODULE_LICENSE("GPL");
51MODULE_VERSION(DRV_VERSION);
52
53static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55/* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
4974097a
RM
60/* NETIF_MSG_TX_QUEUED | */
61/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
62/* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65static int debug = 0x00007fff; /* defaults above */
66module_param(debug, int, 0);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69#define MSIX_IRQ 0
70#define MSI_IRQ 1
71#define LEG_IRQ 2
a5a62a1c
RM
72static int qlge_irq_type = MSIX_IRQ;
73module_param(qlge_irq_type, int, MSIX_IRQ);
74MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 75
8aae2600
RM
76static int qlge_mpi_coredump;
77module_param(qlge_mpi_coredump, int, 0);
78MODULE_PARM_DESC(qlge_mpi_coredump,
79 "Option to enable MPI firmware dump. "
d5c1da56
RM
80 "Default is OFF - Do Not allocate memory. ");
81
82static int qlge_force_coredump;
83module_param(qlge_force_coredump, int, 0);
84MODULE_PARM_DESC(qlge_force_coredump,
85 "Option to allow force of firmware core dump. "
86 "Default is OFF - Do not allow.");
8aae2600 87
a3aa1884 88static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 89 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
91 /* required last entry */
92 {0,}
93};
94
95MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
96
97/* This hardware semaphore causes exclusive access to
98 * resources shared between the NIC driver, MPI firmware,
99 * FCOE firmware and the FC driver.
100 */
101static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
102{
103 u32 sem_bits = 0;
104
105 switch (sem_mask) {
106 case SEM_XGMAC0_MASK:
107 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
108 break;
109 case SEM_XGMAC1_MASK:
110 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
111 break;
112 case SEM_ICB_MASK:
113 sem_bits = SEM_SET << SEM_ICB_SHIFT;
114 break;
115 case SEM_MAC_ADDR_MASK:
116 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
117 break;
118 case SEM_FLASH_MASK:
119 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
120 break;
121 case SEM_PROBE_MASK:
122 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
123 break;
124 case SEM_RT_IDX_MASK:
125 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
126 break;
127 case SEM_PROC_REG_MASK:
128 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
129 break;
130 default:
ae9540f7 131 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
132 return -EINVAL;
133 }
134
135 ql_write32(qdev, SEM, sem_bits | sem_mask);
136 return !(ql_read32(qdev, SEM) & sem_bits);
137}
138
139int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
140{
0857e9d7 141 unsigned int wait_count = 30;
c4e84bde
RM
142 do {
143 if (!ql_sem_trylock(qdev, sem_mask))
144 return 0;
0857e9d7
RM
145 udelay(100);
146 } while (--wait_count);
c4e84bde
RM
147 return -ETIMEDOUT;
148}
149
150void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
151{
152 ql_write32(qdev, SEM, sem_mask);
153 ql_read32(qdev, SEM); /* flush */
154}
155
156/* This function waits for a specific bit to come ready
157 * in a given register. It is used mostly by the initialize
158 * process, but is also used in kernel thread API such as
159 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
160 */
161int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
162{
163 u32 temp;
164 int count = UDELAY_COUNT;
165
166 while (count) {
167 temp = ql_read32(qdev, reg);
168
169 /* check for errors */
170 if (temp & err_bit) {
ae9540f7
JP
171 netif_alert(qdev, probe, qdev->ndev,
172 "register 0x%.08x access error, value = 0x%.08x!.\n",
173 reg, temp);
c4e84bde
RM
174 return -EIO;
175 } else if (temp & bit)
176 return 0;
177 udelay(UDELAY_DELAY);
178 count--;
179 }
ae9540f7
JP
180 netif_alert(qdev, probe, qdev->ndev,
181 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
182 return -ETIMEDOUT;
183}
184
185/* The CFG register is used to download TX and RX control blocks
186 * to the chip. This function waits for an operation to complete.
187 */
188static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
189{
190 int count = UDELAY_COUNT;
191 u32 temp;
192
193 while (count) {
194 temp = ql_read32(qdev, CFG);
195 if (temp & CFG_LE)
196 return -EIO;
197 if (!(temp & bit))
198 return 0;
199 udelay(UDELAY_DELAY);
200 count--;
201 }
202 return -ETIMEDOUT;
203}
204
205
206/* Used to issue init control blocks to hw. Maps control block,
207 * sets address, triggers download, waits for completion.
208 */
209int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
210 u16 q_id)
211{
212 u64 map;
213 int status = 0;
214 int direction;
215 u32 mask;
216 u32 value;
217
218 direction =
219 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
220 PCI_DMA_FROMDEVICE;
221
222 map = pci_map_single(qdev->pdev, ptr, size, direction);
223 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 224 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
225 return -ENOMEM;
226 }
227
4322c5be
RM
228 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
229 if (status)
230 return status;
231
c4e84bde
RM
232 status = ql_wait_cfg(qdev, bit);
233 if (status) {
ae9540f7
JP
234 netif_err(qdev, ifup, qdev->ndev,
235 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
236 goto exit;
237 }
238
c4e84bde
RM
239 ql_write32(qdev, ICB_L, (u32) map);
240 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
241
242 mask = CFG_Q_MASK | (bit << 16);
243 value = bit | (q_id << CFG_Q_SHIFT);
244 ql_write32(qdev, CFG, (mask | value));
245
246 /*
247 * Wait for the bit to clear after signaling hw.
248 */
249 status = ql_wait_cfg(qdev, bit);
250exit:
4322c5be 251 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
252 pci_unmap_single(qdev->pdev, map, size, direction);
253 return status;
254}
255
256/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
257int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
258 u32 *value)
259{
260 u32 offset = 0;
261 int status;
262
c4e84bde
RM
263 switch (type) {
264 case MAC_ADDR_TYPE_MULTI_MAC:
265 case MAC_ADDR_TYPE_CAM_MAC:
266 {
267 status =
268 ql_wait_reg_rdy(qdev,
939678f8 269 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
270 if (status)
271 goto exit;
272 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
273 (index << MAC_ADDR_IDX_SHIFT) | /* index */
274 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
275 status =
276 ql_wait_reg_rdy(qdev,
939678f8 277 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
278 if (status)
279 goto exit;
280 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
281 status =
282 ql_wait_reg_rdy(qdev,
939678f8 283 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
284 if (status)
285 goto exit;
286 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
287 (index << MAC_ADDR_IDX_SHIFT) | /* index */
288 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
289 status =
290 ql_wait_reg_rdy(qdev,
939678f8 291 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
292 if (status)
293 goto exit;
294 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
295 if (type == MAC_ADDR_TYPE_CAM_MAC) {
296 status =
297 ql_wait_reg_rdy(qdev,
939678f8 298 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
299 if (status)
300 goto exit;
301 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
302 (index << MAC_ADDR_IDX_SHIFT) | /* index */
303 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
304 status =
305 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 306 MAC_ADDR_MR, 0);
c4e84bde
RM
307 if (status)
308 goto exit;
309 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
310 }
311 break;
312 }
313 case MAC_ADDR_TYPE_VLAN:
314 case MAC_ADDR_TYPE_MULTI_FLTR:
315 default:
ae9540f7
JP
316 netif_crit(qdev, ifup, qdev->ndev,
317 "Address type %d not yet supported.\n", type);
c4e84bde
RM
318 status = -EPERM;
319 }
320exit:
c4e84bde
RM
321 return status;
322}
323
324/* Set up a MAC, multicast or VLAN address for the
325 * inbound frame matching.
326 */
327static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
328 u16 index)
329{
330 u32 offset = 0;
331 int status = 0;
332
c4e84bde
RM
333 switch (type) {
334 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
335 {
336 u32 upper = (addr[0] << 8) | addr[1];
337 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
338 (addr[4] << 8) | (addr[5]);
339
340 status =
341 ql_wait_reg_rdy(qdev,
342 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
343 if (status)
344 goto exit;
345 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
346 (index << MAC_ADDR_IDX_SHIFT) |
347 type | MAC_ADDR_E);
348 ql_write32(qdev, MAC_ADDR_DATA, lower);
349 status =
350 ql_wait_reg_rdy(qdev,
351 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
352 if (status)
353 goto exit;
354 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
355 (index << MAC_ADDR_IDX_SHIFT) |
356 type | MAC_ADDR_E);
357
358 ql_write32(qdev, MAC_ADDR_DATA, upper);
359 status =
360 ql_wait_reg_rdy(qdev,
361 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
362 if (status)
363 goto exit;
364 break;
365 }
c4e84bde
RM
366 case MAC_ADDR_TYPE_CAM_MAC:
367 {
368 u32 cam_output;
369 u32 upper = (addr[0] << 8) | addr[1];
370 u32 lower =
371 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
372 (addr[5]);
373
ae9540f7
JP
374 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
375 "Adding %s address %pM at index %d in the CAM.\n",
376 type == MAC_ADDR_TYPE_MULTI_MAC ?
377 "MULTICAST" : "UNICAST",
378 addr, index);
c4e84bde
RM
379
380 status =
381 ql_wait_reg_rdy(qdev,
939678f8 382 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
383 if (status)
384 goto exit;
385 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
386 (index << MAC_ADDR_IDX_SHIFT) | /* index */
387 type); /* type */
388 ql_write32(qdev, MAC_ADDR_DATA, lower);
389 status =
390 ql_wait_reg_rdy(qdev,
939678f8 391 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
392 if (status)
393 goto exit;
394 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
395 (index << MAC_ADDR_IDX_SHIFT) | /* index */
396 type); /* type */
397 ql_write32(qdev, MAC_ADDR_DATA, upper);
398 status =
399 ql_wait_reg_rdy(qdev,
939678f8 400 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
401 if (status)
402 goto exit;
403 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
404 (index << MAC_ADDR_IDX_SHIFT) | /* index */
405 type); /* type */
406 /* This field should also include the queue id
407 and possibly the function id. Right now we hardcode
408 the route field to NIC core.
409 */
76b26694
RM
410 cam_output = (CAM_OUT_ROUTE_NIC |
411 (qdev->
412 func << CAM_OUT_FUNC_SHIFT) |
413 (0 << CAM_OUT_CQ_ID_SHIFT));
414 if (qdev->vlgrp)
415 cam_output |= CAM_OUT_RV;
416 /* route to NIC core */
417 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
418 break;
419 }
420 case MAC_ADDR_TYPE_VLAN:
421 {
422 u32 enable_bit = *((u32 *) &addr[0]);
423 /* For VLAN, the addr actually holds a bit that
424 * either enables or disables the vlan id we are
425 * addressing. It's either MAC_ADDR_E on or off.
426 * That's bit-27 we're talking about.
427 */
ae9540f7
JP
428 netif_info(qdev, ifup, qdev->ndev,
429 "%s VLAN ID %d %s the CAM.\n",
430 enable_bit ? "Adding" : "Removing",
431 index,
432 enable_bit ? "to" : "from");
c4e84bde
RM
433
434 status =
435 ql_wait_reg_rdy(qdev,
939678f8 436 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
437 if (status)
438 goto exit;
439 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
440 (index << MAC_ADDR_IDX_SHIFT) | /* index */
441 type | /* type */
442 enable_bit); /* enable/disable */
443 break;
444 }
445 case MAC_ADDR_TYPE_MULTI_FLTR:
446 default:
ae9540f7
JP
447 netif_crit(qdev, ifup, qdev->ndev,
448 "Address type %d not yet supported.\n", type);
c4e84bde
RM
449 status = -EPERM;
450 }
451exit:
c4e84bde
RM
452 return status;
453}
454
7fab3bfe
RM
455/* Set or clear MAC address in hardware. We sometimes
456 * have to clear it to prevent wrong frame routing
457 * especially in a bonding environment.
458 */
459static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
460{
461 int status;
462 char zero_mac_addr[ETH_ALEN];
463 char *addr;
464
465 if (set) {
801e9096 466 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
467 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
468 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
469 } else {
470 memset(zero_mac_addr, 0, ETH_ALEN);
471 addr = &zero_mac_addr[0];
ae9540f7
JP
472 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
473 "Clearing MAC address\n");
7fab3bfe
RM
474 }
475 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
476 if (status)
477 return status;
478 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
479 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
480 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
481 if (status)
ae9540f7
JP
482 netif_err(qdev, ifup, qdev->ndev,
483 "Failed to init mac address.\n");
7fab3bfe
RM
484 return status;
485}
486
6a473308
RM
487void ql_link_on(struct ql_adapter *qdev)
488{
ae9540f7 489 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
490 netif_carrier_on(qdev->ndev);
491 ql_set_mac_addr(qdev, 1);
492}
493
494void ql_link_off(struct ql_adapter *qdev)
495{
ae9540f7 496 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
497 netif_carrier_off(qdev->ndev);
498 ql_set_mac_addr(qdev, 0);
499}
500
c4e84bde
RM
501/* Get a specific frame routing value from the CAM.
502 * Used for debug and reg dump.
503 */
504int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
505{
506 int status = 0;
507
939678f8 508 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
509 if (status)
510 goto exit;
511
512 ql_write32(qdev, RT_IDX,
513 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 514 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
515 if (status)
516 goto exit;
517 *value = ql_read32(qdev, RT_DATA);
518exit:
c4e84bde
RM
519 return status;
520}
521
522/* The NIC function for this chip has 16 routing indexes. Each one can be used
523 * to route different frame types to various inbound queues. We send broadcast/
524 * multicast/error frames to the default queue for slow handling,
525 * and CAM hit/RSS frames to the fast handling queues.
526 */
527static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
528 int enable)
529{
8587ea35 530 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
531 u32 value = 0;
532
ae9540f7
JP
533 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
534 "%s %s mask %s the routing reg.\n",
535 enable ? "Adding" : "Removing",
536 index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
537 index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
538 index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
539 index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
540 index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
541 index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
542 index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
543 index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
544 index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
545 index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
546 index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
547 index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
548 index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
549 index == RT_IDX_UNUSED013 ? "UNUSED13" :
550 index == RT_IDX_UNUSED014 ? "UNUSED14" :
551 index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
552 "(Bad index != RT_IDX)",
553 enable ? "to" : "from");
c4e84bde
RM
554
555 switch (mask) {
556 case RT_IDX_CAM_HIT:
557 {
558 value = RT_IDX_DST_CAM_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
561 break;
562 }
563 case RT_IDX_VALID: /* Promiscuous Mode frames. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
571 {
572 value = RT_IDX_DST_DFLT_Q | /* dest */
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
fbc2ac33
RM
577 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
578 {
579 value = RT_IDX_DST_DFLT_Q | /* dest */
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_IP_CSUM_ERR_SLOT <<
582 RT_IDX_IDX_SHIFT); /* index */
583 break;
584 }
585 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
586 {
587 value = RT_IDX_DST_DFLT_Q | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
590 RT_IDX_IDX_SHIFT); /* index */
591 break;
592 }
c4e84bde
RM
593 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
594 {
595 value = RT_IDX_DST_DFLT_Q | /* dest */
596 RT_IDX_TYPE_NICQ | /* type */
597 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
598 break;
599 }
600 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
601 {
e163d7f2 602 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
603 RT_IDX_TYPE_NICQ | /* type */
604 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
605 break;
606 }
607 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
608 {
e163d7f2 609 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
610 RT_IDX_TYPE_NICQ | /* type */
611 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
612 break;
613 }
614 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
615 {
616 value = RT_IDX_DST_RSS | /* dest */
617 RT_IDX_TYPE_NICQ | /* type */
618 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
619 break;
620 }
621 case 0: /* Clear the E-bit on an entry. */
622 {
623 value = RT_IDX_DST_DFLT_Q | /* dest */
624 RT_IDX_TYPE_NICQ | /* type */
625 (index << RT_IDX_IDX_SHIFT);/* index */
626 break;
627 }
628 default:
ae9540f7
JP
629 netif_err(qdev, ifup, qdev->ndev,
630 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
631 status = -EPERM;
632 goto exit;
633 }
634
635 if (value) {
636 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
637 if (status)
638 goto exit;
639 value |= (enable ? RT_IDX_E : 0);
640 ql_write32(qdev, RT_IDX, value);
641 ql_write32(qdev, RT_DATA, enable ? mask : 0);
642 }
643exit:
c4e84bde
RM
644 return status;
645}
646
647static void ql_enable_interrupts(struct ql_adapter *qdev)
648{
649 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
650}
651
652static void ql_disable_interrupts(struct ql_adapter *qdev)
653{
654 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
655}
656
657/* If we're running with multiple MSI-X vectors then we enable on the fly.
658 * Otherwise, we may have multiple outstanding workers and don't want to
659 * enable until the last one finishes. In this case, the irq_cnt gets
660 * incremented everytime we queue a worker and decremented everytime
661 * a worker finishes. Once it hits zero we enable the interrupt.
662 */
bb0d215c 663u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 664{
bb0d215c
RM
665 u32 var = 0;
666 unsigned long hw_flags = 0;
667 struct intr_context *ctx = qdev->intr_context + intr;
668
669 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
670 /* Always enable if we're MSIX multi interrupts and
671 * it's not the default (zeroeth) interrupt.
672 */
c4e84bde 673 ql_write32(qdev, INTR_EN,
bb0d215c
RM
674 ctx->intr_en_mask);
675 var = ql_read32(qdev, STS);
676 return var;
c4e84bde 677 }
bb0d215c
RM
678
679 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
680 if (atomic_dec_and_test(&ctx->irq_cnt)) {
681 ql_write32(qdev, INTR_EN,
682 ctx->intr_en_mask);
683 var = ql_read32(qdev, STS);
684 }
685 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
686 return var;
c4e84bde
RM
687}
688
689static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
690{
691 u32 var = 0;
bb0d215c 692 struct intr_context *ctx;
c4e84bde 693
bb0d215c
RM
694 /* HW disables for us if we're MSIX multi interrupts and
695 * it's not the default (zeroeth) interrupt.
696 */
697 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
698 return 0;
699
700 ctx = qdev->intr_context + intr;
08b1bc8f 701 spin_lock(&qdev->hw_lock);
bb0d215c 702 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 703 ql_write32(qdev, INTR_EN,
bb0d215c 704 ctx->intr_dis_mask);
c4e84bde
RM
705 var = ql_read32(qdev, STS);
706 }
bb0d215c 707 atomic_inc(&ctx->irq_cnt);
08b1bc8f 708 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
709 return var;
710}
711
712static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
713{
714 int i;
715 for (i = 0; i < qdev->intr_count; i++) {
716 /* The enable call does a atomic_dec_and_test
717 * and enables only if the result is zero.
718 * So we precharge it here.
719 */
bb0d215c
RM
720 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
721 i == 0))
722 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
723 ql_enable_completion_interrupt(qdev, i);
724 }
725
726}
727
b0c2aadf
RM
728static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
729{
730 int status, i;
731 u16 csum = 0;
732 __le16 *flash = (__le16 *)&qdev->flash;
733
734 status = strncmp((char *)&qdev->flash, str, 4);
735 if (status) {
ae9540f7 736 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
737 return status;
738 }
739
740 for (i = 0; i < size; i++)
741 csum += le16_to_cpu(*flash++);
742
743 if (csum)
ae9540f7
JP
744 netif_err(qdev, ifup, qdev->ndev,
745 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
746
747 return csum;
748}
749
26351479 750static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
751{
752 int status = 0;
753 /* wait for reg to come ready */
754 status = ql_wait_reg_rdy(qdev,
755 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
756 if (status)
757 goto exit;
758 /* set up for reg read */
759 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
760 /* wait for reg to come ready */
761 status = ql_wait_reg_rdy(qdev,
762 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
763 if (status)
764 goto exit;
26351479
RM
765 /* This data is stored on flash as an array of
766 * __le32. Since ql_read32() returns cpu endian
767 * we need to swap it back.
768 */
769 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
770exit:
771 return status;
772}
773
cdca8d02
RM
774static int ql_get_8000_flash_params(struct ql_adapter *qdev)
775{
776 u32 i, size;
777 int status;
778 __le32 *p = (__le32 *)&qdev->flash;
779 u32 offset;
542512e4 780 u8 mac_addr[6];
cdca8d02
RM
781
782 /* Get flash offset for function and adjust
783 * for dword access.
784 */
e4552f51 785 if (!qdev->port)
cdca8d02
RM
786 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
787 else
788 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
789
790 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
791 return -ETIMEDOUT;
792
793 size = sizeof(struct flash_params_8000) / sizeof(u32);
794 for (i = 0; i < size; i++, p++) {
795 status = ql_read_flash_word(qdev, i+offset, p);
796 if (status) {
ae9540f7
JP
797 netif_err(qdev, ifup, qdev->ndev,
798 "Error reading flash.\n");
cdca8d02
RM
799 goto exit;
800 }
801 }
802
803 status = ql_validate_flash(qdev,
804 sizeof(struct flash_params_8000) / sizeof(u16),
805 "8000");
806 if (status) {
ae9540f7 807 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
808 status = -EINVAL;
809 goto exit;
810 }
811
542512e4
RM
812 /* Extract either manufacturer or BOFM modified
813 * MAC address.
814 */
815 if (qdev->flash.flash_params_8000.data_type1 == 2)
816 memcpy(mac_addr,
817 qdev->flash.flash_params_8000.mac_addr1,
818 qdev->ndev->addr_len);
819 else
820 memcpy(mac_addr,
821 qdev->flash.flash_params_8000.mac_addr,
822 qdev->ndev->addr_len);
823
824 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 825 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
826 status = -EINVAL;
827 goto exit;
828 }
829
830 memcpy(qdev->ndev->dev_addr,
542512e4 831 mac_addr,
cdca8d02
RM
832 qdev->ndev->addr_len);
833
834exit:
835 ql_sem_unlock(qdev, SEM_FLASH_MASK);
836 return status;
837}
838
b0c2aadf 839static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
840{
841 int i;
842 int status;
26351479 843 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 844 u32 offset = 0;
b0c2aadf 845 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
846
847 /* Second function's parameters follow the first
848 * function's.
849 */
e4552f51 850 if (qdev->port)
b0c2aadf 851 offset = size;
c4e84bde
RM
852
853 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
854 return -ETIMEDOUT;
855
b0c2aadf 856 for (i = 0; i < size; i++, p++) {
e78f5fa7 857 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 858 if (status) {
ae9540f7
JP
859 netif_err(qdev, ifup, qdev->ndev,
860 "Error reading flash.\n");
c4e84bde
RM
861 goto exit;
862 }
863
864 }
b0c2aadf
RM
865
866 status = ql_validate_flash(qdev,
867 sizeof(struct flash_params_8012) / sizeof(u16),
868 "8012");
869 if (status) {
ae9540f7 870 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
871 status = -EINVAL;
872 goto exit;
873 }
874
875 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
876 status = -EINVAL;
877 goto exit;
878 }
879
880 memcpy(qdev->ndev->dev_addr,
881 qdev->flash.flash_params_8012.mac_addr,
882 qdev->ndev->addr_len);
883
c4e84bde
RM
884exit:
885 ql_sem_unlock(qdev, SEM_FLASH_MASK);
886 return status;
887}
888
889/* xgmac register are located behind the xgmac_addr and xgmac_data
890 * register pair. Each read/write requires us to wait for the ready
891 * bit before reading/writing the data.
892 */
893static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
894{
895 int status;
896 /* wait for reg to come ready */
897 status = ql_wait_reg_rdy(qdev,
898 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899 if (status)
900 return status;
901 /* write the data to the data reg */
902 ql_write32(qdev, XGMAC_DATA, data);
903 /* trigger the write */
904 ql_write32(qdev, XGMAC_ADDR, reg);
905 return status;
906}
907
908/* xgmac register are located behind the xgmac_addr and xgmac_data
909 * register pair. Each read/write requires us to wait for the ready
910 * bit before reading/writing the data.
911 */
912int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
913{
914 int status = 0;
915 /* wait for reg to come ready */
916 status = ql_wait_reg_rdy(qdev,
917 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
918 if (status)
919 goto exit;
920 /* set up for reg read */
921 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
922 /* wait for reg to come ready */
923 status = ql_wait_reg_rdy(qdev,
924 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
925 if (status)
926 goto exit;
927 /* get the data */
928 *data = ql_read32(qdev, XGMAC_DATA);
929exit:
930 return status;
931}
932
933/* This is used for reading the 64-bit statistics regs. */
934int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
935{
936 int status = 0;
937 u32 hi = 0;
938 u32 lo = 0;
939
940 status = ql_read_xgmac_reg(qdev, reg, &lo);
941 if (status)
942 goto exit;
943
944 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
945 if (status)
946 goto exit;
947
948 *data = (u64) lo | ((u64) hi << 32);
949
950exit:
951 return status;
952}
953
cdca8d02
RM
954static int ql_8000_port_initialize(struct ql_adapter *qdev)
955{
bcc2cb3b 956 int status;
cfec0cbc
RM
957 /*
958 * Get MPI firmware version for driver banner
959 * and ethool info.
960 */
961 status = ql_mb_about_fw(qdev);
962 if (status)
963 goto exit;
bcc2cb3b
RM
964 status = ql_mb_get_fw_state(qdev);
965 if (status)
966 goto exit;
967 /* Wake up a worker to get/set the TX/RX frame sizes. */
968 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
969exit:
970 return status;
cdca8d02
RM
971}
972
c4e84bde
RM
973/* Take the MAC Core out of reset.
974 * Enable statistics counting.
975 * Take the transmitter/receiver out of reset.
976 * This functionality may be done in the MPI firmware at a
977 * later date.
978 */
b0c2aadf 979static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
980{
981 int status = 0;
982 u32 data;
983
984 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
985 /* Another function has the semaphore, so
986 * wait for the port init bit to come ready.
987 */
ae9540f7
JP
988 netif_info(qdev, link, qdev->ndev,
989 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
990 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
991 if (status) {
ae9540f7
JP
992 netif_crit(qdev, link, qdev->ndev,
993 "Port initialize timed out.\n");
c4e84bde
RM
994 }
995 return status;
996 }
997
ae9540f7 998 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
999 /* Set the core reset. */
1000 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
1001 if (status)
1002 goto end;
1003 data |= GLOBAL_CFG_RESET;
1004 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Clear the core reset and turn on jumbo for receiver. */
1009 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
1010 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
1011 data |= GLOBAL_CFG_TX_STAT_EN;
1012 data |= GLOBAL_CFG_RX_STAT_EN;
1013 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1014 if (status)
1015 goto end;
1016
1017 /* Enable transmitter, and clear it's reset. */
1018 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
1019 if (status)
1020 goto end;
1021 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
1022 data |= TX_CFG_EN; /* Enable the transmitter. */
1023 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1024 if (status)
1025 goto end;
1026
1027 /* Enable receiver and clear it's reset. */
1028 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1029 if (status)
1030 goto end;
1031 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1032 data |= RX_CFG_EN; /* Enable the receiver. */
1033 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1034 if (status)
1035 goto end;
1036
1037 /* Turn on jumbo. */
1038 status =
1039 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1040 if (status)
1041 goto end;
1042 status =
1043 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1044 if (status)
1045 goto end;
1046
1047 /* Signal to the world that the port is enabled. */
1048 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1049end:
1050 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1051 return status;
1052}
1053
7c734359
RM
1054static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1055{
1056 return PAGE_SIZE << qdev->lbq_buf_order;
1057}
1058
c4e84bde 1059/* Get the next large buffer. */
8668ae92 1060static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1061{
1062 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1063 rx_ring->lbq_curr_idx++;
1064 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1065 rx_ring->lbq_curr_idx = 0;
1066 rx_ring->lbq_free_cnt++;
1067 return lbq_desc;
1068}
1069
7c734359
RM
1070static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1071 struct rx_ring *rx_ring)
1072{
1073 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1074
1075 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1076 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1077 rx_ring->lbq_buf_size,
1078 PCI_DMA_FROMDEVICE);
1079
1080 /* If it's the last chunk of our master page then
1081 * we unmap it.
1082 */
1083 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1084 == ql_lbq_block_size(qdev))
1085 pci_unmap_page(qdev->pdev,
1086 lbq_desc->p.pg_chunk.map,
1087 ql_lbq_block_size(qdev),
1088 PCI_DMA_FROMDEVICE);
1089 return lbq_desc;
1090}
1091
c4e84bde 1092/* Get the next small buffer. */
8668ae92 1093static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1094{
1095 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1096 rx_ring->sbq_curr_idx++;
1097 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1098 rx_ring->sbq_curr_idx = 0;
1099 rx_ring->sbq_free_cnt++;
1100 return sbq_desc;
1101}
1102
1103/* Update an rx ring index. */
1104static void ql_update_cq(struct rx_ring *rx_ring)
1105{
1106 rx_ring->cnsmr_idx++;
1107 rx_ring->curr_entry++;
1108 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1109 rx_ring->cnsmr_idx = 0;
1110 rx_ring->curr_entry = rx_ring->cq_base;
1111 }
1112}
1113
1114static void ql_write_cq_idx(struct rx_ring *rx_ring)
1115{
1116 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1117}
1118
7c734359
RM
1119static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1120 struct bq_desc *lbq_desc)
1121{
1122 if (!rx_ring->pg_chunk.page) {
1123 u64 map;
1124 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1125 GFP_ATOMIC,
1126 qdev->lbq_buf_order);
1127 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1128 netif_err(qdev, drv, qdev->ndev,
1129 "page allocation failed.\n");
7c734359
RM
1130 return -ENOMEM;
1131 }
1132 rx_ring->pg_chunk.offset = 0;
1133 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1134 0, ql_lbq_block_size(qdev),
1135 PCI_DMA_FROMDEVICE);
1136 if (pci_dma_mapping_error(qdev->pdev, map)) {
1137 __free_pages(rx_ring->pg_chunk.page,
1138 qdev->lbq_buf_order);
ae9540f7
JP
1139 netif_err(qdev, drv, qdev->ndev,
1140 "PCI mapping failed.\n");
7c734359
RM
1141 return -ENOMEM;
1142 }
1143 rx_ring->pg_chunk.map = map;
1144 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1145 }
1146
1147 /* Copy the current master pg_chunk info
1148 * to the current descriptor.
1149 */
1150 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1151
1152 /* Adjust the master page chunk for next
1153 * buffer get.
1154 */
1155 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1156 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1157 rx_ring->pg_chunk.page = NULL;
1158 lbq_desc->p.pg_chunk.last_flag = 1;
1159 } else {
1160 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1161 get_page(rx_ring->pg_chunk.page);
1162 lbq_desc->p.pg_chunk.last_flag = 0;
1163 }
1164 return 0;
1165}
c4e84bde
RM
1166/* Process (refill) a large buffer queue. */
1167static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1168{
49f2186d
RM
1169 u32 clean_idx = rx_ring->lbq_clean_idx;
1170 u32 start_idx = clean_idx;
c4e84bde 1171 struct bq_desc *lbq_desc;
c4e84bde
RM
1172 u64 map;
1173 int i;
1174
7c734359 1175 while (rx_ring->lbq_free_cnt > 32) {
c4e84bde 1176 for (i = 0; i < 16; i++) {
ae9540f7
JP
1177 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1178 "lbq: try cleaning clean_idx = %d.\n",
1179 clean_idx);
c4e84bde 1180 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1181 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
ae9540f7
JP
1182 netif_err(qdev, ifup, qdev->ndev,
1183 "Could not get a page chunk.\n");
1184 return;
1185 }
7c734359
RM
1186
1187 map = lbq_desc->p.pg_chunk.map +
1188 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1189 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1190 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1191 rx_ring->lbq_buf_size);
2c9a0d41 1192 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1193
1194 pci_dma_sync_single_for_device(qdev->pdev, map,
1195 rx_ring->lbq_buf_size,
1196 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1197 clean_idx++;
1198 if (clean_idx == rx_ring->lbq_len)
1199 clean_idx = 0;
1200 }
1201
1202 rx_ring->lbq_clean_idx = clean_idx;
1203 rx_ring->lbq_prod_idx += 16;
1204 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1205 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1206 rx_ring->lbq_free_cnt -= 16;
1207 }
1208
1209 if (start_idx != clean_idx) {
ae9540f7
JP
1210 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1211 "lbq: updating prod idx = %d.\n",
1212 rx_ring->lbq_prod_idx);
c4e84bde
RM
1213 ql_write_db_reg(rx_ring->lbq_prod_idx,
1214 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1215 }
1216}
1217
1218/* Process (refill) a small buffer queue. */
1219static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1220{
49f2186d
RM
1221 u32 clean_idx = rx_ring->sbq_clean_idx;
1222 u32 start_idx = clean_idx;
c4e84bde 1223 struct bq_desc *sbq_desc;
c4e84bde
RM
1224 u64 map;
1225 int i;
1226
1227 while (rx_ring->sbq_free_cnt > 16) {
1228 for (i = 0; i < 16; i++) {
1229 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1230 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1231 "sbq: try cleaning clean_idx = %d.\n",
1232 clean_idx);
c4e84bde 1233 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1234 netif_printk(qdev, rx_status, KERN_DEBUG,
1235 qdev->ndev,
1236 "sbq: getting new skb for index %d.\n",
1237 sbq_desc->index);
c4e84bde
RM
1238 sbq_desc->p.skb =
1239 netdev_alloc_skb(qdev->ndev,
52e55f3c 1240 SMALL_BUFFER_SIZE);
c4e84bde 1241 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1242 netif_err(qdev, probe, qdev->ndev,
1243 "Couldn't get an skb.\n");
c4e84bde
RM
1244 rx_ring->sbq_clean_idx = clean_idx;
1245 return;
1246 }
1247 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1248 map = pci_map_single(qdev->pdev,
1249 sbq_desc->p.skb->data,
52e55f3c
RM
1250 rx_ring->sbq_buf_size,
1251 PCI_DMA_FROMDEVICE);
c907a35a 1252 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1253 netif_err(qdev, ifup, qdev->ndev,
1254 "PCI mapping failed.\n");
c907a35a 1255 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1256 dev_kfree_skb_any(sbq_desc->p.skb);
1257 sbq_desc->p.skb = NULL;
c907a35a
RM
1258 return;
1259 }
64b9b41d
FT
1260 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1261 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1262 rx_ring->sbq_buf_size);
2c9a0d41 1263 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1264 }
1265
1266 clean_idx++;
1267 if (clean_idx == rx_ring->sbq_len)
1268 clean_idx = 0;
1269 }
1270 rx_ring->sbq_clean_idx = clean_idx;
1271 rx_ring->sbq_prod_idx += 16;
1272 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1273 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1274 rx_ring->sbq_free_cnt -= 16;
1275 }
1276
1277 if (start_idx != clean_idx) {
ae9540f7
JP
1278 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1279 "sbq: updating prod idx = %d.\n",
1280 rx_ring->sbq_prod_idx);
c4e84bde
RM
1281 ql_write_db_reg(rx_ring->sbq_prod_idx,
1282 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1283 }
1284}
1285
1286static void ql_update_buffer_queues(struct ql_adapter *qdev,
1287 struct rx_ring *rx_ring)
1288{
1289 ql_update_sbq(qdev, rx_ring);
1290 ql_update_lbq(qdev, rx_ring);
1291}
1292
1293/* Unmaps tx buffers. Can be called from send() if a pci mapping
1294 * fails at some stage, or from the interrupt when a tx completes.
1295 */
1296static void ql_unmap_send(struct ql_adapter *qdev,
1297 struct tx_ring_desc *tx_ring_desc, int mapped)
1298{
1299 int i;
1300 for (i = 0; i < mapped; i++) {
1301 if (i == 0 || (i == 7 && mapped > 7)) {
1302 /*
1303 * Unmap the skb->data area, or the
1304 * external sglist (AKA the Outbound
1305 * Address List (OAL)).
1306 * If its the zeroeth element, then it's
1307 * the skb->data area. If it's the 7th
1308 * element and there is more than 6 frags,
1309 * then its an OAL.
1310 */
1311 if (i == 7) {
ae9540f7
JP
1312 netif_printk(qdev, tx_done, KERN_DEBUG,
1313 qdev->ndev,
1314 "unmapping OAL area.\n");
c4e84bde
RM
1315 }
1316 pci_unmap_single(qdev->pdev,
64b9b41d 1317 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1318 mapaddr),
64b9b41d 1319 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1320 maplen),
1321 PCI_DMA_TODEVICE);
1322 } else {
ae9540f7
JP
1323 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1324 "unmapping frag %d.\n", i);
c4e84bde 1325 pci_unmap_page(qdev->pdev,
64b9b41d 1326 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1327 mapaddr),
64b9b41d 1328 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1329 maplen), PCI_DMA_TODEVICE);
1330 }
1331 }
1332
1333}
1334
1335/* Map the buffers for this transmit. This will return
1336 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1337 */
1338static int ql_map_send(struct ql_adapter *qdev,
1339 struct ob_mac_iocb_req *mac_iocb_ptr,
1340 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1341{
1342 int len = skb_headlen(skb);
1343 dma_addr_t map;
1344 int frag_idx, err, map_idx = 0;
1345 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1346 int frag_cnt = skb_shinfo(skb)->nr_frags;
1347
1348 if (frag_cnt) {
ae9540f7
JP
1349 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1350 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1351 }
1352 /*
1353 * Map the skb buffer first.
1354 */
1355 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1356
1357 err = pci_dma_mapping_error(qdev->pdev, map);
1358 if (err) {
ae9540f7
JP
1359 netif_err(qdev, tx_queued, qdev->ndev,
1360 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1361
1362 return NETDEV_TX_BUSY;
1363 }
1364
1365 tbd->len = cpu_to_le32(len);
1366 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1367 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1368 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1369 map_idx++;
1370
1371 /*
1372 * This loop fills the remainder of the 8 address descriptors
1373 * in the IOCB. If there are more than 7 fragments, then the
1374 * eighth address desc will point to an external list (OAL).
1375 * When this happens, the remainder of the frags will be stored
1376 * in this list.
1377 */
1378 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1379 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1380 tbd++;
1381 if (frag_idx == 6 && frag_cnt > 7) {
1382 /* Let's tack on an sglist.
1383 * Our control block will now
1384 * look like this:
1385 * iocb->seg[0] = skb->data
1386 * iocb->seg[1] = frag[0]
1387 * iocb->seg[2] = frag[1]
1388 * iocb->seg[3] = frag[2]
1389 * iocb->seg[4] = frag[3]
1390 * iocb->seg[5] = frag[4]
1391 * iocb->seg[6] = frag[5]
1392 * iocb->seg[7] = ptr to OAL (external sglist)
1393 * oal->seg[0] = frag[6]
1394 * oal->seg[1] = frag[7]
1395 * oal->seg[2] = frag[8]
1396 * oal->seg[3] = frag[9]
1397 * oal->seg[4] = frag[10]
1398 * etc...
1399 */
1400 /* Tack on the OAL in the eighth segment of IOCB. */
1401 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1402 sizeof(struct oal),
1403 PCI_DMA_TODEVICE);
1404 err = pci_dma_mapping_error(qdev->pdev, map);
1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping outbound address list with error: %d\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 /*
1414 * The length is the number of fragments
1415 * that remain to be mapped times the length
1416 * of our sglist (OAL).
1417 */
1418 tbd->len =
1419 cpu_to_le32((sizeof(struct tx_buf_desc) *
1420 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1421 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1422 map);
64b9b41d 1423 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1424 sizeof(struct oal));
1425 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1426 map_idx++;
1427 }
1428
1429 map =
1430 pci_map_page(qdev->pdev, frag->page,
1431 frag->page_offset, frag->size,
1432 PCI_DMA_TODEVICE);
1433
1434 err = pci_dma_mapping_error(qdev->pdev, map);
1435 if (err) {
ae9540f7
JP
1436 netif_err(qdev, tx_queued, qdev->ndev,
1437 "PCI mapping frags failed with error: %d.\n",
1438 err);
c4e84bde
RM
1439 goto map_error;
1440 }
1441
1442 tbd->addr = cpu_to_le64(map);
1443 tbd->len = cpu_to_le32(frag->size);
64b9b41d
FT
1444 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1445 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1446 frag->size);
1447
1448 }
1449 /* Save the number of segments we've mapped. */
1450 tx_ring_desc->map_cnt = map_idx;
1451 /* Terminate the last segment. */
1452 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1453 return NETDEV_TX_OK;
1454
1455map_error:
1456 /*
1457 * If the first frag mapping failed, then i will be zero.
1458 * This causes the unmap of the skb->data area. Otherwise
1459 * we pass in the number of frags that mapped successfully
1460 * so they can be umapped.
1461 */
1462 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1463 return NETDEV_TX_BUSY;
1464}
1465
63526713
RM
1466/* Process an inbound completion from an rx ring. */
1467static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1468 struct rx_ring *rx_ring,
1469 struct ib_mac_iocb_rsp *ib_mac_rsp,
1470 u32 length,
1471 u16 vlan_id)
1472{
1473 struct sk_buff *skb;
1474 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1475 struct skb_frag_struct *rx_frag;
1476 int nr_frags;
1477 struct napi_struct *napi = &rx_ring->napi;
1478
1479 napi->dev = qdev->ndev;
1480
1481 skb = napi_get_frags(napi);
1482 if (!skb) {
ae9540f7
JP
1483 netif_err(qdev, drv, qdev->ndev,
1484 "Couldn't get an skb, exiting.\n");
63526713
RM
1485 rx_ring->rx_dropped++;
1486 put_page(lbq_desc->p.pg_chunk.page);
1487 return;
1488 }
1489 prefetch(lbq_desc->p.pg_chunk.va);
1490 rx_frag = skb_shinfo(skb)->frags;
1491 nr_frags = skb_shinfo(skb)->nr_frags;
1492 rx_frag += nr_frags;
1493 rx_frag->page = lbq_desc->p.pg_chunk.page;
1494 rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
1495 rx_frag->size = length;
1496
1497 skb->len += length;
1498 skb->data_len += length;
1499 skb->truesize += length;
1500 skb_shinfo(skb)->nr_frags++;
1501
1502 rx_ring->rx_packets++;
1503 rx_ring->rx_bytes += length;
1504 skb->ip_summed = CHECKSUM_UNNECESSARY;
1505 skb_record_rx_queue(skb, rx_ring->cq_id);
1506 if (qdev->vlgrp && (vlan_id != 0xffff))
1507 vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
1508 else
1509 napi_gro_frags(napi);
1510}
1511
4f848c0a
RM
1512/* Process an inbound completion from an rx ring. */
1513static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1514 struct rx_ring *rx_ring,
1515 struct ib_mac_iocb_rsp *ib_mac_rsp,
1516 u32 length,
1517 u16 vlan_id)
1518{
1519 struct net_device *ndev = qdev->ndev;
1520 struct sk_buff *skb = NULL;
1521 void *addr;
1522 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1523 struct napi_struct *napi = &rx_ring->napi;
1524
1525 skb = netdev_alloc_skb(ndev, length);
1526 if (!skb) {
ae9540f7
JP
1527 netif_err(qdev, drv, qdev->ndev,
1528 "Couldn't get an skb, need to unwind!.\n");
4f848c0a
RM
1529 rx_ring->rx_dropped++;
1530 put_page(lbq_desc->p.pg_chunk.page);
1531 return;
1532 }
1533
1534 addr = lbq_desc->p.pg_chunk.va;
1535 prefetch(addr);
1536
1537
1538 /* Frame error, so drop the packet. */
1539 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1540 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1541 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1542 rx_ring->rx_errors++;
1543 goto err_out;
1544 }
1545
1546 /* The max framesize filter on this chip is set higher than
1547 * MTU since FCoE uses 2k frames.
1548 */
1549 if (skb->len > ndev->mtu + ETH_HLEN) {
ae9540f7
JP
1550 netif_err(qdev, drv, qdev->ndev,
1551 "Segment too small, dropping.\n");
4f848c0a
RM
1552 rx_ring->rx_dropped++;
1553 goto err_out;
1554 }
1555 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
ae9540f7
JP
1556 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1557 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1558 length);
4f848c0a
RM
1559 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1560 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1561 length-ETH_HLEN);
1562 skb->len += length-ETH_HLEN;
1563 skb->data_len += length-ETH_HLEN;
1564 skb->truesize += length-ETH_HLEN;
1565
1566 rx_ring->rx_packets++;
1567 rx_ring->rx_bytes += skb->len;
1568 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1569 skb_checksum_none_assert(skb);
4f848c0a
RM
1570
1571 if (qdev->rx_csum &&
1572 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1573 /* TCP frame. */
1574 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1575 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1576 "TCP checksum done!\n");
4f848c0a
RM
1577 skb->ip_summed = CHECKSUM_UNNECESSARY;
1578 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1579 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1580 /* Unfragmented ipv4 UDP frame. */
1581 struct iphdr *iph = (struct iphdr *) skb->data;
1582 if (!(iph->frag_off &
1583 cpu_to_be16(IP_MF|IP_OFFSET))) {
1584 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1585 netif_printk(qdev, rx_status, KERN_DEBUG,
1586 qdev->ndev,
1587 "TCP checksum done!\n");
4f848c0a
RM
1588 }
1589 }
1590 }
1591
1592 skb_record_rx_queue(skb, rx_ring->cq_id);
1593 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1594 if (qdev->vlgrp && (vlan_id != 0xffff))
1595 vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
1596 else
1597 napi_gro_receive(napi, skb);
1598 } else {
1599 if (qdev->vlgrp && (vlan_id != 0xffff))
1600 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1601 else
1602 netif_receive_skb(skb);
1603 }
1604 return;
1605err_out:
1606 dev_kfree_skb_any(skb);
1607 put_page(lbq_desc->p.pg_chunk.page);
1608}
1609
1610/* Process an inbound completion from an rx ring. */
1611static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1612 struct rx_ring *rx_ring,
1613 struct ib_mac_iocb_rsp *ib_mac_rsp,
1614 u32 length,
1615 u16 vlan_id)
1616{
1617 struct net_device *ndev = qdev->ndev;
1618 struct sk_buff *skb = NULL;
1619 struct sk_buff *new_skb = NULL;
1620 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1621
1622 skb = sbq_desc->p.skb;
1623 /* Allocate new_skb and copy */
1624 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1625 if (new_skb == NULL) {
ae9540f7
JP
1626 netif_err(qdev, probe, qdev->ndev,
1627 "No skb available, drop the packet.\n");
4f848c0a
RM
1628 rx_ring->rx_dropped++;
1629 return;
1630 }
1631 skb_reserve(new_skb, NET_IP_ALIGN);
1632 memcpy(skb_put(new_skb, length), skb->data, length);
1633 skb = new_skb;
1634
1635 /* Frame error, so drop the packet. */
1636 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1637 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1638 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1639 dev_kfree_skb_any(skb);
1640 rx_ring->rx_errors++;
1641 return;
1642 }
1643
1644 /* loopback self test for ethtool */
1645 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1646 ql_check_lb_frame(qdev, skb);
1647 dev_kfree_skb_any(skb);
1648 return;
1649 }
1650
1651 /* The max framesize filter on this chip is set higher than
1652 * MTU since FCoE uses 2k frames.
1653 */
1654 if (skb->len > ndev->mtu + ETH_HLEN) {
1655 dev_kfree_skb_any(skb);
1656 rx_ring->rx_dropped++;
1657 return;
1658 }
1659
1660 prefetch(skb->data);
1661 skb->dev = ndev;
1662 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1663 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1664 "%s Multicast.\n",
1665 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1666 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1667 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1668 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1669 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1670 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1671 }
1672 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1673 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1674 "Promiscuous Packet.\n");
4f848c0a
RM
1675
1676 rx_ring->rx_packets++;
1677 rx_ring->rx_bytes += skb->len;
1678 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1679 skb_checksum_none_assert(skb);
4f848c0a
RM
1680
1681 /* If rx checksum is on, and there are no
1682 * csum or frame errors.
1683 */
1684 if (qdev->rx_csum &&
1685 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1686 /* TCP frame. */
1687 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1688 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1689 "TCP checksum done!\n");
4f848c0a
RM
1690 skb->ip_summed = CHECKSUM_UNNECESSARY;
1691 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1692 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1693 /* Unfragmented ipv4 UDP frame. */
1694 struct iphdr *iph = (struct iphdr *) skb->data;
1695 if (!(iph->frag_off &
6d29b1ef 1696 ntohs(IP_MF|IP_OFFSET))) {
4f848c0a 1697 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1698 netif_printk(qdev, rx_status, KERN_DEBUG,
1699 qdev->ndev,
1700 "TCP checksum done!\n");
4f848c0a
RM
1701 }
1702 }
1703 }
1704
1705 skb_record_rx_queue(skb, rx_ring->cq_id);
1706 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1707 if (qdev->vlgrp && (vlan_id != 0xffff))
1708 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1709 vlan_id, skb);
1710 else
1711 napi_gro_receive(&rx_ring->napi, skb);
1712 } else {
1713 if (qdev->vlgrp && (vlan_id != 0xffff))
1714 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1715 else
1716 netif_receive_skb(skb);
1717 }
1718}
1719
8668ae92 1720static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1721{
1722 void *temp_addr = skb->data;
1723
1724 /* Undo the skb_reserve(skb,32) we did before
1725 * giving to hardware, and realign data on
1726 * a 2-byte boundary.
1727 */
1728 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1729 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1730 skb_copy_to_linear_data(skb, temp_addr,
1731 (unsigned int)len);
1732}
1733
1734/*
1735 * This function builds an skb for the given inbound
1736 * completion. It will be rewritten for readability in the near
1737 * future, but for not it works well.
1738 */
1739static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1740 struct rx_ring *rx_ring,
1741 struct ib_mac_iocb_rsp *ib_mac_rsp)
1742{
1743 struct bq_desc *lbq_desc;
1744 struct bq_desc *sbq_desc;
1745 struct sk_buff *skb = NULL;
1746 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1747 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1748
1749 /*
1750 * Handle the header buffer if present.
1751 */
1752 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1753 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1754 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1755 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1756 /*
1757 * Headers fit nicely into a small buffer.
1758 */
1759 sbq_desc = ql_get_curr_sbuf(rx_ring);
1760 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1761 dma_unmap_addr(sbq_desc, mapaddr),
1762 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1763 PCI_DMA_FROMDEVICE);
1764 skb = sbq_desc->p.skb;
1765 ql_realign_skb(skb, hdr_len);
1766 skb_put(skb, hdr_len);
1767 sbq_desc->p.skb = NULL;
1768 }
1769
1770 /*
1771 * Handle the data buffer(s).
1772 */
1773 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1774 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1775 "No Data buffer in this packet.\n");
c4e84bde
RM
1776 return skb;
1777 }
1778
1779 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1780 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1781 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1782 "Headers in small, data of %d bytes in small, combine them.\n",
1783 length);
c4e84bde
RM
1784 /*
1785 * Data is less than small buffer size so it's
1786 * stuffed in a small buffer.
1787 * For this case we append the data
1788 * from the "data" small buffer to the "header" small
1789 * buffer.
1790 */
1791 sbq_desc = ql_get_curr_sbuf(rx_ring);
1792 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1793 dma_unmap_addr
c4e84bde 1794 (sbq_desc, mapaddr),
64b9b41d 1795 dma_unmap_len
c4e84bde
RM
1796 (sbq_desc, maplen),
1797 PCI_DMA_FROMDEVICE);
1798 memcpy(skb_put(skb, length),
1799 sbq_desc->p.skb->data, length);
1800 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1801 dma_unmap_addr
c4e84bde
RM
1802 (sbq_desc,
1803 mapaddr),
64b9b41d 1804 dma_unmap_len
c4e84bde
RM
1805 (sbq_desc,
1806 maplen),
1807 PCI_DMA_FROMDEVICE);
1808 } else {
ae9540f7
JP
1809 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1810 "%d bytes in a single small buffer.\n",
1811 length);
c4e84bde
RM
1812 sbq_desc = ql_get_curr_sbuf(rx_ring);
1813 skb = sbq_desc->p.skb;
1814 ql_realign_skb(skb, length);
1815 skb_put(skb, length);
1816 pci_unmap_single(qdev->pdev,
64b9b41d 1817 dma_unmap_addr(sbq_desc,
c4e84bde 1818 mapaddr),
64b9b41d 1819 dma_unmap_len(sbq_desc,
c4e84bde
RM
1820 maplen),
1821 PCI_DMA_FROMDEVICE);
1822 sbq_desc->p.skb = NULL;
1823 }
1824 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1825 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1826 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1827 "Header in small, %d bytes in large. Chain large to small!\n",
1828 length);
c4e84bde
RM
1829 /*
1830 * The data is in a single large buffer. We
1831 * chain it to the header buffer's skb and let
1832 * it rip.
1833 */
7c734359 1834 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1835 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1836 "Chaining page at offset = %d, for %d bytes to skb.\n",
1837 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1838 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1839 lbq_desc->p.pg_chunk.offset,
1840 length);
c4e84bde
RM
1841 skb->len += length;
1842 skb->data_len += length;
1843 skb->truesize += length;
c4e84bde
RM
1844 } else {
1845 /*
1846 * The headers and data are in a single large buffer. We
1847 * copy it to a new skb and let it go. This can happen with
1848 * jumbo mtu on a non-TCP/UDP frame.
1849 */
7c734359 1850 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1851 skb = netdev_alloc_skb(qdev->ndev, length);
1852 if (skb == NULL) {
ae9540f7
JP
1853 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1854 "No skb available, drop the packet.\n");
c4e84bde
RM
1855 return NULL;
1856 }
4055c7d4 1857 pci_unmap_page(qdev->pdev,
64b9b41d 1858 dma_unmap_addr(lbq_desc,
4055c7d4 1859 mapaddr),
64b9b41d 1860 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1861 PCI_DMA_FROMDEVICE);
c4e84bde 1862 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1863 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1864 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1865 length);
7c734359
RM
1866 skb_fill_page_desc(skb, 0,
1867 lbq_desc->p.pg_chunk.page,
1868 lbq_desc->p.pg_chunk.offset,
1869 length);
c4e84bde
RM
1870 skb->len += length;
1871 skb->data_len += length;
1872 skb->truesize += length;
1873 length -= length;
c4e84bde
RM
1874 __pskb_pull_tail(skb,
1875 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1876 VLAN_ETH_HLEN : ETH_HLEN);
1877 }
1878 } else {
1879 /*
1880 * The data is in a chain of large buffers
1881 * pointed to by a small buffer. We loop
1882 * thru and chain them to the our small header
1883 * buffer's skb.
1884 * frags: There are 18 max frags and our small
1885 * buffer will hold 32 of them. The thing is,
1886 * we'll use 3 max for our 9000 byte jumbo
1887 * frames. If the MTU goes up we could
1888 * eventually be in trouble.
1889 */
7c734359 1890 int size, i = 0;
c4e84bde
RM
1891 sbq_desc = ql_get_curr_sbuf(rx_ring);
1892 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1893 dma_unmap_addr(sbq_desc, mapaddr),
1894 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1895 PCI_DMA_FROMDEVICE);
1896 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1897 /*
1898 * This is an non TCP/UDP IP frame, so
1899 * the headers aren't split into a small
1900 * buffer. We have to use the small buffer
1901 * that contains our sg list as our skb to
1902 * send upstairs. Copy the sg list here to
1903 * a local buffer and use it to find the
1904 * pages to chain.
1905 */
ae9540f7
JP
1906 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1907 "%d bytes of headers & data in chain of large.\n",
1908 length);
c4e84bde 1909 skb = sbq_desc->p.skb;
c4e84bde
RM
1910 sbq_desc->p.skb = NULL;
1911 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1912 }
1913 while (length > 0) {
7c734359
RM
1914 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1915 size = (length < rx_ring->lbq_buf_size) ? length :
1916 rx_ring->lbq_buf_size;
c4e84bde 1917
ae9540f7
JP
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "Adding page %d to skb for %d bytes.\n",
1920 i, size);
7c734359
RM
1921 skb_fill_page_desc(skb, i,
1922 lbq_desc->p.pg_chunk.page,
1923 lbq_desc->p.pg_chunk.offset,
1924 size);
c4e84bde
RM
1925 skb->len += size;
1926 skb->data_len += size;
1927 skb->truesize += size;
1928 length -= size;
c4e84bde
RM
1929 i++;
1930 }
1931 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1932 VLAN_ETH_HLEN : ETH_HLEN);
1933 }
1934 return skb;
1935}
1936
1937/* Process an inbound completion from an rx ring. */
4f848c0a 1938static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1939 struct rx_ring *rx_ring,
4f848c0a
RM
1940 struct ib_mac_iocb_rsp *ib_mac_rsp,
1941 u16 vlan_id)
c4e84bde
RM
1942{
1943 struct net_device *ndev = qdev->ndev;
1944 struct sk_buff *skb = NULL;
1945
1946 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1947
1948 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1949 if (unlikely(!skb)) {
ae9540f7
JP
1950 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1951 "No skb available, drop packet.\n");
885ee398 1952 rx_ring->rx_dropped++;
c4e84bde
RM
1953 return;
1954 }
1955
a32959cd
RM
1956 /* Frame error, so drop the packet. */
1957 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1958 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1959 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
a32959cd 1960 dev_kfree_skb_any(skb);
885ee398 1961 rx_ring->rx_errors++;
a32959cd
RM
1962 return;
1963 }
ec33a491
RM
1964
1965 /* The max framesize filter on this chip is set higher than
1966 * MTU since FCoE uses 2k frames.
1967 */
1968 if (skb->len > ndev->mtu + ETH_HLEN) {
1969 dev_kfree_skb_any(skb);
885ee398 1970 rx_ring->rx_dropped++;
ec33a491
RM
1971 return;
1972 }
1973
9dfbbaa6
RM
1974 /* loopback self test for ethtool */
1975 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1976 ql_check_lb_frame(qdev, skb);
1977 dev_kfree_skb_any(skb);
1978 return;
1979 }
1980
c4e84bde
RM
1981 prefetch(skb->data);
1982 skb->dev = ndev;
1983 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1984 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1985 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1986 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1987 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1988 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1989 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1990 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1991 rx_ring->rx_multicast++;
c4e84bde
RM
1992 }
1993 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1995 "Promiscuous Packet.\n");
c4e84bde 1996 }
d555f592 1997
d555f592 1998 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1999 skb_checksum_none_assert(skb);
d555f592
RM
2000
2001 /* If rx checksum is on, and there are no
2002 * csum or frame errors.
2003 */
2004 if (qdev->rx_csum &&
d555f592
RM
2005 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2006 /* TCP frame. */
2007 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
2008 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2009 "TCP checksum done!\n");
d555f592
RM
2010 skb->ip_summed = CHECKSUM_UNNECESSARY;
2011 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2012 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2013 /* Unfragmented ipv4 UDP frame. */
2014 struct iphdr *iph = (struct iphdr *) skb->data;
2015 if (!(iph->frag_off &
6d29b1ef 2016 ntohs(IP_MF|IP_OFFSET))) {
d555f592 2017 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
d555f592
RM
2020 }
2021 }
c4e84bde 2022 }
d555f592 2023
885ee398
RM
2024 rx_ring->rx_packets++;
2025 rx_ring->rx_bytes += skb->len;
b2014ff8 2026 skb_record_rx_queue(skb, rx_ring->cq_id);
22bdd4f5
RM
2027 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2028 if (qdev->vlgrp &&
2029 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2030 (vlan_id != 0))
2031 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
2032 vlan_id, skb);
2033 else
2034 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 2035 } else {
22bdd4f5
RM
2036 if (qdev->vlgrp &&
2037 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2038 (vlan_id != 0))
2039 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
2040 else
2041 netif_receive_skb(skb);
c4e84bde 2042 }
c4e84bde
RM
2043}
2044
4f848c0a
RM
2045/* Process an inbound completion from an rx ring. */
2046static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049{
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2052 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2053 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2054
2055 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2056
2057 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2058 /* The data and headers are split into
2059 * separate buffers.
2060 */
2061 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2062 vlan_id);
2063 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2064 /* The data fit in a single small buffer.
2065 * Allocate a new skb, copy the data and
2066 * return the buffer to the free pool.
2067 */
2068 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2069 length, vlan_id);
63526713
RM
2070 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2071 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2072 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2073 /* TCP packet in a page chunk that's been checksummed.
2074 * Tack it on to our GRO skb and let it go.
2075 */
2076 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2077 length, vlan_id);
4f848c0a
RM
2078 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2079 /* Non-TCP packet in a page chunk. Allocate an
2080 * skb, tack it on frags, and send it up.
2081 */
2082 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2083 length, vlan_id);
2084 } else {
c0c56955
RM
2085 /* Non-TCP/UDP large frames that span multiple buffers
2086 * can be processed corrrectly by the split frame logic.
2087 */
2088 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2089 vlan_id);
4f848c0a
RM
2090 }
2091
2092 return (unsigned long)length;
2093}
2094
c4e84bde
RM
2095/* Process an outbound completion from an rx ring. */
2096static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2097 struct ob_mac_iocb_rsp *mac_rsp)
2098{
2099 struct tx_ring *tx_ring;
2100 struct tx_ring_desc *tx_ring_desc;
2101
2102 QL_DUMP_OB_MAC_RSP(mac_rsp);
2103 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2104 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2105 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2106 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2107 tx_ring->tx_packets++;
c4e84bde
RM
2108 dev_kfree_skb(tx_ring_desc->skb);
2109 tx_ring_desc->skb = NULL;
2110
2111 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2112 OB_MAC_IOCB_RSP_S |
2113 OB_MAC_IOCB_RSP_L |
2114 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2115 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2116 netif_warn(qdev, tx_done, qdev->ndev,
2117 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2118 }
2119 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2120 netif_warn(qdev, tx_done, qdev->ndev,
2121 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2122 }
2123 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2124 netif_warn(qdev, tx_done, qdev->ndev,
2125 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2126 }
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2130 }
2131 }
2132 atomic_inc(&tx_ring->tx_count);
2133}
2134
2135/* Fire up a handler to reset the MPI processor. */
2136void ql_queue_fw_error(struct ql_adapter *qdev)
2137{
6a473308 2138 ql_link_off(qdev);
c4e84bde
RM
2139 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2140}
2141
2142void ql_queue_asic_error(struct ql_adapter *qdev)
2143{
6a473308 2144 ql_link_off(qdev);
c4e84bde 2145 ql_disable_interrupts(qdev);
6497b607
RM
2146 /* Clear adapter up bit to signal the recovery
2147 * process that it shouldn't kill the reset worker
2148 * thread
2149 */
2150 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
2151 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2152}
2153
2154static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2155 struct ib_ae_iocb_rsp *ib_ae_rsp)
2156{
2157 switch (ib_ae_rsp->event) {
2158 case MGMT_ERR_EVENT:
ae9540f7
JP
2159 netif_err(qdev, rx_err, qdev->ndev,
2160 "Management Processor Fatal Error.\n");
c4e84bde
RM
2161 ql_queue_fw_error(qdev);
2162 return;
2163
2164 case CAM_LOOKUP_ERR_EVENT:
ae9540f7
JP
2165 netif_err(qdev, link, qdev->ndev,
2166 "Multiple CAM hits lookup occurred.\n");
2167 netif_err(qdev, drv, qdev->ndev,
2168 "This event shouldn't occur.\n");
c4e84bde
RM
2169 ql_queue_asic_error(qdev);
2170 return;
2171
2172 case SOFT_ECC_ERROR_EVENT:
ae9540f7
JP
2173 netif_err(qdev, rx_err, qdev->ndev,
2174 "Soft ECC error detected.\n");
c4e84bde
RM
2175 ql_queue_asic_error(qdev);
2176 break;
2177
2178 case PCI_ERR_ANON_BUF_RD:
ae9540f7
JP
2179 netif_err(qdev, rx_err, qdev->ndev,
2180 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
2181 ib_ae_rsp->q_id);
c4e84bde
RM
2182 ql_queue_asic_error(qdev);
2183 break;
2184
2185 default:
ae9540f7
JP
2186 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2187 ib_ae_rsp->event);
c4e84bde
RM
2188 ql_queue_asic_error(qdev);
2189 break;
2190 }
2191}
2192
2193static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2194{
2195 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2196 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2197 struct ob_mac_iocb_rsp *net_rsp = NULL;
2198 int count = 0;
2199
1e213303 2200 struct tx_ring *tx_ring;
c4e84bde
RM
2201 /* While there are entries in the completion queue. */
2202 while (prod != rx_ring->cnsmr_idx) {
2203
ae9540f7
JP
2204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2205 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2206 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2207
2208 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2209 rmb();
2210 switch (net_rsp->opcode) {
2211
2212 case OPCODE_OB_MAC_TSO_IOCB:
2213 case OPCODE_OB_MAC_IOCB:
2214 ql_process_mac_tx_intr(qdev, net_rsp);
2215 break;
2216 default:
ae9540f7
JP
2217 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2219 net_rsp->opcode);
c4e84bde
RM
2220 }
2221 count++;
2222 ql_update_cq(rx_ring);
ba7cd3ba 2223 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2224 }
4da79504
DC
2225 if (!net_rsp)
2226 return 0;
c4e84bde 2227 ql_write_cq_idx(rx_ring);
1e213303 2228 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2229 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
c4e84bde
RM
2230 if (atomic_read(&tx_ring->queue_stopped) &&
2231 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2232 /*
2233 * The queue got stopped because the tx_ring was full.
2234 * Wake it up, because it's now at least 25% empty.
2235 */
1e213303 2236 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2237 }
2238
2239 return count;
2240}
2241
2242static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2243{
2244 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2245 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2246 struct ql_net_rsp_iocb *net_rsp;
2247 int count = 0;
2248
2249 /* While there are entries in the completion queue. */
2250 while (prod != rx_ring->cnsmr_idx) {
2251
ae9540f7
JP
2252 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2253 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2254 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2255
2256 net_rsp = rx_ring->curr_entry;
2257 rmb();
2258 switch (net_rsp->opcode) {
2259 case OPCODE_IB_MAC_IOCB:
2260 ql_process_mac_rx_intr(qdev, rx_ring,
2261 (struct ib_mac_iocb_rsp *)
2262 net_rsp);
2263 break;
2264
2265 case OPCODE_IB_AE_IOCB:
2266 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2267 net_rsp);
2268 break;
2269 default:
ae9540f7
JP
2270 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2271 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2272 net_rsp->opcode);
2273 break;
c4e84bde
RM
2274 }
2275 count++;
2276 ql_update_cq(rx_ring);
ba7cd3ba 2277 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2278 if (count == budget)
2279 break;
2280 }
2281 ql_update_buffer_queues(qdev, rx_ring);
2282 ql_write_cq_idx(rx_ring);
2283 return count;
2284}
2285
2286static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2287{
2288 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2289 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2290 struct rx_ring *trx_ring;
2291 int i, work_done = 0;
2292 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2293
ae9540f7
JP
2294 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2295 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2296
39aa8165
RM
2297 /* Service the TX rings first. They start
2298 * right after the RSS rings. */
2299 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2300 trx_ring = &qdev->rx_ring[i];
2301 /* If this TX completion ring belongs to this vector and
2302 * it's not empty then service it.
2303 */
2304 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2305 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2306 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2307 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2308 "%s: Servicing TX completion ring %d.\n",
2309 __func__, trx_ring->cq_id);
39aa8165
RM
2310 ql_clean_outbound_rx_ring(trx_ring);
2311 }
2312 }
2313
2314 /*
2315 * Now service the RSS ring if it's active.
2316 */
2317 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2318 rx_ring->cnsmr_idx) {
ae9540f7
JP
2319 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320 "%s: Servicing RX completion ring %d.\n",
2321 __func__, rx_ring->cq_id);
39aa8165
RM
2322 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2323 }
2324
c4e84bde 2325 if (work_done < budget) {
22bdd4f5 2326 napi_complete(napi);
c4e84bde
RM
2327 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2328 }
2329 return work_done;
2330}
2331
01e6b953 2332static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
c4e84bde
RM
2333{
2334 struct ql_adapter *qdev = netdev_priv(ndev);
2335
2336 qdev->vlgrp = grp;
2337 if (grp) {
ae9540f7
JP
2338 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2339 "Turning on VLAN in NIC_RCV_CFG.\n");
c4e84bde
RM
2340 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2341 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2342 } else {
ae9540f7
JP
2343 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2344 "Turning off VLAN in NIC_RCV_CFG.\n");
c4e84bde
RM
2345 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2346 }
2347}
2348
01e6b953 2349static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2350{
2351 struct ql_adapter *qdev = netdev_priv(ndev);
2352 u32 enable_bit = MAC_ADDR_E;
cc288f54 2353 int status;
c4e84bde 2354
cc288f54
RM
2355 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2356 if (status)
2357 return;
c4e84bde
RM
2358 if (ql_set_mac_addr_reg
2359 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
ae9540f7
JP
2360 netif_err(qdev, ifup, qdev->ndev,
2361 "Failed to init vlan address.\n");
c4e84bde 2362 }
cc288f54 2363 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2364}
2365
01e6b953 2366static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2367{
2368 struct ql_adapter *qdev = netdev_priv(ndev);
2369 u32 enable_bit = 0;
cc288f54
RM
2370 int status;
2371
2372 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2373 if (status)
2374 return;
c4e84bde 2375
c4e84bde
RM
2376 if (ql_set_mac_addr_reg
2377 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
ae9540f7
JP
2378 netif_err(qdev, ifup, qdev->ndev,
2379 "Failed to clear vlan address.\n");
c4e84bde 2380 }
cc288f54 2381 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2382
2383}
2384
c4e84bde
RM
2385/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2386static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2387{
2388 struct rx_ring *rx_ring = dev_id;
288379f0 2389 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2390 return IRQ_HANDLED;
2391}
2392
c4e84bde
RM
2393/* This handles a fatal error, MPI activity, and the default
2394 * rx_ring in an MSI-X multiple vector environment.
2395 * In MSI/Legacy environment it also process the rest of
2396 * the rx_rings.
2397 */
2398static irqreturn_t qlge_isr(int irq, void *dev_id)
2399{
2400 struct rx_ring *rx_ring = dev_id;
2401 struct ql_adapter *qdev = rx_ring->qdev;
2402 struct intr_context *intr_context = &qdev->intr_context[0];
2403 u32 var;
c4e84bde
RM
2404 int work_done = 0;
2405
bb0d215c
RM
2406 spin_lock(&qdev->hw_lock);
2407 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2408 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2409 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2410 spin_unlock(&qdev->hw_lock);
2411 return IRQ_NONE;
c4e84bde 2412 }
bb0d215c 2413 spin_unlock(&qdev->hw_lock);
c4e84bde 2414
bb0d215c 2415 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2416
2417 /*
2418 * Check for fatal error.
2419 */
2420 if (var & STS_FE) {
2421 ql_queue_asic_error(qdev);
ae9540f7
JP
2422 netif_err(qdev, intr, qdev->ndev,
2423 "Got fatal error, STS = %x.\n", var);
c4e84bde 2424 var = ql_read32(qdev, ERR_STS);
ae9540f7
JP
2425 netif_err(qdev, intr, qdev->ndev,
2426 "Resetting chip. Error Status Register = 0x%x\n", var);
c4e84bde
RM
2427 return IRQ_HANDLED;
2428 }
2429
2430 /*
2431 * Check MPI processor activity.
2432 */
5ee22a5a
RM
2433 if ((var & STS_PI) &&
2434 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2435 /*
2436 * We've got an async event or mailbox completion.
2437 * Handle it and clear the source of the interrupt.
2438 */
ae9540f7
JP
2439 netif_err(qdev, intr, qdev->ndev,
2440 "Got MPI processor interrupt.\n");
c4e84bde 2441 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2442 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2443 queue_delayed_work_on(smp_processor_id(),
2444 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2445 work_done++;
2446 }
2447
2448 /*
39aa8165
RM
2449 * Get the bit-mask that shows the active queues for this
2450 * pass. Compare it to the queues that this irq services
2451 * and call napi if there's a match.
c4e84bde 2452 */
39aa8165
RM
2453 var = ql_read32(qdev, ISR1);
2454 if (var & intr_context->irq_mask) {
ae9540f7
JP
2455 netif_info(qdev, intr, qdev->ndev,
2456 "Waking handler for rx_ring[0].\n");
39aa8165 2457 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2458 napi_schedule(&rx_ring->napi);
2459 work_done++;
2460 }
bb0d215c 2461 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2462 return work_done ? IRQ_HANDLED : IRQ_NONE;
2463}
2464
2465static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2466{
2467
2468 if (skb_is_gso(skb)) {
2469 int err;
2470 if (skb_header_cloned(skb)) {
2471 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2472 if (err)
2473 return err;
2474 }
2475
2476 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2477 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2478 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2479 mac_iocb_ptr->total_hdrs_len =
2480 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2481 mac_iocb_ptr->net_trans_offset =
2482 cpu_to_le16(skb_network_offset(skb) |
2483 skb_transport_offset(skb)
2484 << OB_MAC_TRANSPORT_HDR_SHIFT);
2485 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2486 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2487 if (likely(skb->protocol == htons(ETH_P_IP))) {
2488 struct iphdr *iph = ip_hdr(skb);
2489 iph->check = 0;
2490 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2491 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2492 iph->daddr, 0,
2493 IPPROTO_TCP,
2494 0);
2495 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2496 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2497 tcp_hdr(skb)->check =
2498 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2499 &ipv6_hdr(skb)->daddr,
2500 0, IPPROTO_TCP, 0);
2501 }
2502 return 1;
2503 }
2504 return 0;
2505}
2506
2507static void ql_hw_csum_setup(struct sk_buff *skb,
2508 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2509{
2510 int len;
2511 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2512 __sum16 *check;
c4e84bde
RM
2513 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2514 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2515 mac_iocb_ptr->net_trans_offset =
2516 cpu_to_le16(skb_network_offset(skb) |
2517 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2518
2519 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2520 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2521 if (likely(iph->protocol == IPPROTO_TCP)) {
2522 check = &(tcp_hdr(skb)->check);
2523 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2524 mac_iocb_ptr->total_hdrs_len =
2525 cpu_to_le16(skb_transport_offset(skb) +
2526 (tcp_hdr(skb)->doff << 2));
2527 } else {
2528 check = &(udp_hdr(skb)->check);
2529 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2530 mac_iocb_ptr->total_hdrs_len =
2531 cpu_to_le16(skb_transport_offset(skb) +
2532 sizeof(struct udphdr));
2533 }
2534 *check = ~csum_tcpudp_magic(iph->saddr,
2535 iph->daddr, len, iph->protocol, 0);
2536}
2537
61357325 2538static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2539{
2540 struct tx_ring_desc *tx_ring_desc;
2541 struct ob_mac_iocb_req *mac_iocb_ptr;
2542 struct ql_adapter *qdev = netdev_priv(ndev);
2543 int tso;
2544 struct tx_ring *tx_ring;
1e213303 2545 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2546
2547 tx_ring = &qdev->tx_ring[tx_ring_idx];
2548
74c50b4b
RM
2549 if (skb_padto(skb, ETH_ZLEN))
2550 return NETDEV_TX_OK;
2551
c4e84bde 2552 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7
JP
2553 netif_info(qdev, tx_queued, qdev->ndev,
2554 "%s: shutting down tx queue %d du to lack of resources.\n",
2555 __func__, tx_ring_idx);
1e213303 2556 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde 2557 atomic_inc(&tx_ring->queue_stopped);
885ee398 2558 tx_ring->tx_errors++;
c4e84bde
RM
2559 return NETDEV_TX_BUSY;
2560 }
2561 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2562 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2563 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2564
2565 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2566 mac_iocb_ptr->tid = tx_ring_desc->index;
2567 /* We use the upper 32-bits to store the tx queue for this IO.
2568 * When we get the completion we can use it to establish the context.
2569 */
2570 mac_iocb_ptr->txq_idx = tx_ring_idx;
2571 tx_ring_desc->skb = skb;
2572
2573 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2574
eab6d18d 2575 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2576 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2577 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2578 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2579 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2580 }
2581 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2582 if (tso < 0) {
2583 dev_kfree_skb_any(skb);
2584 return NETDEV_TX_OK;
2585 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2586 ql_hw_csum_setup(skb,
2587 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2588 }
0d979f74
RM
2589 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2590 NETDEV_TX_OK) {
ae9540f7
JP
2591 netif_err(qdev, tx_queued, qdev->ndev,
2592 "Could not map the segments.\n");
885ee398 2593 tx_ring->tx_errors++;
0d979f74
RM
2594 return NETDEV_TX_BUSY;
2595 }
c4e84bde
RM
2596 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2597 tx_ring->prod_idx++;
2598 if (tx_ring->prod_idx == tx_ring->wq_len)
2599 tx_ring->prod_idx = 0;
2600 wmb();
2601
2602 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2603 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2604 "tx queued, slot %d, len %d\n",
2605 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2606
2607 atomic_dec(&tx_ring->tx_count);
2608 return NETDEV_TX_OK;
2609}
2610
9dfbbaa6 2611
c4e84bde
RM
2612static void ql_free_shadow_space(struct ql_adapter *qdev)
2613{
2614 if (qdev->rx_ring_shadow_reg_area) {
2615 pci_free_consistent(qdev->pdev,
2616 PAGE_SIZE,
2617 qdev->rx_ring_shadow_reg_area,
2618 qdev->rx_ring_shadow_reg_dma);
2619 qdev->rx_ring_shadow_reg_area = NULL;
2620 }
2621 if (qdev->tx_ring_shadow_reg_area) {
2622 pci_free_consistent(qdev->pdev,
2623 PAGE_SIZE,
2624 qdev->tx_ring_shadow_reg_area,
2625 qdev->tx_ring_shadow_reg_dma);
2626 qdev->tx_ring_shadow_reg_area = NULL;
2627 }
2628}
2629
2630static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2631{
2632 qdev->rx_ring_shadow_reg_area =
2633 pci_alloc_consistent(qdev->pdev,
2634 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2635 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2636 netif_err(qdev, ifup, qdev->ndev,
2637 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2638 return -ENOMEM;
2639 }
b25215d0 2640 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2641 qdev->tx_ring_shadow_reg_area =
2642 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2643 &qdev->tx_ring_shadow_reg_dma);
2644 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2645 netif_err(qdev, ifup, qdev->ndev,
2646 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2647 goto err_wqp_sh_area;
2648 }
b25215d0 2649 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2650 return 0;
2651
2652err_wqp_sh_area:
2653 pci_free_consistent(qdev->pdev,
2654 PAGE_SIZE,
2655 qdev->rx_ring_shadow_reg_area,
2656 qdev->rx_ring_shadow_reg_dma);
2657 return -ENOMEM;
2658}
2659
2660static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2661{
2662 struct tx_ring_desc *tx_ring_desc;
2663 int i;
2664 struct ob_mac_iocb_req *mac_iocb_ptr;
2665
2666 mac_iocb_ptr = tx_ring->wq_base;
2667 tx_ring_desc = tx_ring->q;
2668 for (i = 0; i < tx_ring->wq_len; i++) {
2669 tx_ring_desc->index = i;
2670 tx_ring_desc->skb = NULL;
2671 tx_ring_desc->queue_entry = mac_iocb_ptr;
2672 mac_iocb_ptr++;
2673 tx_ring_desc++;
2674 }
2675 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2676 atomic_set(&tx_ring->queue_stopped, 0);
2677}
2678
2679static void ql_free_tx_resources(struct ql_adapter *qdev,
2680 struct tx_ring *tx_ring)
2681{
2682 if (tx_ring->wq_base) {
2683 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2684 tx_ring->wq_base, tx_ring->wq_base_dma);
2685 tx_ring->wq_base = NULL;
2686 }
2687 kfree(tx_ring->q);
2688 tx_ring->q = NULL;
2689}
2690
2691static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2692 struct tx_ring *tx_ring)
2693{
2694 tx_ring->wq_base =
2695 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2696 &tx_ring->wq_base_dma);
2697
8e95a202
JP
2698 if ((tx_ring->wq_base == NULL) ||
2699 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
ae9540f7 2700 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2701 return -ENOMEM;
2702 }
2703 tx_ring->q =
2704 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2705 if (tx_ring->q == NULL)
2706 goto err;
2707
2708 return 0;
2709err:
2710 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2711 tx_ring->wq_base, tx_ring->wq_base_dma);
2712 return -ENOMEM;
2713}
2714
8668ae92 2715static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2716{
c4e84bde
RM
2717 struct bq_desc *lbq_desc;
2718
7c734359
RM
2719 uint32_t curr_idx, clean_idx;
2720
2721 curr_idx = rx_ring->lbq_curr_idx;
2722 clean_idx = rx_ring->lbq_clean_idx;
2723 while (curr_idx != clean_idx) {
2724 lbq_desc = &rx_ring->lbq[curr_idx];
2725
2726 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2727 pci_unmap_page(qdev->pdev,
7c734359
RM
2728 lbq_desc->p.pg_chunk.map,
2729 ql_lbq_block_size(qdev),
c4e84bde 2730 PCI_DMA_FROMDEVICE);
7c734359 2731 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2732 }
7c734359
RM
2733
2734 put_page(lbq_desc->p.pg_chunk.page);
2735 lbq_desc->p.pg_chunk.page = NULL;
2736
2737 if (++curr_idx == rx_ring->lbq_len)
2738 curr_idx = 0;
2739
c4e84bde
RM
2740 }
2741}
2742
8668ae92 2743static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2744{
2745 int i;
2746 struct bq_desc *sbq_desc;
2747
2748 for (i = 0; i < rx_ring->sbq_len; i++) {
2749 sbq_desc = &rx_ring->sbq[i];
2750 if (sbq_desc == NULL) {
ae9540f7
JP
2751 netif_err(qdev, ifup, qdev->ndev,
2752 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2753 return;
2754 }
2755 if (sbq_desc->p.skb) {
2756 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2757 dma_unmap_addr(sbq_desc, mapaddr),
2758 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2759 PCI_DMA_FROMDEVICE);
2760 dev_kfree_skb(sbq_desc->p.skb);
2761 sbq_desc->p.skb = NULL;
2762 }
c4e84bde
RM
2763 }
2764}
2765
4545a3f2
RM
2766/* Free all large and small rx buffers associated
2767 * with the completion queues for this device.
2768 */
2769static void ql_free_rx_buffers(struct ql_adapter *qdev)
2770{
2771 int i;
2772 struct rx_ring *rx_ring;
2773
2774 for (i = 0; i < qdev->rx_ring_count; i++) {
2775 rx_ring = &qdev->rx_ring[i];
2776 if (rx_ring->lbq)
2777 ql_free_lbq_buffers(qdev, rx_ring);
2778 if (rx_ring->sbq)
2779 ql_free_sbq_buffers(qdev, rx_ring);
2780 }
2781}
2782
2783static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2784{
2785 struct rx_ring *rx_ring;
2786 int i;
2787
2788 for (i = 0; i < qdev->rx_ring_count; i++) {
2789 rx_ring = &qdev->rx_ring[i];
2790 if (rx_ring->type != TX_Q)
2791 ql_update_buffer_queues(qdev, rx_ring);
2792 }
2793}
2794
2795static void ql_init_lbq_ring(struct ql_adapter *qdev,
2796 struct rx_ring *rx_ring)
2797{
2798 int i;
2799 struct bq_desc *lbq_desc;
2800 __le64 *bq = rx_ring->lbq_base;
2801
2802 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2803 for (i = 0; i < rx_ring->lbq_len; i++) {
2804 lbq_desc = &rx_ring->lbq[i];
2805 memset(lbq_desc, 0, sizeof(*lbq_desc));
2806 lbq_desc->index = i;
2807 lbq_desc->addr = bq;
2808 bq++;
2809 }
2810}
2811
2812static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2813 struct rx_ring *rx_ring)
2814{
2815 int i;
2816 struct bq_desc *sbq_desc;
2c9a0d41 2817 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2818
4545a3f2 2819 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2820 for (i = 0; i < rx_ring->sbq_len; i++) {
2821 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2822 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2823 sbq_desc->index = i;
2c9a0d41 2824 sbq_desc->addr = bq;
c4e84bde
RM
2825 bq++;
2826 }
c4e84bde
RM
2827}
2828
2829static void ql_free_rx_resources(struct ql_adapter *qdev,
2830 struct rx_ring *rx_ring)
2831{
c4e84bde
RM
2832 /* Free the small buffer queue. */
2833 if (rx_ring->sbq_base) {
2834 pci_free_consistent(qdev->pdev,
2835 rx_ring->sbq_size,
2836 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2837 rx_ring->sbq_base = NULL;
2838 }
2839
2840 /* Free the small buffer queue control blocks. */
2841 kfree(rx_ring->sbq);
2842 rx_ring->sbq = NULL;
2843
2844 /* Free the large buffer queue. */
2845 if (rx_ring->lbq_base) {
2846 pci_free_consistent(qdev->pdev,
2847 rx_ring->lbq_size,
2848 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2849 rx_ring->lbq_base = NULL;
2850 }
2851
2852 /* Free the large buffer queue control blocks. */
2853 kfree(rx_ring->lbq);
2854 rx_ring->lbq = NULL;
2855
2856 /* Free the rx queue. */
2857 if (rx_ring->cq_base) {
2858 pci_free_consistent(qdev->pdev,
2859 rx_ring->cq_size,
2860 rx_ring->cq_base, rx_ring->cq_base_dma);
2861 rx_ring->cq_base = NULL;
2862 }
2863}
2864
2865/* Allocate queues and buffers for this completions queue based
2866 * on the values in the parameter structure. */
2867static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2868 struct rx_ring *rx_ring)
2869{
2870
2871 /*
2872 * Allocate the completion queue for this rx_ring.
2873 */
2874 rx_ring->cq_base =
2875 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2876 &rx_ring->cq_base_dma);
2877
2878 if (rx_ring->cq_base == NULL) {
ae9540f7 2879 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2880 return -ENOMEM;
2881 }
2882
2883 if (rx_ring->sbq_len) {
2884 /*
2885 * Allocate small buffer queue.
2886 */
2887 rx_ring->sbq_base =
2888 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2889 &rx_ring->sbq_base_dma);
2890
2891 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2892 netif_err(qdev, ifup, qdev->ndev,
2893 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2894 goto err_mem;
2895 }
2896
2897 /*
2898 * Allocate small buffer queue control blocks.
2899 */
2900 rx_ring->sbq =
2901 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2902 GFP_KERNEL);
2903 if (rx_ring->sbq == NULL) {
ae9540f7
JP
2904 netif_err(qdev, ifup, qdev->ndev,
2905 "Small buffer queue control block allocation failed.\n");
c4e84bde
RM
2906 goto err_mem;
2907 }
2908
4545a3f2 2909 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2910 }
2911
2912 if (rx_ring->lbq_len) {
2913 /*
2914 * Allocate large buffer queue.
2915 */
2916 rx_ring->lbq_base =
2917 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2918 &rx_ring->lbq_base_dma);
2919
2920 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
2921 netif_err(qdev, ifup, qdev->ndev,
2922 "Large buffer queue allocation failed.\n");
c4e84bde
RM
2923 goto err_mem;
2924 }
2925 /*
2926 * Allocate large buffer queue control blocks.
2927 */
2928 rx_ring->lbq =
2929 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2930 GFP_KERNEL);
2931 if (rx_ring->lbq == NULL) {
ae9540f7
JP
2932 netif_err(qdev, ifup, qdev->ndev,
2933 "Large buffer queue control block allocation failed.\n");
c4e84bde
RM
2934 goto err_mem;
2935 }
2936
4545a3f2 2937 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2938 }
2939
2940 return 0;
2941
2942err_mem:
2943 ql_free_rx_resources(qdev, rx_ring);
2944 return -ENOMEM;
2945}
2946
2947static void ql_tx_ring_clean(struct ql_adapter *qdev)
2948{
2949 struct tx_ring *tx_ring;
2950 struct tx_ring_desc *tx_ring_desc;
2951 int i, j;
2952
2953 /*
2954 * Loop through all queues and free
2955 * any resources.
2956 */
2957 for (j = 0; j < qdev->tx_ring_count; j++) {
2958 tx_ring = &qdev->tx_ring[j];
2959 for (i = 0; i < tx_ring->wq_len; i++) {
2960 tx_ring_desc = &tx_ring->q[i];
2961 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
2962 netif_err(qdev, ifdown, qdev->ndev,
2963 "Freeing lost SKB %p, from queue %d, index %d.\n",
2964 tx_ring_desc->skb, j,
2965 tx_ring_desc->index);
c4e84bde
RM
2966 ql_unmap_send(qdev, tx_ring_desc,
2967 tx_ring_desc->map_cnt);
2968 dev_kfree_skb(tx_ring_desc->skb);
2969 tx_ring_desc->skb = NULL;
2970 }
2971 }
2972 }
2973}
2974
c4e84bde
RM
2975static void ql_free_mem_resources(struct ql_adapter *qdev)
2976{
2977 int i;
2978
2979 for (i = 0; i < qdev->tx_ring_count; i++)
2980 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2981 for (i = 0; i < qdev->rx_ring_count; i++)
2982 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2983 ql_free_shadow_space(qdev);
2984}
2985
2986static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2987{
2988 int i;
2989
2990 /* Allocate space for our shadow registers and such. */
2991 if (ql_alloc_shadow_space(qdev))
2992 return -ENOMEM;
2993
2994 for (i = 0; i < qdev->rx_ring_count; i++) {
2995 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
2996 netif_err(qdev, ifup, qdev->ndev,
2997 "RX resource allocation failed.\n");
c4e84bde
RM
2998 goto err_mem;
2999 }
3000 }
3001 /* Allocate tx queue resources */
3002 for (i = 0; i < qdev->tx_ring_count; i++) {
3003 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3004 netif_err(qdev, ifup, qdev->ndev,
3005 "TX resource allocation failed.\n");
c4e84bde
RM
3006 goto err_mem;
3007 }
3008 }
3009 return 0;
3010
3011err_mem:
3012 ql_free_mem_resources(qdev);
3013 return -ENOMEM;
3014}
3015
3016/* Set up the rx ring control block and pass it to the chip.
3017 * The control block is defined as
3018 * "Completion Queue Initialization Control Block", or cqicb.
3019 */
3020static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3021{
3022 struct cqicb *cqicb = &rx_ring->cqicb;
3023 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3024 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3025 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3026 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3027 void __iomem *doorbell_area =
3028 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3029 int err = 0;
3030 u16 bq_len;
d4a4aba6 3031 u64 tmp;
b8facca0
RM
3032 __le64 *base_indirect_ptr;
3033 int page_entries;
c4e84bde
RM
3034
3035 /* Set up the shadow registers for this ring. */
3036 rx_ring->prod_idx_sh_reg = shadow_reg;
3037 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3038 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3039 shadow_reg += sizeof(u64);
3040 shadow_reg_dma += sizeof(u64);
3041 rx_ring->lbq_base_indirect = shadow_reg;
3042 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3043 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3044 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3045 rx_ring->sbq_base_indirect = shadow_reg;
3046 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3047
3048 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3049 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3050 rx_ring->cnsmr_idx = 0;
3051 rx_ring->curr_entry = rx_ring->cq_base;
3052
3053 /* PCI doorbell mem area + 0x04 for valid register */
3054 rx_ring->valid_db_reg = doorbell_area + 0x04;
3055
3056 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3057 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3058
3059 /* PCI doorbell mem area + 0x1c */
8668ae92 3060 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3061
3062 memset((void *)cqicb, 0, sizeof(struct cqicb));
3063 cqicb->msix_vect = rx_ring->irq;
3064
459caf5a
RM
3065 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3066 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3067
97345524 3068 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3069
97345524 3070 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3071
3072 /*
3073 * Set up the control block load flags.
3074 */
3075 cqicb->flags = FLAGS_LC | /* Load queue base address */
3076 FLAGS_LV | /* Load MSI-X vector */
3077 FLAGS_LI; /* Load irq delay values */
3078 if (rx_ring->lbq_len) {
3079 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3080 tmp = (u64)rx_ring->lbq_base_dma;
b8facca0
RM
3081 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
3082 page_entries = 0;
3083 do {
3084 *base_indirect_ptr = cpu_to_le64(tmp);
3085 tmp += DB_PAGE_SIZE;
3086 base_indirect_ptr++;
3087 page_entries++;
3088 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3089 cqicb->lbq_addr =
3090 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3091 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3092 (u16) rx_ring->lbq_buf_size;
3093 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3094 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3095 (u16) rx_ring->lbq_len;
c4e84bde 3096 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3097 rx_ring->lbq_prod_idx = 0;
c4e84bde 3098 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3099 rx_ring->lbq_clean_idx = 0;
3100 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3101 }
3102 if (rx_ring->sbq_len) {
3103 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3104 tmp = (u64)rx_ring->sbq_base_dma;
b8facca0
RM
3105 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
3106 page_entries = 0;
3107 do {
3108 *base_indirect_ptr = cpu_to_le64(tmp);
3109 tmp += DB_PAGE_SIZE;
3110 base_indirect_ptr++;
3111 page_entries++;
3112 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3113 cqicb->sbq_addr =
3114 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3115 cqicb->sbq_buf_size =
52e55f3c 3116 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3117 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3118 (u16) rx_ring->sbq_len;
c4e84bde 3119 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3120 rx_ring->sbq_prod_idx = 0;
c4e84bde 3121 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3122 rx_ring->sbq_clean_idx = 0;
3123 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3124 }
3125 switch (rx_ring->type) {
3126 case TX_Q:
c4e84bde
RM
3127 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3128 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3129 break;
c4e84bde
RM
3130 case RX_Q:
3131 /* Inbound completion handling rx_rings run in
3132 * separate NAPI contexts.
3133 */
3134 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3135 64);
3136 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3137 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3138 break;
3139 default:
ae9540f7
JP
3140 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3141 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3142 }
ae9540f7
JP
3143 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3144 "Initializing rx work queue.\n");
c4e84bde
RM
3145 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3146 CFG_LCQ, rx_ring->cq_id);
3147 if (err) {
ae9540f7 3148 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3149 return err;
3150 }
c4e84bde
RM
3151 return err;
3152}
3153
3154static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3155{
3156 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3157 void __iomem *doorbell_area =
3158 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3159 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3160 (tx_ring->wq_id * sizeof(u64));
3161 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3162 (tx_ring->wq_id * sizeof(u64));
3163 int err = 0;
3164
3165 /*
3166 * Assign doorbell registers for this tx_ring.
3167 */
3168 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3169 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3170 tx_ring->prod_idx = 0;
3171 /* TX PCI doorbell mem area + 0x04 */
3172 tx_ring->valid_db_reg = doorbell_area + 0x04;
3173
3174 /*
3175 * Assign shadow registers for this tx_ring.
3176 */
3177 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3178 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3179
3180 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3181 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3182 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3183 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3184 wqicb->rid = 0;
97345524 3185 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3186
97345524 3187 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3188
3189 ql_init_tx_ring(qdev, tx_ring);
3190
e332471c 3191 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3192 (u16) tx_ring->wq_id);
3193 if (err) {
ae9540f7 3194 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3195 return err;
3196 }
ae9540f7
JP
3197 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3198 "Successfully loaded WQICB.\n");
c4e84bde
RM
3199 return err;
3200}
3201
3202static void ql_disable_msix(struct ql_adapter *qdev)
3203{
3204 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3205 pci_disable_msix(qdev->pdev);
3206 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3207 kfree(qdev->msi_x_entry);
3208 qdev->msi_x_entry = NULL;
3209 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3210 pci_disable_msi(qdev->pdev);
3211 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3212 }
3213}
3214
a4ab6137
RM
3215/* We start by trying to get the number of vectors
3216 * stored in qdev->intr_count. If we don't get that
3217 * many then we reduce the count and try again.
3218 */
c4e84bde
RM
3219static void ql_enable_msix(struct ql_adapter *qdev)
3220{
a4ab6137 3221 int i, err;
c4e84bde 3222
c4e84bde 3223 /* Get the MSIX vectors. */
a5a62a1c 3224 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3225 /* Try to alloc space for the msix struct,
3226 * if it fails then go to MSI/legacy.
3227 */
a4ab6137 3228 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3229 sizeof(struct msix_entry),
3230 GFP_KERNEL);
3231 if (!qdev->msi_x_entry) {
a5a62a1c 3232 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3233 goto msi;
3234 }
3235
a4ab6137 3236 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3237 qdev->msi_x_entry[i].entry = i;
3238
a4ab6137
RM
3239 /* Loop to get our vectors. We start with
3240 * what we want and settle for what we get.
3241 */
3242 do {
3243 err = pci_enable_msix(qdev->pdev,
3244 qdev->msi_x_entry, qdev->intr_count);
3245 if (err > 0)
3246 qdev->intr_count = err;
3247 } while (err > 0);
3248
3249 if (err < 0) {
c4e84bde
RM
3250 kfree(qdev->msi_x_entry);
3251 qdev->msi_x_entry = NULL;
ae9540f7
JP
3252 netif_warn(qdev, ifup, qdev->ndev,
3253 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 3254 qdev->intr_count = 1;
a5a62a1c 3255 qlge_irq_type = MSI_IRQ;
a4ab6137
RM
3256 } else if (err == 0) {
3257 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3258 netif_info(qdev, ifup, qdev->ndev,
3259 "MSI-X Enabled, got %d vectors.\n",
3260 qdev->intr_count);
a4ab6137 3261 return;
c4e84bde
RM
3262 }
3263 }
3264msi:
a4ab6137 3265 qdev->intr_count = 1;
a5a62a1c 3266 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3267 if (!pci_enable_msi(qdev->pdev)) {
3268 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3269 netif_info(qdev, ifup, qdev->ndev,
3270 "Running with MSI interrupts.\n");
c4e84bde
RM
3271 return;
3272 }
3273 }
a5a62a1c 3274 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3275 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3276 "Running with legacy interrupts.\n");
c4e84bde
RM
3277}
3278
39aa8165
RM
3279/* Each vector services 1 RSS ring and and 1 or more
3280 * TX completion rings. This function loops through
3281 * the TX completion rings and assigns the vector that
3282 * will service it. An example would be if there are
3283 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3284 * This would mean that vector 0 would service RSS ring 0
3285 * and TX competion rings 0,1,2 and 3. Vector 1 would
3286 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3287 */
3288static void ql_set_tx_vect(struct ql_adapter *qdev)
3289{
3290 int i, j, vect;
3291 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3292
3293 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3294 /* Assign irq vectors to TX rx_rings.*/
3295 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3296 i < qdev->rx_ring_count; i++) {
3297 if (j == tx_rings_per_vector) {
3298 vect++;
3299 j = 0;
3300 }
3301 qdev->rx_ring[i].irq = vect;
3302 j++;
3303 }
3304 } else {
3305 /* For single vector all rings have an irq
3306 * of zero.
3307 */
3308 for (i = 0; i < qdev->rx_ring_count; i++)
3309 qdev->rx_ring[i].irq = 0;
3310 }
3311}
3312
3313/* Set the interrupt mask for this vector. Each vector
3314 * will service 1 RSS ring and 1 or more TX completion
3315 * rings. This function sets up a bit mask per vector
3316 * that indicates which rings it services.
3317 */
3318static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3319{
3320 int j, vect = ctx->intr;
3321 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3322
3323 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3324 /* Add the RSS ring serviced by this vector
3325 * to the mask.
3326 */
3327 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3328 /* Add the TX ring(s) serviced by this vector
3329 * to the mask. */
3330 for (j = 0; j < tx_rings_per_vector; j++) {
3331 ctx->irq_mask |=
3332 (1 << qdev->rx_ring[qdev->rss_ring_count +
3333 (vect * tx_rings_per_vector) + j].cq_id);
3334 }
3335 } else {
3336 /* For single vector we just shift each queue's
3337 * ID into the mask.
3338 */
3339 for (j = 0; j < qdev->rx_ring_count; j++)
3340 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3341 }
3342}
3343
c4e84bde
RM
3344/*
3345 * Here we build the intr_context structures based on
3346 * our rx_ring count and intr vector count.
3347 * The intr_context structure is used to hook each vector
3348 * to possibly different handlers.
3349 */
3350static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3351{
3352 int i = 0;
3353 struct intr_context *intr_context = &qdev->intr_context[0];
3354
c4e84bde
RM
3355 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3356 /* Each rx_ring has it's
3357 * own intr_context since we have separate
3358 * vectors for each queue.
c4e84bde
RM
3359 */
3360 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3361 qdev->rx_ring[i].irq = i;
3362 intr_context->intr = i;
3363 intr_context->qdev = qdev;
39aa8165
RM
3364 /* Set up this vector's bit-mask that indicates
3365 * which queues it services.
3366 */
3367 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3368 /*
3369 * We set up each vectors enable/disable/read bits so
3370 * there's no bit/mask calculations in the critical path.
3371 */
3372 intr_context->intr_en_mask =
3373 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3374 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3375 | i;
3376 intr_context->intr_dis_mask =
3377 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3378 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3379 INTR_EN_IHD | i;
3380 intr_context->intr_read_mask =
3381 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3382 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3383 i;
39aa8165
RM
3384 if (i == 0) {
3385 /* The first vector/queue handles
3386 * broadcast/multicast, fatal errors,
3387 * and firmware events. This in addition
3388 * to normal inbound NAPI processing.
c4e84bde 3389 */
39aa8165 3390 intr_context->handler = qlge_isr;
b2014ff8
RM
3391 sprintf(intr_context->name, "%s-rx-%d",
3392 qdev->ndev->name, i);
3393 } else {
c4e84bde 3394 /*
39aa8165 3395 * Inbound queues handle unicast frames only.
c4e84bde 3396 */
39aa8165
RM
3397 intr_context->handler = qlge_msix_rx_isr;
3398 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3399 qdev->ndev->name, i);
c4e84bde
RM
3400 }
3401 }
3402 } else {
3403 /*
3404 * All rx_rings use the same intr_context since
3405 * there is only one vector.
3406 */
3407 intr_context->intr = 0;
3408 intr_context->qdev = qdev;
3409 /*
3410 * We set up each vectors enable/disable/read bits so
3411 * there's no bit/mask calculations in the critical path.
3412 */
3413 intr_context->intr_en_mask =
3414 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3415 intr_context->intr_dis_mask =
3416 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3417 INTR_EN_TYPE_DISABLE;
3418 intr_context->intr_read_mask =
3419 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3420 /*
3421 * Single interrupt means one handler for all rings.
3422 */
3423 intr_context->handler = qlge_isr;
3424 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3425 /* Set up this vector's bit-mask that indicates
3426 * which queues it services. In this case there is
3427 * a single vector so it will service all RSS and
3428 * TX completion rings.
3429 */
3430 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3431 }
39aa8165
RM
3432 /* Tell the TX completion rings which MSIx vector
3433 * they will be using.
3434 */
3435 ql_set_tx_vect(qdev);
c4e84bde
RM
3436}
3437
3438static void ql_free_irq(struct ql_adapter *qdev)
3439{
3440 int i;
3441 struct intr_context *intr_context = &qdev->intr_context[0];
3442
3443 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3444 if (intr_context->hooked) {
3445 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3446 free_irq(qdev->msi_x_entry[i].vector,
3447 &qdev->rx_ring[i]);
ae9540f7
JP
3448 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3449 "freeing msix interrupt %d.\n", i);
c4e84bde
RM
3450 } else {
3451 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
ae9540f7
JP
3452 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3453 "freeing msi interrupt %d.\n", i);
c4e84bde
RM
3454 }
3455 }
3456 }
3457 ql_disable_msix(qdev);
3458}
3459
3460static int ql_request_irq(struct ql_adapter *qdev)
3461{
3462 int i;
3463 int status = 0;
3464 struct pci_dev *pdev = qdev->pdev;
3465 struct intr_context *intr_context = &qdev->intr_context[0];
3466
3467 ql_resolve_queues_to_irqs(qdev);
3468
3469 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3470 atomic_set(&intr_context->irq_cnt, 0);
3471 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3472 status = request_irq(qdev->msi_x_entry[i].vector,
3473 intr_context->handler,
3474 0,
3475 intr_context->name,
3476 &qdev->rx_ring[i]);
3477 if (status) {
ae9540f7
JP
3478 netif_err(qdev, ifup, qdev->ndev,
3479 "Failed request for MSIX interrupt %d.\n",
3480 i);
c4e84bde
RM
3481 goto err_irq;
3482 } else {
ae9540f7
JP
3483 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3484 "Hooked intr %d, queue type %s, with name %s.\n",
3485 i,
3486 qdev->rx_ring[i].type == DEFAULT_Q ?
3487 "DEFAULT_Q" :
3488 qdev->rx_ring[i].type == TX_Q ?
3489 "TX_Q" :
3490 qdev->rx_ring[i].type == RX_Q ?
3491 "RX_Q" : "",
3492 intr_context->name);
c4e84bde
RM
3493 }
3494 } else {
ae9540f7
JP
3495 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3496 "trying msi or legacy interrupts.\n");
3497 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3498 "%s: irq = %d.\n", __func__, pdev->irq);
3499 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3500 "%s: context->name = %s.\n", __func__,
3501 intr_context->name);
3502 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3503 "%s: dev_id = 0x%p.\n", __func__,
3504 &qdev->rx_ring[0]);
c4e84bde
RM
3505 status =
3506 request_irq(pdev->irq, qlge_isr,
3507 test_bit(QL_MSI_ENABLED,
3508 &qdev->
3509 flags) ? 0 : IRQF_SHARED,
3510 intr_context->name, &qdev->rx_ring[0]);
3511 if (status)
3512 goto err_irq;
3513
ae9540f7
JP
3514 netif_err(qdev, ifup, qdev->ndev,
3515 "Hooked intr %d, queue type %s, with name %s.\n",
3516 i,
3517 qdev->rx_ring[0].type == DEFAULT_Q ?
3518 "DEFAULT_Q" :
3519 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3520 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3521 intr_context->name);
c4e84bde
RM
3522 }
3523 intr_context->hooked = 1;
3524 }
3525 return status;
3526err_irq:
ae9540f7 3527 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3528 ql_free_irq(qdev);
3529 return status;
3530}
3531
3532static int ql_start_rss(struct ql_adapter *qdev)
3533{
541ae28c
RM
3534 u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3535 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3536 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3537 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3538 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3539 0xbe, 0xac, 0x01, 0xfa};
c4e84bde
RM
3540 struct ricb *ricb = &qdev->ricb;
3541 int status = 0;
3542 int i;
3543 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3544
e332471c 3545 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3546
b2014ff8 3547 ricb->base_cq = RSS_L4K;
c4e84bde 3548 ricb->flags =
541ae28c
RM
3549 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3550 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3551
3552 /*
3553 * Fill out the Indirection Table.
3554 */
541ae28c
RM
3555 for (i = 0; i < 1024; i++)
3556 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3557
541ae28c
RM
3558 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3559 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3560
ae9540f7 3561 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
c4e84bde 3562
e332471c 3563 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3564 if (status) {
ae9540f7 3565 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3566 return status;
3567 }
ae9540f7
JP
3568 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3569 "Successfully loaded RICB.\n");
c4e84bde
RM
3570 return status;
3571}
3572
a5f59dc9 3573static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3574{
a5f59dc9 3575 int i, status = 0;
c4e84bde 3576
8587ea35
RM
3577 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3578 if (status)
3579 return status;
c4e84bde
RM
3580 /* Clear all the entries in the routing table. */
3581 for (i = 0; i < 16; i++) {
3582 status = ql_set_routing_reg(qdev, i, 0, 0);
3583 if (status) {
ae9540f7
JP
3584 netif_err(qdev, ifup, qdev->ndev,
3585 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3586 break;
c4e84bde
RM
3587 }
3588 }
a5f59dc9
RM
3589 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3590 return status;
3591}
3592
3593/* Initialize the frame-to-queue routing. */
3594static int ql_route_initialize(struct ql_adapter *qdev)
3595{
3596 int status = 0;
3597
fd21cf52
RM
3598 /* Clear all the entries in the routing table. */
3599 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3600 if (status)
3601 return status;
3602
fd21cf52 3603 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3604 if (status)
fd21cf52 3605 return status;
c4e84bde 3606
fbc2ac33
RM
3607 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3608 RT_IDX_IP_CSUM_ERR, 1);
3609 if (status) {
3610 netif_err(qdev, ifup, qdev->ndev,
3611 "Failed to init routing register "
3612 "for IP CSUM error packets.\n");
3613 goto exit;
3614 }
3615 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3616 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3617 if (status) {
ae9540f7 3618 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3619 "Failed to init routing register "
3620 "for TCP/UDP CSUM error packets.\n");
8587ea35 3621 goto exit;
c4e84bde
RM
3622 }
3623 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3624 if (status) {
ae9540f7
JP
3625 netif_err(qdev, ifup, qdev->ndev,
3626 "Failed to init routing register for broadcast packets.\n");
8587ea35 3627 goto exit;
c4e84bde
RM
3628 }
3629 /* If we have more than one inbound queue, then turn on RSS in the
3630 * routing block.
3631 */
3632 if (qdev->rss_ring_count > 1) {
3633 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3634 RT_IDX_RSS_MATCH, 1);
3635 if (status) {
ae9540f7
JP
3636 netif_err(qdev, ifup, qdev->ndev,
3637 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3638 goto exit;
c4e84bde
RM
3639 }
3640 }
3641
3642 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3643 RT_IDX_CAM_HIT, 1);
8587ea35 3644 if (status)
ae9540f7
JP
3645 netif_err(qdev, ifup, qdev->ndev,
3646 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3647exit:
3648 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3649 return status;
3650}
3651
2ee1e272 3652int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3653{
7fab3bfe 3654 int status, set;
bb58b5b6 3655
7fab3bfe
RM
3656 /* If check if the link is up and use to
3657 * determine if we are setting or clearing
3658 * the MAC address in the CAM.
3659 */
3660 set = ql_read32(qdev, STS);
3661 set &= qdev->port_link_up;
3662 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3663 if (status) {
ae9540f7 3664 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3665 return status;
3666 }
3667
3668 status = ql_route_initialize(qdev);
3669 if (status)
ae9540f7 3670 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3671
3672 return status;
3673}
3674
c4e84bde
RM
3675static int ql_adapter_initialize(struct ql_adapter *qdev)
3676{
3677 u32 value, mask;
3678 int i;
3679 int status = 0;
3680
3681 /*
3682 * Set up the System register to halt on errors.
3683 */
3684 value = SYS_EFE | SYS_FAE;
3685 mask = value << 16;
3686 ql_write32(qdev, SYS, mask | value);
3687
c9cf0a04
RM
3688 /* Set the default queue, and VLAN behavior. */
3689 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3690 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3691 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3692
3693 /* Set the MPI interrupt to enabled. */
3694 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3695
3696 /* Enable the function, set pagesize, enable error checking. */
3697 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3698 FSC_EC | FSC_VM_PAGE_4K;
3699 value |= SPLT_SETTING;
c4e84bde
RM
3700
3701 /* Set/clear header splitting. */
3702 mask = FSC_VM_PAGESIZE_MASK |
3703 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3704 ql_write32(qdev, FSC, mask | value);
3705
572c526f 3706 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3707
a3b71939
RM
3708 /* Set RX packet routing to use port/pci function on which the
3709 * packet arrived on in addition to usual frame routing.
3710 * This is helpful on bonding where both interfaces can have
3711 * the same MAC address.
3712 */
3713 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3714 /* Reroute all packets to our Interface.
3715 * They may have been routed to MPI firmware
3716 * due to WOL.
3717 */
3718 value = ql_read32(qdev, MGMT_RCV_CFG);
3719 value &= ~MGMT_RCV_CFG_RM;
3720 mask = 0xffff0000;
3721
3722 /* Sticky reg needs clearing due to WOL. */
3723 ql_write32(qdev, MGMT_RCV_CFG, mask);
3724 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3725
3726 /* Default WOL is enable on Mezz cards */
3727 if (qdev->pdev->subsystem_device == 0x0068 ||
3728 qdev->pdev->subsystem_device == 0x0180)
3729 qdev->wol = WAKE_MAGIC;
a3b71939 3730
c4e84bde
RM
3731 /* Start up the rx queues. */
3732 for (i = 0; i < qdev->rx_ring_count; i++) {
3733 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3734 if (status) {
ae9540f7
JP
3735 netif_err(qdev, ifup, qdev->ndev,
3736 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3737 return status;
3738 }
3739 }
3740
3741 /* If there is more than one inbound completion queue
3742 * then download a RICB to configure RSS.
3743 */
3744 if (qdev->rss_ring_count > 1) {
3745 status = ql_start_rss(qdev);
3746 if (status) {
ae9540f7 3747 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3748 return status;
3749 }
3750 }
3751
3752 /* Start up the tx queues. */
3753 for (i = 0; i < qdev->tx_ring_count; i++) {
3754 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3755 if (status) {
ae9540f7
JP
3756 netif_err(qdev, ifup, qdev->ndev,
3757 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3758 return status;
3759 }
3760 }
3761
b0c2aadf
RM
3762 /* Initialize the port and set the max framesize. */
3763 status = qdev->nic_ops->port_initialize(qdev);
80928860 3764 if (status)
ae9540f7 3765 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3766
bb58b5b6
RM
3767 /* Set up the MAC address and frame routing filter. */
3768 status = ql_cam_route_initialize(qdev);
c4e84bde 3769 if (status) {
ae9540f7
JP
3770 netif_err(qdev, ifup, qdev->ndev,
3771 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3772 return status;
3773 }
3774
3775 /* Start NAPI for the RSS queues. */
b2014ff8 3776 for (i = 0; i < qdev->rss_ring_count; i++) {
ae9540f7
JP
3777 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3778 "Enabling NAPI for rx_ring[%d].\n", i);
c4e84bde
RM
3779 napi_enable(&qdev->rx_ring[i].napi);
3780 }
3781
3782 return status;
3783}
3784
3785/* Issue soft reset to chip. */
3786static int ql_adapter_reset(struct ql_adapter *qdev)
3787{
3788 u32 value;
c4e84bde 3789 int status = 0;
a5f59dc9 3790 unsigned long end_jiffies;
c4e84bde 3791
a5f59dc9
RM
3792 /* Clear all the entries in the routing table. */
3793 status = ql_clear_routing_entries(qdev);
3794 if (status) {
ae9540f7 3795 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3796 return status;
3797 }
3798
3799 end_jiffies = jiffies +
3800 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d
RM
3801
3802 /* Stop management traffic. */
3803 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3804
3805 /* Wait for the NIC and MGMNT FIFOs to empty. */
3806 ql_wait_fifo_empty(qdev);
3807
c4e84bde 3808 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3809
c4e84bde
RM
3810 do {
3811 value = ql_read32(qdev, RST_FO);
3812 if ((value & RST_FO_FR) == 0)
3813 break;
a75ee7f1
RM
3814 cpu_relax();
3815 } while (time_before(jiffies, end_jiffies));
c4e84bde 3816
c4e84bde 3817 if (value & RST_FO_FR) {
ae9540f7
JP
3818 netif_err(qdev, ifdown, qdev->ndev,
3819 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3820 status = -ETIMEDOUT;
c4e84bde
RM
3821 }
3822
84087f4d
RM
3823 /* Resume management traffic. */
3824 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3825 return status;
3826}
3827
3828static void ql_display_dev_info(struct net_device *ndev)
3829{
3830 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3831
ae9540f7
JP
3832 netif_info(qdev, probe, qdev->ndev,
3833 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3834 "XG Roll = %d, XG Rev = %d.\n",
3835 qdev->func,
3836 qdev->port,
3837 qdev->chip_rev_id & 0x0000000f,
3838 qdev->chip_rev_id >> 4 & 0x0000000f,
3839 qdev->chip_rev_id >> 8 & 0x0000000f,
3840 qdev->chip_rev_id >> 12 & 0x0000000f);
3841 netif_info(qdev, probe, qdev->ndev,
3842 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3843}
3844
bc083ce9
RM
3845int ql_wol(struct ql_adapter *qdev)
3846{
3847 int status = 0;
3848 u32 wol = MB_WOL_DISABLE;
3849
3850 /* The CAM is still intact after a reset, but if we
3851 * are doing WOL, then we may need to program the
3852 * routing regs. We would also need to issue the mailbox
3853 * commands to instruct the MPI what to do per the ethtool
3854 * settings.
3855 */
3856
3857 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3858 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7
JP
3859 netif_err(qdev, ifdown, qdev->ndev,
3860 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3861 qdev->wol);
bc083ce9
RM
3862 return -EINVAL;
3863 }
3864
3865 if (qdev->wol & WAKE_MAGIC) {
3866 status = ql_mb_wol_set_magic(qdev, 1);
3867 if (status) {
ae9540f7
JP
3868 netif_err(qdev, ifdown, qdev->ndev,
3869 "Failed to set magic packet on %s.\n",
3870 qdev->ndev->name);
bc083ce9
RM
3871 return status;
3872 } else
ae9540f7
JP
3873 netif_info(qdev, drv, qdev->ndev,
3874 "Enabled magic packet successfully on %s.\n",
3875 qdev->ndev->name);
bc083ce9
RM
3876
3877 wol |= MB_WOL_MAGIC_PKT;
3878 }
3879
3880 if (qdev->wol) {
bc083ce9
RM
3881 wol |= MB_WOL_MODE_ON;
3882 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3883 netif_err(qdev, drv, qdev->ndev,
3884 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3885 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3886 wol, qdev->ndev->name);
bc083ce9
RM
3887 }
3888
3889 return status;
3890}
3891
c5dadddb 3892static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3893{
c4e84bde 3894
6497b607
RM
3895 /* Don't kill the reset worker thread if we
3896 * are in the process of recovery.
3897 */
3898 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3899 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3900 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3901 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3902 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3903 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3904 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3905}
3906
3907static int ql_adapter_down(struct ql_adapter *qdev)
3908{
3909 int i, status = 0;
3910
3911 ql_link_off(qdev);
3912
3913 ql_cancel_all_work_sync(qdev);
c4e84bde 3914
39aa8165
RM
3915 for (i = 0; i < qdev->rss_ring_count; i++)
3916 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3917
3918 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3919
3920 ql_disable_interrupts(qdev);
3921
3922 ql_tx_ring_clean(qdev);
3923
6b318cb3
RM
3924 /* Call netif_napi_del() from common point.
3925 */
b2014ff8 3926 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3927 netif_napi_del(&qdev->rx_ring[i].napi);
3928
c4e84bde
RM
3929 status = ql_adapter_reset(qdev);
3930 if (status)
ae9540f7
JP
3931 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3932 qdev->func);
fe5f0980
BL
3933 ql_free_rx_buffers(qdev);
3934
c4e84bde
RM
3935 return status;
3936}
3937
3938static int ql_adapter_up(struct ql_adapter *qdev)
3939{
3940 int err = 0;
3941
c4e84bde
RM
3942 err = ql_adapter_initialize(qdev);
3943 if (err) {
ae9540f7 3944 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
3945 goto err_init;
3946 }
c4e84bde 3947 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3948 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3949 /* If the port is initialized and the
3950 * link is up the turn on the carrier.
3951 */
3952 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3953 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3954 ql_link_on(qdev);
f2c05004
RM
3955 /* Restore rx mode. */
3956 clear_bit(QL_ALLMULTI, &qdev->flags);
3957 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3958 qlge_set_multicast_list(qdev->ndev);
3959
c4e84bde
RM
3960 ql_enable_interrupts(qdev);
3961 ql_enable_all_completion_interrupts(qdev);
1e213303 3962 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3963
3964 return 0;
3965err_init:
3966 ql_adapter_reset(qdev);
3967 return err;
3968}
3969
c4e84bde
RM
3970static void ql_release_adapter_resources(struct ql_adapter *qdev)
3971{
3972 ql_free_mem_resources(qdev);
3973 ql_free_irq(qdev);
3974}
3975
3976static int ql_get_adapter_resources(struct ql_adapter *qdev)
3977{
3978 int status = 0;
3979
3980 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 3981 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
3982 return -ENOMEM;
3983 }
3984 status = ql_request_irq(qdev);
c4e84bde
RM
3985 return status;
3986}
3987
3988static int qlge_close(struct net_device *ndev)
3989{
3990 struct ql_adapter *qdev = netdev_priv(ndev);
3991
4bbd1a19
RM
3992 /* If we hit pci_channel_io_perm_failure
3993 * failure condition, then we already
3994 * brought the adapter down.
3995 */
3996 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 3997 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
3998 clear_bit(QL_EEH_FATAL, &qdev->flags);
3999 return 0;
4000 }
4001
c4e84bde
RM
4002 /*
4003 * Wait for device to recover from a reset.
4004 * (Rarely happens, but possible.)
4005 */
4006 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4007 msleep(1);
4008 ql_adapter_down(qdev);
4009 ql_release_adapter_resources(qdev);
c4e84bde
RM
4010 return 0;
4011}
4012
4013static int ql_configure_rings(struct ql_adapter *qdev)
4014{
4015 int i;
4016 struct rx_ring *rx_ring;
4017 struct tx_ring *tx_ring;
a4ab6137 4018 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4019 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4020 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4021
4022 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4023
4024 /* In a perfect world we have one RSS ring for each CPU
4025 * and each has it's own vector. To do that we ask for
4026 * cpu_cnt vectors. ql_enable_msix() will adjust the
4027 * vector count to what we actually get. We then
4028 * allocate an RSS ring for each.
4029 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4030 */
a4ab6137
RM
4031 qdev->intr_count = cpu_cnt;
4032 ql_enable_msix(qdev);
4033 /* Adjust the RSS ring count to the actual vector count. */
4034 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4035 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4036 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4037
c4e84bde
RM
4038 for (i = 0; i < qdev->tx_ring_count; i++) {
4039 tx_ring = &qdev->tx_ring[i];
e332471c 4040 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4041 tx_ring->qdev = qdev;
4042 tx_ring->wq_id = i;
4043 tx_ring->wq_len = qdev->tx_ring_size;
4044 tx_ring->wq_size =
4045 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4046
4047 /*
4048 * The completion queue ID for the tx rings start
39aa8165 4049 * immediately after the rss rings.
c4e84bde 4050 */
39aa8165 4051 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4052 }
4053
4054 for (i = 0; i < qdev->rx_ring_count; i++) {
4055 rx_ring = &qdev->rx_ring[i];
e332471c 4056 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4057 rx_ring->qdev = qdev;
4058 rx_ring->cq_id = i;
4059 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4060 if (i < qdev->rss_ring_count) {
39aa8165
RM
4061 /*
4062 * Inbound (RSS) queues.
4063 */
c4e84bde
RM
4064 rx_ring->cq_len = qdev->rx_ring_size;
4065 rx_ring->cq_size =
4066 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4067 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4068 rx_ring->lbq_size =
2c9a0d41 4069 rx_ring->lbq_len * sizeof(__le64);
7c734359 4070 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
ae9540f7
JP
4071 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
4072 "lbq_buf_size %d, order = %d\n",
4073 rx_ring->lbq_buf_size,
4074 qdev->lbq_buf_order);
c4e84bde
RM
4075 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4076 rx_ring->sbq_size =
2c9a0d41 4077 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4078 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4079 rx_ring->type = RX_Q;
4080 } else {
c4e84bde
RM
4081 /*
4082 * Outbound queue handles outbound completions only.
4083 */
4084 /* outbound cq is same size as tx_ring it services. */
4085 rx_ring->cq_len = qdev->tx_ring_size;
4086 rx_ring->cq_size =
4087 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4088 rx_ring->lbq_len = 0;
4089 rx_ring->lbq_size = 0;
4090 rx_ring->lbq_buf_size = 0;
4091 rx_ring->sbq_len = 0;
4092 rx_ring->sbq_size = 0;
4093 rx_ring->sbq_buf_size = 0;
4094 rx_ring->type = TX_Q;
c4e84bde
RM
4095 }
4096 }
4097 return 0;
4098}
4099
4100static int qlge_open(struct net_device *ndev)
4101{
4102 int err = 0;
4103 struct ql_adapter *qdev = netdev_priv(ndev);
4104
74e12435
RM
4105 err = ql_adapter_reset(qdev);
4106 if (err)
4107 return err;
4108
c4e84bde
RM
4109 err = ql_configure_rings(qdev);
4110 if (err)
4111 return err;
4112
4113 err = ql_get_adapter_resources(qdev);
4114 if (err)
4115 goto error_up;
4116
4117 err = ql_adapter_up(qdev);
4118 if (err)
4119 goto error_up;
4120
4121 return err;
4122
4123error_up:
4124 ql_release_adapter_resources(qdev);
c4e84bde
RM
4125 return err;
4126}
4127
7c734359
RM
4128static int ql_change_rx_buffers(struct ql_adapter *qdev)
4129{
4130 struct rx_ring *rx_ring;
4131 int i, status;
4132 u32 lbq_buf_len;
4133
4134 /* Wait for an oustanding reset to complete. */
4135 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4136 int i = 3;
4137 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4138 netif_err(qdev, ifup, qdev->ndev,
4139 "Waiting for adapter UP...\n");
7c734359
RM
4140 ssleep(1);
4141 }
4142
4143 if (!i) {
ae9540f7
JP
4144 netif_err(qdev, ifup, qdev->ndev,
4145 "Timed out waiting for adapter UP\n");
7c734359
RM
4146 return -ETIMEDOUT;
4147 }
4148 }
4149
4150 status = ql_adapter_down(qdev);
4151 if (status)
4152 goto error;
4153
4154 /* Get the new rx buffer size. */
4155 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4156 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4157 qdev->lbq_buf_order = get_order(lbq_buf_len);
4158
4159 for (i = 0; i < qdev->rss_ring_count; i++) {
4160 rx_ring = &qdev->rx_ring[i];
4161 /* Set the new size. */
4162 rx_ring->lbq_buf_size = lbq_buf_len;
4163 }
4164
4165 status = ql_adapter_up(qdev);
4166 if (status)
4167 goto error;
4168
4169 return status;
4170error:
ae9540f7
JP
4171 netif_alert(qdev, ifup, qdev->ndev,
4172 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4173 set_bit(QL_ADAPTER_UP, &qdev->flags);
4174 dev_close(qdev->ndev);
4175 return status;
4176}
4177
c4e84bde
RM
4178static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4179{
4180 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4181 int status;
c4e84bde
RM
4182
4183 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4184 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4185 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4186 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4187 } else
4188 return -EINVAL;
7c734359
RM
4189
4190 queue_delayed_work(qdev->workqueue,
4191 &qdev->mpi_port_cfg_work, 3*HZ);
4192
746079da
BL
4193 ndev->mtu = new_mtu;
4194
7c734359 4195 if (!netif_running(qdev->ndev)) {
7c734359
RM
4196 return 0;
4197 }
4198
7c734359
RM
4199 status = ql_change_rx_buffers(qdev);
4200 if (status) {
ae9540f7
JP
4201 netif_err(qdev, ifup, qdev->ndev,
4202 "Changing MTU failed.\n");
7c734359
RM
4203 }
4204
4205 return status;
c4e84bde
RM
4206}
4207
4208static struct net_device_stats *qlge_get_stats(struct net_device
4209 *ndev)
4210{
885ee398
RM
4211 struct ql_adapter *qdev = netdev_priv(ndev);
4212 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4213 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4214 unsigned long pkts, mcast, dropped, errors, bytes;
4215 int i;
4216
4217 /* Get RX stats. */
4218 pkts = mcast = dropped = errors = bytes = 0;
4219 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4220 pkts += rx_ring->rx_packets;
4221 bytes += rx_ring->rx_bytes;
4222 dropped += rx_ring->rx_dropped;
4223 errors += rx_ring->rx_errors;
4224 mcast += rx_ring->rx_multicast;
4225 }
4226 ndev->stats.rx_packets = pkts;
4227 ndev->stats.rx_bytes = bytes;
4228 ndev->stats.rx_dropped = dropped;
4229 ndev->stats.rx_errors = errors;
4230 ndev->stats.multicast = mcast;
4231
4232 /* Get TX stats. */
4233 pkts = errors = bytes = 0;
4234 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4235 pkts += tx_ring->tx_packets;
4236 bytes += tx_ring->tx_bytes;
4237 errors += tx_ring->tx_errors;
4238 }
4239 ndev->stats.tx_packets = pkts;
4240 ndev->stats.tx_bytes = bytes;
4241 ndev->stats.tx_errors = errors;
bcc90f55 4242 return &ndev->stats;
c4e84bde
RM
4243}
4244
f2c05004 4245void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde
RM
4246{
4247 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
22bedad3 4248 struct netdev_hw_addr *ha;
cc288f54 4249 int i, status;
c4e84bde 4250
cc288f54
RM
4251 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4252 if (status)
4253 return;
c4e84bde
RM
4254 /*
4255 * Set or clear promiscuous mode if a
4256 * transition is taking place.
4257 */
4258 if (ndev->flags & IFF_PROMISC) {
4259 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4260 if (ql_set_routing_reg
4261 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7
JP
4262 netif_err(qdev, hw, qdev->ndev,
4263 "Failed to set promiscous mode.\n");
c4e84bde
RM
4264 } else {
4265 set_bit(QL_PROMISCUOUS, &qdev->flags);
4266 }
4267 }
4268 } else {
4269 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4270 if (ql_set_routing_reg
4271 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7
JP
4272 netif_err(qdev, hw, qdev->ndev,
4273 "Failed to clear promiscous mode.\n");
c4e84bde
RM
4274 } else {
4275 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4276 }
4277 }
4278 }
4279
4280 /*
4281 * Set or clear all multicast mode if a
4282 * transition is taking place.
4283 */
4284 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4285 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4286 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4287 if (ql_set_routing_reg
4288 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4289 netif_err(qdev, hw, qdev->ndev,
4290 "Failed to set all-multi mode.\n");
c4e84bde
RM
4291 } else {
4292 set_bit(QL_ALLMULTI, &qdev->flags);
4293 }
4294 }
4295 } else {
4296 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4297 if (ql_set_routing_reg
4298 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4299 netif_err(qdev, hw, qdev->ndev,
4300 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4301 } else {
4302 clear_bit(QL_ALLMULTI, &qdev->flags);
4303 }
4304 }
4305 }
4306
4cd24eaf 4307 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4308 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4309 if (status)
4310 goto exit;
f9dcbcc9 4311 i = 0;
22bedad3
JP
4312 netdev_for_each_mc_addr(ha, ndev) {
4313 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4314 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4315 netif_err(qdev, hw, qdev->ndev,
4316 "Failed to loadmulticast address.\n");
cc288f54 4317 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4318 goto exit;
4319 }
f9dcbcc9
JP
4320 i++;
4321 }
cc288f54 4322 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4323 if (ql_set_routing_reg
4324 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4325 netif_err(qdev, hw, qdev->ndev,
4326 "Failed to set multicast match mode.\n");
c4e84bde
RM
4327 } else {
4328 set_bit(QL_ALLMULTI, &qdev->flags);
4329 }
4330 }
4331exit:
8587ea35 4332 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4333}
4334
4335static int qlge_set_mac_address(struct net_device *ndev, void *p)
4336{
4337 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
4338 struct sockaddr *addr = p;
cc288f54 4339 int status;
c4e84bde 4340
c4e84bde
RM
4341 if (!is_valid_ether_addr(addr->sa_data))
4342 return -EADDRNOTAVAIL;
4343 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4344 /* Update local copy of current mac address. */
4345 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4346
cc288f54
RM
4347 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4348 if (status)
4349 return status;
cc288f54
RM
4350 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4351 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4352 if (status)
ae9540f7 4353 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4354 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4355 return status;
c4e84bde
RM
4356}
4357
4358static void qlge_tx_timeout(struct net_device *ndev)
4359{
4360 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 4361 ql_queue_asic_error(qdev);
c4e84bde
RM
4362}
4363
4364static void ql_asic_reset_work(struct work_struct *work)
4365{
4366 struct ql_adapter *qdev =
4367 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4368 int status;
f2c0d8df 4369 rtnl_lock();
db98812f
RM
4370 status = ql_adapter_down(qdev);
4371 if (status)
4372 goto error;
4373
4374 status = ql_adapter_up(qdev);
4375 if (status)
4376 goto error;
2cd6dbaa
RM
4377
4378 /* Restore rx mode. */
4379 clear_bit(QL_ALLMULTI, &qdev->flags);
4380 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4381 qlge_set_multicast_list(qdev->ndev);
4382
f2c0d8df 4383 rtnl_unlock();
db98812f
RM
4384 return;
4385error:
ae9540f7
JP
4386 netif_alert(qdev, ifup, qdev->ndev,
4387 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4388
db98812f
RM
4389 set_bit(QL_ADAPTER_UP, &qdev->flags);
4390 dev_close(qdev->ndev);
4391 rtnl_unlock();
c4e84bde
RM
4392}
4393
b0c2aadf
RM
4394static struct nic_operations qla8012_nic_ops = {
4395 .get_flash = ql_get_8012_flash_params,
4396 .port_initialize = ql_8012_port_initialize,
4397};
4398
cdca8d02
RM
4399static struct nic_operations qla8000_nic_ops = {
4400 .get_flash = ql_get_8000_flash_params,
4401 .port_initialize = ql_8000_port_initialize,
4402};
4403
e4552f51
RM
4404/* Find the pcie function number for the other NIC
4405 * on this chip. Since both NIC functions share a
4406 * common firmware we have the lowest enabled function
4407 * do any common work. Examples would be resetting
4408 * after a fatal firmware error, or doing a firmware
4409 * coredump.
4410 */
4411static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4412{
4413 int status = 0;
4414 u32 temp;
4415 u32 nic_func1, nic_func2;
4416
4417 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4418 &temp);
4419 if (status)
4420 return status;
4421
4422 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4423 MPI_TEST_NIC_FUNC_MASK);
4424 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4425 MPI_TEST_NIC_FUNC_MASK);
4426
4427 if (qdev->func == nic_func1)
4428 qdev->alt_func = nic_func2;
4429 else if (qdev->func == nic_func2)
4430 qdev->alt_func = nic_func1;
4431 else
4432 status = -EIO;
4433
4434 return status;
4435}
b0c2aadf 4436
e4552f51 4437static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4438{
e4552f51 4439 int status;
c4e84bde
RM
4440 qdev->func =
4441 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4442 if (qdev->func > 3)
4443 return -EIO;
4444
4445 status = ql_get_alt_pcie_func(qdev);
4446 if (status)
4447 return status;
4448
4449 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4450 if (qdev->port) {
c4e84bde
RM
4451 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4452 qdev->port_link_up = STS_PL1;
4453 qdev->port_init = STS_PI1;
4454 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4455 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4456 } else {
4457 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4458 qdev->port_link_up = STS_PL0;
4459 qdev->port_init = STS_PI0;
4460 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4461 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4462 }
4463 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4464 qdev->device_id = qdev->pdev->device;
4465 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4466 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4467 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4468 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4469 return status;
c4e84bde
RM
4470}
4471
4472static void ql_release_all(struct pci_dev *pdev)
4473{
4474 struct net_device *ndev = pci_get_drvdata(pdev);
4475 struct ql_adapter *qdev = netdev_priv(ndev);
4476
4477 if (qdev->workqueue) {
4478 destroy_workqueue(qdev->workqueue);
4479 qdev->workqueue = NULL;
4480 }
39aa8165 4481
c4e84bde 4482 if (qdev->reg_base)
8668ae92 4483 iounmap(qdev->reg_base);
c4e84bde
RM
4484 if (qdev->doorbell_area)
4485 iounmap(qdev->doorbell_area);
8aae2600 4486 vfree(qdev->mpi_coredump);
c4e84bde
RM
4487 pci_release_regions(pdev);
4488 pci_set_drvdata(pdev, NULL);
4489}
4490
4491static int __devinit ql_init_device(struct pci_dev *pdev,
4492 struct net_device *ndev, int cards_found)
4493{
4494 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4495 int err = 0;
c4e84bde 4496
e332471c 4497 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4498 err = pci_enable_device(pdev);
4499 if (err) {
4500 dev_err(&pdev->dev, "PCI device enable failed.\n");
4501 return err;
4502 }
4503
ebd6e774
RM
4504 qdev->ndev = ndev;
4505 qdev->pdev = pdev;
4506 pci_set_drvdata(pdev, ndev);
c4e84bde 4507
bc9167f3
RM
4508 /* Set PCIe read request size */
4509 err = pcie_set_readrq(pdev, 4096);
4510 if (err) {
4511 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4512 goto err_out1;
bc9167f3
RM
4513 }
4514
c4e84bde
RM
4515 err = pci_request_regions(pdev, DRV_NAME);
4516 if (err) {
4517 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4518 return err;
c4e84bde
RM
4519 }
4520
4521 pci_set_master(pdev);
6a35528a 4522 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4523 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4524 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4525 } else {
284901a9 4526 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4527 if (!err)
284901a9 4528 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4529 }
4530
4531 if (err) {
4532 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4533 goto err_out2;
c4e84bde
RM
4534 }
4535
73475339
RM
4536 /* Set PCIe reset type for EEH to fundamental. */
4537 pdev->needs_freset = 1;
6d190c6e 4538 pci_save_state(pdev);
c4e84bde
RM
4539 qdev->reg_base =
4540 ioremap_nocache(pci_resource_start(pdev, 1),
4541 pci_resource_len(pdev, 1));
4542 if (!qdev->reg_base) {
4543 dev_err(&pdev->dev, "Register mapping failed.\n");
4544 err = -ENOMEM;
4f9a91c8 4545 goto err_out2;
c4e84bde
RM
4546 }
4547
4548 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4549 qdev->doorbell_area =
4550 ioremap_nocache(pci_resource_start(pdev, 3),
4551 pci_resource_len(pdev, 3));
4552 if (!qdev->doorbell_area) {
4553 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4554 err = -ENOMEM;
4f9a91c8 4555 goto err_out2;
c4e84bde
RM
4556 }
4557
e4552f51
RM
4558 err = ql_get_board_info(qdev);
4559 if (err) {
4560 dev_err(&pdev->dev, "Register access failed.\n");
4561 err = -EIO;
4f9a91c8 4562 goto err_out2;
e4552f51 4563 }
c4e84bde
RM
4564 qdev->msg_enable = netif_msg_init(debug, default_msg);
4565 spin_lock_init(&qdev->hw_lock);
4566 spin_lock_init(&qdev->stats_lock);
4567
8aae2600
RM
4568 if (qlge_mpi_coredump) {
4569 qdev->mpi_coredump =
4570 vmalloc(sizeof(struct ql_mpi_coredump));
4571 if (qdev->mpi_coredump == NULL) {
4572 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4573 err = -ENOMEM;
ce96bc86 4574 goto err_out2;
8aae2600 4575 }
d5c1da56
RM
4576 if (qlge_force_coredump)
4577 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4578 }
c4e84bde 4579 /* make sure the EEPROM is good */
b0c2aadf 4580 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4581 if (err) {
4582 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4583 goto err_out2;
c4e84bde
RM
4584 }
4585
c4e84bde 4586 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
801e9096
RM
4587 /* Keep local copy of current mac address. */
4588 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4589
4590 /* Set up the default ring sizes. */
4591 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4592 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4593
4594 /* Set up the coalescing parameters. */
4595 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4596 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4597 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4598 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4599
4600 /*
4601 * Set up the operating parameters.
4602 */
4603 qdev->rx_csum = 1;
c4e84bde
RM
4604 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4605 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4606 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4607 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4608 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4609 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4610 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4611 init_completion(&qdev->ide_completion);
c4e84bde
RM
4612
4613 if (!cards_found) {
4614 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4615 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4616 DRV_NAME, DRV_VERSION);
4617 }
4618 return 0;
4f9a91c8 4619err_out2:
c4e84bde 4620 ql_release_all(pdev);
4f9a91c8 4621err_out1:
c4e84bde
RM
4622 pci_disable_device(pdev);
4623 return err;
4624}
4625
25ed7849
SH
4626static const struct net_device_ops qlge_netdev_ops = {
4627 .ndo_open = qlge_open,
4628 .ndo_stop = qlge_close,
4629 .ndo_start_xmit = qlge_send,
4630 .ndo_change_mtu = qlge_change_mtu,
4631 .ndo_get_stats = qlge_get_stats,
4632 .ndo_set_multicast_list = qlge_set_multicast_list,
4633 .ndo_set_mac_address = qlge_set_mac_address,
4634 .ndo_validate_addr = eth_validate_addr,
4635 .ndo_tx_timeout = qlge_tx_timeout,
01e6b953
RM
4636 .ndo_vlan_rx_register = qlge_vlan_rx_register,
4637 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4638 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4639};
4640
15c052fc
RM
4641static void ql_timer(unsigned long data)
4642{
4643 struct ql_adapter *qdev = (struct ql_adapter *)data;
4644 u32 var = 0;
4645
4646 var = ql_read32(qdev, STS);
4647 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4648 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4649 return;
4650 }
4651
72046d84 4652 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4653}
4654
c4e84bde
RM
4655static int __devinit qlge_probe(struct pci_dev *pdev,
4656 const struct pci_device_id *pci_entry)
4657{
4658 struct net_device *ndev = NULL;
4659 struct ql_adapter *qdev = NULL;
4660 static int cards_found = 0;
4661 int err = 0;
4662
1e213303
RM
4663 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4664 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
4665 if (!ndev)
4666 return -ENOMEM;
4667
4668 err = ql_init_device(pdev, ndev, cards_found);
4669 if (err < 0) {
4670 free_netdev(ndev);
4671 return err;
4672 }
4673
4674 qdev = netdev_priv(ndev);
4675 SET_NETDEV_DEV(ndev, &pdev->dev);
4676 ndev->features = (0
4677 | NETIF_F_IP_CSUM
4678 | NETIF_F_SG
4679 | NETIF_F_TSO
4680 | NETIF_F_TSO6
4681 | NETIF_F_TSO_ECN
4682 | NETIF_F_HW_VLAN_TX
4683 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 4684 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
4685
4686 if (test_bit(QL_DMA64, &qdev->flags))
4687 ndev->features |= NETIF_F_HIGHDMA;
4688
4689 /*
4690 * Set up net_device structure.
4691 */
4692 ndev->tx_queue_len = qdev->tx_ring_size;
4693 ndev->irq = pdev->irq;
25ed7849
SH
4694
4695 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4696 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4697 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4698
c4e84bde
RM
4699 err = register_netdev(ndev);
4700 if (err) {
4701 dev_err(&pdev->dev, "net device registration failed.\n");
4702 ql_release_all(pdev);
4703 pci_disable_device(pdev);
4704 return err;
4705 }
15c052fc
RM
4706 /* Start up the timer to trigger EEH if
4707 * the bus goes dead
4708 */
4709 init_timer_deferrable(&qdev->timer);
4710 qdev->timer.data = (unsigned long)qdev;
4711 qdev->timer.function = ql_timer;
4712 qdev->timer.expires = jiffies + (5*HZ);
4713 add_timer(&qdev->timer);
6a473308 4714 ql_link_off(qdev);
c4e84bde 4715 ql_display_dev_info(ndev);
9dfbbaa6 4716 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4717 cards_found++;
4718 return 0;
4719}
4720
9dfbbaa6
RM
4721netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4722{
4723 return qlge_send(skb, ndev);
4724}
4725
4726int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4727{
4728 return ql_clean_inbound_rx_ring(rx_ring, budget);
4729}
4730
c4e84bde
RM
4731static void __devexit qlge_remove(struct pci_dev *pdev)
4732{
4733 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4734 struct ql_adapter *qdev = netdev_priv(ndev);
4735 del_timer_sync(&qdev->timer);
c5dadddb 4736 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4737 unregister_netdev(ndev);
4738 ql_release_all(pdev);
4739 pci_disable_device(pdev);
4740 free_netdev(ndev);
4741}
4742
6d190c6e
RM
4743/* Clean up resources without touching hardware. */
4744static void ql_eeh_close(struct net_device *ndev)
4745{
4746 int i;
4747 struct ql_adapter *qdev = netdev_priv(ndev);
4748
4749 if (netif_carrier_ok(ndev)) {
4750 netif_carrier_off(ndev);
4751 netif_stop_queue(ndev);
4752 }
4753
7ae80abd
BL
4754 /* Disabling the timer */
4755 del_timer_sync(&qdev->timer);
c5dadddb 4756 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4757
4758 for (i = 0; i < qdev->rss_ring_count; i++)
4759 netif_napi_del(&qdev->rx_ring[i].napi);
4760
4761 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4762 ql_tx_ring_clean(qdev);
4763 ql_free_rx_buffers(qdev);
4764 ql_release_adapter_resources(qdev);
4765}
4766
c4e84bde
RM
4767/*
4768 * This callback is called by the PCI subsystem whenever
4769 * a PCI bus error is detected.
4770 */
4771static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4772 enum pci_channel_state state)
4773{
4774 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4775 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4776
6d190c6e
RM
4777 switch (state) {
4778 case pci_channel_io_normal:
4779 return PCI_ERS_RESULT_CAN_RECOVER;
4780 case pci_channel_io_frozen:
4781 netif_device_detach(ndev);
4782 if (netif_running(ndev))
4783 ql_eeh_close(ndev);
4784 pci_disable_device(pdev);
4785 return PCI_ERS_RESULT_NEED_RESET;
4786 case pci_channel_io_perm_failure:
4787 dev_err(&pdev->dev,
4788 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4789 ql_eeh_close(ndev);
4790 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4791 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4792 }
c4e84bde
RM
4793
4794 /* Request a slot reset. */
4795 return PCI_ERS_RESULT_NEED_RESET;
4796}
4797
4798/*
4799 * This callback is called after the PCI buss has been reset.
4800 * Basically, this tries to restart the card from scratch.
4801 * This is a shortened version of the device probe/discovery code,
4802 * it resembles the first-half of the () routine.
4803 */
4804static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4805{
4806 struct net_device *ndev = pci_get_drvdata(pdev);
4807 struct ql_adapter *qdev = netdev_priv(ndev);
4808
6d190c6e
RM
4809 pdev->error_state = pci_channel_io_normal;
4810
4811 pci_restore_state(pdev);
c4e84bde 4812 if (pci_enable_device(pdev)) {
ae9540f7
JP
4813 netif_err(qdev, ifup, qdev->ndev,
4814 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4815 return PCI_ERS_RESULT_DISCONNECT;
4816 }
c4e84bde 4817 pci_set_master(pdev);
a112fd4c
RM
4818
4819 if (ql_adapter_reset(qdev)) {
ae9540f7 4820 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4821 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4822 return PCI_ERS_RESULT_DISCONNECT;
4823 }
4824
c4e84bde
RM
4825 return PCI_ERS_RESULT_RECOVERED;
4826}
4827
4828static void qlge_io_resume(struct pci_dev *pdev)
4829{
4830 struct net_device *ndev = pci_get_drvdata(pdev);
4831 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4832 int err = 0;
c4e84bde 4833
c4e84bde 4834 if (netif_running(ndev)) {
6d190c6e
RM
4835 err = qlge_open(ndev);
4836 if (err) {
ae9540f7
JP
4837 netif_err(qdev, ifup, qdev->ndev,
4838 "Device initialization failed after reset.\n");
c4e84bde
RM
4839 return;
4840 }
6d190c6e 4841 } else {
ae9540f7
JP
4842 netif_err(qdev, ifup, qdev->ndev,
4843 "Device was not running prior to EEH.\n");
c4e84bde 4844 }
72046d84 4845 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4846 netif_device_attach(ndev);
4847}
4848
4849static struct pci_error_handlers qlge_err_handler = {
4850 .error_detected = qlge_io_error_detected,
4851 .slot_reset = qlge_io_slot_reset,
4852 .resume = qlge_io_resume,
4853};
4854
4855static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4856{
4857 struct net_device *ndev = pci_get_drvdata(pdev);
4858 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4859 int err;
c4e84bde
RM
4860
4861 netif_device_detach(ndev);
15c052fc 4862 del_timer_sync(&qdev->timer);
c4e84bde
RM
4863
4864 if (netif_running(ndev)) {
4865 err = ql_adapter_down(qdev);
4866 if (!err)
4867 return err;
4868 }
4869
bc083ce9 4870 ql_wol(qdev);
c4e84bde
RM
4871 err = pci_save_state(pdev);
4872 if (err)
4873 return err;
4874
4875 pci_disable_device(pdev);
4876
4877 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4878
4879 return 0;
4880}
4881
04da2cf9 4882#ifdef CONFIG_PM
c4e84bde
RM
4883static int qlge_resume(struct pci_dev *pdev)
4884{
4885 struct net_device *ndev = pci_get_drvdata(pdev);
4886 struct ql_adapter *qdev = netdev_priv(ndev);
4887 int err;
4888
4889 pci_set_power_state(pdev, PCI_D0);
4890 pci_restore_state(pdev);
4891 err = pci_enable_device(pdev);
4892 if (err) {
ae9540f7 4893 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4894 return err;
4895 }
4896 pci_set_master(pdev);
4897
4898 pci_enable_wake(pdev, PCI_D3hot, 0);
4899 pci_enable_wake(pdev, PCI_D3cold, 0);
4900
4901 if (netif_running(ndev)) {
4902 err = ql_adapter_up(qdev);
4903 if (err)
4904 return err;
4905 }
4906
72046d84 4907 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4908 netif_device_attach(ndev);
4909
4910 return 0;
4911}
04da2cf9 4912#endif /* CONFIG_PM */
c4e84bde
RM
4913
4914static void qlge_shutdown(struct pci_dev *pdev)
4915{
4916 qlge_suspend(pdev, PMSG_SUSPEND);
4917}
4918
4919static struct pci_driver qlge_driver = {
4920 .name = DRV_NAME,
4921 .id_table = qlge_pci_tbl,
4922 .probe = qlge_probe,
4923 .remove = __devexit_p(qlge_remove),
4924#ifdef CONFIG_PM
4925 .suspend = qlge_suspend,
4926 .resume = qlge_resume,
4927#endif
4928 .shutdown = qlge_shutdown,
4929 .err_handler = &qlge_err_handler
4930};
4931
4932static int __init qlge_init_module(void)
4933{
4934 return pci_register_driver(&qlge_driver);
4935}
4936
4937static void __exit qlge_exit(void)
4938{
4939 pci_unregister_driver(&qlge_driver);
4940}
4941
4942module_init(qlge_init_module);
4943module_exit(qlge_exit);
This page took 0.63085 seconds and 5 git commands to generate.